1
|
Carneiro FS, Katashima CK, Dodge JD, Cintra DE, Pauli JR, Da Silva ASR, Ropelle ER. Tissue-specific roles of mitochondrial unfolded protein response during obesity. Obes Rev 2024; 25:e13791. [PMID: 38880974 DOI: 10.1111/obr.13791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/20/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
Obesity is a worldwide multifactorial disease caused by an imbalance in energy metabolism, increasing adiposity, weight gain, and promoting related diseases such as diabetes, cardiovascular diseases, neurodegeneration, and cancer. Recent findings have reported that metabolic stress related to obesity induces a mitochondrial stress response called mitochondrial unfolded protein response (UPRmt), a quality control pathway that occurs in a nuclear DNA-mitochondria crosstalk, causing transduction of chaperones and proteases under stress conditions. The duality of UPRmt signaling, with both beneficial and detrimental effects, acts in different contexts depending on the tissue, cell type, and physiological states, affecting the mitochondrial function and efficiency and the metabolism homeostasis during obesity, which remains not fully clarified. Therefore, this review discusses the most recent findings regarding UPRmt signaling during obesity, bringing an overview of UPRmt across different metabolic tissues.
Collapse
Affiliation(s)
- Fernanda S Carneiro
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Carlos K Katashima
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Joshua D Dodge
- Department of Biology, The University of Texas at Arlington (UTA), Arlington, Texas, USA
| | - Dennys E Cintra
- Laboratory of Nutritional Genomic, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Adelino S R Da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Indira M, Surendranath Reddy EC, Kamala Prasad V, Satyanarayana Swamy V, Kakarla RR, Venkata Krishna Reddy M, Attiri P, Vasu Govardhana Reddy P, Aminabhavi TM. Environmentally friendly and efficient TBHP-mediated catalytic reaction for the synthesis of substituted benzimidazole-2-ones: In-silico approach to pharmaceutical applications. ENVIRONMENTAL RESEARCH 2024; 252:118760. [PMID: 38522741 DOI: 10.1016/j.envres.2024.118760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
A novel method was used to synthesize benzimidazole-2-ones from the corresponding benzimidazolium salts. These salts were subsequently reacted with potassium tertiary butoxide (KOtBu), followed by oxidation using tertiary butyl hydrogen peroxide (TBHP) at room temperature in tetrahydrofuran (THF) to obtain the desired products in 1 h with excellent yields. After optimizing the reaction conditions, the study focused on preparing benzimidazole-2-ones with diverse substituents at N1 and N3 positions, including benzyl, 2',4',6'-trimethyl benzyl groups, and long-chain aliphatic substituents (hexyl, octyl, decyl, and dodecyl). The compounds were characterized by 1H and 13C NMR spectra, of which compound 2a is supported by single crystal XRD. Benzimidazole-2-one compounds exhibited promising anti-inflammatory and anti-cancer properties. The inhibition of mitochondrial Heat Shock Protein 60 (HSP60) of title compounds was also explored. Computational simulations were employed to assess anti-cancer properties of 19 benzimidazole-2-one derivatives (potential drugs). In-silico docking studies demonstrated promising binding interactions with HSP60, and these results were supported by molecular dynamics simulations. Notably, molecules 2b and 2d exhibited high affinity for HSP60 protein, highlighting their potential efficacy. The developed ligands were viable for the treatment of hepatocellular carcinoma (HCC). The findings provide valuable initial evidence supporting the efficacy of benzimidazole-2-ones as HSP60 inhibitors and lay the foundation for subsequent studies, including in-vitro assays.
Collapse
Affiliation(s)
- Meeniga Indira
- Department of Chemistry, Yogi Vemana University, Vemana Puram, Ganganapalle, Kadapa, 516005, Andhra Pradesh, India
| | - E C Surendranath Reddy
- Department of Biotechnology, Yogi Vemana University, Vemana Puram, Ganganapalle, Kadapa, 516005, Andhra Pradesh, India
| | | | - Vyshnava Satyanarayana Swamy
- Denisco Chemicals Pvt Ltd, D-24 Phase-1, Jeedimetla, Hyderabad, 500855, Telangana, India; Department of Biotechnology, University College of Sciences, Sri Krishnadevaraya University, Anantapuramu, 515003, Andhra Pradesh, India
| | - Raghava Reddy Kakarla
- School Chemical Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | | | - Pankaj Attiri
- Center of Plasma Nano-interface Engineering, Kyushu University, West Building 2, 744, Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | | | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, 248 007, India; Korea University, Seoul, South Korea.
| |
Collapse
|
3
|
Zhao X, Yao T, Song B, Fan H, Liu T, Gao G, Wang K, Lu W, Liu C. The combination of body mass index and fasting plasma glucose is associated with type 2 diabetes mellitus in Japan: a secondary retrospective analysis. Front Endocrinol (Lausanne) 2024; 15:1355180. [PMID: 38419956 PMCID: PMC10899432 DOI: 10.3389/fendo.2024.1355180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Background Body mass index (BMI) and fasting plasma glucose (FPG) are known risk factors for type 2 diabetes mellitus (T2DM), but data on the prospective association of the combination of BMI and FPG with T2DM are limited. This study sought to characterize the association of the combination of BMI and FPG (ByG) with T2DM. Methods The current study used the NAGALA database. We categorized participants by tertiles of ByG. The association of ByG with T2DM was expressed with hazard ratios (HRs) with 95% confidence intervals (CIs) after adjustment for potential risk factors. Results During a median follow-up of 6.19 years in the normoglycemia cohort and 5.58 years in the prediabetes cohort, the incidence of T2DM was 0.75% and 7.79%, respectively. Following multivariable adjustments, there were stepwise increases in T2DM with increasing tertiles of ByG. After a similar multivariable adjustment, the risk of T2DM was 2.57 (95% CI 2.26 - 2.92), 1.97 (95% CI 1.53 - 2.54) and 1.50 (95% CI 1.30 - 1.74) for a per-SD change in ByG in all populations, the normoglycemia cohort and the prediabetes cohort, respectively. Conclusion ByG was associated with an increased risk of T2DM in Japan. The result reinforced the importance of the combination of BMI and FPG in assessing T2DM risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weilin Lu
- *Correspondence: Weilin Lu, ; Chengyun Liu,
| | | |
Collapse
|
4
|
Timofeev YS, Kiselev AR, Dzhioeva ON, Drapkina OM. Heat Shock Proteins (HSPs) and Cardiovascular Complications of Obesity: Searching for Potential Biomarkers. Curr Issues Mol Biol 2023; 45:9378-9389. [PMID: 38132434 PMCID: PMC10742314 DOI: 10.3390/cimb45120588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Heat shock proteins (HSPs), a family of proteins that support cellular proteostasis and perform a protective function under various stress conditions, such as high temperature, intoxication, inflammation, or tissue hypoxia, constitute a promising group of possible biochemical markers for obesity and cardiovascular diseases. HSP27 is involved in essential cellular processes occurring in conditions of obesity and its cardiometabolic complications; it has protective properties, and its secretion may indicate a cellular response to stress. HSP40 plays a controversial role in the pathogenesis of obesity. HSP60 is involved in various pathological processes of the cardiovascular, immune, excretory, and nervous systems and is associated with obesity and concomitant diseases. The hypersecretion of HSP60 is associated with poor prognosis; hence, this protein may become a target for further research on obesity and its cardiovascular complications. According to most studies, intracellular HSP70 is an obesity-promoting factor, whereas extracellular HSP70 exhibited inconsistent dynamics across different patient groups and diagnoses. HSPs are involved in the pathogenesis of cardiovascular pathology. However, in the context of cardiovascular and metabolic pathology, these proteins require further investigation.
Collapse
Affiliation(s)
| | - Anton R. Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | | | - Oxana M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| |
Collapse
|
5
|
Weng SW, Wu JC, Shen FC, Chang YH, Su YJ, Lian WS, Tai MH, Su CH, Chuang JH, Lin TK, Liou CW, Chu TH, Kao YH, Wang FS, Wang PW. Chaperonin counteracts diet-induced non-alcoholic fatty liver disease by aiding sirtuin 3 in the control of fatty acid oxidation. Diabetologia 2023; 66:913-930. [PMID: 36692509 DOI: 10.1007/s00125-023-05869-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/17/2022] [Indexed: 01/25/2023]
Abstract
AIMS/HYPOTHESIS The mitochondrial chaperonin heat shock protein (HSP) 60 is indispensable in protein folding and the mitochondrial stress response; however, its role in nutrient metabolism remains uncertain. This study investigated the role of HSP60 in diet-induced non-alcoholic fatty liver disease (NAFLD). METHODS We studied human biopsies from individuals with NAFLD, murine high-fat-diet (HFD; a diet with 60% energy from fat)-induced obesity (DIO), transgenic (Tg) mice overexpressing Hsp60 (Hsp60-Tg), and human HepG2 cells transfected with HSP60 cDNA or with HSP60 siRNA. Histomorphometry was used to assess hepatic steatosis, biochemistry kits were used to measure insulin resistance and glucose tolerance, and an automated home cage phenotyping system was used to assess energy expenditure. Body fat was assessed using MRI. Macrophage infiltration, the lipid oxidation marker 4-hydroxy-2-nonenal (4-HNE) and the oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) were detected using immunohistochemistry. Intracellular lipid droplets were evaluated by Nile red staining. Expression of HSP60, and markers of lipogenesis and fatty acid oxidation were quantified using RT-PCR and immunoblotting. Investigations were analysed using the two-way ANOVA test. RESULTS Decreased HSP60 expression correlated with severe steatosis in human NAFLD biopsies and murine DIO. Hsp60-Tg mice developed less body fat, had reduced serum triglyceride levels, lower levels of insulin resistance and higher serum adiponectin levels than wild-type mice upon HFD feeding. Respiratory quotient profile indicated that fat in Hsp60-Tg mice may be metabolised to meet energy demands. Hsp60-Tg mice showed amelioration of HFD-mediated hepatic steatosis, M1/M2 macrophage dysregulation, and 4-HNE and 8-OHdG overproduction. Forced HSP60 expression reduced the mitochondrial unfolded protein response, while preserving mitochondrial respiratory complex activity and enhancing fatty acid oxidation. Furthermore, HSP60 knockdown enhanced intracellular lipid formation and loss of sirtuin 3 (SIRT3) signalling in HepG2 cells upon incubation with palmitic acid (PA). Forced HSP60 expression improved SIRT3 signalling and repressed PA-mediated intracellular lipid formation. SIRT3 inhibition compromised HSP60-induced promotion of AMP-activated protein kinase (AMPK) phosphorylation and peroxisome proliferator-activated receptor α (PPARα levels), while also decreasing levels of fatty acid oxidation markers. CONCLUSION/INTERPRETATION Mitochondrial HSP60 promotes fatty acid oxidation while repressing mitochondrial stress and inflammation to ameliorate the development of NAFLD by preserving SIRT3 signalling. This study reveals the hepatoprotective effects of HSP60 and indicates that HSP60 could play a fundamental role in the development of therapeutics for NAFLD or type 2 diabetes.
Collapse
Affiliation(s)
- Shao-Wen Weng
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jian-Ching Wu
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Feng-Chih Shen
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yen-Hsiang Chang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Jih Su
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wei-Shiung Lian
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Center for General Education, Chang Gung University, Taoyuan, Taiwan
| | - Jiin-Haur Chuang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tian-Huei Chu
- Medical Laboratory, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Feng-Sheng Wang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Pei-Wen Wang
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
6
|
Alghamdi AA, Alattal YZ. Expression Levels of Heat-Shock Proteins in Apis mellifera jemenetica and Apis mellifera carnica Foragers in the Desert Climate of Saudi Arabia. INSECTS 2023; 14:insects14050432. [PMID: 37233060 DOI: 10.3390/insects14050432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/25/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
A. m. jemenetica is the indigenous honeybee of the Arabian Peninsula. It is highly adapted to extreme temperatures exceeding 40 °C, yet important molecular aspects of its adaptation are not well documented. In this study we quantify relative expression levels of small- and large-molecular-weight heat-shock proteins (hsp10, hsp28, hsp70, hsp83, hsp90 and hsc70 (mRNAs)) in the thermos-tolerant A. m. jemenetica and thermosusceptible A. m. carnica forager honeybee subspecies under desert (Riyadh) and semi-arid (Baha) summer conditions. The results showed significant day-long higher expression levels of hsp mRNAs in A. m. jemenetica compared to A. m. carnica under the same conditions. In Baha, the expression levels were very modest in both subspecies compared those in Riyadh though the expression levels were higher in A. m. jemenetica. The results also revealed a significant interaction between subspecies, which indicated milder stress conditions in Baha. In conclusion, the higher expression levels of hsp10, hsp28, hsp70ab, hsp83 and hsp90 mRNAs in A. m. jemenetica are key elements in the adaptive nature of A. m. jemenetica to local conditions that enhance its survival and fitness in high summer temperatures.
Collapse
Affiliation(s)
- Ahmad A Alghamdi
- Department of Plant Protection, Chair of Engineer Abdullah Ahmad Bagshan for Bee Research, College of Food and Agriculture Sciences, King Saud University, Riyadh 11587, Saudi Arabia
| | - Yehya Z Alattal
- Department of Plant Protection, Chair of Engineer Abdullah Ahmad Bagshan for Bee Research, College of Food and Agriculture Sciences, King Saud University, Riyadh 11587, Saudi Arabia
| |
Collapse
|
7
|
Santinelli L, Rossi G, Gioacchini G, Verin R, Maddaloni L, Cavallari EN, Lombardi F, Piccirilli A, Fiorucci S, Carino A, Marchianò S, Lofaro CM, Caiazzo S, Ciccozzi M, Scagnolari C, Mastroianni CM, Ceccarelli G, d'Ettorre G. The crosstalk between gut barrier impairment, mitochondrial dysfunction, and microbiota alterations in people living with HIV. J Med Virol 2023; 95:e28402. [PMID: 36515414 DOI: 10.1002/jmv.28402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022]
Abstract
Functional and structural damage of the intestinal mucosal barrier significantly contribute to translocation of gut microbial products into the bloodstream and are largely involved in HIV-1 associated chronic immune activation. This microbial translocation is largely due to a progressive exhaustion of intestinal macrophage phagocytic function, which leads to extracellular accumulation of microbial derived components and results in HIV-1 disease progression. This study aims to better understand whether the modulation of gut microbiota promotes an intestinal immune restoration in people living with HIV (PLWH). Long-term virologically suppressed PLWH underwent blood, colonic, and fecal sampling before (T0) and after 6 months (T6) of oral bacteriotherapy. Age- and gender-matched uninfected controls (UC) were also included. 16S rRNA gene sequencing was applied to all participants' fecal microbiota. Apoptosis machinery, mitochondria, and apical junctional complex (AJC) morphology and physiological functions were analyzed in gut biopsies. At T0, PLWH showed a different pattern of gut microbial flora composition, lower levels of occludin (p = 0.002) and zonulin (p = 0.01), higher claudin-2 levels (p = 0.002), a reduction of mitochondria number (p = 0.002), and diameter (p = 0.002), as well as increased levels of lipopolysaccharide (LPS) (p = 0.018) and cCK18 (p = 0.011), compared to UC. At T6, an increase in size (p = 0.005) and number (p = 0.008) of mitochondria, as well as amelioration in AJC structures (p < 0.0001) were observed. Restoration of bacterial richness (Simpson index) and biodiversity (Shannon index) was observed in all PLWH receiving oral bacteriotherapy (p < 0.05). Increased mitochondria size (p = 0.005) and number (p = 0.008) and amelioration of AJC structure (p < 0.0001) were found at T6 compared to T0. Moreover, increased occludin and zonulin concentration were observed in PLWH intestinal tracts and decreased levels of claudin-2, LPS, and cCK18 were found after oral bacteriotherapy (T0 vs. T6, p < 0.05 for all these measures). Oral bacteriotherapy supplementation might restore the balance of intestinal flora and support the structural and functional recovery of the gut mucosa in antiretroviral therapy treated PLWH.
Collapse
Affiliation(s)
- Letizia Santinelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, DiSVA-Marche Polytechnic University, Ancona, Italy
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, BCA-University of Padua, Padova, Italy
| | - Luca Maddaloni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Eugenio N Cavallari
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Stefano Fiorucci
- Department of Surgical and Biomedical Medicine and Surgery Sciences, University of Perugia, Perugia, Italy
| | - Adriana Carino
- Department of Surgical and Biomedical Medicine and Surgery Sciences, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Surgical and Biomedical Medicine and Surgery Sciences, University of Perugia, Perugia, Italy
| | - Chiara M Lofaro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Sara Caiazzo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology, Istituto Pasteur Italia, Sapienza University of Rome, Rome, Italy
| | - Claudio M Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Morsi AA, Mersal EA, Alsabih AO, Abdelmoneim AM, Sakr EM, Alakabawy S, Elfawal RG, Naji M, Aljanfawe HJ, Alshateb FH, Shawky TM. Apoptotic susceptibility of pancreatic alpha cells to environmentally relevant dose levels of bisphenol-A versus dibutyl phthalate is mediated by HSP60/caspase-3 expression in male albino rats. Cell Biol Int 2022; 46:2232-2245. [PMID: 36168861 DOI: 10.1002/cbin.11909] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/08/2022]
Abstract
Unfortunately, humanity is exposed to mixed plasticizers such as bisphenol-A (BPA) and dibutyl phthalate (DBP) that are leached from the daily used plastic products. Previous studies have demonstrated their potential in pancreatic beta cell injury and diabetes induction. The study hypothesized that both compounds would affect the pancreatic alpha cells in albino rats when administered at environmentally relevant doses. Heat shock protein 60 (HSP60) and caspase-3 protein expression was also investigated as potential mechanisms. Thirty-six male Wistar albino rats were separated into four equal groups: control, BPA alone, DBP alone, and BPA + DBP combined groups. BPA and DBP were given in drinking water for 45 days in a dose of 4.5 and 0.8 µg/L, respectively. Fasting blood glucose, serum insulin, pancreatic tissue levels of malondialdehyde, and superoxide dismutase were measured. Pancreatic sections were subjected to hematoxylin & eosin (H & E) staining, glucagon, HSP60, and caspase-3 immunohistochemistry. Although all three experimental groups showed diffuse islet cell HSP60 immunoreactivity, rats exposed to BPA alone showed α-cell-only apoptosis, indicated by H & E changes and caspase-3 immunoreactivity, associated with reduced glucagon immunoreaction. However, rats exposed to DBP alone showed no changes in either α or β-cells. Both combined-exposed animals displayed α and β apoptotic changes associated with islet atrophy and reduced glucagon expression. In conclusion, the study suggested HSP60/caspase-3 interaction, caspase-3 activation, and initiation of apoptosis in α-cell only for BPA-alone exposure group, meanwhile DBP alone did not progress to apoptosis. Interestingly, both α/β cell effect was observed in the mixed group implying synergetic/additive action of both chemicals when combined.
Collapse
Affiliation(s)
- Ahmed A Morsi
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Ezat A Mersal
- Department of Biochemistry, Faculty of Science, Assiut University, Assiut, Egypt.,Department of Basic Medical Sciences, Vision Colleges, Riyadh, Saudi Arabia
| | - Ahmed O Alsabih
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M Abdelmoneim
- Department of Physiology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Eman M Sakr
- Department of Basic Medical Sciences, Vision Colleges, Riyadh, Saudi Arabia.,National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Shaimaa Alakabawy
- Department of Clinical Sciences, Vision Colleges, Riyadh, Saudi Arabia
| | - Riham G Elfawal
- Department of Clinical Sciences, Vision Colleges, Riyadh, Saudi Arabia.,Department of Clinical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mohammed Naji
- Medical students, Vision Colleges, Riyadh, Saudi Arabia
| | | | | | - Tamer M Shawky
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Siddiqui SH, Khan M, Choe H, Kang D, Shim K. HSP expression depends on its molecular construction and different organs of the chicken: a meta-analysis. Sci Rep 2022; 12:14901. [PMID: 36050408 PMCID: PMC9437049 DOI: 10.1038/s41598-022-18985-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022] Open
Abstract
Heat shock proteins (HSPs) expression protect the cell from stress, this expression varies on tissue and stress level. Here, we investigated the structure and functional expression of HSPs in different chicken organs using meta-analysis. A total of 1253 studies were collected from three different electronic databases from January 1, 2015 to February 1, 2022. Of these studies, 28 were selected based on the specific criteria for this meta-analysis. The results for the expression of HSPs and the comparative expression of HSPs (HSP90, HSP70, and HSP60) in different chicken organs (brain, heart, liver, muscle, and intestine) were analyzed using the odds ratio or the random-effects model (REM) at a confidence interval (CI) of 95%. Compared to the thermoneutral groups, heat stress groups exhibited a significant (P < 0.01) change in their HSP70 expression in the chicken liver (8 trials: REM = 1.41, 95% CI: 0.41, 4.82). The expression of different HSPs in various chicken organs varied and the different organs were categorized according to their expression levels. HSP expression differed among the heart, liver, and muscle of chickens. HSPs expression level depends on the structure and molecular weight of the HSPs, as well as the type of tissue.
Collapse
Affiliation(s)
- Sharif Hasan Siddiqui
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Mousumee Khan
- Department of Biomedical Science and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Hosung Choe
- Department of Animal Biotechnology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Darae Kang
- Department of Animal Biotechnology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Kwanseob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
10
|
Escudero Castelán N, Semmens DC, Guerra LAY, Zandawala M, Dos Reis M, Slade SE, Scrivens JH, Zampronio CG, Jones AM, Mirabeau O, Elphick MR. Receptor deorphanization in an echinoderm reveals kisspeptin evolution and relationship with SALMFamide neuropeptides. BMC Biol 2022; 20:187. [PMID: 36002813 PMCID: PMC9400282 DOI: 10.1186/s12915-022-01387-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kisspeptins are neuropeptides that regulate reproductive maturation in mammals via G-protein-coupled receptor-mediated stimulation of gonadotropin-releasing hormone secretion from the hypothalamus. Phylogenetic analysis of kisspeptin-type receptors indicates that this neuropeptide signaling system originated in a common ancestor of the Bilateria, but little is known about kisspeptin signaling in invertebrates. RESULTS Contrasting with the occurrence of a single kisspeptin receptor in mammalian species, here, we report the discovery of an expanded family of eleven kisspeptin-type receptors in a deuterostome invertebrate - the starfish Asterias rubens (phylum Echinodermata). Furthermore, neuropeptides derived from four precursor proteins were identified as ligands for six of these receptors. One or more kisspeptin-like neuropeptides derived from two precursor proteins (ArKPP1, ArKPP2) act as ligands for four A. rubens kisspeptin-type receptors (ArKPR1,3,8,9). Furthermore, a family of neuropeptides that act as muscle relaxants in echinoderms (SALMFamides) are ligands for two A. rubens kisspeptin-type receptors (ArKPR6,7). The SALMFamide neuropeptide S1 (or ArS1.4) and a 'cocktail' of the seven neuropeptides derived from the S1 precursor protein (ArS1.1-ArS1.7) act as ligands for ArKPR7. The SALMFamide neuropeptide S2 (or ArS2.3) and a 'cocktail' of the eight neuropeptides derived from the S2 precursor protein (ArS2.1-ArS2.8) act as ligands for ArKPR6. CONCLUSIONS Our findings reveal a remarkable diversity of neuropeptides that act as ligands for kisspeptin-type receptors in starfish and provide important new insights into the evolution of kisspeptin signaling. Furthermore, the discovery of the hitherto unknown relationship of kisspeptins with SALMFamides, neuropeptides that were discovered in starfish prior to the identification of kisspeptins in mammals, presents a radical change in perspective for research on kisspeptin signaling.
Collapse
Affiliation(s)
- Nayeli Escudero Castelán
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
| | - Dean C Semmens
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
- Present address: Institute of Medical and Biomedical Education, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Luis Alfonso Yañez Guerra
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
- Present Address: Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Meet Zandawala
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
- Present Address: Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Mario Dos Reis
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
| | - Susan E Slade
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Present address: Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, UK
| | - James H Scrivens
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Present address: School of Science, Engineering & Design, Stephenson Street, Teesside University, Middlesbrough, TS1 3BX, TS1 3BA, Tees Valley, UK
| | | | - Alexandra M Jones
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Olivier Mirabeau
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015, Paris, France
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK.
| |
Collapse
|
11
|
Caillet C, Stofberg ML, Muleya V, Shonhai A, Zininga T. Host cell stress response as a predictor of COVID-19 infectivity and disease progression. Front Mol Biosci 2022; 9:938099. [PMID: 36032680 PMCID: PMC9411049 DOI: 10.3389/fmolb.2022.938099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The coronavirus disease (COVID-19) caused by a coronavirus identified in December 2019 has caused a global pandemic. COVID-19 was declared a pandemic in March 2020 and has led to more than 6.3 million deaths. The pandemic has disrupted world travel, economies, and lifestyles worldwide. Although vaccination has been an effective tool to reduce the severity and spread of the disease there is a need for more concerted approaches to fighting the disease. COVID-19 is characterised as a severe acute respiratory syndrome . The severity of the disease is associated with a battery of comorbidities such as cardiovascular diseases, cancer, chronic lung disease, and renal disease. These underlying diseases are associated with general cellular stress. Thus, COVID-19 exacerbates outcomes of the underlying conditions. Consequently, coronavirus infection and the various underlying conditions converge to present a combined strain on the cellular response. While the host response to the stress is primarily intended to be of benefit, the outcomes are occasionally unpredictable because the cellular stress response is a function of complex factors. This review discusses the role of the host stress response as a convergent point for COVID-19 and several non-communicable diseases. We further discuss the merits of targeting the host stress response to manage the clinical outcomes of COVID-19.
Collapse
Affiliation(s)
- Celine Caillet
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Victor Muleya
- Department of Biochemistry, Midlands State University, Gweru, Zimbabwe
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
12
|
Park JS, Kang DR, Shim KS. Proteomic changes in broiler liver by body weight differences under chronic heat stress. Poult Sci 2022; 101:101794. [PMID: 35334443 PMCID: PMC8942842 DOI: 10.1016/j.psj.2022.101794] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 11/19/2022] Open
Abstract
The increasing global temperature is causing economic losses and animal welfare problems in the poultry industry. Because poultry do not have sweat glands, it is difficult for them to return to their usual body temperature. Heat stress has negative impact on production and health in broilers. Given the effects of chronic stress on broilers, the objective of this study was to identify physiological changes in differentially expressed proteins in broilers with different growth performances using liver tissue from 35-day-old chickens (Ross-308). Changes in protein levels were analyzed with two-dimensional gel electrophoresis (2DE) and mass spectrometry. This study contained 2 groups (control and heat treatment groups) with 8 replicates per group. After d 20, ten birds were assigned to each replicate. On d 35, the heat treatment group was subdivided into 2 groups, a heat stressed high body weight group (HH) and a heat stressed low body weight group (HL). Body weight was lower in the heat treatment group than that in the control group. In the heat treatment group, the HH group had a significantly higher body weight than the HL group. The expression of heat shock protein 70 significantly increased in the HL group. Protein spots with significant differences in 2DE analysis were screened and selected. Thirteen significant spots were excised and analyzed using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Among the 13 spots, 8 spots were identified. The identified spots were MRP-126, fatty acid binding protein, ferritin heavy chain, glutathione S-transferase, agmatinase; mitochondrial, alpha-enolase, 60 kDa heat shock protein; mitochondrial, and tubulin beta-7 chain. Our study has showed that high temperature stress aggravated oxidative stress in broilers, which resulted in comparatively slow growth to preserve body homeostasis.
Collapse
Affiliation(s)
- Jin Sung Park
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Da Rae Kang
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kwan Seob Shim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea; Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
13
|
The Association of Serum Circulating Neuropeptide Q and Chemerin Levels with Cardiometabolic Risk Factors among Patients with Metabolic Syndrome. Biomolecules 2021; 11:biom11121863. [PMID: 34944507 PMCID: PMC8699277 DOI: 10.3390/biom11121863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022] Open
Abstract
The potential involvement of neuropeptide Q (NPQ) and chemerin (CHEM) in metabolic disorders is yet to be fully elucidated. The aim of this study was to evaluate serum concentrations of NPQ and CHEM and to establish their relationship with cardiometabolic risk factors among individuals with metabolic syndrome. A total of 66 patients with metabolic syndrome (MetS) and 83 healthy volunteers (non-MetS) underwent biochemical, blood pressure, and anthropometric measurements. The concentration of NPQ in the MetS group was significantly lower (0.47 (0.34 ; 0.54) vs. 0.52 (0.43 ; 0.60) ng/mL, p = 0.015) than in non-MetS, while there were no differences in CHEM level. In the entire study population, we observed several negative correlations between NPQ concentration and waist-hip ratio (WHR), visceral adipose tissue, diastolic blood pressure (DBP), triglycerides (TG) along with a positive correlation with high-density lipoprotein (HDL), total muscle mass, and CHEM. Moreover, a negative correlation was observed in the MetS group between NPQ and glycemia. CHEM showed no significant correlations with cardiometabolic risk factors in the study population. In a multiple regression model, the total muscle mass proved to be an independent factor determining NPQ concentration in the population (p < 0.00000001, R2adj = 28.6%). NPQ seems to protect against metabolic disorders correlated with obesity. Thus, it is worth considering NPQ level as a candidate protective biomarker of metabolic syndrome complications.
Collapse
|
14
|
Manfredi LH. Overheating or overcooling: heat transfer in the spot to fight against the pandemic obesity. Rev Endocr Metab Disord 2021; 22:665-680. [PMID: 33000381 DOI: 10.1007/s11154-020-09596-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 12/25/2022]
Abstract
The prevalence of obesity has nearly doubled worldwide over the past three and a half decades, reaching pandemic status. Obesity is associated with decreased life expectancy and with an increased risk of metabolic, cardiovascular, nervous system diseases. Hence, understanding the mechanisms involved in the onset and development of obesity is mandatory to promote planned health actions to revert this scenario. In this review, common aspects of cold exposure, a process of heat generation, and exercise, a process of heat dissipation, will be discussed as two opposite mechanisms of obesity, which can be oversimplified as caloric conservation. A common road between heat generation and dissipation is the mobilization of Free Faty Acids (FFA) and Carbohydrates (CHO). An increase in energy expenditure (immediate effect) and molecular/metabolic adaptations (chronic effect) are responses that depend on SNS activity in both conditions of heat transfer. This cycle of using and removing FFA and CHO from blood either for heat or force generation disrupt the key concept of obesity: energy accumulation. Despite efforts in making the anti-obesity pill, maybe it is time to consider that the world's population is living at thermoneutrality since temperature-controlled places and the lack of exercise are favoring caloric accumulation.
Collapse
Affiliation(s)
- Leandro Henrique Manfredi
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil.
| |
Collapse
|
15
|
Costa-Beber LC, Heck TG, Fiorin PBG, Ludwig MS. HSP70 as a biomarker of the thin threshold between benefit and injury due to physical exercise when exposed to air pollution. Cell Stress Chaperones 2021; 26:889-915. [PMID: 34677749 PMCID: PMC8578518 DOI: 10.1007/s12192-021-01241-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Physical exercise has acute and chronic effects on inflammatory balance, metabolic regulation, and redox status. Exercise-induced adaptations are mediated by enhanced 70-kDa heat shock protein (HSP70) levels and an improved heat shock response (HSR). Therefore, exercise could be useful against disease conditions [obesity, diabetes mellitus (DM), and exposure to atmospheric pollutants] marked by an impaired HSR. However, exercise performed by obese or diabetic subjects under pollution conditions might also be dangerous at certain intensities. Intensity correlates with an increase in HSP70 levels during physical exercise until a critical point at which the effort becomes harmful and impairs the HSR. Establishing a unique biomarker able to indicate the exercise intensity on metabolism and cellular fatigue is essential to ensure adequate and safe exercise recommendations for individuals with obesity or DM who require exercise to improve their metabolic status and live in polluted regions. In this review, we examined the available evidence supporting our hypothesis that HSP70 could serve as a biomarker for determining the optimal exercise intensity for subjects with obesity or diabetes when exposed to air pollution and establishing the fine threshold between anti-inflammatory and pro-inflammatory exercise effects.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil.
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil.
| | - Thiago Gomes Heck
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil
| | - Pauline Brendler Goettems Fiorin
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil
| |
Collapse
|
16
|
Kavalakatt S, Khadir A, Madhu D, Koistinen HA, Al-Mulla F, Tuomilehto J, Abubaker J, Tiss A. Urocortin 3 overexpression reduces ER stress and heat shock response in 3T3-L1 adipocytes. Sci Rep 2021; 11:15666. [PMID: 34341463 PMCID: PMC8329193 DOI: 10.1038/s41598-021-95175-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022] Open
Abstract
The neuropeptide urocortin 3 (UCN3) has a beneficial effect on metabolic disorders, such as obesity, diabetes, and cardiovascular disease. It has been reported that UCN3 regulates insulin secretion and is dysregulated with increasing severity of obesity and diabetes. However, its function in the adipose tissue is unclear. We investigated the overexpression of UCN3 in 3T3-L1 preadipocytes and differentiated adipocytes and its effects on heat shock response, ER stress, inflammatory markers, and glucose uptake in the presence of stress-inducing concentrations of palmitic acid (PA). UCN3 overexpression significantly downregulated heat shock proteins (HSP60, HSP72 and HSP90) and ER stress response markers (GRP78, PERK, ATF6, and IRE1α) and attenuated inflammation (TNFα) and apoptosis (CHOP). Moreover, enhanced glucose uptake was observed in both preadipocytes and mature adipocytes, which is associated with upregulated phosphorylation of AKT and ERK but reduced p-JNK. Moderate effects of UCN3 overexpression were also observed in the presence of 400 μM of PA, and macrophage conditioned medium dramatically decreased the UCN3 mRNA levels in differentiated 3T3-L1 cells. In conclusion, the beneficial effects of UCN3 in adipocytes are reflected, at least partially, by the improvement in cellular stress response and glucose uptake and attenuation of inflammation and apoptosis.
Collapse
Affiliation(s)
- Sina Kavalakatt
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait
| | - Abdelkrim Khadir
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait
| | - Dhanya Madhu
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait
| | - Heikki A Koistinen
- University of Helsinki and Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Fahd Al-Mulla
- Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - Jaakko Tuomilehto
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait
| | - Ali Tiss
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait.
| |
Collapse
|
17
|
Saxton SN, Toms LK, Aldous RG, Withers SB, Ohanian J, Heagerty AM. Restoring Perivascular Adipose Tissue Function in Obesity Using Exercise. Cardiovasc Drugs Ther 2021; 35:1291-1304. [PMID: 33687595 PMCID: PMC8578065 DOI: 10.1007/s10557-020-07136-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Purpose Perivascular adipose tissue (PVAT) exerts an anti-contractile effect which is vital in regulating vascular tone. This effect is mediated via sympathetic nervous stimulation of PVAT by a mechanism which involves noradrenaline uptake through organic cation transporter 3 (OCT3) and β3-adrenoceptor-mediated adiponectin release. In obesity, autonomic dysfunction occurs, which may result in a loss of PVAT function and subsequent vascular disease. Accordingly, we have investigated abnormalities in obese PVAT, and the potential for exercise in restoring function. Methods Vascular contractility to electrical field stimulation (EFS) was assessed ex vivo in the presence of pharmacological tools in ±PVAT vessels from obese and exercised obese mice. Immunohistochemistry was used to detect changes in expression of β3-adrenoceptors, OCT3 and tumour necrosis factor-α (TNFα) in PVAT. Results High fat feeding induced hypertension, hyperglycaemia, and hyperinsulinaemia, which was reversed using exercise, independent of weight loss. Obesity induced a loss of the PVAT anti-contractile effect, which could not be restored via β3-adrenoceptor activation. Moreover, adiponectin no longer exerts vasodilation. Additionally, exercise reversed PVAT dysfunction in obesity by reducing inflammation of PVAT and increasing β3-adrenoceptor and OCT3 expression, which were downregulated in obesity. Furthermore, the vasodilator effects of adiponectin were restored. Conclusion Loss of neutrally mediated PVAT anti-contractile function in obesity will contribute to the development of hypertension and type II diabetes. Exercise training will restore function and treat the vascular complications of obesity. Supplementary Information The online version contains supplementary material available at 10.1007/s10557-020-07136-0.
Collapse
Affiliation(s)
- Sophie N Saxton
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, UK
| | - Lauren K Toms
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | | | - Sarah B Withers
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, UK
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Jacqueline Ohanian
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.
- The Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, UK.
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, Core Technology Facility (3rd floor), 46 Grafton Street, Manchester, M13 9NT, UK.
| |
Collapse
|
18
|
Chronic heat stress regulates the relation between heat shock protein and immunity in broiler small intestine. Sci Rep 2020; 10:18872. [PMID: 33139769 PMCID: PMC7608671 DOI: 10.1038/s41598-020-75885-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic heat stress is considered to decrease the immune functions which makes negative effect on broiler growth performance. Here, we investigated the relationship between chronic heat stress, growth performance, and immunity in the small intestine of broilers. The study included two groups (control and heat stressed group) with eight replications per group. Ten broilers of 20-day aged were allocated in each replication. On day 35, the treatment group was subdivided into two groups based on their body weights (heavy and low body weight). Although, there was only the control and treatment group on day 28. The growth performance decreased and expression of heat shock protein 70 (HSP70), HSP60, and HSP47 increased on days 28 and 35 in the chronic heat stress group as compared with those in the control group. The expression levels of HSPs were significantly higher in the low body weight group than in the control group. The genes HSP70 and HSP60 were significantly associated with pro- and anti-inflammatory cytokines in the small intestine of the broilers of the treatment group. Thus, HSP70 and HSP60 activated the adaptive immunity in the small intestines of the broilers from the treatment group to allow adaptation to chronic heat stress environment.
Collapse
|
19
|
Identifying Heat Shock Protein Families from Imbalanced Data by Using Combined Features. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:8894478. [PMID: 33029195 PMCID: PMC7530508 DOI: 10.1155/2020/8894478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 11/29/2022]
Abstract
Heat shock proteins (HSPs) are ubiquitous in living organisms. HSPs are an essential component for cell growth and survival; the main function of HSPs is controlling the folding and unfolding process of proteins. According to molecular function and mass, HSPs are categorized into six different families: HSP20 (small HSPS), HSP40 (J-proteins), HSP60, HSP70, HSP90, and HSP100. In this paper, improved methods for HSP prediction are proposed—the split amino acid composition (SAAC), the dipeptide composition (DC), the conjoint triad feature (CTF), and the pseudoaverage chemical shift (PseACS) were selected to predict the HSPs with a support vector machine (SVM). In order to overcome the imbalance data classification problems, the syntactic minority oversampling technique (SMOTE) was used to balance the dataset. The overall accuracy was 99.72% with a balanced dataset in the jackknife test by using the optimized combination feature SAAC+DC+CTF+PseACS, which was 4.81% higher than the imbalanced dataset with the same combination feature. The Sn, Sp, Acc, and MCC of HSP families in our predictive model were higher than those in existing methods. This improved method may be helpful for protein function prediction.
Collapse
|
20
|
Madhu D, Khadir A, Hammad M, Kavalakatt S, Dehbi M, Al-Mulla F, Abubaker J, Tiss A. The GLP-1 analog exendin-4 modulates HSP72 expression and ERK1/2 activity in BTC6 mouse pancreatic cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140426. [DOI: 10.1016/j.bbapap.2020.140426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/09/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022]
|
21
|
Kaki A, Nikbakht M, Habibi A, Moghadam H. Effect of aerobic exercise on innate immune responses and inflammatory mediators in the spinal cord of diabetic rats. COMPARATIVE EXERCISE PHYSIOLOGY 2020. [DOI: 10.3920/cep190050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuronal inflammation is one of the pathophysiological causes of diabetes neuropathic pain. The purpose of this research was to determine the effect of aerobic exercise on innate immune responses and inflammatory mediators in the spinal dorsal horn in rats with diabetic neuropathic pain. 40 eight-week-old male Wistar rats (weight range 220±10.2 g) were randomly divided into four groups of (1) sedentary diabetic neuropathy (SDN), (2) training diabetic neuropathy (TDN), (3) training control (TC), and (4) sedentary control (SC). Diabetes was induced by injection of streptozocin (50 mg/kg). Following confirmation of behavioural tests for diabetes neuropathy, the training groups performed 6 weeks of moderate-intensity aerobic exercise on the treadmill. The expression of Toll like receptor (TLR)4, TLR2, tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-10 genes in L4-L6 spinal cord sensory neurons was measured by Real Time PCR. Two-way ANOVA and Bonferroni’s post hoc tests were used for statistical analysis. After performing aerobic exercise protocol, the TDN compared to the SDN showed a significant decrease in the mean score of pain in the formalin test and a significant increase in the latency in Tail-Flick test was observed. The expression of TLR4, TLR2, TNF-α and IL-1β genes was significantly higher in the SDN than in the SC group (P<0.05). The expression of the above genes in the TDN was significantly lower than the SDN group (P<0.05). Also, the expression level of IL-10 gene was significantly higher in the TDN than the SDN group (P<0.05). Aerobic exercise improved sensitivity of nociceptors to pain-inducing agents in diabetic neuropathy due to inhibition of inflammatory receptors and increased levels of anti-inflammatory agents in the nervous system. Thus, aerobic exercise should be used as a non-pharmacological intervention for diabetic patients to reduce neuropathic pain.
Collapse
Affiliation(s)
- A. Kaki
- Department of Sport Physiology, Faculty of Sports Science, Shahid Chamran University of Ahvaz, 6135783151 Ahvaz, Iran
| | - M. Nikbakht
- Department of Sport Physiology, Faculty of Sports Science, Shahid Chamran University of Ahvaz, 6135783151 Ahvaz, Iran
| | - A.H. Habibi
- Department of Sport Physiology, Faculty of Sports Science, Shahid Chamran University of Ahvaz, 6135783151 Ahvaz, Iran
| | - H.F. Moghadam
- Department of Medical Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
22
|
Khadir A, Kavalakatt S, Madhu D, Devarajan S, Abubaker J, Al-Mulla F, Tiss A. Spexin as an indicator of beneficial effects of exercise in human obesity and diabetes. Sci Rep 2020; 10:10635. [PMID: 32606431 PMCID: PMC7327065 DOI: 10.1038/s41598-020-67624-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Spexin is a novel neuropeptide playing an emerging role in metabolic diseases such as obesity and diabetes via involvement in energy homeostasis and food intake. The present study investigated the effects of obesity and type 2 diabetes (T2D) on circulating levels of spexin and its modulation by physical exercise. Normal-weight (n = 50) and obese adults with and without T2D (n = 69 and n = 66, respectively) were enrolled in the study. A subgroup of obese participants (n = 47) underwent a supervised 3-month exercise programme. Plasma spexin levels were measured by ELISA and correlated with various markers. Plasma spexin levels decreased in obese participants with or without T2D compared with those of normal-weight participants (0.43 ± 0.11, 0.44 ± 0.12 and 0.61 ± 0.23 ng/ml, respectively; P < 0.001). Spexin levels negatively correlated with adiposity markers and blood pressure in the whole study population (P < 0.05). Multiple regression analysis revealed blood pressure was the greatest predictive determinant of plasma spexin levels, which significantly increased in response to physical exercise in obese participants without and with T2D (P < 0.05). Spexin levels significantly increased only in responders to exercise (those with increased oxygen consumption, VO2 max) with a concomitant improvement in metabolic profile. In conclusion, plasma spexin levels may be an indicator of response to physical exercise.
Collapse
Affiliation(s)
- Abdelkrim Khadir
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box1180, 15462, Dasman, Kuwait
| | - Sina Kavalakatt
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box1180, 15462, Dasman, Kuwait
| | - Dhanya Madhu
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box1180, 15462, Dasman, Kuwait
| | | | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box1180, 15462, Dasman, Kuwait
| | - Fahd Al-Mulla
- Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - Ali Tiss
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box1180, 15462, Dasman, Kuwait.
| |
Collapse
|
23
|
Lissarassa YPS, Vincensi CF, Costa-Beber LC, Dos Santos AB, Goettems-Fiorin PB, Dos Santos JB, Donato YH, Wildner G, Homem de Bittencourt Júnior PI, Frizzo MN, Heck TG, Ludwig MS. Chronic heat treatment positively impacts metabolic profile of ovariectomized rats: association with heat shock response pathways. Cell Stress Chaperones 2020; 25:467-479. [PMID: 32215846 PMCID: PMC7192980 DOI: 10.1007/s12192-020-01087-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 01/11/2023] Open
Abstract
Low estrogen levels may predispose women to increased bodyweight and dyslipidemia. Previous studies from our laboratory suggest an involvement of depressed heat shock response (HSR) in this scenario because estrogen potently stimulates HSR. As heat treatment induces the expression of the anti-inflammatory heat shock proteins of the 70-kDa family (HSP70) and its accompanying HSR, we aimed to investigate whether chronic heat treatment promotes beneficial effects on biometric, lipid profile, oxidative stress, and HSR in ovariectomized rats. Wistar adult female rats (n = 32) were divided into four groups: control (C, n = 7), ovariectomized (OVX, n = 9), heat-treated (HT, n = 9), and heat-treated ovariectomized rats (OVX+HT, n = 7). HT and OVX+HT rats were anesthetized and submitted to heat treatment (once a week for 12 weeks) in a water bath (41 °C) to increase rats' rectal temperature up to 41 °C for 15 min, while C and OVX animals were submitted to a 36 °C water bath. HT attenuated the weight gain induced by OVX and increased HDL cholesterol and triglyceride serum levels. Also, OVX rats showed increased total cholesterol and LDL cholesterol levels that were not influenced by HT. Interestingly, it was found that an overall trend for HT to decrease tissue catalase and superoxide dismutase antioxidant activities was paralleled by a decrease in malondialdehyde levels (indicative of lower lipoperoxidation), especially in the skeletal muscle. Surprisingly, OVX was not able to depress intracellular HSP70 expression in the skeletal muscle, as expected, and this remained unchanged with HT. However, chronic HT did enhance intracellular HSP70 contents in white adipose tissue of OVX animals. As both glucose and insulin tolerance tests were not affected by OVX, which was not modified by HT, we suppose that estrogen absence alone is not sufficient to determine a state of insulin resistance associated with low intramuscular HSP70 content.
Collapse
Affiliation(s)
- Yana Picinin Sandri Lissarassa
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Carolain Felipin Vincensi
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Lílian Corrêa Costa-Beber
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Analú Bender Dos Santos
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Jaíne Borges Dos Santos
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Yohanna Hannnah Donato
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Guilherme Wildner
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Paulo Ivo Homem de Bittencourt Júnior
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, ICBS, Porto Alegre, RS, Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
- Postgraduation Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
| |
Collapse
|
24
|
Zhang D, Liu H, Zhang Y, Li J, Fu Y, Zheng Y, Wu J, Ma M, Wen Z, Wang C. Heat shock protein 60 (HSP60) modulates adiponectin signaling by stabilizing adiponectin receptor. Cell Commun Signal 2020; 18:60. [PMID: 32272950 PMCID: PMC7147001 DOI: 10.1186/s12964-020-00546-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Adiponectin, an adipokine produced and secreted by adipocytes, is involved in regulating the development and progression of insulin resistance, diabetes, and diabetic complications. Heat shock protein 60 (HSP60) is a molecular chaperone, most commonly presenting in mitochondria and participating in the maintenance of protein homeostasis. Accumulating studies have demonstrated that the elevated circulating HSP60 and the decreased intracellular HSP60 are closely associated with diabetic complications such as diabetic cardiomyopathy. However, the underlying mechanism remains poorly understood. In the present study, we reported that HSP60 interacted directly with adiponectin receptors. Its abundance was positively associated with adiponectin action. Furthermore, HSP60 depletion markedly mitigated the protective impacts of adiponectin on high glucose-induced oxidative stress and cell apoptosis in rat cardiac H9c2 cells. In addition, HSP60 knockdown significantly enhanced proteasome activity leading to the degradation of adiponectin receptor 1. Taken together, we showed for the first time that HSP60 interacted with adiponectin receptors and mediated adiponectin signaling through stabilizing adiponectin receptor. This in vitro study also provides an alternative explanation for mechanism by which adiponectin exerts its action. Video abstract
Collapse
Affiliation(s)
- Deling Zhang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hua Liu
- Department of Clinical Pathology, The First People's Hospital of Lianyungang, Lianyungang, 222061, China
| | - Yemin Zhang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Junfeng Li
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yalin Fu
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yuyang Zheng
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Jie Wu
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Mingke Ma
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Zhongyuan Wen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Changhua Wang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
25
|
Soluble Epoxide Hydrolase 2 Expression Is Elevated in Obese Humans and Decreased by Physical Activity. Int J Mol Sci 2020; 21:ijms21062056. [PMID: 32192153 PMCID: PMC7139757 DOI: 10.3390/ijms21062056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Epoxide hydrolase 2 (EPHX2) is an emerging therapeutic target in several immunometabolic disorders. EPHX2 metabolizes anti-inflammatory epoxyeicosatrienoic acids into pro-inflammatory diols. The contribution of EPHX2 activity to human obesity remains unexplored. We compared the expression of EPHX2 between lean and obese humans (n = 20 each) in subcutaneous adipose tissue (SAT) and peripheral blood mononuclear cells (PBMCs) using RT-PCR, Western Blot analysis, immunohistochemistry, and confocal microscopy before and after a 3-month physical activity regimen. We also assessed EPHX2 levels during preadipocyte differentiation in humans and mice. EPHX2 mRNA and protein expression were significantly elevated in obese subjects, with concomitant elevated endoplasmic reticulum (ER) stress components (the 78-kDa glucose-regulated protein; GRP78, and the Activating transcription factor 6; ATF6) and inflammatory markers (Tumor necrosis factor-α; TNFα, and Interleukin 6; IL6) as compared to controls (p < 0.05). EPHX2 mRNA levels strongly correlated with adiposity markers. In obese individuals, physical activity attenuated EPHX2 expression levels in both the SAT and PBMCs, with a parallel decrease in ER stress and inflammation markers. EPHX2 expression was also elevated during differentiation of both human primary and 3T3-L1 mouse preadipocytes. Mediators of cellular stress (palmitate, homocysteine, and macrophage culture medium) also increased EPHX2 expression in 3T3-L1 preadipocytes. Our findings suggest that EPHX2 upregulation is linked to ER stress in adiposity and that physical activity may attenuate metabolic stress by reducing EPHX2 expression.
Collapse
|
26
|
Soltani N, Marandi SM, Kazemi M, Esmaeil N. The Exercise Training Modulatory Effects on the Obesity-Induced Immunometabolic Dysfunctions. Diabetes Metab Syndr Obes 2020; 13:785-810. [PMID: 32256095 PMCID: PMC7090203 DOI: 10.2147/dmso.s234992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Reduced physical activity rate in people's lifestyle is a global concern associated with the prevalence of health disorders such as obesity and metabolic disturbance. Ample evidence has indicated a critical role of the immune system in the aggravation of obesity. The type, duration, and production of adipose tissue-released mediators may change subsequent inactive lifestyle-induced obesity, leading to the chronic systematic inflammation and monocyte/macrophage (MON/MФ) phenotype polarization. Preliminary adipose tissue expansion can be inhibited by changing the lifestyle. In this context, exercise training is widely recommended due to a definite improvement of energy balance and the potential impacts on the inflammatory signaling cascades. How exercise training affects the immune system has not yet been fully elucidated, because its anti-inflammatory, pro-inflammatory, or even immunosuppressive impacts have been indicated in the literature. A thorough understanding of the mechanisms triggered by exercise can suggest a new approach to combat meta-inflammation-induced metabolic diseases. In this review, we summarized the obesity-induced inflammatory pathways, the roles of MON/MФ polarization in adipose tissue and systemic inflammation, and the underlying inflammatory mechanisms triggered by exercise during obesity.
Collapse
Affiliation(s)
- Nakisa Soltani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Sayed Mohammad Marandi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
- Sayed Mohammad Marandi Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, IranTel +983137932358Fax +983136687572 Email
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Correspondence: Nafiseh Esmaeil Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan81744-176, IranTel +98 31 37929097Fax +98 3113 7929031 Email
| |
Collapse
|
27
|
Luan X, Tian X, Zhang H, Huang R, Li N, Chen P, Wang R. Exercise as a prescription for patients with various diseases. JOURNAL OF SPORT AND HEALTH SCIENCE 2019; 8:422-441. [PMID: 31534817 PMCID: PMC6742679 DOI: 10.1016/j.jshs.2019.04.002] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/12/2019] [Accepted: 03/01/2019] [Indexed: 05/18/2023]
Abstract
A growing understanding of the benefits of exercise over the past few decades has prompted researchers to take an interest in the possibilities of exercise therapy. Because each sport has its own set of characteristics and physiological complications that tend to occur during exercise training, the effects and underlying mechanisms of exercise remain unclear. Thus, the first step in probing the effects of exercise on different diseases is the selection of an optimal exercise protocol. This review summarizes the latest exercise prescription treatments for 26 different diseases: musculoskeletal system diseases (low back pain, tendon injury, osteoporosis, osteoarthritis, and hip fracture), metabolic system diseases (obesity, type 2 diabetes, type 1 diabetes, and nonalcoholic fatty liver disease), cardio-cerebral vascular system diseases (coronary artery disease, stroke, and chronic heart failure), nervous system diseases (Parkinson's disease, Huntington's disease, Alzheimer's disease, depression, and anxiety disorders), respiratory system diseases (chronic obstructive pulmonary disease, interstitial lung disease, and after lung transplantation), urinary system diseases (chronic kidney disease and after kidney transplantation), and cancers (breast cancer, colon cancer, prostate cancer, and lung cancer). Each exercise prescription is displayed in a corresponding table. The recommended type, intensity, and frequency of exercise prescriptions are summarized, and the effects of exercise therapy on the prevention and rehabilitation of different diseases are discussed.
Collapse
Affiliation(s)
- Xin Luan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiangyang Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Haixin Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Department of Sport, Huainan Normal University, Huainan 232038, China
| | - Rui Huang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Na Li
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Corresponding authors.
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Corresponding authors.
| |
Collapse
|
28
|
Mee-Inta O, Zhao ZW, Kuo YM. Physical Exercise Inhibits Inflammation and Microglial Activation. Cells 2019; 8:cells8070691. [PMID: 31324021 PMCID: PMC6678635 DOI: 10.3390/cells8070691] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence indicates that exercise can enhance brain function and attenuate neurodegeneration. Besides improving neuroplasticity by altering the synaptic structure and function in various brain regions, exercise also modulates multiple systems that are known to regulate neuroinflammation and glial activation. Activated microglia and several pro-inflammatory cytokines play active roles in the pathogenesis of neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. The purpose of this review is to highlight the impacts of exercise on microglial activation. Possible mechanisms involved in exercise-modulated microglial activation are also discussed. Undoubtedly, more studies are needed in order to disclose the detailed mechanisms, but this approach offers therapeutic potential for improving the brain health of millions of aging people where pharmacological intervention has failed.
Collapse
Affiliation(s)
- Onanong Mee-Inta
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Zi-Wei Zhao
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan.
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
29
|
Dollet L, Zierath JR. Interplay between diet, exercise and the molecular circadian clock in orchestrating metabolic adaptations of adipose tissue. J Physiol 2019; 597:1439-1450. [PMID: 30615204 DOI: 10.1113/jp276488] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
Disruption of circadian rhythmicity induced by prolonged light exposure, altered sleep patterns and shift work is associated with the development of obesity and related metabolic disorders, including type 2 diabetes and cardiovascular diseases. White and brown adipose tissue activity shows circadian rhythmicity, with daily variations in the regulation of metabolic processes such as lipolysis, glucose and lipid uptake, and adipokine secretion. The role of the circadian clock in the regulation of energy homeostasis has raised interest in clock-related strategies to mitigate metabolic disturbances associated with type 2 diabetes, including 'resynchronizing' metabolism through diet or targeting a particular time of a day to potentiate the effect of a pharmacological or physiological treatment. Exercise is an effective intervention to prevent insulin resistance and type 2 diabetes. Beyond its effect on skeletal muscle, exercise training also has a profound effect on adipose tissue. Adipose tissue partly mediates the beneficial effect of exercise on glucose and energy homeostasis, via its metabolic and endocrine function. The interaction between zeitgeber time and diet or exercise is likely to influence the metabolic response of adipose tissue and therefore impact the whole-body phenotype. Understanding the impact of circadian clock systems on human physiology and how this is regulated by exercise in a tissue-specific manner will yield new insights for the management of metabolic disorders.
Collapse
Affiliation(s)
- Lucile Dollet
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Kavalakatt S, Khadir A, Madhu D, Hammad M, Devarajan S, Abubaker J, Al-Mulla F, Tuomilehto J, Tiss A. Urocortin 3 Levels Are Impaired in Overweight Humans With and Without Type 2 Diabetes and Modulated by Exercise. Front Endocrinol (Lausanne) 2019; 10:762. [PMID: 31781037 PMCID: PMC6851015 DOI: 10.3389/fendo.2019.00762] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022] Open
Abstract
Urocortin3 (UCN3) regulates metabolic functions and is involved in cellular stress response. Although UCN3 is expressed in human adipose tissue, the association of UCN3 with obesity and diabetes remains unclear. This study investigated the effects of Type 2 diabetes (T2D) and increased body weight on the circulatory and subcutaneous adipose tissue (SAT) levels of UCN3 and assessed UCN3 modulation by a regular physical exercise. Normal-weight (n = 37) and overweight adults with and without T2D (n = 98 and n = 107, respectively) were enrolled in the study. A subset of the overweight subjects (n = 39 for each group) underwent a supervised 3-month exercise program combining both moderate intensity aerobic exercise and resistance training with treadmill. UCN3 levels in SAT were measured by immunofluorescence and RT-PCR. Circulatory UCN3 in plasma was assessed by ELISA and was correlated with various clinical and metabolic markers. Our data revealed that plasma UCN3 levels decreased in overweight subjects without T2D compared with normal-weight controls [median; 11.99 (0.78-86.07) and 6.27 (0.64-77.04), respectively; p < 0.001], whereas plasma UCN3 levels increased with concomitant T2D [median; 9.03 (0.77-104.92) p < 0.001]. UCN3 plasma levels were independently associated with glycemic index; fasting plasma glucose and hemoglobin A1c (r = 0.16 and r = 0.20, p < 0.05, respectively) and were significantly different between both overweight, with and without T2D, and normal-weight individuals (OR = 2.11 [1.84-4.11, 95% CI] and OR = 2.12 [1.59-3.10, 95% CI], p < 0.01, respectively). Conversely, the UCN3 patterns observed in SAT were opposite to those in circulation; UCN3 levels were significantly increased with body weight and decreased with T2D. After a 3-month supervised exercise protocol, UCN3 expression showed a significant reduction in SAT of both overweight groups (2.3 and 1.6-fold change; p < 0.01, respectively). In conclusion, UCN levels are differentially dysregulated in obesity in a tissue-dependent manner and can be mitigated by regular moderate physical exercise.
Collapse
Affiliation(s)
- Sina Kavalakatt
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Abdelkrim Khadir
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Dhanya Madhu
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Maha Hammad
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Jehad Abubaker
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jaakko Tuomilehto
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Ali Tiss
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- *Correspondence: Ali Tiss
| |
Collapse
|
31
|
Khadir A, Kavalakatt S, Madhu D, Hammad M, Devarajan S, Tuomilehto J, Tiss A. Fetuin-A levels are increased in the adipose tissue of diabetic obese humans but not in circulation. Lipids Health Dis 2018; 17:291. [PMID: 30579336 PMCID: PMC6303986 DOI: 10.1186/s12944-018-0919-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Background The hepatokine fetuin-A is linked to obesity and type 2 diabetes, but its presence and expression in adipose tissue remain unclear. In this study, we aimed to assess the circulating levels of fetuin-A and its expression in subcutaneous adipose tissue (SAT) from diabetic and non-diabetic obese subjects and their modulation by exercise. Methods SAT and blood were obtained from adults obese (diabetic, n=118 and non-diabetic, n=166) before and after a 3-month exercise program (diabetic, n=40 and non-diabetic, n=36, respectively). Plasma fetuin-A was assayed using ELISA. The presence and expression of fetuin-A in SAT, peripheral blood mononuclear cells (PBMCs) and cell lines (3T3-L1, THP-1, HepG2, RAW 264.7) were analysed using confocal microscopy, immunoblotting and qRT-PCR. Results Plasma fetuin-A level did not significantly differ between diabetic and non-diabetic obese subjects. However, when the non-diabetic group was divided into metabolically healthy and unhealthy phenotypes, significantly higher fetuin-A level was observed in the unhealthy sub-group. Circulating fetuin-A was mainly associated with glycaemic markers. In SAT, fetuin-A protein level was significantly higher in the diabetic obese subjects but its mRNA was not detected. Similarly, fetuin-A protein was detected in PBMCs, but its mRNA was not. In line with this, the use of various cell lines and culture media indicated that the presence of fetuin-A in SAT and PBMCs was due to its uptake from circulation rather than its endogenous expression. Finally, physical exercise decreased fetuin-A levels in both plasma and SAT in both groups. Conclusions Fetuin-A levels increased in association with diabetes in SAT but not in circulation in the obese subjects. Moreover, physical exercise decreased fetuin-A level. Fetuin-A potentially acts as a hepatokine taken up by other tissues, such as adipose tissue. Electronic supplementary material The online version of this article (10.1186/s12944-018-0919-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Sina Kavalakatt
- Research Division, Dasman Diabetes Institute, Al Kuwayt, Kuwait
| | - Dhanya Madhu
- Research Division, Dasman Diabetes Institute, Al Kuwayt, Kuwait
| | - Maha Hammad
- Research Division, Dasman Diabetes Institute, Al Kuwayt, Kuwait
| | | | | | - Ali Tiss
- Research Division, Dasman Diabetes Institute, Al Kuwayt, Kuwait. .,Functional Proteomics & Metabolomics Unit, Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait.
| |
Collapse
|
32
|
Marino Gammazza A, Macaluso F, Di Felice V, Cappello F, Barone R. Hsp60 in Skeletal Muscle Fiber Biogenesis and Homeostasis: From Physical Exercise to Skeletal Muscle Pathology. Cells 2018; 7:cells7120224. [PMID: 30469470 PMCID: PMC6315887 DOI: 10.3390/cells7120224] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022] Open
Abstract
Hsp60 is a molecular chaperone classically described as a mitochondrial protein with multiple roles in health and disease, participating to the maintenance of protein homeostasis. It is well known that skeletal muscle is a complex tissue, rich in proteins, that is, subjected to continuous rearrangements, and this homeostasis is affected by many different types of stimuli and stresses. The regular exercise induces specific histological and biochemical adaptations in skeletal muscle fibers, such as hypertrophy and an increase of mitochondria activity and oxidative capacity. The current literature is lacking in information regarding Hsp60 involvement in skeletal muscle fiber biogenesis and regeneration during exercise, and in disease conditions. Here, we briefly discuss the functions of Hsp60 in skeletal muscle fibers during exercise, inflammation, and ageing. Moreover, the potential usage of Hsp60 as a marker for disease and the evaluation of novel treatment options is also discussed. However, some questions remain open, and further studies are needed to better understand Hsp60 involvement in skeletal muscle homeostasis during exercise and in pathological condition.
Collapse
Affiliation(s)
- Antonella Marino Gammazza
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy.
| | - Filippo Macaluso
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy.
- Department of SMART Engineering Solutions & Technologies, eCampus University, 22060 Novedrate, Italy.
| | - Valentina Di Felice
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, 90127 Palermo, Italy.
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy.
| | - Rosario Barone
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy.
| |
Collapse
|