1
|
Pan BY, Chen CS, Chen FY, Shen MY. Multifaceted Role of Apolipoprotein C3 in Cardiovascular Disease Risk and Metabolic Disorder in Diabetes. Int J Mol Sci 2024; 25:12759. [PMID: 39684468 DOI: 10.3390/ijms252312759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Apolipoprotein C3 (APOC3) plays a critical role in regulating triglyceride levels and serves as a key predictor of cardiovascular disease (CVD) risk, particularly in patients with diabetes. While APOC3 is known to inhibit lipoprotein lipase, recent findings reveal its broader influence across lipoprotein metabolism, where it modulates the structure and function of various lipoproteins. Therefore, this review examines the complex metabolic cycle of APOC3, emphasizing the impact of APOC3-containing lipoproteins on human metabolism, particularly in patients with diabetes. Notably, APOC3 affects triglyceride-rich lipoproteins and causes structural changes in high-, very low-, intermediate-, and low-density lipoproteins, thereby increasing CVD risk. Evidence suggests that elevated APOC3 levels-above the proposed safe range of 10-15 mg/dL-correlate with clinically significant CVD outcomes. Recognizing APOC3 as a promising biomarker for CVD, this review underscores the urgent need for high-throughput, clinically feasible methods to further investigate its role in lipoprotein physiology in both animal models and human studies. Additionally, we analyze the relationship between APOC3-related genes and lipoproteins, reinforcing the value of large-population studies to understand the impact of APOC3 on metabolic diseases. Ultimately, this review supports the development of therapeutic strategies targeting APOC3 reduction as a preventive approach for diabetes-related CVD.
Collapse
Affiliation(s)
- Bo-Yi Pan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Chen-Sheng Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
| | - Fang-Yu Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Ming-Yi Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Nursing, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
2
|
Solfaine R, Hamid IS, Desiandura K. Therapeutic potential of Tithonia diversifolia extract: Modulating IL-35, TNF-α, and hematology profile in streptozotocin-induced rat model. Open Vet J 2024; 14:2250-2255. [PMID: 39553780 PMCID: PMC11563615 DOI: 10.5455/ovj.2024.v14.i9.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/12/2024] [Indexed: 11/19/2024] Open
Abstract
Background Diabetes mellitus is a significant global health issue with increasing prevalence worldwide. Aim This study aims to investigate the potential of Tithonia diversifolia extract (TE) in lowering interleukin-35 (IL-35), tumor necrosis factor-alpha (TNF-α), and hematological profile in streptozotocin (STZ)-induced rats. Methods A total of 24 rats were divided into four treatment groups: control (P0), diabetic induction (P1), diabetic induction + TE (P2), and diabetic induction + quercetin (P3). Diabetes mellitus was induced by a single-dose injection of stz (60 mg/kg). TE treatment was administered orally for 7 days. On the 8th day post-treatment, all animals were euthanized, and blood samples were collected to assess inflammatory parameters, including IL-35, TNF-α, GPx, and hematological profiles. Kidney organs were fixed in 10% buffered neutral formalin for histopathological analysis. Data were analyzed using ANOVA followed by Duncan's test (p < 0.05). Results Evaluation of the hematological profile revealed significant improvements in the P2 and P3 groups, with decreased leukocytes, hemoglobin, lymphocytes, and neutrophils, as well as significantly lower IL-35 and TNF-α levels observed in diabetic rats following TE treatment. Conclusion TE treatment exhibited promising effects in reducing inflammatory markers and restoring hematological parameters in diabetic rats, indicating its potential as a therapeutic agent in diabetic rats.
Collapse
Affiliation(s)
- Rondius Solfaine
- Department of Pathology, Faculty of Veterinary Medicine, University of Wijaya Kusuma Surabaya, Surabaya, Indonesia
| | - Iwan Sahrial Hamid
- Department of Basic Veterinary Medicine, Faculty of Veterinary, Universitas Airlangga, Kampus C UNAIR, Surabaya, Indonesia
| | - Kurnia Desiandura
- Teaching Animal Hospital, Faculty of Veterinary Medicine, University of Wijaya Kusuma Surabaya, Surabaya, Indonesia
| |
Collapse
|
3
|
Yang D, Lee JM, Yang SH, Cho KH, Kim J. Socioeconomic status and physical activity disparities in older adults: Implications for COVID-19 related diabetes cognitive dysfunction. Prev Med Rep 2024; 43:102772. [PMID: 38952432 PMCID: PMC11216005 DOI: 10.1016/j.pmedr.2024.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 07/03/2024] Open
Abstract
Objectives This study aims to investigate the influence of socioeconomic status (SES) on variations in physical activity (PA) levels and diabetes-related cognitive dysfunction and impairment amidst disruptions caused by the COVID-19 pandemic. Methods With the sample of old population, comprising about 20 thousand from the Fact-Finding Survey on the Status of Senior Citizens (FSSSC) released by Ministry of Health and Welfare of South Korea in 2017 and 2020, we empirically tested the direct and indirect effects of SES on cognitive dysfunction using structural equation modeling (SEM). Two SEMs provided the comparison on the effects of COVID-19. Results Household income had a negative impact on the likelihood of dementia diagnosis via PA related diabetes during the pandemic (p < 0.001), whereas no effects of household income on dementia diagnosis were found in 2017, due to no direct effect of PA on diabetes confirmation in 2017. The disparity in PA based on SES becomes more prominent among the older individuals during the pandemic (z = 11.7) than 2017 (z = 6.0), emphasizing the significance of PA in mitigating diabetes-induced cognitive dysfunction during the pandemic. SES affects access to PA, contributing to diabetes-induced cognitive dysfunctions in the older population with lower SES during the pandemic. Conclusion PA may serve as a preventive measure against diabetes-induced cognitive dysfunction and dementia in the older population. Thorough investigation of these mechanisms is imperative to establish the role of PA in preventing diabetes-induced cognitive impairment, particularly among the older population with lower SES.
Collapse
Affiliation(s)
- Dongwoo Yang
- Center for Regional Development, Chonnam National University, Gwangju, South Korea
| | - Jung-Min Lee
- Department of Physical Education, Kyung-Hee University, Yongin, South Korea
| | - Seo-Hyung Yang
- School of Global Sports Studies, Korea University, Sejong, South Korea
| | - Kyung-Hun Cho
- Department of Physical Education, Kyung-Hee University, Yongin, South Korea
| | - Jahyun Kim
- Department of Kinesiology, California State University Bakersfield, Bakersfield, CA, USA
| |
Collapse
|
4
|
Halabi N, Thomas B, Chidiac O, Robay A, AbiNahed J, Jayyousi A, Al Suwaidi J, Bradic M, Abi Khalil C. Dysregulation of long non-coding RNA gene expression pathways in monocytes of type 2 diabetes patients with cardiovascular disease. Cardiovasc Diabetol 2024; 23:196. [PMID: 38849833 PMCID: PMC11161966 DOI: 10.1186/s12933-024-02292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Monocytes play a central role in the pathophysiology of cardiovascular complications in type 2 diabetes (T2D) patients through different mechanisms. We investigated diabetes-induced changes in lncRNA genes from T2D patients with cardiovascular disease (CVD), long-duration diabetes, and poor glycemic control. METHODS We performed paired-end RNA sequencing of monocytes from 37 non-diabetes controls and 120 patients with T2D, of whom 86 had either macro or microvascular disease or both. Monocytes were sorted from peripheral blood using flow cytometry; their RNA was purified and sequenced. Alignments and gene counts were obtained with STAR to reference GRCh38 using Gencode (v41) annotations followed by batch correction with CombatSeq. Differential expression analysis was performed with EdgeR and pathway analysis with IPA software focusing on differentially expressed genes (DEGs) with a p-value < 0.05. Additionally, differential co-expression analysis was done with csdR to identify lncRNAs highly associated with diabetes-related expression networks with network centrality scores computed with Igraph and network visualization with Cytoscape. RESULTS Comparing T2D vs. non-T2D, we found two significantly upregulated lncRNAs (ENSG00000287255, FDR = 0.017 and ENSG00000289424, FDR = 0.048) and one significantly downregulated lncRNA (ENSG00000276603, FDR = 0.017). Pathway analysis on DEGs revealed networks affecting cellular movement, growth, and development. Co-expression analysis revealed ENSG00000225822 (UBXN7-AS1) as the highest-scoring diabetes network-associated lncRNA. Analysis within T2D patients and CVD revealed one lncRNA upregulated in monocytes from patients with microvascular disease without clinically documented macrovascular disease. (ENSG00000261654, FDR = 0.046). Pathway analysis revealed DEGs involved in networks affecting metabolic and cardiovascular pathologies. Co-expression analysis identified lncRNAs strongly associated with diabetes networks, including ENSG0000028654, ENSG00000261326 (LINC01355), ENSG00000260135 (MMP2-AS1), ENSG00000262097, and ENSG00000241560 (ZBTB20-AS1) when we combined the results from all patients with CVD. Similarly, we identified from co-expression analysis of diabetes patients with a duration ≥ 10 years vs. <10 years two lncRNAs: ENSG00000269019 (HOMER3-AS10) and ENSG00000212719 (LINC02693). The comparison of patients with good vs. poor glycemic control also identified two lncRNAs: ENSG00000245164 (LINC00861) and ENSG00000286313. CONCLUSION We identified dysregulated diabetes-related genes and pathways in monocytes of diabetes patients with cardiovascular complications, including lncRNA genes of unknown function strongly associated with networks of known diabetes genes.
Collapse
Affiliation(s)
- Najeeb Halabi
- Epigenetics Cardiovascular Lab, Department of Genetic Medicine, Weill Cornell Medicine - Qatar, PO box 24144, Doha, Qatar
- Bioinformatics Core, Weill Cornell Medicine - Qatar, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, New York, USA
| | - Binitha Thomas
- Epigenetics Cardiovascular Lab, Department of Genetic Medicine, Weill Cornell Medicine - Qatar, PO box 24144, Doha, Qatar
| | - Omar Chidiac
- Epigenetics Cardiovascular Lab, Department of Genetic Medicine, Weill Cornell Medicine - Qatar, PO box 24144, Doha, Qatar
| | - Amal Robay
- Epigenetics Cardiovascular Lab, Department of Genetic Medicine, Weill Cornell Medicine - Qatar, PO box 24144, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, New York, USA
| | - Julien AbiNahed
- Technology Innovation Unit, Hamad Medical Corporation, Doha, Qatar
| | - Amin Jayyousi
- Department of Endocrinology, Hamad Medical Corporation, Doha, Qatar
| | | | - Martina Bradic
- Department of Genetic Medicine, Weill Cornell Medicine, New York, USA
- Marie-Josée & Henry R.Kravis Center for Molecular Oncology, Memorial Sloan Kettering, New York, USA
| | - Charbel Abi Khalil
- Epigenetics Cardiovascular Lab, Department of Genetic Medicine, Weill Cornell Medicine - Qatar, PO box 24144, Doha, Qatar.
- Department of Genetic Medicine, Weill Cornell Medicine, New York, USA.
- Heart Hospital, Hamad Medical Corporation, Doha, Qatar.
- Joan and Sanford I.Weill Department of Medicine, Weill Cornell Medicine, New York, USA.
| |
Collapse
|
5
|
Nachiappa Ganesh R, Garcia G, Truong L. Monocytes and Macrophages in Kidney Disease and Homeostasis. Int J Mol Sci 2024; 25:3763. [PMID: 38612574 PMCID: PMC11012230 DOI: 10.3390/ijms25073763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The monocyte-macrophage lineage of inflammatory cells is characterized by significant morphologic and functional plasticity. Macrophages have broad M1 and M2 phenotype subgroups with distinctive functions and dual reno-toxic and reno-protective effects. Macrophages are a major contributor to injury in immune-complex-mediated, as well as pauci-immune, glomerulonephritis. Macrophages are also implicated in tubulointerstitial and vascular disease, though there have not been many human studies. Patrolling monocytes in the intravascular compartment have been reported in auto-immune injury in the renal parenchyma, manifesting as acute kidney injury. Insights into the pathogenetic roles of macrophages in renal disease suggest potentially novel therapeutic and prognostic biomarkers and targeted therapy. This review provides a concise overview of the macrophage-induced pathogenetic mechanism as a background for the latest findings about macrophages' roles in different renal compartments and common renal diseases.
Collapse
Affiliation(s)
- Rajesh Nachiappa Ganesh
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Gabriela Garcia
- Department of Medicine, Renal Division, University of Colorado, Anschutz Medical Campus, Aurora, CO 605006, USA;
| | - Luan Truong
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
| |
Collapse
|
6
|
Tucureanu MM, Ciortan L, Macarie RD, Mihaila AC, Droc I, Butoi E, Manduteanu I. The Specific Molecular Changes Induced by Diabetic Conditions in Valvular Endothelial Cells and upon Their Interactions with Monocytes Contribute to Endothelial Dysfunction. Int J Mol Sci 2024; 25:3048. [PMID: 38474293 DOI: 10.3390/ijms25053048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Aortic valve disease (AVD) represents a global public health challenge. Research indicates a higher prevalence of diabetes in AVD patients, accelerating disease advancement. Although the specific mechanisms linking diabetes to valve dysfunction remain unclear, alterations of valvular endothelial cells (VECs) homeostasis due to high glucose (HG) or their crosstalk with monocytes play pivotal roles. The aim of this study was to determine the molecular signatures of VECs in HG and upon their interaction with monocytes in normal (NG) or high glucose conditions and to propose novel mechanisms underlying valvular dysfunction in diabetes. VECs and THP-1 monocytes cultured in NG/HG conditions were used. The RNAseq analysis revealed transcriptomic changes in VECs, in processes related to cytoskeleton regulation, focal adhesions, cellular junctions, and cell adhesion. Key molecules were validated by qPCR, Western blot, and immunofluorescence assays. The alterations in cytoskeleton and intercellular junctions impacted VEC function, leading to changes in VECs adherence to extracellular matrix, endothelial permeability, monocyte adhesion, and transmigration. The findings uncover new molecular mechanisms of VEC dysfunction in HG conditions and upon their interaction with monocytes in NG/HG conditions and may help to understand mechanisms of valvular dysfunction in diabetes and to develop novel therapeutic strategies in AVD.
Collapse
Affiliation(s)
- Monica Madalina Tucureanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Letitia Ciortan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Razvan Daniel Macarie
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Andreea Cristina Mihaila
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Ionel Droc
- Cardiovascular Surgery Department, Central Military Hospital, 010825 Bucharest, Romania
| | - Elena Butoi
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Ileana Manduteanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| |
Collapse
|
7
|
Zhang H, Lu J, Gao J, Sha W, Cai X, Rouzi MRYM, Xu Y, Tang W, Lei T. Association of Monocyte-to-HDL Cholesterol Ratio with Endothelial Dysfunction in Patients with Type 2 Diabetes. J Diabetes Res 2024; 2024:5287580. [PMID: 38239233 PMCID: PMC10796180 DOI: 10.1155/2024/5287580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
Aims To explore the relationship between monocyte-to-HDL cholesterol ratio (MHR) and endothelial function in patients with type 2 diabetes (T2DM). Methods 243 patients diagnosed with T2DM were enrolled in this cross-sectional study. Patients were divided into two groups by flow-mediated dilation (FMD) quintile as nonendothelial dysfunction (FMD ≥ 6.4%) and endothelial dysfunction (FMD < 6.4%). The relationship between MHR and FMD was analyzed using Spearman's correlation, partial correlation, and multiple logistic regression analysis. ROC curve was fitted to evaluate the ability of MHR to predict endothelial dysfunction. Results Endothelial dysfunction was present in 193 (79%) patients. Patients with endothelial dysfunction had higher MHR (p < 0.05) than those without endothelial dysfunction. Furthermore, MHR had a significantly positive correlation with endothelial dysfunction (r = 0.17, p < 0.05), and the positive association persisted even after controlling for confounding factors (r = 0.14, p < 0.05). Logistic regression showed that MHR was an independent contributor for endothelial dysfunction (OR: 1.35 (1.08, 1.70), p < 0.05) and the risk of endothelial dysfunction increases by 61% with each standard deviation increase in MHR (OR: 1.61 (1.12, 2.30), p < 0.05) (model 1). After adjusting for sex, age, BMI, disease course, hypertension, smoking, and drinking (model 2) as well as HbA1c, HOMA-IR, C-reactive protein, and TG (model 3), similar results were obtained. In ROC analysis, the area of under the ROC curve (AUC) for MHR was 0.60 (95% CI 0.52-0.69, p < 0.05). Conclusion MHR was independently associated with endothelial dysfunction in T2DM patients. It could be a new biomarker for vascular endothelial function assessment.
Collapse
Affiliation(s)
- Huihui Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Lu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Gao
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Sha
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinhua Cai
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mai Re Yan Mu Rouzi
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanying Xu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Tang
- Heart Function Examination Room, Tongji Hospital, Tongji University, Shanghai, China
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Amirinejad A, Khayyatzadeh SS, Rezaeivandchali N, Gheibihayat SM. Efferocytosis and Metabolic Syndrome: A Narrative Review. Curr Mol Med 2024; 24:751-757. [PMID: 37431902 DOI: 10.2174/1566524023666230710120438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Metabolic syndrome (MetS), which is distinguished by the simultaneous presence of hyperglycemia, dyslipidemia, hypertension, and central obesity, is a critical risk factor for cardiovascular disease (CVDs), mortality, and illness burden. Eliminating about one million cells per second in the human body, apoptosis conserves homeostasis and regulates the life cycle of organisms. In the physiological condition, the apoptotic cells internalize to the phagocytes by a multistep process named efferocytosis. Any impairment in the clearance of these apoptotic cells results in conditions related to chronic inflammation, such as obesity, diabetes, and dyslipidemia. On the other hand, insulin resistance and MetS can disturb the efferocytosis process. Since no study investigated the relationship between efferocytosis and MetS, we decided to explore the different steps of efferocytosis and describe how inefficient dead cell clearance is associated with the progression of MetS.
Collapse
Affiliation(s)
- Ali Amirinejad
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sayyed Saeid Khayyatzadeh
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Noushin Rezaeivandchali
- Department of Biochemistry and Genetics, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
9
|
Kologrivova IV, Suslova TE, Koshelskaya OA, Kravchenko ES, Kharitonova OA, Romanova EA, Vyrostkova AI, Boshchenko AA. Intermediate Monocytes and Circulating Endothelial Cells: Interplay with Severity of Atherosclerosis in Patients with Coronary Artery Disease and Type 2 Diabetes Mellitus. Biomedicines 2023; 11:2911. [PMID: 38001912 PMCID: PMC10669450 DOI: 10.3390/biomedicines11112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The aim was to investigate the association of monocyte heterogeneity and presence of circulating endothelial cells with the severity of coronary atherosclerosis in patients with coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM). We recruited 62 patients with CAD, including 22 patients with DM2. The severity of atherosclerosis was evaluated using Gensini Score. Numbers of classical (CD14++CD16-), intermediate (CD14++CD16+), and non-classical (CD14+CD16++) monocyte subsets; circulating endothelial progenitor cells; and the presence of circulating endothelial cells were evaluated. Counts and frequencies of intermediate monocytes, but not glycaemia parameters, were associated with the severity of atherosclerosis in diabetic CAD patients (rs = 0.689; p = 0.001 and rs = 0.632; p = 0.002, respectively). Frequency of Tie2+ cells was lower in classical than in non-classical monocytes in CAD patients (p = 0.007), while in patients with association of CAD and T2DM, differences between Tie2+ monocytes subsets disappeared (p = 0.080). Circulating endothelial cells were determined in 100% of CAD+T2DM patients, and counts of CD14++CD16+ monocytes and concentration of TGF-β predicted the presence of circulating endothelial cells (sensitivity 92.3%; specificity 90.9%; AUC = 0.930). Thus, intermediate monocytes represent one of the key determinants of the appearance of circulating endothelial cells in all the patients with CAD, but are associated with the severity of atherosclerosis only in patients with association of CAD and T2DM.
Collapse
Affiliation(s)
- Irina V. Kologrivova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (T.E.S.); (O.A.K.); (E.S.K.); (O.A.K.); (A.A.B.)
| | - Tatiana E. Suslova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (T.E.S.); (O.A.K.); (E.S.K.); (O.A.K.); (A.A.B.)
| | - Olga A. Koshelskaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (T.E.S.); (O.A.K.); (E.S.K.); (O.A.K.); (A.A.B.)
| | - Elena S. Kravchenko
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (T.E.S.); (O.A.K.); (E.S.K.); (O.A.K.); (A.A.B.)
| | - Olga A. Kharitonova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (T.E.S.); (O.A.K.); (E.S.K.); (O.A.K.); (A.A.B.)
| | - Ekaterina A. Romanova
- Department of Biomedicine, Siberian State Medical University, 2 Moskovskii trakt, Tomsk 634050, Russia; (E.A.R.); (A.I.V.)
| | - Alexandra I. Vyrostkova
- Department of Biomedicine, Siberian State Medical University, 2 Moskovskii trakt, Tomsk 634050, Russia; (E.A.R.); (A.I.V.)
| | - Alla A. Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (T.E.S.); (O.A.K.); (E.S.K.); (O.A.K.); (A.A.B.)
| |
Collapse
|
10
|
Zhang X, Luo Z, Li J, Lin Y, Li Y, Li W. Sestrin2 in diabetes and diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1274686. [PMID: 37920252 PMCID: PMC10619741 DOI: 10.3389/fendo.2023.1274686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Diabetes is a global health problem which is accompanied with multi-systemic complications. It is of great significance to elucidate the pathogenesis and to identify novel therapies of diabetes and diabetic complications. Sestrin2, a stress-inducible protein, is primarily involved in cellular responses to various stresses. It plays critical roles in regulating a series of cellular events, such as oxidative stress, mitochondrial function and endoplasmic reticulum stress. Researches investigating the correlations between Sestrin2, diabetes and diabetic complications are increasing in recent years. This review incorporates recent findings, demonstrates the diverse functions and regulating mechanisms of Sestrin2, and discusses the potential roles of Sestrin2 in the pathogenesis of diabetes and diabetic complications, hoping to highlight a promising therapeutic direction.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zirui Luo
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Jiahong Li
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yaxuan Lin
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yu Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Naderi-Meshkin H, Cornelius VA, Eleftheriadou M, Potel KN, Setyaningsih WAW, Margariti A. Vascular organoids: unveiling advantages, applications, challenges, and disease modelling strategies. Stem Cell Res Ther 2023; 14:292. [PMID: 37817281 PMCID: PMC10566155 DOI: 10.1186/s13287-023-03521-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
Understanding mechanisms and manifestations of cardiovascular risk factors, including diabetes, on vascular cells such as endothelial cells, pericytes, and vascular smooth muscle cells, remains elusive partly due to the lack of appropriate disease models. Therefore, here we explore different aspects for the development of advanced 3D in vitro disease models that recapitulate human blood vessel complications using patient-derived induced pluripotent stem cells, which retain the epigenetic, transcriptomic, and metabolic memory of their patient-of-origin. In this review, we highlight the superiority of 3D blood vessel organoids over conventional 2D cell culture systems for vascular research. We outline the key benefits of vascular organoids in both health and disease contexts and discuss the current challenges associated with organoid technology, providing potential solutions. Furthermore, we discuss the diverse applications of vascular organoids and emphasize the importance of incorporating all relevant cellular components in a 3D model to accurately recapitulate vascular pathophysiology. As a specific example, we present a comprehensive overview of diabetic vasculopathy, demonstrating how the interplay of different vascular cell types is critical for the successful modelling of complex disease processes in vitro. Finally, we propose a strategy for creating an organ-specific diabetic vasculopathy model, serving as a valuable template for modelling other types of vascular complications in cardiovascular diseases by incorporating disease-specific stressors and organotypic modifications.
Collapse
Affiliation(s)
- Hojjat Naderi-Meshkin
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Victoria A Cornelius
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Magdalini Eleftheriadou
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Koray Niels Potel
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Wiwit Ananda Wahyu Setyaningsih
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
- Department of Anatomy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Sleman, D.I. Yogyakarta, 55281, Indonesia
| | - Andriana Margariti
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
12
|
Hammad R, Abdel Wahab MA, Farouk N, Zakaria MY, Eldosoky MA, Elmadbouly AA, Tahoun SA, Mahmoud E, Khirala SK, Mohammed AR, Emam WA, Abo Elqasem AA, Kotb FM, Abd Elghany RAE. Non-classical monocytes frequency and serum vitamin D 3 levels are linked to diabetic foot ulcer associated with peripheral artery disease. J Diabetes Investig 2023; 14:1192-1201. [PMID: 37394883 PMCID: PMC10512914 DOI: 10.1111/jdi.14048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023] Open
Abstract
AIMS/INTRODUCTION Peripheral artery disease (PAD) serves as a risk factor for diabetic foot ulcers (DFUs). PAD pathology involves atherosclerosis and impaired immunity. Non-classical monocytes are believed to have an anti-inflammatory role. 1,25-Dihydroxy vitamin D (vitamin D3 ) is claimed to have immune-modulating and lipid-regulating roles. Vitamin D receptor is expressed on monocytes. We aimed to investigate if circulating non-classical monocytes and vitamin D3 were implicated in DFUs associated with PAD. MATERIALS AND METHODS There were two groups of DFU patients: group 1 (n = 40) included patients with first-degree DFUs not associated with PAD, and group 2 (n = 50) included patients with DFU with PAD. The monocyte phenotypes were detected using flow cytometry. Vitamin D3 was assessed by enzyme-linked immunosorbent assay. RESULTS DFU patients with PAD showed a significant reduction in the frequency of non-classical monocytes and vitamin D3 levels, when compared with DFU patients without PAD. The percentage of non-classical monocytes positively correlated with vitamin D3 level (r = 0.4, P < 0.01) and high-density lipoprotein (r = 0.5, P < 0.001), whereas it was negatively correlated with cholesterol (r = -0.5, P < 0.001). Vitamin D3 was negatively correlated with triglyceride/high-density lipoprotein (r = -0.4, P < 0.01). Regression analysis showed that a high vitamin D3 serum level was a protective factor against PAD occurrence. CONCLUSIONS Non-classical monocytes frequency and vitamin D3 levels were significantly reduced in DFU patients with PAD. Non-classical monocytes frequency was associated with vitamin D3 in DFUs patients, and both parameters were linked to lipid profile. Vitamin D3 upregulation was a risk-reducing factor for PAD occurrence.
Collapse
Affiliation(s)
- Reham Hammad
- Clinical Pathology Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Maisa A Abdel Wahab
- Vascular Surgery, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Nehal Farouk
- Vascular Surgery, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | | | - Mona A Eldosoky
- Clinical Pathology Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Asmaa A Elmadbouly
- Clinical Pathology Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Sara A Tahoun
- Clinical Pathology Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Eman Mahmoud
- Endocrinology and Metabolism Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Seham K Khirala
- Medical Microbiology and Immunology, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Amena Rezk Mohammed
- Biochemistry Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Wafaa Abdelaziz Emam
- Biochemistry Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Asmaa A Abo Elqasem
- Immunology, Zoology and Entomology Department, Faculty of Science (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Fatma M Kotb
- Internal Medicine Department, Faculty of Medicine (Girls)Al‐Azhar UniversityCairoEgypt
| | | |
Collapse
|
13
|
da Silva LS, Germano DB, Fonseca FAH, Shio MT, da Silva Nali LH, Tuleta ID, Juliano Y, de Oliveira Izar MC, Ribeiro AP, Kato JT, do Amaral JB, França CN. Persistence of a proinflammatory status after treatment of the acute myocardial infarction. Geriatr Gerontol Int 2023; 23:700-707. [PMID: 37522226 DOI: 10.1111/ggi.14649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
AIM To evaluate the lipid-lowering and antiplatelet combined strategies on the expression of the receptors CCR2, CCR5, and CX3CR1 and the percentage of CCR2, CCR5, and CX3CR1 cells in monocyte subtypes after acute myocardial infarction. METHODS Prospective, randomized, open-label study, with blinded analyses of endpoints (PROBE, ClinicalTrials.gov Identifier: NCT02428374, registration date: April 28, 2015). Participants were treated with rosuvastatin 20 mg or simvastatin 40 mg plus ezetimibe 10 mg, as well as ticagrelor 90 mg or clopidogrel 75 mg. The chemokine receptors CCR2, CCR5, and CX3CR1 were analyzed by real-time polymerase chain reaction as well as the percentages of CCR2, CCR5, and CX3CR1 cells in the monocyte subtypes (classical, intermediate, and non-classical), which were quantified by flow cytometry, at baseline, and after 1 and 6 months of treatment. RESULTS After comparisons between the three visits, regardless of the treatment arm, there was an increase in CCR2 expression after treatment, as well as an increase in intermediate monocytes CCR2+ and a reduction in non-classical monocytes CCR2+ at the end of treatment. There was also a lower expression of CCR5 after treatment and an increase in classical and non-classical monocytes CCR5+. Concerning CX3CR1, there were no differences in the expression after treatment; however, there were reductions in the percentage of intermediate and non-classical monocytes CX3CR1+ at the end of treatment. CONCLUSIONS The results suggest the persistence of the inflammatory phenotype, known as trained immunity, even with the highly-effective lipid-lowering and antiplatelet therapies. Geriatr Gerontol Int 2023; 23: 700-707.
Collapse
Affiliation(s)
| | | | | | - Marina Tiemi Shio
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | | | - Izabela Dorota Tuleta
- Department of Medicine-Cardiology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yára Juliano
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | | | - Ana Paula Ribeiro
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | - Juliana Tieko Kato
- Medicine Department, Cardiology Division, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Jônatas Bussador do Amaral
- ENT Research Laboratory, Otorhinolaryngology-Head and Neck Surgery Department, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Carolina Nunes França
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| |
Collapse
|
14
|
Hsu CC, Fidler TP, Kanter JE, Kothari V, Kramer F, Tang J, Tall AR, Bornfeldt KE. Hematopoietic NLRP3 and AIM2 Inflammasomes Promote Diabetes-Accelerated Atherosclerosis, but Increased Necrosis Is Independent of Pyroptosis. Diabetes 2023; 72:999-1011. [PMID: 37083999 PMCID: PMC10281813 DOI: 10.2337/db22-0962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
Serum apolipoprotein C3 (APOC3) predicts incident cardiovascular events in people with type 1 diabetes, and silencing of APOC3 prevents both lesion initiation and advanced lesion necrotic core expansion in a mouse model of type 1 diabetes. APOC3 acts by slowing the clearance of triglyceride-rich lipoproteins, but lipid-free APOC3 has recently been reported to activate an inflammasome pathway in monocytes. We therefore investigated the contribution of hematopoietic inflammasome pathways to atherosclerosis in mouse models of type 1 diabetes. LDL receptor-deficient diabetes mouse models were transplanted with bone marrow from donors deficient in NOD, LRR and pyrin domain-containing protein 3 (NLRP3), absent in melanoma 2 (AIM2) or gasdermin D (GSDMD), an inflammasome-induced executor of pyroptotic cell death. Mice with diabetes exhibited inflammasome activation and consistently, increased plasma interleukin-1β (IL-1β) and IL-18. Hematopoietic deletions of NLRP3, AIM2, or GSDMD caused smaller atherosclerotic lesions in diabetic mice. The increased lesion necrotic core size in diabetic mice was independent of macrophage pyroptosis because hematopoietic GSDMD deficiency failed to prevent necrotic core expansion in advanced lesions. Our findings demonstrate that AIM2 and NLRP3 inflammasomes contribute to atherogenesis in diabetes and suggest that necrotic core expansion is independent of macrophage pyroptosis. ARTICLE HIGHLIGHTS The contribution of hematopoietic cell inflammasome activation to atherosclerosis associated with type 1 diabetes is unknown. The goal of this study was to address whether hematopoietic NOD, LRR, and pyrin domain-containing protein 3 (NLRP3), absent in melanoma 2 (AIM2) inflammasomes, or the pyroptosis executioner gasdermin D (GSDMD) contributes to atherosclerosis in mouse models of type 1 diabetes. Diabetic mice exhibited increased inflammasome activation, with hematopoietic deletions of NLRP3, AIM2, or GSDMD causing smaller atherosclerotic lesions in diabetic mice, but the increased lesion necrotic core size in diabetic mice was independent of macrophage pyroptosis. Further studies on whether inflammasome activation contributes to cardiovascular complications in people with type 1 diabetes are warranted.
Collapse
Affiliation(s)
- Cheng-Chieh Hsu
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Trevor P. Fidler
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Jenny E. Kanter
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Vishal Kothari
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Farah Kramer
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Jingjing Tang
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Karin E. Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| |
Collapse
|
15
|
den Hartigh LJ, May KS, Zhang XS, Chait A, Blaser MJ. Serum amyloid A and metabolic disease: evidence for a critical role in chronic inflammatory conditions. Front Cardiovasc Med 2023; 10:1197432. [PMID: 37396595 PMCID: PMC10311072 DOI: 10.3389/fcvm.2023.1197432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Serum amyloid A (SAA) subtypes 1-3 are well-described acute phase reactants that are elevated in acute inflammatory conditions such as infection, tissue injury, and trauma, while SAA4 is constitutively expressed. SAA subtypes also have been implicated as playing roles in chronic metabolic diseases including obesity, diabetes, and cardiovascular disease, and possibly in autoimmune diseases such as systemic lupus erythematosis, rheumatoid arthritis, and inflammatory bowel disease. Distinctions between the expression kinetics of SAA in acute inflammatory responses and chronic disease states suggest the potential for differentiating SAA functions. Although circulating SAA levels can rise up to 1,000-fold during an acute inflammatory event, elevations are more modest (∼5-fold) in chronic metabolic conditions. The majority of acute-phase SAA derives from the liver, while in chronic inflammatory conditions SAA also derives from adipose tissue, the intestine, and elsewhere. In this review, roles for SAA subtypes in chronic metabolic disease states are contrasted to current knowledge about acute phase SAA. Investigations show distinct differences between SAA expression and function in human and animal models of metabolic disease, as well as sexual dimorphism of SAA subtype responses.
Collapse
Affiliation(s)
- Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Karolline S. May
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| | - Alan Chait
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
16
|
Spinetti G, Mutoli M, Greco S, Riccio F, Ben-Aicha S, Kenneweg F, Jusic A, de Gonzalo-Calvo D, Nossent AY, Novella S, Kararigas G, Thum T, Emanueli C, Devaux Y, Martelli F. Cardiovascular complications of diabetes: role of non-coding RNAs in the crosstalk between immune and cardiovascular systems. Cardiovasc Diabetol 2023; 22:122. [PMID: 37226245 PMCID: PMC10206598 DOI: 10.1186/s12933-023-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by high levels of blood glucose caused by insulin defect or impairment, is a major risk factor for cardiovascular diseases and related mortality. Patients with diabetes experience a state of chronic or intermittent hyperglycemia resulting in damage to the vasculature, leading to micro- and macro-vascular diseases. These conditions are associated with low-grade chronic inflammation and accelerated atherosclerosis. Several classes of leukocytes have been implicated in diabetic cardiovascular impairment. Although the molecular pathways through which diabetes elicits an inflammatory response have attracted significant attention, how they contribute to altering cardiovascular homeostasis is still incompletely understood. In this respect, non-coding RNAs (ncRNAs) are a still largely under-investigated class of transcripts that may play a fundamental role. This review article gathers the current knowledge on the function of ncRNAs in the crosstalk between immune and cardiovascular cells in the context of diabetic complications, highlighting the influence of biological sex in such mechanisms and exploring the potential role of ncRNAs as biomarkers and targets for treatments. The discussion closes by offering an overview of the ncRNAs involved in the increased cardiovascular risk suffered by patients with diabetes facing Sars-CoV-2 infection.
Collapse
Affiliation(s)
- Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Martina Mutoli
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Federica Riccio
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Soumaya Ben-Aicha
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Franziska Kenneweg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anne Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Susana Novella
- Department of Physiology, University of Valencia - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy.
| |
Collapse
|
17
|
Malekpour K, Hazrati A, Soudi S, Roshangar L, Pourfathollah AA, Ahmadi M. Combinational administration of mesenchymal stem cell-derived exosomes and metformin reduces inflammatory responses in an in vitro model of insulin resistance in HepG2 cells. Heliyon 2023; 9:e15489. [PMID: 37153436 PMCID: PMC10160701 DOI: 10.1016/j.heliyon.2023.e15489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetes is a highly common metabolic disorder in advanced societies. One of the causes of diabetes is insulin resistance, which is associated with a loss of sensitivity to insulin-sensitive cells. Insulin resistance develops in the body of a person prone to diabetes many years before diabetes development. Insulin resistance is associated with complications such as hyperglycemia, hyperlipidemia, and compensatory hyperinsulinemia and causes liver inflammation, which, if left untreated, can lead to cirrhosis, fibrosis, and even liver cancer. Metformin is the first line of treatment for patients with diabetes, which lowers blood sugar and increases insulin sensitivity by inhibiting gluconeogenesis in liver cells. The use of metformin has side effects, including a metallic taste in the mouth, vomiting, nausea, diarrhea, and upset stomach. For this reason, other treatments, along with metformin, are being developed. Considering the anti-inflammatory role of mesenchymal stem cells (MSCs) derived exosomes, their use seems to help improve liver tissue function and prevent damage caused by inflammation. This study investigated the anti-inflammatory effect of Wharton's jelly MSCs derived exosomes in combination with metformin in the HepG2 cells insulin resistance model induced by high glucose. This study showed that MSCs derived exosomes as an anti-inflammatory agent in combination with metformin could increase the therapeutic efficacy of metformin without needing to change metformin doses by decreasing inflammatory cytokines production, including IL-1, IL-6, and TNF-α and apoptosis in HepG2 cells.
Collapse
Affiliation(s)
- Kosar Malekpour
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Pourfathollah
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Corresponding author.
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Corresponding author.
| |
Collapse
|
18
|
Ren Y, Zhang H. Emerging role of exosomes in vascular diseases. Front Cardiovasc Med 2023; 10:1090909. [PMID: 36937921 PMCID: PMC10017462 DOI: 10.3389/fcvm.2023.1090909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/11/2023] [Indexed: 03/06/2023] Open
Abstract
Exosomes are biological small spherical lipid bilayer vesicles secreted by most cells in the body. Their contents include nucleic acids, proteins, and lipids. Exosomes can transfer material molecules between cells and consequently have a variety of biological functions, participating in disease development while exhibiting potential value as biomarkers and therapeutics. Growing evidence suggests that exosomes are vital mediators of vascular remodeling. Endothelial cells (ECs), vascular smooth muscle cells (VSMCs), inflammatory cells, and adventitial fibroblasts (AFs) can communicate through exosomes; such communication is associated with inflammatory responses, cell migration and proliferation, and cell metabolism, leading to changes in vascular function and structure. Essential hypertension (EH), atherosclerosis (AS), and pulmonary arterial hypertension (PAH) are the most common vascular diseases and are associated with significant vascular remodeling. This paper reviews the latest research progress on the involvement of exosomes in vascular remodeling through intercellular information exchange and provides new ideas for understanding related diseases.
Collapse
Affiliation(s)
- Yi Ren
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Honggang Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Allahyani M, Alshalawi AM, Alshalawii MR, Alqorashi SA, Aljuaid A, Almehmadi MM, Bokhary MA, Albrgey AS, Alghamdi AA, Aldairi AF, Alhazmi AS. Phenotypical evaluation of lymphocytes and monocytes in patients with type 2 diabetes mellitus in Saudi Arabia. Saudi Med J 2023; 44:296-305. [PMID: 36940958 PMCID: PMC10043885 DOI: 10.15537/smj.2023.44.3.20220873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/15/2023] [Indexed: 03/22/2023] Open
Abstract
OBJECTIVES To evaluate the levels of total lymphocytes, B-lymphocytes (CD19+), T-lymphocytes (CD3+), natural killer (NK) cells (CD3-/CD56+), and monocyte subsets in type 2 diabetes mellitus (T2DM) patients in Saudi Arabia. In addition, this study aimed to evaluate whether B- and T-lymphocyte subsets are frequently altered in patients with T2DM. METHODS A case-control study included 95 participants recruited in the study: 62 patients with T2DM and 33 healthy individuals. All the patients were admitted to the Diabetic Centre in Taif, Saudi Arabia. Blood samples were collected between April and August 2022. The hemoglobin A1c (HbA1c) level was evaluated in all patients. Flow cytometry was used to measure the expression of B-lymphocyte, T-lymphocyte, NK cells, and monocyte markers. The unpaired t-test was carried out to evaluate the differences in these markers between T2DM patients and healthy individuals. RESULTS Patients with T2DM were associated with a lower percentage of total lymphocytes, higher percentage of B-lymphocytes, naive, and memory B subsets. In addition, patients with T2DM showed lower percentage of total T-lymphocytes (CD3+) and CD4 T-cells, but higher CD8 T-cell expression. Also, the NK-cell level was reduced in patients with T2DM, and the levels of monocyte subsets were altered. CONCLUSION These data suggested that levels of lymphocytes and monocytes are impaired in T2DM patients, and this might be associated with the higher risk of infections observed in these patients.
Collapse
Affiliation(s)
- Mamdouh Allahyani
- From the Department of Clinical Laboratory Sciences (Allahyani, Alshalawi, Alshalawii, Alqorashi, Aljuaid, Almehmadi, Alghamdi, Alhazmi), College of Applied Medical Sciences, Taif University, from the Department of Clinical Chemistry (Bokhar); from the Department of Endocrinology and Diabetic Centre (Albrgey), King Abdulaziz specialist hospital, Ministry of Health, Taif, and from the Department of Laboratory Medicine (Aldairi), Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia.
| | - Amani M. Alshalawi
- From the Department of Clinical Laboratory Sciences (Allahyani, Alshalawi, Alshalawii, Alqorashi, Aljuaid, Almehmadi, Alghamdi, Alhazmi), College of Applied Medical Sciences, Taif University, from the Department of Clinical Chemistry (Bokhar); from the Department of Endocrinology and Diabetic Centre (Albrgey), King Abdulaziz specialist hospital, Ministry of Health, Taif, and from the Department of Laboratory Medicine (Aldairi), Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia.
| | - Maram R. Alshalawii
- From the Department of Clinical Laboratory Sciences (Allahyani, Alshalawi, Alshalawii, Alqorashi, Aljuaid, Almehmadi, Alghamdi, Alhazmi), College of Applied Medical Sciences, Taif University, from the Department of Clinical Chemistry (Bokhar); from the Department of Endocrinology and Diabetic Centre (Albrgey), King Abdulaziz specialist hospital, Ministry of Health, Taif, and from the Department of Laboratory Medicine (Aldairi), Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia.
| | - Shahad A. Alqorashi
- From the Department of Clinical Laboratory Sciences (Allahyani, Alshalawi, Alshalawii, Alqorashi, Aljuaid, Almehmadi, Alghamdi, Alhazmi), College of Applied Medical Sciences, Taif University, from the Department of Clinical Chemistry (Bokhar); from the Department of Endocrinology and Diabetic Centre (Albrgey), King Abdulaziz specialist hospital, Ministry of Health, Taif, and from the Department of Laboratory Medicine (Aldairi), Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia.
| | - Abdulelah Aljuaid
- From the Department of Clinical Laboratory Sciences (Allahyani, Alshalawi, Alshalawii, Alqorashi, Aljuaid, Almehmadi, Alghamdi, Alhazmi), College of Applied Medical Sciences, Taif University, from the Department of Clinical Chemistry (Bokhar); from the Department of Endocrinology and Diabetic Centre (Albrgey), King Abdulaziz specialist hospital, Ministry of Health, Taif, and from the Department of Laboratory Medicine (Aldairi), Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia.
| | - Mazen M. Almehmadi
- From the Department of Clinical Laboratory Sciences (Allahyani, Alshalawi, Alshalawii, Alqorashi, Aljuaid, Almehmadi, Alghamdi, Alhazmi), College of Applied Medical Sciences, Taif University, from the Department of Clinical Chemistry (Bokhar); from the Department of Endocrinology and Diabetic Centre (Albrgey), King Abdulaziz specialist hospital, Ministry of Health, Taif, and from the Department of Laboratory Medicine (Aldairi), Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia.
| | - Mohammed A. Bokhary
- From the Department of Clinical Laboratory Sciences (Allahyani, Alshalawi, Alshalawii, Alqorashi, Aljuaid, Almehmadi, Alghamdi, Alhazmi), College of Applied Medical Sciences, Taif University, from the Department of Clinical Chemistry (Bokhar); from the Department of Endocrinology and Diabetic Centre (Albrgey), King Abdulaziz specialist hospital, Ministry of Health, Taif, and from the Department of Laboratory Medicine (Aldairi), Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia.
| | - Alhanouf S. Albrgey
- From the Department of Clinical Laboratory Sciences (Allahyani, Alshalawi, Alshalawii, Alqorashi, Aljuaid, Almehmadi, Alghamdi, Alhazmi), College of Applied Medical Sciences, Taif University, from the Department of Clinical Chemistry (Bokhar); from the Department of Endocrinology and Diabetic Centre (Albrgey), King Abdulaziz specialist hospital, Ministry of Health, Taif, and from the Department of Laboratory Medicine (Aldairi), Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia.
| | - Ahmad A. Alghamdi
- From the Department of Clinical Laboratory Sciences (Allahyani, Alshalawi, Alshalawii, Alqorashi, Aljuaid, Almehmadi, Alghamdi, Alhazmi), College of Applied Medical Sciences, Taif University, from the Department of Clinical Chemistry (Bokhar); from the Department of Endocrinology and Diabetic Centre (Albrgey), King Abdulaziz specialist hospital, Ministry of Health, Taif, and from the Department of Laboratory Medicine (Aldairi), Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia.
| | - Abdullah F. Aldairi
- From the Department of Clinical Laboratory Sciences (Allahyani, Alshalawi, Alshalawii, Alqorashi, Aljuaid, Almehmadi, Alghamdi, Alhazmi), College of Applied Medical Sciences, Taif University, from the Department of Clinical Chemistry (Bokhar); from the Department of Endocrinology and Diabetic Centre (Albrgey), King Abdulaziz specialist hospital, Ministry of Health, Taif, and from the Department of Laboratory Medicine (Aldairi), Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia.
| | - Ayman S. Alhazmi
- From the Department of Clinical Laboratory Sciences (Allahyani, Alshalawi, Alshalawii, Alqorashi, Aljuaid, Almehmadi, Alghamdi, Alhazmi), College of Applied Medical Sciences, Taif University, from the Department of Clinical Chemistry (Bokhar); from the Department of Endocrinology and Diabetic Centre (Albrgey), King Abdulaziz specialist hospital, Ministry of Health, Taif, and from the Department of Laboratory Medicine (Aldairi), Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia.
| |
Collapse
|
20
|
Valdivia AO, He Y, Ren X, Wen D, Dong L, Nazari H, Li X. Probable Treatment Targets for Diabetic Retinopathy Based on an Integrated Proteomic and Genomic Analysis. Transl Vis Sci Technol 2023; 12:8. [PMID: 36745438 PMCID: PMC9910385 DOI: 10.1167/tvst.12.2.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose Using previously approved medications for new indications can expedite the lengthy and expensive drug development process. We describe a bioinformatics pipeline that integrates genomics and proteomics platforms to identify already-approved drugs that might be useful to treat diabetic retinopathy (DR). Methods Proteomics analysis of vitreous humor samples from 12 patients undergoing pars plana vitrectomy for DR and a whole genome dataset (UKBiobank TOPMed-imputed) from 1330 individuals with DR and 395,155 controls were analyzed independently to identify biological pathways associated with DR. Common biological pathways shared between both datasets were further analyzed (STRING and REACTOME analyses) to identify target proteins for probable drug modulation. Curated target proteins were subsequently analyzed by the BindingDB database to identify chemical compounds they interact with. Identified chemical compounds were further curated through the Expasy SwissSimilarity database for already-approved drugs that interact with target proteins. Results The pathways in each dataset (proteomics and genomics) converged in the upregulation of a previously unknown pathway involved in DR (RUNX2 signaling; constituents MMP-13 and LGALS3), with an emphasis on its role in angiogenesis and blood-retina barrier. Bioinformatics analysis identified U.S. Food and Drug Administration (FDA)-approved medications (raltitrexed, pemetrexed, glyburide, probenecid, clindamycin hydrochloride, and ticagrelor) that, in theory, may modulate this pathway. Conclusions The bioinformatics pipeline described here identifies FDA-approved drugs that can be used for new alternative indications. These theoretical candidate drugs should be validated with experimental studies. Translational Relevance Our study suggests possible drugs for DR treatment based on an integrated proteomics and genomics pipeline. This approach can potentially expedite the drug discovery process by identifying already-approved drugs that might be used for new indications.
Collapse
Affiliation(s)
- Anddre Osmar Valdivia
- Department of Ophthalmology and Visual Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ye He
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xinjun Ren
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Dejia Wen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hossein Nazari
- Department of Ophthalmology and Visual Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
21
|
de Gaetano M. Development of synthetic lipoxin-A4 mimetics (sLXms): New avenues in the treatment of cardio-metabolic diseases. Semin Immunol 2023; 65:101699. [PMID: 36428172 DOI: 10.1016/j.smim.2022.101699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Resolution of inflammation is a complex, dynamic process consisting of several distinct processes, including inhibition of endothelial activation and leukocyte trafficking; promotion of inflammatory cell apoptosis and subsequent non-phlogistic scavenging and degradation; augmentation of pathogen phagocytosis; modulation of stromal cell phenotype coupled to the promotion of tissue regeneration and repair. Among these tightly regulated processes, the clearance and degradation of apoptotic cells without eliciting an inflammatory response is a crucial allostatic mechanism vital to developmental processes, host defence, and the effective resolution of inflammation. These efferocytic and subsequent effero-metabolism processes can be carried out by professional and non-professional phagocytes. Defective removal or inadequate processing of apoptotic cells leads to persistent unresolved inflammation, which may promote insidious pathologies including scarring, fibrosis, and eventual organ failure. In this manuscript, the well-established role of endothelial activation and leukocyte extravasation, as classical vascular targets of the 'inflammation pharmacology', will be briefly reviewed. The main focus of this work is to bring attention to a less explored aspect of the 'resolution pharmacology', aimed at tackling defective efferocytosis and inefficient effero-metabolism, as key targeted mechanisms to prevent or pre-empt vascular complications in cardio-metabolic diseases. Despite the use of gold standard lipid-lowering drugs or glucose-lowering drugs, none of them are able to tackle the so called residual inflammatory risk and/or the metabolic memory. In this review, the development of synthetic mimetics of endogenous mediators of inflammation is highlighted. Such molecules finely tune key components across the whole inflammatory process, amongst various other novel therapeutic paradigms that have emerged over the past decade, including anti-inflammatory therapy. More specifically, FPR2-agonists in general, and Lipoxin analogues in particular, greatly enhance the reprogramming and cross-talk between classical and non-classical innate immune cells, thus inducing both termination of the pro-inflammatory state as well as promoting the subsequent resolving phase, which represent pivotal mechanisms in inflammatory cardio-metabolic diseases.
Collapse
Affiliation(s)
- Monica de Gaetano
- Diabetes Complications Research Centre, Conway Institute & School of Biomolecular & Biomedical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
22
|
Baraniecki Ł, Tokarz-Deptuła B, Syrenicz A, Deptuła W. Macrophage efferocytosis in atherosclerosis. Scand J Immunol 2022; 97:e13251. [PMID: 36583598 DOI: 10.1111/sji.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/17/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
This paper presents the role of macrophage efferocytosis, the process of elimination of apoptotic bodies-elements formed during vascular atherosclerosis. The mechanisms of macrophage efferocytosis are presented, introducing the specific signals of this process, that is, 'find me', 'eat me' and 'don't eat me'. The role of the process of efferocytosis in the formation of vascular atherosclerosis is also presented, including the factors and mechanisms that determine it, as well as the factors that determine the maintenance of homeostasis in the vessels, including the formation of vascular atherosclerosis.
Collapse
Affiliation(s)
| | | | - Anhelli Syrenicz
- Department of Endocrinology, Metabolic Diseases and Internal Diseases, Pomeranian Medical University, Szczecin, Poland
| | - Wiesław Deptuła
- Faculty of Biological and Veterinary Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
23
|
Li M, Zhao Y, Zhang B, Wang X, Zhao T, Zhao T, Ren W. Hyperglycemia remission after Roux-en-Y gastric bypass: Implicated to altered monocyte inflammatory response in type 2 diabetes rats. Peptides 2022; 158:170895. [PMID: 36240981 DOI: 10.1016/j.peptides.2022.170895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/20/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022]
Abstract
Hyperglycemia remission by metabolic surgery is implicated in the resolution of low-grade inflammation in type 2 diabetes mellitus (T2DM). However, whether this beneficial effect of metabolic surgery is related to improving monocyte inflammatory response remains undefined. This investigation is addressed to evaluate this relationship. For this purpose, T2DM rats were subjected to Roux-en-Y gastric bypass (RYGB) and/or monocyte depletion or splenic sympathetic denervation. Fasting blood glucose (FBG), plasma tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) were measured, and monocyte inflammatory response was assessed in vitro. The data showed that RYGB significantly reduced lipopolysaccharide (LPS)-induced release of TNF-α and IL-1β from peripheral monocytes while alleviating hyperglycemia and reducing plasma TNF-α and IL-1β levels. Hyperglycemia resulting from monocyte depletion by injection of clodronate liposomes resolved one week earlier than vehicle control after RYGB. Splenic denervation abrogated the glucose-lowering effect and decreased LPS-stimulated TNF-α and IL-1β release from monocytes following RYGB. Overall, our results reveal that a marked reduction of monocyte inflammatory response after RYGB contributes to hyperglycemia remission in T2DM rats. The beneficial effect of RYGB is mediated through vagal-spleen axis anti-inflammatory activity.
Collapse
Affiliation(s)
- Mingxia Li
- Department of Endocrinology, The First Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Yifeng Zhao
- Department of Gastrointestinal Tumor Surgery, The First Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Bingjie Zhang
- Internal Medicine of Traditional Chinese Medicine, The First Hospital of Zhangjiakou, Zhangjiakou 075000, China
| | - Xiaofang Wang
- Department of Endocrinology, The First Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Ting Zhao
- Department of Endocrinology, The First Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Tiejun Zhao
- College of Medical Biochemistry, Hebei North University, Zhangjiakou 075000, China
| | - Weidong Ren
- Department of Endocrinology, The First Hospital of Hebei North University, Zhangjiakou 075000, China.
| |
Collapse
|
24
|
Monocyte-Lymphocyte Ratio and Dysglycemia: A Retrospective, Cross-Sectional Study of the Saudi Population. Healthcare (Basel) 2022; 10:healthcare10112289. [PMID: 36421613 PMCID: PMC9690849 DOI: 10.3390/healthcare10112289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Abnormalities in fasting blood glucose (FBG) resulting in hypoglycemia (OG), impaired fasting glycemia (IFG), or hyperglycemia (HG) arise from disordered metabolic regulation caused in part by inflammation. To date, there is a dearth of evidence regarding the clinical utility of the monocyte−lymphocyte ratio (MLR), an emerging inflammatory index, in the management of dysglycemia. Methods: This retrospective, cross-sectional study explored MLR fluctuations as a function of glycemic control in 14,173 Saudi subjects. Data collected from 11 August 2014 to 18 July 2020 were retrieved from Al-Borg Medical Laboratories. Medians were compared by Mann−Whitney U or Kruskal−Wallis tests and the prevalence, relative risk (RR), and odds ratio (OR) were calculated. Results: MLR was significantly elevated in IFG (p < 0.0001) and HG (p < 0.05) groups compared to the normoglycemia (NG) group, and individuals with elevated MLR (>0.191) had significantly increased FBG (p < 0.001). The risk of IFG (RR = 1.12, 95% CI: 1.06−1.19, p < 0.0002) and HG (RR = 1.10, 95% CI: 1.01−1.20, p < 0.0216) was significantly increased if MLR was elevated, and individuals with elevated MLR were 1.17 times more likely to have IFG (OR = 1.17, 95% CI: 1.08−1.26, p < 0.0002) and 1.13 times more likely to have HG (OR = 1.13, 95% CI: 1.02−1.24, p < 0.0216). Conclusion: Elevated MLR is correlated with and carries a greater risk for IFG and HG. However, large prospective cohort studies are needed to establish the temporal relationship between MLR and FBG and to examine the prognostic value of this novel marker.
Collapse
|
25
|
Girard D, Vandiedonck C. How dysregulation of the immune system promotes diabetes mellitus and cardiovascular risk complications. Front Cardiovasc Med 2022; 9:991716. [PMID: 36247456 PMCID: PMC9556991 DOI: 10.3389/fcvm.2022.991716] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistent hyperglycemia due to insulin resistance or failure to produce insulin. Patients with DM develop microvascular complications that include chronic kidney disease and retinopathy, and macrovascular complications that mainly consist in an accelerated and more severe atherosclerosis compared to the general population, increasing the risk of cardiovascular (CV) events, such as stroke or myocardial infarction by 2- to 4-fold. DM is commonly associated with a low-grade chronic inflammation that is a known causal factor in its development and its complications. Moreover, it is now well-established that inflammation and immune cells play a major role in both atherosclerosis genesis and progression, as well as in CV event occurrence. In this review, after a brief presentation of DM physiopathology and its macrovascular complications, we will describe the immune system dysregulation present in patients with type 1 or type 2 diabetes and discuss its role in DM cardiovascular complications development. More specifically, we will review the metabolic changes and aberrant activation that occur in the immune cells driving the chronic inflammation through cytokine and chemokine secretion, thus promoting atherosclerosis onset and progression in a DM context. Finally, we will discuss how genetics and recent systemic approaches bring new insights into the mechanisms behind these inflammatory dysregulations and pave the way toward precision medicine.
Collapse
Affiliation(s)
- Diane Girard
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, IMMEDIAB Laboratory, Paris, France
- Université Paris Cité, Institut Hors-Mur du Diabète, Faculté de Santé, Paris, France
| | - Claire Vandiedonck
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, IMMEDIAB Laboratory, Paris, France
- Université Paris Cité, Institut Hors-Mur du Diabète, Faculté de Santé, Paris, France
| |
Collapse
|
26
|
Abdelrahman AA, Bunch KL, Sandow PV, Cheng PNM, Caldwell RB, Caldwell RW. Systemic Administration of Pegylated Arginase-1 Attenuates the Progression of Diabetic Retinopathy. Cells 2022; 11:cells11182890. [PMID: 36139465 PMCID: PMC9497170 DOI: 10.3390/cells11182890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes that results from sustained hyperglycemia, hyperlipidemia, and oxidative stress. Under these conditions, inducible nitric oxide synthase (iNOS) expression is upregulated in the macrophages (MΦ) and microglia, resulting in increased production of reactive oxygen species (ROS) and inflammatory cytokines, which contribute to disease progression. Arginase 1 (Arg1) is a ureohydrolase that competes with iNOS for their common substrate, L-arginine. We hypothesized that the administration of a stable form of Arg1 would deplete L-arginine’s availability for iNOS, thus decreasing inflammation and oxidative stress in the retina. Using an obese Type 2 diabetic (T2DM) db/db mouse, this study characterized DR in this model and determined if systemic treatment with pegylated Arg1 (PEG-Arg1) altered the progression of DR. PEG-Arg1 treatment of db/db mice thrice weekly for two weeks improved visual function compared with untreated db/db controls. Retinal expression of inflammatory factors (iNOS, IL-1β, TNF-α, IL-6) was significantly increased in the untreated db/db mice compared with the lean littermate controls. The increased retinal inflammatory and oxidative stress markers in db/db mice were suppressed with PEG-Arg1 treatment. Additionally, PEG-Arg1 treatment restored the blood–retinal barrier (BRB) function, as evidenced by the decreased tissue albumin extravasation and an improved endothelial ZO-1 tight junction integrity compared with untreated db/db mice.
Collapse
Affiliation(s)
- Ammar A. Abdelrahman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Katharine L. Bunch
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Porsche V. Sandow
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Paul N-M Cheng
- Bio-Cancer Treatment International, Bioinformatics Building, Hong Kong Science Park, Tai Po, Hong Kong SAR 511513, China
| | - Ruth B. Caldwell
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - R. William Caldwell
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-2345
| |
Collapse
|
27
|
Orphan GPR26 Counteracts Early Phases of Hyperglycemia-Mediated Monocyte Activation and Is Suppressed in Diabetic Patients. Biomedicines 2022; 10:biomedicines10071736. [PMID: 35885041 PMCID: PMC9312814 DOI: 10.3390/biomedicines10071736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetes is the ninth leading cause of death, with an estimated 1.5 million deaths worldwide. Type 2 diabetes (T2D) results from the body’s ineffective use of insulin and is largely the result of excess body weight and physical inactivity. T2D increases the risk of cardiovascular diseases, retinopathy, and kidney failure by two-to three-fold. Hyperglycemia, as a hallmark of diabetes, acts as a potent stimulator of inflammatory condition by activating endothelial cells and by dysregulating monocyte activation. G-protein couple receptors (GPCRs) can both exacerbate and promote inflammatory resolution. Genome-wide association studies (GWAS) indicate that GPCRs are differentially regulated in inflammatory and vessel cells from diabetic patients. However, most of these GPCRs are orphan receptors, for which the mechanism of action in diabetes is unknown. Our data indicated that orphan GPCR26 is downregulated in the PBMC isolated from T2D patients. In contrast, GPR26 was initially upregulated in human monocytes and PBMC treated with high glucose (HG) levels and then decreased upon chronic and prolonged HG exposure. GPR26 levels were decreased in T2D patients treated with insulin compared to non-insulin treated patients. Moreover, GPR26 inversely correlated with the BMI and the HbA1c of diabetic compared to non-diabetic patients. Knockdown of GPR26 enhanced monocyte ROS production, MAPK signaling, pro-inflammatory activation, monocyte adhesion to ECs, and enhanced the activity of Caspase 3, a pro-apoptotic molecule. The same mechanisms were activated by HG and exacerbated when GPR26 was knocked down. Hence, our data indicated that GPR26 is initially activated to protect monocytes from HG and is inhibited under chronic hyperglycemic conditions.
Collapse
|
28
|
Hofherr A, Williams J, Gan LM, Söderberg M, Hansen PBL, Woollard KJ. Targeting inflammation for the treatment of Diabetic Kidney Disease: a five-compartment mechanistic model. BMC Nephrol 2022; 23:208. [PMID: 35698028 PMCID: PMC9190142 DOI: 10.1186/s12882-022-02794-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/20/2022] [Indexed: 12/25/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of kidney failure worldwide. Mortality and morbidity associated with DKD are increasing with the global prevalence of type 2 diabetes. Chronic, sub-clinical, non-resolving inflammation contributes to the pathophysiology of renal and cardiovascular disease associated with diabetes. Inflammatory biomarkers correlate with poor renal outcomes and mortality in patients with DKD. Targeting chronic inflammation may therefore offer a route to novel therapeutics for DKD. However, the DKD patient population is highly heterogeneous, with varying etiology, presentation and disease progression. This heterogeneity is a challenge for clinical trials of novel anti-inflammatory therapies. Here, we present a conceptual model of how chronic inflammation affects kidney function in five compartments: immune cell recruitment and activation; filtration; resorption and secretion; extracellular matrix regulation; and perfusion. We believe that the rigorous alignment of pathophysiological insights, appropriate animal models and pathology-specific biomarkers may facilitate a mechanism-based shift from recruiting ‘all comers’ with DKD to stratification of patients based on the principal compartments of inflammatory disease activity.
Collapse
Affiliation(s)
- Alexis Hofherr
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden. .,Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Julie Williams
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolic, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, UK
| | - Li-Ming Gan
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden.,Department of Molecular and Clinical Medicine, Department of Cardiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Magnus Söderberg
- Cardiovascular, Renal and Metabolic Safety, Clinical Pharmacology and Safety Sciences, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Pernille B L Hansen
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolic, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, UK.,Wallenberg Center for Molecular and Translational Medicine, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kevin J Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolic, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, UK. .,Centre for Inflammatory Disease, Imperial College London, London, UK.
| |
Collapse
|
29
|
Aldarondo D, Wayne E. Monocytes as a convergent nanoparticle therapeutic target for cardiovascular diseases. Adv Drug Deliv Rev 2022; 182:114116. [PMID: 35085623 PMCID: PMC9359644 DOI: 10.1016/j.addr.2022.114116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Due to the increasing population of individuals with cardiovascular diseases and related comorbidities, there is an increasing need for development of synergistic therapeutics. Monocytes are implicated in a broad spectrum of diseases and can serve as a focal point for therapeutic targeting. This review discusses the role of monocytes in cardiovascular diseases and highlights trends in monocyte targets nanoparticles in three cardiovascular-related diseases: Diabetes, Atherosclerosis, and HIV. Finally, the review offers perspectives on how to develop nanoparticle monocyte targeting strategies that can be beneficial for treating co-morbidities.
Collapse
Affiliation(s)
- Dasia Aldarondo
- Department of Chemical Engineering and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Elizabeth Wayne
- Department of Chemical Engineering and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
30
|
Mokgalaboni K, Ntamo Y, Ziqubu K, Nyambuya TM, Nkambule BB, Mazibuko-Mbeje SE, Gabuza KB, Chellan N, Tiano L, Dludla PV. Curcumin supplementation improves biomarkers of oxidative stress and inflammation in conditions of obesity, type 2 diabetes and NAFLD: updating the status of clinical evidence. Food Funct 2021; 12:12235-12249. [PMID: 34847213 DOI: 10.1039/d1fo02696h] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidative stress and inflammation remain the major complications implicated in the development and progression of metabolic complications, including obesity, type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). In fact, due to their abundant antioxidant and anti-inflammatory properties, there is a general interest in understanding the therapeutic effects of some major food-derived bioactive compounds like curcumin against diverse metabolic diseases. Hence, a systematic search, through prominent online databases such as MEDLINE, Scopus, and Google Scholar was done focusing on randomized controlled trials (RCTs) reporting on the impact of curcumin supplementation in individuals with diverse metabolic complications, including obesity, T2D and NAFLD. Summarized findings suggest that curcumin supplementation can significantly reduce blood glucose and triglycerides levels, including markers of liver function like alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in patients with T2D and NAFLD. Importantly, this effect was consistent with the reduction of predominant markers of oxidative stress and inflammation, such as the levels of malonaldehyde (MDA), tumor necrosis factor-alpha (TNF-α), high sensitivity C-reactive protein (hs-CRP) and monocyte chemoattractant protein-1 (MCP-1) in these patients. Although RCTs suggest that curcumin is beneficial in ameliorating some metabolic complications, future research is still necessary to enhance its absorption and bioavailability profile, while also optimizing the most effective therapeutic doses.
Collapse
Affiliation(s)
- Kabelo Mokgalaboni
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Yonela Ntamo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Tawanda M Nyambuya
- Department of Health Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | | | - Kwazikwakhe B Gabuza
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Nireshni Chellan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa. .,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| |
Collapse
|
31
|
Loaeza-Reyes KJ, Zenteno E, Moreno-Rodríguez A, Torres-Rosas R, Argueta-Figueroa L, Salinas-Marín R, Castillo-Real LM, Pina-Canseco S, Cervera YP. An Overview of Glycosylation and its Impact on Cardiovascular Health and Disease. Front Mol Biosci 2021; 8:751637. [PMID: 34869586 PMCID: PMC8635159 DOI: 10.3389/fmolb.2021.751637] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
The cardiovascular system is a complex and well-organized system in which glycosylation plays a vital role. The heart and vascular wall cells are constituted by an array of specific receptors; most of them are N- glycosylated and mucin-type O-glycosylated. There are also intracellular signaling pathways regulated by different post-translational modifications, including O-GlcNAcylation, which promote adequate responses to extracellular stimuli and signaling transduction. Herein, we provide an overview of N-glycosylation and O-glycosylation, including O-GlcNAcylation, and their role at different levels such as reception of signal, signal transduction, and exogenous molecules or agonists, which stimulate the heart and vascular wall cells with effects in different conditions, like the physiological status, ischemia/reperfusion, exercise, or during low-grade inflammation in diabetes and aging. Furthermore, mutations of glycosyltransferases and receptors are associated with development of cardiovascular diseases. The knowledge on glycosylation and its effects could be considered biochemical markers and might be useful as a therapeutic tool to control cardiovascular diseases.
Collapse
Affiliation(s)
- Karen Julissa Loaeza-Reyes
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Rafael Torres-Rosas
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Liliana Argueta-Figueroa
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Conacyt - Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Roberta Salinas-Marín
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Lizet Monserrat Castillo-Real
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Socorro Pina-Canseco
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Yobana Pérez Cervera
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| |
Collapse
|
32
|
Lu YJ, Wheeler LW, Chu H, Kleindl PJ, Pugh M, You F, Rao S, Garcia G, Wu HY, da Cunha AP, Johnson R, Westrick E, Cross V, Lloyd A, Dircksen C, Klein PJ, Vlahov IR, Low PS, Leamon CP. Targeting folate receptor beta on monocytes/macrophages renders rapid inflammation resolution independent of root causes. CELL REPORTS MEDICINE 2021; 2:100422. [PMID: 34755134 PMCID: PMC8561236 DOI: 10.1016/j.xcrm.2021.100422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 05/18/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022]
Abstract
Provoked by sterile/nonsterile insults, prolonged monocyte mobilization and uncontrolled monocyte/macrophage activation can pose imminent or impending harm to the affected organs. Curiously, folate receptor beta (FRβ), with subnanomolar affinity for the vitamin folic acid (FA), is upregulated during immune activation in hematopoietic cells of the myeloid lineage. This phenomenon has inspired a strong interest in exploring FRβ-directed diagnostics/therapeutics. Previously, we have reported that FA-targeted aminopterin (AMT) therapy can modulate macrophage function and effectively treat animal models of inflammation. Our current investigation of a lead compound (EC2319) leads to discovery of a highly FR-specific mechanism of action independent of the root causes against inflammatory monocytes. We further show that EC2319 suppresses interleukin-6/interleukin-1β release by FRβ+ monocytes in a triple co-culture leukemic model of cytokine release syndrome with anti-CD19 chimeric antigen receptor T cells. Because of its chemical stability and metabolically activated linker, EC2319 demonstrates favorable pharmacokinetic characteristics and cross-species translatability to support future pre-clinical and clinical development. Functional folate receptor beta is transiently expressed on inflammatory monocytes EC2319 is an enhancement of traditional dihydrofolate reductase inhibitors EC2319 anti-monocyte activity correlates with local/systemic therapeutic benefit EC2319 inhibition of cytokine release suggests emergency use for hyperinflammation
Collapse
Affiliation(s)
- Yingjuan J Lu
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Leroy W Wheeler
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Haiyan Chu
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Paul J Kleindl
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Michael Pugh
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Fei You
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Satish Rao
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Gabriela Garcia
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Henry Y Wu
- Department of Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Andre P da Cunha
- Department of Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Richard Johnson
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Elaine Westrick
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Vicky Cross
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Alex Lloyd
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | | | - Patrick J Klein
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Iontcho R Vlahov
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Philip S Low
- Department of Chemistry, Purdue Institute for Drug Discovery, and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
33
|
Eliezer M, Sculean A, Miron RJ, Nemcovsky C, Bosshardt DD, Fujioka-Kobayashi M, Weinreb M, Moses O. Cross-linked hyaluronic acid slows down collagen membrane resorption in diabetic rats through reducing the number of macrophages. Clin Oral Investig 2021; 26:2401-2411. [PMID: 34608575 DOI: 10.1007/s00784-021-04206-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/26/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVES We previously showed that accelerated degradation of collagen membranes (CMs) in diabetic rats is associated with increased infiltration of macrophages and blood vessels. Since pre-implantation immersion of CMs in cross-linked high molecular weight hyaluronic acid (CLHA) delays membrane degradation, we evaluated here its effect on the number of macrophages and endothelial cells (ECs) within the CM as a possible mechanism for inhibition of CM resorption. MATERIALS AND METHODS Diabetes was induced with streptozotocin in 16 rats, while 16 healthy rats served as control. CM discs were labeled with biotin, soaked in CLHA or PBS, and implanted under the scalp. Fourteen days later, CMs were embedded in paraffin and the number of macrophages and ECs within the CMs was determined using antibodies against CD68 and transglutaminase II, respectively. RESULTS Diabetes increased the number of macrophages and ECs within the CMs (∼2.5-fold and fourfold, respectively). Immersion of CMs in CLHA statistically significantly reduced the number of macrophages (p < 0.0001) in diabetic rats, but not that of ECs. In the healthy group, CLHA had no significant effect on the number of either cells. Higher residual collagen area and membrane thickness in CLHA-treated CMs in diabetic animals were significantly correlated with reduced number of macrophages but not ECs. CONCLUSIONS Immersion of CM in CLHA inhibits macrophage infiltration and reduces CM degradation in diabetic animals. CLINICAL RELEVANCE The combination of CLHA and CM may represent a valuable approach when guided tissue regeneration or guided bone regeneration procedures are performed in diabetic patients.
Collapse
Affiliation(s)
- Meizi Eliezer
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Richard J Miron
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Carlos Nemcovsky
- Department of Periodontology and Dental Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dieter D Bosshardt
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Miron Weinreb
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Moses
- Department of Periodontology and Dental Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
34
|
Weng R, Liu S, Gu X, Zhong Z. Clonal diversity of the B cell receptor repertoire in patients with coronary in-stent restenosis and type 2 diabetes. Open Life Sci 2021; 16:884-898. [PMID: 34522782 PMCID: PMC8402935 DOI: 10.1515/biol-2021-0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/23/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is known as a risk factor for coronary in-stent restenosis (ISR) in patients with coronary artery disease (CAD). Evidence suggests that B cells play a functional role in the progression of atherosclerotic lesions. However, the B cell receptor (BCR) repertoire in patients with ISR remains unclear. This study aims to profile the BCR repertoire in patients with coronary ISR/T2DM. A total of 21 CAD patients with or without ISR/T2DM were enrolled. PBMCs were isolated and examined for BCR repertoire profiles using DNA-seq. Our results showed that the diversity of amino acid sequences in ISR DM patients was higher than that in ISR -DM patients. The frequencies of 21 V/J paired genes differed between ISR DM and -ISR DM patients, while frequencies of 5 V/J paired genes differed between ISR DM and ISR -DM. The -ISR -DM group presented the highest clonotype overlap rate, while ISR DM patients presented the lowest overlap rate. Our study presented the BCR repertoires in patients with ISR/T2DM. The data suggested different BCR signatures between patients with ISR and T2DM. Further analysis of BCR profiles would enhance understanding of ISR.
Collapse
Affiliation(s)
- Ruiqiang Weng
- Research Experimental Center, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-Sen University, Meizhou 514031, People’s Republic of China
- Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou 514031, People’s Republic of China
- Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, People’s Republic of China
| | - Sudong Liu
- Research Experimental Center, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-Sen University, Meizhou 514031, People’s Republic of China
- Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou 514031, People’s Republic of China
- Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, People’s Republic of China
| | - Xiaodong Gu
- Research Experimental Center, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-Sen University, Meizhou 514031, People’s Republic of China
- Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou 514031, People’s Republic of China
- Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, People’s Republic of China
| | - Zhixiong Zhong
- Guangdong Provincial Engineering and Technological Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou 514031, People’s Republic of China
- Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, People’s Republic of China
- Center for Cardiovascular Diseases, Meizhou People’s Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, People’s Republic of China
| |
Collapse
|
35
|
Ginsberg HN, Packard CJ, Chapman MJ, Borén J, Aguilar-Salinas CA, Averna M, Ference BA, Gaudet D, Hegele RA, Kersten S, Lewis GF, Lichtenstein AH, Moulin P, Nordestgaard BG, Remaley AT, Staels B, Stroes ESG, Taskinen MR, Tokgözoğlu LS, Tybjaerg-Hansen A, Stock JK, Catapano AL. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J 2021; 42:4791-4806. [PMID: 34472586 PMCID: PMC8670783 DOI: 10.1093/eurheartj/ehab551] [Citation(s) in RCA: 378] [Impact Index Per Article: 94.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/21/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Recent advances in human genetics, together with a large body of epidemiologic, preclinical, and clinical trial results, provide strong support for a causal association between triglycerides (TG), TG-rich lipoproteins (TRL), and TRL remnants, and increased risk of myocardial infarction, ischaemic stroke, and aortic valve stenosis. These data also indicate that TRL and their remnants may contribute significantly to residual cardiovascular risk in patients on optimized low-density lipoprotein (LDL)-lowering therapy. This statement critically appraises current understanding of the structure, function, and metabolism of TRL, and their pathophysiological role in atherosclerotic cardiovascular disease (ASCVD). Key points are (i) a working definition of normo- and hypertriglyceridaemic states and their relation to risk of ASCVD, (ii) a conceptual framework for the generation of remnants due to dysregulation of TRL production, lipolysis, and remodelling, as well as clearance of remnant lipoproteins from the circulation, (iii) the pleiotropic proatherogenic actions of TRL and remnants at the arterial wall, (iv) challenges in defining, quantitating, and assessing the atherogenic properties of remnant particles, and (v) exploration of the relative atherogenicity of TRL and remnants compared to LDL. Assessment of these issues provides a foundation for evaluating approaches to effectively reduce levels of TRL and remnants by targeting either production, lipolysis, or hepatic clearance, or a combination of these mechanisms. This consensus statement updates current understanding in an integrated manner, thereby providing a platform for new therapeutic paradigms targeting TRL and their remnants, with the aim of reducing the risk of ASCVD.
Collapse
Affiliation(s)
- Henry N Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, PH-10-305, New York, NY 10032, USA
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - M John Chapman
- Sorbonne University Endocrinology-Metabolism Division, Pitié-Salpetriere University Hospital, and National Institute for Health and Medical Research (INSERM), 47 Hôpital boulevard, Paris 75013, France
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Blå Stråket 5, Gothenburg 413 45, Sweden
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación en Enfermedades Metabólicas and Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto, Monterrey, Nuevo León 3000, Mexico
| | - Maurizio Averna
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities, University of Palermo, Marina Square, 61, Palermo 90133, Italy
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK
| | - Daniel Gaudet
- Clinical Lipidology and Rare Lipid Disorders Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal, ECOGENE, Clinical and Translational Research Center, and Lipid Clinic, Chicoutimi Hospital, 305 Rue St Vallier, Chicoutimi, Québec G7H 5H6, Canada
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Sander Kersten
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Gary F Lewis
- Division of Endocrinology, Department of Medicine, Banting & Best Diabetes Centre, University of Toronto, Eaton Building, Room 12E248, 200 Elizabeth St, Toronto, Ontario M5G 2C4, Canada
| | - Alice H Lichtenstein
- Cardiovascular Nutrition, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St Ste 9, Boston, MA 02111, USA
| | - Philippe Moulin
- Department of Endocrinology, GHE, Hospices Civils de Lyon, CarMeN Laboratory, Inserm UMR 1060, CENS-ELI B, Univ-Lyon1, Lyon 69003, France
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev Ringvej 75, Herlev 2730, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 31 Center Dr Ste 10-7C114, Bethesda, MD 20892, USA
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Erik S G Stroes
- Department of Vascular Medicine, Academic Medical Center, 1541 Kings Hwy, Amsterdam 71103, The Netherlands
| | - Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Lale S Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, 06100 Sıhhiye, Ankara, Turkey
| | - Anne Tybjaerg-Hansen
- Department of Clinical Biochemistry, Blegdamsvej 9, Rigshospitalet, Copenhagen 2100, Denmark.,Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark.,Copenhagen City Heart Study, Frederiksberg Hospital, Nordre Fasanvej, Frederiksberg 57 2000, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej, Copenhagen 3B 2200, Denmark
| | - Jane K Stock
- European Atherosclerosis Society, Mässans Gata 10, Gothenburg SE-412 51, Sweden
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano and IRCCS MultiMedica, Via Festa del Perdono 7, Milan 20122, Italy
| |
Collapse
|
36
|
Bouchareychas L, Duong P, Phu TA, Alsop E, Meechoovet B, Reiman R, Ng M, Yamamoto R, Nakauchi H, Gasper WJ, Van Keuren-Jensen K, Raffai RL. High glucose macrophage exosomes enhance atherosclerosis by driving cellular proliferation & hematopoiesis. iScience 2021; 24:102847. [PMID: 34381972 PMCID: PMC8333149 DOI: 10.1016/j.isci.2021.102847] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/16/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
We investigated whether extracellular vesicles (EVs) produced under hyperglycemic conditions could communicate signaling to drive atherosclerosis. We did so by treating Apoe-/- mice with exosomes produced by bone marrow-derived macrophages (BMDM) exposed to high glucose (BMDM-HG-exo) or control. Infusions of BMDM-HG-exo increased hematopoiesis, circulating myeloid cell numbers, and atherosclerotic lesions with an accumulation of macrophage foam and apoptotic cells. Transcriptome-wide analysis of cultured macrophages treated with BMDM-HG-exo or plasma EVs isolated from subjects with type II diabetes revealed a reduced inflammatory state and increased metabolic activity. Furthermore, BMDM-HG-exo induced cell proliferation and reprogrammed energy metabolism by increasing glycolytic activity. Lastly, profiling microRNA in BMDM-HG-exo and plasma EVs from diabetic subjects with advanced atherosclerosis converged on miR-486-5p as commonly enriched and recognized in dysregulated hematopoiesis and Abca1 control. Together, our findings show that EVs serve to communicate detrimental properties of hyperglycemia to accelerate atherosclerosis in diabetes.
Collapse
Affiliation(s)
- Laura Bouchareychas
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Phat Duong
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Tuan Anh Phu
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Eric Alsop
- Neurogenomics, The Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Bessie Meechoovet
- Neurogenomics, The Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Rebecca Reiman
- Neurogenomics, The Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Martin Ng
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Ryo Yamamoto
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Warren J. Gasper
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, 4150 Clement St., San Francisco, CA 94121, USA
| | | | - Robert L. Raffai
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, 4150 Clement St., San Francisco, CA 94121, USA
| |
Collapse
|
37
|
Reddy MA, Amaram V, Das S, Tanwar VS, Ganguly R, Wang M, Lanting L, Zhang L, Abdollahi M, Chen Z, Wu X, Devaraj S, Natarajan R. lncRNA DRAIR is downregulated in diabetic monocytes and modulates the inflammatory phenotype via epigenetic mechanisms. JCI Insight 2021; 6:143289. [PMID: 33945509 PMCID: PMC8262346 DOI: 10.1172/jci.insight.143289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are increasingly implicated in the pathology of diabetic complications. Here, we examined the role of lncRNAs in monocyte dysfunction and inflammation associated with human type 2 diabetes mellitus (T2D). RNA sequencing analysis of CD14+ monocytes from patients with T2D versus healthy controls revealed downregulation of antiinflammatory and antiproliferative genes, along with several lncRNAs, including a potentially novel divergent lncRNA diabetes regulated antiinflammatory RNA (DRAIR) and its nearby gene CPEB2. High glucose and palmitic acid downregulated DRAIR in cultured CD14+ monocytes, whereas antiinflammatory cytokines and monocyte-to-macrophage differentiation upregulated DRAIR via KLF4 transcription factor. DRAIR overexpression increased antiinflammatory and macrophage differentiation genes but inhibited proinflammatory genes. Conversely, DRAIR knockdown attenuated antiinflammatory genes, promoted inflammatory responses, and inhibited phagocytosis. DRAIR regulated target gene expression through interaction with chromatin, as well as inhibition of the repressive epigenetic mark H3K9me2 and its corresponding methyltransferase G9a. Mouse orthologous Drair and Cpeb2 were also downregulated in peritoneal macrophages from T2D db/db mice, and Drair knockdown in nondiabetic mice enhanced proinflammatory genes in macrophages. Thus, DRAIR modulates the inflammatory phenotype of monocytes/macrophages via epigenetic mechanisms, and its downregulation in T2D may promote chronic inflammation. Augmentation of endogenous lncRNAs like DRAIR could serve as novel antiinflammatory therapies for diabetic complications.
Collapse
Affiliation(s)
- Marpadga A Reddy
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Vishnu Amaram
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Sadhan Das
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California, USA.,Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Vinay Singh Tanwar
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Rituparna Ganguly
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Mei Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Lingxiao Zhang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Maryam Abdollahi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Zhuo Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Sridevi Devaraj
- Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
38
|
Feng X, Chen W, Ni X, Little PJ, Xu S, Tang L, Weng J. Metformin, Macrophage Dysfunction and Atherosclerosis. Front Immunol 2021; 12:682853. [PMID: 34163481 PMCID: PMC8215340 DOI: 10.3389/fimmu.2021.682853] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Metformin is one of the most widely prescribed hypoglycemic drugs and has the potential to treat many diseases. More and more evidence shows that metformin can regulate the function of macrophages in atherosclerosis, including reducing the differentiation of monocytes and inhibiting the inflammation, oxidative stress, polarization, foam cell formation and apoptosis of macrophages. The mechanisms by which metformin regulates the function of macrophages include AMPK, AMPK independent targets, NF-κB, ABCG5/8, Sirt1, FOXO1/FABP4 and HMGB1. On the basis of summarizing these studies, we further discussed the future research directions of metformin: single-cell RNA sequencing, neutrophil extracellular traps (NETs), epigenetic modification, and metformin-based combination drugs. In short, macrophages play an important role in a variety of diseases, and improving macrophage dysfunction may be an important mechanism for metformin to expand its pleiotropic pharmacological profile. In addition, the combination of metformin with other drugs that improve the function of macrophages (such as SGLT2 inhibitors, statins and IL-1β inhibitors/monoclonal antibodies) may further enhance the pleiotropic therapeutic potential of metformin in conditions such as atherosclerosis, obesity, cancer, dementia and aging.
Collapse
Affiliation(s)
- Xiaojun Feng
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Wenxu Chen
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Xiayun Ni
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Peter J. Little
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, Australia
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China( USTC), Hefei, China
| | - Liqin Tang
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China( USTC), Hefei, China
| |
Collapse
|
39
|
Mamun AA, Wu Y, Nasrin F, Akter A, Taniya MA, Munir F, Jia C, Xiao J. Role of Pyroptosis in Diabetes and Its Therapeutic Implications. J Inflamm Res 2021; 14:2187-2206. [PMID: 34079327 PMCID: PMC8164340 DOI: 10.2147/jir.s291453] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Pyroptosis is mainly considered as a new pro-inflammatory mediated-programmed cell death. In addition, pyroptosis is described by gasdermin-induced pore formation on the membrane, cell swelling and rapid lysis, and several pro-inflammatory mediators interleukin-1β (IL-1β) and interleukin-18 (IL-18) release. Extensive studies have shown that pyroptosis is commonly involved by activating the caspase-1-dependent canonical pathway and caspase-4/5/11-dependent non-canonical pathway. However, pyroptosis facilitates local inflammation and inflammatory responses. Current researches have reported that pyroptosis promotes the progression of several diabetic complications. Emerging studies have suggested that some potential molecules targeting the pyroptosis and inflammasome signaling pathways could be a novel therapeutic avenue for managing and treating diabetes and its complications in the near future. Our narrative review concisely describes the possible mechanism of pyroptosis and its progressive understanding of the development of diabetic complications.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Fatema Nasrin
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia.,School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Afroza Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Masuma Afrin Taniya
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Bangladesh, Dhaka, 1229, Bangladesh
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, People's Republic of China
| | - Jian Xiao
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| |
Collapse
|
40
|
Rojas A, Lindner C, Gonzàlez I, Morales MA. Advanced-glycation end-products axis: A contributor to the risk of severe illness from COVID-19 in diabetes patients. World J Diabetes 2021; 12:590-602. [PMID: 33995847 PMCID: PMC8107984 DOI: 10.4239/wjd.v12.i5.590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/29/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Compelling pieces of evidence derived from both clinical and experimental research has demonstrated the crucial role of the receptor for advanced-glycation end-products (RAGE) in orchestrating a plethora of proinflammatory cellular responses leading to many of the complications and end-organ damages reported in patients with diabetes mellitus (DM). During the coronavirus disease 2019 (COVID-19) pandemic, many clinical reports have pointed out that DM increases the risk of COVID-19 complications, hospitalization requirements, as well as the overall severe acute respiratory syndrome coronavirus 2 case-fatality rate. In the present review, we intend to focus on how the basal activation state of the RAGE axis in common preexisting conditions in DM patients such as endothelial dysfunction and hyperglycemia-related prothrombotic phenotype, as well as the contribution of RAGE signaling in lung inflammation, may then lead to the increased mortality risk of COVID-19 in these patients. Additionally, the cross-talk between the RAGE axis with either another severe acute respiratory syndrome coronavirus 2 receptor molecule different of angiotensin-converting enzyme 2 or the renin-angiotensin system imbalance produced by viral infection, as well as the role of this multi-ligand receptor on the obesity-associated low-grade inflammation in the higher risk for severe illness reported in diabetes patients with COVID-19, are also discussed.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca 3460000, Chile
| | - Cristian Lindner
- Medicine Faculty, Catholic University of Maule, Talca 3460000, Chile
| | - Ileana Gonzàlez
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca 3460000, Chile
| | - Miguel Angel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| |
Collapse
|
41
|
Hashimoto K, Akagi M. The role of oxidation of low-density lipids in pathogenesis of osteoarthritis: A narrative review. J Int Med Res 2021; 48:300060520931609. [PMID: 32552129 PMCID: PMC7303502 DOI: 10.1177/0300060520931609] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a chronic joint disorder that causes degeneration of
cartilage, synovial inflammation, and formation of osteophytes. Aging, obesity,
and sex are considered the main risk factors of OA. Recent studies have
suggested that metabolic syndrome (MetS) disorders, such as hypertension,
hyperlipidemia, diabetes mellitus, and obesity, may be involved in the
pathogenesis and progression of OA. MetS disorders are common diseases that also
result in atherosclerosis. Researchers believe that OA and atherosclerosis have
underlying similar molecular mechanisms because the prevalence of both diseases
increases with age. Oxidation of low-density lipoprotein (ox-LDL) is believed to
play a role in the pathogenesis of atherosclerosis. Recent reports have shown
that ox-LDL and low-density lipoprotein receptor 1 (LOX-1) are involved in the
pathogenesis of OA. The purpose of this narrative review is to summarize the
current understanding of the role of the LOX-1/ox-LDL system in the pathogenesis
of OA and to reveal common underlying molecular pathways that are shared by MetS
in OA and the LOX-1/ox-LDL system.
Collapse
Affiliation(s)
- Kazuhiko Hashimoto
- Department of Orthopaedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka, Japan
| | - Masao Akagi
- Department of Orthopaedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka, Japan
| |
Collapse
|
42
|
Diabetes Induces a Transcriptional Signature in Bone Marrow-Derived CD34 + Hematopoietic Stem Cells Predictive of Their Progeny Dysfunction. Int J Mol Sci 2021; 22:ijms22031423. [PMID: 33572602 PMCID: PMC7866997 DOI: 10.3390/ijms22031423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 01/01/2023] Open
Abstract
Hematopoietic stem/progenitor cells (HSPCs) participate in cardiovascular (CV) homeostasis and generate different types of blood cells including lymphoid and myeloid cells. Diabetes mellitus (DM) is characterized by chronic increase of pro-inflammatory mediators, which play an important role in the development of CV disease, and increased susceptibility to infections. Here, we aimed to evaluate the impact of DM on the transcriptional profile of HSPCs derived from bone marrow (BM). Total RNA of BM-derived CD34+ stem cells purified from sternal biopsies of patients undergoing coronary bypass surgery with or without DM (CAD and CAD-DM patients) was sequenced. The results evidenced 10566 expressed genes whose 79% were protein-coding genes, and 21% non-coding RNA. We identified 139 differentially expressed genes (p-value < 0.05 and |log2 FC| > 0.5) between the two comparing groups of CAD and CAD-DM patients. Gene Set Enrichment Analysis (GSEA), based on Gene Ontology biological processes (GO-BP) terms, led to the identification of fourteen overrepresented biological categories in CAD-DM samples. Most of the biological processes were related to lymphocyte activation, chemotaxis, peptidase activity, and innate immune response. Specifically, HSPCs from CAD-DM patients displayed reduced expression of genes coding for proteins regulating antibacterial and antivirus host defense as well as macrophage differentiation and lymphocyte emigration, proliferation, and differentiation. However, within the same biological processes, a consistent number of inflammatory genes coding for chemokines and cytokines were up-regulated. Our findings suggest that DM induces transcriptional alterations in HSPCs, which are potentially responsible of progeny dysfunction.
Collapse
|
43
|
Wasiak S, Dzobo KE, Rakai BD, Kaiser Y, Versloot M, Bahjat M, Stotz SC, Fu L, Sweeney M, Johansson JO, Wong NCW, Stroes ESG, Kroon J, Kulikowski E. BET protein inhibitor apabetalone (RVX-208) suppresses pro-inflammatory hyper-activation of monocytes from patients with cardiovascular disease and type 2 diabetes. Clin Epigenetics 2020; 12:166. [PMID: 33172487 PMCID: PMC7657365 DOI: 10.1186/s13148-020-00943-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background Patients with cardiovascular disease (CVD) and type 2 diabetes (DM2) have a high residual risk for experiencing a major adverse cardiac event. Dysregulation of epigenetic mechanisms of gene transcription in innate immune cells contributes to CVD development but is currently not targeted by therapies. Apabetalone (RVX-208) is a small molecule inhibitor of bromodomain and extra-terminal (BET) proteins—histone acetylation readers that drive pro-inflammatory and pro-atherosclerotic gene transcription. Here, we assess the impact of apabetalone on ex vivo inflammatory responses of monocytes from DM2 + CVD patients. Results Monocytes isolated from DM2 + CVD patients and matched controls were treated ex vivo with apabetalone, interferon γ (IFNγ), IFNγ + apabetalone or vehicle and phenotyped for gene expression and protein secretion. Unstimulated DM2 + CVD monocytes had higher baseline IL-1α, IL-1β and IL-8 cytokine gene expression and Toll-like receptor (TLR) 2 surface abundance than control monocytes, indicating pro-inflammatory activation. Further, DM2 + CVD monocytes were hyper-responsive to stimulation with IFNγ, upregulating genes within cytokine and NF-κB pathways > 30% more than control monocytes (p < 0.05). Ex vivo apabetalone treatment countered cytokine secretion by DM2 + CVD monocytes at baseline (GROα and IL-8) and during IFNγ stimulation (IL-1β and TNFα). Apabetalone abolished pro-inflammatory hyper-activation by reducing TLR and cytokine gene signatures more robustly in DM2 + CVD versus control monocytes. Conclusions Monocytes isolated from DM2 + CVD patients receiving standard of care therapies are in a hyper-inflammatory state and hyperactive upon IFNγ stimulation. Apabetalone treatment diminishes this pro-inflammatory phenotype, providing mechanistic insight into how BET protein inhibition may reduce CVD risk in DM2 patients.
Collapse
Affiliation(s)
- Sylwia Wasiak
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Kim E Dzobo
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Brooke D Rakai
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Yannick Kaiser
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Miranda Versloot
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Mahnoush Bahjat
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Stephanie C Stotz
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Li Fu
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Michael Sweeney
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Jan O Johansson
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Norman C W Wong
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jeffrey Kroon
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Ewelina Kulikowski
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada.
| |
Collapse
|
44
|
Forrester JV, Kuffova L, Delibegovic M. The Role of Inflammation in Diabetic Retinopathy. Front Immunol 2020; 11:583687. [PMID: 33240272 PMCID: PMC7677305 DOI: 10.3389/fimmu.2020.583687] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is central to pathogenic processes in diabetes mellitus and the metabolic syndrome and particularly implicates innate immunity in the development of complications. Inflammation is a primary event in Type 1 diabetes where infectious (viral) and/or autoimmune processes initiate disease; in contrast, chronic inflammation is typical in Type 2 diabetes and is considered a sequel to increasing insulin resistance and disturbed glucose metabolism. Diabetic retinopathy (DR) is perceived as a vascular and neurodegenerative disease which occurs after some years of poorly controlled diabetes. However, many of the clinical features of DR are late events and reflect the nature of the retinal architecture and its cellular composition. Retinal microvascular disease is, in fact, an early event pathogenetically, induced by low grade, persistent leukocyte activation which causes repeated episodes of capillary occlusion and, progressive, attritional retinal ischemia. The later, overt clinical signs of DR are a consequence of the retinal ischemia. Metabolic dysregulation involving both lipid and glucose metabolism may lead to leukocyte activation. On a molecular level, we have shown that macrophage-restricted protein tyrosine phosphatase 1B (PTP1B) is a key regulator of inflammation in the metabolic syndrome involving insulin resistance and it is possible that PTP1B dysregulation may underlie retinal microvascular disease. We have also shown that adherent CCR5+CD11b+ monocyte macrophages appear to be selectively involved in retinal microvascular occlusion. In this review, we discuss the relationship between early leukocyte activation and the later features of DR, common pathogenetic processes between diabetic microvascular disease and other vascular retinopathies, the mechanisms whereby leukocyte activation is induced in hyperglycemia and dyslipidemia, the signaling mechanisms involved in diabetic microvascular disease, and possible interventions which may prevent these retinopathies. We also address a possible role for adaptive immunity in DR. Although significant improvements in treatment of DR have been made with intravitreal anti-VEGF therapy, a sizeable proportion of patients, particularly with sight-threatening macular edema, fail to respond. Alternative therapies targeting inflammatory processes may offer an advantage.
Collapse
Affiliation(s)
- John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Scotland, United Kingdom
| | - Lucia Kuffova
- Institute of Medical Sciences, University of Aberdeen, Scotland, United Kingdom.,Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - Mirela Delibegovic
- Institute of Medical Sciences, University of Aberdeen, Scotland, United Kingdom
| |
Collapse
|
45
|
Kramer F, Martinson AM, Papayannopoulou T, Kanter JE. Myocardial Infarction Does Not Accelerate Atherosclerosis in a Mouse Model of Type 1 Diabetes. Diabetes 2020; 69:2133-2143. [PMID: 32694213 PMCID: PMC7506833 DOI: 10.2337/db20-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/17/2020] [Indexed: 11/13/2022]
Abstract
In addition to increasing the risk of an initial myocardial infarction (MI), diabetes increases the risk of a recurrent MI. Previous work suggests that an experimental MI can accelerate atherosclerosis via monocytosis. To test whether diabetes and experimental MI synergize to accelerate atherosclerosis, we performed ligation of the left anterior descending coronary artery to induce experimental MI or sham surgery in nondiabetic and diabetic mice with preexisting atherosclerosis. All mice subjected to experimental MI had significantly reduced left ventricular function. In our model, in comparisons with nondiabetic sham mice, neither diabetes nor MI resulted in monocytosis. Neither diabetes nor MI led to increased atherosclerotic lesion size, but diabetes accelerated lesion progression, exemplified by necrotic core expansion. The necrotic core expansion was dependent on monocyte recruitment, as mice with myeloid cells deficient in the adhesion molecule integrin α4 were protected from necrotic core expansion. In summary, diabetes, but not MI, accelerates lesion progression, suggesting that the increased risk of recurrent MI in diabetes is due to a higher lesional burden and/or elevated risk factors rather than the acceleration of the underlying pathology from a previous MI.
Collapse
Affiliation(s)
- Farah Kramer
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA
| | - Amy M Martinson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Jenny E Kanter
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
46
|
Aguilar-Ballester M, Herrero-Cervera A, Vinué Á, Martínez-Hervás S, González-Navarro H. Impact of Cholesterol Metabolism in Immune Cell Function and Atherosclerosis. Nutrients 2020; 12:nu12072021. [PMID: 32645995 PMCID: PMC7400846 DOI: 10.3390/nu12072021] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
Cholesterol, the most important sterol in mammals, helps maintain plasma membrane fluidity and is a precursor of bile acids, oxysterols, and steroid hormones. Cholesterol in the body is obtained from the diet or can be de novo synthetized. Cholesterol homeostasis is mainly regulated by the liver, where cholesterol is packed in lipoproteins for transport through a tightly regulated process. Changes in circulating lipoprotein cholesterol levels lead to atherosclerosis development, which is initiated by an accumulation of modified lipoproteins in the subendothelial space; this induces significant changes in immune cell differentiation and function. Beyond lesions, cholesterol levels also play important roles in immune cells such as monocyte priming, neutrophil activation, hematopoietic stem cell mobilization, and enhanced T cell production. In addition, changes in cholesterol intracellular metabolic enzymes or transporters in immune cells affect their signaling and phenotype differentiation, which can impact on atherosclerosis development. In this review, we describe the main regulatory pathways and mechanisms of cholesterol metabolism and how these affect immune cell generation, proliferation, activation, and signaling in the context of atherosclerosis.
Collapse
Affiliation(s)
- María Aguilar-Ballester
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Andrea Herrero-Cervera
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Ángela Vinué
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Sergio Martínez-Hervás
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
- Endocrinology and Nutrition Department Clinic Hospital and Department of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Herminia González-Navarro
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Department of Didactics of Experimental and Social Sciences, University of Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963864403; Fax: +34-963987860
| |
Collapse
|
47
|
Opazo-Ríos L, Mas S, Marín-Royo G, Mezzano S, Gómez-Guerrero C, Moreno JA, Egido J. Lipotoxicity and Diabetic Nephropathy: Novel Mechanistic Insights and Therapeutic Opportunities. Int J Mol Sci 2020; 21:E2632. [PMID: 32290082 PMCID: PMC7177360 DOI: 10.3390/ijms21072632] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Lipotoxicity is characterized by the ectopic accumulation of lipids in organs different from adipose tissue. Lipotoxicity is mainly associated with dysfunctional signaling and insulin resistance response in non-adipose tissue such as myocardium, pancreas, skeletal muscle, liver, and kidney. Serum lipid abnormalities and renal ectopic lipid accumulation have been associated with the development of kidney diseases, in particular diabetic nephropathy. Chronic hyperinsulinemia, often seen in type 2 diabetes, plays a crucial role in blood and liver lipid metabolism abnormalities, thus resulting in increased non-esterified fatty acids (NEFA). Excessive lipid accumulation alters cellular homeostasis and activates lipogenic and glycogenic cell-signaling pathways. Recent evidences indicate that both quantity and quality of lipids are involved in renal damage associated to lipotoxicity by activating inflammation, oxidative stress, mitochondrial dysfunction, and cell-death. The pathological effects of lipotoxicity have been observed in renal cells, thus promoting podocyte injury, tubular damage, mesangial proliferation, endothelial activation, and formation of macrophage-derived foam cells. Therefore, this review examines the recent preclinical and clinical research about the potentially harmful effects of lipids in the kidney, metabolic markers associated with these mechanisms, major signaling pathways affected, the causes of excessive lipid accumulation, and the types of lipids involved, as well as offers a comprehensive update of therapeutic strategies targeting lipotoxicity.
Collapse
Affiliation(s)
- Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Sebastián Mas
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Gema Marín-Royo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Sergio Mezzano
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, 5090000 Valdivia, Chile;
| | - Carmen Gómez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Juan Antonio Moreno
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain
- Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| |
Collapse
|
48
|
Kawasaki T, Uezono K, Ueno M, Noda Y, Kumamoto K, Kawano Y, Ogata M, Fukiyama K, Omae T, Bartter FC. Influence of unilateral adrenalectomy on renin-angiotensin-aldosterone system in primary aldosteronism. Int Heart J 1980; 63:524-530. [PMID: 7001091 DOI: 10.1536/ihj.21-681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In a study of 14 patients (11 Japanese and 3 white North Americans) with aldosterone-producing tumor carried out within 2 to 4 weeks after unilateral adrenalectomy, both plasma renin activity (PRA) and plasma aldosterone concentration (PAC) increased almost normally with short-term sodium depletion and upright posture. Aldosterone excretion rate (AER) also increased significantly with sodium depletion, and was normally suppressed by sodium loading. Highly significant correlations were observed between PRA and PAC (r=0.89, p < 0.001) or AER (r=0.88, p < 0.001) ater operation, whereas there had been no such correlation before operation. Either physiological or laboratory findings were normalized or markedly improved in all cases although pathohistological diagnosis was made as adenomatous hyperplasia in 10 out of 11. These results indicate that within 4 weeks of operation PRA and the remaining adrenal gland can almost normally respond to stimuli such as sodium depletion and upright posture regardless of the amount of spironolactone given preoperatively.
Collapse
|