1
|
Chakraborty DD, Chakraborty P, Mondal A. An insight into cancer nanomedicine based on polysaccharides. Int J Biol Macromol 2024; 290:138678. [PMID: 39672407 DOI: 10.1016/j.ijbiomac.2024.138678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
With cancer rates on the rise around the world, cancer treatment has dominated scientific discussions in recent years. The toxicity of cytotoxic drugs, their lack of tumor localization, and their uniform dispersion into tumor tissues are the obstacles to cancer therapy. Other cancer treatment drawbacks include short blood circulation half-lives and undesirable pharmacokinetic behavior. Low-molecular-weight drugs conjugated with macromolecular carriers are better distributed in the body. The enhanced permeation and retention (EPR) effect causes natural and synthetic polymers, such as polysaccharides, proteins, antibodies, and poly amino acids, to accumulate in tumor tissue. Many manufactured and natural polymers are attractive polymeric drug carriers, allowing the creation of prodrugs from medicinal substances. Polysaccharides are biological polymers with structural and functional variations. They are also non-toxic, hydrophilic, biodegradable, and efficiently bioactive. Polysaccharides are ideal for synthesizing many nanoparticles due to their functional groups. Their ability to adapt to their microenvironment makes them valuable. Nanoplatforms based on polysaccharides can deliver targeted anticancer drugs for personalized cancer treatment. Unique polysaccharide structures and properties offer chemical and biological advantages for novel drug delivery. Polysaccharide-drug conjugation could revolutionize cancer chemotherapy. This study investigates polysaccharide conjugates and polysaccharides as natural biomaterials for cancer drug delivery.
Collapse
Affiliation(s)
| | - Prithviraj Chakraborty
- Royal School of Pharmacy, The Assam Royal Global University, Betkuchi, Guwahati-781035, India
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha-743234, India.
| |
Collapse
|
2
|
Kaibagarova I, Saparbaev S, Aringazina R, Zhumabaev M, Nurgaliyeva Z. The role of fetal pancreatic islet cell transplantation in the treatment of type 2 diabetes mellitus. J Diabetes Metab Disord 2024; 23:1949-1957. [PMID: 39610528 PMCID: PMC11599508 DOI: 10.1007/s40200-024-01448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/24/2024] [Indexed: 11/30/2024]
Abstract
Objectives Diabetes mellitus has a negative impact on patients' lives and is a significant medical and social problem. Due to the high prevalence of diabetes mellitus, shortage of donor materials, immune rejection of the pancreas and limited efficacy of existing treatment methods, the study of promising and more effective approaches to the treatment of this disease, such as transplantation of fetal pancreatic islet cells, becomes relevant. The aim of the study is to determine the efficacy and necessity of fetal pancreatic islet cell transplantation in the treatment of type 2 diabetes mellitus. Methods The study was carried out with the help of analytical-synthetic method, literature review and analysis of medical databases corresponding to the topic of work, clinical and experimental studies conducted by other authors were considered. Results As a result of this work, it was found that the use of fetal stem cell transplantation is an effective method in the treatment of diabetes. Studies confirm that this method reduces hyperglycaemia and NOMA index, increases c-peptide values without serious side effects on the background of treatment. Conclusions Fetal islet cells have advantages in cell culture, relatively low immunogenicity, effective engraftment, although they may produce less insulin relative to adult somatic stem cells. Transplanted islet cells are able to replace and renew the function of the recipient's own pancreatic β-cells, and prevent their destruction. Fetal pancreatic islet cell transplantation is a promising treatment option for type 2 diabetes that can complement or replace existing therapies, improving patients' glucose control.
Collapse
Affiliation(s)
- Indira Kaibagarova
- Department of Pharmacology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Str, Aktobe, 030012 Republic of Kazakhstan
| | - Samat Saparbaev
- Medical Center Al-Jami, 23 Mailin Str, Astana, 010000 Republic of Kazakhstan
| | - Raisa Aringazina
- Department of Internal Diseases No. 1, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Str., 030012 Aktobe, Republic of Kazakhstan
| | - Marat Zhumabaev
- Department of Surgical Diseases No. 1, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Str., 030012 Aktobe, Republic of Kazakhstan
| | - Zhansulu Nurgaliyeva
- Department of Pharmacology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Str, Aktobe, 030012 Republic of Kazakhstan
| |
Collapse
|
3
|
Yang Z, Chan YM, Chan DSH, Wu C, Wang Z, Jiang Y, Liu D, Xia Z, Zhang L, Cai Y, Wong CY. A Biomineralized Bifunctional Patient-Friendly Nanosystem for Sustained Glucose Monitoring and Control in Diabetes. SMALL METHODS 2024; 8:e2400159. [PMID: 38697928 DOI: 10.1002/smtd.202400159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Indexed: 05/05/2024]
Abstract
Regular blood glucose monitoring and control is necessary for people with type 1 or advanced type 2 diabetes, yet diagnosing and treating patients with diabetes in an accurate, sustained and patient-friendly manner remains limited. Here, a glucose-responsive bifunctional nanosystem (PGOxMns) is constructed via one-pot biomineralisation of manganese dioxide with glucose oxidase and ε-poly-L-lysine. Under hyperglycaemic conditions, the cascade reactions that occur when glucose interacts with PGOxMns can trigger the production of Mn(II), which enhances the magnetic resonance imaging signal. Simultaneously, manganese dioxide catalyses the decomposition of toxic hydrogen peroxide into oxygen, which also maintains glucose oxidase (GOx) activity. In an in vivo model of diabetes, PGOxMns is used to monitor glucose levels (0-20 mm) and allowed identification of diabetic mice via T1-weighted MRI. Furthermore, PGOxMns is found to have a high insulin-loading capacity (83.6%), likely due to its positive charge. A single subcutaneous injection of insulin-loaded nanosystem (Ins-PGOxMns) into diabetic mice resulted in a rapid and efficient response to a glucose challenge and prolonged blood glucose level control (< 200 mg dL-1) for up to 50 h. Overall, this proof-of-concept study demonstrates the feasibility of using biomineralised nanosystems to develop patient-friendly strategies for glucose monitoring and control.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Yuen-Man Chan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Daniel Shiu-Hin Chan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Chengnan Wu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Zimeng Wang
- Department of Mathematics and Information Technology, Education University of Hong Kong, Tai Po, New Territories, Hong Kong SAR, 999077, China
| | - Yuxin Jiang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 524023, China
| | - Danyong Liu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 524023, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 524023, China
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangdong, 510632, China
| | - Li Zhang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Yin Cai
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
4
|
Raghunath I, Koland M, Sarathchandran C, Saoji S, Rarokar N. Design and optimization of chitosan-coated solid lipid nanoparticles containing insulin for improved intestinal permeability using piperine. Int J Biol Macromol 2024; 280:135849. [PMID: 39313060 DOI: 10.1016/j.ijbiomac.2024.135849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The objective of this research was to optimize the composition and performance of chitosan-coated solid lipid nanoparticles carrying insulin (Ch-In-SLNs) and to assess the potential of piperine in enhancing the intestinal permeability of insulin from these SLNs in vitro. The SLNs were formulated from glyceryl behenate (GB), soya lecithin, and poloxamer® 407, and then coated with a combination of chitosan and piperine to facilitate insulin penetration across the gastrointestinal (GI) mucosa. A Box-Behnken Design (BBD) was utilized to optimize the Ch-In-SLNs formulations, with PDI, particle size, zeta potential, and association efficiency (AE) serving as the response variables. The resulting Ch-In-SLNs exhibited excellent monodispersity (PDI = 0.4), optimal particle size (654.43 nm), positive zeta potential (+36.87 mV), and low AE values. The Ch-In-SLNs demonstrated sustained release of insulin for 12 h in simulated gastric fluid (SGF) and intestinal fluid (SIF), with increased release in the latter. After incubation in SGF and SIF for 12 h, the insulin SLNs retained 54 and 41 % of their initial insulin load, respectively, indicating effective protection from gastric enzymes. Permeation studies using goat intestine and Caco-2 cell lines indicated improved insulin permeation in the presence of piperine. Additionally, cell uptake studies confirmed the role of piperine in enhancing insulin permeation.
Collapse
Affiliation(s)
- Indu Raghunath
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, Karnataka 575018, India
| | - Marina Koland
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, Karnataka 575018, India.
| | - C Sarathchandran
- College of Pharmaceutical Sciences, Pariyaram Medical College, Kerala 670 503, India
| | - Suprit Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India.
| | - Nilesh Rarokar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India; NanoBioSome Research Laboratory, Pardi, Bhandara Road, Nagpur, Maharashtra 440035, India.
| |
Collapse
|
5
|
Asaad GF, Doghish AS, Rashad AA, El-Dakroury WA. Exploring cutting-edge approaches in diabetes care: from nanotechnology to personalized therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03532-7. [PMID: 39453501 DOI: 10.1007/s00210-024-03532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Diabetes mellitus (DM) is a persistent condition characterized by high levels of glucose in the blood due to irregularities in the secretion of insulin, its action, or both. The disease was believed to be incurable until insulin was extracted, refined, and produced for sale. In DM, insulin delivery devices and insulin analogs have improved glycemic management even further. Sulfonylureas, biguanides, alpha-glucosidase inhibitors, and thiazolidinediones are examples of newer-generation medications having high efficacy in decreasing hyperglycemia as a result of scientific and technological advancements. Incretin mimetics, dual glucose-dependent insulinotropic polypeptide, GLP-1 agonists, PPARs, dipeptidyl peptidase-4 inhibitors, anti-CD3 mAbs, glucokinase activators, and glimins as targets have all performed well in recent clinical studies. Considerable focus was placed on free FA receptor 1 agonist, protein tyrosine phosphatase-1B inhibitors, and Sparc-related modular calcium-binding protein 1 which are still being studied. Theranostics, stem cell therapy, gene therapy, siRNA, and nanotechnology are some of the new therapeutic techniques. Traditional Chinese medicinal plants will also be discussed. This study seeks to present a comprehensive analysis of the latest research advancements, the emerging trends in medication therapy, and the utilization of delivery systems in treating DM. The objective is to provide valuable insights into the application of different pharmaceuticals in the field of diabetes mellitus treatment. Also, the therapeutic approach for diabetic patients infected with COVID-19 will be highlighted. Recent clinical and experimental studies evidence the Egyptian experience. Finally, as per the knowledge of the state of the art, our conclusion and future perspective will be declared.
Collapse
Affiliation(s)
- Gihan F Asaad
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11651, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| |
Collapse
|
6
|
Zhang B, Kalampakorn S, Powwattana A, Sillabutra J, Liu G. Oral Diabetes Medication Videos on Douyin: Analysis of Information Quality and User Comment Attitudes. JMIR Form Res 2024; 8:e57720. [PMID: 39423367 PMCID: PMC11530717 DOI: 10.2196/57720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/17/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Oral diabetes medications are important for glucose management in people with diabetes. Although there are many health-related videos on Douyin (the Chinese version of TikTok), the quality of information and the effects on user comment attitudes are unclear. OBJECTIVE The purpose of this study was to analyze the quality of information and user comment attitudes related to oral diabetes medication videos on Douyin. METHODS The key phrase "oral diabetes medications" was used to search Douyin on July 24, 2023, and the final samples included 138 videos. The basic information in the videos and the content of user comments were captured using Python. Each video was assigned a sentiment category based on the predominant positive, neutral, or negative attitude, as analyzed using the Weiciyun website. Two independent raters assessed the video content and information quality using the DISCERN (a tool for assessing health information quality) and PEMAT-A/V (Patient Education Materials Assessment Tool for Audiovisual Materials) instruments. RESULTS Doctors were the main source of the videos (136/138, 98.6%). The overall information quality of the videos was acceptable (median 3, IQR 1). Videos on Douyin showed relatively high understandability (median 75%, IQR 16.6%) but poor actionability (median 66.7%, IQR 48%). Most content on oral diabetes medications on Douyin related to the mechanism of action (75/138, 54.3%), precautions (70/138, 50.7%), and advantages (68/138, 49.3%), with limited content on indications (19/138, 13.8%) and contraindications (14/138, 10.1%). It was found that 10.1% (14/138) of the videos contained misinformation, of which 50% (7/14) were about the method of administration. Regarding user comment attitudes, the majority of videos garnered positive comments (81/138, 58.7%), followed by neutral comments (46/138, 33.3%) and negative comments (11/138, 8%). Multinomial logistic regression revealed 2 factors influencing a positive attitude: user comment count (adjusted odds ratio [OR] 1.00, 95% CI 1.00-1.00; P=.02) and information quality of treatment choices (adjusted OR 1.49, 95% CI 1.09-2.04; P=.01). CONCLUSIONS Despite most videos on Douyin being posted by doctors, with generally acceptable information quality and positive user comment attitudes, some content inaccuracies and poor actionability remain. Users show more positive attitudes toward videos with high-quality information about treatment choices. This study suggests that health care providers should ensure the accuracy and actionability of video content, enhance the information quality of treatment choices of oral diabetes medications to foster positive user attitudes, help users access accurate health information, and promote medication adherence.
Collapse
Affiliation(s)
- Baolu Zhang
- Department of Nursing, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Nursing, Southwest Medical University, Luzhou, China
- Department of Public Health Nursing, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Surintorn Kalampakorn
- Department of Public Health Nursing, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Arpaporn Powwattana
- Department of Public Health Nursing, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Jutatip Sillabutra
- Department of Biostatistics, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Gang Liu
- Department of Orthopedics and Center for Orthopedic Diseases Research, The Traditional Chinese Medicine Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Yoo J, Hwang J, Choi J, Ramalingam M, Jeong H, Jang S, Jeong HS, Kim D. The effects of resistance training on cardiovascular factors and anti-inflammation in diabetic rats. Heliyon 2024; 10:e37081. [PMID: 39295999 PMCID: PMC11407942 DOI: 10.1016/j.heliyon.2024.e37081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Diabetes induces a range of macrovascular and microvascular changes, which lead to significant clinical complications. Although many studies have tried to solve the diabetic problem using drugs, it remains unclear. In this study, we investigated whether resistance exercise affects cardiovascular factors and inflammatory markers in diabetes. The study subjected Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which have genetically induced diabetes mellitus, to a resistance exercise program for 12 weeks and assessed the levels of cardiovascular factors and inflammatory markers using western blotting analysis, ELISA, and immunohistochemistry. During the training period, OLETF + exercise (EX) group exhibited lower body weight and reduced glucose levels when compared with OLETF group. Western blotting analysis, ELISA, and immunohistochemistry revealed that the levels of PAI-1, VACM-1, ICAM-1, E-selectin, TGF-β, CRP, IL-6, and TNF-α were decreased in OLETF + EX group when compared with the OLETF group. Moreover, the anti-inflammatory markers, IL-4 and IL-10, were highly expressed after exercise. Therefore, these results indicate that exercise may influence the regulation of cardiovascular factors and inflammatory markers, as well as help patients with metabolic syndromes regulate inflammation and cardiovascular function.
Collapse
Affiliation(s)
- Jin Yoo
- Department of Physical Education, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
| | - Jiyun Choi
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
| | - Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
| | - Haewon Jeong
- StemCell Bio Incorporated, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
- StemCell Bio Incorporated, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
- StemCell Bio Incorporated, Hwasun-gun, Jeollanamdo, 58128, Republic of Korea
| | - Daeyeol Kim
- Department of Physical Education, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
8
|
Caturano A, Nilo R, Nilo D, Russo V, Santonastaso E, Galiero R, Rinaldi L, Monda M, Sardu C, Marfella R, Sasso FC. Advances in Nanomedicine for Precision Insulin Delivery. Pharmaceuticals (Basel) 2024; 17:945. [PMID: 39065795 PMCID: PMC11279564 DOI: 10.3390/ph17070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus, which comprises a group of metabolic disorders affecting carbohydrate metabolism, is characterized by improper glucose utilization and excessive production, leading to hyperglycemia. The global prevalence of diabetes is rising, with projections indicating it will affect 783.2 million people by 2045. Insulin treatment is crucial, especially for type 1 diabetes, due to the lack of β-cell function. Intensive insulin therapy, involving multiple daily injections or continuous subcutaneous insulin infusion, has proven effective in reducing microvascular complications but poses a higher risk of severe hypoglycemia. Recent advancements in insulin formulations and delivery methods, such as ultra-rapid-acting analogs and inhaled insulin, offer potential benefits in terms of reducing hypoglycemia and improving glycemic control. However, the traditional subcutaneous injection method has drawbacks, including patient compliance issues and associated complications. Nanomedicine presents innovative solutions to these challenges, offering promising avenues for overcoming current drug limitations, enhancing cellular uptake, and improving pharmacokinetics and pharmacodynamics. Various nanocarriers, including liposomes, chitosan, and PLGA, provide protection against enzymatic degradation, improving drug stability and controlled release. These nanocarriers offer unique advantages, ranging from enhanced bioavailability and sustained release to specific targeting capabilities. While oral insulin delivery is being explored for better patient adherence and cost-effectiveness, other nanomedicine-based methods also show promise in improving delivery efficiency and patient outcomes. Safety concerns, including potential toxicity and immunogenicity issues, must be addressed, with the FDA providing guidance for the safe development of nanotechnology-based products. Future directions in nanomedicine will focus on creating next-generation nanocarriers with precise targeting, real-time monitoring, and stimuli-responsive features to optimize diabetes treatment outcomes and patient safety. This review delves into the current state of nanomedicine for insulin delivery, examining various types of nanocarriers and their mechanisms of action, and discussing the challenges and future directions in developing safe and effective nanomedicine-based therapies for diabetes management.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Roberto Nilo
- Data Collection G-STeP Research Core Facility, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | | | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
9
|
Sun W, Zhao J, Wang W, Zhang W, Feng X, Feng J, Li L. Effects of Cognitive Intervention and Rehabilitation Training on the Expression of miR-134-5p in Elderly Patients with Diabetes Mellitus and Cognitive Impairment. Exp Aging Res 2024:1-10. [PMID: 39003729 DOI: 10.1080/0361073x.2024.2377431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 05/06/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE This study aimed to analyze the effect and potential mechanism of cognitive intervention and rehabilitation training in elderly patients with diabetes mellitus complicated with mild cognitive impairment. METHODS In this study, 128 elderly patients with diabetes mellitus complicated with mild cognitive impairment were randomly divided into the control group and the training group. The effects of the two groups were compared before and after the cognitive intervention. The expression of miR-134-5p was assessed by qRT-PCR. The relationships between miR-134-5p and Mini-Mental State Examination Scale and Montreal Cognitive Assessment Scale were evaluated. RESULTS After 3-month management, the Mini-Mental State Examination Scale, Montreal Cognitive Assessment Scale, the Chinese version of the diabetes self-efficacy rating scale, and WHO quality of life brief were improved in both control group and training group, and the training group showed better improvement. Cognitive intervention and rehabilitation training restricted the expression of miR-134-5p. The levels of miR-134-5p were pertinent to cognitive function. CONCLUSION Cognitive intervention and rehabilitation training might prevent the development of diabetes mellitus complicated with mild cognitive impairment by inhibiting miR-134-5p.
Collapse
Affiliation(s)
- Wenqiang Sun
- Neurology Department, The Sixth People's Hospital of Nantong, Nantong, China
| | - Jihai Zhao
- Endocrinology Department, Jiayuguan First People's Hospital (South Campus), Jiayuguan, China
| | - Weiwei Wang
- Endocrinology Department, Lu'an Hospital of Anhui Medical University, Lu 'an, China
| | - Wei Zhang
- Endocrinology Department, Lu'an Hospital of Anhui Medical University, Lu 'an, China
| | - Xiumei Feng
- Endocrinology Department, Lu'an Hospital of Anhui Medical University, Lu 'an, China
| | - Jing Feng
- Endocrinology Department, Lu'an Hospital of Anhui Medical University, Lu 'an, China
| | - Lisi Li
- Rehabilitation Medicine Department, Central People's Hospital of Zhanjiang, Zhanjiang, China
| |
Collapse
|
10
|
Romanowska A, Rachubik P, Piwkowska A, Wysocka M. Polymers of functionalized diaminopropionic acid are efficient mediators of active exogenous enzyme delivery into cells. Sci Rep 2024; 14:13185. [PMID: 38851838 PMCID: PMC11162485 DOI: 10.1038/s41598-024-64187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024] Open
Abstract
Delivery of active protein especially enzyme is one of the major therapeutic challenge. Replacing or substituted invalid/improper acting protein offer fast and effective treatment of disease. Herein, we describe the synthesis and properties of biotinylated peptidomimetics consisting of oxoacid-modified 2,3, L-diaminopropionic acid residues with guanidine groups on its side chains. Electrophoretic analysis showed that the obtained compounds interact with FITC-labeled streptavidin or a streptavidin-β-galactosidase hybrid in an efficient manner. Complexes formed by the abovementioned molecules are able to cross the cell membranes of cancer or healthy cells and show promising compatibility with live cells. Analysis of β-galactosidase activity inside the cells revealed surprisingly high levels of active enzyme in complex-treated cells compared to controls. This observation was confirmed by immunochemical studies in which the presence of β-galactosidase was detected in the membrane and vesicles of the cells.
Collapse
Affiliation(s)
- A Romanowska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-309, Gdańsk, Poland
| | - P Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences, University of Gdansk, 80-308, Gdańsk, Poland
| | - A Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences, University of Gdansk, 80-308, Gdańsk, Poland
| | - M Wysocka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-309, Gdańsk, Poland.
| |
Collapse
|
11
|
Li Y, Wu M, Fu Y, Xue J, Yuan F, Qu T, Rissanou AN, Wang Y, Li X, Hu H. Therapeutic stapled peptides: Efficacy and molecular targets. Pharmacol Res 2024; 203:107137. [PMID: 38522761 DOI: 10.1016/j.phrs.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Peptide stapling, by employing a stable, preformed alpha-helical conformation, results in the production of peptides with improved membrane permeability and enhanced proteolytic stability, compared to the original peptides, and provides an effective solution to accelerate the rapid development of peptide drugs. Various reviews present peptide stapling chemistries, anchoring residues and one- or two-component cyclization, however, therapeutic stapled peptides have not been systematically summarized, especially focusing on various disease-related targets. This review highlights the latest advances in therapeutic peptide drug development facilitated by the application of stapling technology, including different stapling techniques, synthetic accessibility, applicability to biological targets, potential for solving biological problems, as well as the current status of development. Stapled peptides as therapeutic drug candidates have been classified and analysed mainly by receptor- and ligand-based stapled peptide design against various diseases, including cancer, infectious diseases, inflammation, and diabetes. This review is expected to provide a comprehensive reference for the rational design of stapled peptides for different diseases and targets to facilitate the development of therapeutic peptides with enhanced pharmacokinetic and biological properties.
Collapse
Affiliation(s)
- Yulei Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Minghao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yinxue Fu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jingwen Xue
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fei Yuan
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Tianci Qu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Anastassia N Rissanou
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Honggang Hu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
12
|
Mishra S, Shah H, Patel A, Tripathi SM, Malviya R, Prajapati BG. Applications of Bioengineered Polymer in the Field of Nano-Based Drug Delivery. ACS OMEGA 2024; 9:81-96. [PMID: 38222544 PMCID: PMC10785663 DOI: 10.1021/acsomega.3c07356] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
The most favored route of drug administration is oral administration; however, several factors, including poor solubility, low bioavailability, and degradation, in the severe gastrointestinal environment frequently compromise the effectiveness of drugs taken orally. Bioengineered polymers have been developed to overcome these difficulties and enhance the delivery of therapeutic agents. Polymeric nanoparticles, including carbon dots, fullerenes, and quantum dots, have emerged as crucial components in this context. They provide a novel way to deliver various therapeutic materials, including proteins, vaccine antigens, and medications, precisely to the locations where they are supposed to have an effect. The promise of this integrated strategy, which combines nanoparticles with bioengineered polymers, is to address the drawbacks of conventional oral medication delivery such as poor solubility, low bioavailability, and early degradation. In recent years, we have seen substantially increased interest in bioengineered polymers because of their distinctive qualities, such as biocompatibility, biodegradability, and flexible physicochemical characteristics. The different bioengineered polymers, such as chitosan, alginate, and poly(lactic-co-glycolic acid), can shield medications or antigens from degradation in unfavorable conditions and aid in the administration of drugs orally through mucosal delivery with lower cytotoxicity, thus used in targeted drug delivery. Future research in this area should focus on optimizing the physicochemical properties of these polymers to improve their performance as drug delivery carriers.
Collapse
Affiliation(s)
- Sudhanshu Mishra
- Department
of Pharmaceutical Science & Technology, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh 273016, India
| | - Harshil Shah
- Cosette
Pharmaceuticals Inc., South
Plainfield, New Jersey 07080, United States
| | - Artiben Patel
- Cosette
Pharmaceuticals Inc., South
Plainfield, New Jersey 07080, United States
| | - Shivendra Mani Tripathi
- Department
of Pharmaceutical Science & Technology, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh 273016, India
| | - Rishabha Malviya
- Department
of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Noida, Uttar Pradesh 203201, India
| | - Bhupendra G. Prajapati
- Shree
S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| |
Collapse
|
13
|
Sakunpongpitiporn P, Morarad R, Naeowong W, Niamlang S, Sirivat A. Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) as an insulin carrier in silk fibroin hydrogels for transdermal delivery via iontophoresis. RSC Adv 2024; 14:1549-1562. [PMID: 38179091 PMCID: PMC10763702 DOI: 10.1039/d3ra06857a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024] Open
Abstract
In this study, silk fibroin (SF) was utilized as the starting material to fabricate physically crosslinked hydrogels. Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) was synthesized and characterized as a drug carrier, with insulin as the model drug. PEDOT:PSS, with a high electrical conductivity of 1666 ± 49 S cm-1, interacted with insulin molecules via electrostatic interaction by replacing the dopant PSS molecules. Insulin-loaded PEDOT:PSS embedded in the SF hydrogel resulted in an increase in the degree of swelling, pore size, and mesh size of the hydrogel. In the in vitro release and release-permeation experiments, the amounts of insulin release and release-permeation were investigated using a modified Franz diffusion cell, under the effects of SF concentrations, electric fields, and pH values. The amounts of insulin release and release-permeation from the pristine SF hydrogel and the PEDOT:PSS/SF hydrogel followed the power laws with the scaling exponents close to 0.5, indicating the Fickian diffusion or the concentration gradient. Under electric fields, with or without PEDOT:PSS used as the drug carrier, the insulin amount and diffusion coefficient were shown to increase with the increasing electric field due to the electro-repulsive forces between the cathode and insulin molecules and SF chains, electroosmosis, and SF matrix swelling. The SF hydrogel and PEDOT:PSS as the drug carrier are demonstrated herein as new components in the transdermal delivery system for the iontophoretically controlled insulin basal release applicable to diabetes patients.
Collapse
Affiliation(s)
- Phimchanok Sakunpongpitiporn
- The Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University Bangkok 10330 Thailand
| | - Rawita Morarad
- The Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University Bangkok 10330 Thailand
| | - Witthawat Naeowong
- Division of Perioperative and Ambulatory Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University Bangkok 10330 Thailand
| | - Sumonman Niamlang
- Department of Materials and Metallurgical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi Pathumthani 12110 Thailand
| | - Anuvat Sirivat
- The Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
14
|
Zhang B, Kalampakorn S, Powwattana A, Sillabutra J, Liu G. A Transtheoretical Model-Based Online Intervention to Improve Medication Adherence for Chinese Adults Newly Diagnosed With Type 2 Diabetes: A Mixed-Method Study. J Prim Care Community Health 2024; 15:21501319241263657. [PMID: 39077970 PMCID: PMC11289821 DOI: 10.1177/21501319241263657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is increasing in China, with medication non-adherence being a significant contributor to uncontrolled T2DM. The Transtheoretical Model (TTM) has shown effectiveness in chronic disease management, but few studies have applied it in online interventions for T2DM medication adherence. AIM The study aimed to develop and investigate the effects of a TTM-based online health education program on promoting positive stage of change (SOC) movement, improving self-efficacy and medication adherence, as well as reducing HbA1c levels in newly diagnosed patients with T2DM. METHODS This sequential mixed-method study was conducted from April 2023 to March 2024. Using the TTM framework, the study initially explored 32 participants' experiences with hypoglycemic medications, health information acquisition, and perspectives on online programs. Then, a quasi-experimental study design was conducted. Two communities were randomly assigned as the intervention (n = 91) and comparison (n = 98) groups, with 189 newly diagnosed middle-aged T2DM patients from various SOC. The intervention group received short videos health education and participated in WeChat group discussions, compared with usual care in the comparison group. Data were collected at baseline, 3-month, and 6-month follow-ups. RESULTS The intervention group was more likely to achieve positive SOC movement (P < .001, Adj OR = 13.69 95% CI = 6.76-27.71) compared to the comparison group. The intervention group also had significantly higher mean CDMSS-11 and MMAS-8 scores at 6 months (P = .03 and <.001, respectively) and more likely to achieve clinically significant glycated Hemoglobin (HbA1c) change at 3 months (P < .001, Adj OR = 3.91, 95% CI = 1.77-8.63) and at 6 months (P < .001, Adj OR = 5.62, 95% CI = 2.70-11.69) compared to the comparison group. CONCLUSION These findings support that applying the TTM to develop an online program could promote behavior change, improve self-efficacy and medication adherence, and could lead to better glycemic control in newly diagnosed T2DM patients.
Collapse
Affiliation(s)
- Baolu Zhang
- Department of Public Health Nursing, Faculty of Public Health, Mahidol University, Bangkok, Thailand
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Surintorn Kalampakorn
- Department of Public Health Nursing, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Arpaporn Powwattana
- Department of Public Health Nursing, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Jutatip Sillabutra
- Department of Biostatistics, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Gang Liu
- Department of Orthopedics and Center for Orthopedic Diseases Research, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Sarangi M, Padhi S, Rath G. Non-Invasive Delivery of Insulin for Breaching Hindrances against Diabetes. Crit Rev Ther Drug Carrier Syst 2024; 41:1-64. [PMID: 38608132 DOI: 10.1615/critrevtherdrugcarriersyst.2023048197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Insulin is recognized as a crucial weapon in managing diabetes. Subcutaneous (s.c.) injections are the traditional approach for insulin administration, which usually have many limitations. Numerous alternative (non-invasive) slants through different routes have been explored by the researchers for making needle-free delivery of insulin for attaining its augmented absorption as well as bioavailability. The current review delineating numerous pros and cons of several novel approaches of non-invasive insulin delivery by overcoming many of their hurdles. Primary information on the topic was gathered by searching scholarly articles from PubMed added with extraction of data from auxiliary manuscripts. Many approaches (discussed in the article) are meant for the delivery of a safe, effective, stable, and patient friendly administration of insulin via buccal, oral, inhalational, transdermal, intranasal, ocular, vaginal and rectal routes. Few of them have proven their clinical efficacy for maintaining the glycemic levels, whereas others are under the investigational pipe line. The developed products are comprising of many advanced micro/nano composite technologies and few of them might be entering into the market in near future, thereby garnishing the hopes of millions of diabetics who are under the network of s.c. insulin injections.
Collapse
Affiliation(s)
| | - Sasmita Padhi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, Pin-201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar-751030, Odisha, India
| |
Collapse
|
16
|
Kumar A, Mazumder R, Rani A, Pandey P, Khurana N. Novel Approaches for the Management of Type 2 Diabetes Mellitus: An Update. Curr Diabetes Rev 2024; 20:e051023221768. [PMID: 37888820 DOI: 10.2174/0115733998261903230921102620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 10/28/2023]
Abstract
Diabetes mellitus is an irreversible, chronic metabolic disorder indicated by hyperglycemia. It is now considered a worldwide pandemic. T2DM, a spectrum of diseases initially caused by tissue insulin resistance and slowly developing to a state characterized by absolute loss of secretory action of the β cells of the pancreas, is thought to be caused by reduced insulin secretion, resistance to tissue activities of insulin, or a combination of both. Insulin secretagogues, biguanides, insulin sensitizers, alpha-glucosidase inhibitors, incretin mimetics, amylin antagonists, and sodium-glucose co-transporter-2 (SGLT2) inhibitors are the main medications used to treat T2DM. Several of these medication's traditional dosage forms have some disadvantages, including frequent dosing, a brief half-life, and limited absorption. Hence, attempts have been made to develop new drug delivery systems for oral antidiabetics to ameliorate the difficulties associated with conventional dosage forms. In comparison to traditional treatments, this review examines the utilization of various innovative therapies (such as microparticles, nanoparticles, liposomes, niosomes, phytosomes, and transdermal drug delivery systems) to improve the distribution of various oral hypoglycemic medications. In this review, we have also discussed some new promising candidates that have been approved recently by the US Food and Drug Administration for the treatment of T2DM, like semaglutide, tirzepatide, and ertugliflozin. They are used as a single therapy and also as combination therapy with drugs like metformin and sitagliptin.
Collapse
Affiliation(s)
- Abhishek Kumar
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP 201306, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP 201306, India
| | - Anjna Rani
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP 201306, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP 201306, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
17
|
Guan S, Hu T, Chen L, Li Z, Lin Z, Lei J, Shen J. A novel PPARβ/FFA1 dual agonist Y8 promotes diabetic wound healing. Eur J Pharmacol 2023; 958:175934. [PMID: 37562666 DOI: 10.1016/j.ejphar.2023.175934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Diabetes ulcer is one of the leading causes of disability and death in diabetics. Y8 [(2-(2-fluoro-4-((4-methyl-2-(4-(trifluoromethyl)phenyl)thiazol-5-yl)methoxy) phenoxy)acetic acid)], a dual agonist of peroxisome proliferation activated receptorβ (PPARβ) and free fatty acid receptor 1 (FFA1/FFAR1/GPR40), a new compound molecule with the potential for diabetes ulcer treatment. OBJECTIVE To research the effect of the dual target agonist Y8 and its mechanism of action in the treatment of diabetic ulcers. METHODS We have established a wound model in diabetic mice. After treatment with Y8, wound healing was evaluated by tissue pathology, reactive oxygen species (ROS) levels, and gene expression testing. Under high sugar conditions, the mechanism of Y8 affecting fibroblasts' proliferation and keratinocytes' migration is further studied. RESULTS We found that Y8 accelerated wound healing and shortened healing time in diabetic mice. Granulation tissue generation and extracellular matrix (ECM) deposition were significantly increased in Y8-treated mice. Mechanistically, Y8 promotes keratinocyte proliferation by activating PPARβ and migration of keratinocytes by triggering FFA1 in vitro. In addition, Y8 also decreased ROS levels in fibroblasts in vitro and in vivo by activating PPARβ, reducing their release of superoxide anions. CONCLUSION Our results suggest that PPARβ/FFA1 dual agonist Y8 has the effect of promoting the healing of diabetic ulcer wounds in vivo and in vitro, and its therapeutic effect is better than that of single-target agonists.
Collapse
Affiliation(s)
- Sujuan Guan
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Tingting Hu
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Liushan Chen
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Zhenming Lin
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Jinping Lei
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China.
| | - Juan Shen
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
18
|
Chauhan P, Paliwal H, Chauhan CS, Paliwal A. PLGA-based microspheres loaded with metformin hydrochloride: Modified double emulsion method preparation, optimization, characterization, and in vitro evaluation. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:997-1006. [PMID: 37708992 DOI: 10.1016/j.pharma.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
The modified solvent removal method was used to encapsulate metformin hydrochloride (MH) within poly(lactic-co-glycolic acid) (PLGA) microspheres. The study investigated the effect of varying polymer concentrations on the loading and release of the drug from the microspheres. The encapsulation process involved using a double emulsion method, resulting in microspheres with particle diameters ranging from approximately 4.4μm to 2.7μm. The study achieved high encapsulation efficiencies, ranging from 81% to 90%, with drug loadings ranging from 18% to 11%. The release of the drug from the microspheres followed a biphasic pattern over 24 days, with nearly complete release by the end of the study period. Fourier transform infrared spectroscopy (FTIR) analysis indicated that there were no notable differences between PLGA and MH-loaded microspheres, suggesting minimal interactions between MH and PLGA. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques were used to investigate the state of the MH within the microspheres. The results suggested that the MH was dispersed at a molecular level within the spheres and existed in an amorphous state. This amorphous state of the drug may explain the slow and prolonged release observed in the study.
Collapse
Affiliation(s)
- Priyanka Chauhan
- Faculty of Pharmacy, Bhupal Nobles' University, Udaipur, Rajasthan, India
| | - Himanshu Paliwal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, India
| | | | - Ankit Paliwal
- Pacific College of Pharmacy, Pacific University, Udaipur, Rajasthan, India
| |
Collapse
|
19
|
Bushra R, Ahmad M, Seidi F, Qurtulen, Song J, Jin Y, Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv Colloid Interface Sci 2023; 318:102953. [PMID: 37399637 DOI: 10.1016/j.cis.2023.102953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.
Collapse
Affiliation(s)
- Rani Bushra
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
20
|
Liu K, Chen Y, Yang Z, Jin J. Preparation and characterization of CS/γ-PGA/PC complex nanoparticles for insulin oral delivery. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
21
|
Zwitterionic polymers: addressing the barriers for drug delivery. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Sharma R, Borah SJ, Bhawna, Kumar S, Gupta A, Kumari V, Kumar R, Dubey KK, Kumar V. Emerging trends in nano-based antidiabetic therapeutics: a path to effective diabetes management. MATERIALS ADVANCES 2023; 4:3091-3113. [DOI: 10.1039/d3ma00159h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This review aims to provide an overview of nanoparticles for diabetes mellitus therapy. It explores the properties, synthesis and/or functionalization, mechanistic aspects, and therapeutics for diabetes and its complications.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Biochemistry, University of Delhi, Delhi, India
| | - Shikha Jyoti Borah
- Special Centre for Nano Science, Jawaharlal Nehru University, Delhi, India
| | - Bhawna
- Department of Chemistry, University of Delhi, Delhi, India
| | - Sanjeev Kumar
- Department of Chemistry, University of Delhi, Delhi, India
| | | | - Vandana Kumari
- Department of Biosciences, Himachal Pradesh University, Shimla, India
| | - Ravinder Kumar
- Department of Chemistry, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | | | - Vinod Kumar
- Special Centre for Nano Science, Jawaharlal Nehru University, Delhi, India
| |
Collapse
|
23
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Tran UPN, Nguyen DTC, Tran TV. A critical review on the bio-mediated green synthesis and multiple applications of magnesium oxide nanoparticles. CHEMOSPHERE 2023; 312:137301. [PMID: 36410506 DOI: 10.1016/j.chemosphere.2022.137301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/05/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Nowadays, advancements in nanotechnology have efficiently solved many global problems, such as environmental pollution, climate change, and infectious diseases. Nano-scaled materials have played a central role in this evolution. Chemical synthesis of nanomaterials, however, required hazardous chemicals, unsafe, eco-unfriendly, and cost-ineffective, calling for green synthesis methods. Here, we review the green synthesis of MgO nanoparticles and their applications in biochemical, environmental remediation, catalysis, and energy production. Green MgO nanoparticles can be safely produced using biomolecules extracted from plants, fungus, bacteria, algae, and lichens. They exhibited fascinating and unique properties in morphology, surface area, particle size, and stabilization. Green MgO nanoparticles served as excellent antimicrobial agents, adsorbents, colorimetric sensors, and had enormous potential in biomedical therapies against cancers, oxidants, diseases, and the sensing detection of dopamine. In addition, green MgO nanoparticles are of great interests in plant pathogens, phytoremediation, plant cell and organ culture, and seed germination in the agricultural sector. This review also highlighted recent advances in using green MgO nanoparticles as nanocatalysts, nano-fertilizers, and nano-pesticides. Thanks to many emerging applications, green MgO nanoparticles can become a promising platform for future studies.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Luan Minh Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam; Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Uyen P N Tran
- Faculty of Engineering and Technology, Van Hien University, Ho Chi Minh City, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
24
|
Hou L, Peng X, Wang R, Wang Y, Li H, Zhang H, Zhang Y, Zhang Z. Oral nano-formulation improves pancreatic islets dysfunction via lymphatic transport for antidiabetic treatment. Acta Pharm Sin B 2022. [PMID: 37521855 PMCID: PMC10373096 DOI: 10.1016/j.apsb.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) therapy is facing the challenges of long-term medication and gradual destruction of pancreatic islet β-cells. Therefore, it is timely to develop oral prolonged action formulations to improve compliance, while restoring β-cells survival and function. Herein, we designed a simple nanoparticle with enhanced oral absorption and pancreas accumulation property, which combined apical sodium-dependent bile acid transporter-mediated intestinal uptake and lymphatic transportation. In this system, taurocholic acid (TCA) modified poly(lactic-co-glycolic acid) (PLGA) was employed to achieve pancreas location, hydroxychloroquine (HCQ) was loaded to execute therapeutic efficacy, and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) was introduced as stabilizer together with synergist (PLGA-TCA/DLPC/HCQ). In vitro and in vivo results have proven that PLGA-TCA/DLPC/HCQ reversed the pancreatic islets damage and dysfunction, thus impeding hyperglycemia progression and restoring systemic glucose homeostasis via only once administration every day. In terms of mechanism PLGA-TCA/DLPC/HCQ ameliorated oxidative stress, remodeled the inflammatory pancreas microenvironment, and activated PI3K/AKT signaling pathway without obvious toxicity. This strategy not only provides an oral delivery platform for increasing absorption and pancreas targetability but also opens a new avenue for thorough T2DM treatment.
Collapse
|
25
|
Masoudifar R, Pouyanfar N, Liu D, Ahmadi M, Landi B, Akbari M, Moayeri-Jolandan S, Ghorbani-Bidkorpeh F, Asadian E, Shahbazi MA. Surface engineered metal-organic frameworks as active targeting nanomedicines for mono- and multi-therapy. APPLIED MATERIALS TODAY 2022; 29:101646. [DOI: 10.1016/j.apmt.2022.101646] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Eze KC, Ugwu CE, Odo FS, Njoku GC. Development and formulation of antidiabetic property of Anarcadium occidantale-based solid lipid microparticles. J Microencapsul 2022; 39:626-637. [PMID: 36398605 DOI: 10.1080/02652048.2022.2149967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Anacardium occidentale (AO) possesses potent anti-diabetic properties, owing to its high phytochemicals content. This study attempted to maximise the efficacy of AO by encapsulating it in a solid lipid microparticle (SLMs) formulation. Leaves of AO were extracted with water and formulated into SLMs using a lipid matrix composed of P90H and Dika fat. Characterisation of the SLMs include morphology, particle size, pH, encapsulation efficiency percentage, in vitro release and anti-diabetic properties. SLMs were spherical with sizes ranging from 16.7 ± 0.8 µm to 40.12 ± 2.34 µm and had a fairly stable pH over time. Highest drug entrapment was 87%. Batch A2 exhibited an even release of 89%, sustained over time, and a mean percentage reduction in glucose of 25.9% at 12 h after oral administration to study animals. Anacardium occidentale-loaded SLMs exhibited a good hypoglycaemic effect and can be used in the management of diabetes.
Collapse
Affiliation(s)
- Kingsley C Eze
- Department of Pharmaceutical Technology and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| | - Calister E Ugwu
- Department of Pharmaceutical Technology and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| | - Fimber S Odo
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| | - George C Njoku
- Department of Biochemistry, College of Natural Sciences, Micheal Opara University of Agriculture, Umudike, Nigeria
| |
Collapse
|
27
|
Zhang T, Zhang Q, Zheng W, Tao T, Li RL, Wang LY, Peng W, Wu CJ. Fructus Zanthoxyli extract improves glycolipid metabolism disorder of type 2 diabetes mellitus via activation of AMPK/PI3K/Akt pathway: Network pharmacology and experimental validation. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:543-560. [PMID: 35965234 DOI: 10.1016/j.joim.2022.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/13/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVE This study investigated the potential mechanisms behind the beneficial effects of Fructus Zanthoxyli (FZ) against type 2 diabetes mellitus (T2DM) based on network pharmacology and experimental validation. METHODS Ultra-high-performance liquid chromatography coupled with hybrid quadrupole-orbitrap high-resolution mass spectrometry, and gas chromatography-mass spectrometry were used to identify the constituents of FZ. Next, the differentially expressed genes linked to the treatment of diabetes with FZ were screened using online databases (including Gene Expression Omnibus database and Swiss Target Prediction online database), and the overlapping genes and their enrichment were analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, the pathway was verified by in vitro experiments, and cell staining with oil red and Nile red showed that the extract of FZ had a therapeutic effect on T2DM. RESULTS A total of 43 components were identified from FZ, and 39 differentially expressed overlapping genes were screened as the possible targets of FZ in T2DM. The dug component-target network indicated that PPARA, PPARG, PIK3R3, JAK2 and GPR88 might be the core genes targeted by FZ in the treatment of T2DM. Interestingly, the enrichment analysis of KEGG showed that effects of FZ against T2DM were closely correlated with the adenosine monophosphate-activated protein kinase (AMPK) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathways. In vitro experiments further confirmed that FZ significantly inhibited palmitic acid-induced lipid formation in HepG2 cells. Moreover, FZ treatment was able to promote the AMPK and PI3K/Akt expressions in HepG2 cells. CONCLUSION Network pharmacology combined with experimental validation revealed that FZ extract can improve the glycolipid metabolism disorder of T2DM via activation of the AMPK/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Ting Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Wei Zheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Ting Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Ruo-Lan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Li-Yu Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| |
Collapse
|
28
|
Synthesis and Biomedical Applications of Highly Porous Metal-Organic Frameworks. Molecules 2022; 27:molecules27196585. [PMID: 36235122 PMCID: PMC9572148 DOI: 10.3390/molecules27196585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
In this review, aspects of the synthesis, framework topologies, and biomedical applications of highly porous metal-organic frameworks are discussed. The term "highly porous metal-organic frameworks" (HPMOFs) is used to denote MOFs with a surface area larger than 4000 m2 g-1. Such compounds are suitable for the encapsulation of a variety of large guest molecules, ranging from organic dyes to drugs and proteins, and hence they can address major contemporary challenges in the environmental and biomedical field. Numerous synthetic approaches towards HPMOFs have been developed and discussed herein. Attempts are made to categorise the most successful synthetic strategies; however, these are often not independent from each other, and a combination of different parameters is required to be thoroughly considered for the synthesis of stable HPMOFs. The majority of the HPMOFs in this review are of special interest not only because of their high porosity and fascinating structures, but also due to their capability to encapsulate and deliver drugs, proteins, enzymes, genes, or cells; hence, they are excellent candidates in biomedical applications that involve drug delivery, enzyme immobilisation, gene targeting, etc. The encapsulation strategies are described, and the MOFs are categorised according to the type of biomolecule they are able to encapsulate. The research field of HPMOFs has witnessed tremendous development recently. Their intriguing features and potential applications attract researchers' interest and promise an auspicious future for this class of highly porous materials.
Collapse
|
29
|
Nemati M, Fathi-Azarbayjani A, Al-Salami H, Roshani Asl E, Rasmi Y. Bile acid-based advanced drug delivery systems, bilosomes and micelles as novel carriers for therapeutics. Cell Biochem Funct 2022; 40:623-635. [PMID: 35830577 DOI: 10.1002/cbf.3732] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus affects almost half a billion patients worldwide and results from either destruction of β-cells responsible for insulin secretion or increased tissue resistance to insulin stimulation and the reduction of glycemic control. Novel drug delivery systems can improve treatment efficacy in diabetic patients. The low aqueous solubility of most oral antidiabetic drugs decreases drug bioavailability; therefore, there is a demand for the use of novel methods to overcome this issue. The application of bile acids mixed micelles and bilosomes can provide an enhancement in drug efficacy. Bile acids are amphiphilic steroidal molecules that contain a saturated tetracyclic hydrocarbon cyclopentanoperhydrophenanthrene ring, and consist of three 6-membered rings and a 5-membered ring, a short aliphatic side chain, and a tough steroid nucleus. This review offers a comprehensive and informative data focusing on the great potential of bile acid, their salts, and their derivatives for the development of new antidiabetic drug delivery system.
Collapse
Affiliation(s)
- Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Anahita Fathi-Azarbayjani
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Elmira Roshani Asl
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
30
|
Current advances and future prospects in production of recombinant insulin and other proteins to treat diabetes mellitus. Biotechnol Lett 2022; 44:643-669. [DOI: 10.1007/s10529-022-03247-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
|
31
|
Reddy VS, Agarwal B, Ye Z, Zhang C, Roy K, Chinnappan A, Narayan RJ, Ramakrishna S, Ghosh R. Recent Advancement in Biofluid-Based Glucose Sensors Using Invasive, Minimally Invasive, and Non-Invasive Technologies: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1082. [PMID: 35407200 PMCID: PMC9000490 DOI: 10.3390/nano12071082] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023]
Abstract
Biosensors have potentially revolutionized the biomedical field. Their portability, cost-effectiveness, and ease of operation have made the market for these biosensors to grow rapidly. Diabetes mellitus is the condition of having high glucose content in the body, and it has become one of the very common conditions that is leading to deaths worldwide. Although it still has no cure or prevention, if monitored and treated with appropriate medication, the complications can be hindered and mitigated. Glucose content in the body can be detected using various biological fluids, namely blood, sweat, urine, interstitial fluids, tears, breath, and saliva. In the past decade, there has been an influx of potential biosensor technologies for continuous glucose level estimation. This literature review provides a comprehensive update on the recent advances in the field of biofluid-based sensors for glucose level detection in terms of methods, methodology and materials used.
Collapse
Affiliation(s)
- Vundrala Sumedha Reddy
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| | - Bhawana Agarwal
- Department of Chemical Engineering, BITS Pilani-Hyderabad Campus, Hyderabad 500078, India;
| | - Zhen Ye
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| | - Chuanqi Zhang
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| | - Kallol Roy
- Centre for Advanced 2D Materials, National University of Singapore, Singapore 117546, Singapore;
| | - Amutha Chinnappan
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| | - Roger J. Narayan
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA;
| | - Seeram Ramakrishna
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| | - Rituparna Ghosh
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| |
Collapse
|
32
|
Azzane A, Eddouks M. Antihyperglycemic, Antihyperlipidemic, and Antioxidant Effects of Salvia tingitana in Streptozotocin-Induced Diabetic Rats. Cardiovasc Hematol Disord Drug Targets 2022; 22:118-127. [PMID: 35946102 DOI: 10.2174/1871529x22666220806122012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
AIMS The study aimed to assess the antidiabetic effect of Salvia tingitana (S. tingitana). BACKGROUND S. tingitana is an aromatic plant that belongs to the Lamiaceae family. Phytochemical analysis of the aerial parts of S. tingitana revealed the existence of terpenoids and flavonoids. In addition, S. tingitana possesses antimicrobial activity. OBJECTIVE The goal of the study was to obtain information about the antihyperglycemic, antihyperlipidemic, antioxidant abilities of S. tingitana aqueous extract. METHODS The effect of an acute and sub-chronic administration of S. tingitana aqueous extract (AEST) at the doses of 60 and 80 mg/kg on glucose, lipid profile, and lipoprotein profile was examined in normoglycemic and hyperglycemic rats. Additionally, a preliminary phytochemical screening and the antioxidant activity using DPPH assay were carried out. RESULTS Rats treated with AEST at a dose of 60 mg/kg showed a significant decrease in the serum glucose levels during the single oral administration at the 4th and 6th hour of treatment in both normal and streptozotocin(STZ)-induced hyperglycemic rats. Interestingly, a dose of 80 mg/kg AEST produced a significant lowering effect on blood glucose levels at the 2nd, 4th, and 6th hour of treatment after a single oral administration in both diabetic and normal rats. Both doses of AEST (60 and 80 mg/kg) revealed a significant amelioration of lipid and lipoprotein profile. In addition, the qualitative and quantitative phytochemical analysis proved the presence of polyphenols compounds, flavonoids, and tannins. Results suggest that S. tingitana contains some secondary metabolites like alkaloids, phenols, flavonoids, and saponins. Importantly, the study revealed that the aqueous extract of S. tingitana has a very interesting antioxidant activity (IC50 = 553.21 μg/ml). CONCLUSION The study illustrates the beneficial action of the aqueous extract of S. tingitana as an antihyperglycemic and antihyperlipidemic agent.
Collapse
Affiliation(s)
- Amine Azzane
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques, Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia 52000, Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques, Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia 52000, Morocco
| |
Collapse
|
33
|
Amssayef A, Azzaoui B, Bouadid I, Eddouks M. Antihyperglycemic Activity of Aqueous Extract of Euphorbia guyoniana in Streptozotocin-Induced Diabetic Rats. Cardiovasc Hematol Disord Drug Targets 2021; 21:225-234. [PMID: 34906066 DOI: 10.2174/1871529x21666211214161639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/03/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022]
Abstract
AIMS This work assessed the antihyperglycemic effect of Euphorbia guyoniana. BACKGROUND Euphorbia guyoniana (Boss. and Reut.) is widely used in traditional medicine. OBJECTIVE This study was designed to confirm this traditional use by assessing its antihyperglycemic capacity in vivo. METHODS The effect of the aqueous extract of Euphorbia guyoniana (Boss. and Reut.) (60 mg/kg) on glycemia in both normal and diabetic rats was evaluated. The glycogen content in the liver and skeletal muscles (extensor digitorum longus and soleus) was measured. Furthermore, liver histopathological analysis was performed. RESULTS The findings showed that Euphorbia guyoniana (Boss. and Reut.) exhibited a significant decrease in glycaemia in diabetic rats (from 20±2 mmol/l to 5.5 mmol/l after 6 hours of oral administration; p<0.0001 and from 20±2 mmol/l to 4.5 mmol/l after 7 days of once-daily repeated oral administration of the aqueous Euphorbia guyoniana extract; p<0.0001). In addition, the extract increased the glycogen content in the liver (41±4 mg/g versus 70±5 mg/g in normal and diabetic rats respectively) and extensor digitorum longus (39±4 mg/g versus 60±1 mg/g in normal and diabetic rats, respectively), and partially restored corporal weight in diabetic rats. Furthermore, this aqueous extract has been shown to suppress hyperglycemia induced by glucose load in treated diabetic rats. Additionally, hepatic histology in diabetic rats has been improved. This plant revealed the presence of several phytochemical constituents and possessed antioxidant activity. CONCLUSION The current study evidenced that Euphorbia guyoniana (Boss. and Reut.) has a beneficial effect on improving hyperglycemia and glycogen depletion in the diabetic state.
Collapse
Affiliation(s)
- Ayoub Amssayef
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, 52000. Errachidia. Morocco
| | - Bouchra Azzaoui
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, 52000. Errachidia. Morocco
| | - Ismail Bouadid
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, 52000. Errachidia. Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, 52000. Errachidia. Morocco
| |
Collapse
|
34
|
The Design Methodology of Fully Digital Pulse Width Modulation. JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS 2021. [DOI: 10.3390/jlpea11040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper describes the design methodology and calibration technique for a low-power digital pulse width modulation demodulator to enhance its robustness against the process, voltage, and temperature variations in different process corners, in addition to intra-die variability, which makes it a very good choice for implantable monitoring sensors. Furthermore, the core of the proposed demodulator is fully digital. Thus, along with the proposed design methodology, the proposed demodulator can be simply redesigned in advanced subnanometer CMOS technologies without much difficulty as compared to analog demodulators. The proposed demodulator consists of an envelope detector, a digitizer, a ring oscillator, and a data detector with digital calibration. All the proposed circuits are designed and simulated in the standard 1P9M TSMC’s 40 nm CMOS technology. Simulation results have shown that the circuit is capable of demodulating and recovering data from an input signal with a carrier frequency of 13.56 MHz and a data rate of 143 kB/s with an average power consumption of 5.62 μW.
Collapse
|
35
|
Zhao J, Xu G, Yao X, Zhou H, Lyu B, Pei S, Wen P. Microneedle-based insulin transdermal delivery system: current status and translation challenges. Drug Deliv Transl Res 2021; 12:2403-2427. [PMID: 34671948 PMCID: PMC8528479 DOI: 10.1007/s13346-021-01077-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 01/27/2023]
Abstract
Diabetes mellitus is a metabolic disease manifested by hyperglycemia. For patients with type 1 and advanced type 2 diabetes mellitus, insulin therapy is essential. Subcutaneous injection remains the most common administration method. Non-invasive insulin delivery technologies are pursued because of their benefits of decreasing patients' pain, anxiety, and stress. Transdermal delivery systems have gained extensive attention due to the ease of administration and absence of hepatic first-pass metabolism. Microneedle (MN) technology is one of the most promising tactics, which can effectively deliver insulin through skin stratum corneum in a minimally invasive and painless way. This article will review the research progress of MNs in insulin transdermal delivery, including hollow MNs, dissolving MNs, hydrogel MNs, and glucose-responsive MN patches, in which insulin dosage can be strictly controlled. The clinical studies about insulin delivery with MN devices have also been summarized and grouped based on the study phase. There are still several challenges to achieve successful translation of MNs-based insulin therapy. In this review, we also discussed these challenges including safety, efficacy, patient/prescriber acceptability, manufacturing and scale-up, and regulatory authority acceptability.
Collapse
Affiliation(s)
- Jing Zhao
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Genying Xu
- Department of Pharmacy, Zhongshan Hospital Fudan University, No. 180 Fenglin Road, Shanghai, 200032 China
| | - Xin Yao
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Huirui Zhou
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Boyang Lyu
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Shuangshuang Pei
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Ping Wen
- School of Pharmacy, Fudan University, No. 826 Zhangheng Road Zhangjiang Hi-Tech Park , Shanghai, 200120 China
| |
Collapse
|
36
|
Seetharaman R, Pawar S, Advani M. One hundred years since insulin discovery: An update on current and future perspectives for pharmacotherapy of diabetes mellitus. Br J Clin Pharmacol 2021; 88:1598-1612. [PMID: 34608666 DOI: 10.1111/bcp.15100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/02/2021] [Accepted: 09/26/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus was considered a fatal malady until the discovery, extraction and commercial availability of insulins. Numerous other classes of drugs ranging from sulfonylureas to sodium-glucose co-transporter-2 inhibitors were then marketed. However, with the prevalence of diabetes mellitus increasing every year, many more drugs and therapies are under investigation. This review article aimed to summarize the significant developments in the pharmacotherapy of diabetes mellitus and outline the progress made by the recent advances, 100 years since insulins were first extracted successfully. Insulin analogues and insulin delivery pumps have further improved glycaemic control in diabetes mellitus. Cardiovascular and renal outcome trials have changed the landscape of diabetology, with some of these drugs also efficacious in nondiabetics. Newer drug delivery systems are being evaluated to improve the efficacy and reduce the dosing frequency and adverse effects of antidiabetics. Some newer drugs with novel mechanisms of action targeting type 1 and type 2 diabetes have also shown promise in recent clinical trials. These drugs include dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide 1-agonists, glucokinase activators, anti-CD3 monoclonal antibodies and glimins. Their efficacy needs to be evaluated in larger studies.
Collapse
Affiliation(s)
- Rajmohan Seetharaman
- Department of Pharmacology, Lokmanya Tilak Municipal Medical College & General Hospital, Sion, Mumbai, India
| | - Sudhir Pawar
- Department of Pharmacology, Lokmanya Tilak Municipal Medical College & General Hospital, Sion, Mumbai, India
| | - Manjari Advani
- Department of Pharmacology, Lokmanya Tilak Municipal Medical College & General Hospital, Sion, Mumbai, India
| |
Collapse
|
37
|
Abdelkader H, Fathalla Z, Seyfoddin A, Farahani M, Thrimawithana T, Allahham A, Alani AWG, Al-Kinani AA, Alany RG. Polymeric long-acting drug delivery systems (LADDS) for treatment of chronic diseases: Inserts, patches, wafers, and implants. Adv Drug Deliv Rev 2021; 177:113957. [PMID: 34481032 DOI: 10.1016/j.addr.2021.113957] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/13/2021] [Accepted: 08/29/2021] [Indexed: 02/07/2023]
Abstract
Non-oral long-acting drug delivery systems (LADDS) encompass a range of technologies for precisely delivering drug molecules into target tissues either through the systemic circulation or via localized injections for treating chronic diseases like diabetes, cancer, and brain disorders as well as for age-related eye diseases. LADDS have been shown to prolong drug release from 24 h up to 3 years depending on characteristics of the drug and delivery system. LADDS can offer potentially safer, more effective, and patient friendly treatment options compared to more invasive modes of drug administration such as repeated injections or minor surgical intervention. Whilst there is no single technology or definition that can comprehensively embrace LADDS; for the purposes of this review, these systems include solid implants, inserts, transdermal patches, wafers and in situ forming delivery systems. This review covers common chronic illnesses, where candidate drugs have been incorporated into LADDS, examples of marketed long-acting pharmaceuticals, as well as newly emerging technologies, used in the fabrication of LADDS.
Collapse
Affiliation(s)
- Hamdy Abdelkader
- Pharmaceutics Department, Faculty of Pharmacy, Minia University, Minia, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, New Minia City, Minia, Egypt
| | - Zeinab Fathalla
- Pharmaceutics Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Ali Seyfoddin
- Drug Delivery Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, New Zealand
| | - Mojtaba Farahani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Thilini Thrimawithana
- Discipline of Pharmacy, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ayman Allahham
- Discipline of Pharmacy, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Adam W G Alani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Moody Avenue, RLSB, Portland, OR, United States; Biomedical Engineering Department, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, OR, United States; Knight Cancer Institute, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, OR, United States
| | - Ali A Al-Kinani
- Drug Discovery, Delivery and Patient Care Theme (DDDPC), Faculty of Science, Engineering and Computing, Kingston University London, Penrhyn Road, Kingston upon Thames, UK.
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care Theme (DDDPC), Faculty of Science, Engineering and Computing, Kingston University London, Penrhyn Road, Kingston upon Thames, UK; School of Pharmacy, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
38
|
Zeng Y, Xiang Y, Sheng R, Tomás H, Rodrigues J, Gu Z, Zhang H, Gong Q, Luo K. Polysaccharide-based nanomedicines for cancer immunotherapy: A review. Bioact Mater 2021; 6:3358-3382. [PMID: 33817416 PMCID: PMC8005658 DOI: 10.1016/j.bioactmat.2021.03.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy is an effective antitumor approach through activating immune systems to eradicate tumors by immunotherapeutics. However, direct administration of "naked" immunotherapeutic agents (such as nucleic acids, cytokines, adjuvants or antigens without delivery vehicles) often results in: (1) an unsatisfactory efficacy due to suboptimal pharmacokinetics; (2) strong toxic and side effects due to low targeting (or off-target) efficiency. To overcome these shortcomings, a series of polysaccharide-based nanoparticles have been developed to carry immunotherapeutics to enhance antitumor immune responses with reduced toxicity and side effects. Polysaccharides are a family of natural polymers that hold unique physicochemical and biological properties, as they could interact with immune system to stimulate an enhanced immune response. Their structures offer versatility in synthesizing multifunctional nanocomposites, which could be chemically modified to achieve high stability and bioavailability for delivering therapeutics into tumor tissues. This review aims to highlight recent advances in polysaccharide-based nanomedicines for cancer immunotherapy and propose new perspectives on the use of polysaccharide-based immunotherapeutics.
Collapse
Affiliation(s)
- Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Department of Neurosurgery, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yufan Xiang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Department of Neurosurgery, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruilong Sheng
- CQM-Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Madeira, Portugal
| | - Helena Tomás
- CQM-Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Madeira, Portugal
| | - João Rodrigues
- CQM-Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Madeira, Portugal
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Department of Neurosurgery, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Department of Neurosurgery, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Department of Neurosurgery, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
39
|
Zeng Y, Xiang Y, Sheng R, Tomás H, Rodrigues J, Gu Z, Zhang H, Gong Q, Luo K. Polysaccharide-based nanomedicines for cancer immunotherapy: A review. Bioact Mater 2021. [DOI: https://doi.org/10.1016/j.bioactmat.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
40
|
Mishra V, Nayak P, Sharma M, Albutti A, Alwashmi ASS, Aljasir MA, Alsowayeh N, Tambuwala MM. Emerging Treatment Strategies for Diabetes Mellitus and Associated Complications: An Update. Pharmaceutics 2021; 13:1568. [PMID: 34683861 PMCID: PMC8538773 DOI: 10.3390/pharmaceutics13101568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence of diabetes mellitus (DM) is increasing rapidly at an accelerating rate worldwide. The status of diabetes has changed over the last three generations; whereas before it was deemed a minor disease of older people but currently it is now one of the leading causes of morbidity and mortality among middle-aged and young people. High blood glucose-mediated functional loss, insulin sensitivity, and insulin deficiency lead to chronic disorders such as Type 1 and Type 2 DM. Traditional treatments of DM, such as insulin sensitization and insulin secretion cause undesirable side effects, leading to patient incompliance and lack of treatment. Nanotechnology in diabetes studies has encouraged the development of new modalities for measuring glucose and supplying insulin that hold the potential to improve the quality of life of diabetics. Other therapies, such as β-cells regeneration and gene therapy, in addition to insulin and oral hypoglycemic drugs, are currently used to control diabetes. The present review highlights the nanocarrier-based drug delivery systems and emerging treatment strategies of DM.
Collapse
Affiliation(s)
- Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Pallavi Nayak
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana 142021, Punjab, India
| | - Mayank Sharma
- SVKM’s NMIMS School of Pharmacy & Technology Management, Shirpur 425405, Maharashtra, India;
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Noorah Alsowayeh
- Biology Department, College of Education, Majmaah University, Majmaah 11932, Saudi Arabia;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK;
| |
Collapse
|
41
|
Zhang J, Xu J, Lim J, Nolan JK, Lee H, Lee CH. Wearable Glucose Monitoring and Implantable Drug Delivery Systems for Diabetes Management. Adv Healthc Mater 2021; 10:e2100194. [PMID: 33930258 DOI: 10.1002/adhm.202100194] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Indexed: 12/11/2022]
Abstract
The global cost of diabetes care exceeds $1 trillion each year with more than $327 billion being spent in the United States alone. Despite some of the advances in diabetes care including continuous glucose monitoring systems and insulin pumps, the technology associated with managing diabetes has largely remained unchanged over the past several decades. With the rise of wearable electronics and novel functional materials, the field is well-poised for the next generation of closed-loop diabetes care. Wearable glucose sensors implanted within diverse platforms including skin or on-tooth tattoos, skin-mounted patches, eyeglasses, contact lenses, fabrics, mouthguards, and pacifiers have enabled noninvasive, unobtrusive, and real-time analysis of glucose excursions in ambulatory care settings. These wearable glucose sensors can be integrated with implantable drug delivery systems, including an insulin pump, glucose responsive insulin release implant, and islets transplantation, to form self-regulating closed-loop systems. This review article encompasses the emerging trends and latest innovations of wearable glucose monitoring and implantable insulin delivery technologies for diabetes management with a focus on their advanced materials and construction. Perspectives on the current unmet challenges of these strategies are also discussed to motivate future technological development toward improved patient care in diabetes management.
Collapse
Affiliation(s)
- Jinyuan Zhang
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Jian Xu
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Jongcheon Lim
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - James K. Nolan
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
- School of Mechanical Engineering School of Materials Engineering Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
42
|
Tessier N, Moawad F, Amri N, Brambilla D, Martel C. Focus on the Lymphatic Route to Optimize Drug Delivery in Cardiovascular Medicine. Pharmaceutics 2021; 13:1200. [PMID: 34452161 PMCID: PMC8398144 DOI: 10.3390/pharmaceutics13081200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022] Open
Abstract
While oral agents have been the gold standard for cardiovascular disease therapy, the new generation of treatments is switching to other administration options that offer reduced dosing frequency and more efficacy. The lymphatic network is a unidirectional and low-pressure vascular system that is responsible for the absorption of interstitial fluids, molecules, and cells from the peripheral tissue, including the skin and the intestines. Targeting the lymphatic route for drug delivery employing traditional or new technologies and drug formulations is exponentially gaining attention in the quest to avoid the hepatic first-pass effect. The present review will give an overview of the current knowledge on the involvement of the lymphatic vessels in drug delivery in the context of cardiovascular disease.
Collapse
Affiliation(s)
- Nolwenn Tessier
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute Research Center, Montreal, QC H1T 1C8, Canada
| | - Fatma Moawad
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Nada Amri
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute Research Center, Montreal, QC H1T 1C8, Canada
| | - Davide Brambilla
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute Research Center, Montreal, QC H1T 1C8, Canada
| |
Collapse
|
43
|
Kerry RG, Mahapatra GP, Maurya GK, Patra S, Mahari S, Das G, Patra JK, Sahoo S. Molecular prospect of type-2 diabetes: Nanotechnology based diagnostics and therapeutic intervention. Rev Endocr Metab Disord 2021; 22:421-451. [PMID: 33052523 DOI: 10.1007/s11154-020-09606-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
About ninety percent of all diabetic conditions account for T2D caused due to abnormal insulin secretion/ action or increased hepatic glucose production. Factors that contribute towards the aetiology of T2D could be well explained through biochemical, molecular, and cellular aspects. In this review, we attempt to explain the recent evolving molecular and cellular advancement associated with T2D pathophysiology. Current progress fabricated in T2D research concerning intracellular signaling cascade, inflammasome, autophagy, genetic and epigenetics changes is discretely explained in simple terms. Present available anti-diabetic therapeutic strategies commercialized and their limitations which are needed to be acknowledged are addressed in the current review. In particular, the pre-eminence of nanotechnology-based approaches to nullify the inadequacy of conventional anti-diabetic therapeutics and heterogeneous nanoparticulated systems exploited in diabetic researches are also discretely mentioned and are also listed in a tabular format in the review. Additionally, as a future prospect of nanotechnology, the review presents several strategic hypotheses to ameliorate the austerity of T2D by an engineered smart targeted nano-delivery system. In detail, an effort has been made to hypothesize novel nanotechnological based therapeutic strategies, which exploits previously described inflammasome, autophagic target points. Utilizing graphical description it is explained how a smart targeted nano-delivery system could promote β-cell growth and development by inducing the Wnt signaling pathway (inhibiting Gsk3β), inhibiting inflammasome (inhibiting NLRP3), and activating autophagic target points (protecting Atg3/Atg7 complex from oxidative stress) thereby might ameliorate the severity of T2D. Additionally, several targeting molecules associated with autophagic and epigenetic factors are also highlighted, which can be exploited in future diabetic research.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| | | | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi, 221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha, 757003, India
| | - Subhasis Mahari
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Sabuj Sahoo
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India.
| |
Collapse
|
44
|
Jarosinski MA, Dhayalan B, Rege N, Chatterjee D, Weiss MA. 'Smart' insulin-delivery technologies and intrinsic glucose-responsive insulin analogues. Diabetologia 2021; 64:1016-1029. [PMID: 33710398 PMCID: PMC8158166 DOI: 10.1007/s00125-021-05422-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Abstract
Insulin replacement therapy for diabetes mellitus seeks to minimise excursions in blood glucose concentration above or below the therapeutic range (hyper- or hypoglycaemia). To mitigate acute and chronic risks of such excursions, glucose-responsive insulin-delivery technologies have long been sought for clinical application in type 1 and long-standing type 2 diabetes mellitus. Such 'smart' systems or insulin analogues seek to provide hormonal activity proportional to blood glucose levels without external monitoring. This review highlights three broad strategies to co-optimise mean glycaemic control and time in range: (1) coupling of continuous glucose monitoring (CGM) to delivery devices (algorithm-based 'closed-loop' systems); (2) glucose-responsive polymer encapsulation of insulin; and (3) mechanism-based hormone modifications. Innovations span control algorithms for CGM-based insulin-delivery systems, glucose-responsive polymer matrices, bio-inspired design based on insulin's conformational switch mechanism upon insulin receptor engagement, and glucose-responsive modifications of new insulin analogues. In each case, innovations in insulin chemistry and formulation may enhance clinical outcomes. Prospects are discussed for intrinsic glucose-responsive insulin analogues containing a reversible switch (regulating bioavailability or conformation) that can be activated by glucose at high concentrations.
Collapse
Affiliation(s)
- Mark A Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nischay Rege
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Chemistry, Indiana University, Bloomington, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
45
|
Tian Q, Zhou W, Cai Q, Ma G, Lian G. Concepts, processing, and recent developments in encapsulating essential oils. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Ahad A, Raish M, Bin Jardan YA, Al-Mohizea AM, Al-Jenoobi FI. Delivery of Insulin via Skin Route for the Management of Diabetes Mellitus: Approaches for Breaching the Obstacles. Pharmaceutics 2021; 13:pharmaceutics13010100. [PMID: 33466845 PMCID: PMC7830404 DOI: 10.3390/pharmaceutics13010100] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 12/14/2022] Open
Abstract
Insulin is used for the treatment of diabetes mellitus, which is characterized by hyperglycemia. Subcutaneous injections are the standard mode of delivery for insulin therapy; however, this procedure is very often invasive, which hinders patient compliance, particularly for individuals requiring insulin doses four times a day. Furthermore, cases have been reported of sudden hypoglycemia occurrences following multidose insulin injections. Such an invasive and intensive approach motivates the quest for alternative, more user-friendly insulin administration approaches. For example, transdermal delivery has numerous advantages, such as prolonged drug release, low variability in the drug plasma level, and improved patient compliance. In this paper, the authors summarize different approaches used in transdermal insulin delivery, including microneedles, chemical permeation enhancers, sonophoresis, patches, electroporation, iontophoresis, vesicular formulations, microemulsions, nanoparticles, and microdermabrasion. Transdermal systems for insulin delivery are still being widely researched. The conclusions presented in this paper are extracted from the literature, notably, that the transdermal route could effectively and reliably deliver insulin into the circulatory system. Consistent progress in this area will ensure that some of the aforementioned transdermal insulin delivery systems will be introduced in clinical practice and commercially available in the near future.
Collapse
|