1
|
Wang Y, Xu P, Han Y, Zhao W, Zhao L, Li R, Zhang J, Zhang S, Lu J, Daszak P, Jin Q, Wu Z. Unveiling bat-borne viruses: a comprehensive classification and analysis of virome evolution. MICROBIOME 2024; 12:235. [PMID: 39543683 PMCID: PMC11566218 DOI: 10.1186/s40168-024-01955-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Bats (Order Chiroptera) are an important reservoir of emerging zoonotic microbes, including viruses of public health concern such as henipaviruses, lyssaviruses, and SARS-related coronaviruses. Despite the continued discovery of new viruses in bat populations, a significant proportion of these viral agents remain uncharacterized, highlighting the imperative for additional research aimed at elucidating their evolutionary relationship and taxonomic classification. RESULTS In order to delve deeper into the viral reservoir hosted by bats, the present study employed Next Generation Sequencing (NGS) technology to analyze 13,105 swab samples obtained from various locations in China. Analysis of 378 sample pools revealed the presence of 846 vertebrate-associated viruses. Subsequent thorough examination, adhering to the International Committee on Taxonomy of Viruses (ICTV) criteria for virus classification, identified a total of 120 putative viral species with the potential to emerge as novel viruses, comprising a total of 294 viral strains. Phylogenetic analysis of conserved genomic regions indicated the novel virus exhibited a diverse array of viral lineages and branches, some of which displayed close genetic relationships to known human and livestock pathogens, such as poxviruses and pestiviruses. CONCLUSIONS This study investigates the breadth of DNA and RNA viruses harbored by bats, delineating several novel evolutionary lineages and offering significant contributions to virus taxonomy. Furthermore, the identification of hitherto unknown viruses with relevance to human and livestock health underscores the importance of this study in encouraging infectious disease monitoring and management efforts in both public health and veterinary contexts. Video Abstract.
Collapse
Affiliation(s)
- Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Panpan Xu
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Wenliang Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Lamei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Rui Li
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Junpeng Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, P. R. China
| | | | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
2
|
Saleem W, Vereecke N, Zaman MG, Afzal F, Reman I, Khan SUH, Nauwynck H. Genotyping and phylogeography of infectious bronchitis virus isolates from Pakistan show unique linkage to GI-24 lineage. Poult Sci 2024; 103:103236. [PMID: 37980750 PMCID: PMC10685022 DOI: 10.1016/j.psj.2023.103236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/21/2023] Open
Abstract
Infectious bronchitis virus (IBV) is prevalent in Pakistan causing enormous economic losses. To date no clear data are available on circulating genotypes and phylogeographic spread of the virus. Hence current study assessed these parameters for all available IBV Pakistani isolates, based on the 9 new sequences, with respect to other Asian and non-Asian countries. Results indicated that all Pakistani isolates belonged to genotype I (GI), with more than half of them (16/27) belonging to the GI-24 lineage, against which no vaccine is available. Three possible introduction events of the GI-13 IBV lineage into Pakistan, based on the estimated IBV population using isolates from this study, were observed possibly from Afghanistan, China, and/or Egypt. These events were further analyzed on the S1 amino acid level which showed unique alterations (S250H, T270K, and Q298S) in 1 isolate (IBV4, GI-13) when compared to GI-1 lineage. Both GI-1 and GI-13 Pakistani strains showed close homology with homologous vaccine strains that are used in Pakistan. For GI-24 strains, none of the used vaccines showed substantial homology, necessitating the need for further exploration of this lineage and vaccine design. In addition, our findings highlight the importance of genomic surveillance to support phylogeographical studies on IBV in genotyping and molecular epidemiology.
Collapse
Affiliation(s)
- Waqar Saleem
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| | - Nick Vereecke
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Pathosense BV, Lier 2500, Belgium
| | - Muhammad Goher Zaman
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, 54770 Islamabad, Pakistan
| | - Farhan Afzal
- Disease Diagnostic Laboratory, Poultry Research Institute, 46000 Rawalpindi, Pakistan
| | - Iqra Reman
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, 54770 Islamabad, Pakistan
| | - Saeed Ul-Hasan Khan
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, 54770 Islamabad, Pakistan
| | - Hans Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Pathosense BV, Lier 2500, Belgium
| |
Collapse
|
3
|
Chan TTY, Chow FWN, Fung J, Cheng FKK, Lo GCS, Tsang CC, Luk HKH, Wong ACP, He Z, Aw-Yong KL, Liu X, Yuen KY, Woo PCY, Lau SKP. A sensitive and simple RT-LAMP assay for sarbecovirus screening in bats. Microbiol Spectr 2023; 11:e0259123. [PMID: 37971222 PMCID: PMC10715088 DOI: 10.1128/spectrum.02591-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE We report the application of a colorimetric and fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay to facilitate mass screening for sarbecoviruses in bats. The assay was evaluated using a total of 838 oral and alimentary samples from bats and demonstrated comparable sensitivity and specificity to quantitative reverse transcription PCR (qRT-PCR), with a simple setup. The addition of SYTO9, a fluorescent nucleic acid stain, also allows for quantitative analysis. The scalability and simplicity of the assay are believed to contribute to improving preparedness for detecting emerging coronaviruses by applying it to field studies and surveillance.
Collapse
Affiliation(s)
- Tony Tat-Yin Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Franklin Wang-Ngai Chow
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Joshua Fung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Flora Ka-Kei Cheng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - George Chi-Shing Lo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chi-Ching Tsang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Hayes Kam-Hei Luk
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Antonio Cheuk-Pui Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zirong He
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kam Leng Aw-Yong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xueyan Liu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Patrick Chiu-Yat Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Doctoral Program in Translational Medicine and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan
| | - Susanna Kar-Pui Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Li KSM, Lau SKP, Woo PCY. Bats-The Magnificent Virus Player: SARS, MERS, COVID-19 and Beyond. Viruses 2023; 15:2342. [PMID: 38140583 PMCID: PMC10747191 DOI: 10.3390/v15122342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Irrespective of whether COVID-19 originated from a natural or a genetically engineered virus, the ultimate source of Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is bats [...].
Collapse
Affiliation(s)
- Kenneth S. M. Li
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (K.S.M.L.); (S.K.P.L.)
| | - Susanna K. P. Lau
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (K.S.M.L.); (S.K.P.L.)
| | - Patrick C. Y. Woo
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (K.S.M.L.); (S.K.P.L.)
- Doctoral Program in Translational Medicine and Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
5
|
Liu B, Zhao P, Xu P, Han Y, Wang Y, Chen L, Wu Z, Yang J. A comprehensive dataset of animal-associated sarbecoviruses. Sci Data 2023; 10:681. [PMID: 37805633 PMCID: PMC10560225 DOI: 10.1038/s41597-023-02558-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023] Open
Abstract
Zoonotic spillover of sarbecoviruses (SarbeCoVs) from non-human animals to humans under natural conditions has led to two large-scale pandemics, the severe acute respiratory syndrome (SARS) pandemic in 2003 and the ongoing COVID-19 pandemic. Knowledge of the genetic diversity, geographical distribution, and host specificity of SarbeCoVs is therefore of interest for pandemic surveillance and origin tracing of SARS-CoV and SARS-CoV-2. This study presents a comprehensive repository of publicly available animal-associated SarbeCoVs, covering 1,535 viruses identified from 63 animal species distributed in 43 countries worldwide (as of February 14,2023). Relevant meta-information, such as host species, sampling time and location, was manually curated and included in the dataset to facilitate further research on the potential patterns of viral diversity and ecological characteristics. In addition, the dataset also provides well-annotated sequence sets of receptor-binding domains (RBDs) and receptor-binding motifs (RBMs) for the scientific community to highlight the potential determinants of successful cross-species transmission that could be aid in risk estimation and strategic design for future emerging infectious disease control and prevention.
Collapse
Affiliation(s)
- Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Peng Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Panpan Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Lihong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| |
Collapse
|
6
|
Evans TS, Tan CW, Aung O, Phyu S, Lin H, Coffey LL, Toe AT, Aung P, Aung TH, Aung NT, Weiss CM, Thant KZ, Htun ZT, Murray S, Wang L, Johnson CK, Thu HM. Exposure to diverse sarbecoviruses indicates frequent zoonotic spillover in human communities interacting with wildlife. Int J Infect Dis 2023; 131:57-64. [PMID: 36870470 PMCID: PMC9981523 DOI: 10.1016/j.ijid.2023.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Sarbecoviruses are a subgenus of Coronaviridae that mostly infect bats with known potential to infect humans (SARS-CoV and SARS-CoV-2). Populations in Southeast Asia, where these viruses are most likely to emerge, have been undersurveyed to date. METHODS We surveyed communities engaged in extractive industries and bat guano harvesting from rural areas in Myanmar. Participants were screened for exposure to sarbecoviruses, and their interactions with wildlife were evaluated to determine the factors associated with exposure to sarbecoviruses. RESULTS Of 693 people screened between July 2017 and February 2020, 12.1% were seropositive for sarbecoviruses. Individuals were significantly more likely to have been exposed to sarbecoviruses if their main livelihood involved working in extractive industries (logging, hunting, or harvesting of forest products; odds ratio [OR] = 2.71, P = 0.019) or had been hunting/slaughtering bats (OR = 6.09, P = 0.020). Exposure to a range of bat and pangolin sarbecoviruses was identified. CONCLUSION Exposure to diverse sarbecoviruses among high-risk human communities provides epidemiologic and immunologic evidence that zoonotic spillover is occurring. These findings inform risk mitigation efforts needed to decrease disease transmission at the bat-human interface, as well as future surveillance efforts warranted to monitor isolated populations for viruses with pandemic potential.
Collapse
Affiliation(s)
- Tierra Smiley Evans
- Epicenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, USA.
| | - Chee Wah Tan
- Duke-National University of Singapore, Singapore
| | - Ohnmar Aung
- Epicenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, USA
| | - Sabai Phyu
- Tropical and Infectious Diseases Department, Specialist Hospital Waibargi, University of Medicine (2), Yangon, Myanmar
| | - Htin Lin
- Department of Medical Research, Yangon, Myanmar
| | - Lark L Coffey
- Department of Pathology, Microbiology and Immunology Department, University of California, Davis, USA
| | - Aung Than Toe
- Epicenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, USA
| | - Pyaephyo Aung
- Nature Conservation Society Myanmar, Yangon, Myanmar
| | - Tin Htun Aung
- Nature Conservation Society Myanmar, Yangon, Myanmar
| | - Nyein Thu Aung
- Epicenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, USA
| | - Christopher M Weiss
- Department of Pathology, Microbiology and Immunology Department, University of California, Davis, USA
| | | | | | - Suzan Murray
- Global Health Program, Smithsonian Institution, Washington, USA
| | - Linfa Wang
- Duke-National University of Singapore, Singapore
| | - Christine Kreuder Johnson
- Epicenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, USA
| | | |
Collapse
|
7
|
Wu Z, Han Y, Wang Y, Liu B, Zhao L, Zhang J, Su H, Zhao W, Liu L, Bai S, Dong J, Sun L, Zhu Y, Zhou S, Song Y, Sui H, Yang J, Wang J, Zhang S, Qian Z, Jin Q. A comprehensive survey of bat sarbecoviruses across China in relation to the origins of SARS-CoV and SARS-CoV-2. Natl Sci Rev 2023; 10:nwac213. [PMID: 37425654 PMCID: PMC10325003 DOI: 10.1093/nsr/nwac213] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 09/10/2023] Open
Abstract
SARS-CoV and SARS-CoV-2 have been thought to originate from bats. In this study, we screened pharyngeal and anal swabs from 13 064 bats collected between 2016 and 2021 at 703 locations across China for sarbecoviruses, covering almost all known southern hotspots, and found 146 new bat sarbecoviruses. Phylogenetic analyses of all available sarbecoviruses show that there are three different lineages-L1 as SARS-CoV-related CoVs (SARSr-CoVs), L2 as SARS-CoV-2-related CoVs (SC2r-CoVs) and novel L-R (recombinants of L1 and L2)-present in Rhinolophus pusillus bats, in the mainland of China. Among the 146 sequences, only four are L-Rs. Importantly, none belong in the L2 lineage, indicating that circulation of SC2r-CoVs in China might be very limited. All remaining 142 sequences belong in the L1 lineage, of which YN2020B-G shares the highest overall sequence identity with SARS-CoV (95.8%). The observation suggests endemic circulations of SARSr-CoVs, but not SC2r-CoVs, in bats in China. Geographic analysis of the collection sites in this study, together with all published reports, indicates that SC2r-CoVs may be mainly present in bats of Southeast Asia, including the southern border of Yunnan province, but absent in all other regions within China. In contrast, SARSr-CoVs appear to have broader geographic distribution, with the highest genetic diversity and sequence identity to human sarbecoviruses along the southwest border of China. Our data provide the rationale for further extensive surveys in broader geographical regions within, and beyond, Southeast Asia in order to find the most recent ancestors of human sarbecoviruses.
Collapse
Affiliation(s)
- Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Lamei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Junpeng Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Haoxiang Su
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Wenliang Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Shibin Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Lilian Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Yafang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Yiping Song
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Hongtao Sui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| |
Collapse
|
8
|
Wu C, Paradis NJ, Lakernick PM, Hryb M. L-shaped distribution of the relative substitution rate (c/μ) observed for SARS-COV-2's genome, inconsistent with the selectionist theory, the neutral theory and the nearly neutral theory but a near-neutral balanced selection theory: Implication on "neutralist-selectionist" debate. Comput Biol Med 2023; 153:106522. [PMID: 36638615 PMCID: PMC9814386 DOI: 10.1016/j.compbiomed.2022.106522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/17/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023]
Abstract
The genomic substitution rate (GSR) of SARS-CoV-2 exhibits a molecular clock feature and does not change under fluctuating environmental factors such as the infected human population (10°-107), vaccination etc. The molecular clock feature is believed to be inconsistent with the selectionist theory (ST). The GSR shows lack of dependence on the effective population size, suggesting Ohta's nearly neutral theory (ONNT) is not applicable to this virus. Big variation of the substitution rate within its genome is also inconsistent with Kimura's neutral theory (KNT). Thus, all three existing evolution theories fail to explain the evolutionary nature of this virus. In this paper, we proposed a Segment Substitution Rate Model (SSRM) under non-neutral selections and pointed out that a balanced mechanism between negative and positive selection of some segments that could also lead to the molecular clock feature. We named this hybrid mechanism as near-neutral balanced selection theory (NNBST) and examined if it was followed by SARS-CoV-2 using the three independent sets of SARS-CoV-2 genomes selected by the Nextstrain team. Intriguingly, the relative substitution rate of this virus exhibited an L-shaped probability distribution consisting with NNBST rather than Poisson distribution predicted by KNT or an asymmetric distribution predicted by ONNT in which nearly neutral sites are believed to be slightly deleterious only, or the distribution that is lack of nearly neutral sites predicted by ST. The time-dependence of the substitution rates for some segments and their correlation with the vaccination were observed, supporting NNBST. Our relative substitution rate method provides a tool to resolve the long standing "neutralist-selectionist" controversy. Implications of NNBST in resolving Lewontin's Paradox is also discussed.
Collapse
Affiliation(s)
- Chun Wu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, 08028, USA; Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ, 08028, USA.
| | - Nicholas J Paradis
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, 08028, USA
| | - Phillip M Lakernick
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, 08028, USA
| | - Mariya Hryb
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, 08028, USA
| |
Collapse
|
9
|
Nabi F, Ahmad O, Khan YA, Nabi A, Md Amiruddin H, Abul Qais F, Masroor A, Hisamuddin M, Uversky VN, Khan RH. Computational studies on phylogeny and drug designing using molecular simulations for COVID-19. J Biomol Struct Dyn 2022; 40:10753-10762. [PMID: 34278954 DOI: 10.1080/07391102.2021.1947895] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since the first appearance of a novel coronavirus pneumonia (NCP) caused by a novel human coronavirus, and especially after the infection started its rapid spread over the world causing the COVID-19 (coronavirus disease 2019) pandemics, a very substantial part of the scientific community is engaged in the intensive research dedicated to finding of the potential therapeutics to cure this disease. As repurposing of existing drugs represents the only instant solution for those infected with the virus, we have been working on utilization of the structure-based virtual screening method to find some potential medications. In this study, we screened a library of 646 FDA approved drugs against the receptor-binding domain of the SARS-CoV-2 spike (S) protein and the main protease of this virus. Scoring functions revealed that some of the anticancer drugs (such as Pazopanib, Irinotecan, and Imatinib), antipsychotic drug (Risperidone), and antiviral drug (Raltegravir) have a potential to interact with both targets with high efficiency. Further we performed molecular dynamics simulations to understand the evolution in protein upon interaction with drug. Also, we have performed a phylogenetic analysis of 43 different coronavirus strains infecting 12 different mammalian species.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Owais Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Yawar Ali Khan
- Department of Bioengeenering, Intergral University, Lucknow, India
| | - Anas Nabi
- Department of Computer Science, Vivekanand College of Technology and Management, Aligarh, India
| | - Hashmi Md Amiruddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Aiman Masroor
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Malik Hisamuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, Russia.,Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
10
|
Sylverken AA, Owusu M, Agbavor B, Kwarteng A, Ayisi-Boateng NK, Ofori P, El-Duah P, Yeboah R, Aryeetey S, Addo Asamoah J, Ekekpi RZ, Oppong M, Gorman R, Brempong KA, Nyarko-Afriyie E, Owusu Bonsu F, Larsen-Reindorf R, Rockson Adjei M, Boateng G, Asiedu-Bekoe F, Sarkodie B, Laryea DO, Tinkorang E, Kumah Aboagye P, Nsiah Asare A, Obiri-Danso K, Owusu-Dabo E, Adu-Sarkodie Y, Phillips RO. Using drones to transport suspected COVID-19 samples; experiences from the second largest testing centre in Ghana, West Africa. PLoS One 2022; 17:e0277057. [PMID: 36318579 PMCID: PMC9624400 DOI: 10.1371/journal.pone.0277057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The declaration of COVID-19 as a pandemic on March 11 2020, by the World Health Organisation prompted the need for a sustained and a rapid international response. In a swift response, the Government of Ghana, in partnership with Zipline company, launched the use of Unmanned Automated Vehicles (UAV) to transport suspected samples from selected districts to two foremost testing centres in the country. Here, we present the experiences of employing this technology and its impact on the transport time to the second largest testing centre, the Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR) in Kumasi, Ghana. METHODS Swab samples collected from suspected COVID-19 patients were transported to the Zipline office by health workers. Information on the samples were sent to laboratory personnel located at KCCR through a WhatsApp platform to get them ready to receive the suspected COVID-19 samples while Zipline repackaged samples and transported them via drone. Time of take-off was reported as well as time of drop-off. RESULTS A total of 2537 COVID-19 suspected samples were received via drone transport from 10 districts between April 2020 to June 2021 in 440 deliveries. Ejura-Sekyedumase District Health Directorate delivered the highest number of samples (765; 30%). The farthest district to use the drone was Pru East, located 270 km away from KCCR in Kumasi and 173 km to the Zipline office in Mampong. Here, significantly, it took on the average 39 minutes for drones to deliver samples compared to 117 minutes spent in transporting samples by road (p<0.001). CONCLUSION The use of drones for sample transport during the COVID-19 pandemic significantly reduced the travel time taken for samples to be transported by road to the testing site. This has enhanced innovative measures to fight the pandemic using technology.
Collapse
Affiliation(s)
- Augustina Angelina Sylverken
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael Owusu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Medical Laboratory Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Bernadette Agbavor
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alex Kwarteng
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Nana Kwame Ayisi-Boateng
- University Hospital, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Patrick Ofori
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Philip El-Duah
- Institute of Virology, Charite, Universitätsmedizin Berlin, Berlin, Germany
| | - Richmond Yeboah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sherihane Aryeetey
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jesse Addo Asamoah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Rita Ziem Ekekpi
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Morrah Oppong
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Richmond Gorman
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kofi Adjei Brempong
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emmanuella Nyarko-Afriyie
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | | | - Gifty Boateng
- National Public Health Reference Laboratory, Ghana Health Service, Accra, Ghana
| | | | - Badu Sarkodie
- Public Health Division, Ghana Health Service, Accra, Ghana
| | | | - Emmanuel Tinkorang
- Ashanti Regional Health Directorate, Ghana Health Service, Kumasi, Ghana
| | | | - Anthony Nsiah Asare
- Presidential Taskforce on COVID-19, Office of the President, Jubilee House, Accra, Ghana
| | - Kwasi Obiri-Danso
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ellis Owusu-Dabo
- Department of Global and International Health, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yaw Adu-Sarkodie
- Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Richard Odame Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| |
Collapse
|
11
|
Goyal R, Gautam RK, Chopra H, Dubey AK, Singla RK, Rayan RA, Kamal MA. Comparative highlights on MERS-CoV, SARS-CoV-1, SARS-CoV-2, and NEO-CoV. EXCLI JOURNAL 2022; 21:1245-1272. [PMID: 36483910 PMCID: PMC9727256 DOI: 10.17179/excli2022-5355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/23/2022] [Indexed: 01/25/2023]
Abstract
The severe acute respiratory syndrome (SARS-CoV, now SARS-CoV-1), middle east respiratory syndrome (MERS-CoV), Neo-CoV, and 2019 novel coronavirus (SARS-CoV-2/COVID-19) are the most notable coronaviruses, infecting the number of people worldwide by targeting the respiratory system. All these viruses are of zoonotic origin, predominantly from bats which are one of the natural reservoir hosts for coronaviruses. Thus, the major goal of our review article is to compare and contrast the characteristics and attributes of these coronaviruses. The SARS-CoV-1, MERS-CoV, and COVID-19 have many viral similarities due to their classification, they are not genetically related. COVID-19 shares approximately 79 % of its genome with SARS-CoV-1 and about 50 % with MERS-CoV. The shared receptor protein, ACE2 exhibit the most striking genetic similarities between SARS-CoV-1 and SARS-CoV-2. SARS-CoV primarily replicates in the epithelial cells of the respiratory system, but it may also affect macrophages, monocytes, activated T cells, and dendritic cells. MERS-CoV not only infects and replicates inside the epithelial and immune cells, but it may lyse them too, which is one of the common reasons for MERS's higher mortality rate. The details of infections caused by SARS-CoV-2 and lytic replication mechanisms in host cells are currently mysterious. In this review article, we will discuss the comparative highlights of SARS-CoV-1, MERS-CoV, SARS-CoV-2, and Neo-CoV, concerning their structural features, morphological characteristics, sources of virus origin and their evolutionary transitions, infection mechanism, computational study approaches, pathogenesis and their severity towards several diseases, possible therapeutic approaches, and preventive measures.
Collapse
Affiliation(s)
- Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India,MM School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rupesh K. Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, Rau, Indore, India-453331,*To whom correspondence should be addressed: Rupesh K. Gautam, Department of Pharmacology, Indore Institute of Pharmacy, IIST Campus, Opposite IIM Indore, Rau-Pithampur Road, Indore – 453331 (M.P.), India; Tel.: +91 9413654324, E-mail:
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India-140401
| | | | - Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China,School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Rehab A. Rayan
- Department of Epidemiology, High Institute of Public Health, Alexandria University, 5422031, Egypt
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China,King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh,Enzymoics, 7 Peterlee Place, Hebersham NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
12
|
Arwansyah A, Arif AR, Kade A, Taiyeb M, Ramli I, Santoso T, Ningsih P, Natsir H, Tahril T, Uday Kumar K. Molecular modelling on multiepitope-based vaccine against SARS-CoV-2 using immunoinformatics, molecular docking, and molecular dynamics simulation. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:649-675. [PMID: 36083166 DOI: 10.1080/1062936x.2022.2117846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The pandemic of COVID-19 caused by SARS-CoV-2 has made a worldwide health emergency. Despite the fact that current vaccines are readily available, several SARSCoV-2 variants affecting the existing vaccine are to be less effective due to the mutations in the structural proteins. Furthermore, the appearance of the new variants cannot be easily predicted in the future. Therefore, the attempts to construct new vaccines or to modify the current vaccines are still pivotal works for preventing the spread of the virus. In the present investigation, the computational analysis through immunoinformatics, molecular docking, and molecular dynamics (MD) simulation is employed to construct an effective vaccine against SARS-CoV2. The structural proteins of SARS-CoV2 are utilized to create a multiepitope-based vaccine (MEV). According to our findings presented by systematic procedures in the current investigation, the MEV construct may be able to trigger a strong immunological response against the virus. Therefore, the designed MEV could be a potential vaccine candidate against SARS-CoV-2, and also it is expected to be effective for other variants.
Collapse
Affiliation(s)
- A Arwansyah
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - A R Arif
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
| | - A Kade
- Department of Physics Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - M Taiyeb
- Department of Biology, Faculty of Mathematics and Natural Sciences, Makassar State University, Makassar, Indonesia
| | - I Ramli
- Department of Physics, Faculty of Science, Universitas Cokroaminoto Palopo, Palopo, Indonesia
| | - T Santoso
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - P Ningsih
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - H Natsir
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
| | - T Tahril
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - K Uday Kumar
- Department of Radiology, Toxicology and Population Protection, Faculty of Health and Social Studies, University of South Bohemia Cesk´e Budˇejovice, Czech Republic
| |
Collapse
|
13
|
Tian J, Sun J, Li D, Wang N, Wang L, Zhang C, Meng X, Ji X, Suchard MA, Zhang X, Lai A, Su S, Veit M. Emerging viruses: Cross-species transmission of coronaviruses, filoviruses, henipaviruses, and rotaviruses from bats. Cell Rep 2022; 39:110969. [PMID: 35679864 PMCID: PMC9148931 DOI: 10.1016/j.celrep.2022.110969] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/10/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Emerging infectious diseases, especially if caused by bat-borne viruses, significantly affect public health and the global economy. There is an urgent need to understand the mechanism of interspecies transmission, particularly to humans. Viral genetics; host factors, including polymorphisms in the receptors; and ecological, environmental, and population dynamics are major parameters to consider. Here, we describe the taxonomy, geographic distribution, and unique traits of bats associated with their importance as virus reservoirs. Then, we summarize the origin, intermediate hosts, and the current understanding of interspecies transmission of Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, Nipah, Hendra, Ebola, Marburg virus, and rotaviruses. Finally, the molecular interactions of viral surface proteins with host cell receptors are examined, and a comparison of these interactions in humans, intermediate hosts, and bats is conducted. This uncovers adaptive mutations in virus spike protein that facilitate cross-species transmission and risk factors associated with the emergence of novel viruses from bats.
Collapse
Affiliation(s)
- Jin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Harbin 150069, China.
| | - Jiumeng Sun
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Dongyan Li
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Ningning Wang
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Lifang Wang
- College of Veterinary Medicine, China Agricultural University, No. 17 Qinghua Donglu, Beijing 100083, China
| | - Chang Zhang
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Xiaorong Meng
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Robert-von-Ostertag-Str. 7, 14163 Berlin, Germany
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, 6823 St., Charles Avenue, New Orleans, LA 70118, USA
| | - Marc A Suchard
- Departments of Biomathematics, Human Genetics and Biostatistics, David Geffen School of Medicine and Fielding School of Public Health, University of California, Los Angeles, Geffen Hall 885 Tiverton Drive, Los Angeles, CA 90095, USA
| | - Xu Zhang
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Alexander Lai
- School of Science, Technology, Engineering, and Mathematics, Kentucky State University, 400 East Main St., Frankfort, KY 40601, USA
| | - Shuo Su
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China.
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Robert-von-Ostertag-Str. 7, 14163 Berlin, Germany.
| |
Collapse
|
14
|
Hassanin A. Variation in synonymous nucleotide composition among genomes of sarbecoviruses and consequences for the origin of COVID-19. Gene X 2022; 835:146641. [PMID: 35700806 PMCID: PMC9200079 DOI: 10.1016/j.gene.2022.146641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022] Open
Abstract
The subgenus Sarbecovirus includes two human viruses, SARS-CoV and SARS-CoV-2, respectively responsible for the SARS epidemic and COVID-19 pandemic, as well as many bat viruses and two pangolin viruses. Here, the synonymous nucleotide composition (SNC) of Sarbecovirus genomes was analysed by examining third codon-positions, dinucleotides, and degenerate codons. The results show evidence for the eight following groups: (i) SARS-CoV related coronaviruses (SCoVrC including many bat viruses from China), (ii) SARS-CoV-2 related coronaviruses (SCoV2rC; including five bat viruses from Cambodia, Thailand and Yunnan), (iii) pangolin sarbecoviruses, (iv) three bat sarbecoviruses showing evidence of recombination between SCoVrC and SCoV2rC genomes, (v) two highly divergent bat sarbecoviruses from Yunnan, (vi) the bat sarbecovirus from Japan, (vii) the bat sarbecovirus from Bulgaria, and (viii) the bat sarbecovirus from Kenya. All these groups can be diagnosed by specific nucleotide compositional features except the one concerned by recombination between SCoVrC and SCoV2rC. In particular, SCoV2rC genomes have less cytosines and more uracils at third codon-positions than other sarbecoviruses, whereas the genomes of pangolin sarbecoviruses show more adenines at third codon-positions. I suggest that taxonomic differences in the imbalanced nucleotide pools available in host cells during viral replication can explain the eight groups of SNC here detected among Sarbecovirus genomes. A related effect due to hibernating bats and their latitudinal distribution is also discussed. I conclude that the two independent host switches from Rhinolophus bats to pangolins resulted in convergent mutational constraints and that SARS-CoV-2 emerged directly from a horseshoe bat sarbecovirus.
Collapse
Affiliation(s)
- Alexandre Hassanin
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, EPHE, MNHN, UA, Paris, France.
| |
Collapse
|
15
|
Cattaneo AM. Reviewing findings on the polypeptide sequence of the SARS-CoV-2 S-protein to discuss the origins of the virus. Future Virol 2022; 0. [PMID: 35419073 PMCID: PMC8982992 DOI: 10.2217/fvl-2021-0233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/18/2022] [Indexed: 12/16/2022]
Abstract
Several investigations suggested origins of SARS-CoV-2 from the recombination of coronaviruses of various animals, including the bat Rhinolophus affinis and the pangolin Manis javanica, despite the processes describing the adaptation from a reservoir of animals to human are still debated. In this perspective, I will remark two main inconsistencies on the origins of SARS-CoV-2: polypeptide sequence alignment of the S-proteins does not return the expected identity of the receptor-binding motif among most of pangolin-CoVs and SARS-CoV-2; accurate referencing for samplings and sequencing deposition of the ancestral bat coronavirus named RaTG13 was missing since the first reports on the SARS-CoV-2 coronavirus. This contribution aims to stimulate discussion about the origins of SARS-CoV-2 and considers other intermediate hosts as a reservoir for coronavirus.
Collapse
Affiliation(s)
- Alberto Maria Cattaneo
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Chemical Ecology Group, Lomma, Box 190 234 22, Sweden
- University of Lausanne, Center for Integrative Genomics, Lausanne, CH-1015, Switzerland
| |
Collapse
|
16
|
Li D, Gong XQ, Xiao X, Han HJ, Yu H, Li ZM, Yan LN, Gu XL, Duan SH, Xue-jieYu. MERS-related CoVs in hedgehogs from Hubei Province, China. One Health 2021; 13:100332. [PMID: 34604493 PMCID: PMC8464353 DOI: 10.1016/j.onehlt.2021.100332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The emerging coronavirus diseases such as COVID-19, MERS, and SARS indicated that animal coronaviruses (CoVs) spillover to humans are a huge threat to public health. Therefore, we needed to understand the CoVs carried by various animals. Wild hedgehogs were collected from rural areas in Wuhan and Xianning cities in Hubei Province for analysis of CoVs. PCR results showed that 5 out of 51 (9.8%) hedgehogs (Erinaceus amurensis) were positive to CoVs in Hubei Province with 3 samples from Wuhan City and 2 samples from Xianning City. Phylogenetic analysis based on the partial sequence of RNA-dependent RNA polymerase showed that the CoVs from hedgehogs are classified into Merbecovirus of the genus Betacoronavirus; the hedgehog CoVs formed a phylogenetic sister cluster with human MERS-CoVs and bat MERS-related CoVs. Among the 12 most critical residues of receptor binding domain in MERS-CoV for binding human Dipeptidyl peptidase 4, 3 residuals were conserved between the hedgehog MERS-related CoV obtained in this study and the human MERS-CoV. We concluded that hedgehogs from Hubei Province carried MERS-related CoVs, indicating that hedgehogs might be important in the evolution and transmission of MERS-CoVs, and continuous surveillance of CoVs in hedgehogs was important.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao-qing Gong
- Double First-class Construction Office, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Xiao
- Lab Animal Research Center, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Hui-ju Han
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hao Yu
- Department of Neuroscience, Cell Biology, and Anatomy, 301 University Blvd, Galveston, TX 77555, United States of America
| | - Ze-min Li
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Li-na Yan
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao-lan Gu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shu-hui Duan
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xue-jieYu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
17
|
Wong ACP, Lau SKP, Woo PCY. Interspecies Jumping of Bat Coronaviruses. Viruses 2021; 13:2188. [PMID: 34834994 PMCID: PMC8620431 DOI: 10.3390/v13112188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
In the last two decades, several coronavirus (CoV) interspecies jumping events have occurred between bats and other animals/humans, leading to major epidemics/pandemics and high fatalities. The SARS epidemic in 2002/2003 had a ~10% fatality. The discovery of SARS-related CoVs in horseshoe bats and civets and genomic studies have confirmed bat-to-civet-to-human transmission. The MERS epidemic that emerged in 2012 had a ~35% mortality, with dromedaries as the reservoir. Although CoVs with the same genome organization (e.g., Tylonycteris BatCoV HKU4 and Pipistrellus BatCoV HKU5) were also detected in bats, there is still a phylogenetic gap between these bat CoVs and MERS-CoV. In 2016, 10 years after the discovery of Rhinolophus BatCoV HKU2 in Chinese horseshoe bats, fatal swine disease outbreaks caused by this virus were reported in southern China. In late 2019, an outbreak of pneumonia emerged in Wuhan, China, and rapidly spread globally, leading to >4,000,000 fatalities so far. Although the genome of SARS-CoV-2 is highly similar to that of SARS-CoV, patient zero and the original source of the pandemic are still unknown. To protect humans from future public health threats, measures should be taken to monitor and reduce the chance of interspecies jumping events, either occurring naturally or through recombineering experiments.
Collapse
Affiliation(s)
| | - Susanna K. P. Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Patrick C. Y. Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
| |
Collapse
|
18
|
Stout AE, Guo Q, Millet JK, Whittaker1 GR. Viral and Host Attributes Underlying the Origins of Zoonotic Coronaviruses in Bats. Comp Med 2021; 71:442-450. [PMID: 34635199 PMCID: PMC8594259 DOI: 10.30802/aalas-cm-21-000027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023]
Abstract
With a presumed origin in bats, the COVID-19 pandemic has been a major source of morbidity and mortality in the hu- man population, and the causative agent, SARS-CoV-2, aligns most closely at the genome level with the bat coronaviruses RaBtCoV4991/RaTG13 and RmYN02. The ability of bats to provide reservoirs of numerous viruses in addition to coronaviruses remains an active area of research. Unique aspects of the physiology of the chiropteran immune system may contribute to the ability of bats to serve as viral reservoirs. The coronavirus spike protein plays important roles in viral pathogenesis and the immune response. Although much attention has focused on the spike receptor-binding domain, a unique aspect of SARS-CoV-2 as compared with its closest relatives is the presence of a furin cleavage site in the S1-S2 region of the spike protein. Proteolytic activation is likely an important feature that allows SARS-CoV-2-and other coronaviruses-to overcome the species barriers and thus cause human disease. The diversity of bat species limits the ability to draw broad conclusions about viral pathogenesis, but comparisons across species and with reference to humans and other susceptible mammals may guide future research in this regard.
Collapse
Affiliation(s)
| | - Qinghua Guo
- Master of Public Health Program, Cornell University, Ithaca, New York; and
| | - Jean K Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Gary R Whittaker1
- Master of Public Health Program, Cornell University, Ithaca, New York; and
| |
Collapse
|
19
|
Halaji M, Heiat M, Faraji N, Ranjbar R. Epidemiology of COVID-19: An updated review. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2021; 26:82. [PMID: 34759999 PMCID: PMC8548902 DOI: 10.4103/jrms.jrms_506_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/30/2020] [Accepted: 04/25/2021] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a zoonotic infection, is responsible for COVID-19 pandemic and also is known as a public health concern. However, so far, the origin of the causative virus and its intermediate hosts is yet to be fully determined. SARS-CoV-2 contains nearly 30,000 letters of RNA that allows the virus to infect cells and hijack them to make new viruses. On the other hand, among 14 detected mutations in the SARS-CoV-2 S protein that provide advantages to virus for transmission and evasion form treatment, the D614G mutation (substitution of aspartic acid [D] with glycine [G] in codon 614 was particular which could provide the facilitation of the transmission of the virus and virulence. To date, in contrary to the global effort to come up with various aspects of SARS-CoV-2, there are still great pitfalls in the knowledge of this disease and many angles remain unclear. That's why, the monitoring and periodical investigation of this emerging infection in an epidemiological study seems to be essential. The present study characterizes the current epidemiological status (i.e., possible transmission route, mortality and morbidity risk, emerging SARS-CoV-2 variants, and clinical feature) of the SARS-CoV-2 in the world during these pandemic.
Collapse
Affiliation(s)
- Mehrdad Halaji
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Niloofar Faraji
- Department of Medical Laboratory Sciences, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Virome of bat-infesting arthropods: highly divergent viruses in different vectors. J Virol 2021; 96:e0146421. [PMID: 34586860 DOI: 10.1128/jvi.01464-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bats are reservoirs of important zoonotic viruses like Nipah and SARS viruses. However, whether the blood-sucking arthropods on the body surface of bats also carry these viruses, and the relationship between viruses carried by the blood-sucking arthropods and viruses carried by bats, have not been reported. This study collected 686 blood-sucking arthropods on the body surface of bats from Yunnan Province, China between 2012 and 2015, and they included wingless bat flies, bat flies, ticks, mites, and fleas. The viruses carried by these arthropods were analyzed using meta-transcriptomic approach, and 144 highly diverse positive-sense single-stranded RNA, negative-sense single-stranded RNA, and double-stranded RNA viruses were found, of which 138 were potentially new viruses. These viruses were classified into 14 different virus families or orders, including Bunyavirales, Mononegavirales, Reoviridae, and Picornavirales. Further analyses found that Bunyavirales were the most abundant virus group (84% of total virus RNA) in ticks, whereas narnaviruses were the most abundant (52-92%) in the bat flies and wingless bat flies libraries, followed by solemoviruses (1-29%) and reoviruses (0-43%). These viruses were highly structured based on the arthropod types. It is worth noting that no bat-borne zoonotic viruses were found in the virome of bat-infesting arthropod, seemly not supporting that bat surface arthropods are vectors of zoonotic viruses carried by bats. IMPORTANCE Bats are reservoir of many important viral pathogens. To evaluate whether bat-parasitic blood-sucking arthropods participate in the circulation of these important viruses, it is necessary to conduct unbiased virome studies on these arthropods. We evaluated five types of blood-sucking parasitic arthropods on the surface of bats in Yunnan, China and identified a variety of viruses, some of which had high prevalence and abundance level, although there is limited overlap in virome between distant arthropods. While most of the virome discovered here are potentially arthropod-specific viruses, we identified three possible arboviruses, including one orthobunyavirus and two vesiculoviruses (family Rhabdoviridae), suggesting bat-parasitic arthropods carry viruses with risk of spillage, which warrants further study.
Collapse
|
21
|
Arwansyah A, Arif AR, Ramli I, Kurniawan I, Sukarti S, Nur Alam M, Illing I, Farid Lewa A, Manguntungi B. Molecular modelling on SARS-CoV-2 papain-like protease: an integrated study with homology modelling, molecular docking, and molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:699-718. [PMID: 34392751 DOI: 10.1080/1062936x.2021.1960601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
SARS-CoV-2 PLpro was investigated as a therapeutic target for potent antiviral drugs due to its essential role in not only viral replication but also in regulating the inborn immune response. Several computational approaches, including homology modelling, molecular docking, and molecular dynamics (MD) studies, were employed to search for promising drugs in treating SARS-CoV-2. Eighty-one compounds, sub-structurally similar to the antiviral drug, were used as potential inhibitors of PLpro. From our results, three complexes containing the ligands with Pubchem IDs: 153012995, 12149203, and 123608715 showed lower binding energies than the control (Ritonavir), indicating that they may become promising inhibitors for PLpro. MD was performed in a water solvent to validate the stability of the three complexes. All complexes achieved stable structure during the simulation as no significant fluctuations were observed in the validation parameters. Moreover, the binding energy for each complex was estimated using the MM-GBSA method. Complex 1 was the most stable structure based on the lowest binding energy score and its structure remained in a similar cavity with the docket snapshot. Based on our studies, three ligands were assumed to be potential inhibitors. The ligand of complex 1 may become the most promising antiviral drug against SARS-CoV-2 targeting PLpro.
Collapse
Affiliation(s)
- A Arwansyah
- Department of Chemistry, Faculty of Science, Cokroaminoto University of Palopo, Palopo, Indonesia
| | - A R Arif
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
| | - I Ramli
- Department of Physics, Faculty of Science, Cokroaminoto University of Palopo, Palopo, Indonesia
| | - I Kurniawan
- School of Computing, Telkom University, Bandung, Indonesia
- Research Center of Human Centric Engineering, Telkom University, Bandung, Indonesia
| | - S Sukarti
- Department of Chemistry, Faculty of Science, Cokroaminoto University of Palopo, Palopo, Indonesia
| | - M Nur Alam
- Department of Chemistry, Faculty of Science, Cokroaminoto University of Palopo, Palopo, Indonesia
| | - I Illing
- Department of Chemistry, Faculty of Science, Cokroaminoto University of Palopo, Palopo, Indonesia
| | - A Farid Lewa
- Department of Nutrition, Poltekkes Kemenkes Palu, Palu, Indonesia
| | - B Manguntungi
- Department of Biotechnology, Faculty of Biotechnology, Sumbawa University of Technology, Sumbawa, Indonesia
| |
Collapse
|
22
|
Raja RK, Nguyen-Tri P, Balasubramani G, Alagarsamy A, Hazir S, Ladhari S, Saidi A, Pugazhendhi A, Samy AA. SARS-CoV-2 and its new variants: a comprehensive review on nanotechnological application insights into potential approaches. APPLIED NANOSCIENCE 2021; 13:65-93. [PMID: 34131555 PMCID: PMC8190993 DOI: 10.1007/s13204-021-01900-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 02/02/2023]
Abstract
SARS-CoV-2 (COVID-19) spreads and develops quickly worldwide as a new global crisis which has left deep socio-economic damage and massive human mortality. This virus accounts for the ongoing outbreak and forces an urgent need to improve antiviral therapeutics and targeted diagnosing tools. Researchers have been working to find a new drug to combat the virus since the outbreak started in late 2019, but there are currently no successful drugs to control the SARS-CoV-2, which makes the situation riskier. Very recently, new variant of SARS-CoV-2 is identified in many countries which make the situation very critical. No successful treatment has yet been shown although enormous international commitment to combat this pandemic and the start of different clinical trials. Nanomedicine has outstanding potential to solve several specific health issues, like viruses, which are regarded a significant medical issue. In this review, we presented an up-to-date drug design strategy against SARS-CoV-2, including the development of novel drugs and repurposed product potentials were useful, and successful drugs discovery is a constant requirement. The use of nanomaterials in treatment against SARS-CoV-2 and their use as carriers for the transport of the most frequently used antiviral therapeutics are discussed systematically here. We also addressed the possibilities of practical applications of nanoparticles to give the status of COVID-19 antiviral systems.
Collapse
Affiliation(s)
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, University du Québec àTrois-Rivieres, Trois-Rivieres, Canada
| | - Govindasamy Balasubramani
- Aquatic Animal Health and Environmental Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, 600028 India
| | - Arun Alagarsamy
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003 India
| | - Selcuk Hazir
- Department of Biology, Faculty of Science and Arts, Adnan Menderes University, Aydin, Turkey
| | - Safa Ladhari
- Department of Chemistry, Biochemistry and Physics, University du Québec àTrois-Rivieres, Trois-Rivieres, Canada
| | - Alireza Saidi
- Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST), 505 Boulevard de Maisonneuve O, Montréal, QC H3A 3C2 Canada
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
23
|
Sylverken AA, El-Duah P, Owusu M, Schneider J, Yeboah R, Ayisi-Boateng NK, Gorman R, Adu E, Kwarteng A, Frimpong M, Binger T, Aryeetey S, Asamoah JA, Amoako YA, Amuasi JH, Beheim-Schwarzbach J, Owusu-Dabo E, Adu-Sarkodie Y, Obiri-Danso K, Corman VM, Drosten C, Phillips R. Transmission of SARS-CoV-2 in northern Ghana: insights from whole-genome sequencing. Arch Virol 2021; 166:1385-1393. [PMID: 33723631 PMCID: PMC7959303 DOI: 10.1007/s00705-021-04986-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022]
Abstract
Following the detection of the first imported case of COVID-19 in the northern sector of Ghana, we molecularly characterized and phylogenetically analysed sequences, including three complete genome sequences, of severe acute respiratory syndrome coronavirus 2 obtained from nine patients in Ghana. We performed high-throughput sequencing on nine samples that were found to have a high concentration of viral RNA. We also assessed the potential impact that long-distance transport of samples to testing centres may have on sequencing results. Here, two samples that were similar in terms of viral RNA concentration but were transported from sites that are over 400 km apart were analyzed. All sequences were compared to previous sequences from Ghana and representative sequences from regions where our patients had previously travelled. Three complete genome sequences and another nearly complete genome sequence with 95.6% coverage were obtained. Sequences with coverage in excess of 80% were found to belong to three lineages, namely A, B.1 and B.2. Our sequences clustered in two different clades, with the majority falling within a clade composed of sequences from sub-Saharan Africa. Less RNA fragmentation was seen in sample KATH23, which was collected 9 km from the testing site, than in sample TTH6, which was collected and transported over a distance of 400 km to the testing site. The clustering of several sequences from sub-Saharan Africa suggests regional circulation of the viruses in the subregion. Importantly, there may be a need to decentralize testing sites and build more capacity across Africa to boost the sequencing output of the subregion.
Collapse
Affiliation(s)
- Augustina Angelina Sylverken
- Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, 00233 Kumasi, Ghana
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Philip El-Duah
- Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, 00233 Kumasi, Ghana
- Institute of Virology, Charite, Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Owusu
- Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, 00233 Kumasi, Ghana
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Julia Schneider
- Institute of Virology, Charite, Universitätsmedizin Berlin, Berlin, Germany
| | - Richmond Yeboah
- Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, 00233 Kumasi, Ghana
| | | | - Richmond Gorman
- Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, 00233 Kumasi, Ghana
| | - Eric Adu
- Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, 00233 Kumasi, Ghana
| | - Alexander Kwarteng
- Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, 00233 Kumasi, Ghana
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael Frimpong
- Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, 00233 Kumasi, Ghana
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Tabea Binger
- Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, 00233 Kumasi, Ghana
| | - Sherihane Aryeetey
- Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, 00233 Kumasi, Ghana
| | - Jesse Addo Asamoah
- Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, 00233 Kumasi, Ghana
| | - Yaw Ampem Amoako
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - John Humphrey Amuasi
- Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, 00233 Kumasi, Ghana
- Department of Global and International Health, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Ellis Owusu-Dabo
- Department of Global and International Health, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yaw Adu-Sarkodie
- Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwasi Obiri-Danso
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Victor Max Corman
- Institute of Virology, Charite, Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charite, Universitätsmedizin Berlin, Berlin, Germany
| | - Richard Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, 00233 Kumasi, Ghana
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
24
|
Zrelovs N, Ustinova M, Silamikelis I, Birzniece L, Megnis K, Rovite V, Freimane L, Silamikele L, Ansone L, Pjalkovskis J, Fridmanis D, Vilne B, Priedite M, Caica A, Gavars M, Perminov D, Storozenko J, Savicka O, Dimina E, Dumpis U, Klovins J. First Report on the Latvian SARS-CoV-2 Isolate Genetic Diversity. Front Med (Lausanne) 2021; 8:626000. [PMID: 33889583 PMCID: PMC8055824 DOI: 10.3389/fmed.2021.626000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
Remaining a major healthcare concern with nearly 29 million confirmed cases worldwide at the time of writing, novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused more than 920 thousand deaths since its outbreak in China, December 2019. First case of a person testing positive for SARS-CoV-2 infection within the territory of the Republic of Latvia was registered on 2nd of March 2020, 9 days prior to the pandemic declaration by WHO. Since then, more than 277,000 tests were carried out confirming a total of 1,464 cases of coronavirus disease 2019 (COVID-19) in the country as of 12th of September 2020. Rapidly reacting to the spread of the infection, an ongoing sequencing campaign was started mid-March in collaboration with the local testing laboratories, with an ultimate goal in sequencing as much local viral isolates as possible, resulting in first full-length SARS-CoV-2 isolate genome sequences from the Baltics region being made publicly available in early April. With 133 viral isolates representing ~9.1% of the total COVID-19 cases during the "first coronavirus wave" in the country (early March, 2020-mid-September, 2020) being completely sequenced as of today, here, we provide a first report on the genetic diversity of Latvian SARS-CoV-2 isolates.
Collapse
Affiliation(s)
- Nikita Zrelovs
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Monta Ustinova
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Liga Birzniece
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kaspars Megnis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Vita Rovite
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Lauma Freimane
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Laura Ansone
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | | | | | | | | | - Dmitry Perminov
- E. Gulbja Laboratorija, Ltd, Riga, Latvia
- Faculty of Biology, University of Latvia, Riga, Latvia
| | - Jelena Storozenko
- Riga Stradins University, Riga, Latvia
- Laboratory Service, Latvian Centre of Infectious Diseases Laboratory, National Microbiology Reference Laboratory, Molecular Biology and Virology Department, Riga East University Hospital, Riga, Latvia
| | - Oksana Savicka
- Riga Stradins University, Riga, Latvia
- Laboratory Service, Latvian Centre of Infectious Diseases Laboratory, National Microbiology Reference Laboratory, Molecular Biology and Virology Department, Riga East University Hospital, Riga, Latvia
| | - Elina Dimina
- Infectious Diseases Surveillance and Immunization Division, Infectious Diseases Risk Analysis and Prevention Department, The Centre for Disease Prevention and Control (CDPC) of Latvia, Riga, Latvia
| | - Uga Dumpis
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
25
|
Reddy EK, Battula S, Anwar S, Sajith AM. Drug Re-purposing Approach and Potential Therapeutic Strategies to Treat COVID-19. Mini Rev Med Chem 2021; 21:704-723. [PMID: 33185159 DOI: 10.2174/1389557520666201113105940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
The current pandemic of COVID-19 caused by SARS-Cov-2 has posed a severe threat to the whole world with its highly infectious, progressive nature with up to 10% mortality rates. The severity of the situation faced by the whole world and the lack of efficient therapeutics to treat this viral disease have led the WHO to depend on the drug-repurposing approach to tackle this major global health problem. This review aims at highlighting the various synthetic approaches employed for the synthesis of these FDA approved drugs that have been presently used for COVID-19 treatment. Additionally, a brief overview of several therapeutic strategies is also presented. This review will encourage the scientific community across the globe to come up with better and efficient synthetic protocols and also novel chemical entities along with this core with more potent activity.
Collapse
Affiliation(s)
- Eeda Koti Reddy
- Vignan's Foundation for Science, Technology and Research-VFSTR (Deemed to be University), Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| | | | - Shaik Anwar
- Vignan's Foundation for Science, Technology and Research-VFSTR (Deemed to be University), Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| | - Ayyiliath M Sajith
- Ortin laboratories Pvt. Ltd, Malkapur Village, Choutuppal Mandal, Hyderabad, Telangana 508252, India
| |
Collapse
|
26
|
How the Heart Was Involved in COVID-19 during the First Pandemic Phase: A Review. EPIDEMIOLGIA (BASEL, SWITZERLAND) 2021; 2:124-139. [PMID: 36417195 PMCID: PMC9620895 DOI: 10.3390/epidemiologia2010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/10/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus disease (COVID-19) was first observed in Wuhan, Hubei Province (China) in December 2019, resulting in an acute respiratory syndrome. Only later was COVID-19 considered a public health emergency of international concern and, on 11 March 2020, the WHO classified it as pandemic. Despite being a respiratory virus, the clinical manifestations are also characterized by cardiological involvement, especially in patients suffering from previous comorbidities such as hypertension and diabetes mellitus, its complications being potentially serious or fatal. Despite the efforts made by the scientific community to identify pathophysiological mechanisms, they still remain unclear. A fundamental role is played by the angiotensin 2 converting enzyme, known for its effects at the cardiovascular level and for its involvement in COVID-19 pathogenesis. The goal of this paper was to highlight the mechanisms and knowledge related to cardiovascular involvement during the first pandemic phase, as well as to emphasize the main cardiological complications in infected patients.
Collapse
|
27
|
Wrobel AG, Benton DJ, Xu P, Calder LJ, Borg A, Roustan C, Martin SR, Rosenthal PB, Skehel JJ, Gamblin SJ. Structure and binding properties of Pangolin-CoV spike glycoprotein inform the evolution of SARS-CoV-2. Nat Commun 2021; 12:837. [PMID: 33547281 PMCID: PMC7864994 DOI: 10.1038/s41467-021-21006-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/04/2021] [Indexed: 01/07/2023] Open
Abstract
Coronaviruses of bats and pangolins have been implicated in the origin and evolution of the pandemic SARS-CoV-2. We show that spikes from Guangdong Pangolin-CoVs, closely related to SARS-CoV-2, bind strongly to human and pangolin ACE2 receptors. We also report the cryo-EM structure of a Pangolin-CoV spike protein and show it adopts a fully-closed conformation and that, aside from the Receptor-Binding Domain, it resembles the spike of a bat coronavirus RaTG13 more than that of SARS-CoV-2.
Collapse
Affiliation(s)
- Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT, London, UK.
| | - Donald J Benton
- Structural Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT, London, UK.
| | - Pengqi Xu
- Structural Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT, London, UK
- Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Lesley J Calder
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, NW1 1AT, London, UK
| | - Annabel Borg
- Structural Biology Science Technology Platform, Francis Crick Institute, NW1 1AT, London, UK
| | - Chloë Roustan
- Structural Biology Science Technology Platform, Francis Crick Institute, NW1 1AT, London, UK
| | - Stephen R Martin
- Structural Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT, London, UK
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, NW1 1AT, London, UK
| | - John J Skehel
- Structural Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT, London, UK
| | - Steven J Gamblin
- Structural Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT, London, UK.
| |
Collapse
|
28
|
Biodiversity loss and COVID-19 pandemic: The role of bats in the origin and the spreading of the disease. Biochem Biophys Res Commun 2021; 538:2-13. [PMID: 33092787 PMCID: PMC7566801 DOI: 10.1016/j.bbrc.2020.10.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022]
Abstract
The loss of biodiversity in the ecosystems has created the general conditions that have favored and, in fact, made possible, the insurgence of the COVID-19 pandemic. A lot of factors have contributed to it: deforestation, changes in forest habitats, poorly regulated agricultural surfaces, mismanaged urban growth. They have altered the composition of wildlife communities, greatly increased the contacts of humans with wildlife, and altered niches that harbor pathogens, increasing their chances to come in contact with humans. Among the wildlife, bats have adapted easily to anthropized environments such as houses, barns, cultivated fields, orchards, where they found the suitable ecosystem to prosper. Bats are major hosts for αCoV and βCoV: evolution has shaped their peculiar physiology and their immune system in a way that makes them resistant to viral pathogens that would instead successfully attack other species, including humans. In time, the coronaviruses that bats host as reservoirs have undergone recombination and other modifications that have increased their ability for inter-species transmission: one modification of particular importance has been the development of the ability to use ACE2 as a receptor in host cells. This particular development in CoVs has been responsible for the serious outbreaks in the last two decades, and for the present COVID-19 pandemic.
Collapse
|
29
|
Al Noman A, Islam MS, Sana S, Mondal P, Meem RI, Rana S, Mondol D, Sana M, Hossain SI, Joarder T, Mazumder K. A review of the genome, epidemiology, clinical features, prevention, and treatment scenario of COVID-19: Bangladesh aspects. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2021. [PMCID: PMC7844806 DOI: 10.1186/s43168-021-00053-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The ongoing acute respiratory disease pandemic termed COVID-19 caused by a newly emerged coronavirus has jeopardized the world’s health and economic sectors. As of 20 July 2020, the virus now known as SARS-CoV-2 has already infected more than 14 million individuals and killed 612,815 patients with a mortality rate of 4.12% around the world regardless of age, gender, and race. Main body Bangladesh has become one of its worst sufferers, with 207,453 infected people and 2668 related deaths with a mortality rate of 1.29% until 20 July 2020. More than 50% of COVID-19 patients in Bangladesh are aged between 21 and 40, but elderly people aged more than 60 have the highest mortality rate (44.7%). Male individuals are also more susceptible to the virus than females and consist of 71% and 79% among the infected and deceased patients, respectively. The most prevalent clinical features following the virus incubation period are fever, fatigue, and dry cough. A phylogenetic analysis study elucidated that the virus strain found in the country has 9 single-nucleotide variants, mostly in the ORF1ab gene, and a sequence containing 3 successive variants in the N protein, which reflects a weaker strain of SARS-CoV-2, implicating a possibility of its lower mortality rate. Another investigation of 184 genome samples of SARS-CoV-2 across the country implicated a close homology with a European haplotype of SARS-CoV-2. The country has also joined the race of vaccine development and started phase III clinical trials of a candidate vaccine developed by Sinovac Research and Development Co Ltd, China. Conclusion Bangladesh, as a developing country, still struggles with the pandemic and needs to scale up its response operation and improve healthcare facilities such as testing capacity, institutional quarantine, and isolation centers and promote awareness. Preventive measures such as strict lockdown, social distancing, and boosting the existing immune system are thus considered the only contrivances.
Collapse
|
30
|
Yin C. Latent periodicity-2 in coronavirus SARS-CoV-2 genome: Evolutionary implications. J Theor Biol 2021; 515:110604. [PMID: 33508323 PMCID: PMC7835100 DOI: 10.1016/j.jtbi.2021.110604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/02/2021] [Accepted: 01/21/2021] [Indexed: 11/25/2022]
Abstract
The ongoing global pandemic of infection disease COVID-19 caused by the 2019 novel coronavirus (SARS-COV-2, formerly 2019-nCoV) presents critical threats to public health and the economy. The genome of SARS-CoV-2 had been sequenced and structurally annotated, yet little is known of the intrinsic organization and evolution of the genome. To this end, we present a mathematical method for the genomic spectrum, a kind of barcode, of SARS-CoV-2 and common human coronaviruses. The genomic spectrum is constructed according to the periodic distributions of nucleotides and therefore reflects the unique characteristics of the genome. The results demonstrate that coronavirus SARS-CoV-2 exhibits predominant latent periodicity-2 regions of non-structural proteins 3, 4, 5, and 6. Further analysis of the latent periodicity-2 regions suggests that the dinucleotide imbalances are increased during evolution and may confer the evolutionary fitness of the virus. Especially, SARS-CoV-2 isolates have increased latent periodicity-2 and periodicity-3 during COVID-19 pandemic. The special strong periodicity-2 regions and the intensity of periodicity-2 in the SARS-CoV-2 whole genome may become diagnostic and pharmaceutical targets in monitoring and curing the COVID-19 disease.
Collapse
Affiliation(s)
- Changchuan Yin
- Department of Mathematics, Statistics, and Computer Science, The University of Illinois at Chicago, Chicago, IL 60607-7045, USA.
| |
Collapse
|
31
|
Wu Z, Han Y, Liu B, Li H, Zhu G, Latinne A, Dong J, Sun L, Su H, Liu L, Du J, Zhou S, Chen M, Kritiyakan A, Jittapalapong S, Chaisiri K, Buchy P, Duong V, Yang J, Jiang J, Xu X, Zhou H, Yang F, Irwin DM, Morand S, Daszak P, Wang J, Jin Q. Decoding the RNA viromes in rodent lungs provides new insight into the origin and evolutionary patterns of rodent-borne pathogens in Mainland Southeast Asia. MICROBIOME 2021; 9:18. [PMID: 33478588 PMCID: PMC7818139 DOI: 10.1186/s40168-020-00965-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/06/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND As the largest group of mammalian species, which are also widely distributed all over the world, rodents are the natural reservoirs for many diverse zoonotic viruses. A comprehensive understanding of the core virome of diverse rodents should therefore assist in efforts to reduce the risk of future emergence or re-emergence of rodent-borne zoonotic pathogens. RESULTS This study aimed to describe the viral range that could be detected in the lungs of rodents from Mainland Southeast Asia. Lung samples were collected from 3284 rodents and insectivores of the orders Rodentia, Scandentia, and Eulipotyphla in eighteen provinces of Thailand, Lao PDR, and Cambodia throughout 2006-2018. Meta-transcriptomic analysis was used to outline the unique spectral characteristics of the mammalian viruses within these lungs and the ecological and genetic imprints of the novel viruses. Many mammalian- or arthropod-related viruses from distinct evolutionary lineages were reported for the first time in these species, and viruses related to known pathogens were characterized for their genomic and evolutionary characteristics, host species, and locations. CONCLUSIONS These results expand our understanding of the core viromes of rodents and insectivores from Mainland Southeast Asia and suggest that a high diversity of viruses remains to be found in rodent species of this area. These findings, combined with our previous virome data from China, increase our knowledge of the viral community in wildlife and arthropod vectors in emerging disease hotspots of East and Southeast Asia. Video abstract.
Collapse
Affiliation(s)
- Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | | | | | - Alice Latinne
- EcoHealth Alliance, New York, NY, USA
- Wildlife Conservation Society, Viet Nam Country Program, Ha Noi, Vietnam
- Wildlife Conservation Society, Health Program, Bronx, NY, USA
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Lilin Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Haoxiang Su
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Jiang Du
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Mingxing Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Anamika Kritiyakan
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | | | | | | | - Veasna Duong
- Virology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Jinyong Jiang
- Yunnan Institute of Parasitic Diseases, Pu'er, PR China
| | - Xiang Xu
- Yunnan Institute of Parasitic Diseases, Pu'er, PR China
| | - Hongning Zhou
- Yunnan Institute of Parasitic Diseases, Pu'er, PR China
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Serge Morand
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | | | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
32
|
Structural dynamics of COVID-19 main protease. J Mol Struct 2021; 1223:129235. [PMID: 32929291 PMCID: PMC7480992 DOI: 10.1016/j.molstruc.2020.129235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/21/2022]
Abstract
Based on the importance of protease enzymes in functioning some viruses particularly coronaviridae, we have carried out an in silico investigation on the biologically important, yet unmapped phenomenon of activity and internal dynamics of COVID-19 main protease (Mpro) via applying finite-temperature all-atom molecular dynamics simulations. Temperature quench echoes generated by applying two successive cooling signals have therefore been analyzed in terms of the temperature-temperature correlation function of the protease within the harmonic approximation. An exponentially decaying brand of behavior has been found for the calculated echo depth values with increasing time, which has accordingly led to a much small dephasing time of about 150 fs, revealing a significant anharmonicity and therefore an overall structural stiffness for the COVID-19 main protease.
Collapse
|
33
|
Hamida RS, Shami A, Ali MA, Almohawes ZN, Mohammed AE, Bin-Meferij MM. Kefir: A protective dietary supplementation against viral infection. Biomed Pharmacother 2021; 133:110974. [PMID: 33186795 PMCID: PMC7655491 DOI: 10.1016/j.biopha.2020.110974] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by a recently discovered coronavirus termed 'severe acute respiratory syndrome coronavirus 2' (SARS-CoV-2). Several scholars have tested antiviral drugs and compounds to overcome COVID-19. 'Kefir' is a fermented milk drink similar to a thin yogurt that is made from kefir grains. Kefir and its probiotic contents can modulate the immune system to suppress infections from viruses (e.g., Zika, hepatitis C, influenza, rotaviruses). The antiviral mechanisms of kefir involve enhancement of macrophage production, increasing phagocytosis, boosting production of cluster of differentiation-positive (CD4+), CD8+, immunoglobulin (Ig)G+ and IgA+ B cells, T cells, neutrophils, as well as cytokines (e.g., interleukin (IL)-2, IL-12, interferon gamma-γ). Kefir can act as an anti-inflammatory agent by reducing expression of IL-6, IL-1, TNF-α, and interferon-γ. Hence, kefir might be a significant inhibitor of the 'cytokine storm' that contributes to COVID-19. Here, we review several studies with a particular emphasis on the effect of kefir consumption and their microbial composition against viral infection, as well as discussing the further development of kefir as a protective supplementary dietary against SARS-CoV-2 infection via modulating the immune response.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Egypt.
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia.
| | - Zakiah Nasser Almohawes
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | | |
Collapse
|
34
|
Laali A, Tabibzadeh A, Esghaei M, Yousefi P, Soltani S, Ajdarkosh H, Mosavi-Jarrahi A, Karbalaie Niya MH. Liver Function Tests Profile in COVID-19 Patients at the Admission Time: A Systematic Review of Literature and Conducted Researches. Adv Biomed Res 2020; 9:74. [PMID: 33912490 PMCID: PMC8059456 DOI: 10.4103/abr.abr_73_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 06/28/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Since the start of coronavirus epidemic in Wuhan, China, in early December 2019, many literatures addressed its epidemiology, virology, and clinical presentation. In this review, we systematically reviewed the published literature in the field of liver function tests profile in COVID-19 patients at the admission time. MATERIALS AND METHODS systematic literature search were performed in EMBASE, PubMed, Science Direct, and Scopus using "severe acute respiratory syndrome 2 coronavirus (SARS-CoV-2)", "SARS," "SARS-CoV," "coronavirus," "novel coronavirus," "liver," "hepatitis," "Liver function" keywords. The search was limited to range from 2019 to May 19, 2020. RESULTS From a total 7298 articles, 145 were screened and 18 were eligible for further analysis. The highest rate of liver associated comorbidities was reported 11%. The aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were the most frequent assessed enzymes. Increase in AST level was seen in 10%-53% of patients while The ALT increase was seen in 5%-28% of COVID-19 patients at the admission time. The prothrombin time was increase in 7%-12% of patients and the D-dimer was reports increase in 14%-36% of COVID-19 patients at the admission time. Furthermore, albumin decrease was seen in 6%-98% of COVID-19 patients at the admission time. CONCLUSION In conclusion, by using the results of study, it could be suggested that the liver function tests assessment is critical assessment in COVID-19 patients at the admission time. This liver function test could be used as potential prognostic factor in COVID-19 severity in future.
Collapse
Affiliation(s)
- Azadeh Laali
- Department of Infectious Diseases, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Tabibzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parastoo Yousefi
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saber Soltani
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
35
|
Abstract
Identifying the origin of SARS-CoV-2, the etiological agent of the current COVID-19 pandemic, may help us to avoid future epidemics of coronavirus and other zoonoses. Several theories about the zoonotic origin of SARS-CoV-2 have recently been proposed. While Betacoronavirus found in Rhinolophus bats from China have been broadly implicated, their genetic dissimilarity to SARS-CoV-2 is so high that they are highly unlikely to be its direct ancestors. Thus, an intermediary host is suspected to link bat to human coronaviruses. Based on genomic CpG dinucleotide patterns in different coronaviruses from different hosts, it was suggested that SARS-CoV-2 might have evolved in a canid gastro-intestinal tract prior to transmission to humans. However, similar CpG patterns are now reported in coronaviruses from other hosts, including bats themselves and pangolins. Therefore, reduced genomic CpG alone is not a highly predictive biomarker, suggesting a need for additional biomarkers to reveal intermediate hosts or tissues. The hunt for the zoonotic origin of SARS-CoV-2 continues.
Collapse
Affiliation(s)
- Thomas Leitner
- Theroretical Biology and Biophysics group, Los Alamos National Laboratory, Los Alamos, NM
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA.,Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
36
|
Villas-Boas GR, Rescia VC, Paes MM, Lavorato SN, de Magalhães-Filho MF, Cunha MS, Simões RDC, de Lacerda RB, de Freitas-Júnior RS, Ramos BHDS, Mapeli AM, Henriques MDST, de Freitas WR, Lopes LAF, Oliveira LGR, da Silva JG, Silva-Filho SE, da Silveira APS, Leão KV, Matos MMDS, Fernandes JS, Cuman RKN, Silva-Comar FMDS, Comar JF, Brasileiro LDA, dos Santos JN, Oesterreich SA. The New Coronavirus (SARS-CoV-2): A Comprehensive Review on Immunity and the Application of Bioinformatics and Molecular Modeling to the Discovery of Potential Anti-SARS-CoV-2 Agents. Molecules 2020; 25:E4086. [PMID: 32906733 PMCID: PMC7571161 DOI: 10.3390/molecules25184086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
On March 11, 2020, the World Health Organization (WHO) officially declared the outbreak caused by the new coronavirus (SARS-CoV-2) a pandemic. The rapid spread of the disease surprised the scientific and medical community. Based on the latest reports, news, and scientific articles published, there is no doubt that the coronavirus has overloaded health systems globally. Practical actions against the recent emergence and rapid expansion of the SARS-CoV-2 require the development and use of tools for discovering new molecular anti-SARS-CoV-2 targets. Thus, this review presents bioinformatics and molecular modeling strategies that aim to assist in the discovery of potential anti-SARS-CoV-2 agents. Besides, we reviewed the relationship between SARS-CoV-2 and innate immunity, since understanding the structures involved in this infection can contribute to the development of new therapeutic targets. Bioinformatics is a technology that assists researchers in coping with diseases by investigating genetic sequencing and seeking structural models of potential molecular targets present in SARS-CoV2. The details provided in this review provide future points of consideration in the field of virology and medical sciences that will contribute to clarifying potential therapeutic targets for anti-SARS-CoV-2 and for understanding the molecular mechanisms responsible for the pathogenesis and virulence of SARS-CoV-2.
Collapse
Affiliation(s)
- Gustavo R. Villas-Boas
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (V.C.R.); (M.M.P.); (S.N.L.); (M.F.d.M.-F.); (M.S.C.); (R.d.C.S.)
| | - Vanessa C. Rescia
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (V.C.R.); (M.M.P.); (S.N.L.); (M.F.d.M.-F.); (M.S.C.); (R.d.C.S.)
| | - Marina M. Paes
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (V.C.R.); (M.M.P.); (S.N.L.); (M.F.d.M.-F.); (M.S.C.); (R.d.C.S.)
| | - Stefânia N. Lavorato
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (V.C.R.); (M.M.P.); (S.N.L.); (M.F.d.M.-F.); (M.S.C.); (R.d.C.S.)
| | - Manoel F. de Magalhães-Filho
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (V.C.R.); (M.M.P.); (S.N.L.); (M.F.d.M.-F.); (M.S.C.); (R.d.C.S.)
| | - Mila S. Cunha
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (V.C.R.); (M.M.P.); (S.N.L.); (M.F.d.M.-F.); (M.S.C.); (R.d.C.S.)
| | - Rafael da C. Simões
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (V.C.R.); (M.M.P.); (S.N.L.); (M.F.d.M.-F.); (M.S.C.); (R.d.C.S.)
| | - Roseli B. de Lacerda
- Department of Pharmacology of the Biological Sciences Center, Federal University of Paraná, Jardim das Américas, Caixa. postal 19031, Curitiba CEP 81531-990, PR, Brazil;
| | - Renilson S. de Freitas-Júnior
- Clinical Health is Life-Integrated Health Center, Rua dos Andrades, 99, Barreirinhas, Barreiras CEP 47810-689, BA, Brazil;
| | - Bruno H. da S. Ramos
- Institute of the Spine and Pain Clinic, Rua Dr. Renato Gonçalves, 108, Renato Gonçalves, Barreiras CEP 47806-021, BA, Brazil;
| | - Ana M. Mapeli
- Research Group on Biomolecules and Catalyze, Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil;
| | - Matheus da S. T. Henriques
- Laboratory of Pharmacology of Toxins (LabTox), Graduate Program in Pharmacology and Medicinal Chemistry (PPGFQM), Institute of Biomedical Sciences (ICB) Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro CEP 21941-590, RJ, Brazil;
| | - William R. de Freitas
- Research Group on Biodiversity and Health (BIOSA), Center for Training in Health Sciences, Federal University of Southern Bahia, Praça Joana Angélica, 58, São José, Teixeira de Freitas, Teixeira de Freitas CEP 45988-058, Brazil;
| | - Luiz A. F. Lopes
- University Hospital of the Federal University of Grande Dourados (HU-UFGD), Federal University of Grande Dourados, Rua Ivo Alves da Rocha, 558, Altos do Indaiá, Dourados CEP 79823-501, MS, Brazil;
| | - Luiz G. R. Oliveira
- Nucleus of Studies on Infectious Agents and Vectors (Naive), Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil;
| | - Jonatas G. da Silva
- Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (J.G.d.S.); (K.V.L.); (J.S.F.)
| | - Saulo E. Silva-Filho
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Avenida Costa e Silva, s/nº, Bairro Universitário, Campo Grande CEP 79070-900, MS, Brazil;
| | - Ana P. S. da Silveira
- Faculty of Biological and Health Sciences, University Center Unigran Capital, Rua Balbina de Matos, 2121, Jd. University, Dourados CEP 79.824-900, MS, Brazil;
| | - Katyuscya V. Leão
- Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (J.G.d.S.); (K.V.L.); (J.S.F.)
| | - Maria M. de S. Matos
- Health Sciences at ABC Health University Center, Avenida Príncipe de Gales, 667, Bairro Princípe de Gales, Santo André CEP 09060-870, SP, Brazil;
| | - Jamille S. Fernandes
- Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (J.G.d.S.); (K.V.L.); (J.S.F.)
| | - Roberto K. N. Cuman
- Department of Pharmacology and Therapeutics, State University of Maringá, Avenida Colombo, nº 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil; (R.K.N.C.); (F.M.d.S.S.-C.)
| | - Francielli M. de S. Silva-Comar
- Department of Pharmacology and Therapeutics, State University of Maringá, Avenida Colombo, nº 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil; (R.K.N.C.); (F.M.d.S.S.-C.)
| | - Jurandir F. Comar
- Department of Biochemistry, State University of Maringá, Avenida Colombo, nº 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil;
| | - Luana do A. Brasileiro
- Nacional Cancer Institute (INCA), Rua Visconde de Santa Isabel, 274, Rio de Janeiro CEP 20560-121, RJ, Brazil;
| | | | - Silvia A. Oesterreich
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados Rodovia Dourados, Itahum Km 12, Cidade Universitaria, Caixa postal 364, Dourados CEP 79804-970, Mato Grosso do Sul, Brazil;
| |
Collapse
|
37
|
Olival KJ, Cryan PM, Amman BR, Baric RS, Blehert DS, Brook CE, Calisher CH, Castle KT, Coleman JTH, Daszak P, Epstein JH, Field H, Frick WF, Gilbert AT, Hayman DTS, Ip HS, Karesh WB, Johnson CK, Kading RC, Kingston T, Lorch JM, Mendenhall IH, Peel AJ, Phelps KL, Plowright RK, Reeder DM, Reichard JD, Sleeman JM, Streicker DG, Towner JS, Wang LF. Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: A case study of bats. PLoS Pathog 2020; 16:e1008758. [PMID: 32881980 PMCID: PMC7470399 DOI: 10.1371/journal.ppat.1008758] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The COVID-19 pandemic highlights the substantial public health, economic, and societal consequences of virus spillover from a wildlife reservoir. Widespread human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also presents a new set of challenges when considering viral spillover from people to naïve wildlife and other animal populations. The establishment of new wildlife reservoirs for SARS-CoV-2 would further complicate public health control measures and could lead to wildlife health and conservation impacts. Given the likely bat origin of SARS-CoV-2 and related beta-coronaviruses (β-CoVs), free-ranging bats are a key group of concern for spillover from humans back to wildlife. Here, we review the diversity and natural host range of β-CoVs in bats and examine the risk of humans inadvertently infecting free-ranging bats with SARS-CoV-2. Our review of the global distribution and host range of β-CoV evolutionary lineages suggests that 40+ species of temperate-zone North American bats could be immunologically naïve and susceptible to infection by SARS-CoV-2. We highlight an urgent need to proactively connect the wellbeing of human and wildlife health during the current pandemic and to implement new tools to continue wildlife research while avoiding potentially severe health and conservation impacts of SARS-CoV-2 "spilling back" into free-ranging bat populations.
Collapse
Affiliation(s)
- Kevin J. Olival
- EcoHealth Alliance, New York, New York, United States of America
| | - Paul M. Cryan
- US Geological Survey, Fort Collins Science Center, Ft. Collins, Colorado, United States of America
| | - Brian R. Amman
- US Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - David S. Blehert
- US Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Cara E. Brook
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Charles H. Calisher
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Kevin T. Castle
- Wildlife Veterinary Consulting, Livermore, Colorado, United States of America
| | | | - Peter Daszak
- EcoHealth Alliance, New York, New York, United States of America
| | | | - Hume Field
- EcoHealth Alliance, New York, New York, United States of America
- Bat Conservation International, Austin, Texas, United States of America
| | - Winifred F. Frick
- School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia
- Department of Ecology & Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Amy T. Gilbert
- US Department of Agriculture, National Wildlife Research Center, Ft. Collins, Colorado, United States of America
| | - David T. S. Hayman
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Hon S. Ip
- US Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | | | - Christine K. Johnson
- One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Rebekah C. Kading
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Tigga Kingston
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Jeffrey M. Lorch
- US Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Ian H. Mendenhall
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Alison J. Peel
- Environmental Futures Research Institute, Griffith University, Nathan, Australia
| | - Kendra L. Phelps
- EcoHealth Alliance, New York, New York, United States of America
| | - Raina K. Plowright
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, United States of America
| | - DeeAnn M. Reeder
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | | | - Jonathan M. Sleeman
- US Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Daniel G. Streicker
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Scotland, United Kingdom
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Jonathan S. Towner
- US Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| |
Collapse
|
38
|
Wrobel AG, Benton DJ, Xu P, Roustan C, Martin SR, Rosenthal PB, Skehel JJ, Gamblin SJ. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat Struct Mol Biol 2020; 27:763-767. [PMID: 32647346 PMCID: PMC7610980 DOI: 10.1038/s41594-020-0468-7] [Citation(s) in RCA: 393] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 06/24/2020] [Indexed: 01/06/2023]
Abstract
SARS-CoV-2 is thought to have emerged from bats, possibly via a secondary host. Here, we investigate the relationship of spike (S) glycoprotein from SARS-CoV-2 with the S protein of a closely related bat virus, RaTG13. We determined cryo-EM structures for RaTG13 S and for both furin-cleaved and uncleaved SARS-CoV-2 S; we compared these with recently reported structures for uncleaved SARS-CoV-2 S. We also biochemically characterized their relative stabilities and affinities for the SARS-CoV-2 receptor ACE2. Although the overall structures of human and bat virus S proteins are similar, there are key differences in their properties, including a more stable precleavage form of human S and about 1,000-fold tighter binding of SARS-CoV-2 to human receptor. These observations suggest that cleavage at the furin-cleavage site decreases the overall stability of SARS-CoV-2 S and facilitates the adoption of the open conformation that is required for S to bind to the ACE2 receptor.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Animals
- Betacoronavirus/genetics
- Betacoronavirus/metabolism
- Betacoronavirus/ultrastructure
- Binding Sites
- COVID-19
- Chiroptera/virology
- Coronavirus Infections/virology
- Cryoelectron Microscopy
- Evolution, Molecular
- Furin/chemistry
- Gene Expression
- HEK293 Cells
- Host-Pathogen Interactions/genetics
- Humans
- Models, Molecular
- Pandemics
- Peptidyl-Dipeptidase A/chemistry
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/virology
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Stability
- Proteolysis
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Structural Homology, Protein
Collapse
Affiliation(s)
- Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, Francis Crick Institute, London, UK.
| | - Donald J Benton
- Structural Biology of Disease Processes Laboratory, Francis Crick Institute, London, UK.
| | - Pengqi Xu
- Structural Biology of Disease Processes Laboratory, Francis Crick Institute, London, UK
- Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chloë Roustan
- Structural Biology Science Technology Platform, Francis Crick Institute, London, UK
| | - Stephen R Martin
- Structural Biology Science Technology Platform, Francis Crick Institute, London, UK
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, UK
| | - John J Skehel
- Structural Biology of Disease Processes Laboratory, Francis Crick Institute, London, UK
| | - Steven J Gamblin
- Structural Biology of Disease Processes Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
39
|
Aftab SO, Ghouri MZ, Masood MU, Haider Z, Khan Z, Ahmad A, Munawar N. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J Transl Med 2020; 18:275. [PMID: 32635935 PMCID: PMC7339606 DOI: 10.1186/s12967-020-02439-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/25/2020] [Indexed: 02/13/2023] Open
Abstract
Background The Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) outbreak originating in Wuhan, China, has raised global health concerns and the pandemic has now been reported on all inhabited continents. Hitherto, no antiviral drug is available to combat this viral outbreak. Methods Keeping in mind the urgency of the situation, the current study was designed to devise new strategies for drug discovery and/or repositioning against SARS-CoV-2. In the current study, RNA-dependent RNA polymerase (RdRp), which regulates viral replication, is proposed as a potential therapeutic target to inhibit viral infection. Results Evolutionary studies of whole-genome sequences of SARS-CoV-2 represent high similarity (> 90%) with other SARS viruses. Targeting the RdRp active sites, ASP760 and ASP761, by antiviral drugs could be a potential therapeutic option for inhibition of coronavirus RdRp, and thus viral replication. Target-based virtual screening and molecular docking results show that the antiviral Galidesivir and its structurally similar compounds have shown promise against SARS-CoV-2. Conclusions The anti-polymerase drugs predicted here—CID123624208 and CID11687749—may be considered for in vitro and in vivo clinical trials.
Collapse
Affiliation(s)
- Syed Ovais Aftab
- Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan.,Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zubair Ghouri
- Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan. .,Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Umer Masood
- Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Zeshan Haider
- Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Zulqurnain Khan
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Aftab Ahmad
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan. .,Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan.
| | - Nayla Munawar
- Department of Chemistry, United Arab Emirates University, Al-Ain, UAE
| |
Collapse
|
40
|
Aftab SO, Ghouri MZ, Masood MU, Haider Z, Khan Z, Ahmad A, Munawar N. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J Transl Med 2020. [PMID: 32635935 DOI: 10.1186/s12967-020-02439-0/figures/9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND The Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) outbreak originating in Wuhan, China, has raised global health concerns and the pandemic has now been reported on all inhabited continents. Hitherto, no antiviral drug is available to combat this viral outbreak. METHODS Keeping in mind the urgency of the situation, the current study was designed to devise new strategies for drug discovery and/or repositioning against SARS-CoV-2. In the current study, RNA-dependent RNA polymerase (RdRp), which regulates viral replication, is proposed as a potential therapeutic target to inhibit viral infection. RESULTS Evolutionary studies of whole-genome sequences of SARS-CoV-2 represent high similarity (> 90%) with other SARS viruses. Targeting the RdRp active sites, ASP760 and ASP761, by antiviral drugs could be a potential therapeutic option for inhibition of coronavirus RdRp, and thus viral replication. Target-based virtual screening and molecular docking results show that the antiviral Galidesivir and its structurally similar compounds have shown promise against SARS-CoV-2. CONCLUSIONS The anti-polymerase drugs predicted here-CID123624208 and CID11687749-may be considered for in vitro and in vivo clinical trials.
Collapse
Affiliation(s)
- Syed Ovais Aftab
- Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zubair Ghouri
- Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan.
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Umer Masood
- Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Zeshan Haider
- Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Zulqurnain Khan
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Aftab Ahmad
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan.
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan.
| | - Nayla Munawar
- Department of Chemistry, United Arab Emirates University, Al-Ain, UAE
| |
Collapse
|
41
|
Lam TTY, Jia N, Zhang YW, Shum MHH, Jiang JF, Zhu HC, Tong YG, Shi YX, Ni XB, Liao YS, Li WJ, Jiang BG, Wei W, Yuan TT, Zheng K, Cui XM, Li J, Pei GQ, Qiang X, Cheung WYM, Li LF, Sun FF, Qin S, Huang JC, Leung GM, Holmes EC, Hu YL, Guan Y, Cao WC. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 2020; 583:282-285. [PMID: 32218527 DOI: 10.1101/2020.02.13.945485] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/17/2020] [Indexed: 05/24/2023]
Abstract
The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.
Collapse
Affiliation(s)
- Tommy Tsan-Yuk Lam
- Joint Institute of Virology (Shantou University and The University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, P. R. China
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Ya-Wei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Marcus Ho-Hin Shum
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Hua-Chen Zhu
- Joint Institute of Virology (Shantou University and The University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, P. R. China
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Yi-Gang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yong-Xia Shi
- Guangzhou Customs Technology Center, Guangzhou, P. R. China
| | - Xue-Bing Ni
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Yun-Shi Liao
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Wen-Juan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Wei Wei
- Life Sciences Institute, Guangxi Medical University, Nanning, P. R. China
| | - Ting-Ting Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Kui Zheng
- Guangzhou Customs Technology Center, Guangzhou, P. R. China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Jie Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Guang-Qian Pei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Xin Qiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - William Yiu-Man Cheung
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Lian-Feng Li
- School of Information and Management, Guangxi Medical University, Nanning, P. R. China
| | - Fang-Fang Sun
- Guangzhou Customs Technology Center, Guangzhou, P. R. China
| | - Si Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Ji-Cheng Huang
- Guangzhou Customs Technology Center, Guangzhou, P. R. China
| | - Gabriel M Leung
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Yan-Ling Hu
- Life Sciences Institute, Guangxi Medical University, Nanning, P. R. China.
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, P. R. China.
| | - Yi Guan
- Joint Institute of Virology (Shantou University and The University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, P. R. China.
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China.
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.
| |
Collapse
|
42
|
Dong R, Pei S, Yin C, He RL, Yau SST. Analysis of the Hosts and Transmission Paths of SARS-CoV-2 in the COVID-19 Outbreak. Genes (Basel) 2020; 11:E637. [PMID: 32526937 PMCID: PMC7349679 DOI: 10.3390/genes11060637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
The severe respiratory disease COVID-19 was initially reported in Wuhan, China, in December 2019, and spread into many provinces from Wuhan. The corresponding pathogen was soon identified as a novel coronavirus named SARS-CoV-2 (formerly, 2019-nCoV). As of 2 May, 2020, over 3 million COVID-19 cases had been confirmed, and 235,290 deaths had been reported globally, and the numbers are still increasing. It is important to understand the phylogenetic relationship between SARS-CoV-2 and known coronaviruses, and to identify its hosts for preventing the next round of emergency outbreak. In this study, we employ an effective alignment-free approach, the Natural Vector method, to analyze the phylogeny and classify the coronaviruses based on genomic and protein data. Our results show that SARS-CoV-2 is closely related to, but distinct from the SARS-CoV branch. By analyzing the genetic distances from the SARS-CoV-2 strain to the coronaviruses residing in animal hosts, we establish that the most possible transmission path originates from bats to pangolins to humans.
Collapse
Affiliation(s)
- Rui Dong
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China; (R.D.); (S.P.)
| | - Shaojun Pei
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China; (R.D.); (S.P.)
| | - Changchuan Yin
- Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Rong Lucy He
- Department of Biological Sciences, Chicago State University, Chicago, IL 60628, USA;
| | - Stephen S.-T. Yau
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China; (R.D.); (S.P.)
| |
Collapse
|
43
|
Abstract
Abstract
Viruses similar to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have been discovered in bats of the genus Rhinolophus and in the Sunda pangolin, Manis javanica Desmarest, 1822, suggesting that these animals have played a key role in the emergence of the Covid-19 outbreak in the city of Wuhan, China. In this paper, we review the available data for sarbecoviruses (viruses related to SARS-CoV [2002–2003 outbreak] and SARS-CoV-2) to propose all possible hypotheses on the origin of Covid-19, i. e., involving direct transmission from horseshoe bats to humans, indirect transmission via the pangolin or another animal, with interspecies contamination between either wild animals or animals kept in cage. Present evidence indicates that Rhinolophus bats are the natural reservoir of all sarbecoviruses, and that two divergent SARS-CoV-2-like viruses have circulated in southern China (at least in Guangxi and Guangdong provinces) between August 2017 and March 2019 in captive pangolins destined for sale in wildlife markets. We performed a genetic analysis of seven seized pangolins found to be positive for SARS-CoV-2-like virus using mitochondrial DNA sequences extracted from Sequence Reads Archive data. The results reveal that the same SARS-CoV-2-like virus can be found in animals with distinct haplotypes, which means that they were probably captured in different Southeast Asian regions. Our interpretation is that some pangolins were contaminated in captivity (by other pangolins or by another species to be determined), suggesting that illegal trade of living wild mammals is at the origin of the Covid-19 outbreak. To definitely validate this hypothesis, it is however necessary to discover a virus almost identical to SARS CoV-2 (at least 99% of identity) in animals sold in wet markets. Although pangolins are good candidates, other mammals, such as small carnivores, should not be overlooked.
Collapse
Affiliation(s)
- Alexandre Hassanin
- Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN , Sorbonne Université, EPHE, Université des Antilles, Muséum National d’Histoire Naturelle , CP 51, 57 rue Cuvier, 75231 , Paris Cedex 05 , France
| | - Philippe Grandcolas
- Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN , Sorbonne Université, EPHE, Université des Antilles, Muséum National d’Histoire Naturelle , CP 51, 57 rue Cuvier, 75231 , Paris Cedex 05 , France
| | - Géraldine Veron
- Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN , Sorbonne Université, EPHE, Université des Antilles, Muséum National d’Histoire Naturelle , CP 51, 57 rue Cuvier, 75231 , Paris Cedex 05 , France
| |
Collapse
|
44
|
Canhui Cao, Huang L, Liu K, Ma K, Tian Y, Qin Y, Sun H, Ding W, Gui L, Wu P. Amino acid variation analysis of surface spike glycoprotein at 614 in SARS-CoV-2 strains. Genes Dis 2020; 7:567-577. [PMID: 32837981 PMCID: PMC7264919 DOI: 10.1016/j.gendis.2020.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022] Open
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to disperse globally with worrisome speed, identifying amino acid variations in the virus could help to understand the characteristics of it. Here, we studied 489 SARS-CoV-2 genomes obtained from 32 countries from the Nextstrain database and performed phylogenetic tree analysis by clade, country, and genotype of the surface spike glycoprotein (S protein) at site 614. We found that virus strains from mainland China were mostly distributed in Clade B and Clade undefined in the phylogenetic tree, with very few found in Clade A. In contrast, Clades A2 (one case) and A2a (112 cases) predominantly contained strains from European regions. Moreover, Clades A2 and A2a differed significantly from those of mainland China in age of infected population (P = 0.0071, mean age 40.24 to 46.66), although such differences did not exist between the US and mainland China. Further analysis demonstrated that the variation of the S protein at site 614 (QHD43416.1: p.614D>G) was a characteristic of stains in Clades A2 and A2a. Importantly, this variation was predicted to have neutral or benign effects on the function of the S protein. In addition, global quality estimates and 3D protein structures tended to be different between the two S proteins. In summary, we identified different genomic epidemiology among SARS-CoV-2 strains in different clades, especially in an amino acid variation of the S protein at 614, revealing potential viral genome divergence in SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Canhui Cao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kui Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Ma
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Tian
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong, China
| | - Yu Qin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong, China
| | - Haiyin Sun
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong, China
| | - Wencheng Ding
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong, China
| | - Lingli Gui
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong, China
| |
Collapse
|
45
|
Sivasankarapillai VS, Pillai AM, Rahdar A, Sobha AP, Das SS, Mitropoulos AC, Mokarrar MH, Kyzas GZ. On Facing the SARS-CoV-2 (COVID-19) with Combination of Nanomaterials and Medicine: Possible Strategies and First Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E852. [PMID: 32354113 PMCID: PMC7712148 DOI: 10.3390/nano10050852] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
Global health is facing the most dangerous situation regarding the novel severe acute respiratory syndrome called coronavirus 2 (SARS-CoV-2), which is widely known as the abbreviated COVID-19 pandemic. This is due to the highly infectious nature of the disease and its possibility to cause pneumonia induced death in approximately 6.89% of infected individuals (data until 27 April 2020). The pathogen causing COVID-19 is called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which is believed to be originated from the Wuhan Province in China. Unfortunately, an effective and approved vaccine for SARS-CoV-2 virus is still not available, making the situation more dangerous and currently available medical care futile. This unmet medical need thus requires significant and very urgent research attention to develop an effective vaccine to address the SARS-CoV-2 virus. In this review, the state-of-the-art drug design strategies against the virus are critically summarized including exploitations of novel drugs and potentials of repurposed drugs. The applications of nanochemistry and general nanotechnology was also discussed to give the status of nanodiagnostic systems for COVID-19.
Collapse
Affiliation(s)
| | - Akhilash M. Pillai
- Department of Chemistry, University College, Thiruvananthapuram, Kerala 695034, India;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98615538, Iran
| | - Anumol P. Sobha
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India;
| | - Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India;
| | | | | | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| |
Collapse
|
46
|
Nadeem MS, Zamzami MA, Choudhry H, Murtaza BN, Kazmi I, Ahmad H, Shakoori AR. Origin, Potential Therapeutic Targets and Treatment for Coronavirus Disease (COVID-19). Pathogens 2020; 9:E307. [PMID: 32331255 PMCID: PMC7238035 DOI: 10.3390/pathogens9040307] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 01/08/2023] Open
Abstract
The ongoing episode of coronavirus disease 19 (COVID-19) has imposed a serious threat to global health and the world economy. The disease has rapidly acquired a pandemic status affecting almost all populated areas of the planet. The causative agent of COVID-19 is a novel coronavirus known as SARS-CoV-2. The virus has an approximate 30 kb single-stranded positive-sense RNA genome, which is 74.5% to 99% identical to that of SARS-CoV, CoV-pangolin, and the coronavirus the from horseshoe bat. According to available information, SARS-CoV-2 is inferred to be a recombinant virus that originated from bats and was transmitted to humans, possibly using the pangolin as the intermediate host. The interaction of the SARS-CoV-2 spike protein with the human ACE2 (angiotensin-converting enzyme 2) receptor, and its subsequent cleavage by serine protease and fusion, are the main events in the pathophysiology. The serine protease inhibitors, spike protein-based vaccines, or ACE2 blockers may have therapeutic potential in the near future. At present, no vaccine is available against COVID-19. The disease is being treated with antiviral, antimalarial, anti-inflammatory, herbal medicines, and active plasma antibodies. In this context, the present review article provides a cumulative account of the recent information regarding the viral characteristics, potential therapeutic targets, treatment options, and prospective research questions.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.Z.); (H.C.); (I.K.)
| | - Mazin A. Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.Z.); (H.C.); (I.K.)
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.Z.); (H.C.); (I.K.)
| | - Bibi Nazia Murtaza
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.Z.); (H.C.); (I.K.)
| | - Habib Ahmad
- Department of Genetics, Hazara University Garden Campus, Mansehra 21300, Pakistan;
| | - Abdul Rauf Shakoori
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan;
| |
Collapse
|
47
|
Lam TTY, Jia N, Zhang YW, Shum MHH, Jiang JF, Zhu HC, Tong YG, Shi YX, Ni XB, Liao YS, Li WJ, Jiang BG, Wei W, Yuan TT, Zheng K, Cui XM, Li J, Pei GQ, Qiang X, Cheung WYM, Li LF, Sun FF, Qin S, Huang JC, Leung GM, Holmes EC, Hu YL, Guan Y, Cao WC. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 2020; 583:282-285. [PMID: 32218527 DOI: 10.1038/s41586-020-2169-0] [Citation(s) in RCA: 1149] [Impact Index Per Article: 229.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/17/2020] [Indexed: 11/09/2022]
Abstract
The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.
Collapse
Affiliation(s)
- Tommy Tsan-Yuk Lam
- Joint Institute of Virology (Shantou University and The University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, P. R. China.,State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Ya-Wei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Marcus Ho-Hin Shum
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Hua-Chen Zhu
- Joint Institute of Virology (Shantou University and The University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, P. R. China.,State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Yi-Gang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yong-Xia Shi
- Guangzhou Customs Technology Center, Guangzhou, P. R. China
| | - Xue-Bing Ni
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Yun-Shi Liao
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Wen-Juan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Wei Wei
- Life Sciences Institute, Guangxi Medical University, Nanning, P. R. China
| | - Ting-Ting Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Kui Zheng
- Guangzhou Customs Technology Center, Guangzhou, P. R. China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Jie Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Guang-Qian Pei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Xin Qiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - William Yiu-Man Cheung
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Lian-Feng Li
- School of Information and Management, Guangxi Medical University, Nanning, P. R. China
| | - Fang-Fang Sun
- Guangzhou Customs Technology Center, Guangzhou, P. R. China
| | - Si Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Ji-Cheng Huang
- Guangzhou Customs Technology Center, Guangzhou, P. R. China
| | - Gabriel M Leung
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Yan-Ling Hu
- Life Sciences Institute, Guangxi Medical University, Nanning, P. R. China. .,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, P. R. China.
| | - Yi Guan
- Joint Institute of Virology (Shantou University and The University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, P. R. China. .,State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China.
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.
| |
Collapse
|
48
|
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020. [PMID: 32015507 DOI: 10.1038/s415+86-020-2012-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1-4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5-7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor-angiotensin converting enzyme II (ACE2)-as SARS-CoV.
Collapse
Affiliation(s)
- Peng Zhou
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | | | - Ben Hu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Lei Zhang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Wei Zhang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hao-Rui Si
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Bei Li
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | | | | | - Jing Chen
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun Luo
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hua Guo
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ren-Di Jiang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei-Qin Liu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Chen
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Rui Shen
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi Wang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Shuang Zheng
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Zhao
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Quan-Jiao Chen
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Lin-Lin Liu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Bing Yan
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Fa-Xian Zhan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yan-Yi Wang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Geng-Fu Xiao
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
49
|
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579:270-273. [PMID: 32015507 PMCID: PMC7095418 DOI: 10.1038/s41586-020-2012-7] [Citation(s) in RCA: 13786] [Impact Index Per Article: 2757.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1-4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5-7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor-angiotensin converting enzyme II (ACE2)-as SARS-CoV.
Collapse
Affiliation(s)
- Peng Zhou
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | | | - Ben Hu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Lei Zhang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Wei Zhang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hao-Rui Si
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Bei Li
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | | | | | - Jing Chen
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun Luo
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hua Guo
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ren-Di Jiang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei-Qin Liu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Chen
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Rui Shen
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi Wang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Shuang Zheng
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Zhao
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Quan-Jiao Chen
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Lin-Lin Liu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Bing Yan
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Fa-Xian Zhan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yan-Yi Wang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Geng-Fu Xiao
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
50
|
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020. [PMID: 32015507 DOI: 10.1038/s41586-020-2012-7;select dbms_pipe.receive_message(chr(81)||chr(85)||chr(116)||chr(66),32) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1-4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5-7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor-angiotensin converting enzyme II (ACE2)-as SARS-CoV.
Collapse
Affiliation(s)
- Peng Zhou
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | | | - Ben Hu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Lei Zhang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Wei Zhang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hao-Rui Si
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Bei Li
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | | | | | - Jing Chen
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yun Luo
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hua Guo
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ren-Di Jiang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mei-Qin Liu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Chen
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Rui Shen
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xi Wang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Shuang Zheng
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kai Zhao
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Quan-Jiao Chen
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Lin-Lin Liu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Bing Yan
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Fa-Xian Zhan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yan-Yi Wang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Geng-Fu Xiao
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|