1
|
Yang K, Nizami S, Hu S, Zou L, Deng H, Xie J, Guo Q, Edwards KM, Dhanasekaran V, Yen HL, Wu J. Genetic diversity of highly pathogenic avian influenza H5N6 and H5N8 viruses in poultry markets in Guangdong, China, 2020-2022. J Virol 2025; 99:e0114524. [PMID: 39629997 PMCID: PMC11784294 DOI: 10.1128/jvi.01145-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/30/2024] [Indexed: 02/01/2025] Open
Abstract
H5 highly pathogenic avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/96 (Gs/Gd) lineage continue to evolve and cause outbreaks in domestic poultry and wild birds, with sporadic spillover infections in mammals. The global spread of clade 2.3.4.4b viruses via migratory birds since 2020 has facilitated the introduction of novel reassortants to China, where avian influenza of various subtypes have been epizootic or enzootic among domestic birds. To determine the impact of clade 2.3.4.4b re-introduction on local HPAI dynamics, we analyzed the genetic diversity of H5N6 and H5N8 detected from monthly poultry market surveillance in Guangdong, China, between 2020 and 2022. Our findings reveal that H5N6 viruses clustered in clades 2.3.4.4b and 2.3.4.4h, while H5N8 viruses were exclusively clustered in clade 2.3.4.4b. After 2020, the re-introduced clade 2.3.4.4b viruses replaced the clade 2.3.4.4h viruses detected in 2020. The N6 genes were divided into two clusters, distinguished by an 11 amino acid deletion in the stalk region, while the N8 genes clustered with clade 2.3.4.4 H5N8 viruses circulating among wild birds. Genomic analysis identified 10 transient genotypes. H5N6, which was more prevalently detected, was also clustered into more genotypes than H5N8. Specifically, H5N6 isolates contained genes derived from HPAI H5Nx viruses and low pathogenic avian influenza in China, while the H5N8 isolates contained genes derived from HPAI A(H5N8) 2.3.4.4b and A(H5N1) 2.3.2.1c. No positive selection on amino acid residues associated with mammalian adaptation was found. Our results suggest expanded genetic diversity of H5Nx viruses in China since 2021 with increasing challenges for pandemic preparedness.IMPORTANCESince 2016/2017, clade 2.3.4.4b H5Nx viruses have spread via migratory birds to all continents except Oceania. Here, we evaluated the impact of the re-introduction of clade of 2.3.4.4b on highly pathogenic avian influenza (HPAI) virus genetic diversity in China. Twenty-two H5N6 and H5N8 HPAI isolated from monthly surveillance in two poultry markets in Guangdong between 2020 and 2022 were characterized. Our findings showed that clade 2.3.4.4h, detected in 2020, was replaced by clade 2.3.4.4b in 2021-2022. H5N6 (n = 18) were clustered into more genotypes than H5N8 (n = 4), suggesting that H5N6 may possess better replication fitness in poultry. Conversely, the H5N8 genotypes are largely derived from the clade 2.3.4.4b wild bird isolates. As clade 2.3.4.4b continues to spread via migratory birds, it is anticipated that the genetic diversity of H5N6 viruses circulating in China may continue to expand in the coming years. Continuous efforts in surveillance, genetic analysis, and risk assessment are therefore crucial for pandemic preparedness.
Collapse
Affiliation(s)
- Kang Yang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Sarea Nizami
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Shu Hu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Lirong Zou
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Huishi Deng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Jiamin Xie
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Qianfang Guo
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Kimberly M. Edwards
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Vijaykrishna Dhanasekaran
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jie Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Cargnin Faccin F, Perez DR. Pandemic preparedness through vaccine development for avian influenza viruses. Hum Vaccin Immunother 2024; 20:2347019. [PMID: 38807261 PMCID: PMC11141480 DOI: 10.1080/21645515.2024.2347019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Influenza A viruses pose a significant threat to global health, impacting both humans and animals. Zoonotic transmission, particularly from swine and avian species, is the primary source of human influenza outbreaks. Notably, avian influenza viruses of the H5N1, H7N9, and H9N2 subtypes are of pandemic concern through their global spread and sporadic human infections. Preventing and controlling these viruses is critical due to their high threat level. Vaccination remains the most effective strategy for influenza prevention and control in humans, despite varying vaccine efficacy across strains. This review focuses specifically on pandemic preparedness for avian influenza viruses. We delve into vaccines tested in animal models and summarize clinical trials conducted on H5N1, H7N9, and H9N2 vaccines in humans.
Collapse
Affiliation(s)
- Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
Caserta LC, Frye EA, Butt SL, Laverack M, Nooruzzaman M, Covaleda LM, Thompson AC, Koscielny MP, Cronk B, Johnson A, Kleinhenz K, Edwards EE, Gomez G, Hitchener G, Martins M, Kapczynski DR, Suarez DL, Alexander Morris ER, Hensley T, Beeby JS, Lejeune M, Swinford AK, Elvinger F, Dimitrov KM, Diel DG. Spillover of highly pathogenic avian influenza H5N1 virus to dairy cattle. Nature 2024; 634:669-676. [PMID: 39053575 PMCID: PMC11485258 DOI: 10.1038/s41586-024-07849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 virus clade 2.3.4.4b has caused the death of millions of domestic birds and thousands of wild birds in the USA since January 2022 (refs. 1-4). Throughout this outbreak, spillovers to mammals have been frequently documented5-12. Here we report spillover of the HPAI H5N1 virus to dairy cattle across several states in the USA. The affected cows displayed clinical signs encompassing decreased feed intake, altered faecal consistency, respiratory distress and decreased milk production with abnormal milk. Infectious virus and viral RNA were consistently detected in milk from affected cows. Viral distribution in tissues via immunohistochemistry and in situ hybridization revealed a distinct tropism of the virus for the epithelial cells lining the alveoli of the mammary gland in cows. Whole viral genome sequences recovered from dairy cows, birds, domestic cats and a raccoon from affected farms indicated multidirectional interspecies transmissions. Epidemiological and genomic data revealed efficient cow-to-cow transmission after apparently healthy cows from an affected farm were transported to a premise in a different state. These results demonstrate the transmission of the HPAI H5N1 clade 2.3.4.4b virus at a non-traditional interface, underscoring the ability of the virus to cross species barriers.
Collapse
Affiliation(s)
- Leonardo C Caserta
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Elisha A Frye
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Salman L Butt
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Melissa Laverack
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Mohammed Nooruzzaman
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lina M Covaleda
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Melanie Prarat Koscielny
- Ohio Animal Disease and Diagnostic Laboratory, Ohio Department of Agriculture, Reynoldsburg, OH, USA
| | - Brittany Cronk
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ashley Johnson
- Ohio Animal Disease and Diagnostic Laboratory, Ohio Department of Agriculture, Reynoldsburg, OH, USA
| | - Katie Kleinhenz
- Texas A&M Veterinary Medical Diagnostic Laboratory, Canyon, TX, USA
| | - Erin E Edwards
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, TX, USA
| | - Gabriel Gomez
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, TX, USA
| | - Gavin Hitchener
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Mathias Martins
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, TX, USA
| | - Darrell R Kapczynski
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, USA
| | - David L Suarez
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, USA
| | | | - Terry Hensley
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, TX, USA
| | - John S Beeby
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Manigandan Lejeune
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Amy K Swinford
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, TX, USA
| | - François Elvinger
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kiril M Dimitrov
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, TX, USA.
| | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Hew YL, Hiono T, Monne I, Nabeshima K, Sakuma S, Kumagai A, Okamura S, Soda K, Ito H, Esaki M, Okuya K, Ozawa M, Yabuta T, Takakuwa H, Nguyen LB, Isoda N, Miyazawa K, Onuma M, Sakoda Y. Cocirculation of Genetically Distinct Highly Pathogenic Avian Influenza H5N5 and H5N1 Viruses in Crows, Hokkaido, Japan. Emerg Infect Dis 2024; 30:1912-1917. [PMID: 39106453 PMCID: PMC11346982 DOI: 10.3201/eid3009.240356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] Open
Abstract
We isolated highly pathogenic avian influenza (HPAI) H5N5 and H5N1 viruses from crows in Hokkaido, Japan, during winter 2023-24. They shared genetic similarity with HPAI H5N5 viruses from northern Europe but differed from those in Asia. Continuous monitoring and rapid information sharing between countries are needed to prevent HPAI virus transmission.
Collapse
|
5
|
Erdelyan CNG, Kandeil A, Signore AV, Jones MEB, Vogel P, Andreev K, Bøe CA, Gjerset B, Alkie TN, Yason C, Hisanaga T, Sullivan D, Lung O, Bourque L, Ayilara I, Pama L, Jeevan T, Franks J, Jones JC, Seiler JP, Miller L, Mubareka S, Webby RJ, Berhane Y. Multiple transatlantic incursions of highly pathogenic avian influenza clade 2.3.4.4b A(H5N5) virus into North America and spillover to mammals. Cell Rep 2024; 43:114479. [PMID: 39003741 PMCID: PMC11305400 DOI: 10.1016/j.celrep.2024.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Highly pathogenic avian influenza (HPAI) viruses have spread at an unprecedented scale, leading to mass mortalities in birds and mammals. In 2023, a transatlantic incursion of HPAI A(H5N5) viruses into North America was detected, followed shortly thereafter by a mammalian detection. As these A(H5N5) viruses were similar to contemporary viruses described in Eurasia, the transatlantic spread of A(H5N5) viruses was most likely facilitated by pelagic seabirds. Some of the Canadian A(H5N5) viruses from birds and mammals possessed the PB2-E627K substitution known to facilitate adaptation to mammals. Ferrets inoculated with A(H5N5) viruses showed rapid, severe disease onset, with some evidence of direct contact transmission. However, these viruses have maintained receptor binding traits of avian influenza viruses and were susceptible to oseltamivir and zanamivir. Understanding the factors influencing the virulence and transmission of A(H5N5) in migratory birds and mammals is critical to minimize impacts on wildlife and public health.
Collapse
Affiliation(s)
| | - Ahmed Kandeil
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Anthony V Signore
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Megan E B Jones
- Canadian Wildlife Health Cooperative, Atlantic Region, Charlottetown, PEI C1A 4P3, Canada
| | - Peter Vogel
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Konstantin Andreev
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | - Tamiru N Alkie
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Carmencita Yason
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI C1A 4P3, Canada
| | - Tamiko Hisanaga
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Daniel Sullivan
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Oliver Lung
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2M5, Canada
| | - Laura Bourque
- Canadian Wildlife Health Cooperative, Atlantic Region, Charlottetown, PEI C1A 4P3, Canada
| | - Ifeoluwa Ayilara
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Lemarie Pama
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Trushar Jeevan
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John Franks
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy C Jones
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jon P Seiler
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lance Miller
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Richard J Webby
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38105, USA.
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada; Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
| |
Collapse
|
6
|
Wang Q, Wu S, Shuai J, Li Y, Fu X, Zhang M, Yu X, Ye Z, Ma B. Dual Gene Detection of H5N1 Avian Influenza Virus Based on Dual RT-RPA. Molecules 2024; 29:2801. [PMID: 38930866 PMCID: PMC11206350 DOI: 10.3390/molecules29122801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The H5N1 avian influenza virus seriously affects the health of poultry and humans. Once infected, the mortality rate is very high. Therefore, accurate and timely detection of the H5N1 avian influenza virus is beneficial for controlling its spread. This article establishes a dual gene detection method based on dual RPA for simultaneously detecting the HA and M2 genes of H5N1 avian influenza virus, for the detection of H5N1 avian influenza virus. Design specific primers for the conserved regions of the HA and M2 genes. The sensitivity of the dual RT-RPA detection method for HA and M2 genes is 1 × 10-7 ng/μL. The optimal primer ratio is 1:1, the optimal reaction temperature is 40 °C, and the optimal reaction time is 20 min. Dual RT-RPA was used to detect 72 samples, and compared with RT-qPCR detection, the Kappa value was 1 (p value < 0.05), and the clinical sample detection sensitivity and specificity were both 100%. The dual RT-RPA method is used for the first time to simultaneously detect two genes of the H5N1 avian influenza virus. As an accurate and convenient diagnostic tool, it can be used to diagnose the H5N1 avian influenza virus.
Collapse
Affiliation(s)
- Qian Wang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.W.); (S.W.); (M.Z.); (X.Y.); (Z.Y.); (B.M.)
| | - Shiwen Wu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.W.); (S.W.); (M.Z.); (X.Y.); (Z.Y.); (B.M.)
| | - Jiangbing Shuai
- Zhejiang Institute of Inspection and Quarantine Science and Technology, Hangzhou 311241, China;
| | - Ye Li
- Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Xianshu Fu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.W.); (S.W.); (M.Z.); (X.Y.); (Z.Y.); (B.M.)
| | - Mingzhou Zhang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.W.); (S.W.); (M.Z.); (X.Y.); (Z.Y.); (B.M.)
| | - Xiaoping Yu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.W.); (S.W.); (M.Z.); (X.Y.); (Z.Y.); (B.M.)
| | - Zihong Ye
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.W.); (S.W.); (M.Z.); (X.Y.); (Z.Y.); (B.M.)
| | - Biao Ma
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.W.); (S.W.); (M.Z.); (X.Y.); (Z.Y.); (B.M.)
| |
Collapse
|
7
|
Ospina-Jimenez AF, Gomez AP, Osorio-Zambrano WF, Alvarez-Munoz S, Ramirez-Nieto GC. Sequence-based epitope mapping of high pathogenicity avian influenza H5 clade 2.3.4.4b in Latin America. Front Vet Sci 2024; 11:1347509. [PMID: 38746927 PMCID: PMC11091830 DOI: 10.3389/fvets.2024.1347509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 01/06/2025] Open
Abstract
High Pathogenicity Avian Influenza (HPAI) poses a significant threat to public and animal health. Clade 2.3.4.4b recently emerged from the Eastern hemisphere and disseminated globally, reaching the Latin American (LATAM) region in late 2022 for the first time. HPAI in LATAM has resulted in massive mortalities and culling of poultry and wild birds, causing infection in mammals and humans. Despite its meaningful impact in the region, only occasional evidence about the genetic and epitope characteristics of the introduced HPAI is reported. Hence, this study seeks to phylogenetically characterize the molecular features and the source of HPAI in LATAM by evaluating potential antigenic variations. For such a purpose, we analyzed 302 whole genome sequences. All Latin American viruses are descendants of the 2.3.4.4b clade of the European H5N1 subtype. According to genomic constellations deriving from European and American reassortments, the identification of three major subtypes and eight sub-genotypes was achievable. Based on the variation of antigenic motifs at the HA protein in LATAM, we detected three potential antigenic variants, indicating the HA-C group as the dominant variant. This study decidedly contributes to unraveling the origin of the 2.3.4.4b clade in LATAM, its geographic dissemination, and evolutionary dynamics within Latin American countries. These findings offer useful information for public health interventions and surveillance initiatives planned to prevent and manage the transmission of avian influenza viruses.
Collapse
Affiliation(s)
| | | | | | | | - Gloria C. Ramirez-Nieto
- Microbiology and Epidemiology Research Group, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
8
|
Bruno F, Abondio P, Bruno R, Ceraudo L, Paparazzo E, Citrigno L, Luiselli D, Bruni AC, Passarino G, Colao R, Maletta R, Montesanto A. Alzheimer's disease as a viral disease: Revisiting the infectious hypothesis. Ageing Res Rev 2023; 91:102068. [PMID: 37704050 DOI: 10.1016/j.arr.2023.102068] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Alzheimer's disease (AD) represents the most frequent type of dementia in elderly people. Two major forms of the disease exist: sporadic - the causes of which have not yet been fully understood - and familial - inherited within families from generation to generation, with a clear autosomal dominant transmission of mutations in Presenilin 1 (PSEN1), 2 (PSEN2) or Amyloid Precursors Protein (APP) genes. The main hallmark of AD consists of extracellular deposits of amyloid-beta (Aβ) peptide and intracellular deposits of the hyperphosphorylated form of the tau protein. An ever-growing body of research supports the viral infectious hypothesis of sporadic forms of AD. In particular, it has been shown that several herpes viruses (i.e., HHV-1, HHV-2, HHV-3 or varicella zoster virus, HHV-4 or Epstein Barr virus, HHV-5 or cytomegalovirus, HHV-6A and B, HHV-7), flaviviruses (i.e., Zika virus, Dengue fever virus, Japanese encephalitis virus) as well as Human Immunodeficiency Virus (HIV), hepatitis viruses (HAV, HBV, HCV, HDV, HEV), SARS-CoV2, Ljungan virus (LV), Influenza A virus and Borna disease virus, could increase the risk of AD. Here, we summarized and discussed these results. Based on these findings, significant issues for future studies are also put forward.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Paolo Abondio
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy.
| | - Rossella Bruno
- Sudent at the Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88050 Catanzaro, Italy
| | - Leognano Ceraudo
- Sudent at the Department of Medical and Surgical Sciences, University of Parma, 43121 Parma, Italy
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Luigi Citrigno
- National Research Council (CNR) - Institute for Biomedical Research and Innovation - (IRIB), 87050 Mangone, Cosenza, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| | - Amalia C Bruni
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Rosanna Colao
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy.
| |
Collapse
|
9
|
Herfst S, Begeman L, Spronken MI, Poen MJ, Eggink D, de Meulder D, Lexmond P, Bestebroer TM, Koopmans MPG, Kuiken T, Richard M, Fouchier RAM. A Dutch highly pathogenic H5N6 avian influenza virus showed remarkable tropism for extra-respiratory organs and caused severe disease but was not transmissible via air in the ferret model. mSphere 2023; 8:e0020023. [PMID: 37428085 PMCID: PMC10449504 DOI: 10.1128/msphere.00200-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Continued circulation of A/H5N1 influenza viruses of the A/goose/Guangdong/1/96 lineage in poultry has resulted in the diversification in multiple genetic and antigenic clades. Since 2009, clade 2.3.4.4 hemagglutinin (HA) containing viruses harboring the internal and neuraminidase (NA) genes of other avian influenza A viruses have been detected. As a result, various HA-NA combinations, such as A/H5N1, A/H5N2, A/H5N3, A/H5N5, A/H5N6, and A/H5N8 have been identified. As of January 2023, 83 humans have been infected with A/H5N6 viruses, thereby posing an apparent risk for public health. Here, as part of a risk assessment, the in vitro and in vivo characterization of A/H5N6 A/black-headed gull/Netherlands/29/2017 is described. This A/H5N6 virus was not transmitted between ferrets via the air but was of unexpectedly high pathogenicity compared to other described A/H5N6 viruses. The virus replicated and caused severe lesions not only in respiratory tissues but also in multiple extra-respiratory tissues, including brain, liver, pancreas, spleen, lymph nodes, and adrenal gland. Sequence analyses demonstrated that the well-known mammalian adaptation substitution D701N was positively selected in almost all ferrets. In the in vitro experiments, no other known viral phenotypic properties associated with mammalian adaptation or increased pathogenicity were identified. The lack of transmission via the air and the absence of mammalian adaptation markers suggest that the public health risk of this virus is low. The high pathogenicity of this virus in ferrets could not be explained by the known mammalian pathogenicity factors and should be further studied. IMPORTANCE Avian influenza A/H5 viruses can cross the species barrier and infect humans. These infections can have a fatal outcome, but fortunately these influenza A/H5 viruses do not spread between humans. However, the extensive circulation and reassortment of A/H5N6 viruses in poultry and wild birds warrant risk assessments of circulating strains. Here an in-depth characterization of the properties of an avian A/H5N6 influenza virus isolated from a black-headed gull in the Netherlands was performed in vitro and in vivo, in ferrets. The virus was not transmissible via the air but caused severe disease and spread to extra-respiratory organs. Apart from the detection in ferrets of a mutation that increased virus replication, no other mammalian adaptation phenotypes were identified. Our results suggest that the risk of this avian A/H5N6 virus for public health is low. The underlying reasons for the high pathogenicity of this virus are unexplained and should be further studied.
Collapse
Affiliation(s)
- Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Lineke Begeman
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Monique I. Spronken
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marjolein J. Poen
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dirk Eggink
- Academic Medical Center Amsterdam, Laboratory of Experimental Virology, Amsterdam, the Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marion P. G. Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
10
|
Gilbertson B, Subbarao K. Mammalian infections with highly pathogenic avian influenza viruses renew concerns of pandemic potential. J Exp Med 2023; 220:e20230447. [PMID: 37326966 PMCID: PMC10276204 DOI: 10.1084/jem.20230447] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
There is unprecedented spread of highly pathogenic avian influenza A H5N1 viruses in bird species on five continents, and many reports of infections in mammals most likely resulting from consumption of infected birds. As H5N1 viruses infect more species, their geographical range increases and more viral variants are produced that could have new biological properties including adaptation to mammals and potentially to humans. This highlights the need to continually monitor and assess mammalian-origin H5N1 clade 2.3.4.4b viruses for the presence of mutations that could potentially increase their pandemic risk for humans. Fortunately, to date there have been a limited number of human cases, but infection of mammals increases the opportunity for the virus to acquire mutations that enhance efficient infection, replication, and spread in mammals, properties that have not been seen in these viruses in the past.
Collapse
Affiliation(s)
- Brad Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
- WHO Collaborating Centre for Reference and Research on Influenza at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
11
|
Zhang G, Li B, Raghwani J, Vrancken B, Jia R, Hill SC, Fournié G, Cheng Y, Yang Q, Wang Y, Wang Z, Dong L, Pybus OG, Tian H. Bidirectional Movement of Emerging H5N8 Avian Influenza Viruses Between Europe and Asia via Migratory Birds Since Early 2020. Mol Biol Evol 2023; 40:msad019. [PMID: 36703230 PMCID: PMC9922686 DOI: 10.1093/molbev/msad019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 01/28/2023] Open
Abstract
Migratory birds play a critical role in the rapid spread of highly pathogenic avian influenza (HPAI) H5N8 virus clade 2.3.4.4 across Eurasia. Elucidating the timing and pattern of virus transmission is essential therefore for understanding the spatial dissemination of these viruses. In this study, we surveyed >27,000 wild birds in China, tracked the year-round migration patterns of 20 bird species across China since 2006, and generated new HPAI H5N8 virus genomic data. Using this new data set, we investigated the seasonal transmission dynamics of HPAI H5N8 viruses across Eurasia. We found that introductions of HPAI H5N8 viruses to different Eurasian regions were associated with the seasonal migration of wild birds. Moreover, we report a backflow of HPAI H5N8 virus lineages from Europe to Asia, suggesting that Europe acts as both a source and a sink in the global HPAI virus transmission network.
Collapse
Affiliation(s)
- Guogang Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, National Bird Banding Center of China, Beijing, China
| | - Bingying Li
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Jayna Raghwani
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, United Kingdom
| | - Bram Vrancken
- Department of Microbiology and Immunology, Rega Institute, Laboratory of Evolutionary and Computational Virology, KU Leuven, Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
| | - Ru Jia
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, National Bird Banding Center of China, Beijing, China
| | - Sarah C Hill
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, United Kingdom
| | - Guillaume Fournié
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, United Kingdom
| | - Yanchao Cheng
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Qiqi Yang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Yuxin Wang
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Zengmiao Wang
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Lu Dong
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Oliver G Pybus
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, United Kingdom
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| |
Collapse
|
12
|
Antigua KJC, Baek YH, Choi WS, Jeong JH, Kim EH, Oh S, Yoon SW, Kim C, Kim EG, Choi SY, Hong SK, Choi YK, Song MS. Multiple HA substitutions in highly pathogenic avian influenza H5Nx viruses contributed to the change in the NA subtype preference. Virulence 2022; 13:990-1004. [PMID: 36560870 PMCID: PMC9176248 DOI: 10.1080/21505594.2022.2082672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Novel highly pathogenic avian influenza (HPAI) H5Nx viruses are predominantly circulating worldwide, with an increasing potential threat of an outbreak in humans. It remains largely unknown how the stably maintained HPAI H5N1 suddenly altered its neuraminidase (NA) to other NA subtypes, which resulted in the emergence and evolution of H5Nx viruses. Here, we found that a combination of four specific amino acid (AA) substitutions (S123P-T156A-D183N- S223 R) in the hemagglutinin (HA) protein consistently observed in the H5Nx markedly altered the NA preference of H5N1 viruses. These molecular changes in H5N1 impaired its fitness, particularly viral growth and the functional activities of the HA and NA proteins. Among the AA substitutions identified, the T156A substitution, which contributed to the NA shift, also dramatically altered the antigenicity of H5N1 viruses, suggesting an occurrence of antigenic drift triggered by selective pressure. Our study shows the importance of how HA and NA complement each other and that antigenic drift in HA can potentially cause a shift in the NA protein in influenza A virus evolution.
Collapse
Affiliation(s)
- Khristine Joy C. Antigua
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Yun Hee Baek
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Won-Suk Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Ju Hwan Jeong
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Eun-Ha Kim
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Sol Oh
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Sun-Woo Yoon
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Changil Kim
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - So-Young Choi
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Republic of Korea
| | - Seung Kon Hong
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Republic of Korea
| | - Young Ki Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea,Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS)Center for Study of Emerging and Re-Emerging, Daejeon, Republic of Korea,Young Ki Choi
| | - Min Suk Song
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea,CONTACT Min Suk Song
| |
Collapse
|
13
|
Le KT, Stevenson MA, Isoda N, Nguyen LT, Chu DH, Nguyen TN, Nguyen LV, Tien TN, Le TT, Matsuno K, Okamatsu M, Sakoda Y. A systematic approach to illuminate a new hot spot of avian influenza virus circulation in South Vietnam, 2016-2017. Transbound Emerg Dis 2021; 69:e831-e844. [PMID: 34734678 DOI: 10.1111/tbed.14380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/30/2021] [Accepted: 10/16/2021] [Indexed: 11/27/2022]
Abstract
In South Vietnam, live bird markets (LBMs) are key in the value chain of poultry products and spread of avian influenza virus (AIV) although they may not be the sole determinant of AIV prevalence. For this reason, a risk analysis of AIV prevalence was conducted accounting for all value chain factors. A cross-sectional study of poultry flock managers and poultry on backyard farms, commercial (high biosecurity) farms, LBMs and poultry delivery stations (PDSs) in four districts of Vinh Long province was conducted between December 2016 and August 2017. A total of 3597 swab samples were collected from birds from 101 backyard farms, 50 commercial farms, 58 sellers in LBMs and 19 traders in PDSs. Swab samples were submitted for AIV isolation. At the same time a questionnaire was administered to flock managers asking them to provide details of their knowledge, attitude and practices related to avian influenza. Multiple correspondence analysis and a mixed-effects multivariable logistic regression model were developed to identify enterprise and flock manager characteristics that increased the risk of AIV positivity. A total of 274 birds were positive for AIV isolation, returning an estimated true prevalence of 7.6% [95% confidence interval (CI): 6.8%-8.5%]. The odds of a bird being AIV positive if it was from an LBM or PDS were 45 (95% CI: 3.4-590) and 25 (95% CI: 1.4-460), respectively, times higher to the odds of a bird from a commercial poultry farm being AIV positive. The odds of birds being AIV positive for respondents with a mixed (uncertain or inconsistent) level and a low level of knowledge about AI were 5.0 (95% CI: 0.20-130) and 3.5 (95% CI: 0.2-62), respectively, times higher to the odd of birds being positive for respondents with a good knowledge of AI. LBMs and PDSs should receive specific emphasis in AI control programs in Vietnam. Our findings provide evidence to support the hypothesis that incomplete respondent knowledge of AI and AIV spread mechanism were associated with an increased risk of AIV positivity. Delivery of education programs specifically designed for those in each enterprise will assist in this regard. The timing and frequency of delivery of education programs are likely to be important if the turnover of those working in LBMs and PDSs is high.
Collapse
Affiliation(s)
- Kien Trung Le
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mark A Stevenson
- Faculty of Veterinary and Agricultural Sciences, Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Norikazu Isoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Lam Thanh Nguyen
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Duc-Huy Chu
- Department of Animal Health, Ministry of Agriculture and Rural Development, Ha Noi, Vietnam
| | - Tien Ngoc Nguyen
- Department of Animal Health, Ministry of Agriculture and Rural Development, Ha Noi, Vietnam
| | - Long Van Nguyen
- Department of Animal Health, Ministry of Agriculture and Rural Development, Ha Noi, Vietnam
| | - Tien Ngoc Tien
- Regional Animal Health Office VII, Department of Animal Health, Ministry of Agriculture and Rural Development, Can Tho, Vietnam
| | - Tung Thanh Le
- Sub-Departments of Animal Health, Ministry of Agriculture and Rural Development, Vinh Long, Vietnam
| | - Keita Matsuno
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
14
|
Guo J, Wang Y, Zhao C, Gao X, Zhang Y, Li J, Wang M, Zhang H, Liu W, Wang C, Xia Y, Xu L, He G, Shen J, Sun X, Wang W, Han X, Zhang X, Hou Z, Jin X, Peng N, Li Y, Deng G, Cui P, Zhang Q, Li X, Chen H. Molecular characterization, receptor binding property, and replication in chickens and mice of H9N2 avian influenza viruses isolated from chickens, peafowls, and wild birds in eastern China. Emerg Microbes Infect 2021; 10:2098-2112. [PMID: 34709136 PMCID: PMC8592596 DOI: 10.1080/22221751.2021.1999778] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
H9N2 avian influenza viruses are widely prevalent in birds and pose an increasing threat to humans because of their enhanced virulence and transmissibility in mammals. Active surveillance on the prevalence and evolution of H9N2 viruses in different avian hosts will help develop eradication measures. We isolated 16 H9N2 viruses from chickens, green peafowls, and wild birds in eastern China from 2017 to 2019 and characterized their comparative genetic evolution, receptor-binding specificity, antigenic diversity, replication, and transmission in chickens and mice. The phylogenetic analysis indicated that the green peafowl viruses and swan reassortant shared the same ancestor with the poultry H9N2 viruses prevalent in eastern China, while the seven wild bird viruses belonged to wild bird lineage. The chicken, peafowl, and swan H9N2 viruses that belonged to the poultry lineage preferentially recognized α-2, 6-linked sialic acids (human-like receptor), but the wild bird lineage viruses can bind both α-2, 3 (avian-like receptor) and human-like receptor similarly. Interestingly, the H9N2 viruses of poultry lineage replicated well and transmitted efficiently, but the viruses of wild bird lineage replicated and transmitted with low efficiency. Importantly, the H9N2 viruses of poultry lineage replicated in higher titer in mammal cells and mice than the viruses of wild birds lineage. Altogether, our study indicates that co-circulation of the H9N2 viruses in poultry, wild birds, and ornamental birds increased their cross-transmission risk in different birds because of their widespread dissemination.
Collapse
Affiliation(s)
- Jing Guo
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Yanwen Wang
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Conghui Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xinxin Gao
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Yaping Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jiqing Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Mengjing Wang
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Hong Zhang
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Wenqiang Liu
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Chao Wang
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Yingju Xia
- National Classical Swine Fever Reference Laboratory, China Institute of Veterinary Drug Control, Beijing, People's Republic of China
| | - Lu Xu
- National Classical Swine Fever Reference Laboratory, China Institute of Veterinary Drug Control, Beijing, People's Republic of China
| | - Guimei He
- Institute of Eco-Chongming (IEC), East China Normal University, Shanghai, People's Republic of China
| | - Jinyan Shen
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Xiaohong Sun
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Wenting Wang
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Xinyu Han
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Xiaoxuan Zhang
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Zhengyang Hou
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Xinlin Jin
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Na Peng
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Qianyi Zhang
- National Classical Swine Fever Reference Laboratory, China Institute of Veterinary Drug Control, Beijing, People's Republic of China
| | - Xuyong Li
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|
15
|
Sączyńska V, Florys-Jankowska K, Porębska A, Cecuda-Adamczewska V. A novel epitope-blocking ELISA for specific and sensitive detection of antibodies against H5-subtype influenza virus hemagglutinin. Virol J 2021; 18:91. [PMID: 33931074 PMCID: PMC8085643 DOI: 10.1186/s12985-021-01564-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/22/2021] [Indexed: 12/03/2022] Open
Abstract
Background H5-subtype highly pathogenic (HP) avian influenza viruses (AIVs) cause high mortality in domestic birds and sporadic infections in humans with a frequently fatal outcome, while H5N1 viruses have pandemic potential. Due to veterinary and public health significance, these HPAIVs, as well as low pathogenicity (LP) H5-subtype AIVs having a propensity to mutate into HP viruses, are under epidemiologic surveillance and must be reported to the World Organization for Animal Health (OIE). Our previous work provided a unique panel of 6 different monoclonal antibodies (mAbs) against H5 hemagglutinin (HA), which meets the demand for high-specificity tools for monitoring AIV infection and vaccination in poultry. In this study, we selected one of these mAbs to develop an epitope-blocking (EB) ELISA for detecting H5 subtype-specific antibodies in chicken sera (H5 EB-ELISA). Methods In the H5 EB-ELISA, H5 HA protein produced in a baculovirus-expression vector system was employed as a coating antigen, and the G-7-27-18 mAb was employed as a blocking antibody. The performance characteristics of the assay were evaluated by testing 358 sera from nonimmunized chickens and chickens immunized with AIVs of the H1–H16 subtypes or recombinant H5 HA antigen to obtain the reference and experimental antisera, respectively. The samples were classified as anti-H5 HA positive or negative based on the results of the hemagglutination inhibition (HI) assay, the gold standard in subtype-specific serodiagnosis. Results The H5 EB-ELISA correctly discriminated between the anti-H5 HA negative sera, including those against the non-H5 subtype AIVs, and sera positive for antibodies against the various-origin H5 HAs. Preliminary validation showed 100% analytical and 97.6% diagnostic specificities of the assay and 98.0% and 99.1% diagnostic sensitivities when applied to detect the anti-H5 HA antibodies in the reference and experimental antisera, respectively. Conclusions The H5 EB-ELISA performed well in terms of diagnostic estimates. Thus, further optimization and validation work using a larger set of chicken sera and receiver operating characteristic (ROC) analysis are warranted. Moreover, the present assay provides a valuable basis for developing multispecies screening tests for birds or diagnostic tests for humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01564-6.
Collapse
Affiliation(s)
- Violetta Sączyńska
- ŁUKASIEWICZ Research Network - Industrial Chemistry Institute, Rydygiera 8 Street, 01-793, Warsaw, Poland.
| | - Katarzyna Florys-Jankowska
- ŁUKASIEWICZ Research Network - Industrial Chemistry Institute, Rydygiera 8 Street, 01-793, Warsaw, Poland
| | - Anna Porębska
- ŁUKASIEWICZ Research Network - Industrial Chemistry Institute, Rydygiera 8 Street, 01-793, Warsaw, Poland
| | | |
Collapse
|
16
|
Huang CW, Chen LH, Lee DH, Liu YP, Li WC, Lee MS, Chen YP, Lee F, Chiou CJ, Lin YJ. Evolutionary history of H5 highly pathogenic avian influenza viruses (clade 2.3.4.4c) circulating in Taiwan during 2015-2018. INFECTION GENETICS AND EVOLUTION 2021; 92:104885. [PMID: 33932612 DOI: 10.1016/j.meegid.2021.104885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/13/2022]
Abstract
The highly pathogenic avian influenza (HPAI) virus A/goose/Guangdong/1/96 H5N1 (Gs/GD) lineage has been transmitted globally and has caused deaths in wild birds, poultry, and humans. Clade 2.3.4.4c, one of the subclades of the Gs/GD lineage, spread through Taiwan in late 2014 and become an endemic virus. We analyzed 239 newly sequenced HPAI clade H5Nx isolates to explore the phylogenetic relationships, divergence times, and evolutionary history of Taiwan HPAI H5Nx viruses from 2015 to 2018. Overall, 15 reassortant genotypes were identified among H5N2, H5N3, and H5N8 viruses. Maximum likelihood and Bayesian phylogenies based on homologous hemagglutinin (HA) and matrix protein (MP) genes suggest that Taiwan HPAI H5Nx viruses share a most recent common ancestor that has diversified since October 2014 and is closely related to two HPAI H5N8 viruses identified from wild birds in Japan. Two waves of HPAI caused by multiple reassortants were identified, the first occurring in late 2014 and the second beginning in late 2016. The first wave consisted of seven H5Nx reassortants that spread through Taiwan. In the second wave, eight novel reassortants were detected which had newly introduced internal genes, mostly derived from the avian influenza virus gene pool maintained in wild birds in Asia. Phylodynamic reconstruction using the Bayesian Skygrid model revealed varied fluctuating patterns of relative genetic diversity among reassortants. The mean evolutionary rate also varied among reassortants and subtypes. The neuraminidase (NA) gene evolved faster than the HA gene in H5N2 viruses, while HA evolved faster than NA in H5N8 viruses. The HA mean evolutionary rate ranged from 6.10 × 10-3 to 7.73 × 10-3 and from 5.81 × 10-3 to 9.45 × 10-3 substitutions/site/year for H5N2 and H5N8 viruses, respectively. The continuous circulation of HPAI H5Nx variants and the emergence of novel reassortants in Taiwan highlight that the surveillance, biosecurity, and management systems of poultry farms need to be improved and carefully executed.
Collapse
Affiliation(s)
- Chih-Wei Huang
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Li-Hsuan Chen
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Dong-Hun Lee
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA.
| | - Yu-Pin Liu
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Wan-Chen Li
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Ming-Shiuh Lee
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Yen-Ping Chen
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Fan Lee
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Chwei-Jang Chiou
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Yu-Ju Lin
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| |
Collapse
|
17
|
Gao R, Gu M, Shi L, Liu K, Li X, Wang X, Hu J, Liu X, Hu S, Chen S, Peng D, Jiao X, Liu X. N-linked glycosylation at site 158 of the HA protein of H5N6 highly pathogenic avian influenza virus is important for viral biological properties and host immune responses. Vet Res 2021; 52:8. [PMID: 33436086 PMCID: PMC7805195 DOI: 10.1186/s13567-020-00879-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Since 2014, clade 2.3.4.4 has become the dominant epidemic branch of the Asian lineage H5 subtype highly pathogenic avian influenza virus (HPAIV) in southern and eastern China, while the H5N6 subtype is the most prevalent. We have shown earlier that lack of glycosylation at position 158 of the hemagglutinin (HA) glycoprotein due to the T160A mutation is a key determinant of the dual receptor binding property of clade 2.3.4.4 H5NX subtypes. Our present study aims to explore other effects of this site among H5N6 viruses. Here we report that N-linked glycosylation at site 158 facilitated the assembly of virus-like particles and enhanced virus replication in A549, MDCK, and chicken embryonic fibroblast (CEF) cells. Consistently, the HA-glycosylated H5N6 virus induced higher levels of inflammatory factors and resulted in stronger pathogenicity in mice than the virus without glycosylation at site 158. However, H5N6 viruses without glycosylation at site 158 were more resistant to heat and bound host cells better than the HA-glycosylated viruses. H5N6 virus without glycosylation at this site triggered the host immune response mechanism to antagonize the viral infection, making viral pathogenicity milder and favoring virus spread. These findings highlight the importance of glycosylation at site 158 of HA for the pathogenicity of the H5N6 viruses.
Collapse
Affiliation(s)
- Ruyi Gao
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Liwei Shi
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Kaituo Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Xiuli Li
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiao Hu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaowen Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Xinan Jiao
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
18
|
Luczo JM, Prosser DJ, Pantin-Jackwood MJ, Berlin AM, Spackman E. The pathogenesis of a North American H5N2 clade 2.3.4.4 group A highly pathogenic avian influenza virus in surf scoters (Melanitta perspicillata). BMC Vet Res 2020; 16:351. [PMID: 32967673 PMCID: PMC7513502 DOI: 10.1186/s12917-020-02579-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Aquatic waterfowl, particularly those in the order Anseriformes and Charadriiformes, are the ecological reservoir of avian influenza viruses (AIVs). Dabbling ducks play a recognized role in the maintenance and transmission of AIVs. Furthermore, the pathogenesis of highly pathogenic AIV (HPAIV) in dabbling ducks is well characterized. In contrast, the role of diving ducks in HPAIV maintenance and transmission remains unclear. In this study, the pathogenesis of a North American A/Goose/1/Guangdong/96-lineage clade 2.3.4.4 group A H5N2 HPAIV, A/Northern pintail/Washington/40964/2014, in diving sea ducks (surf scoters, Melanitta perspicillata) was characterized. RESULTS Intrachoanal inoculation of surf scoters with A/Northern pintail/Washington/40964/2014 (H5N2) HPAIV induced mild transient clinical disease whilst concomitantly shedding high virus titers for up to 10 days post-inoculation (dpi), particularly from the oropharyngeal route. Virus shedding, albeit at low levels, continued to be detected up to 14 dpi. Two aged ducks that succumbed to HPAIV infection had pathological evidence for co-infection with duck enteritis virus, which was confirmed by molecular approaches. Abundant HPAIV antigen was observed in visceral and central nervous system organs and was associated with histopathological lesions. CONCLUSIONS Collectively, surf scoters, are susceptible to HPAIV infection and excrete high titers of HPAIV from the respiratory and cloacal tracts whilst being asymptomatic. The susceptibility of diving sea ducks to H5 HPAIV highlights the need for additional research and surveillance to further understand the contribution of diving ducks to HPAIV ecology.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Department of Agriculture-Agricultural Research Service, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S., 934 College Station Road, Athens, GA, 30605, USA
| | - Diann J Prosser
- US Geological Survey, Patuxent Wildlife Research Center, 12100 Beech Forest Road, Laurel, MD, 20708, USA
| | - Mary J Pantin-Jackwood
- Department of Agriculture-Agricultural Research Service, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S., 934 College Station Road, Athens, GA, 30605, USA
| | - Alicia M Berlin
- US Geological Survey, Patuxent Wildlife Research Center, 12100 Beech Forest Road, Laurel, MD, 20708, USA
| | - Erica Spackman
- Department of Agriculture-Agricultural Research Service, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S., 934 College Station Road, Athens, GA, 30605, USA.
| |
Collapse
|
19
|
Li H, Li Q, Li B, Guo Y, Xing J, Xu Q, Liu L, Zhang J, Qi W, Jia W, Liao M. Continuous Reassortment of Clade 2.3.4.4 H5N6 Highly Pathogenetic Avian Influenza Viruses Demonstrating High Risk to Public Health. Pathogens 2020; 9:pathogens9080670. [PMID: 32824873 PMCID: PMC7460007 DOI: 10.3390/pathogens9080670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 01/08/2023] Open
Abstract
Since it firstly emerged in China in 2013, clade 2.3.4.4 H5N6 highly pathogenic avian influenza viruses (HPAIVs) has rapidly replaced predominant H5N1 to become the dominant H5 subtype in China, especially in ducks. Not only endemic in China, it also crossed the geographical barrier and emerged in South Korea, Japan, and Europe. Here, we analyzed the genetic properties of the clade 2.3.4.4 H5N6 HPAIVs with full genome sequences available online together with our own isolates. Phylogenetic analysis showed that clade 2.3.4.4 H5N6 HPAIVs continuously reassorted with local H5, H6, and H7N9/H9N2. Species analysis reveals that aquatic poultry and migratory birds became the dominant hosts of H5N6. Adaption to aquatic poultry might help clade 2.3.4.4 H5N6 better adapt to migratory birds, thus enabling it to become endemic in China. Besides, migratory birds might help clade 2.3.4.4 H5N6 transmit all over the world. Clade 2.3.4.4 H5N6 HPAIVs also showed a preference for α2,6-SA receptors when compared to other avian origin influenza viruses. Experiments in vitro and in vivo revealed that clade 2.3.4.4 H5N6 HPAIVs exhibited high replication efficiency in both avian and mammal cells, and it also showed high pathogenicity in both mice and chickens, demonstrating high risk to public health. Considering all the factors together, adaption to aquatic poultry and migratory birds helps clade 2.3.4.4 H5N6 overcome the geographical isolation, and it has potential to be the next influenza pandemic in the world, making it worthy of our attention.
Collapse
Affiliation(s)
- Huanan Li
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (H.L.); (Q.L.); (B.L.); (Y.G.); (J.X.); (Q.X.); (L.L.); (J.Z.); (W.Q.)
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Qian Li
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (H.L.); (Q.L.); (B.L.); (Y.G.); (J.X.); (Q.X.); (L.L.); (J.Z.); (W.Q.)
- Xiaqiu Animal Husbandry & Veterinary Station, Yantai 261400, China
| | - Bo Li
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (H.L.); (Q.L.); (B.L.); (Y.G.); (J.X.); (Q.X.); (L.L.); (J.Z.); (W.Q.)
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yang Guo
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (H.L.); (Q.L.); (B.L.); (Y.G.); (J.X.); (Q.X.); (L.L.); (J.Z.); (W.Q.)
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinchao Xing
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (H.L.); (Q.L.); (B.L.); (Y.G.); (J.X.); (Q.X.); (L.L.); (J.Z.); (W.Q.)
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Qiang Xu
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (H.L.); (Q.L.); (B.L.); (Y.G.); (J.X.); (Q.X.); (L.L.); (J.Z.); (W.Q.)
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Lele Liu
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (H.L.); (Q.L.); (B.L.); (Y.G.); (J.X.); (Q.X.); (L.L.); (J.Z.); (W.Q.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Jiahao Zhang
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (H.L.); (Q.L.); (B.L.); (Y.G.); (J.X.); (Q.X.); (L.L.); (J.Z.); (W.Q.)
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Wenbao Qi
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (H.L.); (Q.L.); (B.L.); (Y.G.); (J.X.); (Q.X.); (L.L.); (J.Z.); (W.Q.)
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weixin Jia
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (H.L.); (Q.L.); (B.L.); (Y.G.); (J.X.); (Q.X.); (L.L.); (J.Z.); (W.Q.)
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (W.J.); (M.L.); Tel.: +86-020-8528-3309 (W.J.); +86-020-8528-0240 (M.L.)
| | - Ming Liao
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (H.L.); (Q.L.); (B.L.); (Y.G.); (J.X.); (Q.X.); (L.L.); (J.Z.); (W.Q.)
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (W.J.); (M.L.); Tel.: +86-020-8528-3309 (W.J.); +86-020-8528-0240 (M.L.)
| |
Collapse
|
20
|
Abstract
In 1918, a strain of influenza A virus caused a human pandemic resulting in the deaths of 50 million people. A century later, with the advent of sequencing technology and corresponding phylogenetic methods, we know much more about the origins, evolution and epidemiology of influenza epidemics. Here we review the history of avian influenza viruses through the lens of their genetic makeup: from their relationship to human pandemic viruses, starting with the 1918 H1N1 strain, through to the highly pathogenic epidemics in birds and zoonoses up to 2018. We describe the genesis of novel influenza A virus strains by reassortment and evolution in wild and domestic bird populations, as well as the role of wild bird migration in their long-range spread. The emergence of highly pathogenic avian influenza viruses, and the zoonotic incursions of avian H5 and H7 viruses into humans over the last couple of decades are also described. The threat of a new avian influenza virus causing a human pandemic is still present today, although control in domestic avian populations can minimize the risk to human health. This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’. This issue is linked with the subsequent theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’.
Collapse
Affiliation(s)
| | | | - Paul Digard
- The Roslin Institute, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
21
|
Genetic variability of avian influenza virus subtype H5N8 in Egypt in 2017 and 2018. Arch Virol 2020; 165:1357-1366. [PMID: 32285202 DOI: 10.1007/s00705-020-04621-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/24/2020] [Indexed: 01/07/2023]
Abstract
Since the incursion of avian influenza virus subtype H5N8 in Egypt in late 2016, it has spread rapidly, causing severe losses in poultry production. Multiple introductions of different reassorted strains were observed in 2017. In this study, a genetic characterization of the HA gene was carried out with 31 isolates selected from different governorates and sectors. Fifteen isolates were selected for NA gene sequence analysis. The HA and NA genes were divided into two subgroups (I and II) with positive selection pressure identified at positions 174 and 29, respectively. The HA gene contained two novel mutations in the antigenic sites, A and E. The HA nucleotide sequence identity ranged from 77 to 90% with different vaccine seeds. Full-genome sequence analysis was carried out for eight viruses, representing different governorates and sectors, to identify the predominant reassorted strain in Egypt. All viruses were similar to a reassorted strain of clade 2.3.4.4b that has been identified in Germany, among other countries. Analysis of these viruses revealed mutations specific to Egyptian strains and not the original virus characterized in 2017 (A/duck/Egypt/F446/2017), with a novel antiviral resistance marker, V27A, indicating resistance to amantadine in the M2 protein of two strains. The results indicate increased variability of circulating H5N8 viruses compared to earlier viruses sequenced in 2016 and 2017. The predominant reassorted virus circulating in 2017 and 2018 originated from an early 2017 strain. It is important to continue this surveillance of avian influenza viruses to monitor the evolution of circulating viruses.
Collapse
|
22
|
Slomka MJ, Puranik A, Mahmood S, Thomas SS, Seekings AH, Byrne AMP, Núñez A, Bianco C, Mollett BC, Watson S, Brown IH, Brookes SM. Ducks Are Susceptible to Infection with a Range of Doses of H5N8 Highly Pathogenic Avian Influenza Virus (2016, Clade 2.3.4.4b) and Are Largely Resistant to Virus-Specific Mortality, but Efficiently Transmit Infection to Contact Turkeys. Avian Dis 2020; 63:172-180. [PMID: 31131575 DOI: 10.1637/11905-052518-reg.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 11/05/2022]
Abstract
Widespread H5N8 highly pathogenic avian influenza virus (HPAIV; clade 2.3.4.4b) infections occurred in wild birds and poultry across Europe during winter 2016-17. Four different doses of H5N8 HPAIV (A/wigeon/Wales/052833/2016 [wg-Wal-16]) were used to infect 23 Pekin ducks divided into four separate pens, with three contact turkeys introduced for cohousing per pen at 1 day postinfection (dpi). All doses resulted in successful duck infection, with four sporadic mortalities recorded among the 23 (17%) infected ducks, which appeared unrelated to the dose. The ducks transmitted wg-Wal-16 efficiently to the contact turkeys; all 12 (100%) turkeys died. Systemic viral dissemination was detected in multiple organs in two duck mortalities, with limited viral dissemination in another duck, which died after resolution of shedding. Systemic viral tropism was observed in two of the turkeys. The study demonstrated the utility of Pekin ducks as surrogates of infected waterfowl to model the wild bird/gallinaceous poultry interface for introduction of H5N8 HPAIV into terrestrial poultry, where contact turkeys served as a susceptible host. Detection of H5N8-specific antibody up to 58 dpi assured the value of serologic surveillance in farmed ducks by hemagglutination inhibition and anti-nucleoprotein ELISAs.
Collapse
Affiliation(s)
- Marek J Slomka
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, United Kingdom,
| | - Anita Puranik
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, United Kingdom
| | - Sahar Mahmood
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, United Kingdom
| | - Saumya S Thomas
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, United Kingdom
| | - Amanda H Seekings
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, United Kingdom
| | - Alexander M P Byrne
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, United Kingdom
| | - Alejandro Núñez
- Pathology Department, APHA-Weybridge, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Carlo Bianco
- Pathology Department, APHA-Weybridge, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Benjamin C Mollett
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, United Kingdom
| | - Samantha Watson
- Animal Services Unit, APHA-Weybridge, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Ian H Brown
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, United Kingdom
| | - Sharon M Brookes
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, United Kingdom
| |
Collapse
|
23
|
James J, Slomka MJ, Reid SM, Thomas SS, Mahmood S, Byrne AMP, Cooper J, Russell C, Mollett BC, Agyeman-Dua E, Essen S, Brown IH, Brookes SM. Proceedings Paper-Avian Diseases 10th AI Symposium Issue Development and Application of Real-Time PCR Assays for Specific Detection of Contemporary Avian Influenza Virus Subtypes N5, N6, N7, N8, and N9. Avian Dis 2020; 63:209-218. [PMID: 31131579 DOI: 10.1637/11900-051518-reg.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 12/10/2018] [Indexed: 11/05/2022]
Abstract
Previously published NA subtype-specific real-time reverse-transcriptase PCRs (RRT-PCRs) were further validated for the detection of five avian influenza virus (AIV) NA subtypes, namely N5, N6, N7, N8, and N9. Testing of 30 AIV isolates of all nine NA subtypes informed the assay assessments, with the N5 and N9 RRT-PCRs retained as the original published assays while the N7 and N8 assays were modified in the primer-probe sequences to optimize detection of current threats. The preferred N6 RRT-PCR was either the original or the modified variant, depending on the specific H5N6 lineage. Clinical specimen (n = 137) testing revealed the ability of selected N5, N6, and N8 RRT-PCRs to sensitively detect clade 2.3.4.4b highly pathogenic AIV (HPAIV) infections due to H5N5, H5N6, and H5N8 subtypes, respectively, all originating from European poultry and wild bird cases during 2016-2018. Similar testing (n = 32 clinical specimens) also showed the ability of N7 and N9 RRT-PCRs to sensitively detect European H7N7 HPAIV and China-origin H7N9 low pathogenicity AIV infections, respectively.
Collapse
Affiliation(s)
- Joe James
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom,
| | - Marek J Slomka
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Scott M Reid
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Saumya S Thomas
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Sahar Mahmood
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Alexander M P Byrne
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Jayne Cooper
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Christine Russell
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Benjamin C Mollett
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Eric Agyeman-Dua
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Steve Essen
- EU/OIE/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Ian H Brown
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom.,EU/OIE/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Sharon M Brookes
- Virology Department, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| |
Collapse
|
24
|
Kandeil A, Hicks JT, Young SG, El Taweel AN, Kayed AS, Moatasim Y, Kutkat O, Bagato O, McKenzie PP, Cai Z, Badra R, Kutkat M, Bahl J, Webby RJ, Kayali G, Ali MA. Active surveillance and genetic evolution of avian influenza viruses in Egypt, 2016-2018. Emerg Microbes Infect 2020; 8:1370-1382. [PMID: 31526249 PMCID: PMC6758608 DOI: 10.1080/22221751.2019.1663712] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Egypt is a hotspot for avian influenza virus (AIV) due to the endemicity of H5N1 and H9N2 viruses. AIVs were isolated from 329 samples collected in 2016–2018; 48% were H9N2, 37.1% were H5N8, 7.6% were H5N1, and 7.3% were co-infections with 2 of the 3 subtypes. The 32 hemagglutinin (HA) sequences of the H5N1 viruses formed a well-defined lineage within clade 2.2.1.2. The 10 HA sequences of the H5N8 viruses belonged to a subclade within 2.3.4.4. The 11 HA of H9N2 isolates showed high sequence homology with other Egyptian G1-like H9N2 viruses. The prevalence of H5N8 viruses in ducks (2.4%) was higher than in chickens (0.94%). Genetic reassortment was detected in H9N2 viruses. Antigenic analysis showed that H9N2 viruses are homogenous, antigenic drift was detected among H5N1 viruses. AI H5N8 showed higher replication rate followed by H9N2 and H5N1, respectively. H5N8 was more common in Southern Egypt, H9N2 in the Nile Delta, and H5N1 in both areas. Ducks and chickens played a significant role in transmission of H5N1 viruses. The endemicity and co-circulation of H5N1, H5N8, and H9N2 AIV coupled with the lack of a clear control strategy continues to provide avenues for further virus evolution in Egypt.
Collapse
Affiliation(s)
- Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, National Research Centre , Giza , Egypt
| | - Joseph T Hicks
- University of Texas Health Sciences Center , Houston , TX , USA.,Center for the Ecology of Infectious Diseases, University of Georgia , Athens , USA
| | - Sean G Young
- University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Ahmed N El Taweel
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, National Research Centre , Giza , Egypt
| | - Ahmed S Kayed
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, National Research Centre , Giza , Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, National Research Centre , Giza , Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, National Research Centre , Giza , Egypt
| | - Ola Bagato
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, National Research Centre , Giza , Egypt
| | | | - Zhipeng Cai
- Georgia State University , Atlanta , GA , USA
| | | | - Mohamed Kutkat
- Poultry Diseases Department, National Research Centre , Giza , Egypt
| | - Justin Bahl
- University of Texas Health Sciences Center , Houston , TX , USA.,Center for the Ecology of Infectious Diseases, University of Georgia , Athens , USA
| | | | - Ghazi Kayali
- University of Texas Health Sciences Center , Houston , TX , USA.,Human Link , Hazmieh , Lebanon
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, National Research Centre , Giza , Egypt
| |
Collapse
|
25
|
Le TB, Kim HK, Na W, Le VP, Song MS, Song D, Jeong DG, Yoon SW. Development of a Multiplex RT-qPCR for the Detection of Different Clades of Avian Influenza in Poultry. Viruses 2020; 12:v12010100. [PMID: 31952218 PMCID: PMC7019278 DOI: 10.3390/v12010100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/30/2022] Open
Abstract
Since the initial detection of H5N1, a highly pathogenic avian influenza (HPAI) virus, in 1996 in China, numerous HPAI H5 lineages have been classified, and they continue to pose a threat to animal and human health. In this study, we developed a novel primer/probe set that can be employed to simultaneously detect pan-H5 HPAI and two clades, 2.3.2.1 and 2.3.4.4, of H5Nx viruses using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The sensitivity and specificity of these primer sets and probes were confirmed with a number of different subtypes of influenza virus and the H5-HA gene plasmid DNA. In particular, the multiplex RT-qPCR assay was successfully applied to the simultaneous detection of H5 HPAI and different virus clades in clinical field samples from a poultry farm. Therefore, this multiplex assay and a novel detection primer set and probes will be useful for the laboratory diagnosis and epidemiological field studies of different circulating H5 HPAI virus clades in poultry and migratory wild birds.
Collapse
Affiliation(s)
- Tran Bac Le
- Infectious Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Bio-Analytical Science Division, University of Science and Technology, Daejeon 34113, Korea
| | - Hye Kwon Kim
- Department of Microbiology, Chungbuk National University, Cheongju 28644, Korea;
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea;
| | - Van Phan Le
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam;
| | - Min-Suk Song
- College of Medicine, Chungbuk National University, Cheongju 28644, Korea;
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong City 30019, Korea;
| | - Dae Gwin Jeong
- Infectious Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Bio-Analytical Science Division, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (D.G.J.); (S.-W.Y.); Tel.: +82-42-879-8411 (D.G.J.); +82-42-879-8278 (S.-W.Y.)
| | - Sun-Woo Yoon
- Infectious Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Bio-Analytical Science Division, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (D.G.J.); (S.-W.Y.); Tel.: +82-42-879-8411 (D.G.J.); +82-42-879-8278 (S.-W.Y.)
| |
Collapse
|
26
|
Zheng Z, Teo SHC, Arularasu SC, Liu Z, Mohd-Ismail NK, Mok CK, Ong CB, Chu JJH, Tan YJ. Contribution of Fc-dependent cell-mediated activity of a vestigial esterase-targeting antibody against H5N6 virus infection. Emerg Microbes Infect 2020; 9:95-110. [PMID: 31906790 PMCID: PMC6968706 DOI: 10.1080/22221751.2019.1708215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
Abstract
The highly pathogenic avian influenza A (H5N6) virus has caused sporadic human infections with a high case fatality rate. Due to the continuous evolution of this virus subtype and its ability to transmit to humans, there is an urgent need to develop effective antiviral therapeutics. In this study, a murine monoclonal antibody 9F4 was shown to display broad binding affinity against H5Nx viruses. Furthermore, 9F4 can neutralize H5N6 pseudotyped particles and prevent entry into host cells. Additionally, ADCC/ADCP deficient L234A, L235A (LALA) and CDC deficient K322A mutants were generated and displayed comparable binding affinity and neutralizing activity as wild type 9F4 (9F4-WT). Notably, 9F4-WT, 9F4-LALA and 9F4-K322A exhibit in vivo protective efficacies against H5N6 infections in that they were able to reduce viral loads in mice. However, only 9F4-WT and 9F4-K322A but not 9F4-LALA were able to reduce viral pathogenesis in H5N6 challenged mice. Furthermore, depletion of phagocytic cells in mice lungs nullifies 9F4-WT's protection against H5N6 infections, suggesting a crucial role of the host's immune cells in 9F4 antiviral activity. Collectively, these findings reveal the importance of ADCC/ADCP function for 9F4-WT protection against HPAIV H5N6 and demonstrate the potential of 9F4 to confer protection against the reassortant H5-subtype HPAIVs.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antibody-Dependent Cell Cytotoxicity
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunity, Cellular
- Influenza A virus/chemistry
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza, Human/immunology
- Influenza, Human/virology
- Lung/immunology
- Lung/virology
- Mice
- Mice, Inbred BALB C
- Phagocytosis
- Protein Domains
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore, Singapore
| | - Su Hui Catherine Teo
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Suganya Cheyyatraivendran Arularasu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore, Singapore
| | - Zhehao Liu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore, Singapore
| | - Nur Khairiah Mohd-Ismail
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore, Singapore
| | - Chee Keng Mok
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore, Singapore
| | - Chee Bing Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Justin Jang-hann Chu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yee-Joo Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
27
|
Puranik A, Slomka MJ, Warren CJ, Thomas SS, Mahmood S, Byrne AMP, Ramsay AM, Skinner P, Watson S, Everett HE, Núñez A, Brown IH, Brookes SM. Transmission dynamics between infected waterfowl and terrestrial poultry: Differences between the transmission and tropism of H5N8 highly pathogenic avian influenza virus (clade 2.3.4.4a) among ducks, chickens and turkeys. Virology 2019; 541:113-123. [PMID: 32056709 DOI: 10.1016/j.virol.2019.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 11/18/2022]
Abstract
H5N8 highly-pathogenic avian influenza viruses (HPAIVs, clade 2.3.4.4) have spread globally via migratory waterfowl. Pekin ducks infected with a UK virus (H5N8-2014) served as the donors of infection in three separate cohousing experiments to attempt onward transmission chains to sequentially introduced groups of contact ducks, chickens and turkeys. Efficient transmission occurred among ducks and turkeys up to the third contact stage, with all (100%) birds becoming infected. Introduction of an additional fourth contact group of ducks to the turkey transmission chain demonstrated retention of H5N8-2014's waterfowl-competent adaptation. However, onward transmission ceased in chickens at the second contact stage where only 13% became infected. Analysis of viral progeny at this contact stage revealed no emergent polymorphisms in the intra-species (duck) transmission chain, but both terrestrial species included changes in the polymerase and accessory genes. Typical HPAIV pathogenesis and mortality occurred in infected chickens and turkeys, contrasting with 5% mortality among ducks.
Collapse
Affiliation(s)
- Anita Puranik
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Marek J Slomka
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK.
| | - Caroline J Warren
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Saumya S Thomas
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Sahar Mahmood
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Alexander M P Byrne
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Andrew M Ramsay
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Paul Skinner
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Samantha Watson
- Animal Sciences Unit, APHA-Weybridge, Addlestone, Surrey, KT15 3NB, UK
| | - Helen E Everett
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Alejandro Núñez
- Pathology Department, APHA-Weybridge, Addlestone, Surrey, KT15 3NB, UK
| | - Ian H Brown
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| | - Sharon M Brookes
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|
28
|
Comparative Virological and Pathogenic Characteristics of Avian Influenza H5N8 Viruses Detected in Wild Birds and Domestic Poultry in Egypt during the Winter of 2016/2017. Viruses 2019; 11:v11110990. [PMID: 31717865 PMCID: PMC6893538 DOI: 10.3390/v11110990] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
The surveillance and virological characterization of H5N8 avian influenza viruses are important in order to assess their zoonotic potential. The genetic analyses of the Egyptian H5N8 viruses isolated through active surveillance in wild birds and domestic poultry in the winter of 2016/2017 showed multiple introductions of reassortant viruses. In this study, we investigated and compared the growth kinetics, infectivity, and pathogenicity of the three reassortant forms of H5N8 viruses detected in wild birds and domestic poultry in Egypt during the first introduction wave in the winter of 2016/2017. Three representative H5N8 viruses (abbreviated as 813, 871, and 13666) were selected. The 871/H5N8 virus showed enhanced growth properties in vitro in Madin Darby canine kidney (MDCK) and A549 cells. Interestingly, all viruses replicated well in mice without prior adaptation. Infected C57BL/6 mice showed 20% mortality for 813/H5N8 and 60% mortality for 871/H5N8 and 13666/H5N8, which could be attributed to the genetic differences among the viruses. Studies on the pathogenicity in experimentally infected ducks revealed a range of pathogenic effects, with mortality rate ranging from 0% for 813/H5N8 and 13666/H5N8 to 28% for 871/H5N8. No significant differences were observed among the three compared viruses in infected chickens. Overall, different H5N8 viruses had variable biological characteristics, indicating a continuous need for surveillance and virus characterization efforts.
Collapse
|
29
|
Sączyńska V, Romanik-Chruścielewska A, Florys K, Cecuda-Adamczewska V, Łukasiewicz N, Sokołowska I, Kęsik-Brodacka M, Płucienniczak G. Prime-Boost Vaccination With a Novel Hemagglutinin Protein Produced in Bacteria Induces Neutralizing Antibody Responses Against H5-Subtype Influenza Viruses in Commercial Chickens. Front Immunol 2019; 10:2006. [PMID: 31552018 PMCID: PMC6736996 DOI: 10.3389/fimmu.2019.02006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
The highly pathogenic (HP) avian influenza virus (AIV), H5N1 and reassortant H5-subtype HPAIVs, H5N2, H5N6, and H5N8, cause high mortality in domestic birds, resulting in economic losses in the poultry industry. H5N1 and H5N6 also pose significant public health risks and H5N1 viruses are a permanent pandemic threat. To control HPAIVs, eukaryotic expression systems have traditionally been exploited to produce vaccines based on hemagglutinin (HA), a protective viral antigen. In contrast, we used a bacterial expression system to produce vaccine targeting the HA protein. A fragment of the HA ectodomain from H5N1, with a multibasic cleavage site deletion, was expressed in Escherichia coli, refolded, and chromatographically purified from inclusion bodies. The resulting antigen, rH5-E. coli, was validated in terms of conformational integrity and oligomerization status. Previously, the protective efficacy of rH5-E. coli adjuvanted with aluminum hydroxide, has been positively verified by challenging the specific pathogen-free layer chickens with homologous and heterologous H5N1 HPAIVs. Protection was provided primarily by the H5 subtype-specific antibodies, as detected in the FluAC H5 test. The present studies were conducted to assess the performance of alum-adjuvanted rH5-E. coli in commercial birds. Broiler chickens were vaccinated twice with 25 μg of rH5-E. coli at 2- and 4-week intervals, while the layer chickens were vaccinated with 5- to 25-μg antigen doses at 4- and 6-week intervals. Post-vaccination sera were analyzed for anti-H5 HA antibodies, using homologous ELISA and heterologous FluAC H5 and hemagglutination inhibition (HI) tests. Prime-boost immunizations with rH5-E. coli elicited H5 HA-specific antibodies in all the chickens tested. Two antigen doses administered at 4- or 6-week intervals were sufficient to induce neutralizing antibodies against H5-subtype HAs; however, they were ineffective when applied with a 2-week delay. In the layers, 80% to 100% of individuals developed antibodies that were active in the FluAC H5 and/or HI tests. A dose-sparing effect was seen when using the longer prime-boost interval. In the broiler chickens, 62.5% positivity was achieved in the FluAC H5 and/or HI tests. The trials confirmed the vaccine potential of rH5-E. coli and provided indications for anti-influenza vaccination with respect to the chicken type and immunization scheme.
Collapse
Affiliation(s)
- Violetta Sączyńska
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | | | - Katarzyna Florys
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | | | - Natalia Łukasiewicz
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | - Iwona Sokołowska
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | | | - Grażyna Płucienniczak
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, Warsaw, Poland
| |
Collapse
|
30
|
Antigua KJC, Choi WS, Baek YH, Song MS. The Emergence and Decennary Distribution of Clade 2.3.4.4 HPAI H5Nx. Microorganisms 2019; 7:microorganisms7060156. [PMID: 31146461 PMCID: PMC6616411 DOI: 10.3390/microorganisms7060156] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 11/27/2022] Open
Abstract
Reassortment events among influenza viruses occur naturally and may lead to the development of new and different subtypes which often ignite the possibility of an influenza outbreak. Between 2008 and 2010, highly pathogenic avian influenza (HPAI) H5 of the N1 subtype from the A/goose/Guangdong/1/96-like (Gs/GD) lineage generated novel reassortants by introducing other neuraminidase (NA) subtypes reported to cause most outbreaks in poultry. With the extensive divergence of the H5 hemagglutinin (HA) sequences of documented viruses, the WHO/FAO/OIE H5 Evolutionary Working Group clustered these viruses into a systematic and unified nomenclature of clade 2.3.4.4 currently known as “H5Nx” viruses. The rapid emergence and circulation of these viruses, namely, H5N2, H5N3, H5N5, H5N6, H5N8, and the regenerated H5N1, are of great concern based on their pandemic potential. Knowing the evolution and emergence of these novel reassortants helps to better understand their complex nature. The eruption of reports of each H5Nx reassortant through time demonstrates that it could persist beyond its usual seasonal activity, intensifying the possibility of these emerging viruses’ pandemic potential. This review paper provides an overview of the emergence of each novel HPAI H5Nx virus as well as its current epidemiological distribution.
Collapse
Affiliation(s)
- Khristine Joy C Antigua
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Won-Suk Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Yun Hee Baek
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
31
|
Efficacy of novel recombinant fowlpox vaccine against recent Mexican H7N3 highly pathogenic avian influenza virus. Vaccine 2019; 37:2232-2243. [PMID: 30885512 DOI: 10.1016/j.vaccine.2019.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 11/21/2022]
Abstract
Since 2012, H7N3 highly pathogenic avian influenza (HPAI) has produced negative economic and animal welfare impacts on poultry in central Mexico. In the present study, chickens were vaccinated with two different recombinant fowlpox virus vaccines (rFPV-H7/3002 with 2015 H7 hemagglutinin [HA] gene insert, and rFPV-H7/2155 with 2002 H7 HA gene insert), and were then challenged three weeks later with H7N3 HPAI virus (A/chicken/Jalisco/CPA-37905/2015). The rFPV-H7/3002 vaccine conferred 100% protection against mortality and morbidity, and significantly reduced virus shed titers from the respiratory and gastrointestinal tracts. In contrast, 100% of sham and rFPV-H7/2155 vaccinated birds shed virus at higher titers and died within 4 days. Pre- (15/20) and post- (20/20) challenge serum of birds vaccinated with rFPV-H7/3002 had antibodies detectable by hemagglutination inhibition (HI) assay using challenge virus antigen. However, only a few birds (3/20) in the rFPV-H7/2155 vaccinated group had antibodies that reacted against the challenge strain but all birds had antibodies that reacted against the homologous vaccine antigen (A/turkey/Virginia/SEP-66/2002) (20/20). One possible explanation for differences in vaccines efficacy is the antigenic drift between circulating viruses and vaccines. Molecular analysis demonstrated that the Mexican H7N3 strains have continued to rapidly evolve since 2012. In addition, we identified in silico three potential new N-glycosylation sites on the globular head of the H7 HA of A/chicken/Jalisco/CPA-37905/2015 challenge virus, which were absent in 2012 H7N3 outbreak virus. Our results suggested that mutations in the HA antigenic sites including increased glycosylation sites, accumulated in the new circulating Mexican H7 HPAIV strains, altered the recognition of neutralizing antibodies from the older vaccine strain rFPV-H7/2155. Therefore, the protective efficacy of novel rFPV-H7/3002 against recent outbreak Mexican H7N3 HPAIV confirms the importance of frequent updating of vaccines seed strains for long-term effective control of H7 HPAI virus.
Collapse
|
32
|
Stachyra A, Góra-Sochacka A, Radomski JP, Sirko A. Sequential DNA immunization of chickens with bivalent heterologous vaccines induce highly reactive and cross-specific antibodies against influenza hemagglutinin. Poult Sci 2019; 98:199-208. [PMID: 30184142 DOI: 10.3382/ps/pey392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/05/2018] [Indexed: 12/18/2022] Open
Abstract
Vaccines against avian influenza are mostly based on hemagglutinin (HA), which is the main antigen of this virus and a target for neutralizing antibodies. Traditional vaccines are known to be poorly efficient against newly emerging strains, which is an increasing worldwide problem for human health and for the poultry industry. As demonstrated by research and clinical data, sequential exposure to divergent influenza HAs can boost induction of universal antibodies which recognize conserved epitopes. In this work, we have performed sequential immunization of laying hens using monovalent or bivalent compositions of DNA vaccines encoding HAs from distant groups 1 and 2 (H5, H1, and H3 subtypes, respectively). This strategy gave promising results, as it led to induction of polyclonal antibodies against HAs from both groups. These polyclonal antibodies showed cross-reactivity between different HA strains in ELISA, especially when bivalent formulations were used for immunization of birds. However, cross-reactivity of antibodies induced against H3 and H5 HA subtypes was rather limited against each other after homologous immunization. Using a cocktail of HA sequences and/or sequential DNA vaccination with different strains presents a good strategy to overcome the limited effectiveness of vaccines and induce broader immunity against avian influenza. Such a strategy could be adapted for vaccinating laying hens or parental flocks of different groups of poultry.
Collapse
Affiliation(s)
- Anna Stachyra
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Jan P Radomski
- Interdisciplinary Center for Mathematical and Computational Modeling, Warsaw University, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
33
|
H5N8 and H7N9 packaging signals constrain HA reassortment with a seasonal H3N2 influenza A virus. Proc Natl Acad Sci U S A 2019; 116:4611-4618. [PMID: 30760600 PMCID: PMC6410869 DOI: 10.1073/pnas.1818494116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Influenza A virus (IAV) has a segmented genome, which (i) allows for exchange of gene segments in coinfected cells, termed reassortment, and (ii) necessitates a selective packaging mechanism to ensure incorporation of a complete set of segments into virus particles. Packaging signals serve as segment identifiers and enable segment-specific packaging. We have previously shown that packaging signals limit reassortment between heterologous IAV strains in a segment-dependent manner. Here, we evaluated the extent to which packaging signals prevent reassortment events that would raise concern for pandemic emergence. Specifically, we tested the compatibility of hemagglutinin (HA) packaging signals from H5N8 and H7N9 avian IAVs with a human seasonal H3N2 IAV. By evaluating reassortment outcomes, we demonstrate that HA segments carrying H5 or H7 packaging signals are significantly disfavored for incorporation into a human H3N2 virus in both cell culture and a guinea pig model. However, incorporation of the heterologous HAs was not excluded fully, and variants with heterologous HA packaging signals were detected at low levels in vivo, including in naïve contact animals. This work indicates that the likelihood of reassortment between human seasonal IAV and avian IAV is reduced by divergence in the RNA packaging signals of the HA segment. These findings offer important insight into the molecular mechanisms governing IAV emergence and inform efforts to estimate the risks posed by H7N9 and H5N8 subtype avian IAVs.
Collapse
|
34
|
Martin G, Becker DJ, Plowright RK. Environmental Persistence of Influenza H5N1 Is Driven by Temperature and Salinity: Insights From a Bayesian Meta-Analysis. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
35
|
Structural Basis for the Broad, Antibody-Mediated Neutralization of H5N1 Influenza Virus. J Virol 2018; 92:JVI.00547-18. [PMID: 29925655 DOI: 10.1128/jvi.00547-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/07/2018] [Indexed: 01/12/2023] Open
Abstract
Human infection with highly pathogenic avian influenza A viruses causes severe disease and fatalities. We previously identified a potent and broadly neutralizing antibody (bnAb), 13D4, against the H5N1 virus. Here, we report the co-crystal structure of 13D4 in complex with the hemagglutinin (HA) of A/Vietnam/1194/2004 (H5N1). We show that heavy-chain complementarity-determining region 3 (HCDR3) of 13D4 confers broad yet specific neutralization against H5N1, undergoing conformational rearrangement to bind to the receptor binding site (RBS). Further, we show that mutating four critical residues within the RBS-Trp153, Lys156, Lys193, and Leu194-disrupts the binding between 13D4 and HA. Viruses bearing Asn193 instead of Lys/Arg can evade 13D4 neutralization, indicating that Lys193 polymorphism might be, at least in part, involved in the antigenicity of recent H5 genotypes (such as H5N6 and H5N8) as distinguished from H5N1. BnAb 13D4 may offers a template for therapeutic RBS inhibitor design and serve as an indicator of antigenic change for current H5 viruses.IMPORTANCE Infection by highly pathogenic avian influenza A virus remains a threat to public health. Our broadly neutralizing antibody, 13D4, is capable of neutralizing all representative H5N1 viruses and protecting mice against lethal challenge. Structural analysis revealed that 13D4 uses heavy-chain complementarity-determining region 3 (HCDR3) to fit the receptor binding site (RBS) via conformational rearrangement. Four conserved residues within the RBS are critical for the broad potency of 13D4. Importantly, polymorphism of Lys193 on the RBS may be associated with the antigenicity shift from H5N1 to other newly emerging viruses, such as H5N6 and H5N8. Our findings may pave the way for highly pathogenic avian influenza virus vaccine development and therapeutic RBS inhibitor design.
Collapse
|
36
|
A Dual Motif in the Hemagglutinin of H5N1 Goose/Guangdong-Like Highly Pathogenic Avian Influenza Virus Strains Is Conserved from Their Early Evolution and Increases both Membrane Fusion pH and Virulence. J Virol 2018; 92:JVI.00778-18. [PMID: 29899102 DOI: 10.1128/jvi.00778-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/02/2018] [Indexed: 12/27/2022] Open
Abstract
Zoonotic highly pathogenic avian influenza viruses (HPAIV) have raised serious public health concerns of a novel pandemic. These strains emerge from low-pathogenic precursors by the acquisition of a polybasic hemagglutinin (HA) cleavage site, the prime virulence determinant. However, required coadaptations of the HA early in HPAIV evolution remained uncertain. To address this question, we generated several HA1/HA2 chimeras and point mutants of an H5N1 clade 2.2.2 HPAIV and an H5N1 low-pathogenic strain. Initial surveys of 3,385 HPAIV H5 HA sequences revealed frequencies of 0.5% for the single amino acids 123R and 124I but a frequency of 97.5% for the dual combination. This highly conserved dual motif is still retained in contemporary H5 HPAIV, including the novel H5NX reassortants carrying neuraminidases of different subtypes, like the H5N8 and the zoonotic H5N6 strains. Remarkably, the earliest Asian H5N1 HPAIV, the Goose/Guangdong strains from 1996/1997, carried 123R only, whereas 124I appeared later in 1997. Experimental reversion in the HPAIV HA to the two residues 123S and124T, characteristic of low-pathogenic strains, prevented virus rescue, while the single substitutions attenuated the virus in both chicken and mice considerably, accompanied by a decreased HA fusion pH. This increased pH sensitivity of H5 HPAIV enables HA-mediated membrane fusion at a higher endosomal pH. Therefore, this HA adaptation may permit infection of cells with less-acidic endosomes, e.g., within the respiratory tract, resulting in an extended organ tropism. Taken together, HA coadaptation to increased acid sensitivity promoted the early evolution of H5 Goose/Guangdong-like HPAIV strains and is still required for their zoonotic potential.IMPORTANCE Zoonotic highly pathogenic avian influenza viruses (HPAIV) have raised serious public health concerns of a novel pandemic. Their prime virulence determinant is the polybasic hemagglutinin (HA) cleavage site. However, required coadaptations in the HA (and other genes) remained uncertain. Here, we identified the dual motif 123R/124I in the HA head that increases the activation pH of HA-mediated membrane fusion, essential for virus genome release into the cytoplasm. This motif is extremely predominant in H5 HPAIV and emerged already in the earliest 1997 H5N1 HPAIV. Reversion to 123S or 124T, characteristic of low-pathogenic strains, attenuated the virus in chicken and mice, accompanied by a decreased HA activation pH. This increased pH sensitivity of H5 HPAIV extends the viral tropism to cells with less-acidic endosomes, e.g., within the respiratory tract. Therefore, early HA adaptation to increased acid sensitivity promoted the emergence of H5 Goose/Guangdong-like HPAIV strains and is required for their zoonotic potential.
Collapse
|
37
|
Belser JA, Brock N, Sun X, Jones J, Zanders N, Hodges E, Pulit-Penaloza JA, Wentworth D, Tumpey TM, Davis T, Maines TR. Mammalian Pathogenesis and Transmission of Avian Influenza A(H7N9) Viruses, Tennessee, USA, 2017. Emerg Infect Dis 2018; 24:149-152. [PMID: 29260672 PMCID: PMC5749443 DOI: 10.3201/eid2401.171574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Infections with low pathogenicity and highly pathogenic avian influenza A(H7N9) viruses affected poultry in 4 states in the southeastern United States in 2017. We evaluated pathogenicity and transmission of representative viruses in mouse and ferret models and examined replication kinetics in human respiratory tract cells. These viruses can cause respiratory infections in mammalian models.
Collapse
|
38
|
Qin T, Zhu J, Ma R, Yin Y, Chen S, Peng D, Liu X. Compatibility between haemagglutinin and neuraminidase drives the recent emergence of novel clade 2.3.4.4 H5Nx avian influenza viruses in China. Transbound Emerg Dis 2018; 65:1757-1769. [PMID: 29999588 DOI: 10.1111/tbed.12949] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
Genetic reassortments between highly pathogenic avian influenza (HPAI) H5 subtype viruses with different neuraminidase (NA) subtypes have increased in prevalence since 2010 in wild birds and poultry from China. The HA gene slightly evolved from clade 2.3.4 to clade 2.3.4.4, raising the question of whether novel clade 2.3.4.4 HA broke the balance with N1 but is matched well with NAx to drive viral epidemics. To clarify the role of compatibility between HA and NA on the prevalence of H5Nx subtypes, we constructed 10 recombinant viruses in which the clade 2.3.4 or clade 2.3.4.4 HA genes were matched with different NA (N1, N2 and N8) genes and evaluated viral characteristics and pathogenicity. Combinations between clade 2.3.4 HA and N1 or between clade 2.3.4.4 HA and NAx, but not between clade 2.3.4.4 HA and N1, or between clade 2.3.4 HA and NAx, promoted viral growth, NA activity, thermostability, low-pH stability and pathogenicity in chicken and mice. These findings suggest that both clade 2.3.4 HA/N1 and clade 2.3.4.4 HA/NAx displayed a better match, which could promote the increased prevalence of clade 2.3.4 H5N1 AIV (prior to 2010) and clade 2.3.4.4 H5Nx AIV (since 2010) in China, respectively.
Collapse
Affiliation(s)
- Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| | - Jingjing Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| | - Ruonan Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| | - Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| |
Collapse
|
39
|
Microevolution and independent incursions as main forces shaping H5 Hemagglutinin diversity during a H5N8/H5N5 highly pathogenic avian influenza outbreak in Czech Republic in 2017. Arch Virol 2018; 163:2219-2224. [DOI: 10.1007/s00705-018-3833-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 02/16/2018] [Indexed: 10/17/2022]
|
40
|
Tsunekuni R, Yaguchi Y, Kashima Y, Yamashita K, Takemae N, Mine J, Tanikawa T, Uchida Y, Saito T. Spatial transmission of H5N6 highly pathogenic avian influenza viruses among wild birds in Ibaraki Prefecture, Japan, 2016-2017. Arch Virol 2018; 163:1195-1207. [PMID: 29392495 DOI: 10.1007/s00705-018-3752-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/10/2018] [Indexed: 11/25/2022]
Abstract
From 29 November 2016 to 24 January 2017, sixty-three cases of H5N6 highly pathogenic avian influenza virus (HPAIV) infections were detected in wild birds in Ibaraki Prefecture, Japan. Here, we analyzed the genetic, temporal, and geographic correlations of these 63 HPAIVs to elucidate their dissemination throughout the prefecture. Full-genome sequence analysis of the Ibaraki isolates showed that 7 segments (PB2, PB1, PA, HA, NP, NA, NS) were derived from G1.1.9 strains while the M segment was from G1.1 strains; both groups of strains circulated in south China. Pathological studies revealed severe systemic infection in dead swans (the majority of dead birds and the only species necropsied), thus indicating high susceptibility to H5N6 HPAIVs. Coalescent phylogenetic analysis using the 7 G1.1.9-derived segments enabled detailed analysis of the short-term evolution of these highly homologous HPAIVs. This analysis revealed that the H5N6 HPAIVs isolated from wild birds in Ibaraki Prefecture were divided into 7 groups. Spatial analysis demonstrated that most of the cases concentrated around Senba Lake originated from a single source, and progeny viruses were transmitted to other locations after the infection expanded in mute swans. In contrast, within just a 5-km radius of the area in which cases were concentrated, three different intrusions of H5N6 HPAIVs were evident. Multi-segment analysis of short-term evolution showed that not only was the invading virus spread throughout Ibaraki Prefecture but also that, despite the small size of this region, multiple invasions had occurred during winter 2016-2017.
Collapse
Affiliation(s)
- Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan
| | - Yuji Yaguchi
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, 966-1 Nakagachityo, Mito, Ibaraki, 310-0002, Japan
| | - Yuki Kashima
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, 966-1 Nakagachityo, Mito, Ibaraki, 310-0002, Japan
| | - Kaoru Yamashita
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, 966-1 Nakagachityo, Mito, Ibaraki, 310-0002, Japan
| | - Nobuhiro Takemae
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan
| | - Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan
| | - Taichiro Tanikawa
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan.
| |
Collapse
|
41
|
Human Clade 2.3.4.4 A/H5N6 Influenza Virus Lacks Mammalian Adaptation Markers and Does Not Transmit via the Airborne Route between Ferrets. mSphere 2018; 3:mSphere00405-17. [PMID: 29299528 PMCID: PMC5750386 DOI: 10.1128/msphere.00405-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/04/2017] [Indexed: 11/20/2022] Open
Abstract
Since their emergence in 1997, A/H5N1 influenza viruses of the A/goose/Guangdong/1/96 lineage have diversified in multiple genetic and antigenic clades upon continued circulation in poultry in several countries in Eurasia and Africa. Since 2009, reassortant viruses carrying clade 2.3.4.4 hemagglutinin (HA) and internal and neuraminidase (NA) genes of influenza A viruses of different avian origin have been detected, yielding various HA-NA combinations, such as A/H5N1, A/H5N2, A/H5N3, A/H5N5, A/H5N6, and A/H5N8. Previous studies reported on the low pathogenicity and lack of airborne transmission of A/H5N2 and A/H5N8 viruses in the ferret model. However, although A/H5N6 viruses are the only clade 2.3.4.4 viruses that crossed the species barrier and infected humans, the risk they pose for human health remains poorly characterized. Here, the characterization of A/H5N6 A/Guangzhou/39715/2014 virus in vitro and in ferrets is described. This A/H5N6 virus possessed high polymerase activity, mediated by the E627K substitution in the PB2 protein, which corresponds to only one biological trait out of the three that were previously shown to confer airborne transmissibility to A/H5N1 viruses between ferrets. This might explain its lack of airborne transmission between ferrets. After intranasal inoculation, A/H5N6 virus replicated to high titers in the respiratory tracts of ferrets and was excreted for at least 6 days. Moreover, A/H5N6 virus caused severe pneumonia in ferrets upon intratracheal inoculation. Thus, A/H5N6 virus causes a more severe disease in ferrets than previously investigated clade 2.3.4.4 viruses, but our results demonstrate that the risk from airborne spread is currently low. IMPORTANCE Avian influenza A viruses are a threat to human health, as they cross the species barrier and infect humans occasionally, often with severe outcome. The antigenic and genetic diversity of A/H5 viruses from the A/goose/Guangdong/1/96 lineage is increasing, due to continued circulation and reassortment in poultry, posing a constant risk for public health and requiring regular risk assessments. Here we performed an in-depth characterization of the properties of the newly emerged zoonotic A/H5N6 virus in vitro and in ferrets. The lack of airborne transmission in the ferret model indicates that A/H5N6 virus does not pose a direct public health threat, despite the fact that it can replicate to high titers throughout the respiratory tracts of ferrets and cause more severe disease than other clade 2.3.4.4 viruses.
Collapse
|
42
|
Park SJ, Kim EH, Kwon HI, Song MS, Kim SM, Kim YI, Si YJ, Lee IW, Nguyen HD, Shin OS, Kim CJ, Choi YK. Altered virulence of Highly Pathogenic Avian Influenza (HPAI) H5N8 reassortant viruses in mammalian models. Virulence 2018; 9:133-148. [PMID: 28873012 PMCID: PMC5955454 DOI: 10.1080/21505594.2017.1366408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/24/2017] [Accepted: 08/08/2017] [Indexed: 12/03/2022] Open
Abstract
Recently identified highly pathogenic avian influenza (HPAI) H5N8 viruses (clade 2.3.4.4) are relatively low to moderately pathogenic in mammalian hosts compared with HPAI H5N1 viruses. In this study, we generated reassortant viruses comprised of A/MD/Korea/W452/2014(H5N8) with substitution of individual genes from A/EM/Korea/W149/2006(H5N1) to understand the contribution of each viral gene to virulence in mammals. Substituting the PB2 gene segment or the NA gene segment of the H5N8 virus by that from the H5N1 virus resulted in significantly enhanced pathogenicity compared with the parental H5N8 virus in mice. Of note, substitution of the PB2 gene segment of the H5N8 virus by that from the H5N1 virus resulted in a 1000-fold increase in virulence for mice compared with the parental virus (MLD50 decreased from 105.8 to 102.5 EID50). Further, the W452W149PB2 virus also induced the highest virus titers in lungs at all time points and the highest levels of inflammatory cytokine responses among all viruses tested. This high virulence phenotype was also confirmed by high viral titers in the respiratory tracts of infected ferrets. Further, a mini-genome assay revealed that W452W149PB2 has significantly increased polymerase activity (p < 0.001). Taken together, our study demonstrates that a single gene substitution from other avian influenza viruses can alter the pathogenicity of recent H5N8 viruses, and therefore emphasizes the need for intensive monitoring of reassortment events among co-circulating avian and mammalian viruses.
Collapse
Affiliation(s)
- Su-Jin Park
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Eun-Ha Kim
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Hyeok-Il Kwon
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Min-Suk Song
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Se Mi Kim
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Young-Il Kim
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Young-Jae Si
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - In-Won Lee
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Hiep Dinh Nguyen
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Ok Sarah Shin
- Brain Korea 21 Plus for Biomedical Science, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
43
|
Rajesh Kumar S, Chelvaretnam S, Tan Y, Prabakaran M. Broadening the H5N3 Vaccine Immunogenicity against H5N1 Virus by Modification of Neutralizing Epitopes. Viruses 2017; 10:E2. [PMID: 29295514 PMCID: PMC5795415 DOI: 10.3390/v10010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 12/18/2022] Open
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 virus remains to be one of the world's largest pandemic threats due to the emergence of new variants. The rapid evolution of new sub-lineages is currently the greatest challenge in vaccine development. In this study, we developed an epitope modified non-pathogenic H5N3 (A/duck/Singapore/97) vaccine for broad protection against influenza H5 subtype. H5N3 hemagglutinin (HA) mutant reassortant viruses with A/Puerto Rico/8/34 (PR8) backbone were generated by mutating amino acids at the 140th loop and 190th α-helix of hemagglutinin. The cross-neutralizing efficacy of reverse genetics-derived H5N3HA (RG-H5N3HA) mutants was confirmed by testing reactivity with reference chicken anti-H5N1 clade 2 virus sera. Furthermore, RG-H5N3HA mutant immunized mice induced cross-neutralizing antibodies and cross-protection against distinct H5N1 viral infection. Our findings suggest that the use of non-pathogenic H5 viruses antigenically related to HPAI-H5N1 allows for the development of broadly protective vaccines and reduces the need for biosafety level 3 (BSL3) containment facilities.
Collapse
Affiliation(s)
| | - Sharenya Chelvaretnam
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Yunrui Tan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Mookkan Prabakaran
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
44
|
Serological evidence of H5-subtype influenza A virus infection in indigenous avian and mammalian species in Korea. Arch Virol 2017; 163:649-657. [PMID: 29204739 DOI: 10.1007/s00705-017-3655-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/11/2017] [Indexed: 01/09/2023]
Abstract
In Korea, H5-subtype highly pathogenic avian influenza (HPAI) has caused huge economic losses in poultry farms through outbreaks of H5N1 since 2003, H5N8 since 2013 and H5N6 since 2016. Although it was reported that long-distance migratory birds may play a major role in the global spread of avian influenza viruses (AIVs), transmission from such birds to poultry has not been confirmed. Intermediate hosts in the wild also may be a potential factor in viral transmission. Therefore, a total of 367 serum samples from wild animals were collected near major migratory bird habitats from 2011 to 2016 and tested by AIV-specific blocking ELISA and hemagglutination inhibition (HI) test. Two mammalian and eight avian species were seropositive according to the ELISA test. Among these, two mammalian (Hydropotes inermis and Prionailurus bengalensis) and three avian (Aegypius monachus, Cygnus cygnus, and Bubo bubo) species showed high HI titres (> 1,280) against one or two H5-subtype AIVs. As H. inermis (water deer), P. bengalensis (leopard cat), and B. bubo (Eurasian eagle owl) are indigenous animals in Korea, evidence of H5-subtype AIV in these animals implies that continuous monitoring of indigenous animals should be followed to understand interspecies transmission ecology of H5-subtype influenza viruses.
Collapse
|
45
|
Wu P, Lu J, Zhang X, Mei M, Feng L, Peng D, Hou J, Kang SM, Liu X, Tang Y. Single Dose of Consensus Hemagglutinin-Based Virus-Like Particles Vaccine Protects Chickens against Divergent H5 Subtype Influenza Viruses. Front Immunol 2017; 8:1649. [PMID: 29230222 PMCID: PMC5711813 DOI: 10.3389/fimmu.2017.01649] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/10/2017] [Indexed: 11/21/2022] Open
Abstract
The H5 subtype highly pathogenic avian influenza (HPAI) virus is one of the greatest threats to global poultry industry. To develop broadly protective H5 subunit vaccine, a recombinant consensus HA sequence (rHA) was constructed and expressed in virus-like particles (rHA VLPs) in the baculovirus-insect cell system. The efficacy of the rHA VLPs vaccine with or without immunopotentiator (CVCVA5) was assessed in chickens. Compared to the commercial Re6 or Re6-CVCVA5 vaccines, single dose immunization of chickens with rHA VLPs or rHA-CVCVA5 vaccines induced higher levels of serum hemagglutinin inhibition titers and neutralization titers, mucosal antibodies, IFN-γ and IL-4 cytokines in sera, and cytotoxic T lymphocyte responses. The rHA VLPs vaccine was superior to the commercial Re6 vaccine in conferring cross-protection against different clades of H5 subtype viruses. This study reports that H5 subtype consensus HA VLP single dose vaccination provides broad protection against HPAI virus in chickens.
Collapse
Affiliation(s)
- Peipei Wu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou, China
| | - Jihu Lu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou, China
| | - Xuehua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou, China
| | - Mei Mei
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou, China
| | - Lei Feng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou, China
| | - Daxin Peng
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou, China
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou, China
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Xiufan Liu
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou, China
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yinghua Tang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou, China
| |
Collapse
|
46
|
Fasanmi OG, Odetokun IA, Balogun FA, Fasina FO. Public health concerns of highly pathogenic avian influenza H5N1 endemicity in Africa. Vet World 2017; 10:1194-1204. [PMID: 29184365 PMCID: PMC5682264 DOI: 10.14202/vetworld.2017.1194-1204] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/13/2017] [Indexed: 02/05/2023] Open
Abstract
Highly pathogenic avian influenza virus (HPAIV) H5N1 was first officially reported in Africa in 2006; thereafter this virus has spread rapidly from Nigeria to 11 other African countries. This study was aimed at utilizing data from confirmed laboratory reports to carry out a qualitative evaluation of the factors responsible for HPAI H5N1 persistence in Africa and the public health implications; and to suggest appropriate control measures. Relevant publications were sought from data banks and repositories of FAO, OIE, WHO, and Google scholars. Substantiated data on HPAI H5N1 outbreaks in poultry in Africa and in humans across the world were mined. HPAI H5N1 affects poultry and human populations, with Egypt having highest human cases (346) globally. Nigeria had a reinfection from 2014 to 2015, with outbreaks in Côte d'Ivoire, Ghana, Niger, Nigeria, and Burkina Faso throughout 2016 unabated. The persistence of this virus in Africa is attributed to the survivability of HPAIV, ability to evolve other subtypes through genetic reassortment, poor biosecurity compliance at the live bird markets and poultry farms, husbandry methods and multispecies livestock farming, poultry vaccinations, and continuous shedding of HPAIV, transboundary transmission of HPAIV through poultry trades; and transcontinental migratory birds. There is, therefore, the need for African nations to realistically reassess their status, through regular surveillance and be transparent with HPAI H5N1 outbreak data. Also, it is important to have an understanding of HPAIV migration dynamics which will be helpful in epidemiological modeling, disease prevention, control and eradication measures.
Collapse
Affiliation(s)
- Olubunmi Gabriel Fasanmi
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
- Department of Animal Health, Federal Colleges of Animal Health and Production Technology, Ibadan, Nigeria
| | - Ismail Ayoade Odetokun
- Department of Veterinary Public Health & Preventive Medicine, University of Ilorin, Ilorin, Nigeria
| | - Fatima Adeola Balogun
- Department of Animal Health, Federal Colleges of Animal Health and Production Technology, Ibadan, Nigeria
| | - Folorunso Oludayo Fasina
- Emergency Centre for Transboundary Animal Diseases – Food and Agriculture Organisation, Gigiri, Nairobi, Kenya
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
47
|
Choi WS, Lloren KKS, Baek YH, Song MS. The significance of avian influenza virus mouse-adaptation and its application in characterizing the efficacy of new vaccines and therapeutic agents. Clin Exp Vaccine Res 2017; 6:83-94. [PMID: 28775972 PMCID: PMC5540968 DOI: 10.7774/cevr.2017.6.2.83] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/03/2017] [Accepted: 05/12/2017] [Indexed: 11/26/2022] Open
Abstract
Due to the increased frequency of interspecies transmission of avian influenza viruses, studies designed to identify the molecular determinants that could lead to an expansion of the host range have been increased. A variety of mouse-based mammalian-adaptation studies of avian influenza viruses have provided insight into the genetic alterations of various avian influenza subtypes that may contribute to the generation of a pandemic virus. To date, the studies have focused on avian influenza subtypes H5, H6, H7, H9, and H10 which have recently caused human infection. Although mice cannot fully reflect the course of human infection with avian influenza, these mouse studies can be a useful method for investigating potential mammalian adaptive markers against newly emerging avian influenza viruses. In addition, due to the lack of appropriate vaccines against the diverse emerging influenza viruses, the generation of mouse-adapted lethal variants could contribute to the development of effective vaccines or therapeutic agents. Within this review, we will summarize studies that have demonstrated adaptations of avian influenza viruses that result in an altered pathogenicity in mice which may suggest the potential application of mouse-lethal strains in the development of influenza vaccines and/or therapeutics in preclinical studies.
Collapse
Affiliation(s)
- Won-Suk Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Khristine Kaith S Lloren
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Yun Hee Baek
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Min-Suk Song
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
48
|
Kim HK, Jeong DG, Yoon SW. Recent outbreaks of highly pathogenic avian influenza viruses in South Korea. Clin Exp Vaccine Res 2017; 6:95-103. [PMID: 28775973 PMCID: PMC5540969 DOI: 10.7774/cevr.2017.6.2.95] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/07/2017] [Accepted: 06/11/2017] [Indexed: 01/13/2023] Open
Abstract
Outbreaks of H5 highly pathogenic avian influenza viruses (HPAIVs) have caused economic loss for the poultry industry and posed a threat to public health. In South Korea, novel reassortants of HPAIVs such as H5N6 and H5N8 had been circulating in poultry. Here, we will discuss the identity of recent novel reassortants of Korean H5 HPAIVs and the recent advances in vaccine development, which will be useful for controlling HPAIV transmission in poultry and for effectively preventing future epidemics and pandemics.
Collapse
Affiliation(s)
- Hye Kwon Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Dae Gwin Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,University of Science and Technology (UST), Daejeon, Korea
| | - Sun-Woo Yoon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
49
|
Ducatez M, Sonnberg S, Crumpton JC, Rubrum A, Phommachanh P, Douangngeun B, Peiris M, Guan Y, Webster R, Webby R. Highly pathogenic avian influenza H5N1 clade 2.3.2.1 and clade 2.3.4 viruses do not induce a clade-specific phenotype in mallard ducks. J Gen Virol 2017; 98:1232-1244. [PMID: 28631606 PMCID: PMC5825919 DOI: 10.1099/jgv.0.000806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/07/2017] [Indexed: 11/18/2022] Open
Abstract
Among the diverse clades of highly pathogenic avian influenza (HPAI) H5N1 viruses of the goose/Guangdong lineage, only a few have been able to spread across continents: clade 2.2 viruses spread from China to Europe and into Africa in 2005-2006, clade 2.3.2.1 viruses spread from China to Eastern Europe in 2009-2010 and clade 2.3.4.4 viruses of the H5Nx subtype spread from China to Europe and North America in 2014/2015. While the poultry trade and wild-bird migration have been implicated in the spread of HPAI H5N1 viruses, it has been proposed that robust virus-shedding by wild ducks in the absence of overt clinical signs may have contributed to the wider dissemination of the clade 2.2, 2.3.2.1 and 2.3.4.4 viruses. Here we determined the phenotype of two divergent viruses from clade 2.3.2.1, a clade that spread widely, and two divergent viruses from clade 2.3.4, a clade that was constrained to Southeast Asia, in young (ducklings) and adult (juvenile) mallard ducks. We found that the virus-shedding magnitude and duration, transmission pattern and pathogenicity of the viruses in young and adult mallard ducks were largely independent of the virus clade. A clade-specific pattern could only be detected in terms of cumulative virus shedding, which was higher with clade 2.3.2.1 than with clade 2.3.4 viruses in juvenile mallards, but not in ducklings. The ability of clade 2.3.2.1c A/common buzzard/Bulgaria/38 WB/2010-like viruses to spread cross-continentally may, therefore, have been strain-specific or independent of phenotype in wild ducks.
Collapse
Affiliation(s)
- Mariette Ducatez
- Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - Stephanie Sonnberg
- Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jeri Carol Crumpton
- Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Adam Rubrum
- Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Phouvong Phommachanh
- Department of Livestock and Fisheries, Ministry of Agriculture, Vientiane, Lao PDR, Laos
| | - Bounlom Douangngeun
- Department of Livestock and Fisheries, Ministry of Agriculture, Vientiane, Lao PDR, Laos
| | - Malik Peiris
- Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong SAR
| | - Yi Guan
- Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong SAR
| | - Robert Webster
- Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard Webby
- Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
50
|
Zhang Z, Zhang J, Zhang J, Li Q, Miao P, Liu J, Li S, Huang J, Liao M, Fan H. Coimmunization with recombinant epitope-expressing baculovirus enhances protective effects of inactivated H5N1 vaccine against heterologous virus. Vet Microbiol 2017; 203:143-148. [DOI: 10.1016/j.vetmic.2017.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/13/2022]
|