1
|
Saad H, El Baba B, Tfaily A, Kobeissy F, Gonzalez JG, Refai D, Rodts GR, Mustroph C, Gimbel D, Grossberg J, Barrow DL, Gary MF, Alawieh AM. Complement-dependent neuroinflammation in spinal cord injury: from pathology to therapeutic implications. Neural Regen Res 2025; 20:1324-1335. [PMID: 38845224 PMCID: PMC11624873 DOI: 10.4103/nrr.nrr-d-24-00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/07/2024] [Accepted: 04/29/2024] [Indexed: 07/31/2024] Open
Abstract
Spinal cord injury remains a major cause of disability in young adults, and beyond acute decompression and rehabilitation, there are no pharmacological treatments to limit the progression of injury and optimize recovery in this population. Following the thorough investigation of the complement system in triggering and propagating cerebral neuroinflammation, a similar role for complement in spinal neuroinflammation is a focus of ongoing research. In this work, we survey the current literature investigating the role of complement in spinal cord injury including the sources of complement proteins, triggers of complement activation, and role of effector functions in the pathology. We study relevant data demonstrating the different triggers of complement activation after spinal cord injury including direct binding to cellular debris, and or activation via antibody binding to damage-associated molecular patterns. Several effector functions of complement have been implicated in spinal cord injury, and we critically evaluate recent studies on the dual role of complement anaphylatoxins in spinal cord injury while emphasizing the lack of pathophysiological understanding of the role of opsonins in spinal cord injury. Following this pathophysiological review, we systematically review the different translational approaches used in preclinical models of spinal cord injury and discuss the challenges for future translation into human subjects. This review emphasizes the need for future studies to dissect the roles of different complement pathways in the pathology of spinal cord injury, to evaluate the phases of involvement of opsonins and anaphylatoxins, and to study the role of complement in white matter degeneration and regeneration using translational strategies to supplement genetic models.
Collapse
Affiliation(s)
- Hassan Saad
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Bachar El Baba
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Ali Tfaily
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Firas Kobeissy
- Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Daniel Refai
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Gerald R. Rodts
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Christian Mustroph
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - David Gimbel
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan Grossberg
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel L. Barrow
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew F. Gary
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Ali M. Alawieh
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Zohdy YM, Garzon-Muvdi T, Grossberg JA, Barrow DL, Howard BM, Pradilla G, Kobeissy FH, Tomlinson S, Alawieh AM. Complement inhibition targets a rich-club within the neuroinflammatory network after stroke to improve radiographic and functional outcomes. J Neuroinflammation 2025; 22:1. [PMID: 39754245 PMCID: PMC11699776 DOI: 10.1186/s12974-024-03316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/29/2024] [Indexed: 01/06/2025] Open
Abstract
Following recent advances in post-thrombectomy stroke care, the role of neuroinflammation and neuroprotective strategies in mitigating secondary injury has gained prominence. Yet, while neuroprotection and anti-inflammatory agents have re-emerged in clinical trials, their success has been limited. The neuroinflammatory response in cerebral ischemia is robust and multifactorial, complicating therapeutic approaches targeting single pathways. In this study, we aimed to characterize early inflammatory gene dysregulation following ischemic stroke using translational in-silico and in-vivo approaches. Using an in vivo ischemic stroke model, transcriptomic analysis revealed significant dysregulation of inflammatory genes. Graph theory analysis then showed a rich-club organization among stroke-related genes, with highly connected core nodes. The expression levels of the core genes identified within this network significantly explained radiological outcomes, including T2-signal hyperintensity (R2 = 0.57, P < 0.001), mean diffusivity (R2 = 0.52, P < 0.001), and mean kurtosis (R2 = 0.65, P < 0.001), correlating more strongly than non-core genes. Similar findings were observed with functional and cognitive outcomes, showing R2 values of 0.58, 0.7, 0.54, and 0.7 for neurological severity scores, corner tasks, passive avoidance, and novel object recognition tasks, respectively (P < 0.001). Using in-silico analysis, we identified a set of upstream regulators directly interacting with core network nodes, leading to simulations that highlighted C3-targeted therapy as a potential treatment. This hypothesis was then confirmed in vivo using a targeted C3 inhibitor (CR2-fH), which reversed gene dysregulation in the neuroinflammatory network and improved radiological and functional outcomes. Our findings underscore the significance of neuroinflammation in stroke pathology, supporting network-based therapeutic targeting and demonstrating the benefits of targeted complement inhibition in enhancing outcomes through modulation of the neuroinflammatory network core. This study's approach, combining graph theory analysis along with in-silico modeling, offers a promising translational pipeline applicable to stroke and other complex diseases.
Collapse
Affiliation(s)
- Youssef M Zohdy
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Tomas Garzon-Muvdi
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jonathan A Grossberg
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Daniel L Barrow
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Brian M Howard
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Gustavo Pradilla
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Firas H Kobeissy
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Ralph Johnson VA Medical Center, Charleston, SC, USA
| | - Ali M Alawieh
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
3
|
Ziabska K, Gewartowska M, Frontczak-Baniewicz M, Sypecka J, Ziemka-Nalecz M. The Impact of the Histone Deacetylase Inhibitor-Sodium Butyrate on Complement-Mediated Synapse Loss in a Rat Model of Neonatal Hypoxia-Ischemia. Mol Neurobiol 2024:10.1007/s12035-024-04591-w. [PMID: 39531190 DOI: 10.1007/s12035-024-04591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Perinatal asphyxia is one of the most important causes of morbidity and mortality in newborns. One of the key pathogenic factors in hypoxic-ischemic (HI) brain injury is the inflammatory reaction including complement system activation. Over-activated complement stimulates cells to release inflammatory molecules and is involved in the post-ischemic degradation of synaptic connections. On the other hand, complement is also involved in regenerative processes. The histone deacetylase inhibitor (HDACi)-sodium butyrate (SB)-provides reduction of inflammation by decreasing the expression of the proinflammatory factors. The main purpose of this study was to examine the effect of SB treatment on complement activation and synapse elimination after HI. Neonatal HI was induced in Wistar rats pups by unilateral ligation of the common carotid artery followed by 60-min hypoxia (7.6% O2). SB (300 mg/kg) was administered on a 5-day regimen. Our study has shown decreased levels of synapsin I, synaptophysin, and PSD-95 in the hypoxic-ischemic hemisphere, indicating synaptic loss after neonatal HI. Transmission electron microscopy revealed injury of the synaptic structures in the brain after HI. SB treatment increased the level of the synaptic proteins, improved tissue ultrastructure, and reduced degradation of the synapses. Neonatal HI induced mRNA expression of the complement C1q, C3, C5, and C9, and their receptors C3aR and C5aR. The effect of SB was different depending on the time after induction of hypoxic-ischemic damage. Our study demonstrated that neuroprotective effect of SB may be related to the modulation of complement activity after HI brain injury.
Collapse
Affiliation(s)
- Karolina Ziabska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Street, 02-106, Warsaw, Poland
| | - Magdalena Gewartowska
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Street, 02-106, Warsaw, Poland
| | - Malgorzata Frontczak-Baniewicz
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Street, 02-106, Warsaw, Poland
- Higher School of Engineering and Health in Warsaw, 18 Bitwy Warszawskiej 1920r. Street, 02-366, Warsaw, Poland
| | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Street, 02-106, Warsaw, Poland
| | - Malgorzata Ziemka-Nalecz
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Street, 02-106, Warsaw, Poland.
| |
Collapse
|
4
|
Volstad KB, Pripp AH, Ludviksen JA, Stiris T, Saugstad OD, Mollnes TE, Andresen JH. No Short-Term Effect of Low-Dose Nicotine on Inflammation after Global Hypoxia in Newborn Piglets. Neonatology 2024:1-10. [PMID: 39317175 DOI: 10.1159/000541217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Perinatal asphyxia initiates cytokine release and complement activation with risk of brain damage. We assessed the effect of nicotine on innate immunity and hypothesized that nicotine infusion in a newborn piglet model of asphyxia would decrease the immune response and be neuroprotective. METHODS Newborn piglets (n = 41) were randomized to one of three groups after hypoxia: two groups receiving nicotine, (1) 18 µg/kg/h (n = 17), (2) 46 µg/kg/h (n = 15), and (3) control group receiving saline (n = 9). C3a, IL-6, TNF, and IL-10 were measured in plasma and IL-6 and IL-8 in microdialysis fluid from cerebral periventricular white matter, using immuno-assays. RESULTS Plasma C3a and IL-6 increased significantly from start to end hypoxia (mean 4.4 ± 0.55 to 5.6 ± 0.71 ng/mL and 1.66 ± 1.04 to 2.68 ± 0.71 pg/mL, respectively), while IL-10 and TNF increased significantly after 4 h (mean 1.4 ± 1.08 to 2.9 ± 1.87 and 3.3 ± 0.67 to 4.0 ± 0.58 pg/mL, respectively) (p < 0.001 for all). IL-6 increased significantly (p < 0.001) in microdialysis samples from end hypoxia to end experiment (mean 0.65 ± 0.88 to 2.78 ± 1.84 ng/mL). No significant differences were observed between the nicotine groups and the control group neither in plasma nor in microdialysis samples. CONCLUSION Hypoxia leads to rapid release of cytokines in plasma and cerebral microdialysis fluid, and complement activation measured on C3a. However, low-dose nicotine administration did not affect the immune response.
Collapse
Affiliation(s)
- Karianne B Volstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neonatal Intensive Care, Oslo University Hospital, Oslo, Norway
| | - Are H Pripp
- Oslo Center of Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | | | - Tom Stiris
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neonatal Intensive Care, Oslo University Hospital, Oslo, Norway
| | - Ola D Saugstad
- Department of Pediatric Research, University of Oslo, Oslo, Norway
- Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tom E Mollnes
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Jannicke H Andresen
- Department of Neonatal Intensive Care, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) is an all-encompassing term that describes cognitive impairment due to cerebrovascular origins. With the advancement of imaging and pathological studies, we now understand that VCID is often comorbid with Alzheimer disease. While researchers in the Alzheimer disease field have been working for years to establish and test blood-based biomarkers for Alzheimer disease diagnosis, prognosis, clinical therapy discovery, and early detection, blood-based biomarkers for VCID are in their infancy and also face challenges. VCID is heterogeneous, comprising many different pathological entities (ischemic, or hemorrhagic), and spatial and temporal differences (acute or chronic). This review highlights pathways that are aiding the search for sensitive and specific blood-based cerebrovascular dysfunction markers, describes promising candidates, and explains ongoing initiatives to discover blood-based VCID biomarkers.
Collapse
Affiliation(s)
- Kate E. Foley
- Stark Neurosciences Research Institute, Indiana University, Indianapolis IN, USA
- Department of Neurology, School of Medicine, Indiana University, Indianapolis IN, USA
| | - Donna M. Wilcock
- Stark Neurosciences Research Institute, Indiana University, Indianapolis IN, USA
- Department of Neurology, School of Medicine, Indiana University, Indianapolis IN, USA
| |
Collapse
|
6
|
Alsbrook DL, Di Napoli M, Bhatia K, Biller J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY, Selim M, Farahabadi MH, Jafarli A, Divani AA. Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke. Curr Neurol Neurosci Rep 2023; 23:407-431. [PMID: 37395873 PMCID: PMC10544736 DOI: 10.1007/s11910-023-01282-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of neuroinflammation in ischemic and hemorrhagic stroke, including recent findings on the mechanisms and cellular players involved in the inflammatory response to brain injury. RECENT FINDINGS Neuroinflammation is a crucial process following acute ischemic stroke (AIS) and hemorrhagic stroke (HS). In AIS, neuroinflammation is initiated within minutes of the ischemia onset and continues for several days. In HS, neuroinflammation is initiated by blood byproducts in the subarachnoid space and/or brain parenchyma. In both cases, neuroinflammation is characterized by the activation of resident immune cells, such as microglia and astrocytes, and infiltration of peripheral immune cells, leading to the release of pro-inflammatory cytokines, chemokines, and reactive oxygen species. These inflammatory mediators contribute to blood-brain barrier disruption, neuronal damage, and cerebral edema, promoting neuronal apoptosis and impairing neuroplasticity, ultimately exacerbating the neurologic deficit. However, neuroinflammation can also have beneficial effects by clearing cellular debris and promoting tissue repair. The role of neuroinflammation in AIS and ICH is complex and multifaceted, and further research is necessary to develop effective therapies that target this process. Intracerebral hemorrhage (ICH) will be the HS subtype addressed in this review. Neuroinflammation is a significant contributor to brain tissue damage following AIS and HS. Understanding the mechanisms and cellular players involved in neuroinflammation is essential for developing effective therapies to reduce secondary injury and improve stroke outcomes. Recent findings have provided new insights into the pathophysiology of neuroinflammation, highlighting the potential for targeting specific cytokines, chemokines, and glial cells as therapeutic strategies.
Collapse
Affiliation(s)
- Diana L Alsbrook
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Kunal Bhatia
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - José Biller
- Department of Neurology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Sasan Andalib
- Research Unit of Neurology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Archana Hinduja
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Roysten Rodrigues
- Department of Neurology, University of Louisville, Louisville, KY, USA
| | - Miguel Rodriguez
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sara Y Sabbagh
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Alibay Jafarli
- Department of Neurology, Tufts Medical Center, Boston, MA, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
7
|
Ding L, Chu W, Xia Y, Shi M, Li T, Zhou FQ, Deng DYB. UCHL1 facilitates protein aggregates clearance to enhance neural stem cell activation in spinal cord injury. Cell Death Dis 2023; 14:479. [PMID: 37507386 PMCID: PMC10382505 DOI: 10.1038/s41419-023-06003-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Activation of endogenous neural stem cells (NSCs) is greatly significant for the adult neurogenesis; however, it is extremely limited in the spinal cord after injury. Recent evidence suggests that accumulation of protein aggregates impairs the ability of quiescent NSCs to activate. Ubiquitin c-terminal hydrolase l-1 (UCHL1), an important deubiquitinating enzyme, plays critical roles in protein aggregations clearance, but its effects on NSC activation remains unknown. Here, we show that UCHL1 promotes NSC activation by clearing protein aggregates through ubiquitin-proteasome approach. Upregulation of UCHL1 facilitated the proliferation of spinal cord NSCs after spinal cord injury (SCI). Based on protein microarray analysis of SCI cerebrospinal fluid, it is further revealed that C3+ neurotoxic reactive astrocytes negatively regulated UCHL1 and proteasome activity via C3/C3aR signaling, led to increased abundances of protein aggregations and decreased NSC proliferation. Furthermore, blockade of reactive astrocytes or C3/C3aR pathway enhanced NSC activation post-SCI by reserving UCHL1 and proteasome functions. Together, this study elucidated a mechanism regulating NSC activation in the adult spinal cord involving the UCHL1-proteasome approach, which may provide potential molecular targets and new insights for NSC fate regulation.
Collapse
Affiliation(s)
- Lu Ding
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Weiwei Chu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yu Xia
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Ming Shi
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Tian Li
- Obstetrics and Gynecology Department, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA.
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - David Y B Deng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
8
|
Couch C, Alawieh AM, Toutonji A, Atkinson C, Tomlinson S. Evaluating the comorbidities of age and cigarette smoking on stroke outcomes in the context of anti-complement mitigation strategies. Front Immunol 2023; 14:1161051. [PMID: 37223091 PMCID: PMC10200924 DOI: 10.3389/fimmu.2023.1161051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 05/25/2023] Open
Abstract
Multiple neuroprotective agents have shown beneficial effects in rodent models of stroke, but they have failed to translate in the clinic. In this perspective, we consider that a likely explanation for this failure, at least in part, is that there has been inadequate assessment of functional outcomes in preclinical stroke models, as well the use of young healthy animals that are not representative of clinical cohorts. Although the impact of older age and cigarette smoking comorbidities on stroke outcomes is well documented clinically, the impact of these (and other) stroke comorbidities on the neuroinflammatory response after stroke, as well as the response to neuroprotective agents, remains largely unexplored. We have shown that a complement inhibitor (B4Crry), that targets specifically to the ischemic penumbra and inhibits complement activation, reduces neuroinflammation and improves outcomes following murine ischemic stroke. For this perspective, we discuss the impact of age and smoking comorbidities on outcomes after stroke, and we experimentally assess whether increased complement activation contributes to worsened acute outcomes with these comorbidities. We found that the pro-inflammatory effects of aging and smoking contribute to worse stroke outcomes, and these effects are mitigated by complement inhibition.
Collapse
Affiliation(s)
- Christine Couch
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Ali M. Alawieh
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Amer Toutonji
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Carl Atkinson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson Veteran's Affairs (VA) Medical Center, Charleston, SC, United States
| |
Collapse
|
9
|
Gillis HL, Kalinina A, Xue Y, Yan K, Turcotte-Cardin V, Todd MAM, Young KG, Lagace D, Picketts DJ. VGF is required for recovery after focal stroke. Exp Neurol 2023; 362:114326. [PMID: 36682400 DOI: 10.1016/j.expneurol.2023.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/06/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
The high incidence of ischemic stroke worldwide and poor efficacy of neuroprotective drugs has increased the need for novel therapies in stroke recovery. Transcription of the neurosecretory protein VGF (non-acronym) is enhanced following ischemic stroke and proposed to be important for stroke recovery. To determine the requirement for VGF in recovery, we created Vgffl/fl:Nestin-Cre conditional knockout (Vgf cKO) mice and induced a photothrombotic focal ischemic stroke. Naïve Vgf cKO mice had significant less body weight in the absence of gross defects in brain size, cortical lamination, or deficits in locomotor activity compared to wildtype controls. Following a focal stroke, the Vgf cKO mice had greater deficits including impaired recovery of forepaw motor deficits at 2- and 4-weeks post stroke. The increase in deficits occurred in the absence of any difference in lesion size and was accompanied by a striking loss of stroke-induced migration of SVZ-derived immature neurons to the peri-infarct region. Importantly, exogenous adenoviral delivery of VGF (AdVGF) significantly improved recovery in the Vgf cKO mice and was able to rescue the immature neuron migration defect observed. Taken together, our results define a requirement for VGF in post stroke recovery and identify VGF peptides as a potential future therapeutic.
Collapse
Affiliation(s)
- Hannah L Gillis
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Departments of Biochemistry, Microbiology and Immunology, K1H 8M5, Canada
| | - Alena Kalinina
- Departments of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yingben Xue
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Keqin Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Valérie Turcotte-Cardin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Departments of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Matthew A M Todd
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Departments of Biochemistry, Microbiology and Immunology, K1H 8M5, Canada
| | - Kevin G Young
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Diane Lagace
- Departments of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Departments of Biochemistry, Microbiology and Immunology, K1H 8M5, Canada; Departments of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
10
|
Yang Z, Nunn MA, Le TD, Simovic MO, Edsall PR, Liu B, Barr JL, Lund BJ, Hill-Pryor CD, Pusateri AE, Cancio LC, Li Y. Immunopathology of terminal complement activation and complement C5 blockade creating a pro-survival and organ-protective phenotype in trauma. Br J Pharmacol 2023; 180:422-440. [PMID: 36251578 PMCID: PMC10100417 DOI: 10.1111/bph.15970] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/24/2022] [Accepted: 09/17/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Traumatic haemorrhage (TH) is the leading cause of potentially preventable deaths that occur during the prehospital phase of care. No effective pharmacological therapeutics are available for critical TH patients yet. Here, we identify terminal complement activation (TCA) as a therapeutic target in combat casualties and evaluate the efficacy of a TCA inhibitor (nomacopan) on organ damage and survival in vivo. EXPERIMENTAL APPROACH Complement activation products and cytokines were analysed in plasma from 54 combat casualties. The correlations between activated complement pathway(s) and the clinical outcomes in trauma patients were assessed. Nomacopan was administered to rats subjected to lethal TH (blast injury and haemorrhagic shock). Effects of nomacopan on TH were determined using survival rate, organ damage, physiological parameters, and laboratory profiles. KEY RESULTS Early TCA was associated with systemic inflammatory responses and clinical outcomes in this trauma cohort. Lethal TH in the untreated rats induced early TCA that correlated with the severity of tissue damage and mortality. The addition of nomacopan to a damage-control resuscitation (DCR) protocol significantly inhibited TCA, decreased local and systemic inflammatory responses, improved haemodynamics and metabolism, attenuated tissue and organ damage, and increased survival. CONCLUSION AND IMPLICATIONS Previous findings of our and other groups revealed that early TCA represents a rational therapeutic target for trauma patients. Nomacopan as a pro-survival and organ-protective drug, could emerge as a promising adjunct to DCR that may significantly reduce the morbidity and mortality in severe TH patients while awaiting transport to critical care facilities.
Collapse
Affiliation(s)
- Zhangsheng Yang
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | | | - Tuan D Le
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Milomir O Simovic
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA.,The Geneva Foundation, Tacoma, Washington, USA
| | - Peter R Edsall
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Bin Liu
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Johnny L Barr
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Brian J Lund
- 59th Medical Wing Operational Medicine, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | | | - Anthony E Pusateri
- Naval Medical Research Unit San Antonio, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Leopoldo C Cancio
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Yansong Li
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA.,The Geneva Foundation, Tacoma, Washington, USA
| |
Collapse
|
11
|
Kemper C, Ferreira VP, Paz JT, Holers VM, Lionakis MS, Alexander JJ. Complement: The Road Less Traveled. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:119-125. [PMID: 36596217 PMCID: PMC10038130 DOI: 10.4049/jimmunol.2200540] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/11/2022] [Indexed: 01/04/2023]
Abstract
The complement field has recently experienced a strong resurgence of interest because of the unexpected discovery of new complement functions extending complement's role beyond immunity and pathogen clearance, a growing list of diseases in which complement plays a role, and the proliferation of complement therapeutics. Importantly, although the majority of complement components in the circulation are generated by the liver and activated extracellularly, complement activation unexpectedly also occurs intracellularly across a broad range of cells. Such cell-autonomous complement activation can engage intracellular complement receptors, which then drive noncanonical cell-specific effector functions. Thus, much remains to be discovered about complement biology. In this brief review, we focus on novel noncanonical activities of complement in its "classic areas of operation" (kidney and brain biology, infection, and autoimmunity), with an outlook on the next generation of complement-targeted therapeutics.
Collapse
Affiliation(s)
- Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH
| | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA
- Department of Neurology, University of California, San Francisco, San Francisco, CA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | | |
Collapse
|
12
|
Holers VM. Contributions of animal models to mechanistic understandings of antibody-dependent disease and roles of the amplification loop. Immunol Rev 2023; 313:181-193. [PMID: 36111456 DOI: 10.1111/imr.13136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The complement system plays an important pathophysiologic role in human diseases associated with immune or ischemic insults. In addition to understanding the effector mechanisms that are important for the biological effects of the system, substantial efforts have gone into understanding which specific complement activation pathways generate these potent effects. These approaches include the use of gene-targeted mice and specific pathway inhibitors, as well as the integration of human disease genetic and biomarker studies. In some disease states, it is quite clear that the alternate pathway plays a unique role in the initiation of the complement system. However, although initially a widely unexpected finding, it has now been shown in many tissue-based disease models and in initial human studies that engagement of the amplification loop is also essential for tissue injury when the classical and/or lectin pathways initiate pathway activation through pathogenic autoantibodies. This review provides evidence for such a conclusion through animal models, focusing on pathogenic antibody passive transfer models but also other relevant experimental systems. These data, along with initial biomarkers and clinical trial outcomes in human diseases that are associated with pathogenic autoantibodies, suggest that targeting the alternative pathway amplification loop may have near-universal therapeutic utility for tissue-based diseases.
Collapse
Affiliation(s)
- V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
13
|
Seyedaghamiri F, Salimi L, Ghaznavi D, Sokullu E, Rahbarghazi R. Exosomes-based therapy of stroke, an emerging approach toward recovery. Cell Commun Signal 2022; 20:110. [PMID: 35869548 PMCID: PMC9308232 DOI: 10.1186/s12964-022-00919-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/11/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractBased on clinical observations, stroke is touted as one of the specific pathological conditions, affecting an individual’s life worldwide. So far, no effective treatment has been introduced to deal with stroke post-complications. Production and release of several neurotrophic factors by different cells exert positive effects on ischemic areas following stroke. As a correlate, basic and clinical studies have focused on the development and discovery of de novo modalities to introduce these factors timely and in appropriate doses into the affected areas. Exosomes (Exo) are non-sized vesicles released from many cells during pathological and physiological conditions and participate in intercellular communication. These particles transfer several arrays of signaling molecules, like several neurotrophic factors into the acceptor cells and induce specific signaling cascades in the favor of cell bioactivity. This review aimed to highlight the emerging role of exosomes as a therapeutic approach in the regeneration of ischemic areas.
Collapse
|
14
|
Zhang F, Ran Y, Tahir M, Li Z, Wang J, Chen X. Regulation of N6-methyladenosine (m6A) RNA methylation in microglia-mediated inflammation and ischemic stroke. Front Cell Neurosci 2022; 16:955222. [PMID: 35990887 PMCID: PMC9386152 DOI: 10.3389/fncel.2022.955222] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant post-transcription modification, widely occurring in eukaryotic mRNA and non-coding RNA. m6A modification is highly enriched in the mammalian brain and is associated with neurological diseases like Alzheimer’s disease (AD) and Parkinson’s disease (PD). Ischemic stroke (IS) was discovered to alter the cerebral m6A epi-transcriptome, which might have functional implications in post-stroke pathophysiology. Moreover, it is observed that m6A modification could regulate microglia’s pro-inflammatory and anti-inflammatory responses. Given the critical regulatory role of microglia in the inflammatory processes in the central nervous system (CNS), we speculate that m6A modification could modulate the post-stroke microglial inflammatory responses. This review summarizes the vital regulatory roles of m6A modification in microglia-mediated inflammation and IS. Stroke is associated with a high recurrence rate, understanding the relationship between m6A modification and stroke may help stroke rehabilitation and develop novel therapies in the future.
Collapse
Affiliation(s)
- Fangfang Zhang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Muhammad Tahir
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zihan Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jianan Wang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Xuechai Chen
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- *Correspondence: Xuechai Chen,
| |
Collapse
|
15
|
Zhang Q, Liu C, Shi R, Zhou S, Shan H, Deng L, Chen T, Guo Y, Zhang Z, Yang GY, Wang Y, Tang Y. Blocking C3d +/GFAP + A1 Astrocyte Conversion with Semaglutide Attenuates Blood-Brain Barrier Disruption in Mice after Ischemic Stroke. Aging Dis 2022; 13:943-959. [PMID: 35656116 PMCID: PMC9116904 DOI: 10.14336/ad.2021.1029] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
Astrocytes play an essential role in the modulation of blood-brain barrier function. Neurological diseases induce the transformation of astrocytes into a neurotoxic A1 phenotype, exacerbating brain injury. However, the effect of A1 astrocytes on the BBB dysfunction after stroke is unknown. Adult male ICR mice (n=97) were subjected to 90-minute transient middle cerebral artery occlusion (tMCAO). Immunohistochemical staining of A1 (C3d) and A2 (S100A10) was performed to characterize phenotypic changes in astrocytes over time after tMCAO. The glucagon-like peptide-1 receptor agonist semaglutide was intraperitoneally injected into mice to inhibit A1 astrocytes. Infarct volume, atrophy volume, neurobehavioral outcomes, and BBB permeability were evaluated. RNA-seq was adopted to explore the potential targets and signaling pathways of A1 astrocyte-induced BBB dysfunction. Astrocytic C3d expression was increased, while expression of S100A10 was decreased in the first two weeks after tMCAO, reflecting a shift in the astrocytic phenotype. Semaglutide treatment reduced the expression of CD16/32 in microglia and C3d in astrocytes after ischemic stroke (p<0.05). Ischemia-induced brain infarct volume, atrophy volume and neuroinflammation were reduced in the semaglutide-treated mice, and neurobehavioral outcomes were improved compared to control mice (p<0.05). We further demonstrated that semaglutide treatment reduced the gap formation of tight junction proteins ZO-1, claudin-5 and occludin, as well as IgG leakage three days following tMCAO (p<0.05). In vitro experiments revealed that A1 astrocyte-conditioned medium disrupted BBB integrity. RNA-seq showed that A1 astrocytes were enriched in inflammatory factors and chemokines and significantly modulated the TNF and chemokine signaling pathways, which are closely related to barrier damage. We concluded that astrocytes undergo a phenotypic shift over time after ischemic stroke. C3d+/GFAP+ astrocytes aggravate BBB disruption, suggesting that inhibiting C3d+/GFAP+ astrocyte formation represents a novel strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qi Zhang
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chang Liu
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Rubing Shi
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shiyi Zhou
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huimin Shan
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lidong Deng
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Tingting Chen
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yiyan Guo
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhijun Zhang
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yuan Yang
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.,2Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yongting Wang
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yaohui Tang
- 1School of Biomedical Engineering and Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
16
|
Bub A, Brenna S, Alawi M, Kügler P, Gui Y, Kretz O, Altmeppen H, Magnus T, Puig B. Multiplexed mRNA analysis of brain-derived extracellular vesicles upon experimental stroke in mice reveals increased mRNA content with potential relevance to inflammation and recovery processes. Cell Mol Life Sci 2022; 79:329. [PMID: 35639208 PMCID: PMC9156510 DOI: 10.1007/s00018-022-04357-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed structures that represent newly discovered means for cell-to-cell communication as well as promising disease biomarkers and therapeutic tools. Apart from proteins, lipids, and metabolites, EVs can deliver genetic information such as mRNA, eliciting a response in the recipient cells. In the present study, we have analyzed the mRNA content of brain-derived EVs (BDEVs) isolated 72 h after experimental stroke in mice and compared them to controls (shams) using nCounter® Nanostring panels, with or without prior RNA isolation. We found that both panels show similar results when comparing upregulated mRNAs in stroke. Notably, the highest upregulated mRNAs were related to processes of stress and immune system responses, but also to anatomical structure development, cell differentiation, and extracellular matrix organization, thus indicating that regenerative mechanisms already take place at this time-point. The five top overrepresented mRNAs in stroke mice were confirmed by RT-qPCR and, interestingly, found to be full-length. We could reveal that the majority of the mRNA cargo in BDEVs was of microglial origin and predominantly present in small BDEVs (≤ 200 nm in diameter). However, the EV population with the highest increase in the total BDEVs pool at 72 h after stroke was of oligodendrocytic origin. Our study shows that nCounter® panels are a good tool to study mRNA content in tissue-derived EVs as they can be carried out even without previous mRNA isolation, and that the mRNA cargo of BDEVs indicates a possible participation in inflammatory but also recovery processes after stroke.
Collapse
Affiliation(s)
- Annika Bub
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Santra Brenna
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Kügler
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yuqi Gui
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kretz
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Berta Puig
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
17
|
Turek-Jakubowska A, Dębski J, Jakubowski M, Szahidewicz-Krupska E, Gawryś J, Gawryś K, Janus A, Trocha M, Doroszko A. New Candidates for Biomarkers and Drug Targets of Ischemic Stroke-A First Dynamic LC-MS Human Serum Proteomic Study. J Clin Med 2022; 11:jcm11020339. [PMID: 35054033 PMCID: PMC8780942 DOI: 10.3390/jcm11020339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
(1) Background: The aim of this dynamic-LC/MS-human-serum-proteomic-study was to identify potential proteins-candidates for biomarkers of acute ischemic stroke, their changes during acute phase of stroke and to define potential novel drug-targets. (2) Methods: A total of 32 patients (29–80 years) with acute ischemic stroke were enrolled to the study. The control group constituted 29 demographically-matched volunteers. Subjects with stroke presented clinical symptoms lasting no longer than 24 h, confirmed by neurological-examination and/or new cerebral ischemia visualized in the CT scans (computed tomography). The analysis of plasma proteome was performed using LC-MS (liquid chromatography–mass spectrometry). (3) Results: Ten proteins with significantly different serum concentrations between groups volunteers were: complement-factor-B, apolipoprotein-A-I, fibronectin, alpha-2-HS-glycoprotein, alpha-1B-glycoprotein, heat-shock-cognate-71kDa protein/heat-shock-related-70kDa-protein-2, thymidine phosphorylase-2, cytoplasmic-tryptophan-tRNA-ligase, ficolin-2, beta-Ala-His-dipeptidase. (4) Conclusions: This is the first dynamic LC-MS study performed on a clinical model which differentiates serum proteome of patients in acute phase of ischemic stroke in time series and compares to control group. Listed proteins should be considered as risk factors, markers of ischemic stroke or potential therapeutic targets. Further clinical validation might define their exact role in differential diagnostics, monitoring the course of the ischemic stroke or specifying them as novel drug targets.
Collapse
Affiliation(s)
| | - Janusz Dębski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warszawa, Poland;
| | - Maciej Jakubowski
- Lower Silesian Centre for Lung Diseases, Grabiszyńska 105, 53-439 Wroclaw, Poland;
| | - Ewa Szahidewicz-Krupska
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (E.S.-K.); (J.G.); (A.J.)
| | - Jakub Gawryś
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (E.S.-K.); (J.G.); (A.J.)
| | - Karolina Gawryś
- Department of Neurology, 4th Military Hospital, Weigla 5, 50-556 Wroclaw, Poland; (A.T.-J.); (K.G.)
| | - Agnieszka Janus
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (E.S.-K.); (J.G.); (A.J.)
| | - Małgorzata Trocha
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicz-Radecki 2, 50-349 Wroclaw, Poland;
| | - Adrian Doroszko
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (E.S.-K.); (J.G.); (A.J.)
- Correspondence: ; Tel.: +48-71-736-4000
| |
Collapse
|
18
|
Zhang X, Yin J, Shao K, Yang L, Liu W, Wang Y, Diao S, Huang S, Xue Q, Ni J, Yang Y. High serum complement component C4 as a unique predictor of unfavorable outcomes in diabetic stroke. Metab Brain Dis 2021; 36:2313-2322. [PMID: 34480681 DOI: 10.1007/s11011-021-00834-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Previous studies demonstrated that diabetic stroke patients had a poor prognosis and excess complement system activation in the peripheral blood. In this study, the association of serum complement levels with the prognosis of diabetic stroke was examined. Patients with acute ischemic stroke were recruited and were divided into two groups according to their history of diabetes. Baseline data on the admission, including C3 and C4 were collected. Neurologic function at discharge was the primary outcome and was quantified by the National Institutes of Health Stroke Scale (NIHSS). A total of 426 patients with acute ischemic stroke (116 diabetic strokes and 310 non-diabetic strokes) were recruited in this study. There were significant differences between the two groups in hypertension, coronary disease, triglyceride, high-density lipoprotein cholesterol, fasting blood sugar, C4, and mortality rates. Furthermore, the values of complement protein levels were divided into tertiles. In the diabetic stroke group, serum C4 level at the acute phase in the upper third was independently associated with NIHSS score at discharge and concurrent infection. These associations were not significant in non-diabetic stroke. High serum C4 level at admission, as a unique significant predictor, was associated with unfavorable clinical outcomes in the diabetic stroke, independently of traditional risk factors.
Collapse
Affiliation(s)
- Ximeng Zhang
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Yin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kai Shao
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Le Yang
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wei Liu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Neurology, Suzhou TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Yiqing Wang
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shanshan Diao
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shicun Huang
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qun Xue
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianqiang Ni
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Yi Yang
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
19
|
Yarmoska SK, Alawieh AM, Tomlinson S, Hoang KB. Modulation of the Complement System by Neoplastic Disease of the Central Nervous System. Front Immunol 2021; 12:689435. [PMID: 34671342 PMCID: PMC8521155 DOI: 10.3389/fimmu.2021.689435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022] Open
Abstract
The complement system is a highly conserved component of innate immunity that is involved in recognizing and responding to pathogens. The system serves as a bridge between innate and adaptive immunity, and modulation of the complement system can affect the entire host immune response to a foreign insult. Neoplastic diseases have been shown to engage the complement system in order to evade the immune system, gain a selective growth advantage, and co-opt the surrounding environment for tumor proliferation. Historically, the central nervous system has been considered to be an immune-privileged environment, but it is now clear that there are active roles for both innate and adaptive immunity within the central nervous system. Much of the research on the role of immunological modulation of neoplastic disease within the central nervous system has focused on adaptive immunity, even though innate immunity still plays a critical role in the natural history of central nervous system neoplasms. Here, we review the modulation of the complement system by a variety of neoplastic diseases of the central nervous system. We also discuss gaps in the current body of knowledge and comment on future directions for investigation.
Collapse
Affiliation(s)
- Steven K. Yarmoska
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ali M. Alawieh
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Kimberly B. Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
20
|
Gomez-Arboledas A, Acharya MM, Tenner AJ. The Role of Complement in Synaptic Pruning and Neurodegeneration. Immunotargets Ther 2021; 10:373-386. [PMID: 34595138 PMCID: PMC8478425 DOI: 10.2147/itt.s305420] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
The complement system, an essential part of the innate immune system, is composed of a group of secreted and membrane proteins that collectively participate in maintaining the function of the healthy and diseased brain. However, an inappropriate activation of the complement system has been related to an inflammatory response in multiple diseases, such as stroke, traumatic brain injury, multiple sclerosis, and Alzheimer's disease, as well as Zika infection and radiotherapy. In addition, C1q and C3 (initial activation components of the complement cascade) have been shown to play a key beneficial role in the refinement of synaptic circuits during developmental stages and adult plasticity. Nevertheless, excessive synaptic pruning in the adult brain can be detrimental and has been associated with synaptic loss in several pathological conditions. In this brief review, we will discuss the role of the complement system in synaptic pruning as well as its contribution to neurodegeneration and cognitive deficits. We also mention potential therapeutic approaches to target the complement system to treat several neuroinflammatory diseases and unintended consequences of radiotherapy.
Collapse
Affiliation(s)
- Angela Gomez-Arboledas
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Munjal M Acharya
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, USA
| | - Andrea J Tenner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA, USA
| |
Collapse
|
21
|
Nording H, Baron L, Haberthür D, Emschermann F, Mezger M, Sauter M, Sauter R, Patzelt J, Knoepp K, Nording A, Meusel M, Meyer-Saraei R, Hlushchuk R, Sedding D, Borst O, Eitel I, Karsten CM, Feil R, Pichler B, Erdmann J, Verschoor A, Chavakis E, Chavakis T, von Hundelshausen P, Köhl J, Gawaz M, Langer HF. The C5a/C5a receptor 1 axis controls tissue neovascularization through CXCL4 release from platelets. Nat Commun 2021; 12:3352. [PMID: 34099640 PMCID: PMC8185003 DOI: 10.1038/s41467-021-23499-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 03/28/2021] [Indexed: 02/05/2023] Open
Abstract
Platelets contribute to the regulation of tissue neovascularization, although the specific factors underlying this function are unknown. Here, we identified the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) on platelets as a negative regulatory mechanism of vessel formation. We showed that platelets expressing C5aR1 exert an inhibitory effect on endothelial cell functions such as migration and 2D and 3D tube formation. Growth factor- and hypoxia-driven vascularization was markedly increased in C5ar1-/- mice. Platelet-specific deletion of C5aR1 resulted in a proangiogenic phenotype with increased collateralization, capillarization and improved pericyte coverage. Mechanistically, we found that C5a induced preferential release of CXC chemokine ligand 4 (CXCL4, PF4) from platelets as an important antiangiogenic paracrine effector molecule. Interfering with the C5aR1-CXCL4 axis reversed the antiangiogenic effect of platelets both in vitro and in vivo.In conclusion, we identified a mechanism for the control of tissue neovascularization through C5a/C5aR1 axis activation in platelets and subsequent induction of the antiangiogenic factor CXCL4.
Collapse
Affiliation(s)
- Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Lasse Baron
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - David Haberthür
- grid.5734.50000 0001 0726 5157Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Frederic Emschermann
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Matthias Mezger
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Reinhard Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Johannes Patzelt
- grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Kai Knoepp
- grid.9018.00000 0001 0679 2801Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Halle (Saale), Germany
| | - Anne Nording
- grid.10392.390000 0001 2190 1447Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
| | - Moritz Meusel
- grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Roza Meyer-Saraei
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Ruslan Hlushchuk
- grid.5734.50000 0001 0726 5157Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Daniel Sedding
- grid.9018.00000 0001 0679 2801Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Halle (Saale), Germany
| | - Oliver Borst
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Ingo Eitel
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Christian M. Karsten
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Robert Feil
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Bernd Pichler
- grid.10392.390000 0001 2190 1447Institute for Preclinical Imaging, Eberhard Karls University, Tübingen, Germany
| | - Jeanette Erdmann
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Admar Verschoor
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Emmanouil Chavakis
- grid.411088.40000 0004 0578 8220Department for Internal Medicine III/Cardiology, University Hospital of the Johann-Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Triantafyllos Chavakis
- grid.4488.00000 0001 2111 7257Department of Clinical Pathobiochemistry, Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Philipp von Hundelshausen
- grid.5252.00000 0004 1936 973XInstitute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich, Germany
| | - Jörg Köhl
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany ,grid.239573.90000 0000 9025 8099Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Meinrad Gawaz
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
22
|
Neuroinflammation: An Integrating Overview of Reactive-Neuroimmune Cell Interactions in Health and Disease. Mediators Inflamm 2021; 2021:9999146. [PMID: 34158806 PMCID: PMC8187052 DOI: 10.1155/2021/9999146] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
The concept of central nervous system (CNS) inflammation has evolved over the last decades. Neuroinflammation is the response of reactive CNS components to altered homeostasis, regardless of the cause to be endogenous or exogenous. Neurological diseases, whether traumatic, neoplastic, ischemic, metabolic, toxic, infectious, autoimmune, developmental, or degenerative, involve direct and indirect immune-related neuroinflammation. Brain infiltrates of the innate and adaptive immune system cells appear in response to an infective or otherwise noxious agent and produce inflammatory mediators. Mediators of inflammation include local and recruited cells and signals. Processes derived from extrinsic and intrinsic CNS diseases also elicit the CNS inflammatory response. A deeper understanding of immune-related inflammation in health and disease is necessary to find potential therapeutic targets for preventing or reducing CNS damage. This review is aimed at discussing the innate and adaptive immune system functions and their roles in regulating brain cell responses in disease and homeostasis maintenance.
Collapse
|
23
|
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2021; 42:259-305. [PMID: 33957000 DOI: 10.1002/med.21817] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke, which is among the most frequent causes of disability and death worldwide. Current treatment approaches involve achieving rapid reperfusion either pharmacologically or surgically, both of which are time-sensitive; moreover, blood flow recanalization often causes ischemia/reperfusion injury. However, even though neuroprotective intervention is urgently needed in the event of stroke, the exact mechanisms of neuronal death during ischemic stroke are still unclear, and consequently, the capacity for drug development has remained limited. Multiple cell death pathways are implicated in the pathogenesis of ischemic stroke. Here, we have reviewed these potential neuronal death pathways, including intrinsic and extrinsic apoptosis, necroptosis, autophagy, ferroptosis, parthanatos, phagoptosis, and pyroptosis. We have also reviewed the latest results of pharmacological studies on ischemic stroke and summarized emerging drug targets with a focus on clinical trials. These observations may help to further understand the pathological events in ischemic stroke and bridge the gap between basic and translational research to reveal novel neuroprotective interventions.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shu-Ting Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
24
|
Garred P, Tenner AJ, Mollnes TE. Therapeutic Targeting of the Complement System: From Rare Diseases to Pandemics. Pharmacol Rev 2021; 73:792-827. [PMID: 33687995 PMCID: PMC7956994 DOI: 10.1124/pharmrev.120.000072] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The complement system was discovered at the end of the 19th century as a heat-labile plasma component that "complemented" the antibodies in killing microbes, hence the name "complement." Complement is also part of the innate immune system, protecting the host by recognition of pathogen-associated molecular patterns. However, complement is multifunctional far beyond infectious defense. It contributes to organ development, such as sculpting neuron synapses, promoting tissue regeneration and repair, and rapidly engaging and synergizing with a number of processes, including hemostasis leading to thromboinflammation. Complement is a double-edged sword. Although it usually protects the host, it may cause tissue damage when dysregulated or overactivated, such as in the systemic inflammatory reaction seen in trauma and sepsis and severe coronavirus disease 2019 (COVID-19). Damage-associated molecular patterns generated during ischemia-reperfusion injuries (myocardial infarction, stroke, and transplant dysfunction) and in chronic neurologic and rheumatic disease activate complement, thereby increasing damaging inflammation. Despite the long list of diseases with potential for ameliorating complement modulation, only a few rare diseases are approved for clinical treatment targeting complement. Those currently being efficiently treated include paroxysmal nocturnal hemoglobinuria, atypical hemolytic-uremic syndrome, myasthenia gravis, and neuromyelitis optica spectrum disorders. Rare diseases, unfortunately, preclude robust clinical trials. The increasing evidence for complement as a pathogenetic driver in many more common diseases suggests an opportunity for future complement therapy, which, however, requires robust clinical trials; one ongoing example is COVID-19 disease. The current review aims to discuss complement in disease pathogenesis and discuss future pharmacological strategies to treat these diseases with complement-targeted therapies. SIGNIFICANCE STATEMENT: The complement system is the host's defense friend by protecting it from invading pathogens, promoting tissue repair, and maintaining homeostasis. Complement is a double-edged sword, since when dysregulated or overactivated it becomes the host's enemy, leading to tissue damage, organ failure, and, in worst case, death. A number of acute and chronic diseases are candidates for pharmacological treatment to avoid complement-dependent damage, ranging from the well established treatment for rare diseases to possible future treatment of large patient groups like the pandemic coronavirus disease 2019.
Collapse
Affiliation(s)
- Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| | - Andrea J Tenner
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| | - Tom E Mollnes
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| |
Collapse
|
25
|
Shah TA, Pallera HK, Kaszowski CL, Bass WT, Lattanzio FA. Therapeutic Hypothermia Inhibits the Classical Complement Pathway in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy. Front Neurosci 2021; 15:616734. [PMID: 33642979 PMCID: PMC7907466 DOI: 10.3389/fnins.2021.616734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/25/2021] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Complement activation is instrumental in the pathogenesis of Hypoxic-ischemic encephalopathy (HIE), a significant cause of neonatal mortality and disability worldwide. Therapeutic hypothermia (HT), the only available treatment for HIE, only modestly improves outcomes. Complement modulation as a therapeutic adjunct to HT has been considered, but is challenging due to the wide-ranging role of the complement system in neuroinflammation, homeostasis and neurogenesis in the developing brain. We sought to identify potential therapeutic targets by measuring the impact of treatment with HT on complement effector expression in neurons and glia in neonatal HIE, with particular emphasis on the interactions between microglia and C1q. METHODS The Vannucci model was used to induce HIE in term-equivalent rat pups. At P10-12, pups were randomly assigned to three different treatment groups: Sham (control), normothermia (NT), and hypothermia (HT) treatment. Local and systemic complement expression and neuronal apoptosis were measured by ELISA, TUNEL and immunofluorescence labeling, and differences compared between groups. RESULTS Treatment with HT is associated with decreased systemic and microglial expression of C1q, decreased systemic C5a levels, and decreased microglial and neuronal deposition of C3 and C9. The effect of HT on cytokines was variable with decreased expression of pro and anti-inflammatory effectors. HT treatment was associated with decreased C1q binding on cells undergoing apoptosis. CONCLUSION Our data demonstrate the extreme complexity of the immune response in neonatal HIE. We propose modulation of downstream effectors C3a and C5a as a therapeutic adjunct to HT to enhance neuroprotection in the developing brain.
Collapse
Affiliation(s)
- Tushar A. Shah
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, United States
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
- Children’s Specialty Group, Norfolk, VA, United States
- Children’s Hospital of The King’s Daughters, Norfolk, VA, United States
| | - Haree K. Pallera
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | - William Thomas Bass
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, United States
- Children’s Specialty Group, Norfolk, VA, United States
- Children’s Hospital of The King’s Daughters, Norfolk, VA, United States
| | - Frank A. Lattanzio
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
26
|
Roychowdhury P, Aftabuddin M, Pati MK. Thermal stress-induced oxidative damages in the liver and associated death in fish, Labeo rohita. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:21-32. [PMID: 33058003 DOI: 10.1007/s10695-020-00880-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 09/22/2020] [Indexed: 05/20/2023]
Abstract
Fish mortality generally occurs during extreme summer temperatures in India which are apprehended to be more frequent in near future and may reduce the fish population, particularly in closed aquatic systems. This present study is conducted with the objectives to find out heat shock and associated oxidative stress responses that occurred in selected fish Labeo rohita due to extremely high water temperature (treated, 37-38 °C against control, 28-30 °C) exposure for 2 weeks. Calculated mortality was 30% during the experimental period. The results revealed the biomolecules associated with both the anti-oxidative response (reduced glutathione in serum, liver, muscle; catalase activity in liver, muscle; superoxide dismutase gene expression in the liver) and the heat shock response (hsp70 gene expression in the liver) were elevated under thermal stress. Pro-inflammatory responses (expression of complement protein 3, glyceraldehyde 3-phosphate dehydrogenase in the liver) and oxidative damages (lipid peroxidation in all studied tissue and DNA fragmentation in the liver) were more under thermal stress. Extreme thermal stress induced by partial lethal temperature exposure in this study led to the activation of both the heat shock response and the anti-oxidative response. However, these responses were not elicited to the level so that they can protect from oxidative damages and inflammation in the liver of all the studied fish that caused partial mortality in fish. Thermal stress-induced hepatotoxicity caused fish death which was documented for the first time in freshwater fish.
Collapse
Affiliation(s)
- Prasun Roychowdhury
- Central Inland Fisheries Research Institute (ICAR-CIFRI), Barrackpore, India
- Department of Fishery Sciences, Vidyasagar University, Midnapore, India
| | - Mohammad Aftabuddin
- Central Inland Fisheries Research Institute (ICAR-CIFRI), Barrackpore, India.
| | - Manoj Kumar Pati
- Department of Fishery Sciences, Vidyasagar University, Midnapore, India
| |
Collapse
|
27
|
Complement Drives Synaptic Degeneration and Progressive Cognitive Decline in the Chronic Phase after Traumatic Brain Injury. J Neurosci 2021; 41:1830-1843. [PMID: 33446516 DOI: 10.1523/jneurosci.1734-20.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 01/02/2023] Open
Abstract
Cognitive deficits following traumatic brain injury (TBI) remain a major cause of disability and early-onset dementia, and there is increasing evidence that chronic neuroinflammation occurring after TBI plays an important role in this process. However, little is known about the molecular mechanisms responsible for triggering and maintaining chronic inflammation after TBI. Here, we identify complement, and specifically complement-mediated microglial phagocytosis of synapses, as a pathophysiological link between acute insult and a chronic neurodegenerative response that is associated with cognitive decline. Three months after an initial insult, there is ongoing complement activation in the injured brain of male C57BL/6 mice, which drives a robust chronic neuroinflammatory response extending to both hemispheres. This chronic neuroinflammatory response promotes synaptic degeneration and predicts progressive cognitive decline. Synaptic degeneration was driven by microglial phagocytosis of complement-opsonized synapses in both the ipsilateral and contralateral brain, and complement inhibition interrupted the degenerative neuroinflammatory response and reversed cognitive decline, even when therapy was delayed until 2 months after TBI. These findings provide new insight into our understanding of TBI pathology and its management; and whereas previous therapeutic investigations have focused almost exclusively on acute treatments, we show that all phases of TBI, including at chronic time points after TBI, may be amenable to therapeutic interventions, and specifically to complement inhibition.SIGNIFICANCE STATEMENT There is increasing evidence of a chronic neuroinflammatory response after traumatic brain injury (TBI), but little is known about the molecular mechanisms responsible for triggering and maintaining chronic inflammation. We identify complement, and specifically complement-mediated microglial phagocytosis of synapses, as a pathophysiological link between acute insult and a chronic neurodegenerative response, and further that this response is associated with cognitive decline. Complement inhibition interrupted this response and reversed cognitive decline, even when therapy was delayed until 2 months after injury. The data further support the concept that TBI should be considered a chronic rather than an acute disease condition, and have implications for the management of TBI in the chronic phase of injury, specifically with regard to the therapeutic application of complement inhibition.
Collapse
|
28
|
Bennett C, Álvarez-Ciara A, Franklin M, Dietrich WD, Prasad A. The complement cascade at the Utah microelectrode-tissue interface. Biomaterials 2021; 268:120583. [PMID: 33310540 PMCID: PMC7856077 DOI: 10.1016/j.biomaterials.2020.120583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 01/05/2023]
Abstract
Devices implanted within the central nervous system (CNS) are subjected to tissue reactivity due to the lack of biocompatibility between implanted material and the cells' microenvironment. Studies have attributed blood-brain barrier disruption, inflammation, and oxidative stress as main contributing factors that lead to electrode recording failure. The complement cascade is a part of the innate immunity that focuses on recognizing and targeting foreign objects; however, its role in the context of neural implants is substantially unknown. In this study, we implanted a non-functional 4x4 Utah microelectrode array (UEA) into the somatosensory cortex and studied the complement cascade via combined gene and immunohistochemistry quantification at acute (48-h), sub-acute (1-week), and early chronic (4-weeks) time points. The results of this study demonstrate the activation and continuation of the complement cascade at the electrode-tissue interface, illustrating the therapeutic potential of modulating the foreign body response via the complement cascade.
Collapse
Affiliation(s)
- Cassie Bennett
- Department of Biomedical Engineering, University of Miami, FL, USA
| | | | - Melissa Franklin
- Department of Biomedical Engineering, University of Miami, FL, USA
| | | | - Abhishek Prasad
- Department of Biomedical Engineering, University of Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami, FL, USA.
| |
Collapse
|
29
|
The combination of C C chemokine receptor type 5(CCR5) and Treg cells predicts prognosis in patients with ischemic stroke. J Neuroimmunol 2020; 349:577404. [DOI: 10.1016/j.jneuroim.2020.577404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
|
30
|
Mallah K, Couch C, Borucki DM, Toutonji A, Alshareef M, Tomlinson S. Anti-inflammatory and Neuroprotective Agents in Clinical Trials for CNS Disease and Injury: Where Do We Go From Here? Front Immunol 2020; 11:2021. [PMID: 33013859 PMCID: PMC7513624 DOI: 10.3389/fimmu.2020.02021] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Neurological disorders are major contributors to death and disability worldwide. The pathology of injuries and disease processes includes a cascade of events that often involve molecular and cellular components of the immune system and their interaction with cells and structures within the central nervous system. Because of this, there has been great interest in developing neuroprotective therapeutic approaches that target neuroinflammatory pathways. Several neuroprotective anti-inflammatory agents have been investigated in clinical trials for a variety of neurological diseases and injuries, but to date the results from the great majority of these trials has been disappointing. There nevertheless remains great interest in the development of neuroprotective strategies in this arena. With this in mind, the complement system is being increasingly discussed as an attractive therapeutic target for treating brain injury and neurodegenerative conditions, due to emerging data supporting a pivotal role for complement in promoting multiple downstream activities that promote neuroinflammation and degeneration. As we move forward in testing additional neuroprotective and immune-modulating agents, we believe it will be useful to review past trials and discuss potential factors that may have contributed to failure, which will assist with future agent selection and trial design, including for complement inhibitors. In this context, we also discuss inhibition of the complement system as a potential neuroprotective strategy for neuropathologies of the central nervous system.
Collapse
Affiliation(s)
- Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Christine Couch
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Davis M. Borucki
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, United States
| | - Amer Toutonji
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, United States
| | - Mohammed Alshareef
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurological Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Ralph Johnson VA Medical Center, Charleston, SC, United States
| |
Collapse
|
31
|
Nguyen VA, Riddell N, Crewther SG, Faou P, Rajapaksha H, Howells DW, Hankey GJ, Wijeratne T, Ma H, Davis S, Donnan GA, Carey LM. Longitudinal Stroke Recovery Associated With Dysregulation of Complement System-A Proteomics Pathway Analysis. Front Neurol 2020; 11:692. [PMID: 32849183 PMCID: PMC7399641 DOI: 10.3389/fneur.2020.00692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/09/2020] [Indexed: 11/13/2022] Open
Abstract
Currently the longitudinal proteomic profile of post-ischemic stroke recovery is relatively unknown with few well-accepted biomarkers or understanding of the biological systems that underpin recovery. We aimed to characterize plasma derived biological pathways associated with recovery during the first year post event using a discovery proteomics workflow coupled with a topological pathway systems biology approach. Blood samples (n = 180, ethylenediaminetetraacetic acid plasma) were collected from a subgroup of 60 first episode stroke survivors from the Australian START study at 3 timepoints: 3-7 days (T1), 3-months (T2) and 12-months (T3) post-stroke. Samples were analyzed by liquid chromatography mass spectrometry using label-free quantification (data available at ProteomeXchange with identifier PXD015006). Differential expression analysis revealed that 29 proteins between T1 and T2, and 33 proteins between T1 and T3 were significantly different, with 18 proteins commonly differentially expressed across the two time periods. Pathway analysis was conducted using Gene Graph Enrichment Analysis on both the Kyoto Encyclopedia of Genes and Genomes and Reactome databases. Pathway analysis revealed that the significantly differentiated proteins between T1 and T2 were consistently found to belong to the complement pathway. Further correlational analyses utilized to examine the changes in regulatory effects of proteins over time identified significant inhibitory regulation of clusterin on complement component 9. Longitudinal post-stroke blood proteomics profiles suggest that the alternative pathway of complement activation remains in a state of higher activation from 3-7 days to 3 months post-stroke, while simultaneously being regulated by clusterin and vitronectin. These findings also suggest that post-stroke induced sterile inflammation and immunosuppression could inhibit recovery within the 3-month window post-stroke.
Collapse
Affiliation(s)
- Vinh A Nguyen
- Department of Occupational Therapy, La Trobe University, Bundoora, VIC, Australia.,Department of Psychology and Counselling, La Trobe University, Bundoora, VIC, Australia.,Neurorehabilitation and Recovery, Stroke, The Florey Institute of Neuroscience and Mental Health, Heidelberg, VIC, Australia.,Western Health, Department of Neurology, Sunshine, VIC, Australia
| | - Nina Riddell
- Department of Psychology and Counselling, La Trobe University, Bundoora, VIC, Australia
| | - Sheila G Crewther
- Department of Psychology and Counselling, La Trobe University, Bundoora, VIC, Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC, Australia
| | - Harinda Rajapaksha
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC, Australia
| | - David W Howells
- Medical Sciences Precinct, University of Tasmania, Hobart, TAS, Australia
| | - Graeme J Hankey
- Faculty of Health and Medical Sciences, Internal Medicine, University of Western Australia, Perth, WA, Australia.,Clinical Research, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Tissa Wijeratne
- Neurorehabilitation and Recovery, Stroke, The Florey Institute of Neuroscience and Mental Health, Heidelberg, VIC, Australia.,Department of Medicine, The University of Melbourne, Sunshine, VIC, Australia
| | - Henry Ma
- Monash Health, Neurology and Stroke, Clayton, VIC, Australia
| | - Stephen Davis
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Geoffrey A Donnan
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Leeanne M Carey
- Department of Occupational Therapy, La Trobe University, Bundoora, VIC, Australia.,Neurorehabilitation and Recovery, Stroke, The Florey Institute of Neuroscience and Mental Health, Heidelberg, VIC, Australia
| |
Collapse
|
32
|
Alawieh AM, Langley EF, Feng W, Spiotta AM, Tomlinson S. Complement-Dependent Synaptic Uptake and Cognitive Decline after Stroke and Reperfusion Therapy. J Neurosci 2020; 40:4042-4058. [PMID: 32291326 PMCID: PMC7219298 DOI: 10.1523/jneurosci.2462-19.2020] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the success of reperfusion therapy in significantly reducing the extent of infarct expansion after stroke, the effect of revascularization on poststroke neuroinflammation and the role of anti-inflammatory strategies in postreperfusion era are yet to be explored. Here, we investigate whether the neuroinflammatory response may still contribute to neurologic deficits after reperfused stroke by using targeted complement inhibition to suppress poststroke neuroinflammation in mice with or without concurrent reperfusion therapy. Complement inhibition was achieved using B4Crry, an injury site-targeted inhibitor of C3 activation. Following embolic stroke in male C57bl/6 mice, thrombolysis using tissue-plasminogen activator (t-PA) reduced injury and improved motor deficits, but did not improve cognitive outcomes. After both reperfused and non-reperfused stroke, complement activation and opsonization of hippocampal synapses directed ongoing microglia-dependent phagocytosis of synapses for at least 30 d after stroke, leading to a loss of synaptic density that was associated with cognitive decline. B4Crry treatment, alone or in combination with tPA, limited perilesional complement deposition, reduced microgliosis and synaptic uptake, and improved cognitive outcome without affecting regenerative responses. Furthermore, complement inhibition improved the safety, efficacy, and treatment window of reperfusion therapy with t-PA by limiting hemorrhagic transformation. This work thus demonstrates that poststroke neuroinflammation contributes to hemorrhagic transformation and progression of neurodegenerative responses in the brain even following early and successful revascularization.SIGNIFICANCE STATEMENT This study addresses two major challenges facing the treatment of stroke in the era of reperfusion therapy: hemorrhagic transformation and the disconnect between successful revascularization and functional outcomes. We studied how complement-dependent neuroinflammation drives the pathophysiology behind these challenges using a translationally relevant strategy. Complement inhibition was achieved using B4Crry, an injury site-targeted inhibitor of C3 activation. Following embolic stroke, pharmacological thrombolysis limited infarct size, but did not prevent complement activation. In reperfused and non-reperfused stroke, complement activation and opsonization of hippocampal synapses resulted in synaptic phagocytosis and subsequent cognitive decline. B4Crry treatment limited perilesional complement deposition, reduced microgliosis and synaptic uptake, and improved cognitive outcomes. Complement inhibition also improved the safety, efficacy, and treatment window of thrombolytic therapy.
Collapse
Affiliation(s)
- Ali M Alawieh
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - E Farris Langley
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Wuwei Feng
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710
| | - Alejandro M Spiotta
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina 29401
| |
Collapse
|
33
|
Seth G, Sundaresh A, Mariaselvam CM, Kumar G, Chengappa KG, Adarsh MB, Tamouza R, Negi VS. Immunological biomarkers in neuropsychiatric systemic lupus erythematosus: a comparative cross-sectional study from a tertiary care center in South India. Lupus 2020; 29:413-420. [PMID: 32106787 DOI: 10.1177/0961203320908940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The prevalence of various immunological biomarkers in neuropsychiatric systemic lupus erythematosus (NPSLE) differs among various patients with varied neuropsychiatric manifestations and different populations. We studied the prevalence of these biomarkers; especially the neuron specific autoantibodies in patients with systemic lupus erythematosus (SLE) and compared them among patients with and without neuropsychiatric involvement. METHODOLOGY This is a comparative cross-sectional study conducted in a tertiary care hospital in South India. The prevalence of immunological biomarkers including complement levels, systemic and brain specific autoantibodies (anti-myelin antibody, anti-myelin oligodendrocyte glycoprotein and anti-myelin-associated glycoprotein antibody) were assessed and compared among those with and without NPSLE and with different NPSLE manifestations. RESULTS A total of 522 SLE patients were enrolled in the study. The mean age of the study participants was 28.5 ± 8.8 years and 93.5% were women. Neuropsychiatric manifestations were seen in 167 (32%) patients. Seizure was the most common neuropsychiatric manifestation seen in 41.3%, followed by psychosis (18.6%), mood disorder (16.8%), stroke (10.8%), mononeuropathy (10.2%), headache (9.6%), acute confusional state (6.6%) and aseptic meningitis (5.4%). Patients with NPSLE had a higher SLE disease activity index score. Most of the autoantibodies, that is anticardiolipin antibody (aCL), anti-β2 glycoprotein 1 antibody (β2GP1), lupus anticoagulant (LA), anti-nucleosome, anti-ribosomal P, anti-Ro52, anti-Ro60 and anti-La, were seen in higher proportion in the NPSLE group, although the difference failed to reach statistical significance. On subgroup analysis, psychosis was significantly higher in patients with anti-ribosomal P positivity than without (11.8% versus 4.1%, p.0.007; odds ratio (OR) 3.1, confidence interval (CI) 1.4-6.8), while stroke had a higher proportion among those with positive b2GP1 IgG (6.3% versus 1.8%, p.0.03; OR 3.6, CI 1.2-11.0). A higher proportion of demyelination was seen among the LA positive than the negative (10.3% versus 0.2%, p.0.03; OR 5.39, CI 1.15-24.17) and anti-myelin oligodendrocyte glycoprotein in mood disorder (14.3% versus 3.4%, p = 0.03; OR 4.66, CI 1.13-19.13). CONCLUSION No single biomarker correlated with NPSLE. Among different NPSLE manifestations, the prevalence of IgG β2GP1 in stroke, LA in demyelination, anti-ribosomal P in psychosis and anti-myelin oligodendrocyte glycoprotein in mood disorder were higher. Further studies on the pathogenic mechanisms underlying NPSLE and its different manifestations may help us to identify better biomarkers.
Collapse
Affiliation(s)
- G Seth
- Department of Rheumatology, Aakash Healthcare Super Speciality Hospital, Dwarka, India
| | - A Sundaresh
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - C M Mariaselvam
- INSERM U955, Psychiatrie Translationnelle, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - G Kumar
- Knowledge Integration and Translation Platform, Center for Health Research and Development, Society for Applied Studies, Kalu Sarai, India
| | - K G Chengappa
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - M B Adarsh
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - R Tamouza
- INSERM U955, Psychiatrie Translationnelle, Institut Mondor de Recherche Biomédicale, Créteil, France.,Fondation FondaMental, Créteil, France.,AP-HP, DHU PePSY, Department of Psychiatry, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
| | - V S Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
34
|
Does Complement-Mediated Hemostatic Disturbance Occur in Traumatic Brain Injury? A Literature Review and Observational Study Protocol. Int J Mol Sci 2020; 21:ijms21051596. [PMID: 32111078 PMCID: PMC7084711 DOI: 10.3390/ijms21051596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/07/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
Despite improvements in medical triage and tertiary care, traumatic brain injury (TBI) remains associated with significant morbidity and mortality. Almost two-thirds of patients with severe TBI develop some form of hemostatic disturbance, which contributes to poor outcome. In addition, the complement system, which is abundant in the healthy brain, undergoes significant intra- and extracranial amplification following TBI. Previously considered to be structurally similar but separate systems, evidence of an interaction between the complement and coagulation systems in non-TBI cohorts has accumulated, with the activation of one system amplifying the activation of the other, independent of their established pathways. However, it is not known whether this interaction exists in TBI. In this review we summarize the available literature on complement activation following TBI, and the crosstalk between the complement and coagulation systems. We demonstrate how the complement system interacts with the coagulation cascade by activating the intrinsic coagulation pathway and by bypassing the initial cascade and directly producing thrombin as well. This crosstalk also effects platelets, where evidence points to a relationship with the complement system on multiple levels, with complement anaphylatoxins being able to induce disproportionate platelet activation and adhesion. The complement system also stimulates thrombosis by inhibiting fibrinolysis and stimulating endothelial cells to release prothrombotic microparticles. These interactions see clinical relevance in several disorders where a deficiency in complement regulation seems to result in a prothrombotic clinical presentation. Finally, based on these observations, we present the outline of an observational cohort study that is currently under preparation and aimed at assessing how complement influences coagulation in patients with isolated TBI.
Collapse
|
35
|
Magdalon J, Mansur F, Teles E Silva AL, de Goes VA, Reiner O, Sertié AL. Complement System in Brain Architecture and Neurodevelopmental Disorders. Front Neurosci 2020; 14:23. [PMID: 32116493 PMCID: PMC7015047 DOI: 10.3389/fnins.2020.00023] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/10/2020] [Indexed: 01/18/2023] Open
Abstract
Current evidence indicates that certain immune molecules such as components of the complement system are directly involved in neurobiological processes related to brain development, including neurogenesis, neuronal migration, synaptic remodeling, and response to prenatal or early postnatal brain insults. Consequently, complement system dysfunction has been increasingly implicated in disorders of neurodevelopmental origin, such as schizophrenia, autism spectrum disorder (ASD) and Rett syndrome. However, the mechanistic evidence for a causal relationship between impaired complement regulation and these disorders varies depending on the disease involved. Also, it is still unclear to what extent altered complement expression plays a role in these disorders through inflammation-independent or -dependent mechanisms. Furthermore, pathogenic mutations in specific complement components have been implicated in the etiology of 3MC syndrome, a rare autosomal recessive developmental disorder. The aims of this review are to discuss the current knowledge on the roles of the complement system in sculpting brain architecture and function during normal development as well as after specific inflammatory insults, such as maternal immune activation (MIA) during pregnancy, and to evaluate the existing evidence associating aberrant complement with developmental brain disorders.
Collapse
Affiliation(s)
- Juliana Magdalon
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil.,School of Medicine, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil
| | - Fernanda Mansur
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - André Luiz Teles E Silva
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil.,Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Vitor Abreu de Goes
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil.,School of Medicine, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Andréa Laurato Sertié
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
36
|
Li H, Kittur FS, Hung CY, Li PA, Ge X, Sane DC, Xie J. Quantitative Proteomics Reveals the Beneficial Effects of Low Glucose on Neuronal Cell Survival in an in vitro Ischemic Penumbral Model. Front Cell Neurosci 2020; 14:272. [PMID: 33033473 PMCID: PMC7491318 DOI: 10.3389/fncel.2020.00272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/31/2020] [Indexed: 01/04/2023] Open
Abstract
Understanding proteomic changes in the ischemic penumbra are crucial to rescue those salvageable cells and reduce the damage of an ischemic stroke. Since the penumbra region is dynamic with heterogeneous cells/tissues, tissue sampling from animal models of stroke for the molecular study is a challenge. In this study, cultured hippocampal HT22 cells under hypoxia treatment for 17.5 h with 0.69 mM low glucose (H+LG) could mimic ischemic penumbral cells since they had much higher cell viability and viable cell number compared to hypoxia without glucose (H-G) treatment. To validate established cell-based ischemic penumbral model and understand the beneficial effects of low glucose (LG), quantitative proteomics analysis was performed on H+LG, H-G, and normoxia with normal 22 mM glucose (N+G) treated cells. We identified 427 differentially abundant proteins (DAPs) between H-G and N+G and further identified 105 DAPs between H+LG and H-G. Analysis of 105 DAPs revealed that LG promotes cell survival by activating HIF1α to enhance glycolysis; preventing the dysregulations of extracellular matrix remodeling, cell cycle and division, and antioxidant and detoxification; as well as attenuating inflammatory reaction response, protein synthesis and neurotransmission activity. Our results demonstrated that this established cell-based system could mimic penumbral conditions and can be used for molecular studies.
Collapse
Affiliation(s)
- Hua Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Farooqahmed S Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Xinghong Ge
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States.,Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - David C Sane
- Carilion Clinic, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| |
Collapse
|
37
|
Wang Y, Su Y, Lai W, Huang X, Chu K, Brown J, Hong G. Salidroside Restores an Anti-inflammatory Endothelial Phenotype by Selectively Inhibiting Endothelial Complement After Oxidative Stress. Inflammation 2019; 43:310-325. [DOI: 10.1007/s10753-019-01121-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Persistent Infection with Herpes Simplex Virus 1 and Alzheimer's Disease-A Call to Study How Variability in Both Virus and Host may Impact Disease. Viruses 2019; 11:v11100966. [PMID: 31635156 PMCID: PMC6833100 DOI: 10.3390/v11100966] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing attention has focused on the contributions of persistent microbial infections with the manifestation of disease later in life, including neurodegenerative conditions such as Alzheimer’s disease (AD). Current data has shown the presence of herpes simplex virus 1 (HSV-1) in regions of the brain that are impacted by AD in elderly individuals. Additionally, neuronal infection with HSV-1 triggers the accumulation of amyloid beta deposits and hyperphosphorylated tau, and results in oxidative stress and synaptic dysfunction. All of these factors are implicated in the development of AD. These data highlight the fact that persistent viral infection is likely a contributing factor, rather than a sole cause of disease. Details of the correlations between HSV-1 infection and AD development are still just beginning to emerge. Future research should investigate the relative impacts of virus strain- and host-specific factors on the induction of neurodegenerative processes over time, using models such as infected neurons in vitro, and animal models in vivo, to begin to understand their relationship with cognitive dysfunction.
Collapse
|
39
|
Alawieh A, Langley EF, Tomlinson S. Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice. Sci Transl Med 2019; 10:10/441/eaao6459. [PMID: 29769288 DOI: 10.1126/scitranslmed.aao6459] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/22/2017] [Accepted: 04/27/2018] [Indexed: 12/20/2022]
Abstract
Ischemic stroke results from the interruption of blood flow to the brain resulting in long-term motor and cognitive neurological deficits, and it is a leading cause of death and disability. Current interventions focus on the restoration of blood flow to limit neuronal death, but these treatments have a therapeutic window of only a few hours and do not address post-stroke cerebral inflammation. The complement system, a component of the innate immune system, is activated by natural immunoglobulin M (IgM) antibodies that recognize neoepitopes expressed in the brain after ischemic stroke. We took advantage of this recognition system to inhibit complement activation locally in the ischemic area in mice. A single chain antibody recognizing a post-ischemic neoepitope linked to a complement inhibitor (termed B4Crry) was administered systemically as a single dose after stroke and shown to specifically target the ischemic hemisphere and improve long-term motor and cognitive recovery. We show that complement opsonins guide microglial phagocytosis of stressed but salvageable neurons, and that by locally and transiently inhibiting complement deposition, B4Crry prevented phagocytosis of penumbral neurons and inhibited pathologic complement and microglial activation that otherwise persisted for several weeks after stroke. B4Crry was protective in adult, aged, male and female mice and had a therapeutic window of at least 24 hours after stroke. Furthermore, the epitope recognized by B4Crry in mice is overexpressed in the ischemic penumbra of acute stroke patients, but not in the contralateral tissue, highlighting the translational potential of this approach.
Collapse
Affiliation(s)
- Ali Alawieh
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Medical Scientist Training Program, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - E Farris Langley
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA. .,Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA
| |
Collapse
|
40
|
Yang Y, Zhang K, Chen X, Wang J, Lei X, Zhong J, Xian J, Quan Y, Lu Y, Huang Q, Chen J, Ge H, Feng H. SVCT2 Promotes Neural Stem/Progenitor Cells Migration Through Activating CDC42 After Ischemic Stroke. Front Cell Neurosci 2019; 13:429. [PMID: 31607868 PMCID: PMC6761321 DOI: 10.3389/fncel.2019.00429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/06/2019] [Indexed: 12/31/2022] Open
Abstract
Ischemic stroke is one of the most leading diseases causing death/long-term disability worldwide. Activating endogenous neural stem/progenitors cells (NSPCs), lining in the subventricular zone (SVZ) and dentate gyrus, facilitates injured brain tissue recovery in both short and long-term experimental settings. While, only a few proliferated NSPCs migrate toward the lesions to enhance endogenous repair after ischemia. Here, the results indicated that the functional recovery was evidently improved and the infarct volume was significantly reduced with ascorbic acid (AA) treatment in a dose-dependent manner from 125 to 500 mg/Kg, and the suitable therapeutic concentration was 250 mg/Kg. The possible mechanism might be due to activating sodium-vitamin C cotransporter 2 (SVCT2), which was down-regulated in SVZ after ischemia. Furthermore, immunostaining images depicted the number of migrated NSPCs from SVZ were significantly increased with 250 mg/Kg AA treatment or SVCT2 overexpression under the physiological and pathological condition in vivo. Besides, the data also represented that 250 mg/Kg AA or SVCT2 overexpression facilitated NSPCs migration via promoting F-actin assembling in the manner of up-regulating CDC42 expression using oxygen-glucose deprivation in vitro. Collectively, the present study indicates that SVCT2 promotes NSPCs migration through CDC42 activation to facilitate F-actin assembling, which enlarges the therapeutic scope of AA and the role of SVCT2 in NSPCs migration after brain injury.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Kaiyuan Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Xuezhu Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Ju Wang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Xuejiao Lei
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Jun Zhong
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Jishu Xian
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Yulian Quan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Yongling Lu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Qianying Huang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Jingyu Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Hongfei Ge
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| |
Collapse
|
41
|
Clarke AR, Christophe BR, Khahera A, Sim JL, Connolly ES. Therapeutic Modulation of the Complement Cascade in Stroke. Front Immunol 2019; 10:1723. [PMID: 31417544 PMCID: PMC6682670 DOI: 10.3389/fimmu.2019.01723] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/09/2019] [Indexed: 01/22/2023] Open
Abstract
Stroke is a leading cause of death and disability worldwide and an increasing number of ischemic stroke patients are undergoing pharmacological and mechanical reperfusion. Both human and experimental models of reperfused ischemic stroke have implicated the complement cascade in secondary tissue injury. Most data point to the lectin and alternative pathways as key to activation, and C3a and C5a binding of their receptors as critical effectors of injury. During periods of thrombolysis use to treat stroke, acute experimental complement cascade blockade has been found to rescue tissue and improves functional outcome. Blockade of the complement cascade during the period of tissue reorganization, repair, and recovery is by contrast not helpful and in fact is likely to be deleterious with emerging data suggesting downstream upregulation of the cascade might even facilitate recovery. Successful clinical translation will require the right clinical setting and pharmacologic strategies that are capable of targeting the key effectors early while not inhibiting delayed repair. Early reports in a variety of disease states suggest that such pharmacologic strategies appear to have a favorable risk profile and offer substantial hope for patients.
Collapse
Affiliation(s)
- Alison R Clarke
- Cerebrovascular Research Laboratory, Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Brandon R Christophe
- Cerebrovascular Research Laboratory, Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Anadjeet Khahera
- Cerebrovascular Research Laboratory, Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Justin L Sim
- Cerebrovascular Research Laboratory, Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - E Sander Connolly
- Cerebrovascular Research Laboratory, Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
42
|
Young KG, Yan K, Picketts DJ. C3aR signaling and gliosis in response to neurodevelopmental damage in the cerebellum. J Neuroinflammation 2019; 16:135. [PMID: 31272467 PMCID: PMC6610970 DOI: 10.1186/s12974-019-1530-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Conditional ablation of the Smarca5 gene in mice severely impairs the postnatal growth of the cerebellum and causes an ataxic phenotype. Comparative gene expression studies indicated that complement-related proteins were upregulated in the cerebellum of Smarca5 mutant mice. Complement proteins play critical roles within innate immune signaling pathways and, in the brain, are produced by glial cells under both normal and pathological conditions. The C3 complement protein-derived signaling peptide, C3a, has been implicated in contributing to both tissue damage and repair in conditions such as multiple sclerosis and stroke. Here, we investigated whether C3a receptor (C3aR) signaling promoted damage or repair in the developing cerebellum of Smarca5 mutant mice. METHODS Brain and cerebellum lysates from single Smarca5 conditional knockout (Smarca5 cKO) mice, C3aR1 KO mice, or double mutant mice were used for qRT-PCR and immunoblotting to assess the contribution of C3aR to the Smarca5 cKO brain pathology. Immunohistochemistry was used to characterize alterations to astroglia and phagocyte cells in the developing cerebellum of each of the genotypes. RESULTS C3aR signaling was observed to limit gliosis and promote granule neuron survival during postnatal cerebellar development. In Smarca5 cKO mice, disorganized astroglia with increased GFAP expression develops concurrently with cerebellar granule neuron loss and phagocyte invasion over the first 10 days following birth. Potential ligand precursors of C3aR-VGF and C3-were found to have upregulated expression and/or altered processing during this time. Phagocytes (microglia and macrophages) in both the control and Smarca5 mutant mice were the only cells observed to express C3aR. Loss of C3aR in the Smarca5 cKO cerebellum resulted in increased numbers of apoptotic cells and early phagocyte invasion into the external granule cell layer, as well as an exacerbated disorganization of the Bergmann glia. The loss of C3aR expression also attenuated an increase in the expression of the efferocytosis-related protein, MerTK, whose transcript was upregulated ~ 2.5-fold in the Smarca5 mutant cerebellum at P10. CONCLUSIONS This data indicates that C3aR can play an important role in limiting astrogliosis and regulating phagocyte phenotypes following developmental cell loss in the brain.
Collapse
Affiliation(s)
- Kevin G Young
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.,Present address: Therapeutic Products Directorate, Health Canada, 1600 Scott St, Ottawa, ON, K1A 0K9, Canada
| | - Keqin Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
43
|
Malone K, Amu S, Moore AC, Waeber C. Immunomodulatory Therapeutic Strategies in Stroke. Front Pharmacol 2019; 10:630. [PMID: 31281252 PMCID: PMC6595144 DOI: 10.3389/fphar.2019.00630] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
The role of immunity in all stages of stroke is increasingly being recognized, from the pathogenesis of risk factors to tissue repair, leading to the investigation of a range of immunomodulatory therapies. In the acute phase of stroke, proposed therapies include drugs targeting pro-inflammatory cytokines, matrix metalloproteinases, and leukocyte infiltration, with a key objective to reduce initial brain cell toxicity. Systemically, the early stages of stroke are also characterized by stroke-induced immunosuppression, where downregulation of host defences predisposes patients to infection. Therefore, strategies to modulate innate immunity post-stroke have garnered greater attention. A complementary objective is to reduce longer-term sequelae by focusing on adaptive immunity. Following stroke onset, the integrity of the blood–brain barrier is compromised, exposing central nervous system (CNS) antigens to systemic adaptive immune recognition, potentially inducing autoimmunity. Some pre-clinical efforts have been made to tolerize the immune system to CNS antigens pre-stroke. Separately, immune cell populations that exhibit a regulatory phenotype (T- and B- regulatory cells) have been shown to ameliorate post-stroke inflammation and contribute to tissue repair. Cell-based therapies, established in oncology and transplantation, could become a strategy to treat the acute and chronic stages of stroke. Furthermore, a role for the gut microbiota in ischaemic injury has received attention. Finally, the immune system may play a role in remote ischaemic preconditioning-mediated neuroprotection against stroke. The development of stroke therapies involving organs distant to the infarct site, therefore, should not be overlooked. This review will discuss the immune mechanisms of various therapeutic strategies, surveying published data and discussing more theoretical mechanisms of action that have yet to be exploited.
Collapse
Affiliation(s)
- Kyle Malone
- Department of Pharmacology and Therapeutics, School of Pharmacy, University College Cork, Cork, Ireland
| | - Sylvie Amu
- Cancer Research @UCC, University College Cork, Cork, Ireland
| | - Anne C Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Christian Waeber
- Department of Pharmacology and Therapeutics, School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
44
|
Nasr IW, Chun Y, Kannan S. Neuroimmune responses in the developing brain following traumatic brain injury. Exp Neurol 2019; 320:112957. [PMID: 31108085 DOI: 10.1016/j.expneurol.2019.112957] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/26/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of both acute and long-term morbidity in the pediatric population, leading to a substantial, long-term socioeconomic burden. Despite the increase in the amount of pre-clinical and clinical research, treatment options for TBI rely heavily on supportive care with very limited targeted interventions that improve the acute and chronic sequelae of TBI. Other than injury prevention, not much can be done to limit the primary injury, which consists of tissue damage and cellular destruction. Secondary injury is the result of the ongoing complex inflammatory pathways that further exacerbate tissue damage, resulting in the devastating chronic outcomes of TBI. On the other hand, some level of inflammation is essential for neuronal regeneration and tissue repair. In this review article we discuss the various stages of the neuroimmune response in the immature, pediatric brain in the context of normal maturation and development of the immune system. The developing brain has unique features that distinguish it from the adult brain, and the immune system plays an integral role in CNS development. Those features could potentially make the developing brain more susceptible to worse outcomes, both acutely and in the long-term. The neuroinflammatory reaction which is triggered by TBI can be described as a highly intricate interaction between the cells of the innate and the adaptive immune systems. The innate immune system is triggered by non-specific danger signals that are released from damaged cells and tissues, which in turn leads to neutrophil infiltration, activation of microglia and astrocytes, complement release, as well as histamine release by mast cells. The adaptive immune response is subsequently activated leading to the more chronic effects of neuroinflammation. We will also discuss current attempts at modulating the TBI-induced neuroinflammatory response. A better understanding of the role of the immune system in normal brain development and how immune function changes with age is crucial for designing therapies to appropriately target the immune responses following TBI in order to enhance repair and plasticity.
Collapse
Affiliation(s)
- Isam W Nasr
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America
| | - Young Chun
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America.
| |
Collapse
|
45
|
Ma Y, Liu Y, Zhang Z, Yang GY. Significance of Complement System in Ischemic Stroke: A Comprehensive Review. Aging Dis 2019; 10:429-462. [PMID: 31011487 PMCID: PMC6457046 DOI: 10.14336/ad.2019.0119] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022] Open
Abstract
The complement system is an essential part of innate immunity, typically conferring protection via eliminating pathogens and accumulating debris. However, the defensive function of the complement system can exacerbate immune, inflammatory, and degenerative responses in various pathological conditions. Cumulative evidence indicates that the complement system plays a critical role in the pathogenesis of ischemic brain injury, as the depletion of certain complement components or the inhibition of complement activation could reduce ischemic brain injury. Although multiple candidates modulating or inhibiting complement activation show massive potential for the treatment of ischemic stroke, the clinical availability of complement inhibitors remains limited. The complement system is also involved in neural plasticity and neurogenesis during cerebral ischemia. Thus, unexpected side effects could be induced if the systemic complement system is inhibited. In this review, we highlighted the recent concepts and discoveries of the roles of different kinds of complement components, such as C3a, C5a, and their receptors, in both normal brain physiology and the pathophysiology of brain ischemia. In addition, we comprehensively reviewed the current development of complement-targeted therapy for ischemic stroke and discussed the challenges of bringing these therapies into the clinic. The design of future experiments was also discussed to better characterize the role of complement in both tissue injury and recovery after cerebral ischemia. More studies are needed to elucidate the molecular and cellular mechanisms of how complement components exert their functions in different stages of ischemic stroke to optimize the intervention of targeting the complement system.
Collapse
Affiliation(s)
- Yuanyuan Ma
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqun Liu
- 3Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhijun Zhang
- 2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
46
|
Kaya K, Çiftçi O, Öztanır MN, Taşlıdere E, Türkmen NB. Beta-glucan attenuates cerebral ischemia/reperfusion-induced neuronal injury in a C57BL/J6 mouse model. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000218312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
47
|
Bendorius M, Po C, Muller S, Jeltsch-David H. From Systemic Inflammation to Neuroinflammation: The Case of Neurolupus. Int J Mol Sci 2018; 19:E3588. [PMID: 30428632 PMCID: PMC6274746 DOI: 10.3390/ijms19113588] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022] Open
Abstract
It took decades to arrive at the general consensus dismissing the notion that the immune system is independent of the central nervous system. In the case of uncontrolled systemic inflammation, the relationship between the two systems is thrown off balance and results in cognitive and emotional impairment. It is specifically true for autoimmune pathologies where the central nervous system is affected as a result of systemic inflammation. Along with boosting circulating cytokine levels, systemic inflammation can lead to aberrant brain-resident immune cell activation, leakage of the blood⁻brain barrier, and the production of circulating antibodies that cross-react with brain antigens. One of the most disabling autoimmune pathologies known to have an effect on the central nervous system secondary to the systemic disease is systemic lupus erythematosus. Its neuropsychiatric expression has been extensively studied in lupus-like disease murine models that develop an autoimmunity-associated behavioral syndrome. These models are very useful for studying how the peripheral immune system and systemic inflammation can influence brain functions. In this review, we summarize the experimental data reported on murine models developing autoimmune diseases and systemic inflammation, and we explore the underlying mechanisms explaining how systemic inflammation can result in behavioral deficits, with a special focus on in vivo neuroimaging techniques.
Collapse
Affiliation(s)
- Mykolas Bendorius
- UMR 7242 Biotechnologie et Signalisation Cellulaire, École Supérieure de Biotechnologie de Strasbourg (ESBS), Laboratoire d'Excellence Médalis, Université de Strasbourg/CNRS, 67412 Illkirch, France.
| | - Chrystelle Po
- ICube UMR 7357, Université de Strasbourg/CNRS, Fédération de Médecine Translationnelle de Strasbourg, 67000 Strasbourg, France.
| | - Sylviane Muller
- UMR 7242 Biotechnologie et Signalisation Cellulaire, École Supérieure de Biotechnologie de Strasbourg (ESBS), Laboratoire d'Excellence Médalis, Université de Strasbourg/CNRS, 67412 Illkirch, France.
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France.
| | - Hélène Jeltsch-David
- UMR 7242 Biotechnologie et Signalisation Cellulaire, École Supérieure de Biotechnologie de Strasbourg (ESBS), Laboratoire d'Excellence Médalis, Université de Strasbourg/CNRS, 67412 Illkirch, France.
| |
Collapse
|
48
|
Li Y, Zhu ZY, Huang TT, Zhou YX, Wang X, Yang LQ, Chen ZA, Yu WF, Li PY. The peripheral immune response after stroke-A double edge sword for blood-brain barrier integrity. CNS Neurosci Ther 2018; 24:1115-1128. [PMID: 30387323 PMCID: PMC6490160 DOI: 10.1111/cns.13081] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023] Open
Abstract
The blood‐brain barrier (BBB) is a highly regulated interface that separates the peripheral circulation and the brain. It plays a vital role in regulating the trafficking of solutes, fluid, and cells at the blood‐brain interface and maintaining the homeostasis of brain microenvironment for normal neuronal activity. Growing evidence has led to the realization that ischemic stroke elicits profound immune responses in the circulation and the activation of multiple subsets of immune cells, which in turn affect both the early disruption and the later repair of the BBB after stroke. Distinct phenotypes or subsets of peripheral immune cells along with diverse intracellular mechanisms contribute to the dynamic changes of BBB integrity after stroke. This review focuses on the interaction between the peripheral immune cells and the BBB after ischemic stroke. Understanding their reciprocal interaction may generate new directions for stroke research and may also drive the innovation of easy accessible immune modulatory treatment strategies targeting BBB in the pursuit of better stroke recovery.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zi-Yu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ting-Ting Huang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu-Xi Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xin Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zeng-Ai Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
49
|
Lai W, Xie X, Zhang X, Wang Y, Chu K, Brown J, Chen L, Hong G. Inhibition of Complement Drives Increase in Early Growth Response Proteins and Neuroprotection Mediated by Salidroside After Cerebral Ischemia. Inflammation 2018; 41:449-463. [PMID: 29198014 DOI: 10.1007/s10753-017-0701-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Salidroside is neuroprotective across a wide therapeutic time-window after cerebral ischemia-reperfusion injury (IRI). Here, we investigated the role of complement in mediating effects of salidroside after cerebral IRI in rats. Rats were administrated with vehicle or salidroside 50 mg/kg, given daily for either 24 or 48 h, after middle cerebral artery occlusion (MCAO) for 2 h and reperfusion for 1 h. Levels of proteins in ischemic brain were measured by immunofluorescence and western blotting. We observed early increases in the deposition of immunoglobulin M, mannose-binding lectin 2, and annexin IV on cerebral endothelial cells, induction of the complement components C3 and C3a, by 24 h after IRI, and a later significant increase in the complement component C1q by 48 h. Salidroside prevented these changes. The neuroplasticity-related early growth response proteins Egr1, Egr2, and Egr4 and activity-regulated cytoskeleton-associated protein increased transiently in the first 6 h after IRI but then decreased below baseline by 48 h after IRI. Neither salidroside nor a C3a receptor antagonist (C3aRA) affected these proteins 24 h after IRI, but both reversed their later decreases to similar and non-additive extents. Salidroside and C3aRA increased NeuN in a non-additive manner after IRI. Our results suggest that salidroside exerts neuroprotection by reducing early activation of the lectin pathway on the cerebral endothelium and inhibiting the gradual activation of the classical pathway after cerebral IRI. This prolonged neuroprotection may depend, at least in part, on increased expression of neuroplasticity-related genes driven by reduced complement activation.
Collapse
Affiliation(s)
- Wenfang Lai
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - XiuLi Xie
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Xiaoqin Zhang
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Yingzheng Wang
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Kedan Chu
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - John Brown
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Lidian Chen
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Guizhu Hong
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China.
| |
Collapse
|
50
|
Bosco A, Anderson SR, Breen KT, Romero CO, Steele MR, Chiodo VA, Boye SL, Hauswirth WW, Tomlinson S, Vetter ML. Complement C3-Targeted Gene Therapy Restricts Onset and Progression of Neurodegeneration in Chronic Mouse Glaucoma. Mol Ther 2018; 26:2379-2396. [PMID: 30217731 DOI: 10.1016/j.ymthe.2018.08.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/02/2018] [Accepted: 08/19/2018] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of the complement system is implicated in neurodegeneration, including human and animal glaucoma. Optic nerve and retinal damage in glaucoma is preceded by local complement upregulation and activation, but whether targeting this early innate immune response could have therapeutic benefit remains undefined. Because complement signals through three pathways that intersect at complement C3 activation, here we targeted this step to restore complement balance in the glaucomatous retina and to determine its contribution to degeneration onset and/or progression. To achieve this, we combined adeno-associated virus retinal gene therapy with the targeted C3 inhibitor CR2-Crry. We show that intravitreal injection of AAV2.CR2-Crry produced sustained Crry overexpression in the retina and reduced deposition of the activation product complement C3d on retinal ganglion cells and the inner retina of DBA/2J mice. This resulted in neuroprotection of retinal ganglion cell axons and somata despite continued intraocular pressure elevation, suggesting a direct restriction of neurodegeneration onset and progression and significant delay to terminal disease stages. Our study uncovers a damaging effect of complement C3 or downstream complement activation in glaucoma, and it establishes AAV2.CR2-Crry as a viable therapeutic strategy to target pathogenic C3-mediated complement activation in the glaucomatous retina.
Collapse
Affiliation(s)
- Alejandra Bosco
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT, USA.
| | - Sarah R Anderson
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Kevin T Breen
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Cesar O Romero
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Michael R Steele
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Vince A Chiodo
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Sanford L Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | | | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Monica L Vetter
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|