1
|
Avanzato VA, Bushmaker T, Oguntuyo KY, Yinda CK, Duyvesteyn HME, Stass R, Meade-White K, Rosenke R, Thomas T, van Doremalen N, Saturday G, Doores KJ, Lee B, Bowden TA, Munster VJ. A monoclonal antibody targeting the Nipah virus fusion glycoprotein apex imparts protection from disease. J Virol 2024; 98:e0063824. [PMID: 39240113 PMCID: PMC11494970 DOI: 10.1128/jvi.00638-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/05/2024] [Indexed: 09/07/2024] Open
Abstract
Nipah virus (NiV) is a highly pathogenic paramyxovirus capable of causing severe respiratory and neurologic disease in humans. Currently, there are no licensed vaccines or therapeutics against NiV, underscoring the urgent need for the development of countermeasures. The NiV surface-displayed glycoproteins, NiV-G and NiV-F, mediate host cell attachment and fusion, respectively, and are heavily targeted by host antibodies. Here, we describe a vaccination-derived neutralizing monoclonal antibody, mAb92, that targets NiV-F. Structural characterization of the Fab region bound to NiV-F (NiV-F-Fab92) by cryo-electron microscopy analysis reveals an epitope in the DIII domain at the membrane distal apex of NiV-F, an established site of vulnerability on the NiV surface. Further, prophylactic treatment of hamsters with mAb92 offered complete protection from NiV disease, demonstrating beneficial activity of mAb92 in vivo. This work provides support for targeting NiV-F in the development of vaccines and therapeutics against NiV.IMPORTANCENipah virus (NiV) is a highly lethal henipavirus (HNV) that causes severe respiratory and neurologic disease in humans. Currently, there are no licensed vaccines or therapeutics against NiV, highlighting a need to develop countermeasures. The NiV surface displays the receptor binding protein (NiV-G, or RBP) and the fusion protein (NiV-F), which allow the virus to attach and enter cells. These proteins can be targeted by vaccines and antibodies to prevent disease. This work describes a neutralizing antibody (mAb92) that targets NiV-F. Structural characterization by cryo-electron microscopy analysis reveals where the antibody binds to NiV-F to neutralize the virus. This study also shows that prophylactic treatment of hamsters with mAb92 completely protected against developing NiV disease. This work shows how targeting NiV-F can be useful to preventing NiV disease, supporting future studies in the development of vaccines and therapeutics.
Collapse
Affiliation(s)
- Victoria A. Avanzato
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Trenton Bushmaker
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | | | - Claude Kwe Yinda
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Helen M. E. Duyvesteyn
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kimberly Meade-White
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Tina Thomas
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Katie J. Doores
- Department of Infectious Diseases, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Vincent J. Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
2
|
Wang L, Lu D, Yang M, Chai S, Du H, Jiang H. Nipah virus: epidemiology, pathogenesis, treatment, and prevention. Front Med 2024:10.1007/s11684-024-1078-2. [PMID: 39417975 DOI: 10.1007/s11684-024-1078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 10/19/2024]
Abstract
Nipah virus (NiV) is a zoonotic paramyxovirus that has recently emerged as a crucial public health issue. It can elicit severe encephalitis and respiratory diseases in animals and humans, leading to fatal outcomes, exhibiting a wide range of host species tropism, and directly transmitting from animals to humans or through an intermediate host. Human-to-human transmission associated with recurrent NiV outbreaks is a potential global health threat. Currently, the lack of effective therapeutics or licensed vaccines for NiV necessitates the primary utilization of supportive care. In this review, we summarize current knowledge of the various aspects of the NiV, including therapeutics, vaccines, and its biological characteristics, epidemiology, pathogenesis, and clinical features. The objective is to provide valuable information from scientific and clinical research and facilitate the formulation of strategies for preventing and controlling the NiV.
Collapse
Affiliation(s)
- Limei Wang
- Department of Microbiology and Pathogenic Biology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Denghui Lu
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Maosen Yang
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Shiqi Chai
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hong Du
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hong Jiang
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
3
|
Wickenhagen A, van Tol S, Munster V. Molecular determinants of cross-species transmission in emerging viral infections. Microbiol Mol Biol Rev 2024; 88:e0000123. [PMID: 38912755 PMCID: PMC11426021 DOI: 10.1128/mmbr.00001-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
SUMMARYSeveral examples of high-impact cross-species transmission of newly emerging or re-emerging bat-borne viruses, such as Sudan virus, Nipah virus, and severe acute respiratory syndrome coronavirus 2, have occurred in the past decades. Recent advancements in next-generation sequencing have strengthened ongoing efforts to catalog the global virome, in particular from the multitude of different bat species. However, functional characterization of these novel viruses and virus sequences is typically limited with regard to assessment of their cross-species potential. Our understanding of the intricate interplay between virus and host underlying successful cross-species transmission has focused on the basic mechanisms of entry and replication, as well as the importance of host innate immune responses. In this review, we discuss the various roles of the respective molecular mechanisms underlying cross-species transmission using different recent bat-borne viruses as examples. To delineate the crucial cellular and molecular steps underlying cross-species transmission, we propose a framework of overall characterization to improve our capacity to characterize viruses as benign, of interest, or of concern.
Collapse
Affiliation(s)
- Arthur Wickenhagen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Sarah van Tol
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
4
|
Vasudevan SS, Subash A, Mehta F, Kandrikar TY, Desai R, Khan K, Khanduja S, Pitliya A, Raavi L, Kanagala SG, Gondaliya P. Global and regional mortality statistics of nipah virus from 1994 to 2023: a comprehensive systematic review and meta-analysis. Pathog Glob Health 2024; 118:471-480. [PMID: 39030703 PMCID: PMC11441053 DOI: 10.1080/20477724.2024.2380131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
The mortality rate of Nipah virus (NiV) can vary in different regions, and its pattern across timelines has yet to be assessed. The primary objective is to perform a comparative analysis of mortality rates across different timelines and countries. Articles reporting NiV mortality from inception to November 2023 were analyzed in PubMed, Ovid Embase, Scopus, and Web of Science databases. A meta-analysis utilizing random-effects models determined the mortality rate secondary to NiV complications. The initial search strategy yielded 1213 records, of which 36 articles met the inclusion criteria, comprising 2736 NiV patients. The Global mortality rate of the Nipah virus in the 2014-2023 decade was 80.1% (CI: 68.7-88.1%), indicating a significant 24% increase compared to the preceding decade (2004-2013) with a mortality rate of 54.1% (CI: 35.5-71.6%). Among the countries analyzed for overall mortality from 1994-2023, India experienced the highest mortality rate at 82.7% (CI: 74.6-88.6%), followed by Bangladesh at 62.1% (CI: 45.6-76.2%), Philippines at 52.9% (CI: 30-74.5%), Malaysia at 28.9% (CI: 21.4-37.9%), and Singapore at 21% (CI: 8-45%). Subgroup analysis revealed that India consistently had the highest mortality rate for the past two decades (91.7% and 89.3%). The primary complication leading to mortality was encephalitis, accounting for 95% of cases. This systematic review and meta-analysis revealed a noteworthy surge in NiV mortality rates, particularly in the current decade (2014-2023). The escalation, with India reporting a concerning level of mortality of 89.3-91.7% in the past decades, signifies a pressing public health challenge.
Collapse
Affiliation(s)
| | - Arun Subash
- Department of Academics, Dow University of Health Sciences, Karachi, Pakistan
| | - Fena Mehta
- Department of Academics, Smt. NHL Municipal Medical College, Ahmedabad, Gujarat, India
| | - Tiba Yamin Kandrikar
- Department of Dermatology and Venerology, Yerevan State Medical University, Yerevan, Armenia
| | | | - Kaif Khan
- Department of Biosciences, Jamia Millia Islamia, Delhi, India
| | - Sneha Khanduja
- Department of Academics, Dr. Baba Saheb Ambedkar Medical College and Hospital, New Delhi, India
| | - Aakanksha Pitliya
- Department of Medicine, Pamnani Hospital and Research Center, Mandsaur, MP, India
| | - Lekhya Raavi
- Department of Critical Care Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Piyush Gondaliya
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
5
|
Tan FH, Sukri A, Idris N, Ong KC, Schee JP, Tan CT, Tan SH, Wong KT, Wong LP, Tee KK, Chang LY. A systematic review on Nipah virus: global molecular epidemiology and medical countermeasures development. Virus Evol 2024; 10:veae048. [PMID: 39119137 PMCID: PMC11306115 DOI: 10.1093/ve/veae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Nipah virus (NiV) is an emerging pathogen that causes encephalitis and a high mortality rate in infected subjects. This systematic review aimed to comprehensively analyze the global epidemiology and research advancements of NiV to identify the key knowledge gaps in the literature. Articles searched using literature databases, namely PubMed, Scopus, Web of Science, and Science Direct yielded 5,596 articles. After article screening, 97 articles were included in this systematic review, comprising 41 epidemiological studies and 56 research developments on NiV. The majority of the NiV epidemiological studies were conducted in Bangladesh, reflecting the country's significant burden of NiV outbreaks. The initial NiV outbreak was identified in Malaysia in 1998, with subsequent outbreaks reported in Bangladesh, India, and the Philippines. Transmission routes vary by country, primarily through pigs in Malaysia, consumption of date palm juice in Bangladesh, and human-to-human in India. However, the availability of NiV genome sequences remains limited, particularly from Malaysia and India. Mortality rates also vary according to the country, exceeding 70% in Bangladesh, India, and the Philippines, and less than 40% in Malaysia. Understanding these differences in mortality rate among countries is crucial for informing NiV epidemiology and enhancing outbreak prevention and management strategies. In terms of research developments, the majority of studies focused on vaccine development, followed by phylogenetic analysis and antiviral research. While many vaccines and antivirals have demonstrated complete protection in animal models, only two vaccines have progressed to clinical trials. Phylogenetic analyses have revealed distinct clades between NiV Malaysia, NiV Bangladesh, and NiV India, with proposals to classify NiV India as a separate strain from NiV Bangladesh. Taken together, comprehensive OneHealth approaches integrating disease surveillance and research are imperative for future NiV studies. Expanding the dataset of NiV genome sequences, particularly from Malaysia, Bangladesh, and India will be pivotal. These research efforts are essential for advancing our understanding of NiV pathogenicity and for developing robust diagnostic assays, vaccines and therapeutics necessary for effective preparedness and response to future NiV outbreaks.
Collapse
Affiliation(s)
- Foo Hou Tan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Asif Sukri
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Nuryana Idris
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Jie Ping Schee
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Chong Tin Tan
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kum Thong Wong
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Li Ping Wong
- Department of Social Preventive Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| |
Collapse
|
6
|
Yin C, Yao YF, Yang P, Liu H, Gao G, Peng Y, Chen M, Lu M, Zhang X, Guo W, Zhang Z, Hu X, Yuan Z, Shan C. A highly effective ferritin-based divalent nanoparticle vaccine shields Syrian hamsters against lethal Nipah virus. Front Immunol 2024; 15:1387811. [PMID: 38911870 PMCID: PMC11191641 DOI: 10.3389/fimmu.2024.1387811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
The Nipah virus (NiV), a highly deadly bat-borne paramyxovirus, poses a substantial threat due to recurrent outbreaks in specific regions, causing severe respiratory and neurological diseases with high morbidity. Two distinct strains, NiV-Malaysia (NiV-M) and NiV-Bangladesh (NiV-B), contribute to outbreaks in different geographical areas. Currently, there are no commercially licensed vaccines or drugs available for prevention or treatment. In response to this urgent need for protection against NiV and related henipaviruses infections, we developed a novel homotypic virus-like nanoparticle (VLP) vaccine co-displaying NiV attachment glycoproteins (G) from both strains, utilizing the self-assembling properties of ferritin protein. In comparison to the NiV G subunit vaccine, our nanoparticle vaccine elicited significantly higher levels of neutralizing antibodies and provided complete protection against a lethal challenge with NiV infection in Syrian hamsters. Remarkably, the nanoparticle vaccine stimulated the production of antibodies that exhibited superior cross-reactivity to homologous or heterologous henipavirus. These findings underscore the potential utility of ferritin-based nanoparticle vaccines in providing both broad-spectrum and long-term protection against NiV and emerging zoonotic henipaviruses challenges.
Collapse
Affiliation(s)
- Chunhong Yin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Feng Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Peipei Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ge Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yun Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Miaoyu Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mingqing Lu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xuekai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Weiwei Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zihan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
7
|
Chen L, Sun M, Zhang H, Zhang X, Yao Y, Li M, Li K, Fan P, Zhang H, Qin Y, Zhang Z, Li E, Chen Z, Guan W, Li S, Yu C, Zhang K, Gong R, Chiu S. Potent human neutralizing antibodies against Nipah virus derived from two ancestral antibody heavy chains. Nat Commun 2024; 15:2987. [PMID: 38582870 PMCID: PMC10998907 DOI: 10.1038/s41467-024-47213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/18/2024] [Indexed: 04/08/2024] Open
Abstract
Nipah virus (NiV) is a World Health Organization priority pathogen and there are currently no approved drugs for clinical immunotherapy. Through the use of a naïve human phage-displayed Fab library, two neutralizing antibodies (NiV41 and NiV42) targeting the NiV receptor binding protein (RBP) were identified. Following affinity maturation, antibodies derived from NiV41 display cross-reactivity against both NiV and Hendra virus (HeV), whereas the antibody based on NiV42 is only specific to NiV. Results of immunogenetic analysis reveal a correlation between the maturation of antibodies and their antiviral activity. In vivo testing of NiV41 and its mature form (41-6) show protective efficacy against a lethal NiV challenge in hamsters. Furthermore, a 2.88 Å Cryo-EM structure of the tetrameric RBP and antibody complex demonstrates that 41-6 blocks the receptor binding interface. These findings can be beneficial for the development of antiviral drugs and the design of vaccines with broad spectrum against henipaviruses.
Collapse
Affiliation(s)
- Li Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Sun
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Huajun Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xinghai Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yanfeng Yao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ming Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kangyin Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Fan
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Haiwei Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ye Qin
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Zhen Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wuxiang Guan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shanshan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Changming Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China.
| |
Collapse
|
8
|
Plowright RK, Ahmed AN, Coulson T, Crowther TW, Ejotre I, Faust CL, Frick WF, Hudson PJ, Kingston T, Nameer PO, O'Mara MT, Peel AJ, Possingham H, Razgour O, Reeder DM, Ruiz-Aravena M, Simmons NB, Srinivas PN, Tabor GM, Tanshi I, Thompson IG, Vanak AT, Vora NM, Willison CE, Keeley ATH. Ecological countermeasures to prevent pathogen spillover and subsequent pandemics. Nat Commun 2024; 15:2577. [PMID: 38531842 PMCID: PMC10965931 DOI: 10.1038/s41467-024-46151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
Substantial global attention is focused on how to reduce the risk of future pandemics. Reducing this risk requires investment in prevention, preparedness, and response. Although preparedness and response have received significant focus, prevention, especially the prevention of zoonotic spillover, remains largely absent from global conversations. This oversight is due in part to the lack of a clear definition of prevention and lack of guidance on how to achieve it. To address this gap, we elucidate the mechanisms linking environmental change and zoonotic spillover using spillover of viruses from bats as a case study. We identify ecological interventions that can disrupt these spillover mechanisms and propose policy frameworks for their implementation. Recognizing that pandemics originate in ecological systems, we advocate for integrating ecological approaches alongside biomedical approaches in a comprehensive and balanced pandemic prevention strategy.
Collapse
Affiliation(s)
- Raina K Plowright
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY, 14853, USA.
| | - Aliyu N Ahmed
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Tim Coulson
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Thomas W Crowther
- Department of Environmental Systems Science, ETH Zürich, Zürich, 8092, Switzerland
| | - Imran Ejotre
- Department of Biology, Muni University, P.O. Box 725, Arua, Uganda
| | - Christina L Faust
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Winifred F Frick
- Bat Conservation International, Austin, TX, 78746, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Peter J Hudson
- Centre for Infectious Disease Dynamics, Pennsylvania State University, State College, PA, 16801, USA
| | - Tigga Kingston
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409-3131, USA
| | - P O Nameer
- College of Climate Change and Environmental Science, Kerala Agricultural University, Kerala, 680 656, India
| | | | - Alison J Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, 4111, Australia
| | - Hugh Possingham
- School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Orly Razgour
- Biosciences, University of Exeter, Exeter, EX4 4PS, UK
| | - DeeAnn M Reeder
- Department of Biology, Bucknell University, Lewisburg, PA, 17937, USA
| | - Manuel Ruiz-Aravena
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY, 14853, USA
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, 4111, Australia
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Starkville, USA
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York City, NY, 10024, USA
| | | | - Gary M Tabor
- Center for Large Landscape Conservation, Bozeman, MT, 59771, USA
| | - Iroro Tanshi
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
- Small Mammal Conservation Organization, Benin City, 300251, Nigeria
- Department of Animal and Environmental Biology, University of Benin, Benin City, 300000, Nigeria
| | | | - Abi T Vanak
- Centre for Policy Design, Ashoka Trust for Research in Ecology and the Environment, Bengaluru, Karnataka, 560064, India
- School of Life Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Neil M Vora
- Conservation International, Arlington, VA, 22202, USA
| | - Charley E Willison
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|
9
|
Huaman C, Clouse C, Rader M, Yan L, Bai S, Gunn BM, Amaya M, Laing ED, Broder CC, Schaefer BC. An in vivo BSL-2 model for henipavirus infection based on bioluminescence imaging of recombinant Cedar virus replication in mice. FRONTIERS IN CHEMICAL BIOLOGY 2024; 3:1363498. [PMID: 38770087 PMCID: PMC11105800 DOI: 10.3389/fchbi.2024.1363498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Henipaviruses are enveloped single-stranded, negative-sense RNA viruses of the paramyxovirus family. Two henipaviruses, Nipah virus and Hendra virus, cause a systemic respiratory and/or neurological disease in humans and ten additional species of mammals, with a high fatality rate. Because of their highly pathogenic nature, Nipah virus and Hendra virus are categorized as BSL-4 pathogens, which limits the number and scope of translational research studies on these important human pathogens. To begin to address this limitation, we are developing a BSL-2 model of authentic henipavirus infection in mice, using the non-pathogenic henipavirus, Cedar virus. Notably, wild-type mice are highly resistant to Hendra virus and Nipah virus infection. However, previous work has shown that mice lacking expression of the type I interferon receptor (IFNAR-KO mice) are susceptible to both viruses. Here, we show that luciferase-expressing recombinant Cedar virus (rCedV-luc) is also able to replicate and establish a transient infection in IFNAR-KO mice, but not in wild-type mice. Using longitudinal bioluminescence imaging (BLI) of luciferase expression, we detected rCedV-luc replication as early as 10 h post-infection. Viral replication peaks between days 1 and 3 post-infection, and declines to levels undetectable by BLI by 7 days post-infection. Immunohistochemistry is consistent with viral infection and replication in endothelial cells and other non-immune cell types within tissue parenchyma. Serology analyses demonstrate significant IgG responses to the Cedar virus surface glycoprotein with potent neutralizing activity in IFNAR-KO mice, whereas antibody responses in wild-type animals were non-significant. Overall, these data suggest that rCedV-luc infection of IFNAR-KO mice represents a viable platform for the study of in vivo henipavirus replication, anti-henipavirus host responses and henipavirus-directed therapeutics.
Collapse
Affiliation(s)
- Celeste Huaman
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Caitlyn Clouse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Madeline Rader
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Shuangyi Bai
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman WA 99164 USA
| | - Bronwyn M. Gunn
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman WA 99164 USA
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Eric D. Laing
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Brian C. Schaefer
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
10
|
Eskew EA, Olival KJ, Mazet JAK, Daszak P. A global-scale dataset of bat viral detection suggests that pregnancy reduces viral shedding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581969. [PMID: 38464184 PMCID: PMC10925100 DOI: 10.1101/2024.02.25.581969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Understanding viral infection dynamics in wildlife hosts can help forecast zoonotic pathogen spillover and human disease risk. Bats are particularly important reservoirs of zoonotic viruses, including some of major public health concern such as Nipah virus, Hendra virus, and SARS-related coronaviruses. Previous work has suggested that metapopulation dynamics, seasonal reproductive patterns, and other bat life history characteristics might explain temporal variation in spillover of bat-associated viruses into people. Here, we analyze viral dynamics in free-ranging bat hosts, leveraging a multi-year, global-scale viral detection dataset that spans eight viral families and 96 bat species from 14 countries. We fit hierarchical Bayesian models that explicitly control for important sources of variation, including geographic region, specimen type, and testing protocols, while estimating the influence of reproductive status on viral detection in female bats. Our models revealed that late pregnancy had a negative effect on viral shedding across multiple data subsets, while lactation had a weaker influence that was inconsistent across data subsets. These results are unusual for mammalian hosts, but given recent findings that bats may have high individual viral loads and population-level prevalence due to dampening of antiviral immunity, we propose that it would be evolutionarily advantageous for pregnancy to either not further reduce immunity or actually increase the immune response, reducing viral load, shedding, and risk of fetal infection. This novel hypothesis would be valuable to test given its potential to help monitor, predict, and manage viral spillover risk from bats.
Collapse
Affiliation(s)
- Evan A. Eskew
- EcoHealth Alliance, New York, NY 10018, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83844, USA
| | | | - Jonna A. K. Mazet
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | - PREDICT Consortium
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Byrne PO, Blade EG, Fisher BE, Ambrozak DR, Ramamohan AR, Graham BS, Loomis RJ, McLellan JS. Prefusion stabilization of the Hendra and Langya virus F proteins. J Virol 2024; 98:e0137223. [PMID: 38214525 PMCID: PMC10878279 DOI: 10.1128/jvi.01372-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are pathogenic paramyxoviruses that cause mild-to-severe disease in humans. As members of the Henipavirus genus, NiV and HeV use an attachment (G) glycoprotein and a class I fusion (F) glycoprotein to invade host cells. The F protein rearranges from a metastable prefusion form to an extended postfusion form to facilitate host cell entry. Prefusion NiV F elicits higher neutralizing antibody titers than postfusion NiV F, indicating that stabilization of prefusion F may aid vaccine development. A combination of amino acid substitutions (L104C/I114C, L172F, and S191P) is known to stabilize NiV F in its prefusion conformation, although the extent to which substitutions transfer to other henipavirus F proteins is not known. Here, we perform biophysical and structural studies to investigate the mechanism of prefusion stabilization in F proteins from three henipaviruses: NiV, HeV, and Langya virus (LayV). Three known stabilizing substitutions from NiV F transfer to HeV F and exert similar structural and functional effects. One engineered disulfide bond, located near the fusion peptide, is sufficient to stabilize the prefusion conformations of both HeV F and LayV F. Although LayV F shares low overall sequence identity with NiV F and HeV F, the region around the fusion peptide exhibits high sequence conservation across all henipaviruses. Our findings indicate that substitutions targeting this site of conformational change might be applicable to prefusion stabilization of other henipavirus F proteins and support the use of NiV as a prototypical pathogen for henipavirus vaccine antigen design.IMPORTANCEPathogenic henipaviruses such as Nipah virus (NiV) and Hendra virus (HeV) cause respiratory symptoms, with severe cases resulting in encephalitis, seizures, and coma. The work described here shows that the NiV and HeV fusion (F) proteins share common structural features with the F protein from an emerging henipavirus, Langya virus (LayV). Sequence alignment alone was sufficient to predict which known prefusion-stabilizing amino acid substitutions from NiV F would stabilize the prefusion conformations of HeV F and LayV F. This work also reveals an unexpected oligomeric interface shared by prefusion HeV F and NiV F. Together, these advances lay a foundation for future antigen design targeting henipavirus F proteins. In this way, Nipah virus can serve as a prototypical pathogen for the development of protective vaccines and monoclonal antibodies to prepare for potential henipavirus outbreaks.
Collapse
Affiliation(s)
- Patrick O. Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Elizabeth G. Blade
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Brian E. Fisher
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David R. Ambrozak
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ajit R. Ramamohan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | | | - Rebecca J. Loomis
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
12
|
Suman N, Khandelwal E, Chiluvuri P, Rami DS, Chansoria S, Jerry A, Tiwari R. NIPAH Virus Encephalitis: Unveiling the Epidemiology, Risk Factors, and Clinical Outcomes - A Systematic Review and Meta-Analysis. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S102-S105. [PMID: 38595585 PMCID: PMC11001063 DOI: 10.4103/jpbs.jpbs_935_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 04/11/2024] Open
Abstract
Objective This study assessed Nipah virus (NiV) encephalitis epidemiology, clinical outcomes, and risk variables to inform treatment and prevention. Methodology In a PubMed systematic search, 929 citations were found. After screening and eligibility, 22 studies were included. This study obtained age, gender, geographic regions, diagnostic methods, data collection methods, and bias risk. The case fatality rate (CFR) and NiV infection risk variables were evaluated by meta-analysis. Results Southeast Asia, especially Bangladesh and Malaysia, had the most NiV cases. The major diagnostic method was blood and cerebrospinal fluid IgM and IgG antibody tests, and males predominated. Proxy respondents and matched controls were utilized for risk factor analyses when patients could not answer. The pooled CFR for NiV encephalitis was 61.0%, indicating severity. Risk factors included pigs, nighttime bats near homes, tree climbing, and male gender. Conclusion Southeast Asian public health is plagued by NiV encephalitis. The high CFR calls for better diagnosis, treatment, and prevention. NiV's multiple risk factors must be understood for targeted therapy. Future research should fill knowledge gaps and improve NiV infection prevention.
Collapse
Affiliation(s)
- Neelam Suman
- Department of Prosthodontics and Crown and Bridge, SGRD Institute of Dental Sciences and Research, Amritsar, Punjab, India
| | | | - Pavankumar Chiluvuri
- Department of Orthodontics, Konaseema Institute of Dental Sciences, Amalapuram, Andhra Pradesh, India
| | - Diptesh S. Rami
- Department of Prosthodontics, Crown and Bridge, Siddhpur Dental College and Hospital, Siddhpur, Gujarat, India
| | - Shivakshi Chansoria
- Department of Oral Medicine and Radiology, Government College of Dentistry Indore, Madhya Pradesh, India
| | | | - Rahul Tiwari
- Department of OMFS, Narsinhbhai Patel Dental College and Hospital, Sankalchand Patel University, Visnagar, Gujarat, India
| |
Collapse
|
13
|
Curran EH, Devine MD, Hartley CD, Huang Y, Conrady CD, Debiec MR, Justin GA, Thomas J, Yeh S. Ophthalmic implications of biological threat agents according to the chemical, biological, radiological, nuclear, and explosives framework. Front Med (Lausanne) 2024; 10:1349571. [PMID: 38293299 PMCID: PMC10824978 DOI: 10.3389/fmed.2023.1349571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
As technology continues to evolve, the possibility for a wide range of dangers to people, organizations, and countries escalate globally. The United States federal government classifies types of threats with the capability of inflicting mass casualties and societal disruption as Chemical, Biological, Radiological, Nuclear, and Energetics/Explosives (CBRNE). Such incidents encompass accidental and intentional events ranging from weapons of mass destruction and bioterrorism to fires or spills involving hazardous or radiologic material. All of these have the capacity to inflict death or severe physical, neurological, and/or sensorial disabilities if injuries are not diagnosed and treated in a timely manner. Ophthalmic injury can provide important insight into understanding and treating patients impacted by CBRNE agents; however, improper ophthalmic management can result in suboptimal patient outcomes. This review specifically addresses the biological agents the Center for Disease Control and Prevention (CDC) deems to have the greatest capacity for bioterrorism. CBRNE biological agents, encompassing pathogens and organic toxins, are further subdivided into categories A, B, and C according to their national security threat level. In our compendium of these biological agents, we address their respective CDC category, systemic and ophthalmic manifestations, route of transmission and personal protective equipment considerations as well as pertinent vaccination and treatment guidelines.
Collapse
Affiliation(s)
- Emma H. Curran
- Creighton University School of Medicine, Omaha, NE, United States
| | - Max D. Devine
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Caleb D. Hartley
- Department of Ophthalmology and Visual Sciences, Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ye Huang
- Department of Ophthalmology, University of Illinois-Chicago, Chicago, IL, United States
| | - Christopher D. Conrady
- Department of Ophthalmology and Visual Sciences, Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Matthew R. Debiec
- Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Grant A. Justin
- Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Joanne Thomas
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| | - Steven Yeh
- Department of Ophthalmology and Visual Sciences, Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE, United States
- National Strategic Research Institute, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
14
|
Caruso S, Edwards SJ. Recently Emerged Novel Henipa-like Viruses: Shining a Spotlight on the Shrew. Viruses 2023; 15:2407. [PMID: 38140648 PMCID: PMC10747904 DOI: 10.3390/v15122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Henipaviruses are zoonotic viruses, including some highly pathogenic and capable of serious disease and high fatality rates in both animals and humans. Hendra virus and Nipah virus are the most notable henipaviruses, resulting in significant outbreaks across South Asia, South-East Asia, and Australia. Pteropid fruit bats have been identified as key zoonotic reservoirs; however, the increased discovery of henipaviruses outside the geographic distribution of Pteropid fruit bats and the detection of novel henipa-like viruses in other species such as the shrew, rat, and opossum suggest that Pteropid bats are not the sole reservoir for henipaviruses. In this review, we provide an update on henipavirus spillover events and describe the recent detection of novel unclassified henipaviruses, with a strong focus on the shrew and its emerging role as a key host of henipaviruses.
Collapse
Affiliation(s)
| | - Sarah J. Edwards
- Australian Centre for Disease Preparedness, Health & Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 5 Portarlington Road, East Geelong, VIC 3219, Australia;
| |
Collapse
|
15
|
Orosco FL. Advancing the frontiers: Revolutionary control and prevention paradigms against Nipah virus. Open Vet J 2023; 13:1056-1070. [PMID: 37842102 PMCID: PMC10576574 DOI: 10.5455/ovj.2023.v13.i9.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023] Open
Abstract
Nipah Virus (NiV) is a highly virulent pathogen that poses a significant threat to human and animal populations. This review provides a comprehensive overview of the latest control and prevention strategies against NiV, focusing on vaccine development, antiviral drug discovery, early diagnosis, surveillance, and high-level biosecurity measures. Advancements in vaccine research, including live-attenuated vaccines, virus-like particles, and mRNA-based vaccines, hold promise for preventing NiV infections. In addition, antiviral drugs, such as remdesivir, ribavirin, and favipiravir, have the potential to inhibit NiV replication. Early diagnosis through molecular and serological assays, immunohistochemistry, and real-time reverse transcription polymerase chain reaction plays a crucial role in timely detection. Surveillance efforts encompassing cluster-based and case-based systems enhance outbreak identification and provide valuable insights into transmission dynamics. Furthermore, the implementation of high-level biosecurity measures in agriculture, livestock practices, and healthcare settings is essential to minimize transmission risks. Collaboration among researchers, public health agencies, and policymakers is pivotal in refining and implementing these strategies to effectively control and prevent NiV outbreaks and safeguard public health on a global scale.
Collapse
Affiliation(s)
- Fredmoore L. Orosco
- Virology and Vaccine Institute of the Philippines Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig City, Philippines
- S&T Fellows Program, Department of Science and Technology, Taguig City, Philippines
| |
Collapse
|
16
|
Satter SM, Aquib WR, Sultana S, Sharif AR, Nazneen A, Alam MR, Siddika A, Akther Ema F, Chowdhury KIA, Alam AN, Rahman M, Klena JD, Rahman MZ, Banu S, Shirin T, Montgomery JM. Tackling a global epidemic threat: Nipah surveillance in Bangladesh, 2006-2021. PLoS Negl Trop Dis 2023; 17:e0011617. [PMID: 37756301 PMCID: PMC10529576 DOI: 10.1371/journal.pntd.0011617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Human Nipah virus (NiV) infection is an epidemic-prone disease and since the first recognized outbreak in Bangladesh in 2001, human infections have been detected almost every year. Due to its high case fatality rate and public health importance, a hospital-based Nipah sentinel surveillance was established in Bangladesh to promptly detect Nipah cases and respond to outbreaks at the earliest. The surveillance has been ongoing till present. The hospital-based sentinel surveillance was conducted at ten strategically chosen tertiary care hospitals distributed throughout Bangladesh. The surveillance staff ensured that routine screening, enrollment, data, and specimen collection from suspected Nipah cases were conducted daily. The specimens were then processed and transported to the reference laboratory of Institute of Epidemiology, Disease Control and Research (IEDCR) and icddr,b for confirmation of diagnosis through serology and molecular detection. From 2006 to 2021, through this hospital-based surveillance platform, 7,150 individuals were enrolled and tested for Nipah virus. Since 2001, 322 Nipah infections were identified in Bangladesh, 75% of whom were laboratory confirmed cases. Half of the reported cases were primary cases (162/322) having an established history of consuming raw date palm sap (DPS) or tari (fermented date palm sap) and 29% were infected through person-to-person transmission. Since the initiation of surveillance, 68% (218/322) of Nipah cases from Bangladesh have been identified from various parts of the country. Fever, vomiting, headache, fatigue, and increased salivation were the most common symptoms among enrolled Nipah patients. Till 2021, the overall case fatality rate of NiV infection in Bangladesh was 71%. This article emphasizes that the overall epidemiology of Nipah virus infection in Bangladesh has remained consistent throughout the years. This is the only systematic surveillance to detect human NiV infection globally. The findings from this surveillance have contributed to early detection of NiV cases in hospital settings, understanding of Nipah disease epidemiology, and have enabled timely public health interventions for prevention and containment of NiV infection. Although we still have much to learn regarding the transmission dynamics and risk factors of human NiV infection, surveillance has played a significant role in advancing our knowledge in this regard.
Collapse
Affiliation(s)
| | | | - Sharmin Sultana
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Ahmad Raihan Sharif
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | | | | | | | | | | | - Ahmed Nawsher Alam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | | | - John D. Klena
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | | | | | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| |
Collapse
|
17
|
Li H, Kim JYV, Pickering BS. Henipavirus zoonosis: outbreaks, animal hosts and potential new emergence. Front Microbiol 2023; 14:1167085. [PMID: 37529329 PMCID: PMC10387552 DOI: 10.3389/fmicb.2023.1167085] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are biosafety level 4 zoonotic pathogens causing severe and often fatal neurological and respiratory disease. These agents have been recognized by the World Health Organization as top priority pathogens expected to result in severe future outbreaks. HeV has caused sporadic infections in horses and a small number of human cases in Australia since 1994. The NiV Malaysia genotype (NiV-M) was responsible for the 1998-1999 epizootic outbreak in pigs with spillover to humans in Malaysia and Singapore. Since 2001, the NiV Bangladesh genotype (NiV-B) has been the predominant strain leading to outbreaks almost every year in Bangladesh and India, with hundreds of infections in humans. The natural reservoir hosts of HeV and NiV are fruit bats, which carry the viruses without clinical manifestation. The transmission pathways of henipaviruses from bats to humans remain poorly understood. Transmissions are often bridged by an intermediate animal host, which amplifies and spreads the viruses to humans. Horses and pigs are known intermediate hosts for the HeV outbreaks in Australia and NiV-M epidemic in Malaysia and Singapore, respectively. During the NiV-B outbreaks in Bangladesh, following initial spillover thought to be through the consumption of date palm sap, the spread of infection was largely human-to-human transmission. Spillover of NiV-B in recent outbreaks in India is less understood, with the primary route of transmission from bat reservoir to the initial human infection case(s) unknown and no intermediate host established. This review aims to provide a concise update on the epidemiology of henipaviruses covering their previous and current outbreaks with emphasis on the known and potential role of livestock as intermediate hosts in disease transmission. Also included is an up-to-date summary of newly emerging henipa-like viruses and animal hosts. In these contexts we discuss knowledge gaps and new challenges in the field and propose potential future directions.
Collapse
Affiliation(s)
- Hongzhao Li
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Ji-Young V. Kim
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Bradley S. Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
18
|
Byrne PO, Fisher BE, Ambrozak DR, Blade EG, Tsybovsky Y, Graham BS, McLellan JS, Loomis RJ. Structural basis for antibody recognition of vulnerable epitopes on Nipah virus F protein. Nat Commun 2023; 14:1494. [PMID: 36932063 PMCID: PMC10021056 DOI: 10.1038/s41467-023-36995-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Nipah virus (NiV) is a pathogenic paramyxovirus that causes fatal encephalitis in humans. Two envelope glycoproteins, the attachment protein (G/RBP) and fusion protein (F), facilitate entry into host cells. Due to its vital role, NiV F presents an attractive target for developing vaccines and therapeutics. Several neutralization-sensitive epitopes on the NiV F apex have been described, however the antigenicity of most of the F protein's surface remains uncharacterized. Here, we immunize mice with prefusion-stabilized NiV F and isolate ten monoclonal antibodies that neutralize pseudotyped virus. Cryo-electron microscopy reveals eight neutralization-sensitive epitopes on NiV F, four of which have not previously been described. Novel sites span the lateral and basal faces of NiV F, expanding the known library of vulnerable epitopes. Seven of ten antibodies bind the Hendra virus (HeV) F protein. Multiple sequence alignment suggests that some of these newly identified neutralizing antibodies may also bind F proteins across the Henipavirus genus. This work identifies new epitopes as targets for therapeutics, provides a molecular basis for NiV neutralization, and lays a foundation for development of new cross-reactive antibodies targeting Henipavirus F proteins.
Collapse
Affiliation(s)
- Patrick O Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, 78712, Austin, TX, USA
| | - Brian E Fisher
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20892, Bethesda, MD, USA
| | - David R Ambrozak
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20892, Bethesda, MD, USA
| | - Elizabeth G Blade
- Department of Molecular Biosciences, The University of Texas at Austin, 78712, Austin, TX, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, 21701, Frederick, MD, USA
| | - Barney S Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20892, Bethesda, MD, USA
- Morehouse School of Medicine, 30310, Atlanta, GA, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, 78712, Austin, TX, USA.
| | - Rebecca J Loomis
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20892, Bethesda, MD, USA.
- GSK Global Health R&D Vaccines (GVGH), 53100, Siena, Italy.
| |
Collapse
|
19
|
Yang S, Kar S. Are we ready to fight the Nipah virus pandemic? An overview of drug targets, current medications, and potential leads. Struct Chem 2023:1-19. [PMID: 37363045 PMCID: PMC9993391 DOI: 10.1007/s11224-023-02148-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/16/2023] [Indexed: 03/11/2023]
Abstract
Nipah virus (NiV) is a high-lethality RNA virus from the family of Paramyxoviridae and genus Henipavirus, classified under Biosafety Level-4 (BSL-4) pathogen due to the severity of pathogenicity and lack of medications and vaccines. Direct contacts or the body fluids of infected animals are the major factor of transmission of NiV. As it is not an airborne infection, the transmission rate is relatively low. Still, mutations of the NiV in the animal reservoir over the years, followed by zoonotic transfer, can make the deadliness of the virus manifold in upcoming years. Therefore, there is no denial of the possibility of a pandemic after COVID-19 considering the severe pathogenicity of NiV, and that is why we need to be prepared with possible drugs in upcoming days. Considering the time constraints, computational aided drug design (CADD) is an efficient way to study the virus and perform the drug design and test the HITs to lead experimentally. Therefore, this review focuses primarily on NiV target proteins (covering NiV and human), experimentally tested repurposed drug details, and latest computational studies on potential lead molecules, which can be explored as potential drug candidates. Computationally identified drug candidates, including their chemical structures, docking scores, amino acid level interaction with corresponding protein, and the platform used for the studies, are thoroughly discussed. The review will offer a one-stop study to access what had been performed and what can be performed in the CADD of NiV.
Collapse
Affiliation(s)
- Siyun Yang
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, 1000 Morris Avenue, Union, NJ 07083 USA
| | - Supratik Kar
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, 1000 Morris Avenue, Union, NJ 07083 USA
| |
Collapse
|
20
|
Escudero-Pérez B, Lalande A, Mathieu C, Lawrence P. Host–Pathogen Interactions Influencing Zoonotic Spillover Potential and Transmission in Humans. Viruses 2023; 15:v15030599. [PMID: 36992308 PMCID: PMC10060007 DOI: 10.3390/v15030599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Emerging infectious diseases of zoonotic origin are an ever-increasing public health risk and economic burden. The factors that determine if and when an animal virus is able to spill over into the human population with sufficient success to achieve ongoing transmission in humans are complex and dynamic. We are currently unable to fully predict which pathogens may appear in humans, where and with what impact. In this review, we highlight current knowledge of the key host–pathogen interactions known to influence zoonotic spillover potential and transmission in humans, with a particular focus on two important human viruses of zoonotic origin, the Nipah virus and the Ebola virus. Namely, key factors determining spillover potential include cellular and tissue tropism, as well as the virulence and pathogenic characteristics of the pathogen and the capacity of the pathogen to adapt and evolve within a novel host environment. We also detail our emerging understanding of the importance of steric hindrance of host cell factors by viral proteins using a “flytrap”-type mechanism of protein amyloidogenesis that could be crucial in developing future antiviral therapies against emerging pathogens. Finally, we discuss strategies to prepare for and to reduce the frequency of zoonotic spillover occurrences in order to minimize the risk of new outbreaks.
Collapse
Affiliation(s)
- Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, 38124 Braunschweig, Germany
| | - Alexandre Lalande
- CIRI (Centre International de Recherche en Infectiologie), Team Neuro-Invasion, TROpism and VIRal Encephalitis, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Cyrille Mathieu
- CIRI (Centre International de Recherche en Infectiologie), Team Neuro-Invasion, TROpism and VIRal Encephalitis, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Philip Lawrence
- CONFLUENCE: Sciences et Humanités (EA 1598), Université Catholique de Lyon (UCLy), 69002 Lyon, France
- Correspondence:
| |
Collapse
|
21
|
Abstract
Zoonoses are diseases and infections naturally transmitted between humans and vertebrate animals. Over the years, zoonoses have become increasingly significant threats to global health. They form the dominant group of diseases among the emerging infectious diseases (EID) and currently account for 73% of EID. Approximately 25% of zoonoses originate in domestic animals. The etiological agents of zoonoses include different pathogens, with viruses accounting for approximately 30% of all zoonotic infections. Zoonotic diseases can be transmitted directly or indirectly, by contact, via aerosols, through a vector, or vertically in utero. Zoonotic diseases are found in every continent except Antarctica. Numerous factors associated with the pathogen, human activities, and the environment play significant roles in the transmission and emergence of zoonotic diseases. Effective response and control of zoonotic diseases call for multiple-sector involvement and collaboration according to the One Health concept.
Collapse
Affiliation(s)
- Oyewale Tomori
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Nigeria; ,
| | - Daniel O Oluwayelu
- Department of Veterinary Microbiology and Centre for Control and Prevention of Zoonoses, University of Ibadan, Ibadan, Oyo State, Nigeria; ,
| |
Collapse
|
22
|
Rangacharya O, Parab A, Adkine S, Nagargoje R. A study on the design of an in silico self-amplifying mRNA vaccine against Nipah virus using immunoinformatics. J Biomol Struct Dyn 2023; 41:12777-12788. [PMID: 36744525 DOI: 10.1080/07391102.2023.2175256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/06/2023] [Indexed: 02/07/2023]
Abstract
The scientific community continues to be impressed with RNA-based vaccines with great efficacy, quick synthesis and speed-to-market. The traditional vaccine may require large doses or repeat injections to achieve an expression for protection against the virus; the self-amplifying mRNA vaccine addresses this limitation. Therefore, a thorough examination of the most antigenic component of the Nipah virus was carried out to design the coding sequence of an antigen, which will provoke a virus-specific immune response. After that, we predicted and evaluated epitopes from NiV G-protein. We employed 8 HTL, 2 CTL and 3 B-cell epitopes. The study of structural compatibility was done by performing docking between HLA alleles and epitopes to get insights into the immune response of epitopes. The entire peptide coding sequence of an antigen was linked using a linker to design the structure of the vaccine. Physicochemical parameters of the designed vaccine constructs were assessed using a protparam server. Later, the vaccine sequence was converted into cDNA. We inserted a gene-expressing replicase at the start of a coding sequence for self-amplification. Next, to formulate the final version of vaccine signal sequences were added. Based on these findings, this mRNA vaccine appears to be a promising option against the Nipah virus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Om Rangacharya
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| | - Avanti Parab
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| | - Shrikant Adkine
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| | - Rahul Nagargoje
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| |
Collapse
|
23
|
Elvert M, Sauerhering L, Heiner A, Maisner A. Isolation of Primary Porcine Bronchial Epithelial Cells for Nipah Virus Infections. Methods Mol Biol 2023; 2682:103-120. [PMID: 37610577 DOI: 10.1007/978-1-0716-3283-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The Malaysian strain of Nipah virus (NiV) first emerged in 1998/99 and caused a major disease outbreak in pigs and humans. While humans developed fatal encephalitis due to a prominent infection of brain microvessels, NiV-infected pigs mostly suffered from an acute respiratory disease and efficiently spread the infection via airway secretions. To elucidate the molecular basis of the highly productive NiV replication in porcine airways in vitro, physiologically relevant cell models that have maintained functional characteristics of airway epithelia in vivo are needed. Here, we describe in detail the method of isolating bronchial epithelial cells (PBEpC) from pig lungs that can be used for NiV infection studies. After the dissection of primary bronchia and removal of the mucus and protease digestion, bronchi segments are cut open and epithelial cells are scraped off and seeded on collagen-coated cell culture flasks. With this method, it is possible to isolate about 2 × 106 primary cells from the primary bronchi of one pig lung which can be cryopreserved or further subcultured. PBEpC form polarized monolayers on Transwell membrane inserts as controlled by immunostainings of epithelial marker proteins. NiV infection causes rapid formation of syncytia, allowing productive NiV infections in living PBEpC cultures to be monitored by phase-contrast microscopy.
Collapse
Affiliation(s)
- Mareike Elvert
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Lucie Sauerhering
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | | | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
24
|
Bruno L, Nappo MA, Ferrari L, Di Lecce R, Guarnieri C, Cantoni AM, Corradi A. Nipah Virus Disease: Epidemiological, Clinical, Diagnostic and Legislative Aspects of This Unpredictable Emerging Zoonosis. Animals (Basel) 2022; 13:ani13010159. [PMID: 36611767 PMCID: PMC9817766 DOI: 10.3390/ani13010159] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nipah virus (NiV) infection is a viral disease caused by a Henipavirus, belonging to the Paramyxoviridae family, responsible for a zoonosis. The course of the disease can be very serious and lead to death. NiV natural hosts are fruit bats (also known as megabats) belonging to the Pteropodidae family, especially those of the Pteropus genus. Natural infection in domestic animals has been described in farming pigs, horses, domestic and feral dogs and cats. Natural NiV transmission is possible intra-species (pig-to-pig, human-to-human) and inter-species (flying bat-to-human, pig-to-human, horse-to-human). The infection can be spread by humans or animals in different ways. It is peculiar how the viral transmission modes among different hosts also change depending on the geographical area for different reasons, including different breeding methods, eating habits and the recently identified genetic traits/molecular features of main virus proteins related to virulence. Outbreaks have been described in Malaysia, Singapore, Bangladesh, India and the Philippines with, in some cases, severe respiratory and neurological disease and high mortality in both humans and pigs. Diagnosis can be made using different methods including serological, molecular, virological and immunohistochemical methods. The cornerstones for control of the disease are biosecurity (via the correct management of reservoir and intermediate/amplifying hosts) and potential vaccines which are still under development. However, the evaluation of the potential influence of climate and anthropogenic changes on the NiV reservoir bats and their habitat as well as on disease spread and inter-specific infections is of great importance. Bats, as natural reservoirs of the virus, are responsible for the viral spread and, therefore, for the outbreaks of the disease in humans and animals. Due to the worldwide distribution of bats, potential new reports and spillovers are not to be dismissed in the future.
Collapse
Affiliation(s)
- Luigi Bruno
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, 80053 Castellammare di Stabia, Italy
- Correspondence: (L.B.); (L.F.)
| | - Maria Anna Nappo
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, 80053 Castellammare di Stabia, Italy
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
- Correspondence: (L.B.); (L.F.)
| | - Rosanna Di Lecce
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Chiara Guarnieri
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Anna Maria Cantoni
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Attilio Corradi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| |
Collapse
|
25
|
Satter SM, Nazneen A, Aquib WR, Sultana S, Rahman MZ, Klena JD, Montgomery JM, Shirin T. Vertical Transfer of Humoral Immunity against Nipah Virus: A Novel Evidence from Bangladesh. Trop Med Infect Dis 2022; 8:16. [PMID: 36668923 PMCID: PMC9866109 DOI: 10.3390/tropicalmed8010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
A major obstacle to in-depth investigation of the immune response against Nipah virus (NiV) infection is its rapid progression and high mortality rate. This paper described novel information on the vertical transfer of immune properties. In January 2020, a female aged below five years and her mother from Faridpur district of Bangladesh were infected. Both had a history of raw date palm sap consumption and were diagnosed as confirmed NiV cases. The daughter passed away, and the mother survived with significant residual neurological impairment. She conceived one and a half year later and was under thorough antenatal follow-up by the surveillance authority. A healthy male baby was born. As part of routine survivor follow-up, specimens were collected from the newborn and tested for NiV infection at the reference laboratory to exclude vertical transmission. Although testing negative for anti-Nipah IgM and PCR for NiV, a high titre of anti-Nipah IgG was observed. The transfer of humoral immunity against NiV from mother to neonate was confirmed for the first time. The article will serve as a reference for further exploration regarding NiV-specific antibodies that are transferred through the placenta, their potential to protect newborns, and how this may influence vaccine recommendations.
Collapse
Affiliation(s)
- Syed Moinuddin Satter
- Programme for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Arifa Nazneen
- Programme for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Wasik Rahman Aquib
- Programme for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Sharmin Sultana
- Institute of Epidemiology, Disease Control & Research, 44 Mohakhali, Dhaka 1212, Bangladesh
| | - Mohammed Ziaur Rahman
- Programme for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - John D. Klena
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control & Research, 44 Mohakhali, Dhaka 1212, Bangladesh
| |
Collapse
|
26
|
Gazal S, Sharma N, Gazal S, Tikoo M, Shikha D, Badroo GA, Rashid M, Lee SJ. Nipah and Hendra Viruses: Deadly Zoonotic Paramyxoviruses with the Potential to Cause the Next Pandemic. Pathogens 2022; 11:pathogens11121419. [PMID: 36558753 PMCID: PMC9784551 DOI: 10.3390/pathogens11121419] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Nipah and Hendra viruses are deadly zoonotic paramyxoviruses with a case fatality rate of upto 75%. The viruses belong to the genus henipavirus in the family Paramyxoviridae, a family of negative-sense single-stranded RNA viruses. The natural reservoirs of NiV and HeV are bats (flying foxes) in which the virus infection is asymptomatic. The intermediate hosts for NiV and HeV are swine and equine, respectively. In humans, NiV infections result in severe and often fatal respiratory and neurological manifestations. The Nipah virus was first identified in Malaysia and Singapore following an outbreak of encephalitis in pig farmers and subsequent outbreaks have been reported in Bangladesh and India almost every year. Due to its extreme pathogenicity, pandemic potential, and lack of established antiviral therapeutics and vaccines, research on henipaviruses is highly warranted so as to develop antivirals or vaccines that could aid in the prevention and control of future outbreaks.
Collapse
Affiliation(s)
- Sabahat Gazal
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
- Correspondence: (N.S.); (S.-J.L.)
| | - Sundus Gazal
- Division of Veterinary Microbiology, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Science University, Ludhiana 141004, Punjab, India
| | - Mehak Tikoo
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
| | - Deep Shikha
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
| | - Gulzar Ahmed Badroo
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
| | - Mohd Rashid
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
| | - Sung-Jin Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Correspondence: (N.S.); (S.-J.L.)
| |
Collapse
|
27
|
Leifels M, Khalilur Rahman O, Sam IC, Cheng D, Chua FJD, Nainani D, Kim SY, Ng WJ, Kwok WC, Sirikanchana K, Wuertz S, Thompson J, Chan YF. The one health perspective to improve environmental surveillance of zoonotic viruses: lessons from COVID-19 and outlook beyond. ISME COMMUNICATIONS 2022; 2:107. [PMID: 36338866 PMCID: PMC9618154 DOI: 10.1038/s43705-022-00191-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
The human population has doubled in the last 50 years from about 3.7 billion to approximately 7.8 billion. With this rapid expansion, more people live in close contact with wildlife, livestock, and pets, which in turn creates increasing opportunities for zoonotic diseases to pass between animals and people. At present an estimated 75% of all emerging virus-associated infectious diseases possess a zoonotic origin, and outbreaks of Zika, Ebola and COVID-19 in the past decade showed their huge disruptive potential on the global economy. Here, we describe how One Health inspired environmental surveillance campaigns have emerged as the preferred tools to monitor human-adjacent environments for known and yet to be discovered infectious diseases, and how they can complement classical clinical diagnostics. We highlight the importance of environmental factors concerning interactions between animals, pathogens and/or humans that drive the emergence of zoonoses, and the methodologies currently proposed to monitor them-the surveillance of wastewater, for example, was identified as one of the main tools to assess the spread of SARS-CoV-2 by public health professionals and policy makers during the COVID-19 pandemic. One-Health driven approaches that facilitate surveillance, thus harbour the potential of preparing humanity for future pandemics caused by aetiological agents with environmental reservoirs. Via the example of COVID-19 and other viral diseases, we propose that wastewater surveillance is a useful complement to clinical diagnosis as it is centralized, robust, cost-effective, and relatively easy to implement.
Collapse
Affiliation(s)
- Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Omar Khalilur Rahman
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medical Microbiology, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Dan Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Feng Jun Desmond Chua
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Dhiraj Nainani
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Se Yeon Kim
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wei Jie Ng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wee Chiew Kwok
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Centre of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | - Janelle Thompson
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Gao Z, Li T, Han J, Feng S, Li L, Jiang Y, Xu Z, Hao P, Chen J, Hao J, Xu P, Tian M, Jin N, Huang W, Li C. Assessment of the immunogenicity and protection of a Nipah virus soluble G vaccine candidate in mice and pigs. Front Microbiol 2022; 13:1031523. [PMID: 36274696 PMCID: PMC9583134 DOI: 10.3389/fmicb.2022.1031523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Nipah virus (NiV) is a newly emerged extremely dangerous zoonotic pathogen highly fatal to humans. Currently, no approved vaccine is available against NiV. This study employed a mammalian eukaryotic system to express NiV soluble G glycoprotein (NiV-sG), using CpG oligodeoxynucleotides (CpG)/Aluminum salt (Alum) as adjuvants to obtain a recombinant subunit vaccine candidate. We also evaluated the immunogenicity and efficacy of the protein in mice and pigs. The results showed that humoral and cellular immune responses were induced in all the vaccination groups in two animal models. The levels of specific and neutralizing antibodies and the proliferation levels of T helper(Th) cells were significantly higher than those in the control group. The protective efficacy of the subunit vaccines evaluated in the pseudovirus in vivo infection mouse model strongly suggested that this vaccine could provide protective immunity against NiV. A neoadjuvant (HTa) based on liposomes and cholera toxin combined with CpG/Alum was exploited and evaluated in mice. The neoadjuvant group showed a more protective efficacy than the CpG/Alum group. The aforementioned results indicated that the subunit vaccine could be used as a promising candidate vaccine for preventing Nipah virus infection.
Collapse
Affiliation(s)
- Zihan Gao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tao Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Jicheng Han
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Sheng Feng
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuhang Jiang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhiqiang Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jing Chen
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jiayi Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peng Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Mingyao Tian
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Ningyi Jin,
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
- Weijin Huang,
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
- Chang Li,
| |
Collapse
|
29
|
Meza DK, Mollentze N, Broos A, Tello C, Valderrama W, Recuenco S, Carrera JE, Shiva C, Falcon N, Viana M, Streicker DG. Ecological determinants of rabies virus dynamics in vampire bats and spillover to livestock. Proc Biol Sci 2022; 289:20220860. [PMID: 36069012 PMCID: PMC9449476 DOI: 10.1098/rspb.2022.0860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
The pathogen transmission dynamics in bat reservoirs underpin efforts to reduce risks to human health and enhance bat conservation, but are notoriously challenging to resolve. For vampire bat rabies, the geographical scale of enzootic cycles, whether environmental factors modulate baseline risk, and how within-host processes affect population-level dynamics remain unresolved. We studied patterns of rabies exposure using an 11-year, spatially replicated sero-survey of 3709 Peruvian vampire bats and co-occurring outbreaks in livestock. Seroprevalence was correlated among nearby sites but fluctuated asynchronously at larger distances. A generalized additive mixed model confirmed spatially compartmentalized transmission cycles, but no effects of bat demography or environmental context on seroprevalence. Among 427 recaptured bats, we observed long-term survival following rabies exposure and antibody waning, supporting hypotheses that immunological mechanisms influence viral maintenance. Finally, seroprevalence in bats was only weakly correlated with outbreaks in livestock, reinforcing the challenge of spillover prediction even with extensive data. Together our results suggest that rabies maintenance requires transmission among multiple, nearby bat colonies which may be facilitated by waning of protective immunity. However, the likelihood of incursions and dynamics of transmission within bat colonies appear largely independent of bat ecology. The implications of these results for spillover anticipation and controlling transmission at the source are discussed.
Collapse
Affiliation(s)
- Diana K. Meza
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Nardus Mollentze
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Alice Broos
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Carlos Tello
- ILLARIY (Asociación para el Desarrollo y Conservación de los Recursos Naturales), Lima, Perú
- Yunkawasi, Lima, Perú
| | - William Valderrama
- ILLARIY (Asociación para el Desarrollo y Conservación de los Recursos Naturales), Lima, Perú
- Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Sergio Recuenco
- Facultad de Medicina San Fernando, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Jorge E. Carrera
- Departamento de Mastozoología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Perú
- Programa de Conservación de Murciélagos de Perú, Perú
| | - Carlos Shiva
- Universidad Peruana Cayetano Heredia, Lima, Perú
| | | | - Mafalda Viana
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Daniel G. Streicker
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
30
|
Mahfuz A, Khan MA, Sajib EH, Deb A, Mahmud S, Hasan M, Saha O, Islam A, Rahaman MM. Designing potential siRNA molecules for silencing the gene of the nucleocapsid protein of Nipah virus: A computational investigation. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105310. [PMID: 35636695 DOI: 10.1016/j.meegid.2022.105310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Nipah virus (NiV), a zoonotic virus, engenders severe infections with noticeable complications and deaths in humans and animals. Since its emergence, it is frightening, this virus has been causing regular outbreaks in various countries, particularly in Bangladesh, India, and Malaysia. Unfortunately, no efficient vaccine or drug is available now to combat this baneful virus. NiV employs its nucleocapsid protein for genetic material packaging, which is crucial for viral replication inside the host cells. The small interfering RNAs (siRNAs) can play a central role in inhibiting the expression of disease-causing viral genes by hybridization and subsequent inactivation of the complementary target viral mRNAs through the RNA interference (RNAi) pathway. Therefore, potential siRNAs as molecular therapeutics against the nucleocapsid protein gene of NiV were designed in this study. First, ten prospective siRNAs were identified using the conserved nucleocapsid gene sequences among all available NiV strains collected from various countries. After that, off-target binding, GC (guanine-cytosine) content, secondary structure, binding affinity with the target, melting temperature, efficacy analysis, and binding capacity with the human argonaute protein 2 (AGO2) of these siRNAs were evaluated to predict their suitability. These designed siRNA molecules bear promise in silencing the NiV gene encoding the nucleocapsid protein and thus can alleviate the severity of this dangerous virus. Further in vivo experiments are recommended before using these designed siRNAs as alternative and effective molecular therapeutic agents against NiV.
Collapse
Affiliation(s)
- Amub Mahfuz
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Md Arif Khan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh; Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh.
| | - Emran Hossain Sajib
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Anamika Deb
- Department of Pharmaceuticals and Industrial Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Shafi Mahmud
- Microbiology Laboratory, Bioinformatics Division, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mahmudul Hasan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh; Department of Pharmaceuticals and Industrial Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Otun Saha
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Ariful Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh; EcoHealth Alliance, New York, NY 10018, USA
| | | |
Collapse
|
31
|
Lerch A, Ten Bosch QA, L'Azou Jackson M, Bettis AA, Bernuzzi M, Murphy GAV, Tran QM, Huber JH, Siraj AS, Bron GM, Elliott M, Hartlage CS, Koh S, Strimbu K, Walters M, Perkins TA, Moore SM. Projecting vaccine demand and impact for emerging zoonotic pathogens. BMC Med 2022; 20:202. [PMID: 35705986 PMCID: PMC9200440 DOI: 10.1186/s12916-022-02405-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite large outbreaks in humans seeming improbable for a number of zoonotic pathogens, several pose a concern due to their epidemiological characteristics and evolutionary potential. To enable effective responses to these pathogens in the event that they undergo future emergence, the Coalition for Epidemic Preparedness Innovations is advancing the development of vaccines for several pathogens prioritized by the World Health Organization. A major challenge in this pursuit is anticipating demand for a vaccine stockpile to support outbreak response. METHODS We developed a modeling framework for outbreak response for emerging zoonoses under three reactive vaccination strategies to assess sustainable vaccine manufacturing needs, vaccine stockpile requirements, and the potential impact of the outbreak response. This framework incorporates geographically variable zoonotic spillover rates, human-to-human transmission, and the implementation of reactive vaccination campaigns in response to disease outbreaks. As proof of concept, we applied the framework to four priority pathogens: Lassa virus, Nipah virus, MERS coronavirus, and Rift Valley virus. RESULTS Annual vaccine regimen requirements for a population-wide strategy ranged from > 670,000 (95% prediction interval 0-3,630,000) regimens for Lassa virus to 1,190,000 (95% PrI 0-8,480,000) regimens for Rift Valley fever virus, while the regimens required for ring vaccination or targeting healthcare workers (HCWs) were several orders of magnitude lower (between 1/25 and 1/700) than those required by a population-wide strategy. For each pathogen and vaccination strategy, reactive vaccination typically prevented fewer than 10% of cases, because of their presently low R0 values. Targeting HCWs had a higher per-regimen impact than population-wide vaccination. CONCLUSIONS Our framework provides a flexible methodology for estimating vaccine stockpile needs and the geographic distribution of demand under a range of outbreak response scenarios. Uncertainties in our model estimates highlight several knowledge gaps that need to be addressed to target vulnerable populations more accurately. These include surveillance gaps that mask the true geographic distribution of each pathogen, details of key routes of spillover from animal reservoirs to humans, and the role of human-to-human transmission outside of healthcare settings. In addition, our estimates are based on the current epidemiology of each pathogen, but pathogen evolution could alter vaccine stockpile requirements.
Collapse
Affiliation(s)
- Anita Lerch
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Quirine A Ten Bosch
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Alison A Bettis
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Mauro Bernuzzi
- Coalition for Epidemic Preparedness Innovations (CEPI), London, UK
| | | | - Quan M Tran
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - John H Huber
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Amir S Siraj
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Gebbiena M Bron
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Margaret Elliott
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Carson S Hartlage
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Sojung Koh
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Kathyrn Strimbu
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Magdalene Walters
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - T Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.
| | - Sean M Moore
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
32
|
Liew YJM, Ibrahim PAS, Ong HM, Chong CN, Tan CT, Schee JP, Gómez Román R, Cherian NG, Wong WF, Chang LY. The Immunobiology of Nipah Virus. Microorganisms 2022; 10:microorganisms10061162. [PMID: 35744680 PMCID: PMC9228579 DOI: 10.3390/microorganisms10061162] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/23/2022] Open
Abstract
Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that emerged in Malaysia in 1998. It is a human pathogen capable of causing severe respiratory infection and encephalitis. The natural reservoir of NiV, Pteropus fruit bats, remains a continuous virus source for future outbreaks, although infection in the bats is largely asymptomatic. NiV provokes serious disease in various mammalian species. In the recent human NiV outbreaks in Bangladesh and India, both bats-to-human and human-to-human transmissions have been observed. NiV has been demonstrated to interfere with the innate immune response via interferon type I signaling, promoting viral dissemination and preventing antiviral response. Studies of humoral immunity in infected NiV patients and animal models have shown that NiV-specific antibodies were produced upon infection and were protective. Studies on cellular immunity response to NiV infection in human and animal models also found that the adaptive immune response, specifically CD4+ and CD8+ T cells, was stimulated upon NiV infection. The experimental vaccines and therapeutic strategies developed have provided insights into the immunological requirements for the development of successful medical countermeasures against NiV. This review summarizes the current understanding of NiV pathogenesis and innate and adaptive immune responses induced upon infection.
Collapse
Affiliation(s)
- Yvonne Jing Mei Liew
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
- Deputy Vice Chancellor’s Office (Research & Innovation), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Puteri Ainaa S. Ibrahim
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Hui Ming Ong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Chee Ning Chong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Chong Tin Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.T.T.); (J.P.S.)
| | - Jie Ping Schee
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.T.T.); (J.P.S.)
| | - Raúl Gómez Román
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovation (CEPI), Askekroken 11, 0277 Oslo, Norway; (R.G.R.); (N.G.C.)
| | - Neil George Cherian
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovation (CEPI), Askekroken 11, 0277 Oslo, Norway; (R.G.R.); (N.G.C.)
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
- Correspondence:
| |
Collapse
|
33
|
Chaiyes A, Duengkae P, Suksavate W, Pongpattananurak N, Wacharapluesadee S, Olival KJ, Srikulnath K, Pattanakiat S, Hemachudha T. Mapping Risk of Nipah Virus Transmission from Bats to Humans in Thailand. ECOHEALTH 2022; 19:175-189. [PMID: 35657574 PMCID: PMC10116436 DOI: 10.1007/s10393-022-01588-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Nipah virus (NiV) is a zoonotic virus that can pose a serious threat to human and livestock health. Old-world fruit bats (Pteropus spp.) are the natural reservoir hosts for NiV, and Pteropus lylei, Lyle's flying fox, is an important host of NiV in mainland Southeast Asia. NiV can be transmitted from bats to humans directly via bat-contaminated foods (i.e., date palm sap or fruit) or indirectly via livestock or other intermediate animal hosts. Here we construct risk maps for NiV spillover and transmission by combining ecological niche models for the P. lylei bat reservoir with other spatial data related to direct or indirect NiV transmission (livestock density, foodborne sources including fruit production, and human population). We predict the current and future (2050 and 2070) distribution of P. lylei across Thailand, Cambodia, and Vietnam. Our best-fit model predicted that central and western regions of Thailand and small areas in Cambodia are currently the most suitable habitats for P. lylei. However, due to climate change, the species range is predicted to expand to include lower northern, northeastern, eastern, and upper southern Thailand and almost all of Cambodia and lower southern Vietnam. This expansion will create additional risk areas for human infection from P. lylei in Thailand. Our combined predictive risk maps showed that central Thailand, inhabited by 2.3 million people, is considered highly suitable for the zoonotic transmission of NiV from P. lylei. These current and future NiV transmission risk maps can be used to prioritize sites for active virus surveillance and developing awareness and prevention programs to reduce the risk of NiV spillover and spread in Thailand.
Collapse
Affiliation(s)
- Aingorn Chaiyes
- School of Agricultural and Cooperatives, Sukhothai Thammathirat Open University, Nonthaburi, 11120, Thailand
| | - Prateep Duengkae
- Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
| | - Warong Suksavate
- Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Nantachai Pongpattananurak
- Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Supaporn Wacharapluesadee
- King Chulalongkorn Memorial Hospital Faculty of Medicine, Thai Red Cross Emerging Infectious Diseases - Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
| | | | - Kornsorn Srikulnath
- Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Sura Pattanakiat
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Thiravat Hemachudha
- King Chulalongkorn Memorial Hospital Faculty of Medicine, Thai Red Cross Emerging Infectious Diseases - Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
| |
Collapse
|
34
|
Lawrence P, Escudero-Pérez B. Henipavirus Immune Evasion and Pathogenesis Mechanisms: Lessons Learnt from Natural Infection and Animal Models. Viruses 2022; 14:v14050936. [PMID: 35632678 PMCID: PMC9146692 DOI: 10.3390/v14050936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Nipah henipavirus (NiV) and Hendra henipavirus (HeV) are zoonotic emerging paramyxoviruses causing severe disease outbreaks in humans and livestock, mostly in Australia, India, Malaysia, Singapore and Bangladesh. Both are bat-borne viruses and in humans, their mortality rates can reach 60% in the case of HeV and 92% for NiV, thus being two of the deadliest viruses known for humans. Several factors, including a large cellular tropism and a wide zoonotic potential, con-tribute to their high pathogenicity. This review provides an overview of HeV and NiV pathogenicity mechanisms and provides a summary of their interactions with the immune systems of their different host species, including their natural hosts bats, spillover-hosts pigs, horses, and humans, as well as in experimental animal models. A better understanding of the interactions between henipaviruses and their hosts could facilitate the development of new therapeutic strategies and vaccine measures against these re-emerging viruses.
Collapse
Affiliation(s)
- Philip Lawrence
- Science and Humanities Confluence Research Centre (EA 1598), Catholic University of Lyon (UCLy), 69002 Lyon, France
- Correspondence: (P.L.); (B.E.-P.)
| | - Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, 38124 Braunschweig, Germany
- Correspondence: (P.L.); (B.E.-P.)
| |
Collapse
|
35
|
Bolatti EM, Viarengo G, Zorec TM, Cerri A, Montani ME, Hosnjak L, Casal PE, Bortolotto E, Di Domenica V, Chouhy D, Allasia MB, Barquez RM, Poljak M, Giri AA. Viral Metagenomic Data Analyses of Five New World Bat Species from Argentina: Identification of 35 Novel DNA Viruses. Microorganisms 2022; 10:microorganisms10020266. [PMID: 35208721 PMCID: PMC8880087 DOI: 10.3390/microorganisms10020266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/18/2022] Open
Abstract
Bats are natural reservoirs of a variety of zoonotic viruses, many of which cause severe human diseases. Characterizing viruses of bats inhabiting different geographical regions is important for understanding their viral diversity and for detecting viral spillovers between animal species. Herein, the diversity of DNA viruses of five arthropodophagous bat species from Argentina was investigated using metagenomics. Fecal samples of 29 individuals from five species (Tadarida brasiliensis, Molossus molossus, Eumops bonariensis, Eumops patagonicus, and Eptesicus diminutus) living at two different geographical locations, were investigated. Enriched viral DNA was sequenced using Illumina MiSeq, and the reads were trimmed and filtered using several bioinformatic approaches. The resulting nucleotide sequences were subjected to viral taxonomic classification. In total, 4,520,370 read pairs were sequestered by sequencing, and 21.1% of them mapped to viral taxa. Circoviridae and Genomoviridae were the most prevalent among vertebrate viral families in all bat species included in this study. Samples from the T. brasiliensis colony exhibited lower viral diversity than samples from other species of New World bats. We characterized 35 complete genome sequences of novel viruses. These findings provide new insights into the global diversity of bat viruses in poorly studied species, contributing to prevention of emerging zoonotic diseases and to conservation policies for endangered species.
Collapse
Affiliation(s)
- Elisa M. Bolatti
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina; (E.M.B.); (A.C.); (D.C.)
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
| | - Gastón Viarengo
- DETx MOL S.A., Centro Científico Tecnológico CONICET Rosario, Ocampo y Esmeralda, Rosario 2000, Argentina;
| | - Tomaz M. Zorec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia; (T.M.Z.); (L.H.)
| | - Agustina Cerri
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina; (E.M.B.); (A.C.); (D.C.)
| | - María E. Montani
- Museo Provincial de Ciencias Naturales “Dr. Ángel Gallardo”, San Lorenzo 1949, Rosario 2000, Argentina;
- Programa de Conservación de los Murciélagos de Argentina, Miguel Lillo 251, San Miguel de Tucumán 4000, Argentina; (V.D.D.); (R.M.B.)
- Instituto PIDBA (Programa de Investigaciones de Biodiversidad Argentina), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán 4000, Argentina
| | - Lea Hosnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia; (T.M.Z.); (L.H.)
| | - Pablo E. Casal
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
| | - Eugenia Bortolotto
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina; (E.B.); (M.B.A.)
| | - Violeta Di Domenica
- Programa de Conservación de los Murciélagos de Argentina, Miguel Lillo 251, San Miguel de Tucumán 4000, Argentina; (V.D.D.); (R.M.B.)
| | - Diego Chouhy
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina; (E.M.B.); (A.C.); (D.C.)
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
- DETx MOL S.A., Centro Científico Tecnológico CONICET Rosario, Ocampo y Esmeralda, Rosario 2000, Argentina;
| | - María Belén Allasia
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina; (E.B.); (M.B.A.)
| | - Rubén M. Barquez
- Programa de Conservación de los Murciélagos de Argentina, Miguel Lillo 251, San Miguel de Tucumán 4000, Argentina; (V.D.D.); (R.M.B.)
- Instituto PIDBA (Programa de Investigaciones de Biodiversidad Argentina), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán 4000, Argentina
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia; (T.M.Z.); (L.H.)
- Correspondence: (M.P.); (A.A.G.); Tel.: +386-1-543-7454 (M.P.); +54-341-435-0661 (ext. 116) (A.A.G.); Fax: +54-341-439-0465 (A.A.G.)
| | - Adriana A. Giri
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina; (E.M.B.); (A.C.); (D.C.)
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
- Correspondence: (M.P.); (A.A.G.); Tel.: +386-1-543-7454 (M.P.); +54-341-435-0661 (ext. 116) (A.A.G.); Fax: +54-341-439-0465 (A.A.G.)
| |
Collapse
|
36
|
Ramsubramanian V, Guruprasad S, Prabha PK, Sridharan S, Kohli H, Wazil AWM, Bansal S. Endemic viral disease - Expert group opinion for solid organ transplant recipients in South Asia – Dengue, Chikungunya, Zika, Rabies, Japanese Encephalitis, and Nipah Virus. INDIAN JOURNAL OF TRANSPLANTATION 2022. [DOI: 10.4103/ijot.ijot_127_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
37
|
COVID-19 outbreak. CORONAVIRUS DRUG DISCOVERY 2022. [PMCID: PMC9217691 DOI: 10.1016/b978-0-323-85156-5.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Gabra MD, Ghaith HS, Ebada MA. Nipah Virus: An Updated Review and Emerging Challenges. Infect Disord Drug Targets 2022; 22:e170122200296. [PMID: 35078400 DOI: 10.2174/1871526522666220117120859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Many hospitals are teetering on the edge of being overwhelmed, with many already there because of the COVID-19 pandemic. Moreover, a recent report has also warned about the Nipah virus (NiV). NiV is a pleomorphic enveloped virus that belongs to the Paramyxoviridae family (genus Henipavirus); it affects both the respiratory and central nervous systems, with a fatality rate ranging from 40% to 75%, as documented by the World Health Organization. The first reported NiV outbreak was in early 1999 in Malaysia among people who contacted infected pigs. NiV also affected Bangladesh and India, where the main infection route was the consumption of raw date palm sap contaminated by bats. The World Health Organization has listed NiV as one of the emerging pathogens that can lead to severe outbreaks at any moment in the future with limited medical preparations and only a few projects in pharmaceutical firms. There is no licensed treatment for human use against NiV until now, and the management is limited to supportive care and symptomatic treatment. In severe cases with neurologic and respiratory complications, intensive care is needed. This article reviews the published literature and highlights the latest updates about this emerging pathogen and the methods to avoid the spread of this disease during this critical period.
Collapse
Affiliation(s)
| | | | - Mahmoud Ahmed Ebada
- Faculty of Medicine, Zagazig University, Zagazig, El-Sharkia, Egypt
- Internal Medicine Resident, Ministry of Health and Population of Egypt, Cairo, Egypt
- Department of Internal Medicine and Endocrinology, National Institute of Diabetes and Endocrinology (NIDE), Cairo, Egypt
| |
Collapse
|
39
|
Shi Y, El-Deeb IM, Masic V, Hartley-Tassell L, Maggioni A, Itzstein MV, Ve T. Discovery of Cofactor Competitive Inhibitors against the Human Methyltransferase Fibrillarin. Pharmaceuticals (Basel) 2021; 15:26. [PMID: 35056083 PMCID: PMC8779173 DOI: 10.3390/ph15010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
Abstract
Fibrillarin (FBL) is an essential and evolutionarily highly conserved S-adenosyl methionine (SAM) dependent methyltransferase. It is the catalytic component of a multiprotein complex that facilitates 2'-O-methylation of ribosomal RNAs (rRNAs), a modification essential for accurate and efficient protein synthesis in eukaryotic cells. It was recently established that human FBL (hFBL) is critical for Nipah, Hendra, and respiratory syncytial virus infections. In addition, overexpression of hFBL contributes towards tumorgenesis and is associated with poor survival in patients with breast cancer, suggesting that hFBL is a potential target for the development of both antiviral and anticancer drugs. An attractive strategy to target cofactor-dependent enzymes is the selective inhibition of cofactor binding, which has been successful for the development of inhibitors against several protein methyltransferases including PRMT5, DOT1L, and EZH2. In this work, we solved crystal structures of the methyltransferase domain of hFBL in apo form and in complex with the cofactor SAM. Screening of a fluorinated fragment library, via X-ray crystallography and 19F NMR spectroscopy, yielded seven hit compounds that competed with cofactor binding, two of which resulted in co-crystal structures. One of these structures revealed unexpected conformational variability in the cofactor binding site, which allows it to accommodate a compound significantly different from SAM. Our structural data provide critical information for the design of selective cofactor competitive inhibitors targeting hFBL, and preliminary elaboration of hit compounds has led to additional cofactor site binders.
Collapse
Affiliation(s)
- Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Ibrahim M El-Deeb
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Veronika Masic
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | | | - Andrea Maggioni
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| |
Collapse
|
40
|
Loomis RJ, DiPiazza AT, Falcone S, Ruckwardt TJ, Morabito KM, Abiona OM, Chang LA, Caringal RT, Presnyak V, Narayanan E, Tsybovsky Y, Nair D, Hutchinson GB, Stewart-Jones GBE, Kueltzo LA, Himansu S, Mascola JR, Carfi A, Graham BS. Chimeric Fusion (F) and Attachment (G) Glycoprotein Antigen Delivery by mRNA as a Candidate Nipah Vaccine. Front Immunol 2021; 12:772864. [PMID: 34956199 PMCID: PMC8692728 DOI: 10.3389/fimmu.2021.772864] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Nipah virus (NiV) represents a significant pandemic threat with zoonotic transmission from bats-to-humans with almost annual regional outbreaks characterized by documented human-to-human transmission and high fatality rates. Currently, no vaccine against NiV has been approved. Structure-based design and protein engineering principles were applied to stabilize the fusion (F) protein in its prefusion trimeric conformation (pre-F) to improve expression and increase immunogenicity. We covalently linked the stabilized pre-F through trimerization domains at the C-terminus to three attachment protein (G) monomers, forming a chimeric design. These studies detailed here focus on mRNA delivery of NiV immunogens in mice, assessment of mRNA immunogen-specific design elements and their effects on humoral and cellular immunogenicity. The pre-F/G chimera elicited a strong neutralizing antibody response and a superior NiV-specific Tfh and other effector T cell response compared to G alone across both the mRNA and protein platforms. These findings enabled final candidate selection of pre-F/G Fd for clinical development.
Collapse
Affiliation(s)
- Rebecca J. Loomis
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States,*Correspondence: Barney S. Graham, ; Rebecca J. Loomis,
| | - Anthony T. DiPiazza
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - Tracy J. Ruckwardt
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kaitlyn M. Morabito
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Olubukola M. Abiona
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lauren A. Chang
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ria T. Caringal
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | | | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Deepika Nair
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Geoffrey B. Hutchinson
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Guillaume B. E. Stewart-Jones
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lisa A. Kueltzo
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - John R. Mascola
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - Barney S. Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States,*Correspondence: Barney S. Graham, ; Rebecca J. Loomis,
| |
Collapse
|
41
|
Petrovan SO, Aldridge DC, Bartlett H, Bladon AJ, Booth H, Broad S, Broom DM, Burgess ND, Cleaveland S, Cunningham AA, Ferri M, Hinsley A, Hua F, Hughes AC, Jones K, Kelly M, Mayes G, Radakovic M, Ugwu CA, Uddin N, Veríssimo D, Walzer C, White TB, Wood JL, Sutherland WJ. Post COVID-19: a solution scan of options for preventing future zoonotic epidemics. Biol Rev Camb Philos Soc 2021. [PMID: 34231315 DOI: 10.17605/osf.io/5jx3g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
The crisis generated by the emergence and pandemic spread of COVID-19 has thrown into the global spotlight the dangers associated with novel diseases, as well as the key role of animals, especially wild animals, as potential sources of pathogens to humans. There is a widespread demand for a new relationship with wild and domestic animals, including suggested bans on hunting, wildlife trade, wet markets or consumption of wild animals. However, such policies risk ignoring essential elements of the problem as well as alienating and increasing hardship for local communities across the world, and might be unachievable at scale. There is thus a need for a more complex package of policy and practical responses. We undertook a solution scan to identify and collate 161 possible options for reducing the risks of further epidemic disease transmission from animals to humans, including potential further SARS-CoV-2 transmission (original or variants). We include all categories of animals in our responses (i.e. wildlife, captive, unmanaged/feral and domestic livestock and pets) and focus on pathogens (especially viruses) that, once transmitted from animals to humans, could acquire epidemic potential through high rates of human-to-human transmission. This excludes measures to prevent well-known zoonotic diseases, such as rabies, that cannot readily transmit between humans. We focused solutions on societal measures, excluding the development of vaccines and other preventive therapeutic medicine and veterinary medicine options that are discussed elsewhere. We derived our solutions through reading the scientific literature, NGO position papers, and industry guidelines, collating our own experiences, and consulting experts in different fields. Herein, we review the major zoonotic transmission pathways and present an extensive list of options. The potential solutions are organised according to the key stages of the trade chain and encompass solutions that can be applied at the local, regional and international scales. This is a set of options targeted at practitioners and policy makers to encourage careful examination of possible courses of action, validating their impact and documenting outcomes.
Collapse
Affiliation(s)
- Silviu O Petrovan
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, CB2 1RL, U.K
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - David C Aldridge
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, CB2 1RL, U.K
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - Harriet Bartlett
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, U.K
| | - Andrew J Bladon
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, CB2 1RL, U.K
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - Hollie Booth
- Interdisciplinary Centre for Conservation Science, Department of Zoology, University of Oxford, Oxford, OX1 3SZ, U.K
| | - Steven Broad
- TRAFFIC, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - Donald M Broom
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, CB2 1RL, U.K
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, U.K
| | - Neil D Burgess
- UNEP-WCMC, 219 Huntington Road, Cambridge, CB3 0DL, U.K
- GLOBE Institute, University of Copenhagen, Oester Voldgade 5-7, Copenhagen, 1350, Denmark
| | - Sarah Cleaveland
- Institute of Biodiversity, College of Medical, Veterinary and Life Sciences, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, U.K
| | | | - Maurizio Ferri
- Italian Society of Preventive Veterinary Medicine (Simevep), Via Nizza 11, Rome, 00198, Italy
| | - Amy Hinsley
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, OX1 3SZ, U.K
| | - Fangyuan Hua
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, P.R. China
| | - Alice C Hughes
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, Yunnan, 666303, P.R. China
| | - Kate Jones
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Moira Kelly
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium
| | - George Mayes
- MacArthur Barstow & Gibbs Veterinary Surgeons, 36 Hanbury Road, Droitwich, WR9 8PW, U.K
| | - Milorad Radakovic
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, U.K
| | - Chinedu A Ugwu
- Africa Centre of Excellence for Genomics of Infectious Disease, Redeemers' University Ede, Osun State, Nigeria
| | - Nasir Uddin
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, Yunnan, 666303, P.R. China
| | - Diogo Veríssimo
- Interdisciplinary Centre for Conservation Science, Department of Zoology, University of Oxford, Oxford, OX1 3SZ, U.K
- Institute for Conservation Research, San Diego Zoo Global, Escondido, CA, 92027, U.S.A
| | - Christian Walzer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, Vienna, A-1160, Austria
- Wildlife Conservation Society, 2300 Southern Blvd., Bronx, NY, U.S.A
| | - Thomas B White
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - James L Wood
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, U.K
| | - William J Sutherland
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, CB2 1RL, U.K
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| |
Collapse
|
42
|
Durrance-Bagale A, Rudge JW, Singh NB, Belmain SR, Howard N. Drivers of zoonotic disease risk in the Indian subcontinent: A scoping review. One Health 2021; 13:100310. [PMID: 34458546 PMCID: PMC8379342 DOI: 10.1016/j.onehlt.2021.100310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Literature on potential anthropogenic drivers of zoonotic disease risk in the Indian subcontinent is sparse. We conducted a scoping review to identify primary sources, published 2000-2020, to clarify what research exists and on which areas future research should focus. We summarised findings thematically by disease. Of 80 sources included, 78 (98%) were original research articles and two were conference abstracts. Study designs and methods were not always clearly described, but 74 (93%) were quantitative (including one randomised trial), five (6%) were mixed-methods, and one was qualitative. Most sources reported research from India (39%) or Bangladesh (31%), followed by Pakistan (9%), Nepal (9%), Bhutan and Sri Lanka (6% each). Topically, most focused on rabies (18; 23%), Nipah virus (16; 20%) or leptospirosis (11; 14%), while 12 (15%) did not focus on a disease but instead on knowledge in communities. People generally did not seek post-exposure prophylaxis for rabies even when vaccination programmes were available and they understood that rabies was fatal, instead often relying on traditional medicines. Similarly, people did not take precautions to protect themselves from leptospirosis infection, even when they were aware of the link with rice cultivation. Nipah was correlated with presence of bats near human habitation. Official information on diseases, modes of transmission and prevention was lacking, or shared informally between friends, relatives, and neighbours. Behaviour did not correspond to disease knowledge. This review identifies various human behaviours which may drive zoonotic disease risk in the Indian subcontinent. Increasing community knowledge and awareness alone is unlikely to be sufficient to successfully change these behaviours. Further research, using interdisciplinary and participatory methods, would improve understanding of risks and risk perceptions and thus help in co-designing context-specific, relevant interventions.
Collapse
Affiliation(s)
- Anna Durrance-Bagale
- London School of Hygiene and Tropical Medicine, Department of Global Health and Development, 15-17 Tavistock Place, London WC1H 9SH, United Kingdom
| | - James W. Rudge
- London School of Hygiene and Tropical Medicine, Department of Global Health and Development, 15-17 Tavistock Place, London WC1H 9SH, United Kingdom
- Mahidol University, Faculty of Public Health, 420/1 Rajvithi Road, Bangkok, Thailand
| | - Nanda Bahadur Singh
- Tribhuvan University, Central Department of Zoology, Kathmandu, Nepal
- Mid-Western University, Surkhet, Nepal
| | - Steven R. Belmain
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Natasha Howard
- London School of Hygiene and Tropical Medicine, Department of Global Health and Development, 15-17 Tavistock Place, London WC1H 9SH, United Kingdom
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, Singapore
| |
Collapse
|
43
|
Glud HA, George S, Skovgaard K, Larsen LE. Zoonotic and reverse zoonotic transmission of viruses between humans and pigs. APMIS 2021; 129:675-693. [PMID: 34586648 PMCID: PMC9297979 DOI: 10.1111/apm.13178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/28/2021] [Indexed: 12/30/2022]
Abstract
Humans and pigs share a close contact relationship, similar biological traits, and one of the highest estimated number of viruses compared to other mammalian species. The contribution and directionality of viral exchange between humans and pigs remain unclear for some of these viruses, but their transmission routes are important to characterize in order to prevent outbreaks of disease in both host species. This review collects and assesses the evidence to determine the likely transmission route of 27 viruses between humans and pigs.
Collapse
Affiliation(s)
- Helena Aagaard Glud
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sophie George
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Martínez-Guerra R, Flores-Flores JP. An algorithm for the robust estimation of the COVID-19 pandemic's population by considering undetected individuals. APPLIED MATHEMATICS AND COMPUTATION 2021; 405:126273. [PMID: 33850338 PMCID: PMC8030733 DOI: 10.1016/j.amc.2021.126273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/19/2021] [Accepted: 04/05/2021] [Indexed: 05/16/2023]
Abstract
Due to the current COVID-19 pandemic, much effort has been put on studying the spread of infectious diseases to propose more adequate health politics. The most effective surveillance system consists of doing massive tests. Nonetheless, many countries cannot afford this class of health campaigns due to limited resources. Thus, a transmission model is a viable alternative to study the dynamics of the pandemic. The most used are the Susceptible, Infected and Removed type models (SIR). In this study, we tackle the population estimation problem of the A-SIR model, which takes into account asymptomatic or undetected individuals. By means of an algebraic differential approach, we design a model-free (no copy system) reduced-order estimation algorithm (observer) to determine the different non-measured population groups. We study two types of estimation algorithms: Proportional and Proportional-Integral. Both shown fast convergence speed, as well as a minimal estimation error. Additionally, we introduce random fluctuations in our analysis to represent changes in the external conditions and which result in poor measurements. The numerical results reveal that both model-free estimators are robust despite the presence of these fluctuations. As a point of reference, we apply the classical Luenberger type observer to our estimation problem and compare the results. Finally, we consider real data of infected individuals in Mexico City, reported from February 2020 to March 2021, and estimate the non-measured populations. Our work's main goal is to proportionate a simple and therefore, an accessible methodology to estimate the behavior of the COVID-19 pandemic from the available data, such that the competent authorities can propose more adequate health politics.
Collapse
Affiliation(s)
- Rafael Martínez-Guerra
- Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico
| | - Juan Pablo Flores-Flores
- Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico
| |
Collapse
|
45
|
Nikolay B, Ribeiro Dos Santos G, Lipsitch M, Rahman M, Luby SP, Salje H, Gurley ES, Cauchemez S. Assessing the feasibility of Nipah vaccine efficacy trials based on previous outbreaks in Bangladesh. Vaccine 2021; 39:5600-5606. [PMID: 34426025 DOI: 10.1016/j.vaccine.2021.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Nipah virus (NiV) is an emerging, bat-borne pathogen that can be transmitted from person-to-person. Vaccines are currently being developed for NiV, and studies have been funded to evaluate their safety and immunogenicity. An important unanswered question is whether it will be possible to evaluate the efficacy of vaccine candidates in phase III clinical trials in a context where spillovers from the zoonotic reservoir are infrequent and associated with small outbreaks. The objective of this study was to investigate the feasibility of conducting a phase III vaccine trial in Bangladesh, the only country regularly reporting NiV cases. METHODS We used simulations based on previously observed NiV cases from Bangladesh, an assumed vaccine efficacy of 90% and other NiV vaccine target characteristics, to compare three vaccination study designs: (i) cluster randomized ring vaccination, (ii) cluster randomized mass vaccination, and (iii) an observational case-control study design. RESULTS The simulations showed that, assuming a ramp-up period of 10 days and a mean hospitalization delay of 4 days,a cluster-randomized ring vaccination trial would require 516 years and over 163,000 vaccine doses to run a ring vaccination trial under current epidemic conditions. A cluster-randomized mass vaccination trial in the two most affected districts would take 43 years and 1.83 million vaccine doses. An observational case-control design in these two districts would require seven years and 2.5 million vaccine doses. DISCUSSION Without a change in the epidemiology of NiV, ring vaccination or mass vaccination trials are unlikely to be completed within a reasonable time window. In this light, the remaining options are: (i) not conducting a phase III trial until the epidemiology of NiV changes, (ii) identifying alternative ways to licensure such as observational studies or controlled studies in animals such as in the US Food and Drug Administration's (FDA) Animal Rule.
Collapse
Affiliation(s)
- Birgit Nikolay
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, 75015 Paris, France
| | | | - Marc Lipsitch
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Stephen P Luby
- Infectious Diseases and Geographic Medicine Division, Stanford University, Stanford, CA, USA
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, UK.
| | - Emily S Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, 75015 Paris, France
| |
Collapse
|
46
|
Jolma ER, Gibson L, Suu-Ire RD, Fleischer G, Asumah S, Languon S, Restif O, Wood JLN, Cunningham AA. Longitudinal Secretion of Paramyxovirus RNA in the Urine of Straw-Coloured Fruit Bats ( Eidolon helvum). Viruses 2021; 13:v13081654. [PMID: 34452518 PMCID: PMC8402643 DOI: 10.3390/v13081654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
The straw-coloured fruit bat (Eidolon helvum) is widespread in sub-Saharan Africa and is widely hunted for bushmeat. It is known to harbour a range of paramyxoviruses, including rubuloviruses and henipaviruses, but the zoonotic potential of these is unknown. We previously found a diversity of paramyxoviruses within a small, captive colony of E. helvum after it had been closed to contact with other bats for 5 years. In this study, we used under-roost urine collection to further investigate the paramyxovirus diversity and ecology in this colony, which had been closed to the outside for 10 years at the time of sampling. By sampling urine weekly throughout an entire year, we investigated possible seasonal patterns of shedding of virus or viral RNA. Using a generic paramyxovirus L-gene PCR, we detected eight distinct paramyxovirus RNA sequences. Six distinct sequences were detected using a Henipavirus-specific PCR that targeted a different region of the L-gene. Sequence detection had a bi-annual pattern, with the greatest peak in July, although different RNA sequences appeared to have different shedding patterns. No significant associations were detected between sequence detection and birthing season, environmental temperature or humidity, and no signs of illness were detected in any of the bats in the colony during the period of sample collection.
Collapse
Affiliation(s)
- Elli Rosa Jolma
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK;
- Royal Veterinary College, Hatfield, Hertfordshire AL9 7TA, UK
- Correspondence: (E.R.J.); (A.A.C.)
| | - Louise Gibson
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK;
| | - Richard D. Suu-Ire
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 25, Legon, Accra, Ghana; (R.D.S.-I.); (G.F.)
| | - Grace Fleischer
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 25, Legon, Accra, Ghana; (R.D.S.-I.); (G.F.)
| | - Samuel Asumah
- Wildlife Division of Forestry Commission, P.O. Box M 239, Accra, Ghana;
| | - Sylvester Languon
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra 00233, Ghana;
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (O.R.); (J.L.N.W.)
| | - James L. N. Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (O.R.); (J.L.N.W.)
| | - Andrew A. Cunningham
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK;
- Correspondence: (E.R.J.); (A.A.C.)
| |
Collapse
|
47
|
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are bat-borne zoonotic para-myxoviruses identified in the mid- to late 1990s in outbreaks of severe disease in livestock and people in Australia and Malaysia, respectively. HeV repeatedly re-emerges in Australia while NiV continues to cause outbreaks in South Asia (Bangladesh and India), and these viruses have remained transboundary threats. In people and several mammalian species, HeV and NiV infections present as a severe systemic and often fatal neurologic and/or respiratory disease. NiV stands out as a potential pandemic threat because of its associated high case-fatality rates and capacity for human-to-human transmission. The development of effective vaccines, suitable for people and livestock, against HeV and NiV has been a research focus. Here, we review the progress made in NiV and HeV vaccine development, with an emphasis on those approaches that have been tested in established animal challenge models of NiV and HeV infection and disease.
Collapse
Affiliation(s)
- Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA;
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA;
| |
Collapse
|
48
|
Petrovan SO, Aldridge DC, Bartlett H, Bladon AJ, Booth H, Broad S, Broom DM, Burgess ND, Cleaveland S, Cunningham AA, Ferri M, Hinsley A, Hua F, Hughes AC, Jones K, Kelly M, Mayes G, Radakovic M, Ugwu CA, Uddin N, Veríssimo D, Walzer C, White TB, Wood JL, Sutherland WJ. Post COVID-19: a solution scan of options for preventing future zoonotic epidemics. Biol Rev Camb Philos Soc 2021; 96:2694-2715. [PMID: 34231315 PMCID: PMC8444924 DOI: 10.1111/brv.12774] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022]
Abstract
The crisis generated by the emergence and pandemic spread of COVID-19 has thrown into the global spotlight the dangers associated with novel diseases, as well as the key role of animals, especially wild animals, as potential sources of pathogens to humans. There is a widespread demand for a new relationship with wild and domestic animals, including suggested bans on hunting, wildlife trade, wet markets or consumption of wild animals. However, such policies risk ignoring essential elements of the problem as well as alienating and increasing hardship for local communities across the world, and might be unachievable at scale. There is thus a need for a more complex package of policy and practical responses. We undertook a solution scan to identify and collate 161 possible options for reducing the risks of further epidemic disease transmission from animals to humans, including potential further SARS-CoV-2 transmission (original or variants). We include all categories of animals in our responses (i.e. wildlife, captive, unmanaged/feral and domestic livestock and pets) and focus on pathogens (especially viruses) that, once transmitted from animals to humans, could acquire epidemic potential through high rates of human-to-human transmission. This excludes measures to prevent well-known zoonotic diseases, such as rabies, that cannot readily transmit between humans. We focused solutions on societal measures, excluding the development of vaccines and other preventive therapeutic medicine and veterinary medicine options that are discussed elsewhere. We derived our solutions through reading the scientific literature, NGO position papers, and industry guidelines, collating our own experiences, and consulting experts in different fields. Herein, we review the major zoonotic transmission pathways and present an extensive list of options. The potential solutions are organised according to the key stages of the trade chain and encompass solutions that can be applied at the local, regional and international scales. This is a set of options targeted at practitioners and policy makers to encourage careful examination of possible courses of action, validating their impact and documenting outcomes.
Collapse
Affiliation(s)
- Silviu O Petrovan
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, CB2 1RL, U.K.,Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - David C Aldridge
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, CB2 1RL, U.K.,Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - Harriet Bartlett
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K.,Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, U.K
| | - Andrew J Bladon
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, CB2 1RL, U.K.,Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - Hollie Booth
- Interdisciplinary Centre for Conservation Science, Department of Zoology, University of Oxford, Oxford, OX1 3SZ, U.K
| | - Steven Broad
- TRAFFIC, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - Donald M Broom
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, CB2 1RL, U.K.,Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, U.K
| | - Neil D Burgess
- UNEP-WCMC, 219 Huntington Road, Cambridge, CB3 0DL, U.K.,GLOBE Institute, University of Copenhagen, Oester Voldgade 5-7, Copenhagen, 1350, Denmark
| | - Sarah Cleaveland
- Institute of Biodiversity, College of Medical, Veterinary and Life Sciences, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, U.K
| | | | - Maurizio Ferri
- Italian Society of Preventive Veterinary Medicine (Simevep), Via Nizza 11, Rome, 00198, Italy
| | - Amy Hinsley
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, OX1 3SZ, U.K
| | - Fangyuan Hua
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, P.R. China
| | - Alice C Hughes
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, Yunnan, 666303, P.R. China
| | - Kate Jones
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Moira Kelly
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium
| | - George Mayes
- MacArthur Barstow & Gibbs Veterinary Surgeons, 36 Hanbury Road, Droitwich, WR9 8PW, U.K
| | - Milorad Radakovic
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, U.K
| | - Chinedu A Ugwu
- Africa Centre of Excellence for Genomics of Infectious Disease, Redeemers' University Ede, Osun State, Nigeria
| | - Nasir Uddin
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, Yunnan, 666303, P.R. China
| | - Diogo Veríssimo
- Interdisciplinary Centre for Conservation Science, Department of Zoology, University of Oxford, Oxford, OX1 3SZ, U.K.,Institute for Conservation Research, San Diego Zoo Global, Escondido, CA, 92027, U.S.A
| | - Christian Walzer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, Vienna, A-1160, Austria.,Wildlife Conservation Society, 2300 Southern Blvd., Bronx, NY, U.S.A
| | - Thomas B White
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - James L Wood
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, U.K
| | - William J Sutherland
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, CB2 1RL, U.K.,Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| |
Collapse
|
49
|
Plowright RK, Hudson PJ. From Protein to Pandemic: The Transdisciplinary Approach Needed to Prevent Spillover and the Next Pandemic. Viruses 2021; 13:1298. [PMID: 34372504 PMCID: PMC8310336 DOI: 10.3390/v13071298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 01/10/2023] Open
Abstract
Pandemics are a consequence of a series of processes that span scales from viral biology at 10-9 m to global transmission at 106 m. The pathogen passes from one host species to another through a sequence of events that starts with an infected reservoir host and entails interspecific contact, innate immune responses, receptor protein structure within the potential host, and the global spread of the novel pathogen through the naive host population. Each event presents a potential barrier to the onward passage of the virus and should be characterized with an integrated transdisciplinary approach. Epidemic control is based on the prevention of exposure, infection, and disease. However, the ultimate pandemic prevention is prevention of the spillover event itself. Here, we focus on the potential for preventing the spillover of henipaviruses, a group of viruses derived from bats that frequently cross species barriers, incur high human mortality, and are transmitted among humans via stuttering chains. We outline the transdisciplinary approach needed to prevent the spillover process and, therefore, future pandemics.
Collapse
Affiliation(s)
- Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Peter J. Hudson
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, State College, PA 16802, USA;
| |
Collapse
|
50
|
Amaya M, Cheng H, Borisevich V, Navaratnarajah CK, Cattaneo R, Cooper L, Moore TW, Gaisina IN, Geisbert TW, Rong L, Broder CC. A recombinant Cedar virus based high-throughput screening assay for henipavirus antiviral discovery. Antiviral Res 2021; 193:105084. [PMID: 34077807 DOI: 10.1016/j.antiviral.2021.105084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 11/28/2022]
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are highly pathogenic, bat-borne paramyxoviruses in the genus Henipavirus that cause severe and often fatal acute respiratory and/or neurologic diseases in humans and livestock. There are currently no approved antiviral therapeutics or vaccines for use in humans to treat or prevent NiV or HeV infection. To facilitate development of henipavirus antivirals, a high-throughput screening (HTS) platform was developed based on a well-characterized recombinant version of the nonpathogenic Henipavirus, Cedar virus (rCedV). Using reverse genetics, a rCedV encoding firefly luciferase (rCedV-Luc) was rescued and its utility evaluated for high-throughput antiviral compound screening. The luciferase reporter gene signal kinetics of rCedV-Luc in different human cell lines was characterized and validated as an authentic real-time measure of viral growth. The rCedV-Luc platform was optimized as an HTS assay that demonstrated high sensitivity with robust Z' scores, excellent signal-to-background ratios and coefficients of variation. Eight candidate compounds that inhibited rCedV replication were identified for additional validation and demonstrated that 4 compounds inhibited authentic NiV-Bangladesh replication. Further evaluation of 2 of the 4 validated compounds in a 9-point dose response titration demonstrated potent antiviral activity against NiV-Bangladesh and HeV, with minimal cytotoxicity. This rCedV reporter can serve as a surrogate yet authentic BSL-2 henipavirus platform that will dramatically accelerate drug candidate identification in the development of anti-henipavirus therapies.
Collapse
Affiliation(s)
- Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Han Cheng
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | | | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Laura Cooper
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Terry W Moore
- Department of Pharmaceutical Sciences and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Irina N Gaisina
- Chicago BioSolutions Inc., 2242 W Harrison Street, Chicago, IL, 60612, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, USA.
| |
Collapse
|