1
|
Moreira X, Van den Bossche A, Moeys K, Van Meerbeek K, Thomaes A, Vázquez-González C, Abdala-Roberts L, Brunet J, Cousins SAO, Defossez E, De Pauw K, Diekmann M, Glauser G, Graae BJ, Hagenblad J, Heavyside P, Hedwall PO, Heinken T, Huang S, Lago-Núñez B, Lenoir J, Lindgren J, Lindmo S, Mazalla L, Naaf T, Orczewska A, Paulssen J, Plue J, Rasmann S, Spicher F, Vanneste T, Verschuren L, Visakorpi K, Wulf M, De Frenne P. Variation in insect herbivory across an urbanization gradient: The role of abiotic factors and leaf secondary metabolites. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109056. [PMID: 39186848 DOI: 10.1016/j.plaphy.2024.109056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
Urbanization impacts plant-herbivore interactions, which are crucial for ecosystem functions such as carbon sequestration and nutrient cycling. While some studies have reported reductions in insect herbivory in urban areas (relative to rural or natural forests), this trend is not consistent and the underlying causes for such variation remain unclear. We conducted a continental-scale study on insect herbivory along urbanization gradients for three European tree species: Quercus robur, Tilia cordata, and Fraxinus excelsior, and further investigated their biotic and abiotic correlates to get at mechanisms. To this end, we quantified insect leaf herbivory and foliar secondary metabolites (phenolics, terpenoids, alkaloids) for 176 trees across eight European cities. Additionally, we collected data on microclimate (air temperature) and soil characteristics (pH, carbon, nutrients) to test for abiotic correlates of urbanization effects directly or indirectly (through changes in plant secondary chemistry) linked to herbivory. Our results showed that urbanization was negatively associated with herbivory for Q. robur and F. excelsior, but not for T. cordata. In addition, urbanization was positively associated with secondary metabolite concentrations, but only for Q. robur. Urbanization was positively associated with air temperature for Q. robur and F. excelsior, and negatively with soil nutrients (magnesium) in the case of F. excelsior, but these abiotic variables were not associated with herbivory. Contrary to expectations, we found no evidence for indirect effects of abiotic factors via plant defences on herbivory for either Q. robur or F. excelsior. Additional biotic or abiotic drivers must therefore be accounted for to explain observed urbanization gradients in herbivory and their interspecific variation.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain.
| | - Astrid Van den Bossche
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| | - Karlien Moeys
- Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200E, 3001, Leuven, Belgium
| | - Koenraad Van Meerbeek
- Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200E, 3001, Leuven, Belgium
| | - Arno Thomaes
- Research Institute for Nature and Forest (INBO), Gaverstraat 4, 9500, Geraardsbergen, Belgium
| | - Carla Vázquez-González
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, Mexico
| | - Jörg Brunet
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 190, 234 22, Lomma, Sweden
| | - Sara A O Cousins
- Department of Physical Geography, Stockholm University, 10691, Stockholm, Sweden
| | - Emmanuel Defossez
- Institute of Biology, Laboratory of Functional Ecology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Karen De Pauw
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| | - Martin Diekmann
- Institute of Ecology, FB 2, University of Bremen, James-Watt-Straße 1, 28359, Bremen, Germany
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Bente J Graae
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Jenny Hagenblad
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Paige Heavyside
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Per-Ola Hedwall
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 190, 234 22, Lomma, Sweden
| | - Thilo Heinken
- Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 3, 14469, Potsdam, Germany
| | - Siyu Huang
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Muencheberg, Germany
| | - Beatriz Lago-Núñez
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Jonathan Lenoir
- UMR, CNRS 7058 'Ecologie et Dynamique des Systèmes Anthropisés' (EDYSAN), Université de Picardie Jules Verne, 1 Rue des Louvels, F-80037, Amiens, France
| | - Jessica Lindgren
- Department of Physical Geography, Stockholm University, 10691, Stockholm, Sweden
| | - Sigrid Lindmo
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Leonie Mazalla
- Institute of Ecology, FB 2, University of Bremen, James-Watt-Straße 1, 28359, Bremen, Germany
| | - Tobias Naaf
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Muencheberg, Germany
| | - Anna Orczewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
| | - Jolina Paulssen
- Institute of Ecology, FB 2, University of Bremen, James-Watt-Straße 1, 28359, Bremen, Germany
| | - Jan Plue
- Department of Urban and Rural Development, SLU Swedish Biodiversity Centre (CBM). Swedish University for Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Sergio Rasmann
- Institute of Biology, Laboratory of Functional Ecology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Fabien Spicher
- UMR, CNRS 7058 'Ecologie et Dynamique des Systèmes Anthropisés' (EDYSAN), Université de Picardie Jules Verne, 1 Rue des Louvels, F-80037, Amiens, France
| | - Thomas Vanneste
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| | - Louis Verschuren
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium; UGent-Woodlab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium; Centre for X-ray Tomography, Ghent University, 9000, Ghent, Belgium
| | - Kristiina Visakorpi
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Monika Wulf
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Muencheberg, Germany
| | - Pieter De Frenne
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| |
Collapse
|
2
|
Hargreaves AL, Ensing J, Rahn O, Oliveira FMP, Burkiewicz J, Lafond J, Haeussler S, Byerley-Best MB, Lazda K, Slinn HL, Martin E, Carlson ML, Sformo TL, Dawson-Glass E, Chiuffo MC, Vargas-Rodriguez YL, García-Jiménez CI, Gomes IJMT, Klemet-N'Guessan S, Paolucci L, Joly S, Mehltreter K, Muñoz J, Buono C, Brodie JF, Rodriguez-Campbell A, Veen T, Freeman BG, Lee-Yaw JA, Muñoz JC, Paquette A, Butler J, Suaréz E. Latitudinal gradients in seed predation persist in urbanized environments. Nat Ecol Evol 2024; 8:1897-1906. [PMID: 39237759 DOI: 10.1038/s41559-024-02504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/15/2024] [Indexed: 09/07/2024]
Abstract
Urbanization is creating a new global biome, in which cities and suburbs around the world often resemble each other more than the local natural areas they replaced. But while urbanization can profoundly affect ecology at local scales, we know little about whether it disrupts large-scale ecological patterns. Here we test whether urbanization disrupts a macroecological pattern central to ecological and evolutionary theory: the increase in seed predation intensity from high to low latitudes. Across 14,000 km of latitude spanning the Americas, we compared predation intensity on two species of standardized experimental seeds in urbanized and natural areas. In natural areas, predation on both seed species increased fivefold from high latitudes to the tropics, one of the strongest latitudinal gradients in species interactions documented so far. Surprisingly, latitudinal gradients in predation were equally strong in urbanized areas despite significant habitat modification. Nevertheless, urbanization did affect seed predation. Compared with natural areas, urbanization reduced overall predation and vertebrate predation, did not affect predation by invertebrates in general, and increased predation by ants. Our results show that macroecological patterns in predation intensity can persist in urbanized environments, even as urbanization alters the relative importance of predators and potentially the evolutionary trajectory of urban populations.
Collapse
Affiliation(s)
| | - John Ensing
- Department of Biology, Okanagan College, Vernon, British Columbia, Canada
| | - Olivia Rahn
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Fernanda M P Oliveira
- Departamento de Ciências Biológica, Universidade de Pernambuco; Campus Garanhuns, Garanhuns, Pernambuco, Brasil
| | - Jérôme Burkiewicz
- Département de Sciences Biologiques, Université de Montréal, Montréal, Quebec, Canada
| | - Joëlle Lafond
- Département de Sciences Biologiques, Université de Montréal, Montréal, Quebec, Canada
| | - Sybille Haeussler
- University of Northern British Columbia, Smithers, British Columbia, Canada
| | - M Brooke Byerley-Best
- Botanical Research Institute of Texas, Fort Worth Botanic Garden, Fort Worth, TX, USA
| | - Kira Lazda
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Heather L Slinn
- Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Vive Crop Protection, Mississauga, Ontario, Canada
| | - Ella Martin
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Matthew L Carlson
- Alaska Center for Conservation Science, University of Alaska, Anchorage, AK, USA
| | - Todd L Sformo
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | | | - Mariana C Chiuffo
- INIBIOMA, Universidad Nacional del Comahue, CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | | | | | - Inácio J M T Gomes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Lucas Paolucci
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Simon Joly
- Département de Sciences Biologiques, Université de Montréal, Montréal, Quebec, Canada
- Montreal Botanical Garden, Montreal, Quebec, Canada
| | - Klaus Mehltreter
- Red de Ecología Funcional, Instituto de Ecología, Xalapa, Veracruz, Mexico
| | - Jenny Muñoz
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carmela Buono
- Department of Biological Sciences, SUNY Binghamton University, Binghamton, NY, USA
| | - Jedediah F Brodie
- Biological Science and Wildlife Biology Program, University of Montana, Missoula, MT, USA
- Institute for Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | | | - Thor Veen
- Quest University Canada, Squamish, British Columbia, Canada
| | - Benjamin G Freeman
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Julie A Lee-Yaw
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | - Esteban Suaréz
- Instituto Biósfera and Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
3
|
Fujita T, Tsuda N, Koide D, Fukano Y, Inoue T. The flower does not open in the city: evolution of plant reproductive traits of Portulaca oleracea in urban populations. ANNALS OF BOTANY 2024:mcae105. [PMID: 39084677 DOI: 10.1093/aob/mcae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND AND AIMS The impact of urbanization on plant evolution, particularly the evolution of reproductive traits, remains largely unknown. In this study, we aimed to investigate the consequences of urbanization on the reproductive traits of Portulaca oleracea in the Kantō region of Japan. Portulaca oleracea has a unique cleistogamous reproductive system, which consists of genetically determined chasmogamous (open, CH) and cleistogamous (closed, CL) plants. METHODS We collected seeds of P. oleracea from ten populations in rural areas and ten populations in urban areas. In a common garden experiment, we recorded the type of flowers (CH or CL), reproductive phenology and seed production. KEY RESULTS All individuals produced either CH or CL flowers, allowing us to classify them as either CH or CL plants. We observed a significant difference in the prevalence of CH and CL plants between rural and urban populations: the number of CH plants was generally low and was particularly low among urban individuals. Compared to CH plants, CL plants showed earlier phenology and produced heavier seeds, which is consistent with stress avoidance in response to heat and drought stress conditions in urban areas. CONCLUSIONS Our findings suggest that urbanization may drive an evolutionary change in the cleistogamous reproductive system of P. oleracea. CL plants with earlier phenology and larger seeds might be better adapted to urban environments, where they are subjected to harsh heat and drought stress.
Collapse
Affiliation(s)
- Tomohiro Fujita
- National Institute for Environmental Studies, Ibaraki, Japan
| | - Naoe Tsuda
- National Institute for Environmental Studies, Ibaraki, Japan
| | - Dai Koide
- National Institute for Environmental Studies, Ibaraki, Japan
| | - Yuya Fukano
- Graduate School of Horticulture, Chiba University, Chiba, Japan
| | - Tomomi Inoue
- National Institute for Environmental Studies, Ibaraki, Japan
| |
Collapse
|
4
|
Uhey DA, Hofstetter RW, Earl S, Holden J, Sprague T, Rowe H. Living on the edge: The sensitivity of arthropods to development and climate along an urban-wildland interface in the Sonoran Desert of central Arizona. PLoS One 2024; 19:e0297227. [PMID: 38635739 PMCID: PMC11025936 DOI: 10.1371/journal.pone.0297227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/29/2023] [Indexed: 04/20/2024] Open
Abstract
Preservation of undeveloped land near urban areas is a common conservation practice. However, ecological processes may still be affected by adjacent anthropogenic activities. Ground-dwelling arthropods are a diverse group of organisms that are critical to ecological processes such as nutrient cycling, which are sensitive to anthropogenic activities. Here, we study arthropod dynamics in a preserve located in a heavily urbanized part of the Sonoran Desert, Arizona, U.S.. We compared arthropod biodiversity and community composition at ten locations, four paired sites representing the urban edge and one pair in the Preserve interior. In total, we captured and identified 25,477 arthropod individuals belonging to 287 lowest practical taxa (LPT) over eight years of sampling. This included 192 LPTs shared between interior and edge sites, with 44 LPTs occurring exclusively in interior sites and 48 LPTs occurring exclusively in edge sites. We found two site pairs had higher arthropod richness on the preserve interior, but results for evenness were mixed among site pairs. Compositionally, the interior and edge sites were more than 40% dissimilar, driven by species turnover. Importantly, we found that some differences were only apparent seasonally; for example edge sites had more fire ants than interior sites only during the summer. We also found that temperature and precipitation were strong predictors of arthropod composition. Our study highlights that climate can interact with urban edge effects on arthropod biodiversity.
Collapse
Affiliation(s)
- Derek A. Uhey
- School of Forestry, Northern Arizona University, Flagstaff, Arizona
| | | | - Stevan Earl
- Global Institute of Sustainability and Innovation, Arizona State University, Tempe, Arizona
| | - Jerry Holden
- McDowell Sonoran Conservancy Citizen Science Program, Scottsdale, Arizona
| | | | - Helen Rowe
- McDowell Sonoran Conservancy Citizen Science Program, Scottsdale, Arizona
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona
| |
Collapse
|
5
|
Martin E, El-Galmady S, Johnson MTJ. Urban socioeconomic variation influences the ecology and evolution of trophic interactions. Ecol Lett 2024; 27:e14407. [PMID: 38504478 DOI: 10.1111/ele.14407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
As urbanization expands, it is becoming increasingly important to understand how anthropogenic activity is affecting ecological and evolutionary processes. Few studies have examined how human social patterns within cities can modify eco-evolutionary dynamics. We tested how socioeconomic variation corresponds with changes in trophic interactions and natural selection on prey phenotypes using the classic interaction between goldenrod gall flies (Eurosta solidaginis) and their natural enemies: birds, beetles, and parasitoid wasps. We sampled galls from 84 sites across neighbourhoods with varying socioeconomic levels, and quantified the frequency of predation/parasitism on flies and natural selection by each enemy. We found that bird predation was higher in the highest income neighbourhoods, increasing the strength of selection for smaller galls. Wasp and beetle attack, but not their strength of selection, increased in lower income neighbourhoods. We show that socioeconomic variation in cities can have strong unintended consequences for the ecology and evolution of trophic interactions.
Collapse
Affiliation(s)
- Ella Martin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Samer El-Galmady
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
6
|
Méndez DS, Ramos-Zapata J, Estrada-Medina H, Carmona D. Making partners in the city: impact of urban soil P enrichment on the partnership between an invasive herb and arbuscular mycorrhizal fungi in a tropical city. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:51-62. [PMID: 37937739 DOI: 10.1111/plb.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/24/2023] [Indexed: 11/09/2023]
Abstract
The mutualistic relationship between plants and arbuscular mycorrhizal (AM) fungi is essential for optimal plant nutrition, enabling plants to better withstand biotic and abiotic stressors and enhancing survival, reproduction, and colonization of new environments. Activities, such as soil enrichment or compaction, may decrease the benefits of AM fungi for plants, potentially reducing interactions in urban environments. Here, we examine this prediction by studying how urbanization alters AM interactions with the invasive herb Ruellia nudiflora (Acanthaceae). We collected soil and plants from deep urban sites (DUS; e.g., sidewalks), open urban sites (OUS; parks), and rural sites (RS) to analyse soil nutrient content, plant morphology, AM colonization rates, spore density, richness, and diversity. Contrary to predicted, DUS had the lowest soil nutrient concentration, except for phosphorus, reducing AM colonization. This supports the prediction of reduced AM interactions in urban environments. We also found that potassium affects the AM association. Urban plants had smaller and more compact root systems compared to their rural counterparts, but there were no discernible differences in AM fungi communities between urban and rural environments. Phosphorus enrichment in sidewalks is the main driver of reductionof R. nudiflora-AM fungi interactions in Mérida. More studies are needed to gain a better understanding of how AM fungi contribute to plant colonization in urban environments.
Collapse
Affiliation(s)
- D S Méndez
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - J Ramos-Zapata
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - H Estrada-Medina
- Departamento de Manejo y Conservación de Recursos Naturales, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - D Carmona
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|
7
|
Breitbart ST, Agrawal AA, Wagner HH, Johnson MTJ. Urbanization and a green corridor do not impact genetic divergence in common milkweed (Asclepias syriaca L.). Sci Rep 2023; 13:20437. [PMID: 37993590 PMCID: PMC10665382 DOI: 10.1038/s41598-023-47524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
Urbanization is altering landscapes globally at an unprecedented rate. While ecological differences between urban and rural environments often promote phenotypic divergence among populations, it is unclear to what degree these trait differences arise from genetic divergence as opposed to phenotypic plasticity. Furthermore, little is known about how specific landscape elements, such as green corridors, impact genetic divergence in urban environments. We tested the hypotheses that: (1) urbanization, and (2) proximity to an urban green corridor influence genetic divergence in common milkweed (Asclepias syriaca) populations for phenotypic traits. Using seeds from 52 populations along three urban-to-rural subtransects in the Greater Toronto Area, Canada, one of which followed a green corridor, we grew ~ 1000 plants in a common garden setup and measured > 20 ecologically-important traits associated with plant defense/damage, reproduction, and growth over four years. We found significant heritable variation for nine traits within common milkweed populations and weak phenotypic divergence among populations. However, neither urbanization nor an urban green corridor influenced genetic divergence in individual traits or multivariate phenotype. These findings contrast with the expanding literature demonstrating that urbanization promotes rapid evolutionary change and offer preliminary insights into the eco-evolutionary role of green corridors in urban environments.
Collapse
Affiliation(s)
- Sophie T Breitbart
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
- Centre for Urban Environments, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, E145 Corson Hall, Ithaca, NY, 14853, USA
- Department of Entomology, Cornell University, 2126 Comstock Hall, Ithaca, NY, 14853, USA
| | - Helene H Wagner
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Centre for Urban Environments, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Marc T J Johnson
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Centre for Urban Environments, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
8
|
Chen SC, Hu ZA, Dai C. Unveiling human impacts on pollinators and pollination in the urbanization era. Integr Zool 2023; 18:1108-1110. [PMID: 37658733 DOI: 10.1111/1749-4877.12760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Affiliation(s)
- Si-Chong Chen
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Zhi-An Hu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Can Dai
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, China
| |
Collapse
|
9
|
Alonso‐Crespo IM, Hernández‐Agüero JA. Shedding light on trophic interactions: A field experiment on the effect of human population between latitudes on herbivory and predation patterns. Ecol Evol 2023; 13:e10449. [PMID: 37664505 PMCID: PMC10468994 DOI: 10.1002/ece3.10449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
Interactions between species within an ecosystem (e.g. predation and herbivory) play a vital role in sustaining the ecosystem functionality, which includes aspects like pest control and nutrient cycling. Unfortunately, human activities are progressively disrupting these trophic relationships, thereby contributing to the ongoing biodiversity decline. Additionally, certain human activities like urbanization may further impact the intensity of these trophic interactions, which are already known to be influenced by latitudinal gradients. The aim of this study was to test the hypothesis of whether the impact of human population, used as a proxy for human pressure, differs between latitudes. To test it, we selected 18 study sites at two latitudes (i.e. ~53°N and ~50°N) with varying human population density (HPD). We used artificial caterpillars placed on European beech branches to assess bird predation and took standardized pictures of the leaves to estimate insect herbivory. Remote sensing techniques were used to estimate human pressure. We found that the intensity of bird predation varied in response to HPD, with opposite trends observed depending on the latitude. At our upper latitude, bird predation increased with HPD, while the opposite was observed at the lower latitude. Herbivory was not affected by urbanization and we found higher levels of herbivory in the lower compared to the higher latitude. At the lower latitude, certain species may experience a disadvantage attributed to the urban heat island effect due to their sensitivity to temperature fluctuations. Conversely, at the higher latitude, where minimum temperatures can be a limitation, certain species may benefit from milder winters. Overall, this study highlights the complex and dynamic nature of trophic relationships in the face of human-driven changes to ecosystems. It also emphasizes the importance of considering both human pressure and latitudinal gradients when assessing the ecological consequences of future climate change scenarios, especially in urban environments.
Collapse
Affiliation(s)
| | - Juan Antonio Hernández‐Agüero
- Senckenberg Gesellschaft für NaturforschungFrankfurt (am Main)Germany
- Department of Environmental GeographyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
10
|
Palacio FX, Ordano M. Urbanization shapes phenotypic selection of fruit traits in a seed-dispersal mutualism. Evolution 2023; 77:1769-1779. [PMID: 37128948 DOI: 10.1093/evolut/qpad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Urbanization is currently one of the trademarks of the Anthropocene, accelerating evolutionary processes and reshaping ecological interactions over short time scales. Species interactions represent a fundamental pillar of diversity that is being altered globally by anthropogenic change. Urban environments, despite their potential impact, have seldom been studied in relation to how they shape natural selection of phenotypic traits in multispecies interactions. Using a seed-dispersal mutualism as a study system, we estimated the regime and magnitude of phenotypic selection exerted by frugivores on fruit and seed traits across three plant populations with different degrees of urbanization (urban, semiurban, and rural). Urbanization weakened phenotypic selection via an indirect positive impact on fruit production and fitness and, to a lesser extent, through a direct positive effect on species visitation rates. Our results show that urban ecosystems may affect multifarious selection of traits in the short term and highlight the role of humans in shaping eco-evolutionary dynamics of multispecies interactions.
Collapse
Affiliation(s)
- Facundo X Palacio
- Sección Ornitología, División Zoología Vertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata and Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Mariano Ordano
- Fundación Miguel Lillo, San Miguel de Tucumán, Argentina
- Instituto de Ecología Regional, Universidad Nacional de Tucumán, Consejo Nacional de Investigaciones Científicas y Técnicas, Yerba Buena, Argentina
| |
Collapse
|
11
|
Reilly K, Ellis LJA, Davoudi HH, Supian S, Maia MT, Silva GH, Guo Z, Martinez DST, Lynch I. Daphnia as a model organism to probe biological responses to nanomaterials-from individual to population effects via adverse outcome pathways. FRONTIERS IN TOXICOLOGY 2023; 5:1178482. [PMID: 37124970 PMCID: PMC10140508 DOI: 10.3389/ftox.2023.1178482] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
The importance of the cladoceran Daphnia as a model organism for ecotoxicity testing has been well-established since the 1980s. Daphnia have been increasingly used in standardised testing of chemicals as they are well characterised and show sensitivity to pollutants, making them an essential indicator species for environmental stress. The mapping of the genomes of D. pulex in 2012 and D. magna in 2017 further consolidated their utility for ecotoxicity testing, including demonstrating the responsiveness of the Daphnia genome to environmental stressors. The short lifecycle and parthenogenetic reproduction make Daphnia useful for assessment of developmental toxicity and adaption to stress. The emergence of nanomaterials (NMs) and their safety assessment has introduced some challenges to the use of standard toxicity tests which were developed for soluble chemicals. NMs have enormous reactive surface areas resulting in dynamic interactions with dissolved organic carbon, proteins and other biomolecules in their surroundings leading to a myriad of physical, chemical, biological, and macromolecular transformations of the NMs and thus changes in their bioavailability to, and impacts on, daphnids. However, NM safety assessments are also driving innovations in our approaches to toxicity testing, for both chemicals and other emerging contaminants such as microplastics (MPs). These advances include establishing more realistic environmental exposures via medium composition tuning including pre-conditioning by the organisms to provide relevant biomolecules as background, development of microfluidics approaches to mimic environmental flow conditions typical in streams, utilisation of field daphnids cultured in the lab to assess adaption and impacts of pre-exposure to pollution gradients, and of course development of mechanistic insights to connect the first encounter with NMs or MPs to an adverse outcome, via the key events in an adverse outcome pathway. Insights into these developments are presented below to inspire further advances and utilisation of these important organisms as part of an overall environmental risk assessment of NMs and MPs impacts, including in mixture exposure scenarios.
Collapse
Affiliation(s)
- Katie Reilly
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Laura-Jayne A. Ellis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hossein Hayat Davoudi
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Suffeiya Supian
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Marcella T. Maia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Gabriela H. Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Diego Stéfani T. Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Chatelain M, Rüdisser J, Traugott M. Urban-driven decrease in arthropod richness and diversity associated with group-specific changes in arthropod abundance. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.980387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Habitat loss and fragmentation caused by land-use changes in urbanised landscapes are main drivers of biodiversity loss and changes in species assemblages. While the effects of urbanisation on arthropods has received increasing attention in the last decade, most of the studies were taxon-specific, limited in time and/or covering only part of the habitats along the rural-urban gradient. To comprehensively assess the effects of urbanisation on arthropod communities, here, we sampled arthropods at 180 sites within an urban mosaic in the city of Innsbruck (Austria) using a systematic grid. At each site, arthropods were collected in three micro-habitats: the canopy, the bush layer and tree bark. They were identified to the family, infra-order or order level, depending on the taxonomic group. Urbanisation level was estimated by five different proxies extracted from land use/land cover data (e.g., impervious surface cover), all of them calculated in a 100, 500, and 1,000 m radius around the sampling points, and three indexes based on distance to settlements. We tested for the effects of different levels of urbanisation on (i) overall arthropod abundance, richness and diversity and (ii) community composition using redundancy analyses. In the canopy and the bush layer, arthropod richness and diversity decreased with increasing urbanisation level, suggesting that urbanisation acts as a filter on taxonomic groups. Our data on arthropod abundance further support this hypothesis and suggest that urbanisation disfavours wingless groups, particularly so on trees. Indeed, urbanisation was correlated to lower abundances of spiders and springtails, but higher abundances of aphids, barklice and flies. Arthropod community composition was better explained by a set of urbanisation proxies, especially impervious surface cover measured in a 100, 500, and 1,000 m radius. Arthropods are key elements of food webs and their availability in urban environments is expected to have bottom-up effects, thus shaping foraging behaviour, distribution, and/or success of species at higher trophic levels. Studying ecological networks in urban ecosystems is the next step that will allow to understand how urbanisation alters biodiversity.
Collapse
|
13
|
Qu J, Bonte D, Vandegehuchte ML. Hydrogen cyanide, a key plant defense, as a potential driver of root-associated nematode communities along urbanization gradients. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
IntroductionPlant chemical defenses can influence the distribution, community composition, and abundance of soil biota. Urbanization plays a key role in shaping soil biotic communities either directly through changes in soil properties or indirectly via changes in plant characteristics such as defense traits. The effects of urbanization and plant defenses on the abundance and structure of aboveground plant-associated communities have been studied, yet their effects on belowground root-associated communities are poorly understood.MethodsHere we sampled white clover (Trifolium repens L.) leaves and roots along urban–rural gradients in the cities of Antwerp and Ghent, Belgium. We measured production of hydrogen cyanide (HCN) in leaves, a known defense trait against herbivores, and abundances of different feeding guilds of nematodes associated with the roots.ResultsWe found that HCN production decreased with increasing levels of urbanization in both cities. Urbanization was significantly correlated with shifts in root-associated nematode community structure in Antwerp but not in Ghent. Responses of nematode feeding guilds and trophic groups to urbanization were highly dependent on the clovers’ HCN production, especially in Ghent. Changes in nematode channel ratio in Antwerp indicated that urban root-associated nematode communities of white clover were more strongly dominated by fungivorous nematodes.DiscussionOur results demonstrate that urbanization is driving changes in a plant phenotypic trait and in the community structure of root-associated nematodes, as well as that both changes interact. Plant defense mechanisms could thus help elucidate the effects of urbanization on root-associated biota communities. As strong differences existed between the two studied cities, the particular properties of cities should be taken into account to better understand the direction and strength of phenotypic trait changes driven by urbanization.
Collapse
|
14
|
Rivkin LR, de Andrade AC. Increased herbivory but not cyanogenesis is associated with urbanization in a tropical wildflower. AUSTRAL ECOL 2023. [DOI: 10.1111/aec.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- L. Ruth Rivkin
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
- Department of Biology University of Toronto Mississauga Toronto Ontario Canada
- Centre for Urban Environments University of Toronto Mississauga Toronto Ontario Canada
| | - Antonio C. de Andrade
- Universidade Federal da Paraiba Departamento de Engenharia e Meio Ambiente Rio Tinto PB Brazil
| |
Collapse
|
15
|
Fukano Y, Uchida K, Tachiki Y. Urban-rural gradients: how landscape changes drive adaptive evolution of plant competitive traits. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
16
|
Insect herbivory within modern forests is greater than fossil localities. Proc Natl Acad Sci U S A 2022; 119:e2202852119. [PMID: 36215482 PMCID: PMC9586316 DOI: 10.1073/pnas.2202852119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fossilized leaves provide the longest running record of hyperdiverse plant-insect herbivore associations. Reconstructions of these relationships over deep time indicate strong links between environmental conditions, herbivore diversity, and feeding damage on leaves. However, herbivory has not been compared between the past and the modern era, which is characterized by intense anthropogenic environmental change. Here, we present estimates for damage frequencies and diversities on fossil leaves from the Late Cretaceous (66.8 Ma) through the Pleistocene (2.06 Ma) and compare these estimates with Recent (post-1955) leaves collected via paleobotanical methods from modern ecosystems: Harvard Forest, United States; the Smithsonian Environmental Research Center, United States; and La Selva, Costa Rica. Total damage frequency, measured as the percentage of leaves with any herbivore damage, within modern ecosystems is greater than any fossil locality within this record. This pattern is driven by increased frequencies across nearly all functional feeding groups within the Recent. Diversities of total, specialized, and mining damage types are elevated within the Recent compared with fossil floras. Our results demonstrate that plants in the modern era are experiencing unprecedented levels of insect damage, despite widespread insect declines. Human influence, such as the rate of global climate warming, influencing insect feeding and timing of life cycle processes along with urbanization and the introduction of invasive plant and insect species may drive elevated herbivory. This research suggests that the strength of human influence on plant-insect interactions is not controlled by climate change alone but rather, the way in which humans interact with terrestrial landscape.
Collapse
|
17
|
Thill VL, Moniz HA, Teglas MB, Wasley MJ, Feldman CR. Preying dangerously: black widow spider venom resistance in sympatric lizards. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221012. [PMID: 36277837 PMCID: PMC9579766 DOI: 10.1098/rsos.221012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Lizards and spiders are natural adversaries, yet little is known of adaptations that lizards might possess for dealing with the venomous defences of spider prey. In the Western USA, two lizard species (Elgaria multicarinata and Sceloporus occidentalis) are sympatric with and predate western black widow spiders (Latrodectus hesperus). The consequences of black widow spider venom (BWSV) can be severe, and are well understood for mammals but unknown for reptiles. We evaluated potential resistance to BWSV in the lizards that consume black widows, and a potentially susceptible species (Uta stansburiana) known as prey of widows. We investigated BWSV effects on whole-animal performance (sprint) and muscle tissue at two venom doses compared with control injections. Sprint speed was not significantly decreased in E. multicarinata or S. occidentalis in any treatment, while U. stansburiana suffered significant performance reductions in response to BWSV. Furthermore, E. multicarinata showed minimal tissue damage and immune response, while S. occidentalis and U. stansburiana exhibited increased muscle damage and immune system infiltration in response to BWSV. Our data suggest predator-prey relationships between lizards and spiders are complex, possibly leading to physiological and molecular adaptations that allow some lizards to tolerate or overcome the dangerous defences of their arachnid prey.
Collapse
Affiliation(s)
- Vicki L. Thill
- Department of Biology, University of Nevada, Reno, NV 89557, USA
- Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV 89557, USA
| | - Haley A. Moniz
- Department of Biology, University of Nevada, Reno, NV 89557, USA
- Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV 89557, USA
| | - Mike B. Teglas
- Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV 89557, USA
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - McKenzie J. Wasley
- Department of Biology, University of Nevada, Reno, NV 89557, USA
- United States Fish and Wildlife Service, Klamath Falls Fish and Wildlife Office, Klamath Falls, OR 97602, USA
| | - Chris R. Feldman
- Department of Biology, University of Nevada, Reno, NV 89557, USA
- Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
18
|
Urbanization and a green corridor influence reproductive success and pollinators of common milkweed. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Miles LS, Murray‐Stoker D, Nhan VJ, Johnson MTJ. Effects of urbanization on specialist insect communities of milkweed are mediated by spatial and temporal variation. Ecosphere 2022. [DOI: 10.1002/ecs2.4222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Lindsay S. Miles
- Department of Biology University of Toronto Mississauga Mississauga Ontario Canada
- Centre for Urban Environments, University of Toronto Mississauga Mississauga Ontario Canada
| | - David Murray‐Stoker
- Department of Biology University of Toronto Mississauga Mississauga Ontario Canada
- Centre for Urban Environments, University of Toronto Mississauga Mississauga Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| | - Vanessa J. Nhan
- Department of Biology University of Toronto Mississauga Mississauga Ontario Canada
| | - Marc T. J. Johnson
- Department of Biology University of Toronto Mississauga Mississauga Ontario Canada
- Centre for Urban Environments, University of Toronto Mississauga Mississauga Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| |
Collapse
|
20
|
Verrelli BC, Alberti M, Des Roches S, Harris NC, Hendry AP, Johnson MTJ, Savage AM, Charmantier A, Gotanda KM, Govaert L, Miles LS, Rivkin LR, Winchell KM, Brans KI, Correa C, Diamond SE, Fitzhugh B, Grimm NB, Hughes S, Marzluff JM, Munshi-South J, Rojas C, Santangelo JS, Schell CJ, Schweitzer JA, Szulkin M, Urban MC, Zhou Y, Ziter C. A global horizon scan for urban evolutionary ecology. Trends Ecol Evol 2022; 37:1006-1019. [PMID: 35995606 DOI: 10.1016/j.tree.2022.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 10/31/2022]
Abstract
Research on the evolutionary ecology of urban areas reveals how human-induced evolutionary changes affect biodiversity and essential ecosystem services. In a rapidly urbanizing world imposing many selective pressures, a time-sensitive goal is to identify the emergent issues and research priorities that affect the ecology and evolution of species within cities. Here, we report the results of a horizon scan of research questions in urban evolutionary ecology submitted by 100 interdisciplinary scholars. We identified 30 top questions organized into six themes that highlight priorities for future research. These research questions will require methodological advances and interdisciplinary collaborations, with continued revision as the field of urban evolutionary ecology expands with the rapid growth of cities.
Collapse
Affiliation(s)
- Brian C Verrelli
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Marina Alberti
- Department of Urban Design and Planning, University of Washington, Seattle, WA 98195, USA
| | - Simone Des Roches
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Nyeema C Harris
- Applied Wildlife Ecology Lab, Yale School of the Environment, Yale University, New Haven, CT 06511, USA
| | - Andrew P Hendry
- Department of Biology, Redpath Museum, McGill University, Montreal, QC H3A 0C4, Canada
| | - Marc T J Johnson
- Department of Biology, Centre for Urban Environments, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Amy M Savage
- Department of Biology and Center for Computational & Integrative Biology, Rutgers University-Camden, Camden, NJ 08103, USA
| | | | - Kiyoko M Gotanda
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Lynn Govaert
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Lindsay S Miles
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - L Ruth Rivkin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON L5L 1C6, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kristin M Winchell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kristien I Brans
- Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Cristian Correa
- Instituto de Conservación Biodiversidad y Territorio, Centro de Humedales Río Cruces, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ben Fitzhugh
- Department of Anthropology, University of Washington, Seattle, WA 98195, USA
| | - Nancy B Grimm
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Sara Hughes
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M Marzluff
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jason Munshi-South
- Louis Calder Center & Department of Biological Sciences, Fordham University, Armonk, NY 10504, USA
| | - Carolina Rojas
- Instituto de Estudios Urbanos y Territoriales, Centro de Desarrollo Sustentable CEDEUS, Pontificia Universidad Católica de Chile, El Comendador 1916, Providencia, 7500000, Santiago, Chile
| | - James S Santangelo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON L5L 1C6, Canada
| | - Christopher J Schell
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Schweitzer
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37917, USA
| | - Marta Szulkin
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Mark C Urban
- Department of Ecology and Evolutionary Biology & Center of Biological Risk, University of Connecticut, Storrs, CT 06269, USA
| | - Yuyu Zhou
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011, USA
| | - Carly Ziter
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
21
|
Korányi D, Egerer M, Rusch A, Szabó B, Batáry P. Urbanization hampers biological control of insect pests: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155396. [PMID: 35460770 DOI: 10.1016/j.scitotenv.2022.155396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 04/15/2022] [Indexed: 05/25/2023]
Abstract
Biological control is a major ecosystem service provided by pest natural enemies, even in densely populated areas where the use of pesticides poses severe risks to human and environmental health. However, the impact of urbanization on this service and the abundance patterns of relevant functional groups of arthropods (herbivores, predators, and parasitoids) remain contested. Here, we synthesize current evidence through three hierarchical meta-analyses and show that advancing urbanization leads to outbreaks of sap-feeding insects, declining numbers of predators with low dispersal abilities, and weakened overall biological pest control delivered by arthropods. Our results suggest that sedentary predators may have the potential to effectively regulate sap-feeders, that are one of the most important pests in urban environments. A well-connected network of structurally diverse and rich green spaces with less intensive management practices is needed to promote natural plant protection in urban landscapes and sustainable cities.
Collapse
Affiliation(s)
- Dávid Korányi
- Centre for Ecological Research, Institute of Ecology and Botany, "Lendület" Landscape and Conservation Ecology, Alkotmány u. 2-4, 2163 Vácrátót, Hungary.
| | - Monika Egerer
- Technische Universität München, Department of Life Science Systems, School of Life Sciences, Hans Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Adrien Rusch
- INRAE, UMR 1065 Santé et Agroécologie du Vignoble, ISVV, Université de Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Borbála Szabó
- Centre for Ecological Research, Institute of Ecology and Botany, "Lendület" Landscape and Conservation Ecology, Alkotmány u. 2-4, 2163 Vácrátót, Hungary
| | - Péter Batáry
- Centre for Ecological Research, Institute of Ecology and Botany, "Lendület" Landscape and Conservation Ecology, Alkotmány u. 2-4, 2163 Vácrátót, Hungary
| |
Collapse
|
22
|
Theodorou P. The effects of urbanisation on ecological interactions. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100922. [PMID: 35490874 DOI: 10.1016/j.cois.2022.100922] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/10/2022] [Accepted: 04/10/2022] [Indexed: 05/25/2023]
Abstract
Cities are expanding worldwide and urbanisation is considered a global threat to biodiversity. Urban ecology has provided important insights on how urban environmental changes might affect individuals, populations, and species; however, we know little about how the ecological impacts of urbanisation alter species interactions. Species interactions are the backbone of ecological communities and play a crucial role in population and community dynamics and in the generation, maintenance and structure of biodiversity. Here, I review urban ecological studies to identify key mechanistic pathways through which urban environmental processes could alter antagonistic and mutualistic interactions among species. More specifically, I focus on insect predation, parasitoidism and herbivory, competition, insect host-pathogen interactions, and pollination. I furthermore identify important knowledge gaps that require additional research attention and I suggest future research directions that may help to shed light on the mechanisms that affect species interactions and structure insect communities and will thus aid conservation management in cities.
Collapse
Affiliation(s)
- Panagiotis Theodorou
- General Zoology, Institute for Biology, Martin-Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany.
| |
Collapse
|
23
|
Sawyer SJ, Eubanks MD, Beasley JC, Barton BT, Puckett RT, Tomeček JM, Tomberlin JK. Vertebrate and invertebrate competition for carrion in human‐impacted environments depends on abiotic factors. Ecosphere 2022. [DOI: 10.1002/ecs2.4151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Micky D. Eubanks
- Department of Entomology Texas A&M University College Station Texas USA
| | - James C. Beasley
- Savannah River Ecology Laboratory University of Georgia Aiken South Carolina USA
- Warnell School of Forestry and Natural Resources University of Georgia Athens Georgia USA
| | - Brandon T. Barton
- Department of Biological Sciences University of Manitoba Winnipeg Manitoba Canada
| | - Robert T. Puckett
- Department of Entomology Texas A&M University College Station Texas USA
| | - John M. Tomeček
- Department of Rangeland, Wildlife, and Fisheries Management Texas A&M University College Station Texas USA
| | | |
Collapse
|
24
|
Abstract
AbstractInvertebrates comprise the most diversified animal group on Earth. Due to their long evolutionary history and small size, invertebrates occupy a remarkable range of ecological niches, and play an important role as “ecosystem engineers” by structuring networks of mutualistic and antagonistic ecological interactions in almost all terrestrial ecosystems. Urban forests provide critical ecosystem services to humans, and, as in other systems, invertebrates are central to structuring and maintaining the functioning of urban forests. Identifying the role of invertebrates in urban forests can help elucidate their importance to practitioners and the public, not only to preserve biodiversity in urban environments, but also to make the public aware of their functional importance in maintaining healthy greenspaces. In this review, we examine the multiple functional roles that invertebrates play in urban forests that contribute to ecosystem service provisioning, including pollination, predation, herbivory, seed and microorganism dispersal and organic matter decomposition, but also those that lead to disservices, primarily from a public health perspective, e.g., transmission of invertebrate-borne diseases. We then identify a number of ecological filters that structure urban forest invertebrate communities, such as changes in habitat structure, increased landscape imperviousness, microclimatic changes and pollution. We also discuss the complexity of ways that forest invertebrates respond to urbanisation, including acclimation, local extinction and evolution. Finally, we present management recommendations to support and conserve viable and diverse urban forest invertebrate populations into the future.
Collapse
|
25
|
Spatiotemporal Variations and Driving Factors of Ecological Land during Urbanization—A Case Study in the Yangtze River’s Lower Reaches. SUSTAINABILITY 2022. [DOI: 10.3390/su14074256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ecological land change is an important indicator of eco-environment quality when balancing urbanization and regional ecological safety. Nantong, located in the Yangtze River’s lower reaches, has experienced rapid urbanization since the reform and opening-up policy was implemented in China in 1978. To ensure the regional ecological conservation and restoration of the Yangtze River and the city’s sustainable development, we used remote sensing technology and statistical yearbook data as well as land use dynamic degree (LUDD) and Geodetector methods to determine the spatiotemporal dynamics of ecological land in the Nantong riverine area from 1980 to 2020 and further discussed the potential driving factors. We found that (1) from 1980 to 2020, the major types of ecological land changed from cropland (82.08%), water (17.19%), and grassland (0.69%) to cropland (70.11%), water (26.98%), and forestland (2.25%), and the ecological land area decreased by 4091.36 km2 during the same period with a significantly increased dynamic degree of land use. (2) Spatial heterogeneity existed in the distribution and variation of ecological land. Water was the dominant ecological land use in the Yangtze River levee’s inner area, with transitions to cropland and impervious surfaces as the primary conversion types; cropland was the primary land use in the levee’s external area, with transitions from cropland and water to impervious surface as the primary conversion types. In addition, in cities with an early start and a high level of urbanization, most of the ecological land had been converted to impervious surfaces by urban development, whereas cities without those characteristics had retained more of their ecological land. (3) Ecological land change was influenced by a combination of natural and socio-economic factors, and there were enhanced-bi and enhanced-nonlinear interactions between them. (4) The dominant factors influencing ecological land changes during the three stages of urbanization (1980–2000, 2000–2010, and 2010–2020) were the distance to the Yangtze River, the population, and the GDP (Gross Domestic Product) of secondary industry, respectively. The role of environmental policies has gradually increased in recent years, which has played a positive role in ecological land use restoration. The findings of this study can assist policymakers in optimizing land use and restoring ecological space to conserve biodiversity.
Collapse
|
26
|
Qu J, Bonte D, Vandegehuchte ML. Phenotypic and genotypic divergence of plant‐herbivore interactions along an urbanization gradient. Evol Appl 2022; 15:865-877. [PMID: 35603025 PMCID: PMC9108311 DOI: 10.1111/eva.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
Urban environments provide challenging conditions for species survival, including increased temperatures, drought and pollution. Species can deal with these conditions through evolution across generations or the immediate expression of phenotypic plasticity. The resulting phenotypic changes are key to the performance of species and their interactions with other species in the community. We here document patterns of herbivory in Arabidopsis thaliana along a rural–urban gradient, and tested the genetic background and ecological consequences of traits related to herbivore resistance. Aphid densities increased with urbanization levels along the gradient while plant size did not change. Offspring of urban mothers, raised under common garden conditions, were larger and had a decreased trichome density and seed set but a higher caterpillar (Pieris brassicae) tolerance. In contrast, no urban evolution was detected for defences against aphids (Myzus persicae). Aphids reduced seed set more strongly in urban offspring, but this effect disappeared in second‐generation plants. In general, urban adaptations as expressed in size and caterpillar tolerance were found, but these adaptations were associated with smaller inflorescences. The maternal effect on the response of seed set to aphid feeding demonstrates the relevance of intergenerational plasticity as a direct ecological consequence of herbivory. Our study demonstrates that the urban environment interacts with the plant's genotype and the extended phenotype as determined by ecological interactions.
Collapse
Affiliation(s)
- Jiao Qu
- Lushan Botanical Garden Chinese Academy of Sciences Jiujiang 332900 Jiangxi China
- Terrestrial Ecology Unit Department of Biology Ghent University Karel Lodewijk Ledeganckstraat 35 9000 Ghent Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit Department of Biology Ghent University Karel Lodewijk Ledeganckstraat 35 9000 Ghent Belgium
| | - Martijn L. Vandegehuchte
- Terrestrial Ecology Unit Department of Biology Ghent University Karel Lodewijk Ledeganckstraat 35 9000 Ghent Belgium
- Department of Biology Norwegian University of Science and Technology Høgskoleringen 5 7491 Trondheim Norway
| |
Collapse
|
27
|
Konstantinidis K, Bampali M, de Courcy Williams M, Dovrolis N, Gatzidou E, Papazilakis P, Nearchou A, Veletza S, Karakasiliotis I. Dissecting the Species-Specific Virome in Culicoides of Thrace. Front Microbiol 2022; 13:802577. [PMID: 35330767 PMCID: PMC8940260 DOI: 10.3389/fmicb.2022.802577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Biting midges (Culicoides) are vectors of arboviruses of both veterinary and medical importance. The surge of emerging and reemerging vector-borne diseases and their expansion in geographical areas affected by climate change has increased the importance of understanding their capacity to contribute to novel and emerging infectious diseases. The study of Culicoides virome is the first step in the assessment of this potential. In this study, we analyzed the RNA virome of 10 Culicoides species within the geographical area of Thrace in the southeastern part of Europe, a crossing point between Asia and Europe and important path of various arboviruses, utilizing the Ion Torrent next-generation sequencing (NGS) platform and a custom bioinformatics pipeline based on TRINITY assembler and alignment algorithms. The analysis of the RNA virome of 10 Culicoides species resulted in the identification of the genomic signatures of 14 novel RNA viruses, including three fully assembled viruses and four segmented viruses with at least one segment fully assembled, most of which were significantly divergent from previously identified related viruses from the Solemoviridae, Phasmaviridae, Phenuiviridae, Reoviridae, Chuviridae, Partitiviridae, Orthomyxoviridae, Rhabdoviridae, and Flaviviridae families. Each Culicoides species carried a species-specific set of viruses, some of which are related to viruses from other insect vectors in the same area, contributing to the idea of a virus-carrier web within the ecosystem. The identified viruses not only expand our current knowledge on the virome of Culicoides but also set the basis of the genetic diversity of such viruses in the area of southeastern Europe. Furthermore, our study highlights that such metagenomic approaches should include as many species as possible of the local virus-carrier web that interact and share the virome of a geographical area.
Collapse
Affiliation(s)
| | - Maria Bampali
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Nikolas Dovrolis
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Elisavet Gatzidou
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | - Stavroula Veletza
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Karakasiliotis
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
28
|
Santangelo JS, Ness RW, Cohan B, Fitzpatrick CR, Innes SG, Koch S, Miles LS, Munim S, Peres-Neto PR, Prashad C, Tong AT, Aguirre WE, Akinwole PO, Alberti M, Álvarez J, Anderson JT, Anderson JJ, Ando Y, Andrew NR, Angeoletto F, Anstett DN, Anstett J, Aoki-Gonçalves F, Arietta AZA, Arroyo MTK, Austen EJ, Baena-Díaz F, Barker CA, Baylis HA, Beliz JM, Benitez-Mora A, Bickford D, Biedebach G, Blackburn GS, Boehm MMA, Bonser SP, Bonte D, Bragger JR, Branquinho C, Brans KI, Bresciano JC, Brom PD, Bucharova A, Burt B, Cahill JF, Campbell KD, Carlen EJ, Carmona D, Castellanos MC, Centenaro G, Chalen I, Chaves JA, Chávez-Pesqueira M, Chen XY, Chilton AM, Chomiak KM, Cisneros-Heredia DF, Cisse IK, Classen AT, Comerford MS, Fradinger CC, Corney H, Crawford AJ, Crawford KM, Dahirel M, David S, De Haan R, Deacon NJ, Dean C, Del-Val E, Deligiannis EK, Denney D, Dettlaff MA, DiLeo MF, Ding YY, Domínguez-López ME, Dominoni DM, Draud SL, Dyson K, Ellers J, Espinosa CI, Essi L, Falahati-Anbaran M, Falcão JCF, Fargo HT, Fellowes MDE, Fitzpatrick RM, Flaherty LE, Flood PJ, Flores MF, Fornoni J, Foster AG, Frost CJ, Fuentes TL, Fulkerson JR, Gagnon E, Garbsch F, Garroway CJ, Gerstein AC, Giasson MM, Girdler EB, Gkelis S, Godsoe W, Golemiec AM, Golemiec M, González-Lagos C, Gorton AJ, Gotanda KM, Granath G, Greiner S, Griffiths JS, Grilo F, Gundel PE, Hamilton B, Hardin JM, He T, Heard SB, Henriques AF, Hernández-Poveda M, Hetherington-Rauth MC, Hill SJ, Hochuli DF, Hodgins KA, Hood GR, Hopkins GR, Hovanes KA, Howard AR, Hubbard SC, Ibarra-Cerdeña CN, Iñiguez-Armijos C, Jara-Arancio P, Jarrett BJM, Jeannot M, Jiménez-Lobato V, Johnson M, Johnson O, Johnson PP, Johnson R, Josephson MP, Jung MC, Just MG, Kahilainen A, Kailing OS, Kariñho-Betancourt E, Karousou R, Kirn LA, Kirschbaum A, Laine AL, LaMontagne JM, Lampei C, Lara C, Larson EL, Lázaro-Lobo A, Le JH, Leandro DS, Lee C, Lei Y, León CA, Lequerica Tamara ME, Levesque DC, Liao WJ, Ljubotina M, Locke H, Lockett MT, Longo TC, Lundholm JT, MacGillavry T, Mackin CR, Mahmoud AR, Manju IA, Mariën J, Martínez DN, Martínez-Bartolomé M, Meineke EK, Mendoza-Arroyo W, Merritt TJS, Merritt LEL, Migiani G, Minor ES, Mitchell N, Mohammadi Bazargani M, Moles AT, Monk JD, Moore CM, Morales-Morales PA, Moyers BT, Muñoz-Rojas M, Munshi-South J, Murphy SM, Murúa MM, Neila M, Nikolaidis O, Njunjić I, Nosko P, Núñez-Farfán J, Ohgushi T, Olsen KM, Opedal ØH, Ornelas C, Parachnowitsch AL, Paratore AS, Parody-Merino AM, Paule J, Paulo OS, Pena JC, Pfeiffer VW, Pinho P, Piot A, Porth IM, Poulos N, Puentes A, Qu J, Quintero-Vallejo E, Raciti SM, Raeymaekers JAM, Raveala KM, Rennison DJ, Ribeiro MC, Richardson JL, Rivas-Torres G, Rivera BJ, Roddy AB, Rodriguez-Muñoz E, Román JR, Rossi LS, Rowntree JK, Ryan TJ, Salinas S, Sanders NJ, Santiago-Rosario LY, Savage AM, Scheepens JF, Schilthuizen M, Schneider AC, Scholier T, Scott JL, Shaheed SA, Shefferson RP, Shepard CA, Shykoff JA, Silveira G, Smith AD, Solis-Gabriel L, Soro A, Spellman KV, Whitney KS, Starke-Ottich I, Stephan JG, Stephens JD, Szulc J, Szulkin M, Tack AJM, Tamburrino Í, Tate TD, Tergemina E, Theodorou P, Thompson KA, Threlfall CG, Tinghitella RM, Toledo-Chelala L, Tong X, Uroy L, Utsumi S, Vandegehuchte ML, VanWallendael A, Vidal PM, Wadgymar SM, Wang AY, Wang N, Warbrick ML, Whitney KD, Wiesmeier M, Wiles JT, Wu J, Xirocostas ZA, Yan Z, Yao J, Yoder JB, Yoshida O, Zhang J, Zhao Z, Ziter CD, Zuellig MP, Zufall RA, Zurita JE, Zytynska SE, Johnson MTJ. Global urban environmental change drives adaptation in white clover. Science 2022; 375:1275-1281. [PMID: 35298255 DOI: 10.1126/science.abk0989] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale.
Collapse
Affiliation(s)
- James S Santangelo
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Centre for Urban Environments, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Rob W Ness
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Centre for Urban Environments, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Beata Cohan
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | | | - Simon G Innes
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Biology, University of Louisiana, Lafayette, LA, USA
| | - Sophie Koch
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Lindsay S Miles
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Centre for Urban Environments, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Samreen Munim
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Biology, Queen's University, Kingston, ON, Canada
| | | | - Cindy Prashad
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Alex T Tong
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Windsor E Aguirre
- Department of Biological Sciences, DePaul University, Chicago, IL, USA
| | | | - Marina Alberti
- Department of Urban Design and Planning, University of Washington, Seattle, WA, USA
| | - Jackie Álvarez
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Jill T Anderson
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Joseph J Anderson
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Yoshino Ando
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Nigel R Andrew
- Natural History Museum, Zoology, University of New England, Armidale, NSW, Australia
| | - Fabio Angeoletto
- Programa de Pós-Graduação em Geografia da UFMT, campus de Rondonópolis, Cuiabá, Brazil
| | - Daniel N Anstett
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Julia Anstett
- Graduate Program in Genome Sciences and Technology, Genome Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Mary T K Arroyo
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
| | - Emily J Austen
- Department of Biology, Mount Allison University, Sackville, NB, Canada
| | | | - Cory A Barker
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Howard A Baylis
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Julia M Beliz
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Biology, University of Miami, Miami, FL, USA
| | - Alfonso Benitez-Mora
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Santiago, Chile
| | - David Bickford
- Department of Biology, University of La Verne, La Verne, CA, USA
| | | | - Gwylim S Blackburn
- Département des sciences du bois et de la forêt, Université Laval, Quebec, QC, Canada
| | - Mannfred M A Boehm
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Stephen P Bonser
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Dries Bonte
- Department of Biology, Ghent University, Ghent, Belgium
| | - Jesse R Bragger
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
| | - Cristina Branquinho
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | | | - Jorge C Bresciano
- School of Agriculture and Environment, Wildlife and Ecology group, Massey University, Palmerston North, Manawatu, New Zealand
| | - Peta D Brom
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Anna Bucharova
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Briana Burt
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Elizabeth J Carlen
- Louis Calder Center and Department of Biological Sciences, Fordham University, Armonk, NY, USA
| | - Diego Carmona
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | | | - Giada Centenaro
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Izan Chalen
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,iBIOTROP Instituto de Biodiversidad Tropical, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jaime A Chaves
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Mariana Chávez-Pesqueira
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán AC, Mérida, Yucatán, México
| | - Xiao-Yong Chen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,Shanghai Engineering Research Center of Sustainable Plant Innovation, Shanghai 200231, China
| | - Angela M Chilton
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Kristina M Chomiak
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Diego F Cisneros-Heredia
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,iBIOTROP Instituto de Biodiversidad Tropical, Universidad San Francisco de Quito, Quito, Ecuador
| | - Ibrahim K Cisse
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Aimée T Classen
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Hannah Corney
- Biology Department, Saint Mary's University, Halifax, NS, Canada
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Kerri M Crawford
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Maxime Dahirel
- ECOBIO (Ecosystèmes, biodiversité, évolution), Université de Rennes, Rennes, France
| | - Santiago David
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Robert De Haan
- Department of Environmental Studies, Dordt University, Sioux Center, IA, USA
| | - Nicholas J Deacon
- Department of Biology, Minneapolis Community and Technical College, Minneapolis, MN, USA
| | - Clare Dean
- Department of Natural Sciences, Ecology and Environment Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Ek Del-Val
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, UNAM, Morelia, Mexico
| | | | - Derek Denney
- Department of Genetics, University of Georgia, Athens, GA, USA
| | | | - Michelle F DiLeo
- Faculty of Biological and Environmental Science, Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Yuan-Yuan Ding
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Moisés E Domínguez-López
- Corporación Científica Ingeobosque, Medellín, Antioquia, Colombia.,GTA Colombia S.A.S. Envigado, Antioquia, Colombia
| | - Davide M Dominoni
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK
| | | | - Karen Dyson
- Department of Urban Design and Planning, University of Washington, Seattle, WA, USA
| | - Jacintha Ellers
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Carlos I Espinosa
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Liliana Essi
- Departamento de Biologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Mohsen Falahati-Anbaran
- Department of Plant Sciences, School of Biology, College of Science, University of Tehran, Tehran, Iran.,NTNU University Museum, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Jéssica C F Falcão
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, Mexico
| | - Hayden T Fargo
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Mark D E Fellowes
- School of Biological Sciences, University of Reading, Whiteknights Park, Reading, Berkshire, UK
| | | | - Leah E Flaherty
- Department of Biological Sciences, MacEwan University, Edmonton, AB, Canada
| | - Pádraic J Flood
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - María F Flores
- Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
| | - Juan Fornoni
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Amy G Foster
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Tracy L Fuentes
- Department of Urban Design and Planning, University of Washington, Seattle, WA, USA
| | - Justin R Fulkerson
- Alaska Center for Conservation Science, University of Alaska Anchorage, Anchorage, AK, USA
| | - Edeline Gagnon
- Tropical Diversity, Royal Botanical Garden of Edinburgh, Edinburgh, UK.,Département de biologie, Université de Moncton, Moncton, New Brunswick, Canada
| | - Frauke Garbsch
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Aleeza C Gerstein
- Departments of Microbiology & Statistics, University of Manitoba, Winnipeg, MB, Canada
| | - Mischa M Giasson
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | | | - Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - William Godsoe
- BioProtection Research Centre, Lincoln University, Lincoln, Canterbury, New Zealand
| | | | - Mireille Golemiec
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - César González-Lagos
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Santiago, Chile.,Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Amanda J Gorton
- Department of Ecology, Evolution, and Behaviour University of Minnesota, Minneapolis, MN, USA
| | - Kiyoko M Gotanda
- Department of Zoology, University of Cambridge, Cambridge, UK.,Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Gustaf Granath
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Stephan Greiner
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Joanna S Griffiths
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Filipa Grilo
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Pedro E Gundel
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina.,ICB - University of Talca, Chile
| | - Benjamin Hamilton
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | | | - Tianhua He
- School of Molecular and Life Science, Curtin University, Perth, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Stephen B Heard
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - André F Henriques
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | | | | | - Sarah J Hill
- Natural History Museum, Zoology, University of New England, Armidale, NSW, Australia
| | - Dieter F Hochuli
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Glen R Hood
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Gareth R Hopkins
- Department of Biology, Western Oregon University, Monmouth, OR, USA
| | - Katherine A Hovanes
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Ava R Howard
- Department of Biology, Western Oregon University, Monmouth, OR, USA
| | | | | | - Carlos Iñiguez-Armijos
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Paola Jara-Arancio
- Departamento de Ciencias Biológicas y Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Institute of Ecology and Biodiversity (IEB), Chile
| | - Benjamin J M Jarrett
- Department of Zoology, University of Cambridge, Cambridge, UK.,Department of Biology, Lund University, Lund, Sweden
| | - Manon Jeannot
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Vania Jiménez-Lobato
- Escuela Superiro de Desarrollo Sustentable, Universidad Autónoma de Guerrero -CONACYT, Las Tunas, Mexico
| | - Mae Johnson
- Clarkson Secondary School, Peel District School Board, Mississauga, ON, Canada
| | - Oscar Johnson
- Homelands Sr. Public School, Peel District School Board, Mississauga, ON, Canada
| | - Philip P Johnson
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Reagan Johnson
- St. James Catholic Global Learning Centre, Dufferin-Peel Catholic District School Board, Mississauga ON, Canada
| | | | - Meen Chel Jung
- Department of Urban Design and Planning, University of Washington, Seattle, WA, USA
| | - Michael G Just
- Ecological Processes Branch, U.S. Army ERDC-CERL, Champaign, IL, USA
| | - Aapo Kahilainen
- Faculty of Biological and Environmental Science, Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Otto S Kailing
- Department of Biology, Oberlin College, Oberlin, OH, USA
| | | | - Regina Karousou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lauren A Kirn
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Anna Kirschbaum
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Anna-Liisa Laine
- Faculty of Biological and Environmental Science, Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse, Zurich, Switzerland
| | - Jalene M LaMontagne
- Department of Biological Sciences, DePaul University, Chicago, IL, USA.,Urban Wildlife Institute, Department of Conservation and Science, Lincoln Park Zoo, Chicago, IL, USA
| | - Christian Lampei
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Carlos Lara
- Departamento de Ecología, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Adrián Lázaro-Lobo
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Jennifer H Le
- Department of Biology, Center for Computational & Integrative Biology, Rutgers University-Camden, Camden, NJ, USA
| | - Deleon S Leandro
- Programa de Pós-Graduação em Geografia da UFMT, campus de Rondonópolis, Brasil
| | - Christopher Lee
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Yunting Lei
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Carolina A León
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Santiago, Chile
| | | | - Danica C Levesque
- Department of Chemistry & Biochemistry, Laurentian University, Sudbury, ON, Canada
| | - Wan-Jin Liao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Megan Ljubotina
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Hannah Locke
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Martin T Lockett
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Tiffany C Longo
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
| | | | - Thomas MacGillavry
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK
| | | | - Alex R Mahmoud
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Isaac A Manju
- Department of Biology, Western Oregon University, Monmouth, OR, USA
| | - Janine Mariën
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - D Nayeli Martínez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, UNAM, Morelia, Mexico.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, Mexico
| | - Marina Martínez-Bartolomé
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA.,Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Emily K Meineke
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | | | - Thomas J S Merritt
- Department of Chemistry & Biochemistry, Laurentian University, Sudbury, ON, Canada
| | | | - Giuditta Migiani
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK
| | - Emily S Minor
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Nora Mitchell
- Department of Biology, University of New Mexico, Albuquerque, NM, USA.,Department of Biology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701
| | - Mitra Mohammadi Bazargani
- Agriculture Institute, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Angela T Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Julia D Monk
- School of the Environment, Yale University, New Haven, CT, USA
| | | | | | - Brook T Moyers
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA.,Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Miriam Muñoz-Rojas
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia.,Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Jason Munshi-South
- Louis Calder Center and Department of Biological Sciences, Fordham University, Armonk, NY, USA
| | - Shannon M Murphy
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Maureen M Murúa
- Facultad de Estudios Interdisciplinarios, Centro GEMA- Genómica, Ecología y Medio Ambiente, Universidad Mayor, Santiago, Chile
| | - Melisa Neila
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Ourania Nikolaidis
- Department of Biology, Center for Computational & Integrative Biology, Rutgers University-Camden, Camden, NJ, USA
| | - Iva Njunjić
- Evolutionary Ecology Group, Naturalis Biodiversity Center, Leiden, Netherlands
| | - Peter Nosko
- Department of Biology and Chemistry, Nipissing University, North Bay, ON, Canada
| | - Juan Núñez-Farfán
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Takayuki Ohgushi
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Cristina Ornelas
- Bonanza Creek Long Term Ecological Research Program, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Amy L Parachnowitsch
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Aaron S Paratore
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Angela M Parody-Merino
- School of Agriculture and Environment, Wildlife and Ecology group, Massey University, Palmerston North, Manawatu, New Zealand
| | - Juraj Paule
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
| | - Octávio S Paulo
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - João Carlos Pena
- Departamento de Biodiversidade, Instituto de Biociências, Univ Estadual Paulista - UNESP, Rio Claro, São Paulo, Brazil
| | - Vera W Pfeiffer
- Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, WI, USA
| | - Pedro Pinho
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Anthony Piot
- Département des sciences du bois et de la forêt, Université Laval, Quebec, QC, Canada
| | - Ilga M Porth
- Département des sciences du bois et de la forêt, Université Laval, Quebec, QC, Canada
| | - Nicholas Poulos
- Department of Biology, California State University, Northridge, Los Angeles, CA, USA
| | - Adriana Puentes
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jiao Qu
- Department of Biology, Ghent University, Ghent, Belgium
| | | | - Steve M Raciti
- Department of Biology, Hofstra University, Long Island, NY, USA
| | | | - Krista M Raveala
- Faculty of Biological and Environmental Science, Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Diana J Rennison
- Division of Biological Sciences, University of California San Diego, San Diego, CA, USA
| | - Milton C Ribeiro
- Departamento de Biodiversidade, Instituto de Biociências, Univ Estadual Paulista - UNESP, Rio Claro, São Paulo, Brazil
| | | | - Gonzalo Rivas-Torres
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Estación de Biodiversidad Tiputini, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | | | - Adam B Roddy
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, USA
| | | | | | - Laura S Rossi
- Department of Biology and Chemistry, Nipissing University, North Bay, ON, Canada
| | - Jennifer K Rowntree
- Department of Natural Sciences, Ecology and Environment Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Travis J Ryan
- Department of Biological Sciences and Center for Urban Ecology and Sustainability, Butler University, Indianapolis, IN, USA
| | | | - Nathan J Sanders
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Amy M Savage
- Department of Biology, Center for Computational & Integrative Biology, Rutgers University-Camden, Camden, NJ, USA
| | - J F Scheepens
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany.,Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Adam C Schneider
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Biology, Hendrix College, Conway, AR, USA
| | - Tiffany Scholier
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Jared L Scott
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Summer A Shaheed
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
| | - Richard P Shefferson
- Organization for Programs on Environmental Science, University of Tokyo, Tokyo, Japan
| | | | - Jacqui A Shykoff
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91405, Orsay, France
| | | | - Alexis D Smith
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Lizet Solis-Gabriel
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, UNAM, Morelia, Mexico
| | - Antonella Soro
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Katie V Spellman
- Bonanza Creek Long Term Ecological Research Program, University of Alaska Fairbanks, Fairbanks, AK, USA.,International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Kaitlin Stack Whitney
- Science, Technology and Society Department, Rochester Institute of Technology, Rochester, NY, USA
| | - Indra Starke-Ottich
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
| | - Jörg G Stephan
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,SLU Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Justyna Szulc
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Marta Szulkin
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Ítalo Tamburrino
- Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
| | - Tayler D Tate
- Department of Biology, Western Oregon University, Monmouth, OR, USA
| | | | - Panagiotis Theodorou
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ken A Thompson
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Caragh G Threlfall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | | | | | - Xin Tong
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Léa Uroy
- ECOBIO (Ecosystèmes, biodiversité, évolution), Université de Rennes, Rennes, France.,UMR 0980 BAGAP, Agrocampus Ouest-ESA-INRA, Rennes, France
| | - Shunsuke Utsumi
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Martijn L Vandegehuchte
- Department of Biology, Ghent University, Ghent, Belgium.,Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Acer VanWallendael
- Plant Biology Department, Michigan State University, East Lansing, MI, USA
| | - Paula M Vidal
- Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
| | | | - Ai-Ying Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Nian Wang
- College of Horticulture and Forestry Sciences/ Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, China, Hubei, China
| | - Montana L Warbrick
- Department of Biology and Chemistry, Nipissing University, North Bay, ON, Canada
| | - Kenneth D Whitney
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Miriam Wiesmeier
- School of Life Sciences, Technical University of Munich, Munich, Germany
| | | | - Jianqiang Wu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zoe A Xirocostas
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Zhaogui Yan
- College of Horticulture and Forestry Sciences/ Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, China, Hubei, China
| | - Jiahe Yao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jeremy B Yoder
- Department of Biology, California State University, Northridge, Los Angeles, CA, USA
| | - Owen Yoshida
- Biology Department, Saint Mary's University, Halifax, NS, Canada
| | - Jingxiong Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhigang Zhao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Carly D Ziter
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Matthew P Zuellig
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Rebecca A Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Juan E Zurita
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sharon E Zytynska
- School of Life Sciences, Technical University of Munich, Munich, Germany.,Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Centre for Urban Environments, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
29
|
Maher GM, Johnson GA, Burdine JD. Impervious surface and local abiotic conditions influence arthropod communities within urban greenspaces. PeerJ 2022; 10:e12818. [PMID: 35127289 PMCID: PMC8793725 DOI: 10.7717/peerj.12818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
The abundance of arthropods is declining globally, and human-modification of natural habitat is a primary driver of these declines. Arthropod declines are concerning because arthropods mediate critical ecosystem functions, and sustained declines may lead to cascading trophic effects. There is growing evidence that properly managed urban environments can provide refugium to arthropods, but few cities have examined arthropods within urban greenspaces to evaluate their management efforts. In this study, we surveyed arthropod communities within a medium-sized, growing city. We investigated arthropod communities (abundance, richness, diversity, community composition) within 16 urban greenspaces across metropolitan Grand Rapids, Michigan (USA). We focused our efforts on urban gardens and pocket prairies, and measured environmental variables at each site. We collected 5,468 individual arthropods that spanned 14 taxonomic orders and 66 morphospecies. The results showed that community composition was influenced by impervious surface, white flower abundance, and humidity. Total arthropod abundance and diversity were positively associated with humidity. For specific orders, Hymenoptera (bees, ants, wasps) abundance was negatively associated with temperature, and positively associated with site perimeter-area ratio. Hemiptera (true bugs) were negatively associated with impervious surface and positively associated with humidity. These findings show that impervious surfaces impact arthropod communities, but many of the observed changes were driven by local abiotic conditions like temperature and humidity. This suggests that management decisions within urban greenspaces are important in determining the structure of arthropod communities. Future studies on arthropods in cities should determine whether manipulating the abiotic conditions of urban greenspaces influences the composition of arthropod communities. These results should inform city planners and homeowners of the need to properly manage urban greenspaces in cities to maintain diverse arthropod assemblages.
Collapse
Affiliation(s)
- Garrett M. Maher
- Division of Science and Kinesiology, Cornerstone University, Grand Rapids, MI, United States of America
| | - Graham A. Johnson
- Division of Science and Kinesiology, Cornerstone University, Grand Rapids, MI, United States of America
| | - Justin D. Burdine
- Division of Science and Kinesiology, Cornerstone University, Grand Rapids, MI, United States of America
| |
Collapse
|
30
|
Borden MA, Benda ND, Bean EZ, Dale AG. Effects of soil mitigation on lawn-dwelling invertebrates following residential development. JOURNAL OF URBAN ECOLOGY 2022. [DOI: 10.1093/jue/juac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abstract
Residential areas are the most rapidly expanding land use type in the southeastern USA. Residential development impairs soil functions primarily through compaction and the removal or burial of topsoil and natural vegetation, which reduces water infiltration and retention, root penetration, and plant establishment. Plant stress reduces plant-derived ecosystem services and increases vulnerability to pests, often leading to supplemental management inputs in the form of irrigation, fertilizers, pesticides and labor. Soil-dwelling invertebrates, including detritivores and natural enemies of pests, drive valuable ecosystem functions that facilitate plant establishment and reduce maintenance inputs. Although poorly understood, soil disturbance during residential development likely disturbs these communities and reduces the services provided by soil-dwelling invertebrates. Here, we compare the effects of two soil compaction mitigation techniques, tillage with and without compost incorporation, on invertebrate communities and the services they provide over 2 years following residential development. We focus on the relationships between detritivores and detritus decomposition rates, entomopathogenic nematodes and the activity density of a key turfgrass pest and other arthropod herbivores and predators. We found that soil mitigation had no detectable benefit for epigeal arthropods within 1 year after disturbance, but that compost-amended soils supported greater arthropod richness and predator activity density than unmitigated soils in the second year after disturbance. In contrast, we found reduced insect-parasitic nematode activity associated with compost amendment. All taxa increased in abundance with time after development. These results can inform more sustainable residential development and landscape maintenance practices for more biodiverse and functional urban and residential ecosystems.
Collapse
Affiliation(s)
- Matthew A Borden
- Entomology and Nematology Department, University of Florida , Gainesville, FL 32611, USA
- Bartlett Tree Research Laboratories , 13768 Hamilton Road , Charlotte, NC 28278, USA
| | - Nicole D Benda
- Entomology and Nematology Department, University of Florida , Gainesville, FL 32611, USA
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry , Gainesville, FL 32608, USA
| | - Eban Z Bean
- Agricultural and Biological Engineering Department, University of Florida , Gainesville, FL 32611, USA
| | - Adam G Dale
- Entomology and Nematology Department, University of Florida , Gainesville, FL 32611, USA
| |
Collapse
|
31
|
Rivkin LR, Johnson RA, Chaves JA, Johnson MTJ. Urbanization alters interactions between Darwin's finches and Tribulus cistoides on the Galápagos Islands. Ecol Evol 2021; 11:15754-15765. [PMID: 34824787 PMCID: PMC8601916 DOI: 10.1002/ece3.8236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence suggests that humans shape the ecology and evolution of species interactions. Islands are particularly susceptible to anthropogenic disturbance due to the fragility of their ecosystems; however, we know little about the susceptibility of species interactions to urbanization on islands. To address this gap, we studied how the earliest stages of urban development affect interactions between Darwin's finches and its key food resource, Tribulus cistoides, in three towns on the Galápagos Islands. We measured variation in mericarp predation rates, mericarp morphology, and finch community composition using population surveys, experimental manipulations, and finch observations conducted in habitats within and outside of each town. We found that both seed and mericarp removal rates were higher in towns than natural habitats. We also found that selection on mericarp size and defense differed between habitats in the survey and experimental populations and that towns supported smaller and less diverse finch communities than natural habitats. Together, our results suggest that even moderate levels of urbanization can alter ecological interactions between Darwin's finches and T. cistoides, leading to modified natural selection on T. cistoides populations. Our study demonstrates that trophic interactions on islands may be susceptible to the anthropogenic disturbance associated with urbanization. Despite containing the highest diversity in the world, studies of urbanization are lacking from the tropics. Our study identified signatures of urbanization on species interactions in a tropical island ecosystem and suggests that changes to the ecology of species interactions has the potential to alter evolution in urban environments.
Collapse
Affiliation(s)
- L. Ruth Rivkin
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Department of BiologyUniversity of Toronto MississaugaOntarioCanada
- Centre for Urban EnvironmentsUniversity of Toronto MississaugaOntarioCanada
| | | | - Jaime A. Chaves
- Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de QuitoQuitoEcuador
- Department of BiologySan Francisco State UniversitySan FranciscoCaliforniaUSA
| | - Marc T. J. Johnson
- Department of BiologyUniversity of Toronto MississaugaOntarioCanada
- Centre for Urban EnvironmentsUniversity of Toronto MississaugaOntarioCanada
| |
Collapse
|
32
|
Yang LH, Postema EG, Hayes TE, Lippey MK, MacArthur-Waltz DJ. The complexity of global change and its effects on insects. CURRENT OPINION IN INSECT SCIENCE 2021; 47:90-102. [PMID: 34004376 DOI: 10.1016/j.cois.2021.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Global change includes multiple overlapping and interacting drivers: 1) climate change, 2) land use change, 3) novel chemicals, and 4) the increased global transport of organisms. Recent studies have documented the complex and counterintuitive effects of these drivers on the behavior, life histories, distributions, and abundances of insects. This complexity arises from the indeterminacy of indirect, non-additive and combined effects. While there is wide consensus that global change is reorganizing communities, the available data are limited. As the pace of anthropogenic changes outstrips our ability to document its impacts, ongoing change may lead to increasingly unpredictable outcomes. This complexity and uncertainty argue for renewed efforts to address the fundamental drivers of global change.
Collapse
Affiliation(s)
- Louie H Yang
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA.
| | - Elizabeth G Postema
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA; Animal Behavior Graduate Group, University of California, Davis, CA 95616, USA
| | - Tracie E Hayes
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA; Population Biology Graduate Group, University of California, Davis, CA 95616, USA
| | - Mia K Lippey
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA; Entomology Graduate Group, University of California, Davis, CA 95616, USA
| | - Dylan J MacArthur-Waltz
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA; Population Biology Graduate Group, University of California, Davis, CA 95616, USA
| |
Collapse
|
33
|
Trade-offs and synergies of ecosystem services in the Yangtze River Delta, China: response to urbanizing variation. Urban Ecosyst 2021. [DOI: 10.1007/s11252-021-01150-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Murray‐Stoker D, Johnson MTJ. Ecological consequences of urbanization on a legume–rhizobia mutualism. OIKOS 2021. [DOI: 10.1111/oik.08341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- David Murray‐Stoker
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto Toronto Ontario Canada
- Dept of Biology, Univ. of Toronto Mississauga Mississauga Ontario Canada
- Centre for Urban Environments, Univ. of Toronto Mississauga Mississauga Ontario Canada
| | - Marc T. J. Johnson
- Dept of Biology, Univ. of Toronto Mississauga Mississauga Ontario Canada
- Centre for Urban Environments, Univ. of Toronto Mississauga Mississauga Ontario Canada
| |
Collapse
|
35
|
Cogălniceanu D, Stănescu F, Székely D, Topliceanu TS, Iosif R, Székely P. Age, size and body condition do not equally reflect population response to habitat change in the common spadefoot toad Pelobates fuscus. PeerJ 2021; 9:e11678. [PMID: 34316392 PMCID: PMC8286710 DOI: 10.7717/peerj.11678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
Urbanization impacts biodiversity both directly through physical expansion over land, and indirectly due to land use conversion and human behaviors associated with urban areas. We assessed the response of a common spadefoot toad population (Pelobates fuscus) to habitat loss and fragmentation resulting from urban development by studying changes in size, body condition and age parameters. We compared samples collected in the early 2000s (sample A) and later on during 2012-2014 (sample B). The terrestrial habitats in the study area were severely reduced and fragmented due to the expansion of the human settlement. We found no significant differences in the age parameters between the two sampling periods; the median lifespan shortened from 3.5 (sample A) to 3.0 years (sample B), while the other age parameters were similar in both samples. In contrast, snout-vent length, body mass and body condition experienced a significant decrease over time. Our results suggest that changes in body size and body condition, rather than age parameters, better reflect the response of the common spadefoot toad population to declining habitat quality. Therefore, body measurements can provide reliable estimates of the impact of habitat degradation in amphibian populations.
Collapse
Affiliation(s)
- Dan Cogălniceanu
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Asociația Chelonia Romania, Bucharest, Romania
| | - Florina Stănescu
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Black Sea Institute for Development and Security Studies, Ovidius University Constanța, Constanța, Romania.,CEDMOG-Center for Morphological and Genetic Studies of Malignant Pathology, Ovidius University Constanța, Constanța, Romania
| | - Diana Székely
- Asociația Chelonia Romania, Bucharest, Romania.,Departamento de Ciencias Biológicas y Agropecuarias, Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs Lab), Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Theodor-Sebastian Topliceanu
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Black Sea Institute for Development and Security Studies, Ovidius University Constanța, Constanța, Romania.,CEDMOG-Center for Morphological and Genetic Studies of Malignant Pathology, Ovidius University Constanța, Constanța, Romania
| | - Ruben Iosif
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Asociația Chelonia Romania, Bucharest, Romania
| | - Paul Székely
- Asociația Chelonia Romania, Bucharest, Romania.,Departamento de Ciencias Biológicas y Agropecuarias, Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs Lab), Universidad Técnica Particular de Loja, Loja, Ecuador
| |
Collapse
|
36
|
Penczykowski RM, Sieg RD. Plantago spp. as Models for Studying the Ecology and Evolution of Species Interactions across Environmental Gradients. Am Nat 2021; 198:158-176. [PMID: 34143715 DOI: 10.1086/714589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractA central challenge in ecology and evolutionary biology is to understand how variation in abiotic and biotic factors combine to shape the distribution, abundance, and diversity of focal species. Environmental gradients, whether natural (e.g., latitude, elevation, ocean proximity) or anthropogenic (e.g., land-use intensity, urbanization), provide compelling settings for addressing this challenge. However, not all organisms are amenable to the observational and experimental approaches required for untangling the factors that structure species along gradients. Here we highlight herbaceous plants in the genus Plantago as models for studying the ecology and evolution of species interactions along abiotic gradients. Plantago lanceolata and P. major are native to Europe and Asia but distributed globally, and they are established models for studying population ecology and interactions with herbivores, pathogens, and soil microbes. Studying restricted range congeners in comparison with those cosmopolitan species can provide insight into abiotic and biotic determinants of range size and population structure. We highlight one such species, P. rugelii, which is endemic to eastern North America. We give an overview of the literature on these focal Plantago species and explain why they are logical candidates for studies of species interactions across environmental gradients. Finally, we emphasize collaborative and community science approaches that can facilitate such research and note the amenability of Plantago for authentic research projects in science education.
Collapse
|
37
|
Schmitt L, Burghardt KT. Urbanization as a disrupter and facilitator of insect herbivore behaviors and life cycles. CURRENT OPINION IN INSECT SCIENCE 2021; 45:97-105. [PMID: 33676055 DOI: 10.1016/j.cois.2021.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Insect herbivores require a variety of habitats across their life cycle, with behavior often mediating transitions between life stages or habitats. Human management strongly alters urban habitats, yet herbivore behavior is rarely examined in cities. We review the existing literature on several key behaviors: host finding, feeding, egg placement and pupation location, and antipredator defense. We emphasize that unapparent portions of the life cycle, such as the habitat of the overwintering stage, may influence if urbanized areas act as population sources or sinks. Here, management of the soil surface and aboveground biomass are two areas with especially pressing research gaps. Lastly, high variability in urban environments may select for more plastic behaviors or greater generalism. We encourage future research that assesses both behavior and less apparent portions of insect life cycles to determine best practices for conservation and management.
Collapse
Affiliation(s)
- Lauren Schmitt
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Karin T Burghardt
- Department of Entomology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
38
|
Moll RJ, Killion AK, Hayward MW, Montgomery RA. A Framework for the Eltonian Niche of Humans. Bioscience 2021. [DOI: 10.1093/biosci/biab055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Recent research has highlighted several influential roles that humans play in ecosystems, including that of a superpredator, hyperkeystone species, and niche constructor. This work has begun to describe the Eltonian niche of humans, which encompasses humanity's cumulative ecological and evolutionary roles in trophic systems. However, we lack a unifying framework that brings together these strands of research, links them to ecoevolutionary and sociocultural theory, and identifies current research needs. In this article, we present such a framework in hope of facilitating a more holistic approach to operationalizing human roles in trophic systems across an increasingly anthropogenic biosphere. The framework underscores how humans play numerous nuanced roles in trophic systems, from top-down to bottom-up, that entail not only pernicious effects but also benefits for many nonhuman species. Such a nuanced view of the Eltonian niche of humans is important for understanding complex social–ecological system functioning and enacting effective policies and conservation measures.
Collapse
Affiliation(s)
- Remington J Moll
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, United States
| | - Alexander K Killion
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, United States
| | - Matt W Hayward
- Conservation Biology Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Mammal Research Centre, University of Pretoria, Tshwane, South Africa, and with the Centre for African Conservation Ecology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Robert A Montgomery
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney, United Kingdom
| |
Collapse
|
39
|
Mota JL, Brown DJ, Canning DM, Crayton SM, Lozon DN, Gulette AL, Anderson JT, Mali I, Dickerson BE, Forstner MRJ, Watson MB, Pauley TK. Influence of landscape condition on relative abundance and body condition of two generalist freshwater turtle species. Ecol Evol 2021; 11:5511-5521. [PMID: 34026025 PMCID: PMC8131803 DOI: 10.1002/ece3.7450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 11/11/2022] Open
Abstract
Anthropogenic land use changes have broad impacts on biological diversity, often resulting in shifts in community composition. While many studies have documented negative impacts on occurrence and abundance of species, less attention has been given to native species that potentially benefit from anthropogenic land use changes. For many species reaching high densities in human-dominated landscapes, it is unclear whether these environments represent higher quality habitat than more natural environments. We examined the influence of landscape ecological integrity on relative abundance and body condition of two native generalist freshwater turtle species that are prevalent in anthropogenic systems, the painted turtle (Chrysemys picta) and red-eared slider (Trachemys scripta elegans). Relative abundance was negatively associated with ecological integrity for both species, but the relationship was not strongly supported for painted turtles. Body condition was positively associated with ecological integrity for painted turtles, with no strong association for red-eared sliders. Our study suggests that both species benefitted at the population level from reduced ecological integrity, but individual-level habitat quality was reduced for painted turtles. The differing responses between these two habitat generalists could partially explain why red-eared sliders have become a widespread exotic invasive species, while painted turtles have not.
Collapse
Affiliation(s)
- Joel L. Mota
- Division of Forestry and Natural ResourcesWest Virginia UniversityMorgantownWVUSA
| | - Donald J. Brown
- Division of Forestry and Natural ResourcesWest Virginia UniversityMorgantownWVUSA
- Northern Research StationU.S.D.A. Forest ServiceParsonsWVUSA
| | - Danielle M. Canning
- Division of Forestry and Natural ResourcesWest Virginia UniversityMorgantownWVUSA
| | - Sara M. Crayton
- Division of Forestry and Natural ResourcesWest Virginia UniversityMorgantownWVUSA
| | - Darien N. Lozon
- Division of Forestry and Natural ResourcesWest Virginia UniversityMorgantownWVUSA
| | | | - James T. Anderson
- Division of Forestry and Natural ResourcesWest Virginia UniversityMorgantownWVUSA
| | - Ivana Mali
- Department of BiologyEastern New Mexico UniversityPortalesNMUSA
| | | | | | - Mark B. Watson
- Department of Natural Sciences and MathematicsUniversity of CharlestonCharlestonWVUSA
| | - Thomas K. Pauley
- Department of Biological SciencesMarshall UniversityHuntingtonWVUSA
| |
Collapse
|
40
|
Hamann E, Blevins C, Franks SJ, Jameel MI, Anderson JT. Climate change alters plant-herbivore interactions. THE NEW PHYTOLOGIST 2021; 229:1894-1910. [PMID: 33111316 DOI: 10.1111/nph.17036] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Plant-herbivore interactions have evolved in response to coevolutionary dynamics, along with selection driven by abiotic conditions. We examine how abiotic factors influence trait expression in both plants and herbivores to evaluate how climate change will alter this long-standing interaction. The paleontological record documents increased herbivory during periods of global warming in the deep past. In phylogenetically corrected meta-analyses, we find that elevated temperatures, CO2 concentrations, drought stress and nutrient conditions directly and indirectly induce greater food consumption by herbivores. Additionally, elevated CO2 delays herbivore development, but increased temperatures accelerate development. For annual plants, higher temperatures, CO2 and drought stress increase foliar herbivory. Our meta-analysis also suggests that greater temperatures and drought may heighten florivory in perennials. Human actions are causing concurrent shifts in CO2 , temperature, precipitation regimes and nitrogen deposition, yet few studies evaluate interactions among these changing conditions. We call for additional multifactorial studies that simultaneously manipulate multiple climatic factors, which will enable us to generate more robust predictions of how climate change could disrupt plant-herbivore interactions. Finally, we consider how shifts in insect and plant phenology and distribution patterns could lead to ecological mismatches, and how these changes may drive future adaptation and coevolution between interacting species.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Cameron Blevins
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Steven J Franks
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - M Inam Jameel
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
41
|
Des Roches S, Brans KI, Lambert MR, Rivkin LR, Savage AM, Schell CJ, Correa C, De Meester L, Diamond SE, Grimm NB, Harris NC, Govaert L, Hendry AP, Johnson MTJ, Munshi‐South J, Palkovacs EP, Szulkin M, Urban MC, Verrelli BC, Alberti M. Socio-eco-evolutionary dynamics in cities. Evol Appl 2021; 14:248-267. [PMID: 33519968 PMCID: PMC7819562 DOI: 10.1111/eva.13065] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/22/2020] [Accepted: 06/29/2020] [Indexed: 12/31/2022] Open
Abstract
Cities are uniquely complex systems regulated by interactions and feedbacks between nature and human society. Characteristics of human society-including culture, economics, technology and politics-underlie social patterns and activity, creating a heterogeneous environment that can influence and be influenced by both ecological and evolutionary processes. Increasing research on urban ecology and evolutionary biology has coincided with growing interest in eco-evolutionary dynamics, which encompasses the interactions and reciprocal feedbacks between evolution and ecology. Research on both urban evolutionary biology and eco-evolutionary dynamics frequently focuses on contemporary evolution of species that have potentially substantial ecological-and even social-significance. Still, little work fully integrates urban evolutionary biology and eco-evolutionary dynamics, and rarely do researchers in either of these fields fully consider the role of human social patterns and processes. Because cities are fundamentally regulated by human activities, are inherently interconnected and are frequently undergoing social and economic transformation, they represent an opportunity for ecologists and evolutionary biologists to study urban "socio-eco-evolutionary dynamics." Through this new framework, we encourage researchers of urban ecology and evolution to fully integrate human social drivers and feedbacks to increase understanding and conservation of ecosystems, their functions and their contributions to people within and outside cities.
Collapse
Affiliation(s)
- Simone Des Roches
- Department of Urban Design and PlanningUniversity of WashingtonSeattleWAUSA
| | - Kristien I. Brans
- Department of BiologyLaboratory of Aquatic Ecology, Evolution and ConservationKU LeuvenLeuvenBelgium
| | - Max R. Lambert
- Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyCAUSA
| | - L. Ruth Rivkin
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
- Department of BiologyUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Urban EnvironmentsUniversity of Toronto MississaugaMississaugaONCanada
| | - Amy Marie Savage
- Department of BiologyCenter for Computational and Integrative BiologyRutgers UniversityCamdenNJUSA
| | - Christopher J. Schell
- School of Interdisciplinary Arts and SciencesUniversity of Washington TacomaTacomaWAUSA
| | - Cristian Correa
- Facultad de Ciencias Forestales y Recursos NaturalesInstituto de Conservación Biodiversidad y TerritorioUniversidad Austral de ChileValdiviaChile
- Centro de Humedales Río CrucesUniversidad Austral de ChileValdiviaChile
| | - Luc De Meester
- Department of BiologyLaboratory of Aquatic Ecology, Evolution and ConservationKU LeuvenLeuvenBelgium
- Institute of BiologyFreie UniversitätBerlinGermany
- Leibniz Institut für Gewasserökologie und BinnenfischereiBerlinGermany
| | - Sarah E. Diamond
- Department of BiologyCase Western Reserve UniversityClevelandOHUSA
| | - Nancy B. Grimm
- School of Life SciencesArizona State UniversityTempeAZUSA
| | - Nyeema C. Harris
- Applied Wildlife Ecology Lab, Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMIUSA
| | - Lynn Govaert
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and TechnologyDuebendorfSwitzerland
| | - Andrew P. Hendry
- Department of BiologyRedpath MuseumMcGill UniversityMontrealQCCanada
| | - Marc T. J. Johnson
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
- Department of BiologyUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Urban EnvironmentsUniversity of Toronto MississaugaMississaugaONCanada
| | - Jason Munshi‐South
- Department of Biological Sciences and Louis Calder CenterFordham UniversityArmonkNYUSA
| | - Eric P. Palkovacs
- Department of Ecology & Evolutionary BiologyUniversity of CaliforniaSanta CruzCAUSA
| | - Marta Szulkin
- Centre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Mark C. Urban
- Center of Biological Risk and Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
| | - Brian C. Verrelli
- Center for Life Sciences EducationVirginia Commonwealth UniversityRichmondVAUSA
| | - Marina Alberti
- Department of Urban Design and PlanningUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
42
|
Santangelo JS, Thompson KA, Cohan B, Syed J, Ness RW, Johnson MTJ. Predicting the strength of urban-rural clines in a Mendelian polymorphism along a latitudinal gradient. Evol Lett 2020; 4:212-225. [PMID: 32547782 PMCID: PMC7293085 DOI: 10.1002/evl3.163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/19/2019] [Accepted: 02/02/2020] [Indexed: 11/07/2022] Open
Abstract
Cities are emerging as models for addressing the fundamental question of whether populations evolve in parallel to similar environments. Here, we examine the environmental factors that drive the evolution of parallel urban‐rural clines in a Mendelian trait—the cyanogenic antiherbivore defense of white clover (Trifolium repens). Previous work suggested urban‐rural gradients in frost and snow depth could drive the evolution of reduced hydrogen cyanide (HCN) frequencies in urban populations. Here, we sampled over 700 urban and rural clover populations across 16 cities along a latitudinal transect in eastern North America. In each population, we quantified changes in the frequency of genotypes that produce HCN, and in a subset of the cities we estimated the frequency of the alleles at the two genes (CYP79D15 and Li) that epistatically interact to produce HCN. We then tested the hypothesis that cold climatic conditions are necessary for the evolution of cyanogenesis clines by comparing the strength of clines among cities located along a latitudinal gradient of winter temperature and frost exposure. Overall, half of the cities exhibited urban‐rural clines in the frequency of HCN, whereby urban populations evolved lower HCN frequencies. Clines did not evolve in cities with the lowest temperatures and greatest snowfall, supporting the hypothesis that snow buffers plants against winter frost and constrains the formation of clines. By contrast, the strongest clines occurred in the warmest cities where snow and frost are rare, suggesting that alternative selective agents are maintaining clines in warmer cities. Some clines were driven by evolution at only CYP79D15, consistent with stronger and more consistent selection on this locus than on Li. Together, our results demonstrate that urban environments often select for similar phenotypes, but different selective agents and targets underlie the evolutionary response in different cities.
Collapse
Affiliation(s)
- James S Santangelo
- Department of Biology University of Toronto Mississauga Mississauga ON L5L 1C6 Canada.,Centre for Urban Environments University of Toronto Mississauga Mississauga ON L5L 1C6 Canada.,Department of Ecology and Evolutionary Biology University of Toronto Toronto ON M5S 3B2 Canada
| | - Ken A Thompson
- Department of Zoology and Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Beata Cohan
- Department of Biology University of Toronto Mississauga Mississauga ON L5L 1C6 Canada
| | - Jibran Syed
- Department of Biology University of Toronto Mississauga Mississauga ON L5L 1C6 Canada
| | - Rob W Ness
- Department of Biology University of Toronto Mississauga Mississauga ON L5L 1C6 Canada.,Centre for Urban Environments University of Toronto Mississauga Mississauga ON L5L 1C6 Canada.,Department of Ecology and Evolutionary Biology University of Toronto Toronto ON M5S 3B2 Canada
| | - Marc T J Johnson
- Department of Biology University of Toronto Mississauga Mississauga ON L5L 1C6 Canada.,Centre for Urban Environments University of Toronto Mississauga Mississauga ON L5L 1C6 Canada.,Department of Ecology and Evolutionary Biology University of Toronto Toronto ON M5S 3B2 Canada
| |
Collapse
|