1
|
Hanigan MD, Souza VC, Martineau R, Lapierre H, Feng X, Daley VL. A meta-analysis of the relationship between milk protein production and absorbed amino acids and digested energy in dairy cattle. J Dairy Sci 2024; 107:5587-5615. [PMID: 38490550 DOI: 10.3168/jds.2024-24230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
Milk protein production is the largest draw on AA supplies for lactating dairy cattle. Prior NRC predictions of milk protein production have been absorbed protein (MP)-based and used a first-limiting nutrient concept to integrate the effects of energy and protein, which yielded poor accuracy and precision (root mean squared error [RMSE] >21%). Using a meta-data set gathered, various alternative equation forms considering MP, absorbed total EAA, absorbed individual EAA, and digested energy (DE) supplies as additive drivers of production were evaluated, and all were found to be superior in statistical performance to the first limitation approach (RMSE = 14%-15%). Inclusion of DE intake and a quadratic term for MP or absorbed EAA supplies were found to be necessary to achieve intercept estimates (nonproductive protein use) that were similar to the factorial estimates of the National Academies of Sciences, Engineering, and Medicine (2021). The partial linear slope for MP was found to be 0.409, which is consistent with the observed slope bias of -0.34 g/g when a slope of 0.67 was used for MP efficiency in a first-limiting nutrient system. Replacement of MP with the supplies of individual absorbed EAA expressed in grams per day and a common quadratic across the EAA resulted in unbiased predictions with improved statistical performance as compared with MP-based models. Based on Akaike's information criterion and biological consistency, the best equations included absorbed His, Ile, Lys, Met, Thr, the NEAA, and individual DE intakes from fatty acids, NDF, residual OM, and starch. Several also contained a term for absorbed Leu. These equations generally had RMSE of 14.3% and a concordance correlation of 0.76. Based on the common quadratic and individual linear terms, milk protein response plateaus were predicted at approximately 320 g/d of absorbed His, Ile, and Lys; 395 g/d of absorbed Thr; 550 g/d of absorbed Met; and 70 g/d of absorbed Leu. Therefore, responses to each except Leu are almost linear throughout the normal in vivo range. De-aggregation of the quadratic term and parsing to individual absorbed EAA resulted in nonbiological estimates for several EAA indicating over-parameterization. Expression of the EAA as g/100 g total absorbed EAA or as ratios of DE intake and using linear and quadratic terms for each EAA resulted in similar statistical performance, but the solutions had identifiability problems and several nonbiological parameter estimates. The use of ratios also introduced nonlinearity in the independent variables which violates linear regression assumptions. Further screening of the global model using absorbed EAA expressed as grams per day with a common quadratic using an all-models approach, and exhaustive cross-evaluation indicated the parameter estimates for BW, all 4 DE terms, His, Ile, Lys, Met, and the common quadratic term were stable, whereas estimates for Leu and Thr were known with less certainty. Use of independent and additive terms and a quadratic expression in the equation results in variable efficiencies of conversion. The additivity also provides partial substitution among the nutrients. Both of these prevent establishment of fixed nutrient requirements in support of milk protein production.
Collapse
Affiliation(s)
- M D Hanigan
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061.
| | - V C Souza
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061
| | - R Martineau
- Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | - H Lapierre
- Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | - X Feng
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061
| | - V L Daley
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
2
|
Reyes GC, Innes DJ, Ellis JL, Fox MK, Cant JP. Relationship between rate of glucose or propionate infusion and milk protein yield and concentration in dairy cows: A meta-regression. J Dairy Sci 2024; 107:2785-2796. [PMID: 37806622 DOI: 10.3168/jds.2023-23644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/16/2023] [Indexed: 10/10/2023]
Abstract
Although postruminal glucose infusion into dairy cows has increased milk protein yield in some past experiments, the same trend has not been observed in others. A meta-regression of 64 sets of observations from 29 previously published glucose and propionate infusion studies in dairy cattle, treating study and experiment (study) as random effects, was performed to establish the general effects of glucose equivalent (GlcE) infusion rate on milk true protein (MTP) yield and content, if any, and to identify independent, fixed-effect variables that accounted for the changes in MTP yield and content that were observed. Candidate explanatory variables included rate and site of infusion, diet composition and intake, body weight and lactation stage of the cows, and the change in nutrient intake between GlcE and control treatments. Across all studies, according to a model containing only the random effects of study and experiment, GlcE infusion at an average of 954 g/d increased MTP yield by 26 g/d, on average, whereas mean MTP content was not affected. Backward stepwise elimination of potential explanatory variables from a full mixed model produced a final, reduced model for MTP yield that retained a positive, second-order quadratic effect of infusion rate of GlcE and a positive, linear effect of the change in crude protein intake (CPI) between GlcE treatment and control. This change in CPI due to GlcE infusion ranged from -0.546 to 0.173 kg/d in the dataset. The model fit indicated that when CPI was allowed to drop during GlcE infusion, the effect of GlcE on MTP yield was smaller than when CPI was maintained or increased, in a manifestation of the classic protein:energy interaction. The final reduced model for MTP content contained the same explanatory variables as for MTP yield, plus a negative effect of intravenous compared with gastrointestinal infusion. Overall, the meta-analysis revealed that both MTP yield, and content were positively related to GlcE infusion rate and to the change in CPI between glucose treatment and control.
Collapse
Affiliation(s)
- G C Reyes
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1 Canada.
| | - D J Innes
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1 Canada
| | - J L Ellis
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1 Canada
| | - M K Fox
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1 Canada
| | - J P Cant
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1 Canada.
| |
Collapse
|
3
|
Räisänen SE, Lapierre H, Price WJ, Hristov AN. Lactational performance effects of supplemental histidine in dairy cows: A meta-analysis. J Dairy Sci 2023; 106:6216-6231. [PMID: 37500429 DOI: 10.3168/jds.2022-22966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/26/2023] [Indexed: 07/29/2023]
Abstract
The objective of this meta-analysis was to examine the effects of supplemental His on lactational performance, plasma His concentration and efficiency of utilization of digestible His (EffHis) in dairy cows. The meta-analysis was performed on data from 17 studies published in peer-reviewed journals between 1999 and 2022. Five publications reported data from 2 separate experiments, which were included in the analyses as separate studies, therefore resulting in a total of 22 studies. In 10 studies, His was supplemented as rumen-protected (RP) His; in 1 study, 2 basal diets with different dHis levels were fed; and in the remaining experiments, free His was infused into the abomasum (4 studies), the jugular vein (3 studies) or deleted from a mixture of postruminally infused AA (4 studies). The main forages in the diets were corn silage in 14 and grass silage in 8 studies. If not reported in the publications, the supplies of dietary CP, metabolizable protein (MP), net energy of lactation, and digestible His (dHis) were estimated using NRC (2001). An initial meta-analysis was performed to test the standard mean difference (SMD; raw mean difference of treatment and control means divided by the pooled standard deviation of the means), that is, effect size, and the corresponding 95% confidence interval (CI) in production parameters between His-supplemented groups versus control. Further, regression analyses were also conducted to examine and compare the relationships between several response variables and dHis supply. Across studies, His supplementation increased plasma His concentration (SMD = 1.39; 95% CI: 1.17-1.61), as well as DMI (SMD = 0.240; 95% CI: 0.051-0.429) and milk yield (MY; SMD = 0.667; 95% CI: 0.468-0.866), respectively. Further, milk true protein concentration (MTP; SMD = 0.236; 95% CI: 0.046-0.425) and milk true protein yield (MTPY; SMD = 0.581; 95% CI: 0.387-0.776) were increased by His supplementation. Notably, the increase in MTP concentration and MTPY were 3.9 and 1.3 times greater for studies with MP-deficient (according to NRC 2001) diets compared with studies with MP-adequate diets. The regression analyses revealed that production parameters (DMI, MY, and MTPY) responded in a nonlinear manner to increasing His supply. Further, we detected a difference in the magnitude of change in MTPY and plasma His concentration with the level of His supply and between His supplementation methods, being greater for infused His compared with RPHis. Lastly, a linear and negative relationship between EffHis and the ratio of total digestible His to net energy for lactation supply was observed, indicating an important interaction between dHis and energy supply and EffHis (i.e., utilization of dHis to support protein export). Overall, these analyses confirm His as an important AA in dairy cattle nutrition.
Collapse
Affiliation(s)
- S E Räisänen
- Department of Animal Science, The Pennsylvania State University, State College, PA 16802; ETH Zürich, Department of Environmental Science, Institute of Agricultural Sciences, Zürich 8092, Switzerland
| | - H Lapierre
- Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | - W J Price
- Statistical Programs, University of Idaho, Moscow, ID 83844
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, State College, PA 16802.
| |
Collapse
|
4
|
Pitkänen O, Halmemies-Beauchet-Filleau A, Räisänen SE, Jaakkola S, Kokkonen T, Vanhatalo A. Processed fava bean as a substitute for rapeseed meal with or without rumen-protected methionine supplement in grass silage-based dairy cow diets. J Dairy Sci 2023; 106:3217-3232. [PMID: 37028967 DOI: 10.3168/jds.2022-22897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/17/2022] [Indexed: 04/08/2023]
Abstract
Fava bean offers a sustainable home-grown protein source for dairy cows, but fava bean protein is extensively degraded in the rumen and has low Met concentration. We studied the effects of protein supplementation and source on milk production, rumen fermentation, N use, and mammary AA utilization. The treatments were unsupplemented control diet, and isonitrogenously given rapeseed meal (RSM), processed (dehulled, flaked, and heated) fava bean without (TFB) or with rumen-protected (RP) Met (TFB+). All diets consisted of 50% grass silage and 50% cereal-based concentrate including studied protein supplement. The control diet had 15% of crude protein and protein-supplemented diets 18%. Rumen-protected Met in TFB+ corresponded to 15 g/d of Met absorbed in the small intestine. Experimental design was a replicated 4 × 4 Latin square with 3-wk periods. The experiment was conducted using 12 multiparous mid-lactation Nordic Red cows, of which 4 were rumen cannulated. Protein supplementation increased dry matter intake (DMI), and milk (31.9 vs. 30.7 kg/d) and milk component yields. Substituting RSM with TFB or TFB+ decreased DMI and AA intake but increased starch intake. There were no differences in milk yield or composition between RSM diet and TFB diets. Rumen-protected Met did not affect DMI, or milk or milk component yields but increased milk protein concentration in comparison to TFB. There were no differences in rumen fermentation except for increased ammonium-N concentration with the protein-supplemented diets. Nitrogen-use efficiency for milk production was lower for the supplemented diets versus control diet but tended to be greater for TFB and TFB+ versus RSM. Protein supplementation increased plasma essential AA concentration but there were no differences between TFB diets and RSM. Rumen-protected Met clearly increased plasma Met concentration (30.8 vs. 18.2 µmol/L) but did not affect other AA. Absence of differences between RSM and TFB in milk production together with limited effects of RP Met suggest that TFB is a potential alternative protein source for dairy cattle.
Collapse
Affiliation(s)
- O Pitkänen
- Department of Agricultural Sciences, University of Helsinki, PO Box 28, Helsinki, FI-00014, Finland
| | | | - S E Räisänen
- Department of Agricultural Sciences, University of Helsinki, PO Box 28, Helsinki, FI-00014, Finland
| | - S Jaakkola
- Department of Agricultural Sciences, University of Helsinki, PO Box 28, Helsinki, FI-00014, Finland
| | - T Kokkonen
- Department of Agricultural Sciences, University of Helsinki, PO Box 28, Helsinki, FI-00014, Finland
| | - A Vanhatalo
- Department of Agricultural Sciences, University of Helsinki, PO Box 28, Helsinki, FI-00014, Finland.
| |
Collapse
|
5
|
Abstract
Glucose plays a central role in numerous physiological processes in dairy cows related to immune defence and milk production. A lack of glucose impairs both objectives, although to different degrees. A method for the estimation of glucose balance (GB) in dairy cows was developed to assess glucose reserves in the intermediary metabolism. Digestive fluxes of glucogenic carbon were individually estimated via the Systool Web application based on data on body weight (BW), dry matter intake (DMI), and chemical analyses of feedstuffs. Fluxes of endogenous precursors glycerol, alanine and L-lactate and the glucose demand imposed by major glucose-consuming organs were deduced from BW, lactose yield and lactation stage. GB was calculated for 201 lactations (1 to 105 DIM) of 157 cows fed isoenergetic rations. Individual DMI, BW and milk yield were assessed on a daily basis. The results showed that the GB varied greatly between cows and lactation stages. In the first week of lactation, average daily GB reached levels close to zero (3.2 ± 13.5 mol C) and increased as lactation progressed. Most cows risk substantial shortages of glucose for maintenance during the first weeks of lactation. In face of the specific role of glucose for the functional capability of the immune function, the assessment of glucose reserves is a promising measure for the identification of cows at risk of impaired immunocompetence.
Collapse
|
6
|
Gross JJ. Limiting factors for milk production in dairy cows: perspectives from physiology and nutrition. J Anim Sci 2022; 100:6528443. [PMID: 35157044 PMCID: PMC8919814 DOI: 10.1093/jas/skac044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Milk production in dairy cows increases worldwide since many decades. With rising milk yields, however, potential limiting factors are increasingly discussed. Particularly, the availability of glucose and amino acids is crucial to maintain milk production as well as animal health. Limitations arise from feed sources, the rumen and digestive tract, tissue mobilization, intermediary metabolism and transport, and the uptake of circulating nutrients by the lactating mammary gland. The limiting character can change depending on the stage of lactation. Although physiological boundaries are prevalent throughout the gestation-lactation cycle, limitations are aggravated during the early lactation period when high milk production is accompanied by low feed intake and high mobilization of body reserves. The knowledge about physiological constraints may help to improve animal health and make milk production more sustainably. The scope of this review is to address contemporary factors related to production limits in dairy cows from a physiological perspective. Besides acknowledged physiological constraints, selected environmental and management-related factors affecting animal performance and physiology will be discussed. Potential solutions and strategies to overcome or to alleviate these constraints can only be presented briefly. Instead, they are thought to address existing shortcomings and to identify possibilities for optimization. Despite a scientific-based view on physiological limits, we should keep in mind that only healthy animals could use their genetic capacity and produce high amounts of milk.
Collapse
Affiliation(s)
- Josef J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3012 Bern, Switzerland,Corresponding author:
| |
Collapse
|
7
|
Single nucleotide polymorphisms and metabolic biochemical profile of productive markers characterize three European breeds of dairy cattle. ACTA VET BRNO 2022. [DOI: 10.2754/avb202291040317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The objective of this study was to investigate polymorphisms of DGAT1, FABP, OLR1 and ATP1A1 genes using PCR-DNA sequencing, and to associate these genetic structures to changes in metabolic biochemical markers and milk composition indicators in a total of 90 dairy cows of the Holstein, Simmental, and Brown Swiss breeds (30 cows each). PCR was carried out for amplification of 411-bp of DGAT1, 525-bp of FABP, 582-bp of OLR1, and 300-bp of ATP1A1 genes. Three breeds’ nucleotide sequence variations in the form of single nucleotide polymorphisms (SNPs) were detailed by DNA sequencing analysis. Chisquare analysis showed that the distribution of all discovered SNPs varied significantly (P < 0.001). Biochemical indices in cow’s serum revealed no significant difference in serum total protein, albumin, and total cholesterol among the three breeds. However, triglyceride showed a significant increase in Simmental compared to either Holsteins or Brown Swiss, while the highest mean value of triiodothyronine (T3) and tetraiodothyronine (T4) was detected in Holstein dairy cows The milk composition indicators analysis revealed that milk protein, sugar, and density were significantly higher in Holsteins than both Simmental and Brown Swiss. Meanwhile, milk fat and total solids revealed a significantly higher increase in Simmental than both brown Swiss and Holstein. As a result, the metabolic biochemical markers profile along with the identified SNPs could be used as a candidate and a reference guide for effective characterization of the Holstein, Simmental, and Brown Swiss breeds, leading to the creation of a marker-assisted selection system for production traits in dairy cattle breeds.
Collapse
|
8
|
Moulaee K, Neri G. Electrochemical Amino Acid Sensing: A Review on Challenges and Achievements. BIOSENSORS 2021; 11:502. [PMID: 34940259 PMCID: PMC8699811 DOI: 10.3390/bios11120502] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 05/05/2023]
Abstract
The rapid growth of research in electrochemistry in the last decade has resulted in a significant advancement in exploiting electrochemical strategies for assessing biological substances. Among these, amino acids are of utmost interest due to their key role in human health. Indeed, an unbalanced amino acid level is the origin of several metabolic and genetic diseases, which has led to a great need for effective and reliable evaluation methods. This review is an effort to summarize and present both challenges and achievements in electrochemical amino acid sensing from the last decade (from 2010 onwards) to show where limitations and advantages stem from. In this review, we place special emphasis on five well-known electroactive amino acids, namely cysteine, tyrosine, tryptophan, methionine and histidine. The recent research and achievements in this area and significant performance metrics of the proposed electrochemical sensors, including the limit of detection, sensitivity, stability, linear dynamic range(s) and applicability in real sample analysis, are summarized and presented in separate sections. More than 400 recent scientific studies were included in this review to portray a rich set of ideas and exemplify the capabilities of the electrochemical strategies to detect these essential biomolecules at trace and even ultra-trace levels. Finally, we discuss, in the last section, the remaining issues and the opportunities to push the boundaries of our knowledge in amino acid electrochemistry even further.
Collapse
Affiliation(s)
- Kaveh Moulaee
- Department of Engineering, University of Messina, C.Da Di Dio, I-98166 Messina, Italy;
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 16846-13114, Iran
| | - Giovanni Neri
- Department of Engineering, University of Messina, C.Da Di Dio, I-98166 Messina, Italy;
| |
Collapse
|
9
|
Li X, Tan Z, Li Z, Gao S, Yi K, Zhou C, Tang S, Han X. Metabolomic changes in the liver tissues of cows in early lactation supplemented with dietary rumen-protected glucose during the transition period. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Räisänen SE, Lage CFA, Zhou C, Melgar A, Silvestre T, Wasson DE, Cueva SF, Werner J, Takagi T, Miura M, Hristov AN. Lactational performance and plasma and muscle amino acid concentrations in dairy cows fed diets supplying 2 levels of digestible histidine and metabolizable protein. J Dairy Sci 2021; 105:170-187. [PMID: 34656346 DOI: 10.3168/jds.2021-20800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
The objective of this experiment was to investigate the effect of dietary levels of digestible histidine (dHis) and MP on lactational performance and plasma and muscle concentrations of free AA in dairy cows. A randomized block design experiment was conducted with 48 Holstein cows, including 20 primiparous, averaging (±SD) 103 ± 22 d in milk and 45 ± 9 kg/d milk yield at the beginning of the experiment. A 2-wk covariate period preceded 12 experimental wk, of which 10 wk were for data and sample collection. Experimental treatments were (1) MP-adequate (MPA) diet with 2.1% dHis of MP (MPA2.1), (2) MPA with 3.0% dHis (MPA3.0), (3) MP-deficient (MPD) diet with 2.1% dHis (MPD2.1), and (4) MPD with 3.0% dHis (MPD3.0). Actual dHis supply was estimated at 64, 97, 57, and 88 g/d, respectively. Diets supplied MP at 110% (MPA) and 96% (MPD) of NRC 2001 dairy model requirements calculated based on DMI and production data during the experiment. Dry matter intake and milk yield data were collected daily, milk samples for composition and blood samples for AA analysis were collected every other week, and muscle biopsies at the end of covariate period, and during wk 12 of the experiment. The overall DMI was not affected by dHis or MP level. Milk yield tended to be increased by 3.0% dHis compared with 2.1% dHis. Milk true protein concentration and yield were not affected by treatments, whereas milk urea nitrogen concentration was lower for MPD versus the MPA diet. Milk fat concentration was lower for MPD versus MPA. There was a MP × dHis interaction for milk fat yield and energy-corrected milk; milk fat was lower for MPD3.0 versus MPD2.1, but similar for cows fed the MPA diet regardless of dHis level whereas energy-corrected milk was greater for MPA3.0 versus MPA2.1 but tended to be lower for MPD3.0 versus MPD2.1. Plasma His concentration was greater for cows fed dHis3.0, and concentration of sum of essential AA was greater, whereas carnosine, 1-Methyl-His and 3-Methyl-His concentrations were lower for cows fed MPA versus MPD diet. Muscle concentration of His was greater for cows fed dHis3.0 treatment. The apparent efficiency of His utilization was increased at lower MP and His levels. Overall, cows fed a corn silage-based diet supplying MP at 110% of NRC (2001) requirements tended to have increased ECM yield and similar milk protein yield to cows fed a diet supplying MP at 96% of requirements. Supplying dHis at 3.0% of MP (or 86 and 96 g/d, for MPD3.0 and MPA3.0, respectively) tended to increase milk yield and increased plasma and muscle concentrations of His but had minor or no effects on other production variables in dairy cows.
Collapse
Affiliation(s)
- S E Räisänen
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - C F A Lage
- Department of Animal Science, The Pennsylvania State University, University Park 16802; School of Veterinary Medicine, University of California, Tulare 93274
| | - C Zhou
- Department of Animal Science, The Pennsylvania State University, University Park 16802; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Agricultural Innovation Institute of Panama (IDIAP), City of Knowledge 07144, Panama
| | - T Silvestre
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - D E Wasson
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - S F Cueva
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - J Werner
- Animal Resource Program, The Pennsylvania State University, University Park 16802
| | - T Takagi
- Ajinomoto Co. Inc., Kawasaki, Japan 210-8681
| | - M Miura
- Ajinomoto Co. Inc., Kawasaki, Japan 210-8681
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
11
|
Laroche JP, Gervais R, Lapierre H, Ouellet DR, Tremblay GF, Halde C, Boucher MS, Charbonneau É. Milk production and efficiency of utilization of nitrogen, metabolizable protein, and amino acids are affected by protein and energy supplies in dairy cows fed alfalfa-based diets. J Dairy Sci 2021; 105:329-346. [PMID: 34635363 DOI: 10.3168/jds.2021-20923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022]
Abstract
Alfalfa has a lower fiber digestibility and a greater concentration of degradable protein than grasses. Dairy cows could benefit from an increased digestibility of alfalfa fibers, or from a better match between nitrogen and energy supplies in the rumen. Alfalfa cultivars with improved fiber digestibility represent an opportunity to increase milk production, but no independent studies have tested these cultivars under the agroclimatic conditions of Canada. Moreover, decreasing metabolizable protein (MP) supply could increase N use efficiency while decreasing environmental impact, but it is often associated with a decrease in milk protein yield, possibly caused by a reduced supply of essential AA. This study evaluated the performance of dairy cows fed diets based on a regular or a reduced-lignin alfalfa cultivar and measured the effect of energy levels at low MP supply when digestible His (dHis), Lys (dLys), and Met (dMet) requirements were met. Eight Holstein cows were used in a double 4 × 4 Latin square design, each square representing an alfalfa cultivar. Within each square, 4 diets were tested: the control diet was formulated for an adequate supply of MP and energy (AMP_AE), whereas the 3 other diets were formulated to be deficient in MP (DMP; formulated to meet 90% of the MP requirement) with deficient (94% of requirement: DMP_DE), adequate (99% of requirement: DMP_AE), or excess energy supply (104% of requirement; DMP_EE). Alfalfa cultivars had no significant effect on all measured parameters. As compared with cows receiving AMP_AE, the dry matter intake of cows fed DMP_AE and DMP_EE was not significantly different but decreased for cows fed DMP_DE. The AMP_AE diet provided 103% of MP and 108% of NEL requirements whereas DMP_DE, DMP_AE, and DMP_EE diets provided 84, 87, and 87% of MP and 94, 101, and 107% of NEL requirements, respectively. In contrast to design, feeding DMP_EE resulted in a similar energy supply compared with AMP_AE, although MP supply has been effectively reduced. This resulted in a maintained milk and milk component yields and improved the efficiency of utilization of N, MP, and essential AA. The DMP diets decreased total N excretion, whereas DMP_AE and DMP_EE diets also decreased milk urea-N concentration. Reducing MP supply without negative effects on dairy cow performance is possible when energy, dHis, dLys, and dMet requirements are met. This could reduce N excretion and decrease the environmental impact of milk production.
Collapse
Affiliation(s)
- J-P Laroche
- Département des Sciences Animales, Université Laval, Québec, QC, Canada, G1V 0A6; Lactanet, Sainte-Anne-de-Bellevue, QC, Canada, H9X 3R4
| | - R Gervais
- Département des Sciences Animales, Université Laval, Québec, QC, Canada, G1V 0A6
| | - H Lapierre
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada, J1M 0C8
| | - D R Ouellet
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada, J1M 0C8
| | - G F Tremblay
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Québec, QC, Canada, G1V 2J3
| | - C Halde
- Département de Phytologie, Université Laval, Québec, QC, Canada, G1V 0A6
| | - M-S Boucher
- Département de Phytologie, Université Laval, Québec, QC, Canada, G1V 0A6
| | - É Charbonneau
- Département des Sciences Animales, Université Laval, Québec, QC, Canada, G1V 0A6.
| |
Collapse
|
12
|
Amino Acids Supplementation for the Milk and Milk Protein Production of Dairy Cows. Animals (Basel) 2021; 11:ani11072118. [PMID: 34359247 PMCID: PMC8300144 DOI: 10.3390/ani11072118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The composition of milk not only has nutritional implications, but is also directly related to the income of dairy producers. As regards milk’s composition, concerns around milk protein have emerged from the increased consumption of casein products. The synthesis of proteins in milk is a highly complex and high-cost process, because the conversion efficiency of dietary protein to milk protein is very low in dairy cows. Thus, some studies have increased milk protein by using protein supplements or a single amino acid (AA) supply. AAs are the building blocks of protein, and can also stimulate the protein synthetic pathway. This review mainly concerns the use of AAs for producing milk protein in high-producing dairy cows, particularly with methionine, lysine, and histidine. Understanding the mechanisms of AAs will help to promote milk protein synthesis in the dairy industry. Abstract As the preference of consumers for casein products has increased, the protein content of milk from dairy cows is drawing more attention. Protein synthesis in the milk of dairy cows requires a proper supply of dietary protein. High protein supplementation may help to produce more milk protein, but residues in feces and urine cause environmental pollution and increase production costs. As such, previous studies have focused on protein supplements and amino acid (AA) supply. This review concerns AA nutrition for enhancing milk protein in dairy cows, and mainly focuses on three AAs: methionine, lysine, and histidine. AA supplementation for promoting protein synthesis is related to the mammalian target of rapamycin (mTOR) complex and its downstream pathways. Each AA has different stimulating effects on the mTOR translation initiation pathway, and thus manifests different milk protein yields. This review will expand our understanding of AA nutrition and the involved pathways in relation to the synthesis of milk protein in dairy cows.
Collapse
|
13
|
Räisänen SE, Lage CFA, Oh J, Melgar A, Nedelkov K, Chen X, Miura M, Hristov AN. Histidine dose-response effects on lactational performance and plasma amino acid concentrations in lactating dairy cows: 1. Metabolizable protein-adequate diet. J Dairy Sci 2021; 104:9902-9916. [PMID: 34099283 DOI: 10.3168/jds.2021-20188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/15/2021] [Indexed: 01/29/2023]
Abstract
The objective of this experiment was to determine the effect of increasing digestible His (dHis) doses on milk production, milk composition, and plasma AA concentrations in lactating dairy cows fed diets that meet or exceed their energy and metabolizable protein (MP) requirements. In a companion paper (Räisänen et al., 2021) results are presented on the effect of increasing dHis dose with an MP-deficient basal diet. In this experiment, 16 Holstein cows (72 ± 15 d in milk) were used in a replicated 4 × 4 Latin square design experiment with four 28-d periods. Treatments were as follows: (1) control, total mixed ration (TMR) with 1.8% dHis of MP (TMR1; dHis1.8); (2) a different TMR with 2.2% dHis (TMR2; dHis2.2); (3) TMR2 supplemented with rumen-protected His (RP-His) to supply 2.6% dHis (dHis2.6); and (4) TMR2 supplemented with RP-His to supply 3.0% dHis of MP (dHis3.0). Estimated dHis intakes calculated at the end of the experiment were 46, 58, 69, and 79 g/d for dHis1.8, dHis2.2, dHis2.6, and dHis3.0, respectively. Contrasts were used to compare TMR1 with TMR2 and to test the linear and quadratic effects of RP-His inclusion rate on TMR2. We detected no effects of TMR or dHis dose on dry matter intake or milk yield, whereas energy-corrected milk (ECM) yield was quadratically increased, being greatest for cows on treatment dHis2.6. Milk true protein and lactose concentrations and milk true protein yield were not affected by TMR or dHis dose. Milk fat concentration and yield increased quadratically, and lactose yield tended to increase quadratically with increasing dHis dose. Calculated apparent efficiency of His utilization decreased quadratically with increasing dHis supply. Further, plasma concentration of His was greater for cows on TMR2 compared with TMR1. When an MP-adequate diet was fed to dairy cows, milk true protein concentration and yield were not affected by dHis supply, but milk fat and ECM yields of dairy cows were optimized at dHis supply of 69 g/d or 2.65% of MP.
Collapse
Affiliation(s)
- S E Räisänen
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - C F A Lage
- Department of Animal Science, The Pennsylvania State University, University Park 16802; School of Veterinary Medicine, University of California, Davis, Tulare 93274
| | - J Oh
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Cargill Animal Nutrition, Seongnam, South Korea 13630
| | - A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Agricultural Innovation Institute of Panama (IDIAP), City of Knowledge 07144, Panama
| | - K Nedelkov
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria 6000
| | - X Chen
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Livestock Production Science Branch, Agri-food Biosciences Institute, Hillsborough, Co. Down BT26 6DR, UK
| | - M Miura
- Ajinomoto Co. Inc., Kawasaki, Japan 210-8681
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
14
|
Räisänen SE, Lage CFA, Fetter ME, Melgar A, Pelaez AM, Stefenoni HA, Wasson DE, Cueva SF, Zhu X, Miura M, Hristov AN. Histidine dose-response effects on lactational performance and plasma amino acid concentrations in lactating dairy cows: 2. Metabolizable protein-deficient diet. J Dairy Sci 2021; 104:9917-9930. [PMID: 34099295 DOI: 10.3168/jds.2021-20189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
The objective of this experiment was to determine the effect of increasing digestible His (dHis) levels with a rumen-protected (RP) His product on milk production, milk composition, and plasma AA concentrations in lactating dairy cows fed a metabolizable protein (MP)-deficient diet, according to the National Research Council dairy model from 2001. The companion paper presents results on the effect of increasing dHis dose with a MP-adequate basal diet. Twenty Holstein cows, of which 8 were rumen-cannulated, were used in a replicated 4 × 4 Latin square design experiment with four 28-d periods. Treatments were a control diet supplying 1.8% dHis of MP or 37 g/d (dHis1.8) and the control diet supplemented RP-His to provide 2.2, 2.6, or 3.0%, dHis of MP, or 53, 63, and 74 g/d (dHis2.2, dHis2.6, and dHis3.0, respectively). Histidine dose did not affect dry matter intake, but milk yield increased quadratically and energy-corrected milk yield increased linearly with increasing dHis dose. Histidine dose had a quadratic effect on milk fat concentration but did not affect milk fat yield. Lactose concentration decreased linearly, whereas lactose yield increased linearly with increasing dHis dose. There was a tendency for a linear increase in milk true protein concentration, and milk true protein yield increased linearly with dHis dose. Further, plasma His concentration increased linearly with increasing dHis dose and calculated apparent efficiency of His utilization decreased quadratically with increasing dHis supply. Histidine had minor or no effects on rumen fermentation. In the conditions of this experiment, RP-His supplementation of an MP-deficient corn silage-based diet increased milk yield linearly up to a dHis supply of 63 g/d (or 2.6% dHis of MP) and increased feed efficiency, energy-corrected milk yield and milk true protein yield linearly up to a dHis supply of 74 g/d (or 3.0% dHis of MP) in lactating dairy cows.
Collapse
Affiliation(s)
- S E Räisänen
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - C F A Lage
- Department of Animal Science, The Pennsylvania State University, University Park 16802; School of Veterinary Medicine, University of California, Davis, Tulare 93274
| | - M E Fetter
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Agricultural Innovation Institute of Panama (IDIAP), City of Knowledge 07144, Panama
| | - A M Pelaez
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - H A Stefenoni
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - D E Wasson
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - S F Cueva
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - X Zhu
- Department of Animal Science, The Pennsylvania State University, University Park 16802; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - M Miura
- Ajinomoto Co. Inc., Kawasaki, Japan 210-8681
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
15
|
Sadovnikova A, Garcia SC, Hovey RC. A Comparative Review of the Extrinsic and Intrinsic Factors Regulating Lactose Synthesis. J Mammary Gland Biol Neoplasia 2021; 26:197-215. [PMID: 34125363 PMCID: PMC8236052 DOI: 10.1007/s10911-021-09491-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
Milk is critical for the survival of all mammalian offspring, where its production by a mammary gland is also positively associated with its lactose concentration. A clearer understanding of the factors that regulate lactose synthesis stands to direct strategies for improving neonatal health while also highlighting opportunities to manipulate and improve milk production and composition. In this review we draw a cross-species comparison of the extra- and intramammary factors that regulate lactose synthesis, with a special focus on humans, dairy animals, and rodents. We outline the various factors known to influence lactose synthesis including diet, hormones, and substrate supply, as well as the intracellular molecular and genetic mechanisms. We also discuss the strengths and limitations of various in vivo and in vitro systems for the study of lactose synthesis, which remains an important research gap.
Collapse
Affiliation(s)
- Anna Sadovnikova
- Graduate Group in Nutritional Biology, Physician Scientist Training Program, University of California, Davis, CA, United States.
- Department of Animal Science, University of California, Davis, CA, United States.
| | - Sergio C Garcia
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, CA, United States
| |
Collapse
|
16
|
Lapierre H, Lobley GE, Ouellet DR. Histidine optimal supply in dairy cows through determination of a threshold efficiency. J Dairy Sci 2021; 104:1759-1776. [PMID: 33453803 DOI: 10.3168/jds.2020-19205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Two His deletion studies were conducted to examine the mechanisms used by dairy cows to support milk true protein yield (MTPY) when His supply is altered. The potential mechanisms involved in how the efficiency of utilization of His varied included reduced catabolism, more efficient mammary usage, and use of His labile pools. For the first study, 5 multicatheterized cows were used in a 4 × 4 Latin square plus 1 cow with 14-d periods. Treatments were abomasal infusion of increasing doses of His (0, 7.6, 15.2, and 20.8 g/d) in addition to a mixture of AA (595 g/d; casein profile excluding His). Cows were fed the same protein-deficient diet throughout the study. The MTPY increased linearly with a quadratic tendency with increasing doses of His. Muscle concentrations of carnosine, a His-based dipeptide, tended to increase in a quadratic manner with increasing His supply, suggesting that the 0- and 7.6-g doses were insufficient to cover His requirement. Liver catabolism of His decreased as His supply decreased. Mammary fractional removal of His was considerably greater at low His supply, but the ratio of His mammary net uptake to milk output was not affected by the rate of His infusion, averaging 1.02. The mechanisms to face a reduced His supply included reduced His hepatic catabolism, more efficient His mammary use of lowered arterial supply, and, to a lesser extent, use of His labile pools. Two independent estimates of His efficiency were calculated, one based on the sum of exported proteins (measured MTPY plus estimated metabolic fecal protein and scurf; i.e., the anabolic component, EffMTPY) and the other based on liver removal (i.e., the catabolic component). These 2 estimates followed the same pattern of response to His supply, decreasing with increasing His supply. The EffMTPY at which MTPY peaked was 0.785. For the second study, 6 cows were used in a 6 × 6 Latin square with 7-d periods. Two greater doses of His (30.4 and 38.0 g/d) were added; otherwise, the nutritional design was similar to the first study. In this second study, the indicator AA oxidation technique was used instead of the multiorgan approach, with labeled Leu as the indicator of His utilization. The MTPY peaked and Leu oxidation reached the nadir at an average EffMTPY of 0.763. Combined across both studies, the data indicate that optimal usage of His would occur at a threshold EffMTPY of 0.77. The agreement between experimental approaches across both studies indicates that the biological optimal supply of His expressed in grams per day could be calculated as the sum of exported proteins divided by this EffMTPY plus estimated endogenous urinary excretion.
Collapse
Affiliation(s)
- H Lapierre
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada, J1M 0C8.
| | - G E Lobley
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - D R Ouellet
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada, J1M 0C8
| |
Collapse
|
17
|
Morris DL, Kononoff PJ. Effects of rumen-protected lysine and histidine on milk production and energy and nitrogen utilization in diets containing hydrolyzed feather meal fed to lactating Jersey cows. J Dairy Sci 2020; 103:7110-7123. [PMID: 32505393 DOI: 10.3168/jds.2020-18368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Hydrolyzed feather meal (HFM) is high in crude protein, most of which bypasses rumen degradation when fed to lactating dairy cows, allowing direct supply of AA to the small intestine. Compared with other feeds that are high in bypass protein, such as blood meal or heat-treated soybean meal, HFM is low in His and Lys. The objectives of this study were to determine the effects of supplementing rumen-protected (RP) Lys and His individually or in combination in a diet containing 5% HFM on milk production and composition as well as energy and N partitioning. Twelve multiparous Jersey cows (mean ± SD: 91 ± 18 d in milk) were used in a triplicated 4 × 4 Latin square with 4 periods of 28 d (24-d adaptation and 4-d collection). Throughout the experiment, all cows were fed the same TMR, with HFM included at 5% of diet DM. Cows were grouped by dry matter intake and milk yield, and cows within a group were randomly assigned to 1 of 4 treatments: no RP Lys or RP His; RP Lys only [70 g/d of Ajipro-L (24 g/d of digestible Lys), Ajinomoto Co. Inc., Tokyo, Japan]; RP His only [32 g/d of experimental product (7 g/d of digestible His), Balchem Corp., New Hampton, NY]; or both RP Lys and His. Plasma Lys concentration increased when RP Lys was supplemented without RP His (77.7 vs. 66.0 ± 4.69 µM) but decreased when RP Lys was supplemented with RP His (71.4 vs. 75.0 ± 4.69 µM). Plasma concentration of 3-methylhistidine decreased with RP Lys (3.19 vs. 3.40 ± 0.31 µM). With RP His, plasma concentration of His increased (21.8 vs. 18.7 ± 2.95 µM). For milk production and milk composition, no effects of Lys were observed. Supplementing RP His increased milk yield (22.5 vs. 21.6 ± 2.04 kg/d) and tended to increase milk protein yield (0.801 vs. 0.772 ± 0.051 kg/d). Across treatments, dry matter intake (18.5 ± 0.83 kg/d) and energy supply (32.2 ± 2.24 Mcal of net energy for lactation) were not different. Supplementing RP His did not affect N utilization; however, supplementing RP Lys increased N balance (25 vs. 16 ± 9 g/d). The lack of production responses to RP Lys suggests that Lys was not limiting or that the increase in Lys supply was not large enough to cause an increase in milk protein yield. However, increased N balance and decreased 3-methylhistidine with RP Lys suggest that increased Lys supply increased protein accretion and decreased protein mobilization. Furthermore, His may be a limiting AA in diets containing HFM.
Collapse
Affiliation(s)
- D L Morris
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln 68583
| | - P J Kononoff
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln 68583.
| |
Collapse
|
18
|
Park JK, Yeo JM, Bae GS, Kim EJ, Kim CH. Effects of supplementing limiting amino acids on milk production in dairy cows consuming a corn grain and soybean meal-based diet. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:485-494. [PMID: 32803181 PMCID: PMC7416151 DOI: 10.5187/jast.2020.62.4.485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 11/25/2022]
Abstract
Limiting amino acids (AAs) for milk production in dairy cows fed on a concentrate
diet of corn grain and soybean meal was evaluated in this study. Four lactating
and multiparous Holstein cows (in third or fourth parities, with an average body
weight of 633 ± 49.2 kg), 8 to 9 weeks into their lactation period, were
used in a 4 × 4 Latin square design. The experiment comprised four
dietary treatments: (1) no intravenous infusion (control); (2) control plus
intravenous infusion of an AA mixture of 6 g/d methionine, 19.1 g/d lysine, 13.8
g/d isoleucine, and 15.4 g/d valine (4AA); (3) control plus intravenous infusion
of the AA mixture without methionine (no-Met); and (4) control plus intravenous
infusion of the AA mixture without lysine (no-Lys). All animals were fed on a
controlled diet (1 kg/d alfalfa hay, 10 kg/d silage, 14 kg/d concentrate
mixture, ad libitum timothy hay). The AA composition of the
diet and blood were determined using an automatic AA analyzer. Milk composition
(protein, fat, lactose, urea nitrogen, and somatic cell counts) was determined
using a MilkoScan. The results showed that feed intake for milk production did
not differ from that of intravenous infusion using a limiting AA mixture. The
4AA treatment numerically had the highest milk yield (32.4 kg/d), although there
was no difference when compared with the control (31.2 kg/d), no-Met (31.3
kg/d), and no-Lys (31.7 kg/d) treatments. The concentration of AAs in blood
plasma of cows in all treatments, mainly isoleucine and valine, increased
significantly compared with that of control. The no-Met treatment increased
(p < 0.05) the concentration of lysine in the blood
relative to the control and no-Lys treatments, whereas the no-Lys treatment
increased (p < 0.05) the concentration of methionine
relative to the control and no-Met treatments. In conclusion, milk production
increased when feeding 10 g/d methionine to the cows, together with their
concentrate diet of corn grain and soybean meal.
Collapse
Affiliation(s)
- Joong Kook Park
- School of Animal Life Convergence Science, Hankyong National University, Anseong 17579, Korea
| | - Joon-Mo Yeo
- Department of Dairy Science, Korean National College of Agriculture and Fisheries, Jeonju 54874, Korea
| | - Gui-Seck Bae
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Eun Joong Kim
- Department of Animal Science, Kyungpook National University, Sangju 37224, Korea
| | - Chang-Hyun Kim
- School of Animal Life Convergence Science, Hankyong National University, Anseong 17579, Korea
| |
Collapse
|
19
|
Cai J, Wang D, Zhao FQ, Liang S, Liu J. AMPK-mTOR pathway is involved in glucose-modulated amino acid sensing and utilization in the mammary glands of lactating goats. J Anim Sci Biotechnol 2020; 11:32. [PMID: 32166025 PMCID: PMC7060552 DOI: 10.1186/s40104-020-0434-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/05/2020] [Indexed: 01/12/2023] Open
Abstract
Background The local supply of energy-yielding nutrients such as glucose seems to affect the synthesis of milk components in the mammary gland (MG). Thus, our study was conducted to investigate the effects of locally available MG glucose supply (LMGS) on amino acid (AA) sensing and utilization in the MG of lactating dairy goats. Six dosages of glucose (0, 20, 40, 60, 80, and 100 g/d) were infused into the MG through the external pudendal artery to investigate the dose-dependent changes in mammary AA uptake and utilization (Exp.1) and the changes in mRNA and protein expression of the AMPK-mTOR pathway (Expt.2). Results In Exp.1, total milk AA concentration was highest when goats were infused with 60 g/d glucose, but lower when goats were infused with 0 and 100 g/d glucose. Increasing LMGS quadratically changed the percentages of αS2-casein and α-lactalbumin in milk protein, which increased with infusions from 0 to 60 g/d glucose and then decreased with infusions between 60 and 100 g/d glucose. The LMGS changed the AA availability and intramammary gland AA utilization, as reflected by the mammary AA flux indexes. In Exp.2, the mRNA expression of LALBA in the MG increased quadratically with increasing LMGS, with the highest expression at dose of 60 g/d glucose. A high glucose dosage (100 g/d) activated the general control nonderepressible 2 kinase, an intracellular sensor of AA status, resulting in a reduced total milk AA concentration. Conclusions Our new findings suggest that the lactating MG in dairy goats may be affected by LMGS through regulation of the AA sensory pathway, AA utilization and protein synthesis, all being driven by the AMPK-mTOR pathway.
Collapse
Affiliation(s)
- Jie Cai
- 1Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China
| | - Diming Wang
- 1Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China
| | - Feng-Qi Zhao
- 1Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China.,2Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405 USA
| | - Shulin Liang
- 1Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China
| | - Jianxin Liu
- 1Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China
| |
Collapse
|
20
|
Omphalius C, Lemosquet S, Ouellet DR, Bahloul L, Lapierre H. Postruminal infusions of amino acids or glucose affect metabolisms of splanchnic, mammary, and other peripheral tissues and drive amino acid use in dairy cows. J Dairy Sci 2020; 103:2233-2254. [PMID: 31954566 DOI: 10.3168/jds.2019-17249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/06/2019] [Indexed: 01/17/2023]
Abstract
Effects of AA and glucose infusions on efficiency of use of essential AA (EAA) were studied according to a 2 × 2 factorial using 5 multicatheterized cows in a 4 × 4 Latin square plus one cow, with 2-wk periods. The diet provided 87% of energy and 70% of metabolizable protein requirements, and the 4 treatments were abomasal infusions of (1) water, (2) an AA mixture with a casein profile (695 g/d), (3) glucose (1,454 g/d), or (4) a combination of AA and glucose infusions. Milk samples were collected on the last 6 milkings. On d 14, 6 blood samples were collected from arterial, and portal, hepatic, and mammary venous vessels. Splanchnic plasma flow was calculated by dilution of p-aminohippurate and mammary flow by the Fick principle using Phe + Tyr. The net flux of AA across tissues [splanchnic, i.e., portal-drained viscera (PDV) + liver, and mammary gland] was calculated as the efflux minus the influx across that tissue. The efficiency of EAA was calculated as the sum of exported true proteins [milk protein yield (MPY), scurf, and metabolic fecal protein] multiplied by their respective AA profile and divided by the predicted AA supply minus AA endogenous urinary loss. In addition, catabolism was estimated for each tissue: AA supply - (portal net flux + metabolic fecal protein) for the PDV; -hepatic net flux for the liver; splanchnic net flux - (-mammary net flux + scurf) for the other peripheral tissues; and -mammary net flux - milk for the mammary gland. The MIXED procedure (SAS Institute Inc., Cary, NC) was used with cow as a random effect. No AA × glucose interaction existed for most of the measured parameters. With infusions of AA and glucose, MPY increased by 17 and 14%, respectively. The decreased efficiency of EAA-N with AA infusion resulted from increased EAA-N in MPY smaller than the increased EAA-N supply and was accompanied by increased liver catabolism of His + Met + Phe (representing group 1 AA) and increased mammary and PDV catabolisms of group 2 AA-N (Ile, Leu, Lys, and Val). In contrast, the increased efficiency of EAA-N with glucose infusion, resulting from increased EAA-N in MPY with no change in EAA-N supply, was accompanied by decreased mammary catabolism of group 2 AA-N and hepatic catabolism of His + Met + Phe. No mammary catabolism of His, Met, and Phe existed in all treatments, as indicated by the mammary uptake to milk output ratio close to one for these EAA. Therefore, the mammary gland contributes significantly to variations of efficiency of group 2 AA-N through variations of AA catabolism, in response to both AA and glucose supplies, whereas additional PDV catabolism was observed with increased AA supply. Partition of AA use between tissues allows to delineate their anabolic or catabolic fate across tissues and better understand changes of efficiency of EAA in response to protein and energy supplies.
Collapse
Affiliation(s)
- C Omphalius
- PEGASE, INRA, Agrocampus Ouest, 35590 Saint Gilles, France; Adisseo France S.A.S., 10, Place du General de Gaulle, 92160 Antony, France
| | - S Lemosquet
- PEGASE, INRA, Agrocampus Ouest, 35590 Saint Gilles, France
| | - D R Ouellet
- Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | - L Bahloul
- Adisseo France S.A.S., 10, Place du General de Gaulle, 92160 Antony, France
| | - H Lapierre
- Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8.
| |
Collapse
|
21
|
Yoder PS, Huang X, Teixeira IA, Cant JP, Hanigan MD. Effects of jugular infused methionine, lysine, and histidine as a group or leucine and isoleucine as a group on production and metabolism in lactating dairy cows. J Dairy Sci 2020; 103:2387-2404. [PMID: 31954565 DOI: 10.3168/jds.2019-17082] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/04/2019] [Indexed: 01/07/2023]
Abstract
Essential AA (EAA), particularly leucine, isoleucine, methionine, and histidine, possess signaling properties for promoting cellular anabolic metabolism, whereas methionine, lysine, and histidine are considered also to be substrate limiting AA. The objective of this study was to evaluate production responses to supplementation of 2 AA groups in a 2 × 2 factorial design. Eight cows (99 ± 18 days in milk) were assigned to 4 jugular infusion treatments consisting of saline (CON), methionine plus lysine plus histidine (MKH), isoleucine plus leucine (IL), or MKH plus IL, in a replicated 4 × 4 Latin square design. Periods were 18 d in length, comprising 8 d of rest followed by 10 d of jugular infusion. Daily infusion amounts were 21 g of methionine, 38 g of lysine, 20 g of histidine, 50 g of leucine, and 22 g of isoleucine. Cows were ad libitum fed a common diet consisting of 15.2% crude protein and 1.61 Mcal/kg NEL on a dry matter basis that was predicted to meet rumen degradable protein requirements but was 15% deficient in metabolizable protein. Milk and energy-corrected milk yields increased by 2.3 kg/d and 1.9 kg/d, respectively, with infused IL, and no change was observed for MKH. Milk protein concentration increased by 0.13 percentage units for MKH, whereas milk protein yield increased for both MKH and IL by 84 g/d and 64 g/d, respectively. The milk protein yield increase for MKH+IL was 145 g/d versus CON. Gross feed efficiency tended to increase with IL infusion, and N efficiency tended to increase with MKH infusion. Aggregate arterial EAA concentrations less Met, Lys, and His declined by 7.2% in response to MKH infusion. Arterial EAA less Ile and Leu also declined by 6.2% in response to IL infusion. Net total AA (TAA) and EAA uptake by the udder tended to increase in response to MKH infusion, whereas mammary blood flow increased in response to IL infusion, but TAA and EAA net uptakes were unaffected. Apparent udder affinity increased for TAA and EAA less Met, Lys, and His in response to MKH infusion, whereas affinity for EAA less Ile and Leu increased for IL infusion. Venous Met and Leu concentrations increased by 192% and 35% from the MKH and IL infusions, respectively, compared with CON, which indicates that intracellular concentration of these EAA changed substantially. Increases in milk protein yield were observed from 2 groups of amino acids independently and additively, which contradicts the single limiting amino acid theory that a single EAA will limit milk protein yield.
Collapse
Affiliation(s)
- P S Yoder
- Department of Dairy Science, Virginia Tech, Blacksburg 24061; Perdue AgriBusiness LLC, Salisbury, MD 21804
| | - X Huang
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | | | - J P Cant
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1 Canada
| | - M D Hanigan
- Department of Dairy Science, Virginia Tech, Blacksburg 24061.
| |
Collapse
|
22
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Dusemund B, Kouba M, Kos Durjava M, López-Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Glandorf B, Herman L, Maradona Prieto M, Saarela M, Tosti L, Anguita M, Galobart J, Holczknecht O, Manini P, Tarres-Call J, Pettenati E, Pizzo F. Safety and efficacy of l-histidine monohydrochloride monohydrate produced by fermentation with Escherichia coli (NITE BP-02526) for all animal species. EFSA J 2019; 17:e05785. [PMID: 32626407 PMCID: PMC7009181 DOI: 10.2903/j.efsa.2019.5785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Following a request from the European Commission, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on l-histidine monohydrochloride monohydrate produced by fermentation with Escherichia coli (NITE BP-02526) when used as a nutritional additive or as a feed flavouring compound in feed and water for drinking for all animal species. The product under assessment is l-histidine HCl H2O produced by fermentation with a genetically modified strain of E. coli (NITE BP-02526). The production strain and its recombinant DNA were not detected in the final products. l-Histidine HCl H2O does not give rise to any safety concern to the production strain. The use of l-histidine HCl H2O is safe for the target species when used to supplement the diet in appropriate amounts. It is safe at the proposed use level of 25 mg/kg when used as a flavouring compound for all animal species. The use of l-histidine HCl H2O in animal nutrition raises no safety concerns for consumers of animal products. The additive is not irritating to the skin or eyes and is not a skin sensitiser. There is a risk for persons handling the additive from the exposure to endotoxins by inhalation. The use of l-histidine as a feed additive does not represent a risk to the environment. The additive l-histidine HCl H2O is regarded as an effective source of the amino acid l-histidine when used as a nutritional additive. For the supplemental l-histidine to be as efficacious in ruminants as in non-ruminant species, it requires protection against degradation in the rumen. It is also considered efficacious as a feed flavouring compound under the proposed conditions of use.
Collapse
|
23
|
Xu LB, Hanigan MD, Lin XY, Li MM, Yan ZG, Hu ZY, Hou QL, Wang Y, Shi KR, Wang ZH. Effects of jugular infusions of isoleucine, leucine, methionine, threonine, and other amino acids on insulin and glucagon concentrations, mammalian target of rapamycin (mTOR) signaling, and lactational performance in goats. J Dairy Sci 2019; 102:9017-9027. [PMID: 31351725 DOI: 10.3168/jds.2018-16102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/22/2019] [Indexed: 01/12/2023]
Abstract
The supply and profile of absorbed AA may affect milk protein synthesis through hormonal changes and mammalian target of rapamycin (mTOR) signaling pathways; and Ile, Leu, Met, and Thr (ILMT) are the 4 AA that have been reported to have the greatest effect on mammary mTOR signaling. The extent to which ILMT and the other remaining AA (RAA) differ in their effects on milk protein synthesis needs to be systematically investigated. In this study, 5 lactating goats, averaging 120 ± 10 d in milk, fitted with jugular vein and carotid artery catheters, were fasted for 24 h, followed by intravenous infusions of a mixture containing AA and glucose for 8 h in a 5 × 5 Latin square design. The AA mixtures were formulated according to the profile of casein. The amounts of AA infused were calculated based on supplies of AA when metabolizable protein (MP) was at requirement (MR). Treatments were an infusate containing glucose without AA (NTAA); an infusate containing 3 × the MR of Ile, Leu, Met and Thr (3F0R); and infusates containing 3F0R plus 1, 2, or 3 × MR of RAA (3F1R, 3F2R, and 3F3R, respectively) according to amounts provided when fed to meet MP requirements for maintenance and lactation for each goat. Milk, arterial blood, and mammary tissue samples were collected immediately after halting the infusion. Relative to NTAA, supplementation of ILMT tended to increase milk protein production and plasma glucose concentrations, and increased milk and lactose production, but had no effects on production or content of milk fat. Graded supplementation of RAA tended to quadratically affect production of milk and lactose. Arterial glucose and glucagon concentrations decreased linearly, and plasma insulin concentrations decreased quadratically with increased RAA. Mammary p70-S6K1 phosphorylation was decreased by addition of ILMT compared with NTAA but increased linearly with increased RAA infusion. Furthermore, EIF4EBP1 gene expression was much lower for 3F-treated goats than for the NTAA treatment. Both MTOR and RPS6KB1 gene expressions were decreased quadratically with increased RAA supply. These results suggested that short-term milk protein yield tended to be increased by elevated ILMT availability, and this trend was not explained by variations in mammary mTOR signaling or pancreatic hormone secretions, whereas graded increase of RAA in combination with ILMT appeared to regulate the efficiency of conversion of glucose to lactose in a manner not involving milk protein production.
Collapse
Affiliation(s)
- L B Xu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, P. R. China
| | - M D Hanigan
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | - X Y Lin
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, P. R. China
| | - M M Li
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | - Z G Yan
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, P. R. China
| | - Z Y Hu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, P. R. China
| | - Q L Hou
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, P. R. China
| | - Y Wang
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, P. R. China
| | - K R Shi
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, P. R. China
| | - Z H Wang
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, P. R. China.
| |
Collapse
|
24
|
Wu X, Sun HZ, Xue M, Wang D, Guan L, Liu J. Days-in-Milk and Parity Affected Serum Biochemical Parameters and Hormone Profiles in Mid-Lactation Holstein Cows. Animals (Basel) 2019; 9:ani9050230. [PMID: 31083376 PMCID: PMC6562902 DOI: 10.3390/ani9050230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022] Open
Abstract
It is well known that serum biochemical parameters and hormones contribute greatly to the physiological and metabolic status of dairy cows. However, few studies have focused on the variation of these serum parameters in multiparous mid-lactation cows without the interference of diet and management. A total of 287 Holstein dairy cows fed the same diet and maintained under the same management regime were selected from a commercial dairy farm to evaluate the effects of days-in-milk (DIM) and parity on serum biochemical parameters and hormone profiles. Milk yield and milk protein content were affected by DIM and parity (p < 0.05). Milk protein yield showed a numerically decreasing trend with parity, and it was relatively constant in cows with parities between 2 and 4 but lower in cows with parity 6 (p = 0.020). Ten and five serum biochemical parameters related to protein status, energy metabolism, liver and kidney function, and oxidative stress were affected by DIM and parity, respectively (p < 0.05). Glucagon, insulin-like growth factor 1 concentration, and the revised quantitative insulin sensitivity check index were significantly different (p < 0.05) among cows with different DIM. Parity had no effect on hormone concentrations. An interaction between DIM and parity effect was only detected for glucagon concentration (p = 0.015), which showed a significantly increasing trend with DIM and overall decreasing trend with parity. In summary, DIM and parity played an important role in affecting the serum biochemical parameters and/or hormones of dairy cows, with serum parameters affected more by DIM than parity.
Collapse
Affiliation(s)
- Xuehui Wu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hui-Zeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - Mingyuan Xue
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Diming Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Leluo Guan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Wang F, Shi H, Wang S, Wang Y, Cao Z, Li S. Amino Acid Metabolism in Dairy Cows and their Regulation in Milk Synthesis. Curr Drug Metab 2019; 20:36-45. [DOI: 10.2174/1389200219666180611084014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/14/2018] [Accepted: 04/17/2018] [Indexed: 12/24/2022]
Abstract
Background:
Reducing dietary Crude Protein (CP) and supplementing with certain Amino Acids (AAs)
has been known as a potential solution to improve Nitrogen (N) efficiency in dairy production. Thus understanding
how AAs are utilized in various sites along the gut is critical.
Objective:
AA flow from the intestine to Portal-drained Viscera (PDV) and liver then to the mammary gland was
elaborated in this article. Recoveries in individual AA in PDV and liver seem to share similar AA pattern with input:
output ratio in mammary gland, which subdivides essential AA (EAA) into two groups, Lysine (Lys) and Branchedchain
AA (BCAA) in group 1, input: output ratio > 1; Methionine (Met), Histidine (His), Phenylalanine (Phe) etc. in
group 2, input: output ratio close to 1. AAs in the mammary gland are either utilized for milk protein synthesis or
retained as body tissue, or catabolized. The fractional removal of AAs and the number and activity of AA transporters
together contribute to the ability of AAs going through mammary cells. Mammalian Target of Rapamycin
(mTOR) pathway is closely related to milk protein synthesis and provides alternatives for AA regulation of milk
protein synthesis, which connects AA with lactose synthesis via α-lactalbumin (gene: LALBA) and links with milk
fat synthesis via Sterol Regulatory Element-binding Transcription Protein 1 (SREBP1) and Peroxisome Proliferatoractivated
Receptor (PPAR).
Conclusion:
Overall, AA flow across various tissues reveals AA metabolism and utilization in dairy cows on one
hand. While the function of AA in the biosynthesis of milk protein, fat and lactose at both transcriptional and posttranscriptional
level from another angle provides the possibility for us to regulate them for higher efficiency.
Collapse
Affiliation(s)
- Feiran Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haitao Shi
- Ministry of Education Key Laboratory of Conservation & Utilization of Qinghai-Tibetan Plateau Animal Genetic Resources, Southwest Minzu University, Chengdu, 610041, China
| | - Shuxiang Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Cai J, Zhao FQ, Liu JX, Wang DM. Local Mammary Glucose Supply Regulates Availability and Intracellular Metabolic Pathways of Glucose in the Mammary Gland of Lactating Dairy Goats Under Malnutrition of Energy. Front Physiol 2018; 9:1467. [PMID: 30405429 PMCID: PMC6206160 DOI: 10.3389/fphys.2018.01467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/28/2018] [Indexed: 01/29/2023] Open
Abstract
As glucose is the regulator of both the milk yield and mammary oxidative status, glucose supply is considered to play important nutritional and physiological role on mammary gland (MG) metabolism. However, inconsistent results were observed from different infusion methods to evaluate the effect of glucose on MG glucose metabolism. Thus, precise method should be developed to learn how availability and intracellular metabolic pathways of glucose in the MG are altered by the direct mammary glucose supply. In addition, limited information is available on the role of mammary glucose supply in milk synthesis in lactating ruminants under an energy-deficient diet. Direct glucose supply to the MG was implemented in the current study through the external pudendal artery infusion under an energy-deficient diet. Six doses of glucose (0, 20, 40, 60, 80, and 100 g/d) were infused through the external pudendal arteries, which is the main artery to the MG, to six lactating goats fed with basal diet meeting 81% energy requirement in a 6 × 6 Latin square design. Milk and lactose yields were both quadratically increased with increased glucose infusion, whereas the milk yield changed inconsistently with the increased energy balance (EB), indicating local glucose supply, rather than EB, improved milk production. Glucose fluxes in the MG were significantly increased and correlated with mammary plasma flow. However, the ratio of lactose yield to glucose absorbed by the MG was significantly decreased. The increased glucose fluxes in the MG and changed glucose-related metabolites in milk indicated that the glucose availability and intracellular metabolic pathways was regulated by local mammary glucose. Acute glycolysis consumed the superfluous glucose and induced accumulation of oxygen radicals in the MG during over-supplied glucose conditions. The present study provided insight to optimal glucose supply to the MG during the lactation.
Collapse
Affiliation(s)
- Jie Cai
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Feng-Qi Zhao
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, United States
| | - Jian-Xin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Di-Ming Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Schwab CG, Broderick GA. A 100-Year Review: Protein and amino acid nutrition in dairy cows. J Dairy Sci 2018; 100:10094-10112. [PMID: 29153157 DOI: 10.3168/jds.2017-13320] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
Considerable progress has been made in understanding the protein and amino acid (AA) nutrition of dairy cows. The chemistry of feed crude protein (CP) appears to be well understood, as is the mechanism of ruminal protein degradation by rumen bacteria and protozoa. It has been shown that ammonia released from AA degradation in the rumen is used for bacterial protein formation and that urea can be a useful N supplement when lower protein diets are fed. It is now well documented that adequate rumen ammonia levels must be maintained for maximal synthesis of microbial protein and that a deficiency of rumen-degradable protein can decrease microbial protein synthesis, fiber digestibility, and feed intake. Rumen-synthesized microbial protein accounts for most of the CP flowing to the small intestine and is considered a high-quality protein for dairy cows because of apparent high digestibility and good AA composition. Much attention has been given to evaluating different methods to quantify ruminal protein degradation and escape and for measuring ruminal outflows of microbial protein and rumen-undegraded feed protein. The methods and accompanying results are used to determine the nutritional value of protein supplements and to develop nutritional models and evaluate their predictive ability. Lysine, methionine, and histidine have been identified most often as the most-limiting amino acids, with rumen-protected forms of lysine and methionine available for ration supplementation. Guidelines for protein feeding have evolved from simple feeding standards for dietary CP to more complex nutrition models that are designed to predict supplies and requirements for rumen ammonia and peptides and intestinally absorbable AA. The industry awaits more robust and mechanistic models for predicting supplies and requirements of rumen-available N and absorbed AA. Such models will be useful in allowing for feeding lower protein diets and increased efficiency of microbial protein synthesis.
Collapse
Affiliation(s)
| | - Glen A Broderick
- Broderick Nutrition & Research LLC, 221 Glen Hollow Road, Madison, WI 53705
| |
Collapse
|
28
|
Li L, He ML, Liu Y, Zhang YS. Buffering agent-induced lactose content increases via growth hormone-mediated activation of gluconeogenesis in lactating goats. Physiol Res 2018; 67:317-329. [PMID: 29303609 DOI: 10.33549/physiolres.933715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Dairy goats are often fed a high-concentrate (HC) diet to meet their lactation demands; however, long-term concentrate feeding is unhealthy and leads to milk yield and lactose content decreases. Therefore, we tested whether a buffering agent is able to increase the output of glucose in the liver and influence lactose synthesis. Eight lactating goats were randomly assigned to two groups: one group received a HC diet (Concentrate : Forage = 6:4, HG) and the other group received the same diet with a buffering agent added (0.2 % NaHCO(3), 0.1 % MgO, BG) over a 19-week experimental period. The total volatile fatty acids and lipopolysaccharide (LPS) declined in the rumen, which led the rumen pH to become stabile in the BG goats. The milk yield and lactose content increased. The alanine aminotransferase, aspartate transaminase, alkaline phosphatase, pro-inflammatory cytokines, LPS and lactate contents in the plasma significantly decreased, whereas the prolactin and growth hormone levels increased. The hepatic vein glucose content increased. In addition, pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6PC) expression in the liver was significantly up-regulated. In the mammary glands, the levels of glucose transporter type 1, 8, 12 as well as of sodium-glucose cotransporter 1 increased. Cumulative buffering agent treatment increased the blood concentrations of glucose via gluconeogenesis and promoted its synthesis in the liver. This treatment may contribute to the increase of the milk yield and lactose synthesis of lactating goats.
Collapse
Affiliation(s)
- L Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | | | | | | |
Collapse
|
29
|
Johansen M, Lund P, Weisbjerg M. Amino acid profile of metabolisable protein in lactating dairy cows is affected by dry matter concentration in grass-clover silage. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Wei XS, Cai CJ, He JJ, Yu C, Mitloehner F, Liu BL, Yao JH, Cao YC. Effects of biotin and nicotinamide supplementation on glucose and lipid metabolism and milk production of transition dairy cows. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Cai J, Wang D, Liu J. Regulation of fluid flow through the mammary gland of dairy cows and its effect on milk production: a systematic review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1261-1270. [PMID: 28758674 DOI: 10.1002/jsfa.8605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Dairy milk consists of more than 85% water. Therefore, understanding the regulation of fluid absorption in the mammary gland is relevant to improving milk production. In recent decades, studies using different approaches, including blood flow, transmembrane fluid flow, tight junction, fluid flow of the paracellular pathway and functional mammary epithelial cell state, have been conducted aiming to investigate how mammary gland fluid absorption is regulated. However, the relationship between regulation mechanisms of fluid flow and milk production has not been studied systematically. The present review summarizes a series of key milk yield regulatory factors mediated by whole-mammary fluid flow, including milk, mammary blood flow, blood/tissue fluid-cell fluid flow and cell-alveolus fluid flow. Whole-mammary fluid flow regulates milk production by altering transporter activity, ion channels, local microcirculation-related factors, driving force of fluid transport (osmotic pressure or electrochemical gradient), cellular connection state and a cell volume sensitive mechanism. In addition, whole-mammary fluid flow plays important roles in milk synthesis and secretion. Knowledge gained from fluid flow-mediated regulatory mechanisms of the dairy mammary gland will lead to a fundamental understanding of lactation biology and will be beneficial for the improvement of dairy productivity. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Cai
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Diming Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Abstract
During recent decades, the UK dairy industry has had to adjust to the introduction of milk quotas in 1984, the deregulation of milk markets in 1994, and accommodate changes in the demand for dairy products. The combination of these factors, in addition to Bovine Spongiform Encephalopathy and Foot and Mouth disease, and a fall in milk price has inevitably resulted in a restructuring of the industry, but also reinforced the need for all sectors of the industry to respond to the prevailing economic climate and changes in consumer preferences.
Collapse
|
33
|
Comparison of microalgae and rapeseed meal as supplementary protein in the grass silage based nutrition of dairy cows. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Abstract
Ruminant livestock have the ability to produce high-quality human food from feedstuffs of little or no value for humans. Balanced essential amino acid composition of meat and milk from ruminants makes those protein sources valuable adjuncts to human diets. It is anticipated that there will be increasing demand for ruminant proteins in the future. Increasing productivity per animal dilutes out the nutritional and environmental costs of maintenance and rearing dairy animals up to production. A number of nutritional strategies improve production per animal such as ration balancing in smallholder operations and small grain supplements to ruminants fed high-forage diets. Greenhouse gas emission intensity is reduced by increased productivity per animal; recent research has developed at least one effective inhibitor of methane production in the rumen. There is widespread over-feeding of protein to dairy cattle; milk and component yields can be maintained, and sometimes even increased, at lower protein intake. Group feeding dairy cows according to production and feeding diets higher in rumen-undegraded protein can improve milk and protein yield. Supplementing rumen-protected essential amino acids will also improve N efficiency in some cases. Better N utilization reduces urinary N, which is the most environmentally unstable form of excretory N. Employing nutritional models to more accurately meet animal requirements improves nutrient efficiency. Although smallholder enterprises, which are concentrated in tropical and semi-tropical regions of developing countries, are subject to different economic pressures, nutritional biology is similar at all production levels. Rather than milk volume, nutritional strategies should maximize milk component yield, which is proportional to market value as well as food value when milk nutrients are consumed directly by farmers and their families. Moving away from Holsteins toward smaller breeds such as Jerseys, Holstein-Jersey crosses or locally adapted breeds (e.g. Vechur) would also reduce lactose production and improve metabolic, environmental and economic efficiencies. Forages containing condensed tannins or polyphenol oxidase enzymes have reduced rumen protein degradation; ruminants capture this protein more efficiently for meat and milk. Although these forages generally have lower yields and persistence, genetic modification would allow insertion of these traits into more widely cultivated forages. Ruminants will retain their niches because of their ability to produce valuable human food from low value feedstuffs. Employing these emerging strategies will allow improved productive efficiency of ruminants in both developing and developed countries.
Collapse
|
35
|
Wang B, Jiang LS, Liu JX. Amino acid profiles of rumen undegradable protein: a comparison between forages including cereal straws and alfalfa and their respective total mixed rations. J Anim Physiol Anim Nutr (Berl) 2017; 102:601-610. [DOI: 10.1111/jpn.12789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/27/2017] [Indexed: 01/17/2023]
Affiliation(s)
- B. Wang
- Beijing Key Laboratory for Dairy Cow Nutrition; College of Animal Science and Technology; Beijing University of Agriculture; Beijing China
- MoE Key Laboratory of Molecular Animal Nutrition; Institute of Dairy Science; College of Animal Sciences; Zhejiang University; Hangzhou China
| | - L. S. Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition; College of Animal Science and Technology; Beijing University of Agriculture; Beijing China
| | - J. X. Liu
- MoE Key Laboratory of Molecular Animal Nutrition; Institute of Dairy Science; College of Animal Sciences; Zhejiang University; Hangzhou China
| |
Collapse
|
36
|
Sadri H, von Soosten D, Meyer U, Kluess J, Dänicke S, Saremi B, Sauerwein H. Plasma amino acids and metabolic profiling of dairy cows in response to a bolus duodenal infusion of leucine. PLoS One 2017; 12:e0176647. [PMID: 28453535 PMCID: PMC5409510 DOI: 10.1371/journal.pone.0176647] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/13/2017] [Indexed: 11/18/2022] Open
Abstract
Leucine (Leu), one of the three branch chain amino acids, acts as a signaling molecule in the regulation of overall amino acid (AA) and protein metabolism. Leucine is also considered to be a potent stimulus for the secretion of insulin from pancreatice β-cells. Our objective was to study the effects of a duodenal bolus infusion of Leu on insulin and glucagon secretion, on plasma AA concentrations, and to do a metabolomic profiling of dairy cows as compared to infusions with either glucose or saline. Six duodenum-fistulated Holstein cows were studied in a replicated 3 × 3 Latin square design with 3 periods of 7 days, in which the treatments were applied at the end of each period. The treatments were duodenal bolus infusions of Leu (DIL; 0.15 g/kg body weight), glucose (DIG; at Leu equimolar dosage) or saline (SAL). On the day of infusion, the treatments were duodenally infused after 5 h of fasting. Blood samples were collected at -15, 0, 10, 20, 30, 40, 50, 60, 75, 90, 120, 180, 210, 240 and 300 min relative to the start of infusion. Blood plasma was assayed for concentrations of insulin, glucagon, glucose and AA. The metabolome was also characterized in selected plasma samples (i.e. from 0, 50, and 120 min relative to the infusion). Body weight, feed intake, milk yield and milk composition were recorded throughout the experiment. The Leu infusion resulted in significant increases of Leu in plasma reaching 20 and 15-fold greater values than that in DIG and SAL, respectively. The elevation of plasma Leu concentrations after the infusion led to a significant decrease (P<0.05) in the plasma concentrations of isoleucine, valine, glycine, and alanine. In addition, the mean concentrations of lysine, methionine, phenylalanine, proline, serine, taurine, threonine, and asparagine across all time-points in plasma of DIL cows were reduced (P<0.05) compared with the other groups. In contrast to the working hypothesis about an insulinotropic effect of Leu, the circulating concentrations of insulin were not affected by Leu. In DIG, insulin and glucose concentrations peaked at 30-40 and 40-50 min after the infusion, respectively. Insulin concentrations were greater (P<0.05) from 30-40 min in DIG than DIL and SAL, and glucose was elevated in DIG over DIL and SAL from 30-75 min and 40-50 min, respectively. Multivariate metabolomics data analysis (principal component analysis and partial least squares discriminant analysis) revealed a clear separation when the DIL cows were compared with the DIG and SAL cows at 50 and 120 min after the infusion. By using this analysis, several metabolites, mainly acylcarnitines, methionine sulfoxide and components from the kynurenine pathway were identified as the most relevant for separating the treatment groups. These results suggest that Leu regulates the plasma concentrations of branched-chain AA, and other AA, apparently by stimulating their influx into the cells from the circulation. A single-dose duodenal infusion of Leu did not elicit an apparent insulin response, but affected multiple intermediary metabolic pathways including AA and energy metabolism by mechanisms yet to be elucidated.
Collapse
Affiliation(s)
- Hassan Sadri
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, Bonn, Germany
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Dirk von Soosten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Braunschweig, Germany
| | - Ulrich Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Braunschweig, Germany
| | - Jeannette Kluess
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Braunschweig, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Braunschweig, Germany
| | - Behnam Saremi
- Evonik Nutrition & Care GmbH, Rodenbacher Chaussee 4, Hanau, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
37
|
Giallongo F, Harper MT, Oh J, Parys C, Shinzato I, Hristov AN. Histidine deficiency has a negative effect on lactational performance of dairy cows. J Dairy Sci 2017; 100:2784-2800. [PMID: 28131569 DOI: 10.3168/jds.2016-11992] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/02/2016] [Indexed: 11/19/2022]
Abstract
A 10-wk randomized complete block design experiment with 24 Holstein cows was conducted to investigate the long-term effects of feeding a His-deficient diet on lactational performance of dairy cows. Cows were blocked by days in milk, milk yield, and parity, and randomly assigned to 1 of the following 2 treatments: (1) His-adequate diet [HAD; providing +166 g/d over metabolizable protein (MP) requirements, according to the National Research Council (2001) and digestible His (dHis) supply of 68 g/d, or 2.5% of MP requirements] and (2) His-deficient diet (HDD; +37 g/d over MP requirements and dHis supply of 49 g/d, or 1.9% of MP requirements). Both HAD and HDD were supplemented with rumen-protected (RP) Met and Lys supplying digestible Met and digestible Lys at 2.4 and 2.4% and 7.2 and 7.1% of MP requirements, respectively. At the end of the 10-wk experiment, HDD was supplemented with RPHis (HDD+RPHis; total dHis supply of 61 g/d, or 2.4% of MP requirements) for an additional 9 d. Dry matter intake (DMI; 25.4 and 27.1 kg/d, standard error of the mean = 0.41), yields of milk (37.6 and 40.5 kg/d, standard error of the mean = 0.62), protein and lactose, energy-corrected milk, and milk and plasma urea-N were decreased by HDD compared with HAD. Feed and energy-corrected milk feed efficiencies, milk fat, protein and lactose concentrations, body weight, and body condition score of the cows were not affected by treatment. Apparent total-tract digestibility of dry and organic matter, crude protein, and neutral detergent fiber, and excretion of urinary N and urea-N were decreased by HDD compared with HAD. Concentration of plasma leptin tended to be decreased for HDD compared with HAD. Plasma concentrations of EAA (His, Leu, Lys, Val) and carnosine decreased and total EAA tended to be decreased in cows fed HDD compared with HAD. Muscle concentrations of free His, Leu, and Val decreased and Gly and β-alanine tended to be increased by HDD compared with HAD. Cows fed HDD had a lower blood hemoglobin concentration than cows fed HAD. At the end of the 10-wk study, the 9-d supplementation of HDD with RPHis (i.e., HDD+RPHis) increased DMI and plasma His, and tended to increase energy-corrected milk yield and plasma carnosine, compared with HDD. In conclusion, feeding a diet deficient in dHis supplying adequate MP, digestible Met, and digestible Lys affected negatively lactational performance of dairy cows. These results confirm our previous findings that low dietary His supply can impair DMI, yields of milk and milk protein, and blood hemoglobin in dairy cows.
Collapse
Affiliation(s)
- F Giallongo
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - M T Harper
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - J Oh
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - C Parys
- Evonik Nutrition and Care GmbH, 63457 Hanau, Germany
| | | | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
38
|
Tian W, Wang HR, Wu TY, Ding LY, Zhao R, Khas E, Wang CF, Zhang FQ, Mi FY, Wang L, Ning LT. Milk protein responses to balanced amino acid and removal of Leucine and Arginine supplied from jugular-infused amino acid mixture in lactating dairy cows. J Anim Physiol Anim Nutr (Berl) 2016; 101:e278-e287. [DOI: 10.1111/jpn.12603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/26/2016] [Indexed: 12/20/2022]
Affiliation(s)
- W. Tian
- College of Animal Science and Technology; Yangzhou University; Yangzhou Jiangsu China
| | - H. R. Wang
- College of Animal Science and Technology; Yangzhou University; Yangzhou Jiangsu China
| | - T. Y. Wu
- College of Animal Science and Technology; Yangzhou University; Yangzhou Jiangsu China
| | - L. Y. Ding
- College of Animal Science and Technology; Yangzhou University; Yangzhou Jiangsu China
| | - R. Zhao
- College of Animal Science and Technology; Yangzhou University; Yangzhou Jiangsu China
| | - E. Khas
- College of Animal Science; Inner Mongolia Agricultural University; Hohhot Inner Mongolia China
| | - C. F. Wang
- College of Animal Science; Inner Mongolia Agricultural University; Hohhot Inner Mongolia China
| | - F. Q. Zhang
- College of Animal Science; Inner Mongolia Agricultural University; Hohhot Inner Mongolia China
| | - F. Y. Mi
- College of Animal Science; Inner Mongolia Agricultural University; Hohhot Inner Mongolia China
| | - L. Wang
- College of Animal Science; Inner Mongolia Agricultural University; Hohhot Inner Mongolia China
| | - L. T. Ning
- College of Animal Science and Technology, and Key Laboratory of Grass and Herbivores of Chongqing; Southwest University; Beibei Chongqing China
| |
Collapse
|
39
|
Giallongo F, Harper M, Oh J, Lopes J, Lapierre H, Patton R, Parys C, Shinzato I, Hristov A. Effects of rumen-protected methionine, lysine, and histidine on lactation performance of dairy cows. J Dairy Sci 2016; 99:4437-4452. [DOI: 10.3168/jds.2015-10822] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 02/27/2016] [Indexed: 12/11/2022]
|
40
|
Zhou Z, Loor J, Piccioli-Cappelli F, Librandi F, Lobley G, Trevisi E. Circulating amino acids in blood plasma during the peripartal period in dairy cows with different liver functionality index. J Dairy Sci 2016; 99:2257-2267. [DOI: 10.3168/jds.2015-9805] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/23/2015] [Indexed: 12/22/2022]
|
41
|
Nogalski Z, Wielgosz-Groth Z, Purwin C, Nogalska A, Sobczuk-Szul M, Winarski R, Pogorzelska P. The Effect of Slaughter Weight and Fattening Intensity on Changes in Carcass Fatness in Young Holstein-Friesian Bulls. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2014.2824] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Thornton KJ, Richard RP, Colle MJ, Doumit ME, de Veth MJ, Hunt CW, Murdoch GK. Effects of dietary potato by-product and rumen-protected histidine on growth, carcass characteristics and quality attributes of beef. Meat Sci 2015; 107:64-74. [PMID: 25965965 DOI: 10.1016/j.meatsci.2015.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 04/06/2015] [Accepted: 04/13/2015] [Indexed: 01/30/2023]
Abstract
We hypothesized that variable composition in finishing rations, more specifically; the proportion of potato-by-product (PBP) and rumen protected histidine (His) supplementation may influence growth and meat quality attributes. Two different diets were fed (1) finishing ration with corn and barley as grains (CB, n = 20) and (2) substitution of 10% corn, DM basis, with PBP (PBP, n = 20). Additionally, half of each dietary treatment received 50 g/hd/d rumen protected His (HS, n= 20) while the other half received no supplement (NS, n = 20). Inclusion of 10% PBP or HS did not affect growth or carcass traits. Color stability was analyzed using Hunter color values as well as AMSA visual appraisal in both longissimus thoracis (LT) and gluteus medius (GM) muscles. The LT, but not the GM, of CB steers was more color stable over a 9 d simulated retail display compared to those fed a PB diet. Steers receiving HS produced significantly (P < 0.05) more color stable LT and GM steaks.
Collapse
Affiliation(s)
- K J Thornton
- Department of Animal and Veterinary Sciences, University of Idaho, Moscow, ID 83844, United States.
| | - R P Richard
- Department of Animal and Veterinary Sciences, University of Idaho, Moscow, ID 83844, United States
| | - M J Colle
- Department of Animal and Veterinary Sciences, University of Idaho, Moscow, ID 83844, United States
| | - M E Doumit
- Department of Animal and Veterinary Sciences, University of Idaho, Moscow, ID 83844, United States
| | - M J de Veth
- Balchem Corporation, New Hampton, NY 10958, United States
| | - C W Hunt
- Department of Animal and Veterinary Sciences, University of Idaho, Moscow, ID 83844, United States
| | - G K Murdoch
- Department of Animal and Veterinary Sciences, University of Idaho, Moscow, ID 83844, United States
| |
Collapse
|
43
|
Giallongo F, Hristov AN, Oh J, Frederick T, Weeks H, Werner J, Lapierre H, Patton RA, Gehman A, Parys C. Effects of slow-release urea and rumen-protected methionine and histidine on performance of dairy cows. J Dairy Sci 2015; 98:3292-308. [PMID: 25726096 DOI: 10.3168/jds.2014-8791] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/10/2015] [Indexed: 11/19/2022]
Abstract
This experiment was conducted with the objective to investigate the effects of slow-release urea and rumen-protected (RP) Met and His supplementation of a metabolizable protein (MP)-deficient diet (according to NRC, 2001) on lactation performance of dairy cows. Sixty lactating Holstein cows were used in a 10-wk randomized complete block-design trial. Cows were fed a covariate diet for 2 wk and then assigned to one of the following treatments for an 8-wk experimental period: (1) MP-adequate diet [AMP; 107% of MP requirements, based on the National Research Council (NRC, 2001)]; (2) MP-deficient diet (DMP; 95% of MP requirements); (3) DMP supplemented with slow-release urea (DMPU); (4) DMPU supplemented with RPMet (DMPUM); and (5) DMPUM supplemented with RPHis (DMPUMH). Total-tract apparent digestibility of dry matter, organic matter, neutral detergent fiber, and crude protein, and urinary N and urea-N excretions were decreased by DMP, compared with AMP. Addition of slow-release urea to the DMP diet increased urinary urea-N excretion. Dry matter intake (DMI) and milk yield (on average 44.0±0.9kg/d) were not affected by treatments, except DMPUMH increased DMI and numerically increased milk yield, compared with DMPUM. Milk true protein concentration and yield were increased and milk fat concentration tended to be decreased by DMPUMH, compared with DMPUM. Cows gained less body weight on the DMP diet, compared with AMP. Plasma concentrations of His and Lys were not affected by treatments, whereas supplementation of RPMet increased plasma Met concentration. Plasma concentration of 3-methylhistidine was or tended to be higher for DMP compared with AMP and DMPU, respectively. Addition of RPHis to the DMPUM diet tended to increase plasma glucose and creatinine. In conclusion, feeding a 5% MP-deficient diet (according to NRC, 2001) did not decrease DMI and yields of milk and milk components, despite a reduction in nutrient digestibility. Supplementation of RPHis increased DMI and milk protein concentration and yield. These results are in line with our previous data and suggest that His may have a positive effect on voluntary feed intake and milk production and composition in high-yielding dairy cows fed MP-deficient diets.
Collapse
Affiliation(s)
- F Giallongo
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| | - J Oh
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - T Frederick
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - H Weeks
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - J Werner
- Animal Resource Program, The Pennsylvania State University, University Park 16802
| | - H Lapierre
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | - R A Patton
- Nittany Dairy Nutrition Inc., Mifflinburg, PA 17844
| | - A Gehman
- Alltech Inc., Nicholasville, KY, 40356
| | - C Parys
- Evonik Industries AG, 63457 Hanau, Germany
| |
Collapse
|
44
|
Associations between variants of the HAL gene and milk production traits in Chinese Holstein cows. BMC Genet 2014; 15:125. [PMID: 25421803 PMCID: PMC4253992 DOI: 10.1186/s12863-014-0125-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/05/2014] [Indexed: 11/17/2022] Open
Abstract
Background The histidine ammonia-lyse gene (HAL) encodes the histidine ammonia-lyase, which catalyzes the first reaction of histidine catabolism. In our previous genome-wide association study in Chinese Holstein cows to identify genetic variants affecting milk production traits, a SNP (rs41647754) located 357 bp upstream of HAL, was found to be significantly associated with milk yield and milk protein yield. In addition, the HAL gene resides within the reported QTLs for milk production traits. The aims of this study were to identify genetic variants in HAL and to test the association between these variants and milk production traits. Results Fifteen SNPs were identified within the regions under study of the HAL gene, including three coding mutations, seven intronic mutations, one promoter region mutation, and four 3′UTR mutations. Nine of these identified SNPs were chosen for subsequent genotyping and association analyses. Our results showed that five SNP markers (ss974768522, ss974768525, ss974768531, ss974768533 and ss974768534) were significantly associated with one or more milk production traits. Haplotype analysis showed that two haplotype blocks were significantly associated with milk yield and milk protein yield, providing additional support for the association between HAL variants and milk production traits in dairy cows (P < 0.05). Conclusion Our study shows evidence of significant associations between SNPs within the HAL gene and milk production traits in Chinese Holstein cows, indicating the potential role of HAL variants in these traits. These identified SNPs may serve as genetic markers used in genomic selection schemes to accelerate the genetic gains of milk production traits in dairy cattle. Electronic supplementary material The online version of this article (doi:10.1186/s12863-014-0125-4) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Larsen M, Lapierre H, Kristensen N. Abomasal protein infusion in postpartum transition dairy cows: Effect on performance and mammary metabolism. J Dairy Sci 2014; 97:5608-22. [DOI: 10.3168/jds.2013-7247] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 05/11/2014] [Indexed: 11/19/2022]
|
46
|
Colombini S, Broderick GA, Galasso I, Martinelli T, Rapetti L, Russo R, Reggiani R. Evaluation of Camelina sativa (L.) Crantz meal as an alternative protein source in ruminant rations. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:736-43. [PMID: 24105894 DOI: 10.1002/jsfa.6408] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 09/04/2013] [Accepted: 09/18/2013] [Indexed: 05/24/2023]
Abstract
BACKGROUND Camelina sativa (CS) is an oilseed crop used for biofuel production. By-products from oil extraction are high in protein and can be used in ruminant rations; more information about their nutritive value is required also considering the antinutrional factor content of the by-products. The aim of this study was to evaluate the nutritive value of CS meal genotypes in comparison with canola. RESULTS Ten CS genotypes and one canola cultivar were evaluated. Meals were obtained from seeds after solvent oil extraction. CS average crude protein (CP) content (g kg⁻¹ dry matter) was 457. Numerical differences in lysine and sulfur amino acid content were observed among CS genotypes. Glucosinolate (mmol kg⁻¹) content was higher for CS (23.1) than canola (7.2). Sinapine content (g kg⁻¹) was lower for CS (2.79) than for canola (4.32). Differences were observed among CS genotypes for rumen undegraded protein (RUP). Average RUP (g kg⁻¹ CP) was 316 for CS and 275 for canola. CONCLUSIONS CS meal has potential for use in ruminant rations as a high-quality protein source. In vivo studies are needed to compare CS with other protein sources used in cattle rations. Implementation of breeding programs for improved meal quality is recommend.
Collapse
Affiliation(s)
- Stefania Colombini
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, 20133, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Curtis R, Kim J, Bajramaj D, Doelman J, Osborne V, Cant J. Decline in mammary translational capacity during intravenous glucose infusion into lactating dairy cows. J Dairy Sci 2014; 97:430-8. [DOI: 10.3168/jds.2013-7252] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/08/2013] [Indexed: 01/30/2023]
|
48
|
Ying F, Lin X, Ma W, Chi H, Yan Z, Song Y, Wang Z. Metabolic responses to the deficiency of Lys, Arg, Met, or His in the mammary gland of lactating goats. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2013.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Haque M, Rulquin H, Lemosquet S. Milk protein responses in dairy cows to changes in postruminal supplies of arginine, isoleucine, and valine. J Dairy Sci 2013; 96:420-30. [DOI: 10.3168/jds.2012-5610] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 10/02/2012] [Indexed: 11/19/2022]
|
50
|
Lee C, Hristov A, Cassidy T, Heyler K, Lapierre H, Varga G, de Veth M, Patton R, Parys C. Rumen-protected lysine, methionine, and histidine increase milk protein yield in dairy cows fed a metabolizable protein-deficient diet. J Dairy Sci 2012; 95:6042-56. [DOI: 10.3168/jds.2012-5581] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/03/2012] [Indexed: 11/19/2022]
|