1
|
Kobyliak N, Khomenko M, Falalyeyeva T, Fedchenko A, Savchuk O, Tseyslyer Y, Ostapchenko L. Probiotics for pancreatic β-cell function: from possible mechanism of action to assessment of effectiveness. Crit Rev Microbiol 2024; 50:663-683. [PMID: 37705353 DOI: 10.1080/1040841x.2023.2257776] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Type 2 diabetes (T2D) is a metabolic disease characterized by chronic hyperglycemia because of insulin resistance (IR) and\or pancreatic β-cell dysfunction. Last century research showed that gut microbiota has a direct effect on metabolism and metabolic diseases. New studies into the human microbiome and its connection with the host is making it possible to develop new therapies for a wide variety of diseases. Inflammation is a well-known precursor to metabolic syndrome, which increases the risk of hypertension, visceral obesity, and dyslipidemia, which can lead to T2D through the damage of pancreatic β-cell and reduce insulin secretion. Current understanding for beneficial effects of probiotics in T2D strictly rely on both animal and clinical data, which mostly focused on their impact on IR, anthropometric parameters, glycemic control and markers of chronic systemic inflammation. From the other hand, there is a lack of evidence-based probiotic efficacy on pancreatic β-cell function in terms of T2D and related metabolic disorders. Therefore, current review will focus on the efficacy of probiotics for the protection of β-cells damage and it`s mechanism in patients with T2D.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
- Medical Laboratory CSD, Kyiv, Ukraine
| | - Maria Khomenko
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Medical Laboratory CSD, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | | | | | | |
Collapse
|
2
|
Keivanlou MH, Amini-Salehi E, Sattari N, Hashemi M, Saberian P, Prabhu SV, Javid M, Mirdamadi A, Heidarzad F, Bakhshi A, Letafatkar N, Zare R, Hassanipour S, Nayak SS. Gut microbiota interventions in type 2 diabetes mellitus: An umbrella review of glycemic indices. Diabetes Metab Syndr 2024; 18:103110. [PMID: 39213690 DOI: 10.1016/j.dsx.2024.103110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND We aimed to explore how probiotics, prebiotics, or synbiotics impact glycemic indices in patients with diabetes mellitus. METHOD A comprehensive search was conducted on PubMed, Scopus, and Web of Science from inception up to April 2023. The random-effects model was employed for the study analysis. Furthermore, sensitivity and subgroup analyses were conducted to investigate potential sources of heterogeneity. AMSTAR2 checklist was used to determine the quality of studies. Comprehensive meta-analysis version 3 was used for the study analysis. RESULT A total of 31 studies were included in the final analysis. Based on the results of the meta-analysis, gut microbial therapy could significantly decrease serum fasting blood glucose levels in patients with type 2 diabetes mellitus (effect size: -0.211; 95 % CI: -0.257, -0.164; P < 0.001). Additionally, significant associations were also found between gut microbial therapy and improved serum levels of fasting insulin, glycated hemoglobin, and homeostatic model assessment for insulin resistance (effect size: -0.087; 95 % confidence interval: -0.120, -0.053; P < 0.001; effect size: -0.166; 95 % confidence interval: -0.200, -0.132; P < 0.001; effect size: -0.230; 95 % confidence interval: -0.288, -0.172; P < 0.001, respectively). CONCLUSION Our results revealed promising effects of gut microbiota modulation on glycemic profile of patients with type 2 diabetes mellitus. The use of these agents as additional treatments can be considered.
Collapse
Affiliation(s)
- Mohammad-Hossein Keivanlou
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazila Sattari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parsa Saberian
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Mona Javid
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arian Mirdamadi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Forough Heidarzad
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Bakhshi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Zare
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Sandeep Samethadka Nayak
- Department of Internal Medicine, Yale New Haven Health Bridgeport Hospital , Bridgeport, CT, USA
| |
Collapse
|
3
|
Bajinka O, Sylvain Dovi K, Simbilyabo L, Conteh I, Tan Y. The predicted mechanisms and evidence of probiotics on type 2 diabetes mellitus (T2DM). Arch Physiol Biochem 2024; 130:475-490. [PMID: 36630122 DOI: 10.1080/13813455.2022.2163260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a serious endocrine and metabolic disease that is highly prevalent and causes high mortality and morbidity rates worldwide. This review aims to focus on the potential of probiotics in the management of T2DM and its complications and to summarise the various mechanisms of action of probiotics with respect to T2DM. In this review, experimental studies conducted between 2016 and 2022 were explored. The possible mechanisms of action are based on their ability to modulate the gut microbiota, boost the production of short-chain fatty acids (SCFAs) and glucagon-like peptides, inhibit α-glucosidase, elevate sirtuin 1 (SIRT1) levels while reducing fetuin-A levels, and regulate the level of inflammatory cytokines. This review recommends carrying out further studies, especially human trials, to provide robust evidence-based knowledge on the use of probiotics for the treatment of T2DM.IMPACT STATEMENTT2DM is prevalent worldwide causing high rates of morbidity and mortality.Gut microbiota play a significant role in the pathogenesis of T2DM.Probiotics can be used as possible therapeutic tools for the management of T2DM.The possible mechanisms of action of probiotics include modulation of the gut microbiota, production of SCFAs and glucagon-like peptides, inhibition of α-glucosidase, raising SIRT1, reducing fetuin-A levels, and regulating the level of inflammatory cytokines.
Collapse
Affiliation(s)
- Ousman Bajinka
- Department of Medical Microbiology, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kodzovi Sylvain Dovi
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, P. R. China
| | - Lucette Simbilyabo
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Ishmail Conteh
- Department of Epidemiology and Health Statistics, Xiangya School of public health central South University, Changsha, P. R. China
| | - Yurong Tan
- Department of Medical Microbiology, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
4
|
Li S, Liu Z, Zhang Q, Su D, Wang P, Li Y, Shi W, Zhang Q. The Antidiabetic Potential of Probiotics: A Review. Nutrients 2024; 16:2494. [PMID: 39125375 PMCID: PMC11313988 DOI: 10.3390/nu16152494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetes has become one of the most prevalent global epidemics, significantly impacting both the economy and the health of individuals. Diabetes is associated with numerous complications, such as obesity; hyperglycemia; hypercholesterolemia; dyslipidemia; metabolic endotoxemia; intestinal barrier damage; insulin-secretion defects; increased oxidative stress; and low-grade, systemic, and chronic inflammation. Diabetes cannot be completely cured; therefore, current research has focused on developing various methods to control diabetes. A promising strategy is the use of probiotics for diabetes intervention. Probiotics are a class of live, non-toxic microorganisms that can colonize the human intestine and help improve the balance of intestinal microbiota. In this review, we summarize the current clinical studies on using probiotics to control diabetes in humans, along with mechanistic studies conducted in animal models. The primary mechanism by which probiotics regulate diabetes is improved intestinal barrier integrity, alleviated oxidative stress, enhanced immune response, increased short-chain fatty acid production, etc. Therefore, probiotic supplementation holds great potential for the prevention and management of diabetes.
Collapse
Affiliation(s)
- Shiming Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100193, China
| | - Zichao Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Qi Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Dan Su
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA;
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Yixuan Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Wenbiao Shi
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Qian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| |
Collapse
|
5
|
Kober AKMH, Saha S, Ayyash M, Namai F, Nishiyama K, Yoda K, Villena J, Kitazawa H. Insights into the Anti-Adipogenic and Anti-Inflammatory Potentialities of Probiotics against Obesity. Nutrients 2024; 16:1373. [PMID: 38732619 PMCID: PMC11085650 DOI: 10.3390/nu16091373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Functional foods with probiotics are safe and effective dietary supplements to improve overweight and obesity. Thus, altering the intestinal microflora may be an effective approach for controlling or preventing obesity. This review aims to summarize the experimental method used to study probiotics and obesity, and recent advances in probiotics against obesity. In particular, we focused on studies (in vitro and in vivo) that used probiotics to treat obesity and its associated comorbidities. Several in vitro and in vivo (animal and human clinical) studies conducted with different bacterial species/strains have reported that probiotics promote anti-obesity effects by suppressing the differentiation of pre-adipocytes through immune cell activation, maintaining the Th1/Th2 cytokine balance, altering the intestinal microbiota composition, reducing the lipid profile, and regulating energy metabolism. Most studies on probiotics and obesity have shown that probiotics are responsible for a notable reduction in weight gain and body mass index. It also increases the levels of anti-inflammatory adipokines and decreases those of pro-inflammatory adipokines in the blood, which are responsible for the regulation of glucose and fatty acid breakdown. Furthermore, probiotics effectively increase insulin sensitivity and decrease systemic inflammation. Taken together, the intestinal microbiota profile found in overweight individuals can be modified by probiotic supplementation which can create a promising environment for weight loss along enhancing levels of adiponectin and decreasing leptin, tumor necrosis factor (TNF)-α, interleukin (IL)-6, monocyte chemotactic protein (MCP)-1, and transforming growth factor (TGF)-β on human health.
Collapse
Affiliation(s)
- A. K. M. Humayun Kober
- Department of Dairy and Poultry Science, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh;
| | - Sudeb Saha
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8576, Japan
- Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Fu Namai
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8576, Japan
| | - Keita Nishiyama
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8576, Japan
| | - Kazutoyo Yoda
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama 241-0023, Japan;
| | - Julio Villena
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (F.N.); (K.N.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8576, Japan
| |
Collapse
|
6
|
Qu Q, He P, Zhang Y, Yang S, Zeng P. The Intervention of Probiotics on Type 2 Diabetes Mellitus in Animal Models. Mol Nutr Food Res 2024; 68:e2200815. [PMID: 37967330 DOI: 10.1002/mnfr.202200815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/18/2023] [Indexed: 11/17/2023]
Abstract
Type 2 diabetes accounts for more than 90% of diabetes patients with the incidence and prevalence continuously rising globally. As a prospective therapy strategy for type 2 diabetes, probiotics have shown beneficial effects both in animal experiments and human clinical trials. This review summarizes the commonly used animal models in probiotic intervention research and presents the evidence and mechanism of diabetes intervention with probiotics in these animal models. Probiotics can help maintain glucose homeostasis, improve lipid metabolism, promote the production of short-chain fatty acids, and reduce inflammatory reactions in animal models. However, the clinical translation of benefits from probiotics is still challenged by intrinsic differences between experimental animal models and humans, and the application of humanized non-rodent diabetic animal models may contribute to the clinical translation of probiotics in the future.
Collapse
Affiliation(s)
- Qianyu Qu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 61000, China
| | - Penggang He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 61000, China
| | - Yuqi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 61000, China
| | - Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 61000, China
| | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 61000, China
| |
Collapse
|
7
|
de Brito Avelino L, Rodrigues KT, da Silva Cruz NT, Martins AA, de Aquino Martins ARL. Effectiveness of Probiotic Therapy in the Management of PeriodontalDisease in Diabetic Patients: A Scoping Review. Curr Diabetes Rev 2024; 20:e281123223961. [PMID: 38018184 DOI: 10.2174/0115733998271193231108054254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Probiotics can compete with periodontal pathogens in the formation of dental biofilm, and they are able to modulate local and systemic immune responses. Thus, its use in diabetic patients with periodontal disease (PD) can overcome the limitations of conventional periodontal treatment. OBJECTIVE This scoping review aimed to understand the extent and type of evidence in relation to the effects of probiotic therapy on periodontal and glycaemic parameters of diabetic patients with PD. METHODS An electronic search was performed in the following databases: Cochrane Library, EMBASE, Virtual Health Library (including LILACS and BBO), PubMed (including Medline), Scopus, Web of Science, and Google Scholar. The review included clinical trials on patients with type 2 diabetes, diagnosed with gingivitis or periodontitis, who received probiotic therapy as a single therapy or adjuvant to scaling and root planning, and on whom the analyses of clinical periodontal, immunological, microbiological, or glycaemic parameters were performed. RESULTS The electronic search yielded a total of 1165 articles. After removing duplicate titles and performing systematic screening, 6 studies were included in the qualitative summary. Probiotic administration improved clinical periodontal parameters (bleeding on probing and probing depth), oxidative stress markers, and inflammatory cytokines (IL-8, IL-10, and TNF-α) in relation to control groups. Experimental groups were also more advantageous in reducing the frequency of periodontopathogenic bacteria. However, the evidence of probiotics in decreasing glycated hemoglobin is still uncertain. CONCLUSION Probiotics may provide safe additional benefits to periodontal parameters of patients with type 2 diabetes and periodontal disease.
Collapse
Affiliation(s)
| | | | | | - Agnes Andrade Martins
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | |
Collapse
|
8
|
Talearngkul R, Sae-Tan S, Sirivarasai J. Effect of Yogurt Ice Cream on the Viability and Antidiabetic Potential of the Probiotics Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, and Bifidobacterium animalis subsp. lactis after In Vitro Digestion. Foods 2023; 12:4373. [PMID: 38231849 DOI: 10.3390/foods12234373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
Probiotics can ameliorate type 2 diabetes mellitus (T2DM) via several mechanisms such as by decreasing inflammatory cytokines and increasing pancreatic β-cell functions. Another targeted mechanism for managing T2DM involves inhibiting α-amylase and α-glucosidase, which exhibit antioxidant activity and affect carbohydrate metabolism by delaying carbohydrate digestion, thus mitigating glucose in the circulation. Dairy products are effective matrices for delivering probiotics through the gastrointestinal tract. We compared the viability and antioxidant activity of the probiotics Lactobacillus acidophilus LA-5, Lacticaseibacillus rhamnosus GG, and Bifidobacterium animalis subsp. lactis in yogurt ice cream after in vitro digestion and compared α-amylase and α-glucosidase inhibition activities. Lacticaseibacillus rhamnosus GG had the highest viability after in vitro digestion (oral, gastric, and intestinal). Lactobacillus acidophilus LA-5 and Lacticaseibacillus rhamnosus GG exhibited the highest percentages of α-glucosidase (16.37% ± 0.32%) and α-amylase (41.37% ± 0.61%) inhibition. Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus acidophilus LA-5 showed the highest antioxidant activities via the α,α-diphenyl-β-picrylhydrazyl free radical-scavenging method and ferric-reducing antioxidant power assay, respectively. These findings suggest that yogurt ice cream can provide a suitable matrix for the delivery of probiotics from dairy culture to promote intestinal homeostasis with probiotic benefits in the host as well as a potential functional food to help reduce postprandial hyperglycaemia.
Collapse
Affiliation(s)
- Rinrada Talearngkul
- Master of Science Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand
| | - Sudathip Sae-Tan
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Jintana Sirivarasai
- Nutrition Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
9
|
Arellano-García L, Macarulla MT, Cuevas-Sierra A, Martínez JA, Portillo MP, Milton-Laskibar I. Lactobacillus rhamnosus GG administration partially prevents diet-induced insulin resistance in rats: a comparison with its heat-inactivated parabiotic. Food Funct 2023; 14:8865-8875. [PMID: 37698059 DOI: 10.1039/d3fo01307c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Insulin resistance and type 2 diabetes are obesity-related health alterations, featuring an ever-increasing prevalence. Besides inadequate feeding patterns, gut microbiota alterations stand out as potential contributors to these metabolic disturbances. The aim of this study was to investigate whether the administration of a probiotic (Lactobacillus rhamnosus GG) effectively prevents diet-induced insulin resistance in rats and to compare these potential effects with those exerted by its heat-inactivated parabiotic. For this purpose, 34 male Wistar rats were fed a standard or a high-fat high-fructose diet, alone or supplemented with viable or heat-inactivated Lactobacillus rhamnosus GG. The body and white adipose tissue weight increases, induced by the obesogenic diet, were prevented by probiotic and parabiotic administration. The trend towards higher basal glucose levels and significantly higher serum insulin concentration observed in the non-treated animals fed with the obesogenic diet were effectively reverted by both treatments. Similar results were also found for serum adiponectin and leptin, whose levels were brought back by the probiotic and parabiotic administration to values similar to those of the control animals. Noteworthily, parabiotic administration significantly reduced skeletal muscle triglyceride content and activated CPT-1b compared to the non-treated animals. Finally, both treatments enhanced Akt and AS160 phosphorylation in the skeletal muscle compared to the non-treated animals; however, only parabiotic administration increased GLUT-4 protein expression in this tissue. These results suggest that heat-inactivated Lactobacillus rhamnosus GG seem to be more effective than its probiotic of origin in preventing high-fat high-fructose diet-induced insulin resistance in rats.
Collapse
Affiliation(s)
- L Arellano-García
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
| | - M T Macarulla
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 28222 Madrid, Spain
- BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - A Cuevas-Sierra
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, 28049 Madrid, Spain
| | - J A Martínez
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 28222 Madrid, Spain
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, 28049 Madrid, Spain
| | - M P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 28222 Madrid, Spain
- BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - I Milton-Laskibar
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 28222 Madrid, Spain
- BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
10
|
Jiang S, Liu A, Ma W, Liu X, Luo P, Zhan M, Zhou X, Chen L, Zhang J. Lactobacillus gasseri CKCC1913 mediated modulation of the gut-liver axis alleviated insulin resistance and liver damage induced by type 2 diabetes. Food Funct 2023; 14:8504-8520. [PMID: 37655696 DOI: 10.1039/d3fo01701j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by dysregulation of lipid metabolism, insulin resistance, and gut microbiota disorder. Compared to drug interventions, probiotic interventions may have a more enduring effect without producing any side effects. Thus, the potential of probiotics as a therapeutic approach for diabetes and other metabolic disorders has gained increasing attention in recent years. In this study, we evaluated the therapeutic efficacy of Lactobacillus gasseri CKCC1913, a potential probiotic strain, in high-fat diet-induced insulin-resistant diabetes using the C57BL/6J mouse animal model. From the results, L. gasseri CKCC1913 has been shown to increase glucose tolerance, reduce fasting blood glucose levels in diabetic mice, and reduce the expression of pro-inflammatory cytokines, such as TNF-α and IL-6. Besides, L. gasseri CKCC1913 intervention effectively alleviated oxidative stress damage by increasing SOD activity, decreasing MDA levels, reducing insulin resistance, and improving dyslipidemia caused by diabetes. The potential mechanism of L. gasseri CKCC1913 in improving metabolic health and alleviating diabetes involves an increased abundance of beneficial bacteria, such as Parabacteroides merdae, which directly produce short-chain fatty acids that help regulate immune cells and reduce inflammation. SCFAs also enter the bloodstream and promote antioxidant enzyme activity in the liver, protecting against oxidative damage. Additionally, L. gasseri CKCC1913 influences local bacterial metabolism pathways, such as the superpathway of unsaturated fatty acid biosynthesis, leading to an increase in unsaturated fatty acids, increasing high-density lipoprotein cholesterol (HDL-C) levels and improving lipid metabolism and glucose control in diabetic mice. In summary, in this study, L. gasseri CKCC1913 and its potential impact on metabolic health highlight the promising potential of probiotics as a therapeutic approach for diabetes. Future research should focus on identifying the optimal dose and duration, investigating the long-term effects and mechanisms of action, and exploring the potential use of probiotics as an adjunct to other therapies or in preventing metabolic disorders.
Collapse
Affiliation(s)
- Shuaiming Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Aijie Liu
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | - Wenyao Ma
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Xinlei Liu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | | | - Meng Zhan
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | | | - Lihao Chen
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
11
|
Al-Ishaq RK, Samuel SM, Büsselberg D. The Influence of Gut Microbial Species on Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24098118. [PMID: 37175825 PMCID: PMC10179351 DOI: 10.3390/ijms24098118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder with an alarming incidence rate and a considerable burden on the patient's life and health care providers. An increase in blood glucose level and insulin resistance characterizes it. Internal and external factors such as urbanization, obesity, and genetic mutations could increase the risk of DM. Microbes in the gut influence overall health through immunity and nutrition. Recently, more studies have been conducted to evaluate and estimate the role of the gut microbiome in diabetes development, progression, and management. This review summarizes the current knowledge addressing three main bacterial species: Bifidobacterium adolescentis, Bifidobacterium bifidum, and Lactobacillus rhamnosus and their influence on diabetes and its underlying molecular mechanisms. Most studies illustrate that using those bacterial species positively reduces blood glucose levels and activates inflammatory markers. Additionally, we reported the relationship between those bacterial species and metformin, one of the commonly used antidiabetic drugs. Overall, more research is needed to understand the influence of the gut microbiome on the development of diabetes. Furthermore, more efforts are required to standardize the model used, concentration ranges, and interpretation tools to advance the field further.
Collapse
Affiliation(s)
- Raghad Khalid Al-Ishaq
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| |
Collapse
|
12
|
Sheth VG, Sharma N, Kabeer SW, Tikoo K. Lactobacillus rhamnosus supplementation ameliorates high fat diet-induced epigenetic alterations and prevents its intergenerational inheritance. Life Sci 2022; 311:121151. [DOI: 10.1016/j.lfs.2022.121151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
13
|
Rastogi S, Singh A. Gut microbiome and human health: Exploring how the probiotic genus Lactobacillus modulate immune responses. Front Pharmacol 2022; 13:1042189. [PMID: 36353491 PMCID: PMC9638459 DOI: 10.3389/fphar.2022.1042189] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
The highest density of microbes resides in human gastrointestinal tract, known as “Gut microbiome”. Of note, the members of the genus Lactobacillus that belong to phyla Firmicutes are the most important probiotic bacteria of the gut microbiome. These gut-residing Lactobacillus species not only communicate with each other but also with the gut epithelial lining to balance the gut barrier integrity, mucosal barrier defence and ameliorate the host immune responses. The human body suffers from several inflammatory diseases affecting the gut, lungs, heart, bone or neural tissues. Mounting evidence supports the significant role of Lactobacillus spp. and their components (such as metabolites, peptidoglycans, and/or surface proteins) in modulatingimmune responses, primarily through exchange of immunological signals between gastrointestinal tract and distant organs. This bidirectional crosstalk which is mediated by Lactobacillus spp. promotes anti-inflammatory response, thereby supporting the improvement of symptoms pertaining to asthma, chronic obstructive pulmonary disease (COPD), neuroinflammatory diseases (such as multiple sclerosis, alzheimer’s disease, parkinson’s disease), cardiovascular diseases, inflammatory bowel disease (IBD) and chronic infections in patients. The metabolic disorders, obesity and diabetes are characterized by a low-grade inflammation. Genus Lactobacillus alleviates metabolic disorders by regulating the oxidative stress response and inflammatory pathways. Osteoporosis is also associated with bone inflammation and resorption. The Lactobacillus spp. and their metabolites act as powerful immune cell controllers and exhibit a regulatory role in bone resorption and formation, supporting bone health. Thus, this review demonstrated the mechanisms and summarized the evidence of the benefit of Lactobacillus spp. in alleviating inflammatory diseases pertaining to different organs from animal and clinical trials. The present narrative review explores in detail the complex interactions between the gut-dwelling Lactobacillus spp. and the immune components in distant organs to promote host’s health.
Collapse
|
14
|
Xu D, Fu L, Pan D, Chu Y, Feng M, Lu Y, Yang C, Wang Y, Xia J, Sun G. Role of probiotics/synbiotic supplementation in glycemic control: A critical umbrella review of meta-analyses of randomized controlled trials. Crit Rev Food Sci Nutr 2022; 64:1467-1485. [PMID: 36052685 DOI: 10.1080/10408398.2022.2117783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The evidence regarding the beneficial effects of probiotics/synbiotic supplementation have been revealed by several meta-analyses, however some of these studies have fielded inconsistent results and a conclusion has yet to be reached. Therefore, the aim of present umbrella meta-analyses was to assess relevant evidence and elucidate the efficacy of probiotics/synbiotic supplementation in glycemic control. A comprehensive search in four databases (Cochrane library, PubMed, Web of science and Scopus) was performed to collect relevant studies up to August 2022, the pooled effects were measured with the use of random/fix-effect model depends on the heterogeneity. A total of 47 eligible meta-analyses involving 47,720 participants were identified to evaluate the pooled effects. The overall results showed that probiotics/synbiotic supplementation delivered significant decreases in fast plasma glucose (ES = -0.408, 95% CI: -0.518, -0.298; P < 0.001; I2 = 82.996, P < 0.001), fast plasma insulin (ES = -1.165, 95% CI: -1.454, -0.876; P < 0.001; I2 = 89.629, P < 0.001), homeostasis model assessment of insulin resistance (ES = -0.539, 95% CI: -0.624, -0.454; P < 0.001; I2 = 56.716, P < 0.001), and glycosylated hemoglobin (ES = -0.186, 95% CI: -0.270, -0.102; P < 0.001; I2 = 59.647, P = 0.001). Subgroup analysis showed that patients with impaired glucose homeostasis might benefit the most from probiotics/synbiotic supplementation. In conclusion, current umbrella meta-analysis strongly supporting the beneficial health effects of probiotics/synbiotic supplementation in glycemic control.
Collapse
Affiliation(s)
- Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Lingmeng Fu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
- Department of Quality Management, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - YiFang Chu
- Department of R&D Life Science, PepsiCo, Inc, Barrington, IL, USA
| | - Meiyuan Feng
- Department of R&D Life Science, PepsiCo, Inc, Shanghai, China
| | - Yifei Lu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Jiayue Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| |
Collapse
|
15
|
Letchumanan G, Abdullah N, Marlini M, Baharom N, Lawley B, Omar MR, Mohideen FBS, Addnan FH, Nur Fariha MM, Ismail Z, Pathmanathan SG. Gut Microbiota Composition in Prediabetes and Newly Diagnosed Type 2 Diabetes: A Systematic Review of Observational Studies. Front Cell Infect Microbiol 2022; 12:943427. [PMID: 36046745 PMCID: PMC9422273 DOI: 10.3389/fcimb.2022.943427] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Evidence of gut microbiota involvement in regulating glucose metabolism and type 2 diabetes mellitus (T2DM) progression is accumulating. The understanding of microbial dysbiosis and specific alterations of gut microbiota composition that occur during the early stages of glucose intolerance, unperturbed by anti-diabetic medications, is especially essential. Hence, this systematic review was conducted to summarise the existing evidence related to microbiota composition and diversity in individuals with prediabetes (preDM) and individuals newly diagnosed with T2DM (newDM) in comparison to individuals with normal glucose tolerance (nonDM). A systematic search of the PubMed, MEDLINE and CINAHL databases were conducted from inception to February 2021 supplemented with manual searches of the list of references. The primary keywords of “type 2 diabetes”, “prediabetes”, “newly-diagnosed” and “gut microbiota” were used. Observational studies that conducted analysis of the gut microbiota of respondents with preDM and newDM were included. The quality of the studies was assessed using the modified Newcastle-Ottawa scale by independent reviewers. A total of 18 studies (5,489 participants) were included. Low gut microbial diversity was generally observed in preDM and newDM when compared to nonDM. Differences in gut microbiota composition between the disease groups and nonDM were inconsistent across the included studies. Four out of the 18 studies found increased abundance of phylum Firmicutes along with decreased abundance of Bacteroidetes in newDM. At the genus/species levels, decreased abundance of Faecalibacterium prausnitzii, Roseburia, Dialister, Flavonifractor, Alistipes, Haemophilus and Akkermansia muciniphila and increased abundance of Lactobacillus, Streptococcus, Escherichia, Veillonella and Collinsella were observed in the disease groups in at least two studies. Lactobacillus was also found to positively correlate with fasting plasma glucose (FPG), HbA1c and/or homeostatic assessment of insulin resistance (HOMA-IR) in four studies. This renders a need for further investigations on the species/strain-specific role of endogenously present Lactobacillus in glucose regulation mechanism and T2DM disease progression. Differences in dietary intake caused significant variation in specific bacterial abundances. More studies are needed to establish more consistent associations, between clinical biomarkers or dietary intake and specific gut bacterial composition in prediabetes and early T2DM.
Collapse
Affiliation(s)
- Geetha Letchumanan
- Department of Medical Sciences, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia
| | - Natasya Abdullah
- Department of Medical Sciences, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia
| | - Muhamad Marlini
- Department of Medical Sciences, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia
| | - Nizam Baharom
- Public Health Unit, Department of Primary Health Care, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia
| | - Blair Lawley
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Mohd Rahman Omar
- Medical-based Department, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia
| | - Fathima Begum Syed Mohideen
- Family Medicine Unit, Department of Primary Health Care, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia
| | - Faizul Helmi Addnan
- Department of Medical Sciences, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia
| | - Mohd Manzor Nur Fariha
- Department of Medical Sciences, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia
| | - Zarini Ismail
- Department of Medical Sciences, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia
| | - Siva Gowri Pathmanathan
- Department of Medical Sciences, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Negeri Sembilan, Malaysia
- *Correspondence: Siva Gowri Pathmanathan,
| |
Collapse
|
16
|
Probiotic Mechanisms Affecting Glucose Homeostasis: A Scoping Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081187. [PMID: 36013366 PMCID: PMC9409775 DOI: 10.3390/life12081187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023]
Abstract
The maintenance of a healthy status depends on the coexistence between the host organism and the microbiota. Early studies have already focused on the nutritional properties of probiotics, which may also contribute to the structural changes in the gut microbiota, thereby affecting host metabolism and homeostasis. Maintaining homeostasis in the body is therefore crucial and is reflected at all levels, including that of glucose, a simple sugar molecule that is an essential fuel for normal cellular function. Despite numerous clinical studies that have shown the effect of various probiotics on glucose and its homeostasis, knowledge about the exact function of their mechanism is still scarce. The aim of our review was to select in vivo and in vitro studies in English published in the last eleven years dealing with the effects of probiotics on glucose metabolism and its homeostasis. In this context, diverse probiotic effects at different organ levels were highlighted, summarizing their potential mechanisms to influence glucose metabolism and its homeostasis. Variations in results due to different methodological approaches were discussed, as well as limitations, especially in in vivo studies. Further studies on the interactions between probiotics, host microorganisms and their immunity are needed.
Collapse
|
17
|
Beneficial effects of probiotic supplementation on glucose and triglycerides in a mouse model of metabolic syndrome. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Wang D, Zhang Y, Xu M, Sun X, Cui X, Wang X, Liu D. Dietary Bacillus licheniformis improves the effect of Astragalus membranaceus extract on blood glucose by regulating antioxidation activity and intestinal microbiota in InR[E19]/TM2 Drosophila melanogaster. PLoS One 2022; 17:e0271177. [PMID: 35830425 PMCID: PMC9278782 DOI: 10.1371/journal.pone.0271177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/24/2022] [Indexed: 11/22/2022] Open
Abstract
Background The diabetes mellitus prevalence is rapidly increasing in most parts of the world and has become a vital health problem. Probiotic and herbal foods are valuable in the treatment of diabetes. Methods and performance In this study, Bacillus licheniformis (BL) and Astragalus membranaceus extract (AE) were given with food to InR[E19]/TM2 Drosophila melanogaster, and the blood glucose, antioxidation activity and intestinal microbiota were investigated. The obtained results showed that BA (BL and AE combination) supplementation markedly decreased the blood glucose concentration compared with the standard diet control group, accompanied by significantly increased enzymatic activities of catalase (CAT), decreased MDA levels and prolonged lifespan of InR[E19]/TM2 D. melanogaster. The treatments with BL, AE and BA also ameliorated intestinal microbiota equilibrium by increasing the population of Lactobacillus and significantly decreasing the abundance of Wolbachia. In addition, clearly different evolutionary clusters were found among the control, BL, AE and BA-supplemented diets, and the beneficial microbiota, Lactobacillaceae and Acetobacter, were found to be significantly increased in male flies that were fed BA. These results indicated that dietary supplementation with AE combined with BL not only decreased blood glucose but also extended the lifespan, with CAT increasing, MDA decreasing, and intestinal microbiota improving in InR[E19]/TM2 D. melanogaster. Conclusion The obtained results showed that dietary supplementation with BL and AE, under the synergistic effect of BL and AE, not only prolonged the lifespan of InR[E19]/TM2 D. melanogaster, increased body weight, and improved the body’s antiaging enzyme activity but also effectively improved the types and quantities of beneficial bacteria in the intestinal flora of InR[E19]/TM2 D. melanogaster to improve the characteristics of diabetes symptoms. This study provides scientific evidence for a safe and effective dietary therapeutic method for diabetes mellitus.
Collapse
Affiliation(s)
- Denghui Wang
- School of Life Science, Northeast Normal University, Changchun, PR China
| | - Yaxin Zhang
- School of Life Science, Northeast Normal University, Changchun, PR China
| | - Meiling Xu
- School of Life Science, Northeast Normal University, Changchun, PR China
| | - Xiaoling Sun
- School of Food Technology and Biotechnology, Changchun Vocational Institute of Technology, Changchun, PR China
| | - Xiulin Cui
- School of Life Science, Northeast Normal University, Changchun, PR China
| | - Xiuran Wang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, PR China
- * E-mail: (XW); (DL)
| | - Dongbo Liu
- School of Life Science, Northeast Normal University, Changchun, PR China
- * E-mail: (XW); (DL)
| |
Collapse
|
19
|
Sanborn V, Aljumaah M, Azcarate-Peril MA, Gunstad J. Examining the cognitive benefits of probiotic supplementation in physically active older adults: A randomized clinical trial. Appl Physiol Nutr Metab 2022; 47:871-882. [PMID: 35617704 DOI: 10.1139/apnm-2021-0557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prevalence of dementia is projected to increase with the growing older adult population and prevention strategies are urgently needed. Two promising interventions include physical activity (PA) and probiotic supplementation, with initial findings suggesting their combined use may confer greater cognitive benefits than either intervention alone. However, no study has yet examined the effects of probiotic supplementation on cognitive function in healthy, physically active older adults. The present study used archival data from a randomized clinical trial including 127 physically active, middle-aged to older adults (avg age 64.3 years) with self-reported PA levels meeting or exceeding recommendations to investigate the effects of probiotic supplementation (Lactobacillus rhamnosus GG; L.GG) on cognitive outcomes. Repeated measures ANOVAs showed no significant changes in cognitive performance from baseline to follow up as an effect of L.GG consumption. These results suggest that probiotic supplementation may not improve cognitive function in persons already engaged in high levels of PA. Future research should include prospective studies to determine whether long-term use of probiotic supplementation may help prevent cognitive decline. Novelty: • Initial research shows promising cognitive benefits of combined physical activity and probiotics consumption. • L.GG did not lead to acute cognitive improvements for older adults already meeting physical activity guidelines. • Prospective studies examining prevention of cognitive decline with probiotics in healthy and clinical samples are much needed.
Collapse
Affiliation(s)
- Victoria Sanborn
- Kent State University, 4229, Psychological Sciences, 600 Hilltop Drive, Kent, Ohio, United States, 44242;
| | - Mashael Aljumaah
- University of North Carolina System, 2332, Department of Medicine, and UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, School of Medicine, Chapel Hill, North Carolina, United States.,North Carolina State University at Raleigh, 6798, Department of Plant and Microbial Biology, Raleigh, North Carolina, United States;
| | - M Andrea Azcarate-Peril
- University of North Carolina at Chapel Hill School of Medicine, 6797, Department of Medicine, and UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Chapel Hill, North Carolina, United States;
| | - John Gunstad
- Kent State University College of Arts and Sciences, 142731, Psychological Sciences; Brain Health Research Institute, Kent, Ohio, United States;
| |
Collapse
|
20
|
Lee SHF, Ahmad SR, Lim YC, Zulkipli IN. The Use of Probiotic Therapy in Metabolic and Neurological Diseases. Front Nutr 2022; 9:887019. [PMID: 35592636 PMCID: PMC9110960 DOI: 10.3389/fnut.2022.887019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
The human gut is home to trillions of microbes that interact with host cells to influence and contribute to body functions. The number of scientific studies focusing on the gut microbiome has exponentially increased in recent years. Studies investigating factors that may potentially affect the gut microbiome and may be used for therapeutic purposes in diseases where dysbioses in the gut microbiome have been shown are of particular interest. This review compiles current evidence available in the scientific literature on the use of probiotics to treat metabolic diseases and autism spectrum disorders (ASDs) to analyze the efficacy of probiotics in these diseases. To do this, we must first define the healthy gut microbiome before looking at the interplay between the gut microbiome and diseases, and how probiotics affect this interaction. In metabolic diseases, such as obesity and diabetes, probiotic supplementation positively impacts pathological parameters. Conversely, the gut–brain axis significantly impacts neurodevelopmental disorders such as ASDs. However, manipulating the gut microbiome and disease symptoms using probiotics has less pronounced effects on neurodevelopmental diseases. This may be due to a more complex interplay between genetics and the environment in these diseases. In conclusion, the use of microbe-based probiotic therapy may potentially have beneficial effects in ameliorating the pathology of various diseases. Validation of available data for the development of personalized treatment regimens for affected patients is still required.
Collapse
|
21
|
Díez-Sainz E, Milagro FI, Riezu-Boj JI, Lorente-Cebrián S. Effects of gut microbiota-derived extracellular vesicles on obesity and diabetes and their potential modulation through diet. J Physiol Biochem 2022; 78:485-499. [PMID: 34472032 PMCID: PMC8410452 DOI: 10.1007/s13105-021-00837-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022]
Abstract
Obesity and diabetes incidence rates are increasing dramatically, reaching pandemic proportions. Therefore, there is an urgent need to unravel the mechanisms underlying their pathophysiology. Of particular interest is the close interconnection between gut microbiota dysbiosis and obesity and diabetes progression. Hence, microbiota manipulation through diet has been postulated as a promising therapeutic target. In this regard, secretion of gut microbiota-derived extracellular vesicles is gaining special attention, standing out as key factors that could mediate gut microbiota-host communication. Extracellular vesicles (EVs) derived from gut microbiota and probiotic bacteria allow to encapsulate a wide range of bioactive molecules (such as/or including proteins and nucleic acids) that could travel short and long distances to modulate important biological functions with the overall impact on the host health. EV-derived from specific bacteria induce differential physiological responses. For example, a high-fat diet-induced increase of the proteobacterium Pseudomonas panacis-derived EV is closely associated with the progression of metabolic dysfunction in mice. In contrast, Akkermansia muciniphila EV are linked with the alleviation of high-fat diet-induced obesity and diabetes in mice. Here, we review the newest pieces of evidence concerning the potential role of gut microbiota and probiotic-derived EV on obesity and diabetes onset, progression, and management, through the modulation of inflammation, metabolism, and gut permeability. In addition, we discuss the role of certain dietary patterns on gut microbiota-derived EV profile and the clinical implication that dietary habits could have on metabolic diseases progression through the shaping of gut microbiota-derived EV.
Collapse
Affiliation(s)
- Ester Díez-Sainz
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad Y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - José I Riezu-Boj
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Silvia Lorente-Cebrián
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
- Aragón Health Research Institute (IIS-Aragon), Zaragoza, Spain
| |
Collapse
|
22
|
Gu Y, Li X, Chen H, Sun Y, Yang L, Ma Y, Yong Chan EC. Antidiabetic effects of multi-species probiotic and its fermented milk in mice via restoring gut microbiota and intestinal barrier. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Aggarwal H, Pathak P, Singh V, Kumar Y, Shankar M, Das B, Jagavelu K, Dikshit M. Vancomycin-Induced Modulation of Gram-Positive Gut Bacteria and Metabolites Remediates Insulin Resistance in iNOS Knockout Mice. Front Cell Infect Microbiol 2022; 11:795333. [PMID: 35127558 PMCID: PMC8807491 DOI: 10.3389/fcimb.2021.795333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/23/2021] [Indexed: 12/27/2022] Open
Abstract
The role of oxidative and nitrosative stress has been implied in both physiology and pathophysiology of metabolic disorders. Inducible nitric oxide synthase (iNOS) has emerged as a crucial regulator of host metabolism and gut microbiota activity. The present study examines the role of the gut microbiome in determining host metabolic functions in the absence of iNOS. Insulin-resistant and dyslipidemic iNOS-/- mice displayed reduced microbial diversity, with a higher relative abundance of Allobaculum and Bifidobacterium, gram-positive bacteria, and altered serum metabolites along with metabolic dysregulation. Vancomycin, which largely depletes gram-positive bacteria, reversed the insulin resistance (IR), dyslipidemia, and related metabolic anomalies in iNOS-/- mice. Such improvements in metabolic markers were accompanied by alterations in the expression of genes involved in fatty acid synthesis in the liver and adipose tissue, lipid uptake in adipose tissue, and lipid efflux in the liver and intestine tissue. The rescue of IR in vancomycin-treated iNOS-/- mice was accompanied with the changes in select serum metabolites such as 10-hydroxydecanoate, indole-3-ethanol, allantoin, hippurate, sebacic acid, aminoadipate, and ophthalmate, along with improvement in phosphatidylethanolamine to phosphatidylcholine (PE/PC) ratio. In the present study, we demonstrate that vancomycin-mediated depletion of gram-positive bacteria in iNOS-/- mice reversed the metabolic perturbations, dyslipidemia, and insulin resistance.
Collapse
Affiliation(s)
- Hobby Aggarwal
- Pharmacology Division, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Priya Pathak
- Pharmacology Division, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA, United States
| | - Yashwant Kumar
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Manoharan Shankar
- Microbial Physiology Laboratory, Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, India
| | - Bhabatosh Das
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Kumaravelu Jagavelu
- Pharmacology Division, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Madhu Dikshit
- Pharmacology Division, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
24
|
Falalyeyeva T, Mamula Y, Scarpellini E, Leshchenko I, Humeniuk A, Pankiv I, Kobyliak N. Probiotics and obesity associated disease: an extended view beyond traditional strains. Minerva Gastroenterol (Torino) 2022; 67:348-356. [PMID: 35040301 DOI: 10.23736/s2724-5985.21.02909-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interaction between intestinal microbiota and obesity is becoming abundantly according to current many scientific investigations. In this article, probiotic therapy was offered as the promising strategy of metabolic disorders control through the recovery of microbiota composition and health maintenance with the help of impact on the abovementioned mechanisms. First, this therapy is safe, with minimal side effects, well-tolerated, and appropriate for long-term use. Second, it can improve body mass, glucose, and fat metabolism, increase insulin sensitivity, and decrease systemic chronic inflammation. In conclusion, the restorative role of gut microbiota on metabolic disorders and associated diseases could open new ways in the treatment of obesity, insulin resistance, and type 2 diabetes.
Collapse
Affiliation(s)
- Tetyana Falalyeyeva
- Institute of Biology and Medicine, Educational and Scientific Center, Taras Shevchenko National University, Kyiv, Ukraine
| | - Yelyzaveta Mamula
- Institute of Biology and Medicine, Educational and Scientific Center, Taras Shevchenko National University, Kyiv, Ukraine
| | - Emidio Scarpellini
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), Catholic University, Leuven, Belgium
| | - Ivan Leshchenko
- Department of Physiology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Alla Humeniuk
- Department of Physiology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Ivan Pankiv
- Department of Clinical Immunology, Allergology and Endocrinology, Bukovinian State Medical University, Chernivtsi, Ukraine
| | - Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine - .,Medical Laboratory CSD, Kyiv, Ukraine
| |
Collapse
|
25
|
Ashraf SA, Elkhalifa AEO, Ahmad MF, Patel M, Adnan M, Sulieman AME. Probiotic Fermented Foods and Health Promotion. AFRICAN FERMENTED FOOD PRODUCTS- NEW TRENDS 2022:59-88. [DOI: 10.1007/978-3-030-82902-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
26
|
Zhang Y, Wei X, Sun Q, Qian W, Liu X, Li J, Long Y, Wan X. Different Types and Functional Effects of Probiotics on Human Health through Regulating Glucose Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14781-14791. [PMID: 34855398 DOI: 10.1021/acs.jafc.1c04291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the increasing improvement of people's living standards, hyperglycemia has become one of the most frequent diseases in the world. The current drug therapy may have some negative effects and even cause some complications. As one of the most popular functional ingredients, probiotic bacteria have been proven to play important roles in balancing the glucose homeostasis level in animal and human clinic trials. In this perspective, we sorted three types of probiotics, discussed probiotic safety evaluation, and listed the known probiotic functional foods that assist to control glucose homeostasis. Then, the further summarization of the mechanisms on how probiotic bacteria could regulate glucose homeostasis and the developing trend of probiotic functional foods were discussed.
Collapse
Affiliation(s)
- Yong Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| | - Xun Wei
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| | - Qian Sun
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
| | - Weiyi Qian
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
| | - Xinjie Liu
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| | - Jinping Li
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| | - Yan Long
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| |
Collapse
|
27
|
Kadja L, Dib AL, Lakhdara N, Bouaziz A, Espigares E, Gagaoua M. Influence of Three Probiotics Strains, Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. Lactis BB-12 and Saccharomyces boulardii CNCM I-745 on the Biochemical and Haematological Profiles and Body Weight of Healthy Rabbits. BIOLOGY 2021; 10:biology10111194. [PMID: 34827188 PMCID: PMC8615081 DOI: 10.3390/biology10111194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Currently, probiotics are used as growth promoters on a large scale to improve the productivity of several animals’ species within the aim of reducing the presence of antibiotic residues in animal products consumed by humans. Several reports evidenced the positive effect of probiotic supplementation on the growth performances and health of rabbits, mainly through the balance of the intestinal microbiota of the host animal. Therefore, certain probiotics, including Lactobacilli, Bifidobacteria, Saccharomyces, can improve the biochemical and haematological profiles, especially in production animals. In this context, this study was performed on rabbits for the economic importance they play as a source of meat proteins in developing countries and their use as experimental models in research and biomedicine. This study then aimed to evaluate the effect of three strains of probiotics: Lactobacillus rhamnosus GG Bifidobacterium animalis subsp. Lactis BB-12 and Saccharomyces boulardii CNCM I-745, on the biochemical and haematological parameters and their influence on the rabbit’s weight of the ITELV2006 strain. The findings evidenced that the probiotic strain affected the biochemical and haematological parameters. Further, the strains showed a positive effect on the weight gain of the rabbits. Abstract This study aimed to investigate the effects of three strains of probiotics, these being Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. Lactis BB-12 and Saccharomyces boulardii CNCM I-745, on the body weight, animal performances and blood parameters of rabbits (male and female) of the ITELV2006 strain. The supplementation of the feed of the rabbits with the three probiotic strains allowed observing positive effects on most of the biochemical and haematological parameters investigated during a period of 60 days (30 days of supplementation and 30 days without treatment). Further, there was a significant improvement in the body weight of the rabbits at the end of the experiment. The effect of the three probiotics investigated in this trial was found to be related to the sex of the rabbits and to the intake period (duration). Ultimately, these findings raise the possibility of using probiotics to investigate in an in-depth and specific manner based on fixed factors such as the strain, the gender and age of the animals, the main underlying mechanisms and effects, which would allow achieving optimal and adapted health benefits and sustainable production. In the context of animal production, it is worth investigating in a targeted study the effect of the three strains on muscle growth and development and finding evidence of the possible consequences on meat quality traits of the rabbits supplemented with probiotics.
Collapse
Affiliation(s)
- Louiza Kadja
- Gestion Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université Frères Mentouri Constantine 1, Constantine 25000, Algeria; (L.K.); (A.L.D.); (N.L.); (A.B.)
| | - Amira Leila Dib
- Gestion Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université Frères Mentouri Constantine 1, Constantine 25000, Algeria; (L.K.); (A.L.D.); (N.L.); (A.B.)
| | - Nedjoua Lakhdara
- Gestion Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université Frères Mentouri Constantine 1, Constantine 25000, Algeria; (L.K.); (A.L.D.); (N.L.); (A.B.)
| | - Assia Bouaziz
- Gestion Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université Frères Mentouri Constantine 1, Constantine 25000, Algeria; (L.K.); (A.L.D.); (N.L.); (A.B.)
| | - Elena Espigares
- Department of Preventive Medicine and Public Health, Faculty of pharmacy, University of Granada, 18071 Granada, Spain;
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland
- Correspondence: or
| |
Collapse
|
28
|
Su Y, Chen L, Zhang DY, Gan XP, Cao YN, Cheng DC, Liu WY, Li FF, Xu XM, Wang HK. The characteristics of intestinal flora in overweight pregnant women and the correlation with gestational diabetes mellitus. Endocr Connect 2021; 10:1366-1376. [PMID: 34559065 PMCID: PMC8558889 DOI: 10.1530/ec-21-0433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the characteristics of intestinal flora in overweight pregnant women and the correlation with gestational diabetes mellitus (GDM). METHODS A total of 122 women were enrolled and divided into four groups according to their pre-pregnancy BMI and the presence of GDM: group 1 (n = 71) with a BMI <24 kg/m2, without GDM; group 2 (n = 27) with a BMI <24 kg/m2, with GDM; group 3 (n = 17) with a BMI ≥24 kg/m2, without GDM; and group 4 (n = 7) with a BMI ≥24 kg/m2 with GDM. Feces were collected on the day that the oral glucose tolerance test was conducted. The V3-V4 variable region of 16S rRNA was sequenced using the Illumina Hiseq 2500 platform, and a bioinformatics analysis was conducted. RESULTS There were differences between the four groups in the composition of intestinal flora, and it was significantly different in group 4 than in the other three groups. Firmicutes accounted for 36.4% of the intestinal flora in this group, the lowest among the four groups, while Bacteroidetes accounted for 50.1%, the highest among the four groups, making ratio of these two bacteria approximately 3:5, while in the other three groups, this ratio was reversed. In women with a BMI <24 kg/m2, the insulin resistance index (homeostatic model assessment for insulin resistance (HOMA-IR)) in pregnant women with GDM was higher than in those without (P3 = 0.026). CONCLUSION The composition of the intestinal flora of pregnant women who were overweight or obese before pregnancy and suffered from GDM was significantly different than women who were not overweight or did not suffer from GDM.
Collapse
Affiliation(s)
- Yao Su
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Chen
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Yao Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu-Pei Gan
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Nan Cao
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - De-Cui Cheng
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Yu Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei-Fei Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian-Ming Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Correspondence should be addressed to X-M Xu or H-K Wang: or
| | - Hong-Kun Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Correspondence should be addressed to X-M Xu or H-K Wang: or
| |
Collapse
|
29
|
Xi Y, Xu PF. Diabetes and gut microbiota. World J Diabetes 2021; 12:1693-1703. [PMID: 34754371 PMCID: PMC8554376 DOI: 10.4239/wjd.v12.i10.1693] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/20/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of diabetes has increased rapidly throughout the world in recent years. Currently, approximately 463 million people are living with diabetes, and the number has tripled over the last two decades. Here, we describe the global epidemiology of diabetes in 2019 and forecast the trends to 2030 and 2045 in China, India, USA, and the globally. The gut microbiota plays a major role in metabolic diseases, especially diabetes. In this review, we describe the interaction between diabetes and gut microbiota in three aspects: probiotics, antidiabetic medication, and diet. Recent findings indicate that probiotics, antidiabetic medications, or dietary interventions treat diabetes by shifting the gut microbiome, particularly by raising beneficial bacteria and reducing harmful bacteria. We conclude that targeting the gut microbiota is becoming a novel therapeutic strategy for diabetes.
Collapse
Affiliation(s)
- Yue Xi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Peng-Fei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
30
|
Tang C, Kong L, Shan M, Lu Z, Lu Y. Protective and ameliorating effects of probiotics against diet-induced obesity: A review. Food Res Int 2021; 147:110490. [PMID: 34399486 DOI: 10.1016/j.foodres.2021.110490] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023]
Abstract
Diet-induced obesity is one of the major public health concerns all over the world, and obesity also contributes to the development of other chronic diseases such as non-alcoholic fatty acid liver disease, type 2 diabetes mellitus and cardiovascular diseases. Evidence shows that the pathogenesis of obesity and obesity-associated chronic diseases are closely related to dysregulation of lipid metabolism, glucose metabolism and cholesterol metabolism, and oxidative stress, endoplasmic reticulum stress, abnormal gut microbiome and chronic low-grade inflammation. Recently, in view of potential effects on lipid metabolism, glucose metabolism, cholesterol metabolism and intestinal microbiome, as well as anti-oxidative and anti-inflammatory activities, natural probiotics, including live and dead probiotics, and probiotic components and metabolites, have attracted increasing attention and are considered as novel strategies for preventing and ameliorating obesity and obesity-related chronic diseases. Specifically, this review is presented on the anti-obesity effects of probiotics and underlying molecular mechanisms, which will provide a theoretical basis of anti-obesity probiotics for the development of functional foods.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangyu Kong
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyuan Shan
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yingjian Lu
- College of Food Science & Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
31
|
Ashaolu TJ, Fernández-Tomé S. Gut mucosal and adipose tissues as health targets of the immunomodulatory mechanisms of probiotics. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Jiang Y, Zhang N, Zhou Y, Zhou Z, Bai Y, Strappe P, Blanchard C. Manipulations of glucose/lipid metabolism and gut microbiota of resistant starch encapsulated Ganoderma lucidum spores in T2DM rats. Food Sci Biotechnol 2021; 30:755-764. [PMID: 34123471 PMCID: PMC8144259 DOI: 10.1007/s10068-021-00908-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 02/27/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
Our team previously demonstrated that Ganoderma lucidum spores (GLS) and resistant starch (RS) had hypoglycemic effects separately on type 2 diabetic mellitus (T2DM) rats. This work was to explore the effects of administering encapsulated GLS within RS (referred to as EGLS) in the T2DM rats, which were induced by streptozotocin (STZ). The EGLS was orally administered to rats for 28 days. The parameters of glycometabolism and lipometabolism were evaluated, and fecal microbiota composition was investigated. The results showed that EGLS significantly enhanced glycometabolism and lipometabolism parameters in T2DM rats, which might be associate with the enhancement of the glucose and lipid metabolism, insulin secretion, and glycogen synthesis and reduced lipogenesis. Furthermore, the intervention of EGLS also reduced the Proteobacteria community and improved dysfunctional gut microbiota. This study indicated EGLS may be a potential candidate for dietary intervention to modulate diabetes.
Collapse
Affiliation(s)
- Yumei Jiang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457 China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Na Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457 China
| | - Yawen Zhou
- College of Food Science and Technology, Nanjing Agriculture University, Nanjing, 210095 China
| | - Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457 China
- ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW 2678 Australia
| | - Yu Bai
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457 China
| | - Padraig Strappe
- ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW 2678 Australia
| | - Chris Blanchard
- ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW 2678 Australia
| |
Collapse
|
33
|
Study of Probiotic Effects of Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus plantarum 299v Strains on Biochemical and Morphometric Parameters of Rabbits after Obesity Induction. BIOLOGY 2021; 10:biology10020131. [PMID: 33562392 PMCID: PMC7915171 DOI: 10.3390/biology10020131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary On the basis of the extensive literature, two main strategies have been used to manipulate intestinal microbial composition and selectively stimulate the growth and activity of certain species, these being the administration of either prebiotics or food supplements containing living bacteria such as probiotics. Several animal studies have indicated that certain probiotics, including Lactobacilli and Bifidobacteria, can suppress body weight gain in rodents, while some probiotics strains have little effect or promote weight gain. The potential anti-obesity effect of probiotics seems to depend on the strains used and the underlying mechanisms, leading to their effects remaining not fully understood. It is in this context that this study was designed to investigate the potential of two probiotics strains, these being Bifidobacterium animalis subsp. lactis BB-12® and Lactobacillus plantarum 299v® in rabbits, whereby obesity and metabolic syndrome was first induced in a first experiment, and the animals were then used in a second experiment to test the hypothesis of probiotics effect on biochemical and morphometric parameters. The model of obesity induced by giving a “cafeteria” diet for 14 weeks in this trial demonstrated a change in the biochemical and morphometric parameters investigated in the ITELV2006 rabbit strain. This study revealed that B. animalis subsp. lactis BB-12 and L. plantarum 299v strains could exert beneficial effects in reducing the incidence of obesity and metabolic syndrome in the ITELV2006 rabbit strain. Abstract This study aimed first to develop an experimental model of obesity and metabolic syndrome over 14 weeks using a diet called “cafeteria”, which is a high-fat diet, to evaluate its consequences on the biochemical and morphometric parameters in ITELV2006 strain rabbits. Second, the trial aimed to evaluate the effect of two strains of probiotics, these being Bifidobacterium animalis subsp. lactis BB-12® and Lactobacillus plantarum 299v®, on the obesity and MetS induced during the first experiment. Overall, the results of the “cafeteria” diet demonstrated significant changes in numerous biochemical and morphometric parameters, reproducing obesity and the main clinical manifestations of the metabolic syndrome in humans. The administration of the two probiotic strains demonstrated an impact on certain parameters of obesity and induced MetS. This study makes it possible to conclude that probiotics could be useful in the treatment of obesity and metabolic syndrome of rabbits, but in a dependent manner. Furthermore, this study evidenced the importance of selecting specific probiotic strains and dosages to achieve desirable results on rabbits or other species.
Collapse
|
34
|
Primec M, Škorjanc D, Langerholc T, Mičetić-Turk D, Gorenjak M. Specific Lactobacillus probiotic strains decrease transepithelial glucose transport through GLUT2 downregulation in intestinal epithelial cell models. Nutr Res 2021; 86:10-22. [DOI: 10.1016/j.nutres.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/20/2020] [Accepted: 11/15/2020] [Indexed: 12/19/2022]
|
35
|
Tahernia M, Plotkin-Kaye E, Mohammadifar M, Gao Y, Oefelein MR, Cook LC, Choi S. Characterization of Electrogenic Gut Bacteria. ACS OMEGA 2020; 5:29439-29446. [PMID: 33225175 PMCID: PMC7676329 DOI: 10.1021/acsomega.0c04362] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/29/2020] [Indexed: 05/13/2023]
Abstract
While electrogenic, or electricity-producing, Gram-negative bacteria predominantly found in anaerobic habitats have been intensively explored, the potential of Gram-positive microbial electrogenic capability residing in a similar anoxic environment has not been considered. Because Gram-positive bacteria contain a thick non-conductive cell wall, they were previously believed to be very weak exoelectrogens. However, with the recent discovery of electrogenicity by Gram-positive pathogens and elucidation of their electron-transfer pathways, significant and accelerated attention has been given to the discovery and characterization of these pathways in the members of gut microbiota. The discovery of electrogenic bacteria present in the human gut and the understanding of their electrogenic capacity opens up possibilities of bacterial powered implantable batteries and provide a novel biosensing platform to monitor human gastrointestinal health. In this work, we characterized microbial extracellular electron-transfer capabilities and capacities of five gut bacteria: Staphylococcus aureus, Enterococcus faecalis, Streptococcus agalactiae, Lactobacillus reuteri, and Lactobacillus rhamnosus. A 21-well paper-based microbial fuel cell array with enhanced sensitivity was developed as a powerful yet simple screening method to accurately and simultaneously characterize bacterial electrogenicity. S. aureus, E. faecalis, and S. agalactiae exhibited distinct electrogenic capabilities, and their power generations were comparable to that of the well-known Gram-negative exoelectrogen, Shewanella oneidensis. Importantly, this system was used to begin a large-scale transposon screen to examine the genes involved in electrogenicity by the human pathobiont S. aureus.
Collapse
Affiliation(s)
- Mehdi Tahernia
- Bioelectronics
& Microsystems Laboratory, Department of Electrical & Computer
Engineering, State University of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Ellie Plotkin-Kaye
- Department
of Biological Science, State University
of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Maedeh Mohammadifar
- Bioelectronics
& Microsystems Laboratory, Department of Electrical & Computer
Engineering, State University of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Yang Gao
- Bioelectronics
& Microsystems Laboratory, Department of Electrical & Computer
Engineering, State University of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Melissa R. Oefelein
- Department
of Biological Science, State University
of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Laura C. Cook
- Department
of Biological Science, State University
of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Seokheun Choi
- Bioelectronics
& Microsystems Laboratory, Department of Electrical & Computer
Engineering, State University of New York-Binghamton, Binghamton, New York 13902-6000, United States
| |
Collapse
|
36
|
Huang E, Kim S, Park H, Park S, Ji Y, Todorov SD, Lim SD, Holzapfel WH. Modulation of the Gut Microbiome and Obesity Biomarkers by Lactobacillus Plantarum KC28 in a Diet-Induced Obesity Murine Model. Probiotics Antimicrob Proteins 2020; 13:677-697. [PMID: 33188637 DOI: 10.1007/s12602-020-09720-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 12/18/2022]
Abstract
Lactobacillus plantarum KC28 showed a beneficial (anti-obesity) effect in a diet-induced obese (DIO) C57BL/6 murine model receiving an intermediate high-fat diet (IF). This diet was selected for probiotic studies by prior comparisons of different combinations of basic (carbohydrate, protein and fat) components for optimized induction of dietary obesity in a murine model. Prior selection of Lact. plantarum strain KC28 was based on different physiological tests for safety and functionality including cell line adhesion and anti-adipogenic activity. The strain was administered at 5.0 × 109 CFU/mouse/day to the DIO mice (control mice received a normal diet). The anti-obesity effect of KC28 and the well-known probiotic strains Lact. rhamnosus GG (LGG) and Lact. plantarum 299v was assessed over 12 weeks. Xenical served as anti-obesity control. The high-fat diet groups receiving strains KC28 and LGG and the control Xenical group showed significant weight loss and notable changes in some obesity-related biomarkers in the liver (significant up-regulation of PGC1-α and CPT1-α only by KC28; p < 0.05) and mesenteric adipose tissue (significant down-regulation of ACOX-1, PPAR-γ, and FAS; KC28 p < 0.001 for PPAR-γ and FAS), compared with the IF control. Favourable changes in the studied biomarkers suggest a similar beneficial influence of Lact. plantarum KC28 on the alleviation of obesity comparable with that of the two well-studied probiotic strains, LGG and 299v. This probably resulted from a modulation in the cecal microbiota of the IF group by either probiotic strain, yet in a different manner, showing a highly significant increase in the families Desulfovibrionaceae and Lactobacillaceae only in the group receiving Lact. plantarum KC28.
Collapse
Affiliation(s)
- Eunchong Huang
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyeongbuk, 37554, South Korea
| | - Seulki Kim
- Korea Food Research Institute, Wanju, 55365, South Korea
| | - Haryung Park
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyeongbuk, 37554, South Korea.,Techno-Business Center, HEM Inc, Pohang, 37673, South Korea
| | - Soyoung Park
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyeongbuk, 37554, South Korea.,Techno-Business Center, HEM Inc, Pohang, 37673, South Korea
| | - Yosep Ji
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyeongbuk, 37554, South Korea.,Techno-Business Center, HEM Inc, Pohang, 37673, South Korea
| | - Svetoslav Dimitrov Todorov
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyeongbuk, 37554, South Korea
| | - Sang-Dong Lim
- Korea Food Research Institute, Wanju, 55365, South Korea
| | - Wilhelm Heinrich Holzapfel
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyeongbuk, 37554, South Korea. .,Techno-Business Center, HEM Inc, Pohang, 37673, South Korea.
| |
Collapse
|
37
|
Sanborn V, Azcarate-Peril MA, Updegraff J, Manderino L, Gunstad J. Randomized Clinical Trial Examining the Impact of Lactobacillus rhamnosus GG Probiotic Supplementation on Cognitive Functioning in Middle-aged and Older Adults. Neuropsychiatr Dis Treat 2020; 16:2765-2777. [PMID: 33223831 PMCID: PMC7671471 DOI: 10.2147/ndt.s270035] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The gut microbiome has been linked to cognitive function and appears to worsen with aging. Probiotic supplementation has been found to improve the health of the gut microbiome. As such, it is possible that probiotic supplementation may protect the aging brain. The current study examined the cognitive benefits of probiotic supplementation (Lactobacillus rhamnosus GG) in healthy middle-aged and older adults. MATERIALS AND METHODS The study was a double-blind, placebo-controlled, randomized clinical trial. Two hundred community-dwelling adults aged 52-75 were enrolled (mean age=64.3, SD=5.52). A three-month intervention involved daily consumption of probiotic or placebo. Independent sample t-tests, chi-squared tests, and repeated measure ANOVAs compared groups and examined changes over time. Primary outcome was change in NIH Toolbox Total Cognition Score from baseline to follow-up. RESULTS A total of 145 participants were examined in primary analyses (probiotic=77, placebo=68) and excluded persons due to discontinuation, low adherence, missing data, or outlier values. Established criteria (ie ≥1 subtest t-scores ≤35; n=19, n=23) were used to operationally define cognitive impairment. Repeated measures ANOVAs revealed that persons with cognitive impairment who consumed probiotics exhibited a greater total cognition score improvement than persons with cognitive impairment in the placebo group and cognitively intact persons in probiotic or placebo groups. CONCLUSION Lactobacillus rhamnosus GG probiotic supplementation was associated with improved cognitive performance in middle-aged and older adults with cognitive impairment. Probiotic supplementation may be a novel method for protecting cognitive health in aging.
Collapse
Affiliation(s)
- Victoria Sanborn
- Department of Psychological Sciences, Kent State University, Kent, OH, USA
| | - M Andrea Azcarate-Peril
- Department of Cell Biology and Physiology and Microbiome Core Facility, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - John Updegraff
- Department of Psychological Sciences, Kent State University, Kent, OH, USA
| | - Lisa Manderino
- Department of Psychological Sciences, Kent State University, Kent, OH, USA
| | - John Gunstad
- Department of Psychological Sciences, Kent State University, Kent, OH, USA
- Brain Health Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
38
|
Wang Y, Wu Y, Sailike J, Sun X, Abuduwaili N, Tuoliuhan H, Yusufu M, Nabi XH. Fourteen composite probiotics alleviate type 2 diabetes through modulating gut microbiota and modifying M1/M2 phenotype macrophage in db/db mice. Pharmacol Res 2020; 161:105150. [DOI: 10.1016/j.phrs.2020.105150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 07/22/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
|
39
|
Sanborn VE, Azcarate-Peril MA, Gunstad J. Lactobacillus rhamnosus GG and HbA1c in middle age and older adults without type 2 diabetes mellitus: A preliminary randomized study. Diabetes Metab Syndr 2020; 14:907-909. [PMID: 32570015 DOI: 10.1016/j.dsx.2020.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Probiotic supplementation improves glycemic control in persons with diabetes and the current study examined whether these benefits extend to healthy individuals. METHODS The current study was a 90-day placebo-controlled, double-blind, randomized clinical trial of Lactobacillus rhamnosus GG in healthy middle-aged and older adults. Fasting blood glucose and HbA1c were quantified at baseline and follow up. RESULTS ANCOVA controlling for baseline values showed group differences in follow up HbA1c [F (1,90) = 8.44, p = 0.005]; HbA1c values increased in the placebo group, though remained stable in the probiotic group. CONCLUSIONS If replicated, Lactobacillus rhamnosus GG may protect against changes in glycemic control.
Collapse
Affiliation(s)
| | - M Andrea Azcarate-Peril
- Department of Medicine, Division of Gastroenterology and Hepatology, and UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - John Gunstad
- Department of Psychological Sciences, Kent State University, USA; Brain Health Research Institute, Kent State University, USA
| |
Collapse
|
40
|
Zhao D, Zhu H, Gao F, Qian Z, Mao W, Yin Y, Tan J, Chen D. Antidiabetic effects of selenium-enriched Bifidobacterium longum DD98 in type 2 diabetes model of mice. Food Funct 2020; 11:6528-6541. [PMID: 32638790 DOI: 10.1039/d0fo00180e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Both selenium and probiotics have shown antidiabetic effects in a type 2 diabetes model. The objective of this study is to investigate the alleviating effects of selenium-enriched Bifidobacterium longum DD98 (Se-B. longum DD98) on diabetes in mice and explore the possible underlying mechanism. A type 2 diabetes model was established using a high-fat diet and streptozotocin (STZ) injection in mice. To investigate the beneficial effects of Se-B. longum DD98, diabetic mice were then treated with B. longum DD98, Se-B. longum DD98, or sodium selenite (Na2SeO3) for three weeks. The results suggested that all three treatments could reduce the levels of fasting blood glucose (FBG), glycated hemoglobin (HbA1c), insulin and leptin, improve glucose tolerance, regulate lipid metabolism, and protect against the impairment of the liver and pancreas, while Se-B. longum DD98 showed a greater effect on relieving the above mentioned symptoms of type 2 diabetes in mice. Furthermore, this effect was associated with butyrate production and inflammatory response. Se-B. longum DD98 better increased the level of butyrate in feces and decreased the levels of proinflammatory cytokines in the pancreas compared with B. longum DD98 and Na2SeO3, leading to ameliorative insulin resistance. Se-B. longum DD98 also improved the glucagon like peptide-1 (GLP-1) level in serum and intestinal cells, which protected the pancreatic β-islet cells from damage induced by type 2 diabetes. These results demonstrated that Na2SeO3, B. longum DD98, or Se-B. longum DD98 could alleviate the progression of type 2 diabetes in mice. Se-B. longum DD98 showed greater antidiabetic effects than the other two treatments, and could be considered as a promising candidate for treating type 2 diabetes.
Collapse
Affiliation(s)
- Dan Zhao
- Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 201100, China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wu R, Qin Y, Shen Q, Li P. The complete genome sequence of Bacillus velezensis LPL061, an exopolysaccharide-producing bacterium. 3 Biotech 2020; 10:243. [PMID: 32405447 DOI: 10.1007/s13205-020-02228-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023] Open
Abstract
Bacillus velezensis LPL061, which shows strong exopolysaccharide (EPS) producing capacity, was isolated from carnations in Beijing, China. The complete genome of LPL061 comprised a single circular chromosome (3,907,268 bp; G+C content of 46.7%) with 3,737 coding DNA sequences, 26 rRNA, and 89 tRNA. According to genome analysis, 12 protein-coding genes which related to polysaccharide biosynthesis in LPL061 were identified. Comparative genome analysis revealed that the EPS biosynthetic gene cluster was relatively conserved among Bacillus species. EPS showed approximately 60% inhibitory activity on the α-glucosidase at 100 μg/mL. The results of quantitative reverse transcription PCR further demonstrated that compared to insulin-resistant model with insulin (500 μg/mL) (without EPS treatment), the insulin-resistant HepG2 cells treated with EPS decreased the expression of phosphoenolpyruvate carboxykinase (PEPCK) from 4.425 to 0.1587, glucose-6-phosphatase (G6Pase) decreased from 4.272 to 0.1929, and glycogen synthase kinase3β (GSK(3)β) decreased from 2.451 to 0.993, respectively. Meanwhile, EPS treatment increased GS expression and resulted in intracellular glycogen concentration increased from 28.30% to 86.48%, which further supported that EPS form LPL061 could reduce the concentration of blood glucose effectively. These results could be beneficial for better understanding of the hypoglycemic mechanism of B. velezensis LPL061 EPS and developing an EPS-based anti-diabetic agent in the future.
Collapse
Affiliation(s)
- Ruiyun Wu
- 1Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, East Campus, Haidian District, Beijing, 100083 China
| | - Yuxuan Qin
- 3Department of Biology, Northeastern University, Boston, MA 02115 USA
| | - Qian Shen
- 2Department of Microbiology, Ohio State University, Columbus, USA
| | - Pinglan Li
- 1Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, East Campus, Haidian District, Beijing, 100083 China
| |
Collapse
|
42
|
Oliveira PWC, Couto MR, de Sousa GJ, Peixoto P, Moraes FSA, de Andrade TU, Bissoli NS. Effects of Drugs, Phytoestrogens, Nutrients and Probiotics on Endothelial Dysfunction in the Estrogen-Deficient State. Curr Pharm Des 2020; 26:3711-3722. [PMID: 32228420 DOI: 10.2174/1381612826666200331084338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/22/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Endothelial dysfunction is commonly present in estrogen-deficient states, e.g., after menopause. In the search for alternatives to hormone replacement therapy (HRT), treatments based on phytoestrogens or in non-hormonal mechanisms have been under evaluation. OBJECTIVE Here we aim to present an overview of innovative potential treatments for endothelial dysfunction in estrogen-deficient states, introducing our own preliminary data about the probiotic kefir. METHODS We conducted a review based on a PubMed database search for keywords of interest (Menopause, Ovariectomy, Vascular dysfunction, Hot flashes, Metformin, Statins, Phytoestrogens, Omega-3, Vitamin D, Probiotics). RESULTS Vascular parameters were found to be improved by both metformin and statins through pleiotropic effects, being related to a decrease in oxidative stress and restoration of the nitric oxide pathway. Phytoestrogens such as genistein and resveratrol have also been shown to improve vascular dysfunction, which seems to involve their estrogenic-like actions. Omega-3, vitamin D and its analogues, as well as probiotics, have shown similar vascular beneficial effects in both postmenopausal women and an animal model of ovariectomy (OVX), which could be related to antioxidant and/or anti-inflammatory effects. Moreover, our preliminary data on the probiotic kefir treatment in OVX rats suggested a vascular antioxidant effect. In particular, some evidence points to statins and vitamin D having anti-atherogenic effects. CONCLUSION Pleiotropic effects of common medications and natural compounds could have therapeutic potential for endothelial dysfunction in estrogen-deficient states. They could, therefore, work as future complementary or alternative treatments to HRT.
Collapse
Affiliation(s)
- Phablo Wendell C Oliveira
- Department of Physiological Sciences, Universidade Federal do Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Mariana R Couto
- Department of Physiological Sciences, Universidade Federal do Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Glauciene J de Sousa
- Department of Physiological Sciences, Universidade Federal do Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Pollyana Peixoto
- Department of Physiological Sciences, Universidade Federal do Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Flávia S A Moraes
- Department of Pharmacy, University Vila Velha, Vila Velha, ES, Brazil
| | | | - Nazaré S Bissoli
- Department of Physiological Sciences, Universidade Federal do Espirito Santo, Vitoria, Espirito Santo, Brazil
| |
Collapse
|
43
|
Hsieh PS, Ho HH, Hsieh SH, Kuo YW, Tseng HY, Kao HF, Wang JY. Lactobacillus salivarius AP-32 and Lactobacillus reuteri GL-104 decrease glycemic levels and attenuate diabetes-mediated liver and kidney injury in db/db mice. BMJ Open Diabetes Res Care 2020; 8:8/1/e001028. [PMID: 32332068 PMCID: PMC7202753 DOI: 10.1136/bmjdrc-2019-001028] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/27/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Patients with type 2 diabetes mellitus (T2DM) exhibit strong insulin resistance or abnormal insulin production. Probiotics, which are beneficial live micro-organisms residing naturally in the intestinal tract, play indispensable roles in the regulation of host metabolism. However, the detailed mechanisms remain unclear. Here, we evaluate the mechanisms by which probiotic strains mediate glycemic regulation in the host. The findings should enable the development of a safe and natural treatment for patients with T2DM. RESEARCH DESIGNS AND METHODS Sugar consumption by more than 20 strains of Lactobacillus species was first evaluated. The probiotic strains that exhibited high efficiency of sugar consumption were further coincubated with Caco-2 cells to evaluate the regulation of sugar absorption in gut epithelial cells. Finally, potential probiotic strains were selected and introduced into a T2DM animal model to study their therapeutic efficacy. RESULTS Among the tested strains, Lactobacillus salivarius AP-32 and L. reuteri GL-104 had higher monosaccharide consumption rates and regulated the expression of monosaccharide transporters. Glucose transporter type-5 and Na+-coupled glucose transporter mRNAs were downregulated in Caco-2 cells after AP-32 and GL-104 treatment, resulting in the modulation of intestinal hexose uptake. Animal studies revealed that diabetic mice treated with AP-32, GL-104, or both showed significantly decreased fasting blood glucose levels, improved glucose tolerance and blood lipid profiles, and attenuated diabetes-mediated liver and kidney injury. CONCLUSION Our data elucidate a novel role for probiotics in glycemic regulation in the host. L. salivarius AP-32 and L. reuteri GL-104 directly reduce monosaccharide transporter expression in gut cells and have potential as therapeutic probiotics for patients with T2DM.
Collapse
Affiliation(s)
- Pei-Shan Hsieh
- Research and Development Department, Glac Biotech Co., Ltd, Tainan, Taiwan
| | - Hsieh-Hsun Ho
- Research and Development Department, Glac Biotech Co., Ltd, Tainan, Taiwan
| | - Shih-Hung Hsieh
- Research and Development Department, Glac Biotech Co., Ltd, Tainan, Taiwan
| | - Yi-Wei Kuo
- Research and Development Department, Glac Biotech Co., Ltd, Tainan, Taiwan
| | - Hsiu-Ying Tseng
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Hui-Fang Kao
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Jiu-Yao Wang
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan
| |
Collapse
|
44
|
Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, Shulzhenko N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020; 51:102590. [PMID: 31901868 PMCID: PMC6948163 DOI: 10.1016/j.ebiom.2019.11.051] [Citation(s) in RCA: 909] [Impact Index Per Article: 227.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/14/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
A substantial body of literature has provided evidence for the role of gut microbiota in metabolic diseases including type 2 diabetes. However, reports vary regarding the association of particular taxonomic groups with disease. In this systematic review, we focused on the potential role of different bacterial taxa affecting diabetes. We have summarized evidence from 42 human studies reporting microbial associations with disease, and have identified supporting preclinical studies or clinical trials using treatments with probiotics. Among the commonly reported findings, the genera of Bifidobacterium, Bacteroides, Faecalibacterium, Akkermansia and Roseburia were negatively associated with T2D, while the genera of Ruminococcus, Fusobacterium, and Blautia were positively associated with T2D. We also discussed potential molecular mechanisms of microbiota effects in the onset and progression of T2D.
Collapse
Affiliation(s)
- Manoj Gurung
- Colleges of Veterinary Medicine, Oregon State University, 700 SW 30th street, Corvallis, OR, 97331, USA
| | - Zhipeng Li
- Colleges of Veterinary Medicine, Oregon State University, 700 SW 30th street, Corvallis, OR, 97331, USA
| | - Hannah You
- Colleges of Veterinary Medicine, Oregon State University, 700 SW 30th street, Corvallis, OR, 97331, USA
| | - Richard Rodrigues
- Colleges of Pharmacy, Oregon State University, 160 SW 26th street, Corvallis, OR 97331, USA
| | - Donald B Jump
- Colleges of Public Health, Oregon State University, 160 SW 26th street, Corvallis, OR 97331, USA
| | - Andrey Morgun
- Colleges of Pharmacy, Oregon State University, 160 SW 26th street, Corvallis, OR 97331, USA.
| | - Natalia Shulzhenko
- Colleges of Veterinary Medicine, Oregon State University, 700 SW 30th street, Corvallis, OR, 97331, USA.
| |
Collapse
|
45
|
Salgaço MK, Oliveira LGS, Costa GN, Bianchi F, Sivieri K. Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Appl Microbiol Biotechnol 2019; 103:9229-9238. [DOI: 10.1007/s00253-019-10156-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022]
|
46
|
Sun Z, Sun X, Li J, Li Z, Hu Q, Li L, Hao X, Song M, Li C. Using probiotics for type 2 diabetes mellitus intervention: Advances, questions, and potential. Crit Rev Food Sci Nutr 2019; 60:670-683. [PMID: 30632770 DOI: 10.1080/10408398.2018.1547268] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus (T2DM) has become one of the most prevalent diseases on earth and several treatments have been developed. However, the current intervention approaches have not been as effective as expected. One promising supplementary strategy is the use of probiotics through direct or indirect approaches. Probiotics are microbial food cultures conferring health-promoting properties. In this review, we summarized the current theories and mechanisms of T2DM intervention using probiotics and hypothesize that probiotics intervene T2DM during its onsetting, developing, and complicating. For the first time, we comprehensively analyzed T2DM intervention in animal models using both wide-type probiotics in different forms and using recombinant probiotics. Then, probiotic intervention in T2DM patients was reviewed and the main results were compared with that obtained from animal studies. Finally yet importantly, remaining questions that are important such as in which form and in which state, as well as the future potential of probiotic intervention in T2DM were discussed from a perspective of food microbiologists. In conclusion, probiotic intervention in T2DM is promising but there are still many important issues unsolved yet. Critical review of the advances, questions, and potential of probiotic intervention in T2DM promotes the development of this approach for further application in humans.
Collapse
Affiliation(s)
- Zhongke Sun
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Xuejiao Sun
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China.,College of Life Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Li
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Zhaoyang Li
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Qingwei Hu
- Zhoukou Maternal and Child Health Care Hospital, Zhoukou, China
| | - Lili Li
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Xinqi Hao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Maoping Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Chengwei Li
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China.,College of Life Sciences, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
47
|
Park C, Brietzke E, Rosenblat JD, Musial N, Zuckerman H, Ragguett RM, Pan Z, Rong C, Fus D, McIntyre RS. Probiotics for the treatment of depressive symptoms: An anti-inflammatory mechanism? Brain Behav Immun 2018; 73:115-124. [PMID: 30009996 DOI: 10.1016/j.bbi.2018.07.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 12/18/2022] Open
Abstract
During the past decade, there has been renewed interest in the relationship between brain-based disorders, the gut microbiota, and the possible beneficial effects of probiotics. Emerging evidence suggests that modifying the composition of the gut microbiota via probiotic supplementation may be a viable adjuvant treatment option for individuals with major depressive disorder (MDD). Convergent evidence indicates that persistent low-grade inflammatory activation is associated with the diagnosis of MDD as well as the severity of depressive symptoms and probability of treatment response. The objectives of this review are to (1) evaluate the evidence supporting an anti-inflammatory effect of probiotics and (2) describe immune system modulation as a potential mechanism for the therapeutic effects of probiotics in populations with MDD. A narrative review of studies investigating the effects of probiotics on systemic inflammation was conducted. Studies were identified using PubMed/Medline, Google Scholar, and clinicaltrials.gov (from inception to November 2017) using the following search terms (and/or variants): probiotic, inflammation, gut microbiota, and depression. The available evidence suggests that probiotics should be considered a promising adjuvant treatment to reduce the inflammatory activation commonly found in MDD. Several controversial points remain to be addressed including the role of leaky gut, the role of stress exposure, and the role of blood-brain-barrier permeability. Taken together, the results of this review suggest that probiotics may be a potentially beneficial, but insufficiently studied, antidepressant treatment intervention.
Collapse
Affiliation(s)
- Caroline Park
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Natalie Musial
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Hannah Zuckerman
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Renee-Marie Ragguett
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Zihang Pan
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Carola Rong
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Dominika Fus
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada.
| |
Collapse
|
48
|
Probiotic Lactobacillus paracasei HII01 protects rats against obese-insulin resistance-induced kidney injury and impaired renal organic anion transporter 3 function. Clin Sci (Lond) 2018; 132:1545-1563. [DOI: 10.1042/cs20180148] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 01/24/2023]
Abstract
The relationship between gut dysbiosis and obesity is currently acknowledged to be a health topic which causes low-grade systemic inflammation and insulin resistance and may damage the kidney. Organic anion transporter 3 (Oat3) has been shown as a transporter responsible for renal handling of gut microbiota products which are involved in the progression of metabolic disorder. The present study investigated the effect of probiotic supplementation on kidney function, renal Oat3 function, inflammation, endoplasmic reticulum (ER) stress, and apoptosis in obese, insulin-resistant rats. After 12 weeks of being provided with either a normal or a high-fat diet (HF), rats were divided into normal diet (ND); ND treated with probiotics (NDL); HF; and HF treated with probiotic (HFL). Lactobacillus paracasei HII01 1 × 108 colony forming unit (CFU)/ml was administered to the rats daily by oral gavage for 12 weeks. Obese rats showed significant increases in serum lipopolysaccharide (LPS), plasma lipid profiles, and insulin resistance. Renal Oat 3 function was decreased along with kidney dysfunction in HF-fed rats. Obese rats also demonstrated the increases in inflammation, ER stress, apoptosis, and gluconeogenesis in the kidneys. These alterations were improved by Lactobacillus paracasei HII01 treatment. In conclusion, probiotic supplementation alleviated kidney inflammation, ER stress, and apoptosis, leading to improved kidney function and renal Oat3 function in obese rats. These benefits involve the attenuation of hyperlipidemia, systemic inflammation, and insulin resistance. The present study also suggested the idea of remote sensing and signaling system between gut and kidney by which probiotic might facilitate renal handling of gut microbiota products through the improvement of Oat3 function.
Collapse
|
49
|
Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. Eur J Nutr 2018; 58:27-43. [PMID: 30043184 DOI: 10.1007/s00394-018-1790-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE The first part of this review focuses on the role of cells and molecules of adipose tissue involved in metabolic syndrome-induced inflammation and in the maintenance of this pathology. In the second part of the review, the potential role of probiotics-modulating metabolic syndrome-related inflammatory components is summarized and discussed. METHODS The search for the current scientific literature was carried out using ScienceDirect, PubMed, and Google Scholar search engines. The keywords used were: metabolic syndrome, obesity, insulin resistant, adipose tissue, adipose tissue inflammation, chronic low-grade inflammation, immune cells, adipokines, cytokines, probiotics, and gut microbiota. RESULTS AND CONCLUSIONS Chronic low-grade inflammation that characterized metabolic syndrome can contribute to the development of the metabolic dysfunctions involved in the pathogenesis of its comorbidities. Adipose tissue is a complex organ that performs metabolic and immune functions. During metabolic syndrome, an imbalance in the inflammatory components of adipose tissue (immune cells, cytokines, and adipocytokines), which shift from an anti-inflammatory to a pro-inflammatory profile, can provoke metabolic syndrome linked complications. Further knowledge concerning the immune function of adipose tissue may contribute to finding better alternatives for the treatment or prevention of such disorders. The control of inflammation could result in the management of many of the pathologies related to metabolic syndrome. Due to the strong evidence that gut microbiota composition plays a role modulating the body weight, adipose tissue, and the prevalence of a low-grade inflammatory status, probiotics emerge as valuable tools for the prevention of metabolic syndrome and health recovery.
Collapse
|
50
|
Iqbal UH, Westfall S, Prakash S. Novel microencapsulated probiotic blend for use in metabolic syndrome: design and in-vivo analysis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S116-S124. [PMID: 30033770 DOI: 10.1080/21691401.2018.1489270] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The increasing prevalence of the metabolic syndrome has made it a medical issue that currently affects 1 in 5 Canadians. The metabolic syndrome is defined by risk factors that predispose an individual to diabetes and cardiovascular disease. Current forms of interventions have been inadequate as substantiated by the fact that the prevalence of metabolic syndrome has not reduced over the years. The objective of this study was to investigate the therapeutic benefits of a novel microencapsulated probiotic blend in treating the metabolic syndrome. Three probiotic strains were microencapsulated into alginate-polylysine-alginate (APA) microcapsules: L. rhamnosus NCIMB 6375, L. plantarum NCIMB 8826 and L. fermentum NCIMB 5221. From the results, it was observed that the microencapsulated probiotic blend significantly reduced serum total cholesterol, LDL cholesterol and triglyceride levels (reducing from 516 mg/dL to 379 mg/dL, 314 mg/dL to 231 mg/dL and 580 mg/dL to 270 mg/dL, respectively). In addition, the administration of the microencapsulated probiotic blend was found to favourably influence the gut microbiota, decreasing Firmicutes levels and increasing Bacteroidetes levels. Overall, this work demonstrates the potential a microencapsulated probiotic blend could have in targeting multiple risk factors of the metabolic syndrome; however, greater research is still needed.
Collapse
Affiliation(s)
- Umar Haris Iqbal
- a Department of Biomedical Engineering, Biomedical Technology and Cell Therapy Research Laboratory, Artificial Cells and Organs Research Centre, Faculty of Medicine , McGill University , Montreal , Quebec , Canada.,b Department of Experimental Medicine, Faculty of Medicine , McGill University , Montreal , Quebec , Canada
| | - Susan Westfall
- a Department of Biomedical Engineering, Biomedical Technology and Cell Therapy Research Laboratory, Artificial Cells and Organs Research Centre, Faculty of Medicine , McGill University , Montreal , Quebec , Canada.,b Department of Experimental Medicine, Faculty of Medicine , McGill University , Montreal , Quebec , Canada
| | - Satya Prakash
- a Department of Biomedical Engineering, Biomedical Technology and Cell Therapy Research Laboratory, Artificial Cells and Organs Research Centre, Faculty of Medicine , McGill University , Montreal , Quebec , Canada.,b Department of Experimental Medicine, Faculty of Medicine , McGill University , Montreal , Quebec , Canada
| |
Collapse
|