1
|
Wei SM, Huang YM. Effect of sulforaphane on testicular ischemia-reperfusion injury induced by testicular torsion-detorsion in rats. Sci Rep 2024; 14:23420. [PMID: 39379457 PMCID: PMC11461801 DOI: 10.1038/s41598-024-74756-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
Testicular ischemia-reperfusion induces enhanced concentration of reactive oxygen species. The increased reactive oxygen species harm cellular lipids, nucleic acids, proteins, and carbohydrates, and ultimately cause testicular injury. Sulforaphane, a kind of natural dietary isothiocyanate, exists predominantly in some cruciferous vegetables, like broccoli and cabbage. It can protect tissues from oxidative stress-induced damage. Herein, we analyzed the effectiveness of sulforaphane in treating ischemia-reperfusion injury occurring after testicular torsion-detorsion. Male rats (n = 60) were grouped as follows: sham-operated group, unilateral testicular ischemia-reperfusion group, and unilateral testicular ischemia-reperfusion group receiving sulforaphane treatment at 5 mg/kg. No testicular torsion-detorsion was performed in the sham group. Unilateral testicular ischemia-reperfusion model was created by detorsion after 2 h of left testicular torsion. In the sulforaphane-treated group, intraperitoneal sulforaphane (5 mg/kg) was administered at left testicular detorsion. Biochemical assay, Western blot, and hematoxylin and eosin staining were used to evaluate testicular malondialdehyde content (an important marker of reactive oxygen species), protein levels of superoxide dismutase and catalase (intracellular antioxidant defense mechanism), and testicular reproductive function, respectively. In testicular tissues, malondialdehyde content was significantly promoted, while protein levels of superoxide dismutase and catalase, and testicular reproductive function were significantly reduced in ipsilateral testes by testicular ischemia-reperfusion. Nevertheless, sulforaphane administration partially reversed the effect of testicular ischemia-reperfusion on these indexes. It can be concluded that sulforaphane elevates protein levels of superoxide dismutase and catalase, and suppresses reactive oxygen species content, thereby preventing ischemia-reperfusion injury in testis.
Collapse
Affiliation(s)
- Si-Ming Wei
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou City, 310015, Zhejiang Province, China.
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou City, 310053, Zhejiang Province, China.
| | - Yu-Min Huang
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou City, 310058, Zhejiang Province, China
| |
Collapse
|
2
|
Ribeiro M, Alvarenga L, Coutinho-Wolino KS, Nakao LS, Cardozo LF, Mafra D. Sulforaphane upregulates the mRNA expression of NRF2 and NQO1 in non-dialysis patients with chronic kidney disease. Free Radic Biol Med 2024; 221:181-187. [PMID: 38772511 DOI: 10.1016/j.freeradbiomed.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
Sulforaphane (SFN), found in cruciferous vegetables, is a known activator of NRF2 (master regulator of cellular antioxidant responses). Patients with chronic kidney disease (CKD) present an imbalance in the redox state, presenting reduced expression of NRF2 and increased expression of NF-κB. Therefore, this study aimed to evaluate the effects of SFN on the mRNA expression of NRF2, NF-κB and markers of oxidative stress in patients with CKD. Here, we observed a significant increase in the mRNA expression of NRF2 (p = 0.02) and NQO1 (p = 0.04) in the group that received 400 μg/day of SFN for 1 month. Furthermore, we observed an improvement in the levels of phosphate (p = 0.02), glucose (p = 0.05) and triglycerides (p = 0.02) also in this group. On the other hand, plasma levels of LDL-c (p = 0.04) and total cholesterol (p = 0.03) increased in the placebo group during the study period. In conclusion, 400 μg/day of SFN for one month improves the antioxidant system and serum glucose and phosphate levels in non-dialysis CKD patients.
Collapse
Affiliation(s)
- Marcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Livia Alvarenga
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Graduate Program in Nutrition Sciences, Federal University Fluminense (UFF), Niterói, RJ, Brazil
| | | | - Lia S Nakao
- Basic Pathology Department, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Ludmila Fmf Cardozo
- Graduate Program in Nutrition Sciences, Federal University Fluminense (UFF), Niterói, RJ, Brazil; Graduate Program in Cardiovascular Sciences, Federal University Fluminense (UFF), Niterói, RJ, Brazil
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Graduate Program in Nutrition Sciences, Federal University Fluminense (UFF), Niterói, RJ, Brazil; Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| |
Collapse
|
3
|
Li Y, Qin K, Liang W, Yan W, Fragoulis A, Pufe T, Buhl EM, Zhao Q, Greven J. Kidney Injury in a Murine Hemorrhagic Shock/Resuscitation Model Is Alleviated by sulforaphane's Anti-Inflammatory and Antioxidant Action. Inflammation 2024:10.1007/s10753-024-02106-2. [PMID: 39023831 DOI: 10.1007/s10753-024-02106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/09/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Hemorrhagic shock/resuscitation (HS/R) can lead to acute kidney injury, mainly manifested as oxidative stress and inflammatory injury in the renal tubular epithelial cells, as well as abnormal autophagy and apoptosis. Sulforaphane (SFN), an agonist of the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) signaling pathway, is involved in multiple biological activities, such as anti-inflammatory, antioxidant, autophagy, and apoptosis regulation. This study investigated the effect of SFN on acute kidney injury after HS/R in mice. Hemorrhagic shock was induced in mice by controlling the arterial blood pressure at a range of 35-45 mmHg for 90 min within arterial blood withdrawal. Fluid resuscitation was carried out by reintroducing withdrawn blood and 0.9% NaCl. We found that SFN suppressed the elevation of urea nitrogen and serum creatinine levels in the blood induced by HS/R. SFN mitigated pathological alterations including swollen renal tubules and renal casts in kidney tissue of HS/R mice. Inflammation levels and oxidative stress were significantly downregulated in mouse kidney tissue after SFN administration. In addition, the kidney tissue of HS/R mice showed high levels of autophagosomes as observed by electron microscopy. However, SFN can further enhance the formation of autophagosomes in the HS/R + SFN group. SFN also increased autophagy-related proteins Beclin1 expression and suppressed P62 expression, while increasing the ratio of microtubule-associated protein 1 light chain 3 (LC3)-II and LC3-I (LC3-II/LC3-I). SFN also effectively decreased cleaved caspase-3 level and enhanced the ratio of anti-apoptotic protein B cell lymphoma 2 and Bcl2-associated X protein (Bcl2/Bax). Collectively, SFN effectively inhibited inflammation and oxidative stress, enhanced autophagy, thereby reducing HS/R-induced kidney injury and apoptosis levels in mouse kidneys.
Collapse
Affiliation(s)
- You Li
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Kang Qin
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany.
- Department of Shoulder and Elbow Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| | - Weiqiang Liang
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Weining Yan
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Eva Miriam Buhl
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
- Electron Microscopy Facility, Institute for Pathology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Qun Zhao
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Johannes Greven
- Department of Thoracic Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| |
Collapse
|
4
|
Hanlon N, Gillan N, Neil J, Seidler K. The role of the aryl hydrocarbon receptor (AhR) in modulating intestinal ILC3s to optimise gut pathogen resistance in lupus and benefits of nutritional AhR ligands. Clin Nutr 2024; 43:1199-1215. [PMID: 38631087 DOI: 10.1016/j.clnu.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND AND AIMS Dysbiosis is emerging as a potential trigger of systemic lupus erythematosus (SLE). Group 3 innate lymphoid cells (ILC3s) are recognised as key regulators of intestinal homeostasis. The aryl hydrocarbon receptor (AhR) is critical to intestinal ILC3 development and function. This mechanistic review aimed to investigate whether AhR activation of gut ILC3s facilitates IL-22-mediated antimicrobial peptide (AMP) production to enhance colonisation resistance and ameliorate SLE pathology associated with intestinal dysbiosis. Furthermore, nutritional AhR ligand potential to enhance pathogen resistance was explored. METHODOLOGY This mechanistic review involved a three-tranche systematic literature search (review, mechanism, intervention) using PubMed with critical appraisal. Data was synthesised into themes and summarised in a narrative analysis. RESULTS Preclinical mechanistic data indicate that AhR modulation of intestinal ILC3s optimises pathogen resistance via IL-22-derived AMPs. Pre-clinical research is required to validate this mechanism in SLE. Data on systemic immune consequences of AhR modulation in lupus suggest UVB-activated ligands induce aberrant AhR signalling while many dietary ligands exert beneficial effects. Data on xenobiotic-origin ligands is varied, although considerable evidence has demonstrated negative effects on Th17 to Treg balance. Limited human evidence supports the role of nutritional AhR ligands in modulating SLE pathology. Preclinical and clinical data support anti-inflammatory effects of dietary AhR ligands. CONCLUSION Current evidence is insufficient to fully validate the hypothesis that AhR modulation of intestinal ILC3s can enhance pathogen resistance to ameliorate lupus pathology driven by dysbiosis. However, anti-inflammatory effects of dietary AhR ligands suggest a promising role as a therapeutic intervention for SLE.
Collapse
Affiliation(s)
- Niamh Hanlon
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| | - Natalie Gillan
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| | - James Neil
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| | - Karin Seidler
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| |
Collapse
|
5
|
Pawar VA, Srivastava S, Tyagi A, Tayal R, Shukla SK, Kumar V. Efficacy of Bioactive Compounds in the Regulation of Metabolism and Pathophysiology in Cardiovascular Diseases. Curr Cardiol Rep 2023; 25:1041-1052. [PMID: 37458865 DOI: 10.1007/s11886-023-01917-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW An imbalance in reactive oxygen species (ROS) homeostasis can wreak damage to metabolic and physiological processes which can eventually lead to an advancement in cardiovascular diseases (CVD). Mitochondrial dysfunction is considered as a key source of ROS. The purpose of the current review is to concisely discuss the role of bioactive compounds in the modulation of cardiovascular metabolism and their potential application in the management of cardiovascular diseases. RECENT FINDINGS Recently, it has been shown that bioactive compounds exhibit immunomodulatory function by regulating inflammatory pathways and ROS homeostasis. It has also been reported that bioactive compounds regulate mitochondria dynamics, thus modulating the autophagy and energy metabolism in the cells. In the present article, we have discussed the roles of different bioactive compounds in the modulation of different inflammatory drivers. The functional properties of bioactive compounds in mitochondrial dynamics and its impact on cardiac disease protection have been briefly summarized. Furthermore, we have also discussed various aspects of bioactive compounds with respect to metabolism, immune modulation, circadian rhythm, and its impact on CVD's pathophysiology.
Collapse
Affiliation(s)
| | - Shivani Srivastava
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Anuradha Tyagi
- Department of cBRN, Institute of Nuclear Medicine and Allied Science, Delhi, 110054, India
| | - Rajul Tayal
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Surendra Kumar Shukla
- Department of Oncology Science, OU Health Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
| | - Vinay Kumar
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 473 W 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Monteiro EB, Ajackson M, Stockler-Pinto MB, Guebre-Egziabher F, Daleprane JB, Soulage CO. Sulforaphane exhibits potent renoprotective effects in preclinical models of kidney diseases: A systematic review and meta-analysis. Life Sci 2023; 322:121664. [PMID: 37023957 DOI: 10.1016/j.lfs.2023.121664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
AIMS Sulforaphane (SFN), a naturally occurring isothiocyanate found in cruciferous vegetables, has received extensive attention as a natural activator of the Nrf2/Keap1 cytoprotective pathway. In this review, a meta-analysis and systematic review of the renoprotective effects of SFN were performed in various preclinical models of kidney diseases. MAIN METHODS The primary outcome was the impact of SFN on renal function biomarkers (uremia, creatininemia, proteinuria or creatinine clearance) and secondary outcomes were kidney lesion histological indices/kidney injury molecular biomarkers. The effects of SFN were evaluated according to the standardized mean differences (SMDs). A random-effects model was applied to estimate the overall summary effect. KEY FINDINGS Twenty-five articles (out of 209 studies) were selected from the literature. SFN administration significantly increased creatinine clearance (SMD +1.88 95 % CI: [1.09; 2.68], P < 0.0001, I2 = 0 %) and decreased the plasma creatinine (SMD -1.24, [-1.59; -0.88], P < 0.0001, I2 = 36.0 %) and urea (SMD -3.22 [-4.42, -2.01], P < 0.0001, I2 = 72.4 %) levels. SFN administration (median dose: 2.5 mg/kg, median duration: 3 weeks) significantly decreased urinary protein excretion (SMD -2.20 [-2.68; -1.73], P < 0.0001, I2 = 34.1 %). It further improved two kidney lesion histological indices namely kidney fibrosis (SMD -3.08 [-4.53; -1.63], P < 0.0001, I2 = 73.7 %) and glomerulosclerosis (SMD -2.24 [-2.96; -1.53], P < 0.0001, I2 = 9.7 %) and decreased kidney injury molecular biomarkers (SMD -1.51 [-2.00; -1.02], P < 0.0001, I2 = 0 %). SIGNIFICANCE These findings provide new insights concerning preclinical strategies for treating kidney disease or kidney failure with SFN supplements and should stimulate interest in clinical evaluations of SFN in patients with kidney disease.
Collapse
Affiliation(s)
- Elisa B Monteiro
- Nutrition and Genomics Laboratory, Basic and Experimental Nutrition Department, Institute of Nutrition, Rio de Janeiro State University, 20550-900 Rio de Janeiro, Brazil
| | - Matheus Ajackson
- Nutrition and Genomics Laboratory, Basic and Experimental Nutrition Department, Institute of Nutrition, Rio de Janeiro State University, 20550-900 Rio de Janeiro, Brazil
| | - Milena B Stockler-Pinto
- Graduate Program in Pathology, Federal Fluminense University (UFF), Niterói, RJ, Brazil; Graduate Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói, RJ, Brazil
| | - Fitsum Guebre-Egziabher
- Hospices Civils de Lyon, Department of Nephrology, Hôpital E Herriot, Lyon F-69003, France; Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA-Lyon, Université Claude Bernard Lyon 1, 69500, Bron, France
| | - Julio B Daleprane
- Nutrition and Genomics Laboratory, Basic and Experimental Nutrition Department, Institute of Nutrition, Rio de Janeiro State University, 20550-900 Rio de Janeiro, Brazil
| | - Christophe O Soulage
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA-Lyon, Université Claude Bernard Lyon 1, 69500, Bron, France.
| |
Collapse
|
7
|
Lin DW, Hsu YC, Chang CC, Hsieh CC, Lin CL. Insights into the Molecular Mechanisms of NRF2 in Kidney Injury and Diseases. Int J Mol Sci 2023; 24:ijms24076053. [PMID: 37047024 PMCID: PMC10094034 DOI: 10.3390/ijms24076053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all are related to reduction-oxidation (redox). Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor targeting many antioxidant genes. In non-stressed conditions, NRF2 maintains the hemostasis of redox with housekeeping work. It expresses constitutively with basal activity, maintained by Kelch-like-ECH-associated protein 1 (KEAP1)-associated ubiquitination and degradation. When encountering stress, it can be up-regulated by several mechanisms to exert its anti-oxidative ability in diseases or inflammatory processes to protect tissues and organs from further damage. From acute kidney injury to chronic kidney diseases, such as diabetic nephropathy or glomerular disease, many results of studies have suggested that, as a master of regulating redox, NRF2 is a therapeutic option. It was not until the early termination of the clinical phase 3 trial of diabetic nephropathy due to heart failure as an unexpected side effect that we renewed our understanding of NRF2. NRF2 is not just a simple antioxidant capacity but has pleiotropic activities, harmful or helpful, depending on the conditions and backgrounds.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Internal Medicine, St. Martin de Porres Hospital, Chiayi 600, Taiwan
| | - Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Cheng-Chih Chang
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ching-Chuan Hsieh
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
8
|
Sadrkhanloo M, Entezari M, Orouei S, Zabolian A, Mirzaie A, Maghsoudloo A, Raesi R, Asadi N, Hashemi M, Zarrabi A, Khan H, Mirzaei S, Samarghandian S. Targeting Nrf2 in ischemia-reperfusion alleviation: From signaling networks to therapeutic targeting. Life Sci 2022; 300:120561. [PMID: 35460707 DOI: 10.1016/j.lfs.2022.120561] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022]
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of redox balance and it responds to various cell stresses that oxidative stress is the most well-known one. The Nrf2 should undergo nuclear translocation to exert its protective impacts and decrease ROS production. On the other hand, ischemic/reperfusion (I/R) injury is a pathological event resulting from low blood flow to an organ and followed by reperfusion. The I/R induces cell injury and organ dysfunction. The present review focuses on Nrf2 function in alleviation of I/R injury. Stimulating of Nrf2 signaling ameliorates I/R injury in various organs including lung, liver, brain, testis and heart. The Nrf2 enhances activity of antioxidant enzymes to reduce ROS production and prevent oxidative stress-mediated cell death. Besides, Nrf2 reduces inflammation via decreasing levels of pro-inflammatory factors including IL-6, IL-1β and TNF-α. Nrf2 signaling is beneficial in preventing apoptosis and increasing cell viability. Nrf2 induces autophagy to prevent apoptosis during I/R injury. Furthermore, it can interact with other molecular pathways including PI3K/Akt, NF-κB, miRNAs, lncRNAs and GSK-3β among others, to ameliorate I/R injury. The therapeutic agents, most of them are phytochemicals such as resveratrol, berberine and curcumin, induce Nrf2 signaling in I/R injury alleviation.
Collapse
Affiliation(s)
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amirhossein Zabolian
- Resident of Orthopedics, Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran.
| | - Amirreza Mirzaie
- Young Researchers and Elite Club, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Amin Maghsoudloo
- Young Researchers and Elite Club, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Rasoul Raesi
- Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Asadi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
9
|
Afsar B, Afsar RE, Ertuglu LA, Covic A, Kanbay M. Nutrition, Immunology, and Kidney: Looking Beyond the Horizons. Curr Nutr Rep 2022; 11:69-81. [PMID: 35080754 DOI: 10.1007/s13668-021-00388-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) is epidemic throughout the word. Despite various novel therapeutic opportunities, CKD is still associated with high morbidity and mortality. In CKD, patient's chronic inflammation is frequent and related with adverse outcomes. Both innate and adaptive immunity are dysfunctional in CKD. Therefore, it is plausible to interfere with dysfunctional immunity in these patients. In the current review, we present the updated experimental and clinical data summarizing the effects of nutritional interventions including natural products and dietary supplements on immune dysfunction in the context of CKD. RECENT FINDINGS Nutritional interventions including natural products and dietary supplements (e.g., curcumin, sulforaphane, resistant starch, anthocyanin, chrysin, short chain fatty acids, fish oil resistant starch) slow down the inflammation by at least 6 mechanisms: (i) decrease nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB); (ii) decrease NLR family pyrin domain containing 3 (NLRP3); (iii) decrease interleukin-1 (IL-1), decrease interleukin-6 (IL-6) secretion; (iv) decrease polymorphonuclear priming); (v) promote anti-inflammatory pathways (nuclear factor-erythroid factor 2-related factor 2 (NFR2); (vi) increase T regulatory (Tregs) cells). Natural products and dietary supplements may provide benefit in terms of kidney health. By modulation of nutritional intake, progression of CKD may be delayed.
Collapse
Affiliation(s)
- Baris Afsar
- Division of Nephrology, Department of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Division of Nephrology, Department of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Lale A Ertuglu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
10
|
Chang R. Research advances in the protective effect of sulforaphane against kidney injury and related mechanisms. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225501006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Kidney injury and related diseases have become quite common in recent years, and have attracted more attention. Sulforaphane, a kind of isothiocyanate, is widely distributed in cruciferous plants and it is a common antioxidant. Specifically, sulforaphane can reduce oxidative damage by preventing cells from freeradical damage, preventing cells from degeneration, and acting as an anti-inflammation, etc. This study summarized the investigations of the effects of sulforaphane on kidney injury. This study discussed the mechanisms of sulforaphane on immune, renal ischemia-reperfusion, diabetic nephropathy, age-related, and other factors-induced kidney injury models and discussed the potential and relative mechanisms of sulforaphane for kidney injury protection.
Collapse
|
11
|
Mahmoud MF, Abdelaal S, Mohammed HO, El-Shazly AM, Daoud R, Abdelfattah MAO, Sobeh M. Syzygium aqueum (Burm.f.) Alston Prevents Streptozotocin-Induced Pancreatic Beta Cells Damage via the TLR-4 Signaling Pathway. Front Pharmacol 2021; 12:769244. [PMID: 34912223 PMCID: PMC8667316 DOI: 10.3389/fphar.2021.769244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Although several treatments are available for the treatment of type 2 diabetes mellitus, adverse effects and cost burden impose the search for safe, efficient, and cost-effective alternative herbal remedies. Syzygium aqueum (Burm.f.) Alston, a natural anti-inflammatory, antioxidant herb, may suppress diabetes-associated inflammation and pancreatic beta-cell death. Here, we tested the ability of the bioactive leaf extract (SA) to prevent streptozotocin (STZ)-induced oxidative stress and inflammation in pancreatic beta cells in rats and the involvement of the TLR-4 signaling pathway. Non-fasted rats pretreated with 100 or 200 mg kg-1 SA 2 days prior to the STZ challenge and for 14 days later had up to 52 and 39% reduction in the glucose levels, respectively, while glibenclamide, the reference standard drug (0.5 mg kg-1), results in 70% reduction. Treatment with SA extract was accompanied by increased insulin secretion, restoration of Langerhans islets morphology, and decreased collagen deposition as demonstrated from ELISA measurement, H and E, and Mallory staining. Both glibenclamide and SA extract significantly decreased levels of TLR-4, MYD88, pro-inflammatory cytokines TNF-α, and TRAF-6 in pancreatic tissue homogenates, which correlated well with minimal pancreatic inflammatory cell infiltration. Pre-treatment with SA or glibenclamide decreased malondialdehyde, a sensitive biomarker of ROS-induced lipid peroxidation, and restored depleted reduced glutathione in the pancreas. Altogether, these data indicate that S. aqueum is effective in improving STZ-induced pancreatic damage, which could be beneficial in treating type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mona F. Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Shimaa Abdelaal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Heba Osama Mohammed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Assem M. El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | | | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
12
|
Saha P, Bose S, Srivastava AK, Chaudhary AA, Lall R, Prasad S. Jeopardy of COVID-19: Rechecking the Perks of Phytotherapeutic Interventions. Molecules 2021; 26:6783. [PMID: 34833873 PMCID: PMC8621307 DOI: 10.3390/molecules26226783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/31/2023] Open
Abstract
The novel coronavirus disease (COVID-19), the reason for worldwide pandemic, has already masked around 220 countries globally. This disease is induced by Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Arising environmental stress, increase in the oxidative stress level, weak immunity and lack of nutrition deteriorates the clinical status of the infected patients. Though several researches are at its peak for understanding and bringing forward effective therapeutics, yet there is no promising solution treating this disease directly. Medicinal plants and their active metabolites have always been promising in treating many clinical complications since time immemorial. Mother nature provides vivid chemical structures, which act multi-dimensionally all alone or synergistically in mitigating several diseases. Their unique antioxidant and anti-inflammatory activity with least side effects have made them more effective candidate for pharmacological studies. These medicinal plants inhibit attachment, encapsulation and replication of COVID-19 viruses by targeting various signaling molecules such as angiotensin converting enzyme-2, transmembrane serine protease 2, spike glycoprotein, main protease etc. This property is re-examined and its potency is now used to improve the existing global health crisis. This review is an attempt to focus various antiviral activities of various noteworthy medicinal plants. Moreover, its implications as prophylactic or preventive in various secondary complications including neurological, cardiovascular, acute kidney disease, liver disease are also pinpointed in the present review. This knowledge will help emphasis on the therapeutic developments for this novel coronavirus where it can be used as alone or in combination with the repositioned drugs to combat COVID-19.
Collapse
Affiliation(s)
- Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, WB, India; (P.S.); (S.B.); (A.K.S.)
| | - Subhankar Bose
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, WB, India; (P.S.); (S.B.); (A.K.S.)
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, WB, India; (P.S.); (S.B.); (A.K.S.)
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSUI), Riyadh 11623, Saudi Arabia;
| | - Rajiv Lall
- Noble Pharma, LLC, 4602 Domain Drive, Menomonie, WI 54751, USA;
| | - Sahdeo Prasad
- Noble Pharma, LLC, 4602 Domain Drive, Menomonie, WI 54751, USA;
| |
Collapse
|
13
|
Mata A, Cadenas S. The Antioxidant Transcription Factor Nrf2 in Cardiac Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 22:11939. [PMID: 34769371 PMCID: PMC8585042 DOI: 10.3390/ijms222111939] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 12/25/2022] Open
Abstract
Nuclear factor erythroid-2 related factor 2 (Nrf2) is a transcription factor that controls cellular defense responses against toxic and oxidative stress by modulating the expression of genes involved in antioxidant response and drug detoxification. In addition to maintaining redox homeostasis, Nrf2 is also involved in various cellular processes including metabolism and inflammation. Nrf2 activity is tightly regulated at the transcriptional, post-transcriptional and post-translational levels, which allows cells to quickly respond to pathological stress. In the present review, we describe the molecular mechanisms underlying the transcriptional regulation of Nrf2. We also focus on the impact of Nrf2 in cardiac ischemia-reperfusion injury, a condition that stimulates the overproduction of reactive oxygen species. Finally, we analyze the protective effect of several natural and synthetic compounds that induce Nrf2 activation and protect against ischemia-reperfusion injury in the heart and other organs, and their potential clinical application.
Collapse
Affiliation(s)
- Ana Mata
- Centro de Biología Molecular “Severo Ochoa” (CSIC/UAM), 28049 Madrid, Spain;
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Susana Cadenas
- Centro de Biología Molecular “Severo Ochoa” (CSIC/UAM), 28049 Madrid, Spain;
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| |
Collapse
|
14
|
Mauerhofer C, Grumet L, Schemmer P, Leber B, Stiegler P. Combating Ischemia-Reperfusion Injury with Micronutrients and Natural Compounds during Solid Organ Transplantation: Data of Clinical Trials and Lessons of Preclinical Findings. Int J Mol Sci 2021; 22:10675. [PMID: 34639016 PMCID: PMC8508760 DOI: 10.3390/ijms221910675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Although extended donor criteria grafts bear a higher risk of complications such as graft dysfunction, the exceeding demand requires to extent the pool of potential donors. The risk of complications is highly associated with ischemia-reperfusion injury, a condition characterized by high loads of oxidative stress exceeding antioxidative defense mechanisms. The antioxidative properties, along with other beneficial effects like anti-inflammatory, antiapoptotic or antiarrhythmic effects of several micronutrients and natural compounds, have recently emerged increasing research interest resulting in various preclinical and clinical studies. Preclinical studies reported about ameliorated oxidative stress and inflammatory status, resulting in improved graft survival. Although the majority of clinical studies confirmed these results, reporting about improved recovery and superior organ function, others failed to do so. Yet, only a limited number of micronutrients and natural compounds have been investigated in a (large) clinical trial. Despite some ambiguous clinical results and modest clinical data availability, the vast majority of convincing animal and in vitro data, along with low cost and easy availability, encourage the conductance of future clinical trials. These should implement insights gained from animal data.
Collapse
Affiliation(s)
- Christina Mauerhofer
- Department of Science and Product Development, pro medico HandelsGmbH, Liebenauer Tangente 6, 8041 Graz, Austria; (C.M.); (L.G.)
| | - Lukas Grumet
- Department of Science and Product Development, pro medico HandelsGmbH, Liebenauer Tangente 6, 8041 Graz, Austria; (C.M.); (L.G.)
| | - Peter Schemmer
- Division of Transplant Surgery, Department of Surgery, Medical University, 8036 Graz, Austria; (P.S.); (B.L.)
| | - Bettina Leber
- Division of Transplant Surgery, Department of Surgery, Medical University, 8036 Graz, Austria; (P.S.); (B.L.)
| | - Philipp Stiegler
- Division of Transplant Surgery, Department of Surgery, Medical University, 8036 Graz, Austria; (P.S.); (B.L.)
| |
Collapse
|
15
|
Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 Pathway in Ischemic Stroke: A Review. Molecules 2021; 26:5001. [PMID: 34443584 PMCID: PMC8399750 DOI: 10.3390/molecules26165001] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke, characterized by the sudden loss of blood flow in specific area(s) of the brain, is the leading cause of permanent disability and is among the leading causes of death worldwide. The only approved pharmacological treatment for acute ischemic stroke (intravenous thrombolysis with recombinant tissue plasminogen activator) has significant clinical limitations and does not consider the complex set of events taking place after the onset of ischemic stroke (ischemic cascade), which is characterized by significant pro-oxidative events. The transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the expression of a great number of antioxidant and/or defense proteins, has been pointed as a potential pharmacological target involved in the mitigation of deleterious oxidative events taking place at the ischemic cascade. This review summarizes studies concerning the protective role of Nrf2 in experimental models of ischemic stroke, emphasizing molecular events resulting from ischemic stroke that are, in parallel, modulated by Nrf2. Considering the acute nature of ischemic stroke, we discuss the challenges in using a putative pharmacological strategy (Nrf2 activator) that relies upon transcription, translation and metabolically active cells in treating ischemic stroke patients.
Collapse
Affiliation(s)
- Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Leonardo Eugênio Vieira
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
16
|
Jawad A, Yoo YJ, Yoon JC, Tian W, Islam MS, Lee EY, Shin HY, Kim SE, Ahn D, Park BY, Tae HJ, Kim IS. Changes of renal histopathology and the role of Nrf2/HO-1 in asphyxial cardiac arrest model in rats. Acta Cir Bras 2021; 36:e360607. [PMID: 34287609 PMCID: PMC8291904 DOI: 10.1590/acb360607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/12/2021] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To investigate the role of Nrf2/HO-1 in renal histopathological ailments time-dependently in asphyxial cardiac arrest (CA) rat model. METHODS Eighty-eight Sprague Dawley male rats were divided into five groups of eight rats each. Asphyxial CA was induced in all the experimental rats except for the sham group. The rats were sacrificed at 6 hours, 12 hours, one day and two days post-CA. Serum blood urea nitrogen (BUN), creatinine (Crtn) and malondialdehyde from the renal tissues were evaluated. Hematoxylin and eosin and periodic acid-Schiff staining were done to evaluate the renal histopathological changes in the renal cortex. Furthermore, Nrf2/HO-1 immunohistochemistry (ihc) and western blot analysis were performed after CA. RESULTS The survival rate of rats decreased in a time-dependent manner: 66.6% at 6 hours, 50% at 12 hours, 38.1% in one day, and 25.8% in two days. BUN and serum Crtn markedly increased in CA-operated groups. Histopathological ailments of the renal cortical tissues increased significantly from 6 hours until two days post-CA. Furthermore, Nrf2/HO-1 expression level significantly increased at 6 hours, 12 hours, and one day. CONCLUSIONS The survival rate decreased time-dependently, and Nrf/HO-1 expression increased from 6 hours with the peak times at 12 hours, and one day post-CA.
Collapse
Affiliation(s)
- Ali Jawad
- Jeonbuk National University, South Korea
| | | | | | | | | | | | | | - So Eun Kim
- Jeonbuk National University Hospital, South Korea
| | | | | | | | | |
Collapse
|
17
|
Ismaeel A, Greathouse KL, Newton N, Miserlis D, Papoutsi E, Smith RS, Eidson JL, Dawson DL, Milner CW, Widmer RJ, Bohannon WT, Koutakis P. Phytochemicals as Therapeutic Interventions in Peripheral Artery Disease. Nutrients 2021; 13:2143. [PMID: 34206667 PMCID: PMC8308302 DOI: 10.3390/nu13072143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/13/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Peripheral artery disease (PAD) affects over 200 million people worldwide, resulting in significant morbidity and mortality, yet treatment options remain limited. Among the manifestations of PAD is a severe functional disability and decline, which is thought to be the result of different pathophysiological mechanisms including oxidative stress, skeletal muscle pathology, and reduced nitric oxide bioavailability. Thus, compounds that target these mechanisms may have a therapeutic effect on walking performance in PAD patients. Phytochemicals produced by plants have been widely studied for their potential health effects and role in various diseases including cardiovascular disease and cancer. In this review, we focus on PAD and discuss the evidence related to the clinical utility of different phytochemicals. We discuss phytochemical research in preclinical models of PAD, and we highlight the results of the available clinical trials that have assessed the effects of these compounds on PAD patient functional outcomes.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (K.L.G.); (E.P.)
| | - K. Leigh Greathouse
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (K.L.G.); (E.P.)
- Department of Human Sciences and Design, Baylor University, Waco, TX 76798, USA
| | - Nathan Newton
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA;
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA;
| | - Evlampia Papoutsi
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (K.L.G.); (E.P.)
| | - Robert S. Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - Jack L. Eidson
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - David L. Dawson
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - Craig W. Milner
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - Robert J. Widmer
- Heart & Vascular Department, Baylor Scott & White Medical Center, Temple, TX 76508, USA;
| | - William T. Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (K.L.G.); (E.P.)
| |
Collapse
|
18
|
Carcy R, Cougnon M, Poet M, Durandy M, Sicard A, Counillon L, Blondeau N, Hauet T, Tauc M, F Pisani D. Targeting oxidative stress, a crucial challenge in renal transplantation outcome. Free Radic Biol Med 2021; 169:258-270. [PMID: 33892115 DOI: 10.1016/j.freeradbiomed.2021.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
Disorders characterized by ischemia/reperfusion (I/R) are the most common causes of debilitating diseases and death in stroke, cardiovascular ischemia, acute kidney injury or organ transplantation. In the latter example the I/R step defines both the amplitude of the damages to the graft and the functional recovery outcome. During transplantation the kidney is subjected to blood flow arrest followed by a sudden increase in oxygen supply at the time of reperfusion. This essential clinical protocol causes massive oxidative stress which is at the basis of cell death and tissue damage. The involvement of both reactive oxygen species (ROS) and nitric oxides (NO) has been shown to be a major cause of these cellular damages. In fact, in non-physiological situations, these species escape endogenous antioxidant control and dangerously accumulate in cells. In recent years, the objective has been to find clinical and pharmacological treatments to reduce or prevent the appearance of oxidative stress in ischemic pathologies. This is very relevant because, due to the increasing success of organ transplantation, clinicians are required to use limit organs, the preservation of which against oxidative stress is crucial for a better outcome. This review highlights the key actors in oxidative stress which could represent new pharmacological targets.
Collapse
Affiliation(s)
- Romain Carcy
- Université Côte d'Azur, CNRS, LP2M, Nice, France; CHU Nice, Hôpital Pasteur 2, Service de Réanimation Polyvalente et Service de Réanimation des Urgences Vitales, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Marc Cougnon
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Mallorie Poet
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Manon Durandy
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Antoine Sicard
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France; CHU Nice, Hôpital Pasteur 2, Service de Néphrologie-Dialyse-Transplantation, Nice, France; Clinical Research Unit of Université Côte d'Azur (UMR2CA), France
| | - Laurent Counillon
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | | | - Thierry Hauet
- Université de Poitiers, INSERM, IRTOMIT, CHU de Poitiers, La Milétrie, Poitiers, France
| | - Michel Tauc
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Didier F Pisani
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France.
| |
Collapse
|
19
|
Xu J, Zhang L, Jiang R, Hu K, Hu D, Liao C, Jiang S, Yang Y, Huang J, Tang L, Li L. Nicotinamide improves NAD + levels to protect against acetaminophen-induced acute liver injury in mice. Hum Exp Toxicol 2021; 40:1938-1946. [PMID: 33949241 DOI: 10.1177/09603271211014573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Acetaminophen (APAP) overdose causes acute liver injury (ALI). Nicotinamide adenine dinucleotide (NAD) is an essential coenzyme, and NAD+ is oxidized type which synthesized from nicotinamide (NAM). The present study aimed to investigate the role of NAD+ in ALI and protective property of NAM. The mice were subjected to different doses APAP. After 8 hours, the serum activities of alaninetransaminase (ALT) and aspartate aminotransferase (AST), the hepatic NAD+ level and nicotinamide phosphoribosyltransferase (NAMPT) expression were determined. Then, the mice were pretreated with NAM (800 mg/kg), the hepatoprotective effects and the key antioxidative molecules were evaluated. Our findings indicated that APAP resulted in remarkable NAD+ depletion in a dose-dependent manner accompanied by NAMPT downregulation, and NAM pretreatment significantly elevated the NAD+ decline due to upregulation of NAMPT. Moreover, the downregulated Kelch-like ECH-associated protein-1 (Keap1), upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) and its translocation activation after NAM administration were confirmed, which were in accordance with improved superoxide dismutase (SOD) and glutathione (GSH) levels. Finally, NAM dramatically exhibited hepatoprotective effects by reducing the liver index and necrotic area. This study has suggested that APAP impairs liver NAD+ level and NAM is able to improve hepatic NAD+ to activate antioxidant pathway against APAP-induced ALI.
Collapse
Affiliation(s)
- J Xu
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - L Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - R Jiang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - K Hu
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - D Hu
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - C Liao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - S Jiang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Y Yang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - J Huang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - L Tang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - L Li
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Liebman SE, Le TH. Eat Your Broccoli: Oxidative Stress, NRF2, and Sulforaphane in Chronic Kidney Disease. Nutrients 2021; 13:nu13010266. [PMID: 33477669 PMCID: PMC7831909 DOI: 10.3390/nu13010266] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/31/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
The mainstay of therapy for chronic kidney disease is control of blood pressure and proteinuria through the use of angiotensin-converting enzyme inhibitors (ACE-Is) or angiotensin receptor blockers (ARBs) that were introduced more than 20 years ago. Yet, many chronic kidney disease (CKD) patients still progress to end-stage kidney disease—the ultimate in failed prevention. While increased oxidative stress is a major molecular underpinning of CKD progression, no treatment modality specifically targeting oxidative stress has been established clinically. Here, we review the influence of oxidative stress in CKD, and discuss regarding the role of the Nrf2 pathway in kidney disease from studies using genetic and pharmacologic approaches in animal models and clinical trials. We will then focus on the promising therapeutic potential of sulforaphane, an isothiocyanate derived from cruciferous vegetables that has garnered significant attention over the past decade for its potent Nrf2-activating effect, and implications for precision medicine.
Collapse
|
21
|
Nath M, Agarwal A. New insights into the role of heme oxygenase-1 in acute kidney injury. Kidney Res Clin Pract 2020; 39:387-401. [PMID: 33184238 PMCID: PMC7770992 DOI: 10.23876/j.krcp.20.091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
Acute kidney injury (AKI) is attended by injury-related biomarkers appearing in the urine and serum, decreased urine output, and impaired glomerular filtration rate. AKI causes increased morbidity and mortality and can progress to chronic kidney disease and end-stage kidney failure. AKI is without specific therapies and is managed by supported care. Heme oxygenase-1 (HO-1) is a cytoprotective, inducible enzyme that degrades toxic free heme released from destabilized heme proteins and, during this process, releases beneficial by-products such as carbon monoxide and biliverdin/bilirubin and promotes ferritin synthesis. HO-1 induction protects against assorted renal insults as demonstrated by in vitro and preclinical models. This review summarizes the advances in understanding of the protection conferred by HO-1 in AKI, how HO-1 can be induced including via its transcription factor Nrf2, and HO-1 induction as a therapeutic strategy.
Collapse
Affiliation(s)
- Meryl Nath
- Deparment of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anupam Agarwal
- Deparment of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Veterans Affairs, Birmingham Veterans Administration Medical Center, Birmingham, AL, USA
| |
Collapse
|
22
|
Cardozo LFMF, Alvarenga LA, Ribeiro M, Dai L, Shiels PG, Stenvinkel P, Lindholm B, Mafra D. Cruciferous vegetables: rationale for exploring potential salutary effects of sulforaphane-rich foods in patients with chronic kidney disease. Nutr Rev 2020; 79:1204-1224. [DOI: 10.1093/nutrit/nuaa129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Sulforaphane (SFN) is a sulfur-containing isothiocyanate found in cruciferous vegetables (Brassicaceae) and a well-known activator of nuclear factor-erythroid 2-related factor 2 (Nrf2), considered a master regulator of cellular antioxidant responses. Patients with chronic diseases, such as diabetes, cardiovascular disease, cancer, and chronic kidney disease (CKD) present with high levels of oxidative stress and a massive inflammatory burden associated with diminished Nrf2 and elevated nuclear transcription factor-κB-κB expression. Because it is a common constituent of dietary vegetables, the salutogenic properties of sulforaphane, especially it’s antioxidative and anti-inflammatory properties, have been explored as a nutritional intervention in a range of diseases of ageing, though data on CKD remain scarce. In this brief review, the effects of SFN as a senotherapeutic agent are described and a rationale is provided for studies that aim to explore the potential benefits of SFN-rich foods in patients with CKD.
Collapse
Affiliation(s)
- Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Livia A Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Lu Dai
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Nageib M, Zahran MH, El‐Hefnawy AS, Barakat N, Awadalla A, Aamer HG, Khater S, Shokeir AA. Low energy shock wave‐delivered intravesical botulinum neurotoxin‐A potentiates antioxidant genes and inhibits proinflammatory cytokines in rat model of overactive bladder. Neurourol Urodyn 2020; 39:2447-2454. [DOI: 10.1002/nau.24511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Mohammed Nageib
- Urology Department, Urology and Nephrology Center Mansoura University Mansoura Egypt
| | - Mohamed H. Zahran
- Urology Department, Urology and Nephrology Center Mansoura University Mansoura Egypt
| | - Ahmed S. El‐Hefnawy
- Urology Department, Urology and Nephrology Center Mansoura University Mansoura Egypt
| | - Nashwa Barakat
- Urology Department, Urology and Nephrology Center Mansoura University Mansoura Egypt
| | - Amira Awadalla
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center Mansoura University Mansoura Egypt
| | - Haytham G. Aamer
- Urology Department, Urology and Nephrology Center Mansoura University Mansoura Egypt
| | - S. Khater
- Urology Department, Urology and Nephrology Center Mansoura University Mansoura Egypt
| | - Ahmed A. Shokeir
- Urology Department, Urology and Nephrology Center Mansoura University Mansoura Egypt
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center Mansoura University Mansoura Egypt
| |
Collapse
|
24
|
Son YJ, Park JE, Kim J, Yoo G, Lee TS, Nho CW. Production of low potassium kale with increased glucosinolate content from vertical farming as a novel dietary option for renal dysfunction patients. Food Chem 2020; 339:128092. [PMID: 33152880 DOI: 10.1016/j.foodchem.2020.128092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
The production of low potassium vegetables arose out of the dietary needs of patients with renal dysfunction. Attempts have been made to reduce potassium content in vegetables and fruits; however, induced potassium deficiency has often resulted in decreased yields. Here, we investigated a new method of producing low potassium kale and present the characteristics of the resulting produce. By substituting potassium nitrate with calcium nitrate in the nutrient solution 2 weeks before harvesting, the potassium content of kale was reduced by 70% without a deterioration in yield and semblance qualities. Despite no relationships being detected between potassium deficiency and anti-oxidative properties, the total glucosinolate content, an indicator of the anti-cancer effect of cruciferous vegetables, was significantly increased by potassium deficiency in kale. This study demonstrates a novel method of producing low potassium kale for patients with renal failure, without a reduction in yield but with beneficial increase in glucosinolates.
Collapse
Affiliation(s)
- Yang-Ju Son
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| | - Jai-Eok Park
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| | - Junho Kim
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| | - Gyhye Yoo
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| | - Taek-Sung Lee
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| | - Chu Won Nho
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| |
Collapse
|
25
|
Huang X, Wu J, Liu X, Wu H, Fan J, Yang X. The protective role of Nrf2 against aristolochic acid-induced renal tubular epithelial cell injury. Toxicol Mech Methods 2020; 30:580-589. [PMID: 32660364 DOI: 10.1080/15376516.2020.1795765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Aristolochic acid nephropathy is a rapidly progressive tubulointerstitial disease induced by aristolochic acid (AA) and effective treatment is lacking. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been proven to be protective in acute kidney injury and chronic kidney disease progression. But its role in AA-induced renal tubular epithelial cell injury has not been determined. This study aimed to investigate the role of Nrf2 in AA-induced renal tubular epithelial cell injury in vitro. NRK-52E cells were incubated with 5-50 μM AA to evaluate cell viability, reactive oxygen species (ROS) production, cell apoptosis/necrosis, and Nrf2 signaling pathway protein levels. We found that AA reduced cell viability and induced cell apoptosis in a time-dependent manner, accompanied by increased production of intracellular ROS. Meanwhile, the expression of Nrf2 signaling pathway proteins was significantly decreased. Downregulation of Nrf2 by Nrf2 siRNA decreased its downstream antioxidant proteins HO-1 and NQO1 and resulted in increased AA-induced ROS production and cell death. On the contrary, overexpression of Nrf2 increased HO-1 and NQO1 expression and resulted in decreased cell death. In conclusion, Nrf2 plays an important role in AA-induced injury. Enhanced Nrf2 signaling pathway could ameliorate AA-induced renal tubular epithelial cell injury, while downregulation of Nrf2 signaling exacerbated the injury.
Collapse
Affiliation(s)
- Xuan Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Juan Wu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China.,Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Xinhui Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Haishan Wu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Xiao Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| |
Collapse
|
26
|
Arauna D, Furrianca M, Espinosa-Parrilla Y, Fuentes E, Alarcón M, Palomo I. Natural Bioactive Compounds As Protectors Of Mitochondrial Dysfunction In Cardiovascular Diseases And Aging. Molecules 2019; 24:molecules24234259. [PMID: 31766727 PMCID: PMC6930637 DOI: 10.3390/molecules24234259] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 01/04/2023] Open
Abstract
Diet, particularly the Mediterranean diet, has been considered as a protective factor against the development of cardiovascular diseases, the main cause of death in the world. Aging is one of the major risk factors for cardiovascular diseases, which have an oxidative pathophysiological component, being the mitochondria one of the key organelles in the regulation of oxidative stress. Certain natural bioactive compounds have the ability to regulate oxidative phosphorylation, the production of reactive oxygen species and the expression of mitochondrial proteins; but their efficacy within the mitochondrial physiopathology of cardiovascular diseases has not been clarified yet. The following review has the purpose of evaluating several natural compounds with evidence of mitochondrial effect in cardiovascular disease models, ascertaining the main cellular mechanisms and their potential use as functional foods for prevention of cardiovascular disease and healthy aging.
Collapse
Affiliation(s)
- Diego Arauna
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
| | - María Furrianca
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Departamento de enfermería, Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Yolanda Espinosa-Parrilla
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Laboratory of Molecular Medicine —LMM, Center for Education, Healthcare and Investigation—CADI, Universidad de Magallanes, Punta Arenas 6200000, Chile
- School of Medicine, Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Correspondence: (E.F.); (I.P.)
| | - Marcelo Alarcón
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Correspondence: (E.F.); (I.P.)
| |
Collapse
|
27
|
Tomsa AM, Alexa AL, Junie ML, Rachisan AL, Ciumarnean L. Oxidative stress as a potential target in acute kidney injury. PeerJ 2019; 7:e8046. [PMID: 31741796 PMCID: PMC6858818 DOI: 10.7717/peerj.8046] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Background Acute kidney injury (AKI) is a major problem for health systems being directly related to short and long-term morbidity and mortality. In the last years, the incidence of AKI has been increasing. AKI and chronic kidney disease (CKD) are closely interconnected, with a growing rate of CKD linked to repeated and severe episodes of AKI. AKI and CKD can occur also secondary to imbalanced oxidative stress (OS) reactions, inflammation, and apoptosis. The kidney is particularly sensitive to OS. OS is known as a crucial pathogenetic factor in cellular damage, with a direct role in initiation, development, and progression of AKI. The aim of this review is to focus on the pathogenetic role of OS in AKI in order to gain a better understanding. We exposed the potential relationships between OS and the perturbation of renal function and we also presented the redox-dependent factors that can contribute to early kidney injury. In the last decades, promising advances have been made in understanding the pathophysiology of AKI and its consequences, but more studies are needed in order to develop new therapies that can address OS and oxidative damage in early stages of AKI. Methods We searched PubMed for relevant articles published up to May 2019. In this review we incorporated data from different types of studies, including observational and experimental, both in vivo and in vitro, studies that provided information about OS in the pathophysiology of AKI. Results The results show that OS plays a major key role in the initiation and development of AKI, providing the chance to find new targets that can be therapeutically addressed. Discussion Acute kidney injury represents a major health issue that is still not fully understood. Research in this area still provides new useful data that can help obtain a better management of the patient. OS represents a major focus point in many studies, and a better understanding of its implications in AKI might offer the chance to fight new therapeutic strategies.
Collapse
Affiliation(s)
- Anamaria Magdalena Tomsa
- Department of Pediatrics II, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| | - Alexandru Leonard Alexa
- Department of Anesthesia and Intensive Care I, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| | - Monica Lia Junie
- Department of Microbiology, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| | - Andreea Liana Rachisan
- Department of Pediatrics II, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| | - Lorena Ciumarnean
- Department of Internal Medicine IV, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
28
|
Silva-Palacios A, Ostolga-Chavarría M, Sánchez-Garibay C, Rojas-Morales P, Galván-Arzate S, Buelna-Chontal M, Pavón N, Pedraza-Chaverrí J, Königsberg M, Zazueta C. Sulforaphane protects from myocardial ischemia-reperfusion damage through the balanced activation of Nrf2/AhR. Free Radic Biol Med 2019; 143:331-340. [PMID: 31422078 DOI: 10.1016/j.freeradbiomed.2019.08.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/16/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022]
Abstract
The activation of the transcription factor Nrf2 and the consequent increment in the antioxidant response might be a powerful strategy to contend against reperfusion damage. In this study we compared the effectiveness between sulforaphane (SFN), a well known activator of Nrf2 and the mechanical maneuver of post-conditioning (PostC) to confer cardioprotection in an in vivo cardiac ischemia-reperfusion model. We also evaluated if additional mechanisms, besides Nrf2 activation contribute to cardioprotection. Our results showed that SFN exerts an enhanced protective response as compared to PostC. Bot, strategies preserved cardiac function, decreased infarct size, oxidative stress and inflammation, through common protective pathways; however, the aryl hydrocarbon receptor (AhR) also participated in the protection conferred by SFN. Our data suggest that SFN-mediated cardioprotection involves transient Nrf2 activation, followed by phase I enzymes upregulation at the end of reperfusion, as a long-term protection mechanism.
Collapse
Affiliation(s)
- A Silva-Palacios
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico; Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico
| | - M Ostolga-Chavarría
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico
| | - C Sánchez-Garibay
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico
| | - P Rojas-Morales
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico
| | - S Galván-Arzate
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suarez, Mexico
| | - M Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico
| | - N Pavón
- Departamento de Farmacología, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico
| | - J Pedraza-Chaverrí
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico
| | - M Königsberg
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico
| | - C Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico.
| |
Collapse
|
29
|
Elshiekh M, Kadkhodaee M, Seifi B, Ranjbaran M. Additional effects of erythropoietin pretreatment, ischemic preconditioning, and N-acetylcysteine posttreatment in rat kidney reperfusion injury. Turk J Med Sci 2019; 49:1249-1255. [PMID: 31342735 PMCID: PMC7018199 DOI: 10.3906/sag-1812-228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background/aim Since the nature of ischemia/reperfusion (IR)-induced tissue damage is multifactorial and complex, in the current study, the effects of multiple treatment strategies via concomitant administration of erythropoietin (EPO) and N-acetylcysteine (NAC) with an ischemic preconditioning (IPC) regimen on renal IR injury were examined. Materials and methods Thirty male Wistar rats were subjected to bilateral occlusion of the renal pedicles for 50 min followed by reperfusion. EPO (1000 IU/kg) was administered for 3 days, as well as IPC before the IR and NAC (150 mg/kg) administration for 4 days after IR. The animals were randomly allocated into 6 groups (n = 5): sham, IR, EPO+IR, IPC+IR, NAC+IR, and EPO+IPC+NAC+IR. Kidney tissues and blood samples were obtained for oxidative stress, proinflammatory cytokines, and renal functional evaluations. Results IR caused significant inflammatory response, oxidative stress, and reduced renal function. Treatment with EPO, IPC, and NAC or a combination of two of them attenuated renal dysfunction and reduced the oxidative stress and inflammatory markers. Rats treated with the combination of EPO, IPC, and NAC showed a higher degree of protection compared to the other groups. Conclusion These results showed that concomitant administration of EPO and IPC along with posttreatment NAC may have additive beneficial effects on kidney IR injury during IR-induced acute renal failure.
Collapse
Affiliation(s)
- Mohammed Elshiekh
- Department of Physiology, Faculty of Medicine, University of Dongola, Dongola, Sudan,Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Ranjbaran
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Kim JE, Bae SY, Ahn SY, Kwon YJ, Ko GJ. The role of nuclear factor erythroid-2-related factor 2 expression in radiocontrast-induced nephropathy. Sci Rep 2019; 9:2608. [PMID: 30796317 PMCID: PMC6384919 DOI: 10.1038/s41598-019-39534-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 01/10/2019] [Indexed: 01/21/2023] Open
Abstract
Radiocontrast-induced nephropathy (CIN) is the third most common cause of acute renal failure. The pathophysiology of CIN is related to tubular injury caused by oxidative stress, and nuclear factor erythroid-2-related factor 2 (Nrf2) is critical in coordinating intracellular antioxidative processes. We thus investigated the role of Nrf2 in CIN. CIN was established in mice and in NRK-52E cells via iohexol administration according to the protocols of previous studies. To determine the role of Nrf2 in CIN, Nrf2 expression was reduced in vivo using Nrf2 knockout (KO) mice (B6.129 × 1-Nfe2 l2tm1Ywk/J) and in vitro with siRNA treatment targeting Nrf2. Increased Nrf2 expression was observed after iohexol treatment both in vivo and in vitro. Serum creatinine at 24 h after iohexol injection was significantly higher in KO mice than in wild-type (WT) mice. Histologic examination showed that iohexol-induced tubular vacuolization and structural disruption were aggravated in Nrf2 KO mice. Significant increases in apoptosis and F4/80(+) inflammatory cell infiltration were demonstrated in KO mice compared to WT mice. In addition, the increase in reactive oxygen species after iohexol treatment was augmented by Nrf2 inhibition both in vivo and in vitro. Nrf2 may be implicated in the pathogenesis of CIN via the modulation of antioxidant, anti-apoptotic, and anti-inflammatory processes.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - So Yeon Bae
- Nephrology Research Institution, Korea University Guro Hospital, Seoul, Korea
| | - Shin Young Ahn
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Young Joo Kwon
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Gang Jee Ko
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
31
|
Melatonin attenuates acute kidney ischemia/reperfusion injury in diabetic rats by activation of the SIRT1/Nrf2/HO-1 signaling pathway. Biosci Rep 2019; 39:BSR20181614. [PMID: 30578379 PMCID: PMC6331666 DOI: 10.1042/bsr20181614] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/29/2022] Open
Abstract
Background and aims: Diabetic kidney is more sensitive to ischemia/reperfusion (I/R) injury, which is associated with increased oxidative stress and impaired nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Melatonin, a hormone that is secreted with the rhythm of the light/dark cycle, has antioxidative effects in reducing acute kidney injury (AKI). However, the molecular mechanism of melatonin protection against kidney I/R injury in the state of diabetes is still unknown. In the present study, we hypothesized that melatonin attenuates renal I/R injury in diabetes by activating silent information regulator 2 associated protein 1 (SIRT1) expression and Nrf2/HO-1 signaling. Methods: Control or streptozotocin (STZ)-induced Type 1 diabetic rats were treated with or without melatonin for 4 weeks. Renal I/R injury was achieved by clamping both left and right renal pedicles for 30 min followed by reperfusion for 48 h. Results: Diabetic rats that were treated with melatonin undergoing I/R injury prevented renal injury from I/R, in aspects of the histopathological score, cell apoptosis, and oxidative stress in kidney, accompanied with decreased expressions of SIRT1, Nrf2, and HO-1 as compared with those in control rats. All these alterations were attenuated or prevented by melatonin treatment; but these beneficial effects of melatonin were abolished by selective inhibition of SIRT1 with EX527. Conclusion: These findings suggest melatonin could attenuate renal I/R injury in diabetes, possibly through improving SIRT1/Nrf2/HO-1 signaling.
Collapse
|
32
|
Xing P, Ma K, Wu J, Long W, Wang D. Protective effect of polysaccharide peptide on cerebral ischemia‑reperfusion injury in rats. Mol Med Rep 2018; 18:5371-5378. [PMID: 30365125 PMCID: PMC6236317 DOI: 10.3892/mmr.2018.9579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 09/06/2018] [Indexed: 02/06/2023] Open
Abstract
In the present study, the protective effects and regulatory mechanism of polysaccharide peptide (PSP) were investigated in rats with cerebral ischemia-reperfusion (IR) injury. Neuroblastoma N2a cells were divided into five groups: Negative control; IR injury; PSP low dose treatment; PSP middle dose treatment; and PSP high dose treatment. In vitro, the cell viability was detected by an MTT assay. ELISA was performed to determine the activity of lactate dehydrogenase (LDH) and caspase-3. A cerebral IR injury model in vivo was established, and hematoxylin and eosin (H&E) staining, western blotting, neurological deficit score and cerebral infarction were assessed. The cell viability was markedly improved following treatment with PSP and the activity of LDH and caspase-3 was decreased following PSP administration (P<0.05). The in vivo studies determined that the neurological deficit score and cerebral infarction volume were reduced with the concentration of PSP increasing between 150 and 250 mg/kg. The H&E staining indicated that PSP was able to protect the nerve cells against the cerebral IR injury. In addition, PSP upregulated the decreased silent information regulator protein 1, peroxisome proliferator-activated receptor γ coactivator-1α and apoptosis regulator B-cell lymphoma 2 expression induced by cerebral IR injury. The protein expression level of caspase-3 and apoptosis regulator apoptosis regulator Bcl-2-like protein 4 was downregulated following PSP administration. These results suggested that PSP may improve nerve cell viability, enhance the neuroprotective role in cerebral IR injury and provide a novel approach for the treatment of cerebral IR injury.
Collapse
Affiliation(s)
- Pengcheng Xing
- Department of Emergency, Shanghai Sixth People's Hospital East Area Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201306, P.R. China
| | - Ke Ma
- Department of Emergency, Shanghai Sixth People's Hospital East Area Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201306, P.R. China
| | - Jun Wu
- ICU, Shanghai Sixth People's Hospital East Area Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201306, P.R. China
| | - Wei Long
- Department of Geriatric Medicine, Shanghai Sixth People's Hospital East Area Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201306, P.R. China
| | - Donglian Wang
- Department of Emergency, Shanghai Sixth People's Hospital East Area Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201306, P.R. China
| |
Collapse
|
33
|
Nrf2 Deficiency Unmasks the Significance of Nitric Oxide Synthase Activity for Cardioprotection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8309698. [PMID: 29854098 PMCID: PMC5952436 DOI: 10.1155/2018/8309698] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/17/2018] [Accepted: 02/27/2018] [Indexed: 12/14/2022]
Abstract
The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key master switch that controls the expression of antioxidant and cytoprotective enzymes, including enzymes catalyzing glutathione de novo synthesis. In this study, we aimed to analyze whether Nrf2 deficiency influences antioxidative capacity, redox state, NO metabolites, and outcome of myocardial ischemia reperfusion (I/R) injury. In Nrf2 knockout (Nrf2 KO) mice, we found elevated eNOS expression and preserved NO metabolite concentrations in the aorta and heart as compared to wild types (WT). Unexpectedly, Nrf2 KO mice have a smaller infarct size following myocardial ischemia/reperfusion injury than WT mice and show fully preserved left ventricular systolic function. Inhibition of NO synthesis at onset of ischemia and during early reperfusion increased myocardial damage and systolic dysfunction in Nrf2 KO mice, but not in WT mice. Consistent with this, infarct size and diastolic function were unaffected in eNOS knockout (eNOS KO) mice after ischemia/reperfusion. Taken together, these data suggest that eNOS upregulation under conditions of decreased antioxidant capacity might play an important role in cardioprotection against I/R. Due to the redundancy in cytoprotective mechanisms, this fundamental antioxidant property of eNOS is not evident upon acute NOS inhibition in WT mice or in eNOS KO mice until Nrf2-related signaling is abrogated.
Collapse
|
34
|
Espinosa-Díez C, Miguel V, Vallejo S, Sánchez FJ, Sandoval E, Blanco E, Cannata P, Peiró C, Sánchez-Ferrer CF, Lamas S. Role of glutathione biosynthesis in endothelial dysfunction and fibrosis. Redox Biol 2018; 14:88-99. [PMID: 28888203 PMCID: PMC5596265 DOI: 10.1016/j.redox.2017.08.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022] Open
Abstract
Glutathione (GSH) biosynthesis is essential for cellular redox homeostasis and antioxidant defense. The rate-limiting step requires glutamate-cysteine ligase (GCL), which is composed of the catalytic (GCLc) and the modulatory (GCLm) subunits. To evaluate the contribution of GCLc to endothelial function we generated an endothelial-specific Gclc haplo-insufficient mouse model (Gclc e/+ mice). In murine lung endothelial cells (MLEC) derived from these mice we observed a 50% reduction in GCLc levels compared to lung fibroblasts from the same mice. MLEC obtained from haplo-insufficient mice showed significant reduction in GSH levels as well as increased basal and stimulated ROS levels, reduced phosphorylation of eNOS (Ser 1177) and increased eNOS S-glutathionylation, compared to MLEC from wild type (WT) mice. Studies in mesenteric arteries demonstrated impaired endothelium-dependent vasodilation in Gclc(e/+) male mice, which was corrected by pre-incubation with GSH-ethyl-ester and BH4. To study the contribution of endothelial GSH synthesis to renal fibrosis we employed the unilateral ureteral obstruction model in WT and Gclc(e/+) mice. We observed that obstructed kidneys from Gclc(e/+) mice exhibited increased deposition of fibrotic markers and reduced Nrf2 levels. We conclude that the preservation of endothelial GSH biosynthesis is not only critical for endothelial function but also in anti-fibrotic responses.
Collapse
Affiliation(s)
- Cristina Espinosa-Díez
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa", (CSIC-UAM), Madrid, Spain
| | - Verónica Miguel
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa", (CSIC-UAM), Madrid, Spain
| | - Susana Vallejo
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid and Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), Spain
| | - Francisco J Sánchez
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa", (CSIC-UAM), Madrid, Spain
| | - Elena Sandoval
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa", (CSIC-UAM), Madrid, Spain
| | - Eva Blanco
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa", (CSIC-UAM), Madrid, Spain
| | - Pablo Cannata
- Department of Pathology, Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spain
| | - Concepción Peiró
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid and Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), Spain
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid and Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), Spain
| | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa", (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
35
|
Bryant JL, Guda PR, Asemu G, Subedi R, Ray S, Khalid OS, Shukla V, Patel D, Davis H, Nimmagadda VKC, Makar TK. Glomerular mitochondrial changes in HIV associated renal injury. Exp Mol Pathol 2018; 104:175-189. [PMID: 29608912 DOI: 10.1016/j.yexmp.2018.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022]
Abstract
HIV-associated nephropathy (HIVAN) is an AIDs-related disease of the kidney. HIVAN is characterized by severe proteinuria, podocyte hyperplasia, collapse, glomerular, and tubulointerstitial damage. HIV-1 transgenic (Tg26) mouse is the most popular model to study the HIV manifestations that develop similar renal presentations as HIVAN. Viral proteins, including Tat, Nef, and Vpr play a significant role in renal cell damage. It has been shown that mitochondrial changes are involved in several kidney diseases, and therefore, mitochondrial dysfunction may be implicated in the pathology of HIVAN. In the present study, we investigated the changes of mitochondrial homeostasis, biogenesis, dynamics, mitophagy, and examined the role of reactive oxygen species (ROS) generation and apoptosis in the Tg26 mouse model. The Tg26 mice showed significant impairment of kidney function, which was accompanied by increased blood urea nitrogen (BUN), creatinine and protein urea level. In addition, histological, western blot and PCR analysis of the Tg26 mice kidneys showed a downregulation of NAMPT, SIRT1, and SIRT3 expressions levels. Furthermore, the kidney of the Tg26 mice showed a downregulation of PGC1α, MFN2, and PARKIN, which are coupled with decrease of mitochondrial biogenesis, imbalance of mitochondrial dynamics, and downregulation of mitophagy, respectively. Furthermore, our results indicate that mitochondrial dysfunction were associated with ER stress, ROS generation and apoptosis. These results strongly suggest that the impaired mitochondrial morphology, homeostasis, and function associated with HIVAN. These findings indicated that a new insight on pathological mechanism associated with mitochondrial changes in HIVAN and a potential therapeutic target.
Collapse
Affiliation(s)
- Joseph L Bryant
- Institute of Human Virology, University of Maryland, Baltimore, MD, United States
| | | | - Girma Asemu
- Institute of Human Virology, University of Maryland, Baltimore, MD, United States
| | - Rogin Subedi
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Sugata Ray
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Omar S Khalid
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Vivek Shukla
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Dhruvil Patel
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Harry Davis
- Institute of Human Virology, University of Maryland, Baltimore, MD, United States
| | | | - Tapas K Makar
- Department of Neurology, University of Maryland, Baltimore, MD, United States.
| |
Collapse
|
36
|
Mard SA, Akbari G, Dianat M, Mansouri E. Protective effects of crocin and zinc sulfate on hepatic ischemia-reperfusion injury in rats: a comparative experimental model study. Biomed Pharmacother 2017; 96:48-55. [PMID: 28963950 DOI: 10.1016/j.biopha.2017.09.123] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the comparative protective effects of separate and combined pretreatment with Cr and ZnSO4 on serum levels of miR-122, miR-34a, liver function tests, protein expression of Nrf2 and p53, and histopathological changes following IR-induced hepatic injury. MATERIALS AND METHODS Fifty-six male Wistar rats randomly assigned into seven groups (n=8). Sham (S), IR, crocin pretreatment (Cr), and crocin pretreatment+IR (Cr+IR), ZnSO4 pretreatment (ZnSO4), ZnSO4 pretreatment+IR (ZnSO4+IR) and their combination (Cr+ZnSO4+IR) groups. In sham, ZnSO4 and Cr groups, animals received normal saline (N/S, 2ml/day), Cr (200mg/kg) and ZnSO4 (5mg/kg) for 7 consecutive days (intraperitoneally; i.p), then only laparotomy was performed. In IR, Cr+IR, ZnSO4+IR and Cr+ZnSO4+IR groups, rats received N/S, Cr and ZnSO4 with same dose and time, then underwent a partial (70%) ischemia for 45min that followed by reperfusion for 60min. Blood sample was taken for biochemical and microRNAs assay, tissue specimens were obtained for antioxidants, protein expression, histopathological and immunohistochemical evaluations. RESULTS The results showed that Cr and ZnSO4 increased antioxidants activity and expression of Nrf2, decreased serum levels of liver enzymes, miR-122, miR-34a, p53 expression and also ameliorated histopathological abnormality. However, their combination caused more improvement on IR-induced liver injury. CONCLUSION This study demonstrated that Cr, ZnSO4 and their combination through increasing antioxidant activity and Nrf2 expression, decreasing the serum levels of liver enzymes, miR-122, 34a, p53 expression, and amelioration of histopathological changes, protected liver against IR-induced injury.
Collapse
Affiliation(s)
- Seyyed Ali Mard
- Physiology Research Center (PRC), Research Center for Infectious Diseases of Digestive System, Dept. of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghaidafeh Akbari
- Physiology Research Center (PRC), Dept. of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mahin Dianat
- Physiology Research Center (PRC), Research Center for Infectious Diseases of Digestive System, Dept. of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Department of Anatomic Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
37
|
Xu Z, Zhao K, Han P, Qi X, Zhang W, Niu T. Octreotide Ameliorates Renal Ischemia/Reperfusion Injury via Antioxidation and Anti-inflammation. Transplant Proc 2017; 49:1916-1922. [DOI: 10.1016/j.transproceed.2017.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/01/2017] [Accepted: 05/13/2017] [Indexed: 12/28/2022]
|
38
|
Zhang Y, Rong S, Feng Y, Zhao L, Hong J, Wang R, Yuan W. Simvastatin attenuates renal ischemia/reperfusion injury from oxidative stress via targeting Nrf2/HO-1 pathway. Exp Ther Med 2017; 14:4460-4466. [PMID: 29067120 DOI: 10.3892/etm.2017.5023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 06/15/2017] [Indexed: 12/26/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury of the kidneys is commonly encountered in the clinic. The present study assessed the efficacy of simvastatin in preventing I/R-induced renal injury in a rat model and investigated the corresponding molecular mechanisms. Rats were divided into 3 groups, including a sham, I/R and I/R + simvastatin group. The results revealed that in the I/R group, the levels of blood urea nitrogen, serum creatinine and lactate dehydrogenase were significantly higher than those in the sham group, which was significantly inhibited by simvastatin pre-treatment. I/R significantly decreased superoxide dismutase activity compared with that in the sham group, which was largely rescued by simvastatin. Furthermore, I/R significantly increased the malondialdehyde content compared with that in the sham group, which was reduced by simvastatin. Hematoxylin-eosin staining revealed no obvious morphological abnormalities in the sham group, while I/R led to notable tubular cell swelling, vacuolization, cast formation and tubular necrosis, which was rescued by simvastatin. A terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay demonstrated that I/R significantly increased the number of apoptotic cells compared with that in the sham group, which was significantly inhibited by simvastatin. Western blot analysis demonstrated that simvastatin upregulated I/R-induced increases of nuclear factor erythroid-2-related factor 2 (Nrf2) and anti-oxidant enzyme heme oxygenase-1 (HO-1). Reverse-transcription quantitative PCR indicated that changes in the mRNA levels of Nrf2 and HO-1 were consistent with the western blot results. It was concluded that simvastatin treatment led to upregulation of HO-1 protein levels through activating the Nrf2 signaling pathway to ultimately protect the kidneys from I/R-associated oxidative damage.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Emergency Intensive Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai 200082, P.R. China
| | - Shu Rong
- Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200082, P.R. China
| | - Yi Feng
- Department of Emergency Intensive Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai 200082, P.R. China
| | - Liqun Zhao
- Department of Emergency Intensive Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai 200082, P.R. China
| | - Jiang Hong
- Department of Emergency Intensive Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai 200082, P.R. China
| | - Ruilan Wang
- Department of Emergency Intensive Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai 200082, P.R. China
| | - Weijie Yuan
- Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200082, P.R. China
| |
Collapse
|
39
|
Esgalhado M, Stenvinkel P, Mafra D. Nonpharmacologic Strategies to Modulate Nuclear Factor Erythroid 2–related Factor 2 Pathway in Chronic Kidney Disease. J Ren Nutr 2017; 27:282-291. [DOI: 10.1053/j.jrn.2017.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/03/2016] [Accepted: 01/06/2017] [Indexed: 01/25/2023] Open
|
40
|
Yao L, Wang J, Tian BY, Xu TH, Sheng ZT. Activation of the Nrf2-ARE Signaling Pathway Prevents Hyperphosphatemia-Induced Vascular Calcification by Inducing Autophagy in Renal Vascular Smooth Muscle Cells. J Cell Biochem 2017; 118:4708-4715. [PMID: 28513870 DOI: 10.1002/jcb.26137] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/16/2017] [Indexed: 12/13/2022]
Abstract
This study investigates the effect of nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) signaling pathway in vascular calcification (VC) via inducing Autophagy in renal vascular smooth muscle cells (VSMCs). VSMCs were assigned into six experimental groups: the normal control, high phosphorus, si-negative control (si-NC), Nrf2-siRNA, over-expressed Nrf2, and negative control (NC) groups. RT-PCR was applied to detect the mRNA expressions of the desired Nrf2-ARE signaling pathway-related genes (Nrf2, NQO-1, HO-1, γ-GCS). The protein products of these genes: apoptosis-related genes (LC3I and LC3II), osteogenic marker proetins (Runt-related transcription factor 2) Runx2 and BMP2 were all detected by Western blotting. Autophagosomes in VSMCs were observed under a transmission electron microscope. We discovered an increased calcium ion concentration and upregulated Runx2, BMP2, Nrf2, HO-1, γ-GCS, NQO-1, and LC3II/LC3I expressions in the high phosphorous, si-NC and Nrf2-siRNA, and NC groups, compared with the normal control group. Compared to the high phosphorus and si-NC groups, higher levels of Runx2 and BMP2 but decreased Nrf2, HO-1, γ-GCS, NQO-1, and LC3II/LC3I expressions were detected in the Nrf2-siRNA group. The high phosphorus, si-NC and over-expressed Nrf2 experimental groups all had increased Nrf2, NQO-1, HO-1, γ-GCS, and LC3II/LC3I expressions as well as high numbers of autophagosomes compared with the normal control group. Finally, we detected a lower amount of autophagosomes presence and Nrf2, NQO-1, HO-1 γ-GCS, and LC3II/LC3 protein expression of Nrf2-siRNA group than that of the high phosphorus and si-NC groups. Activation of Nrf2-ARE signaling pathway may prevent hyperphosphatemia-induced VC by inducing autophagy in VSMCs. J. Cell. Biochem. 118: 4708-4715, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Jian Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Bin-Yao Tian
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Tian-Hua Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Zi-Tong Sheng
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, P.R. China
| |
Collapse
|
41
|
The Hepatoprotective and MicroRNAs Downregulatory Effects of Crocin Following Hepatic Ischemia-Reperfusion Injury in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1702967. [PMID: 28367266 PMCID: PMC5358472 DOI: 10.1155/2017/1702967] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/16/2017] [Accepted: 01/31/2017] [Indexed: 12/12/2022]
Abstract
Background. Liver ischemia-reperfusion (IR) injury is one of the chief etiologies of tissue damage during liver transplantation, hypovolemic shock, and so forth. This study aimed to evaluate hepatoprotective effect of crocin on IR injury and on microRNAs (miR-122 and miR-34a) expression. Materials and Methods. 32 rats were randomly divided into four groups: sham, IR, crocin pretreatment (Cr), and crocin pretreatment + IR (Cr + IR) groups. In sham and Cr groups, animals were given normal saline (N/S) and Cr (200 mg/Kg) for 7 consecutive days, respectively, and laparotomy without inducing IR was done. In IR and Cr + IR groups, N/S and Cr were given for 7 consecutive days and rats underwent a partial (70%) ischemia for 45 min/reperfusion for 60 min. Blood and tissue samples were taken for biochemical, molecular, and histopathological examinations. Results. The results showed decreased levels of antioxidants activity and increased levels of liver enzymes improved by crocin. The expression of miR-122, miR-34a, and p53 decreased, while Nrf2 increased by crocin. Crocin ameliorated histopathological changes. Conclusion. The results demonstrated that crocin protected the liver against IR injury through increasing the activity of antioxidant enzymes, improving serum levels of liver enzymes, downregulating miR-122, miR-34a, and p53, and upregulating Nrf2 expression.
Collapse
|
42
|
Sancak EB, Turkön H, Çukur S, Erimsah S, Akbas A, Gulpinar MT, Toman H, Sahin H, Uzun M. Major Ozonated Autohemotherapy Preconditioning Ameliorates Kidney Ischemia-Reperfusion Injury. Inflammation 2016; 39:209-217. [PMID: 26282390 DOI: 10.1007/s10753-015-0240-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Medical ozone has therapeutic properties as an antimicrobial, anti-inflammatory, modulator of antioxidant defense system. Major ozonated autohemotherapy (MOA) is a new therapeutic approach that is widely used in the treatment of many diseases. The objective of the present study was to determine whether preischemic application of MOA would attenuate renal ischemia-reperfusion injury (IRI) in rabbits. Twenty-four male New Zealand white rabbits were divided into four groups, each including six animals: (1) Sham-operated group, (2) Ozone group (the MOA group without IRI), (3) IR group (60 min ischemia followed by 24 h reperfusion), and (4) IR + MOA group (MOA group). The effects of MOA were examined by use of hematologic and biochemical parameters consisting of neutrophil to lymphocyte ratio (NLR), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), ischemia-modified albumin (IMA), total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI). In addition, the histopathological changes including the tubular brush border loss (TBBL), tubular cast (TC), tubular necrosis (TN), intertubular hemorrhage and congestion (IHC), dilatation of bowman space (DBS), and interstitial inflammatory cells infiltration (IECI) were evaluated. In the IR group, compared to the Sham group, biochemical parameters indicating oxidative stress, NLR, IL-6, TNF-α, IMA, TOS, and OSI have increased. MOA reduced inflammation and oxidative stress parameters. Although TAS values have decreased in the IR group and increased in the MOA-pretreated group, no significant changes in TAS values were detected between the IR and MOA groups. The total score was obtained by summing all the scores from morphological kidney damage markers. The total score has increased with IR damage when compared with the Sham group (13.83 ± 4.30 vs 1.51 ± 1.71; p = 0.002). But, the total score has decreased significantly after application of MOA (5.01 ± 1.49; p = 0.002; compared with the IR group). MOA preconditioning is effective in reducing tissue damage induced in kidney ischemia-reperfusion injury. The protective effect of MOA is mediated via reducing inflammatory response and regulating of reactive oxygen species (ROS). Renal histology also showed convincing evidence regarding MOA's protective nature against kidney injury induced renal ischemia-reperfusion. Consequently, MOA might be helpful in protecting the kidneys from IR-induced damage in humans, probably through the anti-inflammatory effect and reducing the total oxidant status.
Collapse
Affiliation(s)
- Eyup Burak Sancak
- Department of Urology, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey. .,Canakkale Onsekiz Mart Universitesi, Terzioglu Yerleskesi, Barbaros Mh, 17100, Canakkale, Turkey.
| | - Hakan Turkön
- Department of Biochemistry, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| | - Selma Çukur
- Department of Pathology, Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Sevilay Erimsah
- Department of Histology and Embryology, Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Alpaslan Akbas
- Department of Urology, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| | - Murat Tolga Gulpinar
- Department of Urology, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| | - Huseyin Toman
- Department of Anesthesiology, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| | - Hasan Sahin
- Department of Anesthesiology, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| | - Metehan Uzun
- Department of Physiology, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| |
Collapse
|
43
|
Kim JK, Park SU. Current potential health benefits of sulforaphane. EXCLI JOURNAL 2016; 15:571-577. [PMID: 28096787 PMCID: PMC5225737 DOI: 10.17179/excli2016-485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 406-772, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Korea
| |
Collapse
|
44
|
Gastroprotective effects of sulforaphane and thymoquinone against acetylsalicylic acid-induced gastric ulcer in rats. J Surg Res 2016; 203:348-59. [PMID: 27363643 DOI: 10.1016/j.jss.2016.03.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) commonly cause gastric ulcers (GUs). We investigated the effects of sulforaphane (SF) and thymoquinone (TQ) in rats with acetylsalicylic acid (ASA)-induced GUs. MATERIALS AND METHODS Thirty-five male Wistar-Albino rats were divided into five groups: control; ASA; ASA with vehicle; ASA + SF; and ASA + TQ. Compounds were administered by oral gavage before GU induction. GUs were induced by intragastric administration of ASA. Four hours after GU induction, rats were killed and stomachs excised. Total oxidant status, total antioxidant status, total thiol, nitric oxide, asymmetric dimethylarginine, tumor necrosis factor-alpha levels, superoxide dismutase activity, and glutathione peroxidase activity in tissue were measured. Messenger RNA expression of dimethylarginine dimethylaminohydrolases, heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor 2, and nuclear factor kappa-light-chain-enhancer of activated B cells were analyzed. Renal tissues were evaluated by histopathologic and immunohistochemical means. RESULTS SF and TQ reduced GU indices, apoptosis, total oxidant status, asymmetric dimethylarginine, and tumor necrosis factor-alpha levels, nuclear factor kappa-light-chain-enhancer of activated B cells, and inducible nitric oxide synthase expressions (P < 0.001, P = 0.001). Both examined compounds increased superoxide dismutase activity, glutathione peroxidase activity, total antioxidant status, total thiol, nitric oxide levels, endothelial nitric oxide synthase, dimethylarginine dimethylaminohydrolases, HO-1, nuclear factor erythroid 2-related factor 2, and HO-1 expressions (P < 0.001). CONCLUSIONS These results suggest that pretreatment with SF or TQ can reduce ASA-induced GUs via anti-inflammatory, antioxidant, and antiapoptotic effects. These compounds may be useful therapeutic strategies to prevent the gastrointestinal adverse effects that limit nonsteroidal anti-inflammatory drugs use.
Collapse
|
45
|
Sancak EB, Akbas A, Silan C, Cakir DU, Turkon H, Ozkanli SS. Protective effect of syringic acid on kidney ischemia-reperfusion injury. Ren Fail 2016; 38:629-35. [DOI: 10.3109/0886022x.2016.1149868] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
46
|
Sulforaphane Attenuates Contrast-Induced Nephropathy in Rats via Nrf2/HO-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9825623. [PMID: 27006750 PMCID: PMC4783566 DOI: 10.1155/2016/9825623] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/12/2016] [Accepted: 01/27/2016] [Indexed: 12/25/2022]
Abstract
Background. Oxidative stress plays an important role in the pathogenesis of contrast-induced nephropathy (CIN). The aim of this study was to investigate the antioxidant effects of sulforaphane (SFN) in a rat model of CIN and a cell model of oxidative stress in HK2 cells. Methods. Rats were randomized into four groups (n = 6 per group): control group, Ioversol group (Ioversol-induced CIN), Ioversol + SFN group (CIN rats pretreated with SFN), and SFN group (rats treated with SFN). Renal function tests, malondialdehyde (MDA), and reactive oxygen species (ROS) were measured. Western blot, real-time polymerase chain reaction analysis, and immunohistochemical analysis were performed for nuclear factor erythroid-derived 2-like 2 (Nrf2) and heme oxygenase-1 (HO-1) detection. Results. Serum blood urea nitrogen (BUN), creatinine, and renal tissue MDA were increased after contrast exposure. Serum BUN, creatinine, and renal tissue MDA were decreased in the Ioversol + SFN group as compared with those in the Ioversol group. SFN increased the expression of Nrf2 and HO-1 in CIN rats and in Ioversol-induced injury HK2 cells. SFN increased cell viability and attenuated ROS level in vitro. Conclusions. SFN attenuates experimental CIN in vitro and in vivo. This effect is suggested to activate the Nrf2 antioxidant defenses pathway.
Collapse
|