1
|
Jia H, Moore M, Wadhwa M, Burns C. Human iPSC-Derived Endothelial Cells Exhibit Reduced Immunogenicity in Comparison With Human Primary Endothelial Cells. Stem Cells Int 2024; 2024:6153235. [PMID: 39687754 PMCID: PMC11649354 DOI: 10.1155/sci/6153235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024] Open
Abstract
Human induced pluripotent stem cell (iPSC)-derived endothelial cells (ECs) have emerged as a promising source of autologous cells with great potential to produce novel cell therapy for ischemic vascular diseases. However, their clinical application still faces numerous challenges including safety concerns such as the potential aberrant immunogenicity derived from the reprogramming process. This study investigated immunological phenotypes of iPSC-ECs by a side-by-side comparison with primary human umbilical vein ECs (HUVECs). Three types of human iPSC-ECs, NIBSC8-EC generated in house and two commercial iPSC-ECs, alongside HUVECs, were examined for surface expression of proteins of immune relevance under resting conditions and after cytokine activation. All iPSC-EC populations failed to express major histocompatibility complex (MHC) Class II on their surface following interferon-gamma (IFN-γ) treatment but showed similar basal and IFN-γ-stimulated expression levels of MHC Class I of HUVECs. Multiple iPSC-ECs also retained constitutive and tumor necrosis factor-alpha (TNF-α)-stimulated expression levels of intercellular adhesion molecule-1 (ICAM-1) like HUVECs. However, TNF-α induced a differential expression of E-selectin and vascular cell adhesion molecule-1 (VCAM-1) on iPSC-ECs. Furthermore, real-time monitoring of proliferation of human peripheral blood mononuclear cells (PBMCs) cocultured on an endothelial monolayer over 5 days showed that iPSC-ECs provoked distinct dynamics of PBMC proliferation, which was generally decreased in alloreactivity and IFN-γ-stimulated proliferation of PBMCs compared with HUVECs. Consistently, in the conventional mixed lymphocyte reaction (MLR), the proliferation of total CD3+ and CD4+ T cells after 5-day cocultures with multiple iPSC-EC populations was largely reduced compared to HUVECs. Last, multiple iPSC-EC cocultures secreted lower levels of proinflammatory cytokines than HUVEC cocultures. Collectively, iPSC-ECs manifested many similarities, but also some disparities with a generally weaker inflammatory immune response than primary ECs, indicating that iPSC-ECs may possibly exhibit hypoimmunogenicity corresponding with less risk of immune rejection in a transplant setting, which is important for safe and effective cell therapies.
Collapse
Affiliation(s)
- Haiyan Jia
- Biotherapeutics and Advanced Therapies, Research and Development, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| | - Melanie Moore
- Therapeutic Reference Materials, Standards Lifecycle, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| | - Meenu Wadhwa
- Biotherapeutics and Advanced Therapies, Research and Development, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| | - Chris Burns
- Biotherapeutics and Advanced Therapies, Research and Development, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| |
Collapse
|
2
|
Messmer JM, Thommek C, Piechutta M, Venkataramani V, Wehner R, Westphal D, Schubert M, Mayer CD, Effern M, Berghoff AS, Hinze D, Helfrich I, Schadendorf D, Wick W, Hölzel M, Karreman MA, Winkler F. T lymphocyte recruitment to melanoma brain tumors depends on distinct venous vessels. Immunity 2024; 57:2688-2703.e11. [PMID: 39368486 DOI: 10.1016/j.immuni.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 10/07/2024]
Abstract
To improve immunotherapy for brain tumors, it is important to determine the principal intracranial site of T cell recruitment from the bloodstream and their intracranial route to brain tumors. Using intravital microscopy in mouse models of intracranial melanoma, we discovered that circulating T cells preferably adhered and extravasated at a distinct type of venous blood vessel in the tumor vicinity, peritumoral venous vessels (PVVs). Other vascular structures were excluded as alternative T cell routes to intracranial melanomas. Anti-PD-1/CTLA-4 immune checkpoint inhibitors increased intracranial T cell motility, facilitating migration from PVVs to the tumor and subsequently inhibiting intracranial tumor growth. The endothelial adhesion molecule ICAM-1 was particularly expressed on PVVs, and, in samples of human brain metastases, ICAM-1 positivity of PVV-like vessels correlated with intratumoral T cell infiltration. These findings uncover a distinct mechanism by which the immune system can access and control brain tumors and potentially influence other brain pathologies.
Collapse
Affiliation(s)
- Julia M Messmer
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany; Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Calvin Thommek
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Manuel Piechutta
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany; Department of Functional Neuroanatomy, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Rebekka Wehner
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, 01307 Dresden, Germany; Partner Site Dresden, National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, 01307 Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dana Westphal
- Partner Site Dresden, National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; Department of Dermatology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Marc Schubert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Chanté D Mayer
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Maike Effern
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Anna S Berghoff
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Daniel Hinze
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Iris Helfrich
- Medical Faculty of the Ludwig Maximilian University of Munich, Department of Dermatology and Allergology, Frauenlobstrasse 9-11, 80377 Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany; Department of Dermatology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Matthia A Karreman
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Sigler AL, Thompson SB, Ellwood-Digel L, Kandasamy A, Michaels MJ, Thumkeo D, Narumiya S, Del Alamo JC, Jacobelli J. FMNL1 and mDia1 promote efficient T cell migration through complex environments via distinct mechanisms. Front Immunol 2024; 15:1467415. [PMID: 39430739 PMCID: PMC11486666 DOI: 10.3389/fimmu.2024.1467415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
Lymphocyte trafficking and migration through tissues is critical for adaptive immune function and, to perform their roles, T cells must be able to navigate through diverse tissue environments that present a range of mechanical challenges. T cells predominantly express two members of the formin family of actin effectors, Formin-like 1 (FMNL1) and mammalian diaphanous-related formin 1 (mDia1). While both FMNL1 and mDia1 have been studied individually, they have not been directly compared to determine functional differences in promoting T cell migration. Through in vivo analysis and the use of in vitro 2D and 3D model environments, we demonstrate that FMNL1 and mDia1 are both required for effective T cell migration, but they have different localization and roles in T cells, with specific environment-dependent functions. We found that mDia1 promotes general motility in 3D environments in conjunction with Myosin-II activity. We also show that, while mDia1 is almost entirely in the cytoplasmic compartment, a portion of FMNL1 physically associates with the nucleus. Furthermore, FMNL1 localizes to the rear of migrating T cells and contributes to efficient migration by promoting deformation of the rigid T cell nucleus in confined environments. Overall, our data indicates that while FMNL1 and mDia1 have similar mechanisms of actin polymerization, they have distinct roles in promoting T cell migration. This suggests that differential modulation of FMNL1 and mDia1 can be an attractive therapeutic route to fine-tune T cell migration behavior.
Collapse
Affiliation(s)
- Ashton L. Sigler
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Scott B. Thompson
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Logan Ellwood-Digel
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Adithan Kandasamy
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Mary J. Michaels
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Dean Thumkeo
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Juan C. Del Alamo
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
- Division of Cardiology, University of Washington, Seattle, WA, United States
| | - Jordan Jacobelli
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
4
|
Guelfi S, Hodivala-Dilke K, Bergers G. Targeting the tumour vasculature: from vessel destruction to promotion. Nat Rev Cancer 2024; 24:655-675. [PMID: 39210063 DOI: 10.1038/s41568-024-00736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
As angiogenesis was recognized as a core hallmark of cancer growth and survival, several strategies have been implemented to target the tumour vasculature. Yet to date, attempts have rarely been so diverse, ranging from vessel growth inhibition and destruction to vessel normalization, reprogramming and vessel growth promotion. Some of these strategies, combined with standard of care, have translated into improved cancer therapies, but their successes are constrained to certain cancer types. This Review provides an overview of these vascular targeting approaches and puts them into context based on our subsequent improved understanding of the tumour vasculature as an integral part of the tumour microenvironment with which it is functionally interlinked. This new knowledge has already led to dual targeting of the vascular and immune cell compartments and sets the scene for future investigations of possible alternative approaches that consider the vascular link with other tumour microenvironment components for improved cancer therapy.
Collapse
Affiliation(s)
- Sophie Guelfi
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK.
| | - Gabriele Bergers
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Chumak T, Jullienne A, Ek CJ, Ardalan M, Svedin P, Quan R, Salehi A, Salari S, Obenaus A, Vexler ZS, Mallard C. Maternal n-3 enriched diet reprograms the offspring neurovascular transcriptome and blunts inflammation induced by endotoxin in the neonate. J Neuroinflammation 2024; 21:199. [PMID: 39128994 PMCID: PMC11316986 DOI: 10.1186/s12974-024-03191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Infection during the perinatal period can adversely affect brain development, predispose infants to ischemic stroke and have lifelong consequences. We previously demonstrated that diet enriched in n-3 polyunsaturated fatty acids (n-3 PUFA) transforms brain lipid composition in the offspring and protects the neonatal brain from stroke, in part by blunting injurious immune responses. Critical to the interface between the brain and systemic circulation is the vasculature, endothelial cells in particular, that support brain homeostasis and provide a barrier to systemic infection. Here, we examined whether maternal PUFA-enriched diets exert reprograming of endothelial cell signalling in postnatal day 9 mice after modeling aspects of infection using LPS. Transcriptome analysis was performed on microvessels isolated from brains of pups from dams maintained on 3 different maternal diets from gestation day 1: standard, n-3 enriched or n-6 enriched diets. Depending on the diet, in endothelial cells LPS produced distinct regulation of pathways related to immune response, cell cycle, extracellular matrix, and angiogenesis. N-3 PUFA diet enabled higher immune reactivity in brain vasculature, while preventing imbalance of cell cycle regulation and extracellular matrix cascades that accompanied inflammatory response in standard diet. Cytokine analysis revealed a blunted LPS response in blood and brain of offspring from dams on n-3 enriched diet. Analysis of cerebral vasculature in offspring in vivo revealed no differences in vessel density. However, vessel complexity was decreased in response to LPS at 72 h in standard and n-6 diets. Thus, LPS modulates specific transcriptomic changes in brain vessels of offspring rather than major structural vessel characteristics during early life. N-3 PUFA-enriched maternal diet in part prevents an imbalance in homeostatic processes, alters inflammation and ultimately mitigates changes to the complexity of surface vessel networks that result from infection. Importantly, maternal diet may presage offspring neurovascular outcomes later in life.
Collapse
Affiliation(s)
- Tetyana Chumak
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Box 432, Gothenburg, 405 30, Sweden.
| | - Amandine Jullienne
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - C Joakim Ek
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Box 432, Gothenburg, 405 30, Sweden
| | - Maryam Ardalan
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Box 432, Gothenburg, 405 30, Sweden
| | - Pernilla Svedin
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Box 432, Gothenburg, 405 30, Sweden
| | - Ryan Quan
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Arjang Salehi
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Sirus Salari
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Andre Obenaus
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | | | - Carina Mallard
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Box 432, Gothenburg, 405 30, Sweden
| |
Collapse
|
6
|
Calanca N, Faldoni FLC, Souza CP, Souza JS, de Souza Alves BE, Soares MBP, Wong DVT, Lima-Junior RCP, Marchi FA, Rainho CA, Rogatto SR. Inflammatory breast cancer microenvironment repertoire based on DNA methylation data deconvolution reveals actionable targets to enhance the treatment efficacy. J Transl Med 2024; 22:735. [PMID: 39103878 DOI: 10.1186/s12967-024-05553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Although the clinical signs of inflammatory breast cancer (IBC) resemble acute inflammation, the role played by infiltrating immune and stromal cells in this aggressive disease is uncharted. The tumor microenvironment (TME) presents molecular alterations, such as epimutations, prior to morphological abnormalities. These changes affect the distribution and the intricate communication between the TME components related to cancer prognosis and therapy response. Herein, we explored the global DNA methylation profile of IBC and surrounding tissues to estimate the microenvironment cellular composition and identify epigenetically dysregulated markers. METHODS We used the HiTIMED algorithm to deconvolve the bulk DNA methylation data of 24 IBC and six surrounding non-tumoral tissues (SNT) (GSE238092) and determine their cellular composition. The prognostic relevance of cell types infiltrating IBC and their relationship with clinicopathological variables were investigated. CD34 (endothelial cell marker) and CD68 (macrophage marker) immunofluorescence staining was evaluated in an independent set of 17 IBC and 16 non-IBC samples. RESULTS We found lower infiltration of endothelial, stromal, memory B, dendritic, and natural killer cells in IBC than in SNT samples. Higher endothelial cell (EC) and stromal cell content were related to better overall survival. EC proportions positively correlated with memory B and memory CD8+ T infiltration in IBC. Immune and EC markers exhibited distinct DNA methylation profiles between IBC and SNT samples, revealing hypermethylated regions mapped to six genes (CD40, CD34, EMCN, HLA-G, PDPN, and TEK). We identified significantly higher CD34 and CD68 protein expression in IBC compared to non-IBC. CONCLUSIONS Our findings underscored cell subsets that distinguished patients with better survival and dysregulated markers potentially actionable through combinations of immunotherapy and epigenetic drugs.
Collapse
Affiliation(s)
- Naiade Calanca
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, Vejle, DK, 7100, Denmark
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Flavia Lima Costa Faldoni
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, Vejle, DK, 7100, Denmark
| | - Cristiano Pádua Souza
- Medical Oncology Department, Barretos Cancer Hospital, Pio XII Foundation, Barretos, SP, 14784-400, Brazil
| | | | - Bianca Elen de Souza Alves
- Department of Physiology and Pharmacology, Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceará, Fortaleza, 60430-270, Brazil
| | - Milena Botelho Pereira Soares
- Health Technology Institute, SENAI CIMATEC, Salvador, BA, 41650-010, Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, 40296-710, Brazil
| | - Deysi Viviana Tenazoa Wong
- Department of Physiology and Pharmacology, Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceará, Fortaleza, 60430-270, Brazil
| | - Roberto César Pereira Lima-Junior
- Department of Physiology and Pharmacology, Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceará, Fortaleza, 60430-270, Brazil
| | - Fabio Albuquerque Marchi
- Department of Head and Neck Surgery, University of São Paulo Medical School, São Paulo, SP, 05402-000, Brazil
- Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), São Paulo, SP, 01246-000, Brazil
| | - Claudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, Vejle, DK, 7100, Denmark.
- Institute of Regional Health Research, University of Southern Denmark, Odense, 5000, Denmark.
- Botucatu Medical School Hospital, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
7
|
Nicholas SAE, Helming SR, Ménoret A, Pathoulas C, Xu MM, Hensel J, Kimble AL, Heineman B, Jellison ER, Reese B, Zhou B, Rodriguez-Oquendo A, Vella AT, Murphy PA. Endothelial Immunosuppression in Atherosclerosis : Translational Control by Elavl1/HuR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.605922. [PMID: 39131295 PMCID: PMC11312609 DOI: 10.1101/2024.08.02.605922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Atherosclerotic plaques are defined by the accumulation of lipids and immune cells beneath the endothelium of the arterial intima. CD8 T cells are among the most abundant immune cell types in plaque, and conditions linked to their activation correlate with increased levels of cardiovascular disease. As lethal effectors of the immune response, CD8 T cell activation is suppressed at multiple levels. These checkpoints are critical in dampening autoimmune responses, and limiting damage in cardiovascular disease. Endothelial cells are well known for their role in recruiting CD8 T and other hematopoietic cells to low and disturbed flow (LDF) arterial regions that develop plaque, but whether they locally influence CD8 effector functions is unclear. Here, we show that endothelial cells can actively suppress CD8 T cell responses in settings of chronic plaque inflammation, but that this behavior is governed by expression of the RNA-binding protein Embryonic Lethal, Abnormal Vision-Like 1 (Elavl1). In response to immune cell recruitment in plaque, the endothelium dynamically shifts splicing of pre-mRNA and their translation to enhance expression of immune-regulatory proteins including C1q and CD27. This program is immuno-suppressive, and limited by Elavl1. We show this by Cdh5(PAC)-CreERT2-mediated deletion of Elavl1 (ECKO), and analysis of changes in translation by Translating Ribosome Affinity Purification (TRAP). In ECKO mice, the translational shift in chronic inflammation is enhanced, leading to increased ribosomal association of C1q components and other critical regulators of immune response and resulting in a ~70% reduction in plaque CD8 T cells. CITE-seq analysis of the remaining plaque T cells shows that they exhibit lower levels of markers associated with T cell receptor (TCR) signaling, survival, and activation. To understand whether the immunosuppressive mechanism occurred through failed CD8 recruitment or local modulation of T cell responses, we used a novel in vitro co-culture system to show that ECKO endothelial cells suppress CD8 T cell expansion-even in the presence of wild-type myeloid antigen-presenting cells, antigen-specific CD8 T cells, and antigen. Despite the induction of C1q mRNA by T cell co-culture in both wild-type and ECKO endothelial cells, we find C1q protein abundantly expressed only in co-culture with ECKO cells. Together, our data define a novel immune-suppressive transition in the endothelium, reminiscent of the transition of T cells to T-regs, and demonstrate the regulation of this process by Elavl1.
Collapse
Affiliation(s)
- Sarah-Anne E Nicholas
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Stephen R Helming
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | | | - Christopher Pathoulas
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Maria M Xu
- Department of Immunology, UCONN Health, Farmington, CT
| | - Jessica Hensel
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Amy L Kimble
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Brent Heineman
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | | | - Bo Reese
- Institute for Systems Genomics - Center for Genome Innovation, UCONN, Storrs, CT
| | - Beiyan Zhou
- Department of Immunology, UCONN Health, Farmington, CT
| | | | | | - Patrick A Murphy
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| |
Collapse
|
8
|
Zapata-Acevedo JF, Mantilla-Galindo A, Vargas-Sánchez K, González-Reyes RE. Blood-brain barrier biomarkers. Adv Clin Chem 2024; 121:1-88. [PMID: 38797540 DOI: 10.1016/bs.acc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The blood-brain barrier (BBB) is a dynamic interface that regulates the exchange of molecules and cells between the brain parenchyma and the peripheral blood. The BBB is mainly composed of endothelial cells, astrocytes and pericytes. The integrity of this structure is essential for maintaining brain and spinal cord homeostasis and protection from injury or disease. However, in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, and multiple sclerosis, the BBB can become compromised thus allowing passage of molecules and cells in and out of the central nervous system parenchyma. These agents, however, can serve as biomarkers of BBB permeability and neuronal damage, and provide valuable information for diagnosis, prognosis and treatment. Herein, we provide an overview of the BBB and changes due to aging, and summarize current knowledge on biomarkers of BBB disruption and neurodegeneration, including permeability, cellular, molecular and imaging biomarkers. We also discuss the challenges and opportunities for developing a biomarker toolkit that can reliably assess the BBB in physiologic and pathophysiologic states.
Collapse
Affiliation(s)
- Juan F Zapata-Acevedo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Alejandra Mantilla-Galindo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Karina Vargas-Sánchez
- Laboratorio de Neurofisiología Celular, Grupo de Neurociencia Traslacional, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
9
|
Haghayegh Jahromi N, Gkountidi AO, Collado-Diaz V, Blatter K, Bauer A, Zambounis L, Medina-Sanchez JD, Russo E, Runge P, Restivo G, Gousopoulos E, Lindenblatt N, Levesque MP, Halin C. CD112 Supports Lymphatic Migration of Human Dermal Dendritic Cells. Cells 2024; 13:424. [PMID: 38474388 DOI: 10.3390/cells13050424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Dendritic cell (DC) migration from peripheral tissues via afferent lymphatic vessels to draining lymph nodes (dLNs) is important for the organism's immune regulation and immune protection. Several lymphatic endothelial cell (LEC)-expressed adhesion molecules have thus far been found to support transmigration and movement within the lymphatic vasculature. In this study, we investigated the contribution of CD112, an adhesion molecule that we recently found to be highly expressed in murine LECs, to this process. Performing in vitro assays in the murine system, we found that transmigration of bone marrow-derived dendritic cells (BM-DCs) across or adhesion to murine LEC monolayers was reduced when CD112 was absent on LECs, DCs, or both cell types, suggesting the involvement of homophilic CD112-CD112 interactions. While CD112 was highly expressed in murine dermal LECs, CD112 levels were low in endogenous murine dermal DCs and BM-DCs. This might explain why we observed no defect in the in vivo lymphatic migration of adoptively transferred BM-DCs or endogenous DCs from the skin to dLNs. Compared to murine DCs, human monocyte-derived DCs expressed higher CD112 levels, and their migration across human CD112-expressing LECs was significantly reduced upon CD112 blockade. CD112 expression was also readily detected in endogenous human dermal DCs and LECs by flow cytometry and immunofluorescence. Upon incubating human skin punch biopsies in the presence of CD112-blocking antibodies, DC emigration from the tissue into the culture medium was significantly reduced, indicating impaired lymphatic migration. Overall, our data reveal a contribution of CD112 to human DC migration.
Collapse
Affiliation(s)
- Neda Haghayegh Jahromi
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Anastasia-Olga Gkountidi
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Victor Collado-Diaz
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Katharina Blatter
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Aline Bauer
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Lito Zambounis
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | | | - Erica Russo
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Peter Runge
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Epameinondas Gousopoulos
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| |
Collapse
|
10
|
Leone P, Malerba E, Susca N, Favoino E, Perosa F, Brunori G, Prete M, Racanelli V. Endothelial cells in tumor microenvironment: insights and perspectives. Front Immunol 2024; 15:1367875. [PMID: 38426109 PMCID: PMC10902062 DOI: 10.3389/fimmu.2024.1367875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
The tumor microenvironment is a highly complex and dynamic mixture of cell types, including tumor, immune and endothelial cells (ECs), soluble factors (cytokines, chemokines, and growth factors), blood vessels and extracellular matrix. Within this complex network, ECs are not only relevant for controlling blood fluidity and permeability, and orchestrating tumor angiogenesis but also for regulating the antitumor immune response. Lining the luminal side of vessels, ECs check the passage of molecules into the tumor compartment, regulate cellular transmigration, and interact with both circulating pathogens and innate and adaptive immune cells. Thus, they represent a first-line defense system that participates in immune responses. Tumor-associated ECs are involved in T cell priming, activation, and proliferation by acting as semi-professional antigen presenting cells. Thus, targeting ECs may assist in improving antitumor immune cell functions. Moreover, tumor-associated ECs contribute to the development at the tumor site of tertiary lymphoid structures, which have recently been associated with enhanced response to immune checkpoint inhibitors (ICI). When compared to normal ECs, tumor-associated ECs are abnormal in terms of phenotype, genetic expression profile, and functions. They are characterized by high proliferative potential and the ability to activate immunosuppressive mechanisms that support tumor progression and metastatic dissemination. A complete phenotypic and functional characterization of tumor-associated ECs could be helpful to clarify their complex role within the tumor microenvironment and to identify EC specific drug targets to improve cancer therapy. The emerging therapeutic strategies based on the combination of anti-angiogenic treatments with immunotherapy strategies, including ICI, CAR T cells and bispecific antibodies aim to impact both ECs and immune cells to block angiogenesis and at the same time to increase recruitment and activation of effector cells within the tumor.
Collapse
Affiliation(s)
- Patrizia Leone
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Eleonora Malerba
- Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), Aldo Moro University of Bari, Bari, Italy
| | - Nicola Susca
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Elvira Favoino
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Federico Perosa
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Giuliano Brunori
- Centre for Medical Sciences, University of Trento and Nephrology and Dialysis Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| | - Marcella Prete
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Vito Racanelli
- Centre for Medical Sciences, University of Trento and Internal Medicine Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| |
Collapse
|
11
|
Fain CE, Zheng J, Jin F, Ayasoufi K, Wu Y, Lilley MT, Dropik AR, Wolf DM, Rodriguez RC, Aibaidula A, Tritz ZP, Bouchal SM, Pewe LL, Urban SL, Chen Y, Chang SY, Hansen MJ, Kachergus JM, Shi J, Thompson EA, Jensen HE, Harty JT, Parney IF, Sun J, Wu LJ, Johnson AJ. Discrete class I molecules on brain endothelium differentially regulate neuropathology in experimental cerebral malaria. Brain 2024; 147:566-589. [PMID: 37776513 DOI: 10.1093/brain/awad319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023] Open
Abstract
Cerebral malaria is the deadliest complication that can arise from Plasmodium infection. CD8 T-cell engagement of brain vasculature is a putative mechanism of neuropathology in cerebral malaria. To define contributions of brain endothelial cell major histocompatibility complex (MHC) class I antigen-presentation to CD8 T cells in establishing cerebral malaria pathology, we developed novel H-2Kb LoxP and H-2Db LoxP mice crossed with Cdh5-Cre mice to achieve targeted deletion of discrete class I molecules, specifically from brain endothelium. This strategy allowed us to avoid off-target effects on iron homeostasis and class I-like molecules, which are known to perturb Plasmodium infection. This is the first endothelial-specific ablation of individual class-I molecules enabling us to interrogate these molecular interactions. In these studies, we interrogated human and mouse transcriptomics data to compare antigen presentation capacity during cerebral malaria. Using the Plasmodium berghei ANKA model of experimental cerebral malaria (ECM), we observed that H-2Kb and H-2Db class I molecules regulate distinct patterns of disease onset, CD8 T-cell infiltration, targeted cell death and regional blood-brain barrier disruption. Strikingly, ablation of either molecule from brain endothelial cells resulted in reduced CD8 T-cell activation, attenuated T-cell interaction with brain vasculature, lessened targeted cell death, preserved blood-brain barrier integrity and prevention of ECM and the death of the animal. We were able to show that these events were brain-specific through the use of parabiosis and created the novel technique of dual small animal MRI to simultaneously scan conjoined parabionts during infection. These data demonstrate that interactions of CD8 T cells with discrete MHC class I molecules on brain endothelium differentially regulate development of ECM neuropathology. Therefore, targeting MHC class I interactions therapeutically may hold potential for treatment of cases of severe malaria.
Collapse
Affiliation(s)
- Cori E Fain
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Jiaying Zheng
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905USA
| | - Fang Jin
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
| | | | - Yue Wu
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Meredith T Lilley
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Abigail R Dropik
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Delaney M Wolf
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
| | | | - Abudumijiti Aibaidula
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905USA
| | - Zachariah P Tritz
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Samantha M Bouchal
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Lecia L Pewe
- Department of Pathology, University of Iowa, Iowa City, IA 52242USA
| | - Stina L Urban
- Department of Pathology, University of Iowa, Iowa City, IA 52242USA
| | - Yin Chen
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Su-Youne Chang
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905USA
| | | | | | - Ji Shi
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224USA
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224USA
| | - Hadley E Jensen
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
| | - John T Harty
- Department of Pathology, University of Iowa, Iowa City, IA 52242USA
| | - Ian F Parney
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905USA
| | - Jie Sun
- Department of Medicine, University of Virginia, Charlottesville, VA 22903USA
| | - Long-Jun Wu
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905USA
| | - Aaron J Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905USA
| |
Collapse
|
12
|
Farhat I, Maréchal E, Calmo D, Ansart M, Paindavoine M, Bard P, Tarris G, Ducloux D, Felix SA, Martin L, Tinel C, Gibier JB, Funes de la Vega M, Rebibou JM, Bamoulid J, Legendre M. Recognition of intraglomerular histological features with deep learning in protocol transplant biopsies and their association with kidney function and prognosis. Clin Kidney J 2024; 17:sfae019. [PMID: 38370429 PMCID: PMC10873504 DOI: 10.1093/ckj/sfae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Indexed: 02/20/2024] Open
Abstract
Background The Banff Classification may not adequately address protocol transplant biopsies categorized as normal in patients experiencing unexplained graft function deterioration. This study seeks to employ convolutional neural networks to automate the segmentation of glomerular cells and capillaries and assess their correlation with transplant function. Methods A total of 215 patients were categorized into three groups. In the Training cohort, glomerular cells and capillaries from 37 patients were manually annotated to train the networks. The Test cohort (24 patients) compared manual annotations vs automated predictions, while the Application cohort (154 protocol transplant biopsies) examined predicted factors in relation to kidney function and prognosis. Results In the Test cohort, the networks recognized histological structures with Precision, Recall, F-score and Intersection Over Union exceeding 0.92, 0.85, 0.89 and 0.74, respectively. Univariate analysis revealed associations between the estimated glomerular filtration rate (eGFR) at biopsy and relative endothelial area (r = 0.19, P = .027), endothelial cell density (r = 0.20, P = .017), mean parietal epithelial cell area (r = -0.38, P < .001), parietal epithelial cell density (r = 0.29, P < .001) and mesangial cell density (r = 0.22, P = .010). Multivariate analysis retained only endothelial cell density as associated with eGFR (Beta = 0.13, P = .040). Endothelial cell density (r = -0.22, P = .010) and mean podocyte area (r = 0.21, P = .016) were linked to proteinuria at biopsy. Over 44 ± 29 months, 25 patients (16%) reached the primary composite endpoint (dialysis initiation, or 30% eGFR sustained decline), with relative endothelial area, mean endothelial cell area and parietal epithelial cell density below medians linked to this endpoint [hazard ratios, respectively, of 2.63 (P = .048), 2.60 (P = .039) and 3.23 (P = .019)]. Conclusion This study automated the measurement of intraglomerular cells and capillaries. Our results suggest that the precise segmentation of endothelial and epithelial cells may serve as a potential future marker for the risk of graft loss.
Collapse
Affiliation(s)
- Imane Farhat
- Department of Nephrology, CHU Dijon, Dijon, France
| | | | - Doris Calmo
- Department of Nephrology, CHU Besançon, Besançon, France
| | - Manon Ansart
- LEAD-CNRS, UMR 5022, Université de Bourgogne, Dijon, France
| | | | - Patrick Bard
- LEAD-CNRS, UMR 5022, Université de Bourgogne, Dijon, France
| | | | - Didier Ducloux
- Department of Nephrology, CHU Besançon, Besançon, France
- Etablissement Français du sang, Besançon, France
| | | | | | - Claire Tinel
- Department of Nephrology, CHU Dijon, Dijon, France
- Etablissement Français du sang, Besançon, France
| | | | | | - Jean-Michel Rebibou
- Department of Nephrology, CHU Dijon, Dijon, France
- Etablissement Français du sang, Besançon, France
| | - Jamal Bamoulid
- Department of Nephrology, CHU Besançon, Besançon, France
- Etablissement Français du sang, Besançon, France
| | - Mathieu Legendre
- Department of Nephrology, CHU Dijon, Dijon, France
- LEAD-CNRS, UMR 5022, Université de Bourgogne, Dijon, France
- Etablissement Français du sang, Besançon, France
| |
Collapse
|
13
|
Nuthikattu S, Milenkovic D, Norman JE, Villablanca AC. Single nuclei transcriptomics in diabetic mice reveals altered brain hippocampal endothelial cell function, permeability, and behavior. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166970. [PMID: 38036105 DOI: 10.1016/j.bbadis.2023.166970] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder with cerebrovascular and cardiovascular sequelae. Yet, a clear pattern of gene dysregulation by T2DM in dementia has yet to be defined. We used single nuclei RNA sequencing technology to profile the transcriptome of endothelial cells (EC) from anatomically defined hippocampus of db/db mice to identify differentially expressed (DE) genes, gene pathways and networks, predicted regulating transcription factors, and targets of DE long noncoding RNAs. We also applied gadolinium (Gd) enhanced magnetic resonance imaging (MRI) to assess blood brain barrier (BBB) permeability, and functionally assessed cognitive behavior. The murine gene expression profiles were then integrated with those of persons with Alzheimer's disease (AD) and vascular dementia (VaD). We reveal that the transcriptome of the diabetic hippocampal murine brain endothelium differs substantially from control wild types with molecular changes characterized by differential RNA coding and noncoding pathways enriched for EC signaling and for endothelial functions for neuroinflammation, endothelial barrier disruption, and neurodegeneration. Gd enhanced structural brain MRI linked endothelial molecular alterations to BBB dysfunction by neuroimaging. Integrated multiomics of hippocampal endothelial gene dysregulation associated with impairments in cognitive adaptive capacity. In addition, the diabetic transcriptome significantly and positively correlated with that of persons with AD and VaD. Taken together, our results from comprehensive, multilevel, integrated, single nuclei transcriptomics support the hypothesis of T2DM-mediated neuroinflammation and endothelial cell and barrier disruption as key mechanisms in cognitive decline in T2DM, thereby suggesting potential endothelial-specific molecular therapeutic targets.
Collapse
Affiliation(s)
- Saivageethi Nuthikattu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA.
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Jennifer E Norman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| | - Amparo C Villablanca
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
14
|
Jamann H, Desu HL, Cui QL, Halaweh A, Tastet O, Klement W, Zandee S, Pernin F, Mamane VH, Ouédraogo O, Daigneault A, Sidibé H, Millette F, Peelen E, Dhaeze T, Hoornaert C, Rébillard RM, Thai K, Grasmuck C, Vande Velde C, Prat A, Arbour N, Stratton JA, Antel J, Larochelle C. ALCAM on human oligodendrocytes mediates CD4 T cell adhesion. Brain 2024; 147:147-162. [PMID: 37640028 PMCID: PMC10766241 DOI: 10.1093/brain/awad286] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023] Open
Abstract
Multiple sclerosis is a chronic neuroinflammatory disorder characterized by demyelination, oligodendrocyte damage/loss and neuroaxonal injury in the context of immune cell infiltration in the CNS. No neuroprotective therapy is available to promote the survival of oligodendrocytes and protect their myelin processes in immune-mediated demyelinating diseases. Pro-inflammatory CD4 Th17 cells can interact with oligodendrocytes in multiple sclerosis and its animal model, causing injury to myelinating processes and cell death through direct contact. However, the molecular mechanisms underlying the close contact and subsequent detrimental interaction of Th17 cells with oligodendrocytes remain unclear. In this study we used single cell RNA sequencing, flow cytometry and immunofluorescence studies on CNS tissue from multiple sclerosis subjects, its animal model and controls to characterize the expression of cell adhesion molecules by mature oligodendrocytes. We found that a significant proportion of human and murine mature oligodendrocytes express melanoma cell adhesion molecule (MCAM) and activated leukocyte cell adhesion molecule (ALCAM) in multiple sclerosis, in experimental autoimmune encephalomyelitis and in controls, although their regulation differs between human and mouse. We observed that exposure to pro-inflammatory cytokines or to human activated T cells are associated with a marked downregulation of the expression of MCAM but not of ALCAM at the surface of human primary oligodendrocytes. Furthermore, we used in vitro live imaging, immunofluorescence and flow cytometry to determine the contribution of these molecules to Th17-polarized cell adhesion and cytotoxicity towards human oligodendrocytes. Silencing and blocking ALCAM but not MCAM limited prolonged interactions between human primary oligodendrocytes and Th17-polarized cells, resulting in decreased adhesion of Th17-polarized cells to oligodendrocytes and conferring significant protection of oligodendrocytic processes. In conclusion, we showed that human oligodendrocytes express MCAM and ALCAM, which are differently modulated by inflammation and T cell contact. We found that ALCAM is a ligand for Th17-polarized cells, contributing to their capacity to adhere and induce damage to human oligodendrocytes, and therefore could represent a relevant target for neuroprotection in multiple sclerosis.
Collapse
Affiliation(s)
- Hélène Jamann
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Haritha L Desu
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Alexandre Halaweh
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Microbiology, Immunology and Infectiology, Université de Montréal, Montreal, H2X 3E4, Canada
| | - Olivier Tastet
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Wendy Klement
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Stephanie Zandee
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Florian Pernin
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Victoria H Mamane
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Oumarou Ouédraogo
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Microbiology, Immunology and Infectiology, Université de Montréal, Montreal, H2X 3E4, Canada
| | - Audrey Daigneault
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Hadjara Sidibé
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Florence Millette
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Evelyn Peelen
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Tessa Dhaeze
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Chloé Hoornaert
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Rose-Marie Rébillard
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Karine Thai
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Camille Grasmuck
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Christine Vande Velde
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Alexandre Prat
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Nathalie Arbour
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Catherine Larochelle
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| |
Collapse
|
15
|
Tubi MA, Wheeler K, Matsiyevskiy E, Hapenney M, Mack WJ, Chui HC, King K, Thompson PM, Braskie MN. White matter hyperintensity volume modifies the association between CSF vascular inflammatory biomarkers and regional FDG-PET along the Alzheimer's disease continuum. Neurobiol Aging 2023; 132:1-12. [PMID: 37708739 PMCID: PMC10843575 DOI: 10.1016/j.neurobiolaging.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 09/16/2023]
Abstract
In older adults with abnormal levels of Alzheimer's disease neuropathology, lower cerebrospinal fluid (CSF) vascular endothelial growth factor (VEGF) levels are associated with lower [¹⁸F]-fluorodeoxyglucose positron emission tomography (FDG-PET) signal, but whether this association is (1) specific to VEGF or broadly driven by vascular inflammation, or (2) modified by vascular risk (e.g., white matter hyperintensities [WMHs]) remains unknown. To address this and build upon our past work, we evaluated whether 5 CSF vascular inflammation biomarkers (vascular cell adhesion molecule 1, VEGF, C-reactive protein, fibrinogen, and von Willebrand factor)-previously associated with CSF amyloid levels-were related to FDG-PET signal and whether WMH volume modified these associations in 158 Alzheimer's Disease Neuroimaging Initiative participants (55-90 years old, 39 cognitively normal, 80 mild cognitive impairment, 39 Alzheimer's disease). We defined regions both by cortical boundary and by the 3 major vascular territories: anterior, middle, and posterior cerebral arteries. We found that WMH volume had interactive effects with CSF biomarkers (VEGF and C-reactive protein) on FDG-PET throughout the cortex in both vascular territories and conventionally defined regions of interest.
Collapse
Affiliation(s)
- Meral A Tubi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Koral Wheeler
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Elizabeth Matsiyevskiy
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Matthew Hapenney
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Wendy J Mack
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kevin King
- Department of Neuroradiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA.
| |
Collapse
|
16
|
Mehandru S, Colombel JF, Juarez J, Bugni J, Lindsay JO. Understanding the molecular mechanisms of anti-trafficking therapies and their clinical relevance in inflammatory bowel disease. Mucosal Immunol 2023; 16:859-870. [PMID: 37574127 PMCID: PMC11141405 DOI: 10.1016/j.mucimm.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
In patients with inflammatory bowel disease (IBD), a combination of dysbiosis, increased intestinal permeability, and insufficient regulatory responses facilitate the development of chronic inflammation, which is driven by a complex interplay between the mucosal immune system and the environment and sustained by immune priming and ongoing cellular recruitment to the gut. The localization of immune cells is mediated by their expression of chemokine receptors and integrins, which bind to chemokines and adhesion molecules, respectively. In this article, we review the mechanisms of action of anti-trafficking therapies for IBD and consider clinical observations in the context of the different mechanisms of action. Furthermore, we discuss the evolution of molecular resistance to anti-cytokines, in which the composition of immune cells in the gut changes in response to treatment, and the potential implications of this for treatment sequencing. Lastly, we discuss the relevance of mechanism of action to combination therapy for IBD.
Collapse
Affiliation(s)
- Saurabh Mehandru
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jean-Frederic Colombel
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julius Juarez
- Takeda Pharmaceuticals U.S.A., Inc., Lexington, MA, USA
| | - James Bugni
- Takeda Pharmaceuticals U.S.A., Inc., Lexington, MA, USA
| | - James O Lindsay
- Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK; Department of Gastroenterology, Royal London Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
17
|
Cremin M, Tay EXY, Ramirez VT, Murray K, Nichols RK, Brust-Mascher I, Reardon C. TRPV1 controls innate immunity during Citrobacter rodentium enteric infection. PLoS Pathog 2023; 19:e1011576. [PMID: 38109366 PMCID: PMC10758261 DOI: 10.1371/journal.ppat.1011576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/01/2024] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
Mucosal immunity is critical to host protection from enteric pathogens and must be carefully controlled to prevent immunopathology. Regulation of immune responses can occur through a diverse range of mechanisms including bi-directional communication with neurons. Among which include specialized sensory neurons that detect noxious stimuli due to the expression of transient receptor potential vanilloid receptor 1 (TRPV1) ion channel and have a significant role in the coordination of host-protective responses to enteric bacterial pathogens. Here we have used the mouse-adapted attaching and effacing pathogen Citrobacter rodentium to assess the specific role of TRPV1 in coordinating the host response. TRPV1 knockout (TRPV1-/-) mice had a significantly higher C. rodentium burden in the distal colon and fecal pellets compared to wild-type (WT) mice. Increased bacterial burden was correlated with significantly increased colonic crypt hyperplasia and proliferating intestinal epithelial cells in TRPV1-/- mice compared to WT. Despite the increased C. rodentium burden and histopathology, the recruitment of colonic T cells producing IFNγ, IL-17, or IL-22 was similar between TRPV1-/- and WT mice. In evaluating the innate immune response, we identified that colonic neutrophil recruitment in C. rodentium infected TRPV1-/- mice was significantly reduced compared to WT mice; however, this was independent of neutrophil development and maturation within the bone marrow compartment. TRPV1-/- mice were found to have significantly decreased expression of the neutrophil-specific chemokine Cxcl6 and the adhesion molecules Icam1 in the distal colon compared to WT mice. Corroborating these findings, a significant reduction in ICAM-1 and VCAM-1, but not MAdCAM-1 protein on the surface of colonic blood endothelial cells from C. rodentium infected TRPV1-/- mice compared to WT was observed. These findings demonstrate the critical role of TRPV1 in regulating the host protective responses to enteric bacterial pathogens, and mucosal immune responses.
Collapse
Affiliation(s)
- Michael Cremin
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Emmy Xue Yun Tay
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Valerie T. Ramirez
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Kaitlin Murray
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Rene K. Nichols
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Colin Reardon
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| |
Collapse
|
18
|
Laera N, Malerba P, Vacanti G, Nardin S, Pagnesi M, Nardin M. Impact of Immunity on Coronary Artery Disease: An Updated Pathogenic Interplay and Potential Therapeutic Strategies. Life (Basel) 2023; 13:2128. [PMID: 38004268 PMCID: PMC10672143 DOI: 10.3390/life13112128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. It is a result of the buildup of atherosclerosis within the coronary arteries. The role of the immune system in CAD is complex and multifaceted. The immune system responds to damage or injury to the arterial walls by initiating an inflammatory response. However, this inflammatory response can become chronic and lead to plaque formation. Neutrophiles, macrophages, B lymphocytes, T lymphocytes, and NKT cells play a key role in immunity response, both with proatherogenic and antiatherogenic signaling pathways. Recent findings provide new roles and activities referring to endothelial cells and vascular smooth muscle cells, which help to clarify the intricate signaling crosstalk between the involved actors. Research is ongoing to explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis. This review aims to summarize the pathogenic interplay between immunity and CAD and the potential therapeutic strategies, and explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis.
Collapse
Affiliation(s)
- Nicola Laera
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Second Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Paolo Malerba
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Division of Medicine, Department of Medicine, ASST Spedali Civili di Montichiari, 25018 Montichiari, Italy
| | - Gaetano Vacanti
- Medical Clinic IV, Department of Cardiology, Municipal Hospital, 76133 Karlsruhe, Germany;
| | - Simone Nardin
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Internal Medicine and Medical Sciences, School of Medicine, University of Genova, 16126 Genova, Italy
| | - Matteo Pagnesi
- Division of Cardiology, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy;
- Third Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
19
|
Goldberg Y, Segal S, Hamdi L, Nabat H, Fainstein N, Mediouni E, Asis Y, Theotokis P, Salamotas I, Grigoriadis N, Katz A, Ben-Hur T, Einstein O. High-intensity interval training attenuates development of autoimmune encephalomyelitis solely by systemic immunomodulation. Sci Rep 2023; 13:16513. [PMID: 37783693 PMCID: PMC10545672 DOI: 10.1038/s41598-023-43534-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
The impact of high-intensity interval training (HIIT) on the central nervous system (CNS) in autoimmune neuroinflammation is not known. The aim of this study was to determine the direct effects of HIIT on the CNS and development of experimental autoimmune encephalomyelitis (EAE). Healthy mice were subjected to HIIT by treadmill running and the proteolipid protein (PLP) transfer EAE model was utilized. To examine neuroprotection, PLP-reactive lymph-node cells (LNCs) were transferred to HIIT and sedentary (SED) mice. To examine immunomodulation, PLP-reactive LNCs from HIIT and SED donor mice were transferred to naïve recipients and analyzed in vitro. HIIT in recipient mice did not affect the development of EAE following exposure to PLP-reactive LNCs. HIIT mice exhibited enhanced migration of systemic autoimmune cells into the CNS and increased demyelination. In contrast, EAE severity in recipient mice injected with PLP-reactive LNCs from HIIT donor mice was significantly diminished. The latter positive effect was associated with decreased migration of autoimmune cells into the CNS and inhibition of very late antigen (VLA)-4 expression in LNCs. Thus, the beneficial effect of HIIT on EAE development is attributed solely to systemic immunomodulatory effects, likely because of systemic inhibition of autoreactive cell migration and reduced VLA-4 integrin expression.
Collapse
Affiliation(s)
- Yehuda Goldberg
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
| | - Shir Segal
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
| | - Liel Hamdi
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
| | - Hanan Nabat
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
| | - Nina Fainstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Efrat Mediouni
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
| | - Yarden Asis
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
| | - Paschalis Theotokis
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Ilias Salamotas
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Abram Katz
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|
20
|
Wang V, Pober JS, Manes TD. Transendothelial Migration of Human B Cells: Chemokine versus Antigen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:923-931. [PMID: 37530585 PMCID: PMC10529164 DOI: 10.4049/jimmunol.2200887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
B cells, like T cells, can infiltrate sites of inflammation, but the processes and B cell subsets involved are poorly understood. Using human cells and in vitro assays, we find only a very small number of B cells will adhere to TNF-activated (but not to resting) human microvascular endothelial cells (ECs) under conditions of venular flow and do so by binding to ICAM-1 and VCAM-1. CXCL13 and, to a lesser extent, CXCL10 bound to the ECs can increase adhesion and induce transendothelial migration (TEM) of adherent naive and memory B cells in 10-15 min through a process involving cell spreading, translocation of the microtubule organizing center (MTOC) into a trailing uropod, and interacting with EC activated leukocyte cell adhesion molecule. Engagement of the BCR by EC-bound anti-κ L chain Ab also increases adhesion and TEM of κ+ but not λ+ B cells. BCR-induced TEM takes 30-60 min, requires Syk activation, is initiated by B cell rounding up and translocation of the microtubule organizing center to the region of the B cell adjacent to the EC, and also uses EC activated leukocyte cell adhesion molecule for TEM. BCR engagement reduces the number of B cells responding to chemokines and preferentially stimulates TEM of CD27+ B cells that coexpress IgD, with or without IgM, as well as CD43. RNA-sequencing analysis suggests that peripheral blood CD19+CD27+CD43+IgD+ cells have increased expression of genes that support BCR activation as well as innate immune properties in comparison with total peripheral blood CD19+ cells.
Collapse
Affiliation(s)
| | - Jordan S Pober
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Thomas D Manes
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
21
|
Hinkley H, Counts DA, VonCanon E, Lacy M. T Cells in Atherosclerosis: Key Players in the Pathogenesis of Vascular Disease. Cells 2023; 12:2152. [PMID: 37681883 PMCID: PMC10486666 DOI: 10.3390/cells12172152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-rich plaques within arterial walls. T cells play a pivotal role in the pathogenesis of atherosclerosis in which they help orchestrate immune responses and contribute to plaque development and instability. Here, we discuss the recognition of atherosclerosis-related antigens that may trigger T cell activation together with additional signaling from co-stimulatory molecules and lesional cytokines. Although few studies have indicated candidates for the antigen specificity of T cells in atherosclerosis, further research is needed. Furthermore, we describe the pro-atherogenic and atheroprotective roles of diverse subsets of T cells such as CD4+ helper, CD8+ cytotoxic, invariant natural killer, and γδ T cells. To classify and quantify T cell subsets in atherosclerosis, we summarize current methods to analyze cellular heterogeneity including single cell RNA sequencing and T cell receptor (TCR) sequencing. Further insights into T cell biology will help shed light on the immunopathology of atherosclerosis, inform potential therapeutic interventions, and pave the way for precision medicine approaches in combating cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | - Michael Lacy
- Department of Medical Laboratory Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
22
|
Liu Z, Huang Y, Wang D, Li M, Zhang Q, Pan C, Lin Y, Luo Y, Shi Z, Zhang P, Zheng Y. Insights gained from single-cell RNA analysis of murine endothelial cells in aging hearts. Heliyon 2023; 9:e18324. [PMID: 37554834 PMCID: PMC10404962 DOI: 10.1016/j.heliyon.2023.e18324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
Aging is the strongest risk factor for cardiovascular disease, with progressive decline in the function of vascular endothelial cells (ECs) with age. Systematic analyses of the effects of aging on different cardiac EC types remain limited. Here, we constructed a scRNA atlas of EC transcriptomes in young and old mouse hearts. We identified 10 EC subclusters. The multidimensionally differential genes (DEGs) analysis across different EC clusters shows molecular changes with aging, showing the increase in the overall inflammatory microenvironment and the decrease in angiogenesis and cytoskeletal support capacity of aged ECs. And we performed an in-depth analysis of 3 special ECs, Immunology, Proliferating and Angiogenic. The Immunology EC seems highly associated with some immune regulatory functions, which decline with aging at different degrees. Analysis of two types of neovascular ECs, Proliferating, Angiogenic, implied that Angiogenic ECs can differentiate into multiple EC directions after initially originating from proliferating ECs. And aging leads to a decrease in the ability of vascular angiogenesis and differentiation. Finally, we summarized the effects of aging on cell signaling communication between different EC clusters. This cardiac EC atlas offers comprehensive insights into the molecular regulations of cardiovascular aging, and provides new directions for the prevention and treatment of age-related cardiovascular disease.
Collapse
Affiliation(s)
- Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China
| | - Yanjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Dongliang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Mengke Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Caineng Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yuanting Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhuoxing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Ping Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China
| |
Collapse
|
23
|
Hao Y, Ji Z, Zhou H, Wu D, Gu Z, Wang D, ten Dijke P. Lipid-based nanoparticles as drug delivery systems for cancer immunotherapy. MedComm (Beijing) 2023; 4:e339. [PMID: 37560754 PMCID: PMC10407046 DOI: 10.1002/mco2.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown remarkable success in cancer treatment. However, in cancer patients without sufficient antitumor immunity, numerous data indicate that blocking the negative signals elicited by immune checkpoints is ineffective. Drugs that stimulate immune activation-related pathways are emerging as another route for improving immunotherapy. In addition, the development of nanotechnology presents a promising platform for tissue and cell type-specific delivery and improved uptake of immunomodulatory agents, ultimately leading to enhanced cancer immunotherapy and reduced side effects. In this review, we summarize and discuss the latest developments in nanoparticles (NPs) for cancer immuno-oncology therapy with a focus on lipid-based NPs (lipid-NPs), including the characteristics and advantages of various types. Using the agonists targeting stimulation of the interferon genes (STING) transmembrane protein as an exemplar, we review the potential of various lipid-NPs to augment STING agonist therapy. Furthermore, we present recent findings and underlying mechanisms on how STING pathway activation fosters antitumor immunity and regulates the tumor microenvironment and provide a summary of the distinct STING agonists in preclinical studies and clinical trials. Ultimately, we conduct a critical assessment of the obstacles and future directions in the utilization of lipid-NPs to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Yang Hao
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Zhonghao Ji
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
| | - Hengzong Zhou
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Dongrun Wu
- Departure of Philosophy, Faculty of HumanitiesLeiden UniversityLeidenThe Netherlands
| | - Zili Gu
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dongxu Wang
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
24
|
Cremin M, Tay E, Ramirez VT, Murray K, Nichols RK, Brust-Mascher I, Reardon C. TRPV1 controls innate immunity during Citrobacter rodentium enteric infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550772. [PMID: 37546968 PMCID: PMC10402119 DOI: 10.1101/2023.07.26.550772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Mucosal immunity is critical to host protection from enteric pathogens and must be carefully controlled to prevent immunopathology. Regulation of immune responses can occur through a diverse range of mechanisms including bi-directional communication with the neurons. Among which include specialized sensory neurons that detect noxious stimuli due to the expression of transient receptor potential vanilloid receptor 1 (TRPV1) ion channel and have a significant role in the coordination of host-protective responses to enteric bacterial pathogens. Here we have used the mouse-adapted attaching and effacing pathogen Citrobacter rodentium to assess the specific role of the TRPV1 channel in coordinating the host response. TRPV1 knockout (TRPV1-/-) mice had a significantly higher C. rodentium burden in the distal colon and fecal pellets compared to wild-type (WT) mice. Increased bacterial burden was correlated with significantly increased colonic crypt hyperplasia and proliferating intestinal epithelial cells in TRPV1-/- mice compared to WT. Despite the increased C. rodentium burden and histopathology, the recruitment of colonic T cells producing IFNγ, IL-17, or IL-22 was similar between TRPV1-/- and WT mice. In evaluating the innate immune response, we identified that colonic neutrophil recruitment in C. rodentium infected TRPV1-/- mice was significantly reduced compared to WT mice; however, this was independent of neutrophil development and maturation within the bone marrow compartment. TRPV1-/- mice were found to have significantly decreased expression of the neutrophil-specific chemokine Cxcl6 and the adhesion molecules Icam1 in the distal colon compared to WT mice. Corroborating these findings, a significant reduction in ICAM-1 and VCAM-1, but not MAdCAM-1 protein on the surface of colonic blood endothelial cells from C. rodentium infected TRPV1-/- mice compared to WT was observed. These findings demonstrate the critical role of TRPV1 in regulating the host protective responses to enteric bacterial pathogens, and mucosal immune responses.
Collapse
Affiliation(s)
- Michael Cremin
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Emmy Tay
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Valerie T. Ramirez
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Kaitlin Murray
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Rene K. Nichols
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Colin Reardon
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| |
Collapse
|
25
|
Kim J, Mooren OL, Onken MD, Cooper JA. Septin and actin contributions to endothelial cell-cell junctions and monolayer integrity. Cytoskeleton (Hoboken) 2023; 80:228-241. [PMID: 36205643 PMCID: PMC10079785 DOI: 10.1002/cm.21732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022]
Abstract
Septins in endothelial cells (ECs) have important roles supporting the integrity of the endothelial monolayer. Cell-cell junctions in EC monolayers are highly dynamic, with continuous retractions and protrusions. Depletion of septins in ECs leads to disruption of cell-cell junctions, which are composed of VE-cadherin and other junctional proteins. In EC monolayers, septins are concentrated at the plasma membrane at sites of cell-cell contact, in curved- and scallop-shaped patterns. These membrane-associated septin accumulations are located in regions of positive membrane curvature, and those regions are often associated with and immediately adjacent to actin-rich protrusions with negative membrane curvature. EC septins associate directly with plasma membrane lipids, based on findings with site-specific mutations of septins in ECs, which is consistent with biochemical and cell biological studies in other systems. Loss of septins leads to disruption of the EC monolayer, and gaps form between cells. The number and breadth of cell-cell contacts and junctions decreases, and the number and frequency of retractions, ruffles, and protrusions at cell edges also decreases. In addition, loss of septins leads to decreased amounts of F-actin at the cortical membrane, along with increased amounts of F-actin in stress fibers of the cytoplasm. Endothelial monolayer disruption from loss of septins is also associated with decreased transendothelial electric resistance (TEER) and increased levels of transendothelial migration (TEM) by immune and cancer cells, owing to the gaps in the monolayer. A current working model is that assembly of septin filaments at regions of positive membrane curvature contributes to a mechanical footing or base for actin-based protrusive forces generated at adjoining regions of the membrane. Specific molecular interactions between the septin and actin components of the cytoskeleton may also be important contributors. Regulators of actin assembly may promote and support the assembly of septin filaments at the membrane, as part of a molecular feedback loop between the assembly of septin and actin filaments.
Collapse
Affiliation(s)
- Joanna Kim
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Olivia L Mooren
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Michael D Onken
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
26
|
Zhou C, Luo Y, Huang Z, Dong F, Lin J, Luo L, Li X, Cai C, Wu W. ELAVL1 promotes LPS-induced endothelial cells injury through modulation of cytokine storm. Immunobiology 2023; 228:152412. [PMID: 37343439 DOI: 10.1016/j.imbio.2023.152412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
Sepsis is a life-threatening systemic organ dysfunction caused by the host's unregulated response to a widespread bacterial infection. Endothelial injury is a major pathophysiologic symptom of sepsis and is considered a critical factor in promoting the progression of disease severity. ELAV like RNA binding protein 1(ELAVL1) is a ubiquitously expressed RNA-binding protein that may play an important role during sepsis. Nonetheless, the molecular mechanisms of ELAVL1 on endothelial cell damage in sepsis have not been well defined. Here, we aimed to confirm the role of ELAVL1 in sepsis-induced endothelial cell damage using lipopolysaccharide (LPS)-induced zebrafish and endothelial cells (ECs) models. We found that zebrafish larvae treated with LPS exhibited systemic endothelial cell damage, mostly manifested as pericardial edema, curved tail, and impaired angiogenesis. LPS treatments also significantly induced the expression levels of inflammatory cytokines (interleukin-6 (IL-6), IL-8, and tumor necrosis factor (TNF)-α) in vivo. In vitro, we observed the increase of ELAVL1 cytoplasmic translocation with LPS treatment. Mechanistically, targeted disruption of the ELAVL1 gene decreased the expression of TNF-α, IL-6, and IL-8 during induction of sepsis and alleviated LPS-induced blood vessel injury in zebrafish. Taken together, our study indicates that ELAVL1 knockdown may alleviate sepsis-induced endothelial cells injury by suppressing cytokine storm. Our research suggests that inhibition of ELAVL1 could reduce the level of inflammatory cytokine production induced by LPS and protect against endothelial cell injury. ELAVL1 might be a potential therapeutic target to block endothelial cells injury associated with sepsis.
Collapse
Affiliation(s)
- Chaoyang Zhou
- Intensive Care Unit, The People's Hospital of Yuhuan, Yuhuan, PR China
| | - Yacan Luo
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Zhengwei Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Fubo Dong
- Intensive Care Unit, The People's Hospital of Yuhuan, Yuhuan, PR China
| | - Junliang Lin
- Intensive Care Unit, The People's Hospital of Yuhuan, Yuhuan, PR China
| | - Liwen Luo
- Intensive Care Unit, The People's Hospital of Yuhuan, Yuhuan, PR China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Chang Cai
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China.
| | - Wenzhi Wu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China.
| |
Collapse
|
27
|
Chandiran K, Cauley LS. The diverse effects of transforming growth factor-β and SMAD signaling pathways during the CTL response. Front Immunol 2023; 14:1199671. [PMID: 37426662 PMCID: PMC10327426 DOI: 10.3389/fimmu.2023.1199671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play an important role in defense against infections with intracellular pathogens and anti-tumor immunity. Efficient migration is required to locate and destroy infected cells in different regions of the body. CTLs accomplish this task by differentiating into specialized subsets of effector and memory CD8 T cells that traffic to different tissues. Transforming growth factor-beta (TGFβ) belongs to a large family of growth factors that elicit diverse cellular responses via canonical and non-canonical signaling pathways. Canonical SMAD-dependent signaling pathways are required to coordinate changes in homing receptor expression as CTLs traffic between different tissues. In this review, we discuss the various ways that TGFβ and SMAD-dependent signaling pathways shape the cellular immune response and transcriptional programming of newly activated CTLs. As protective immunity requires access to the circulation, emphasis is placed on cellular processes that are required for cell-migration through the vasculature.
Collapse
Affiliation(s)
- Karthik Chandiran
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Linda S. Cauley
- Department of Immunology, UCONN Health, Farmington, CT, United States
| |
Collapse
|
28
|
Yoo H, La H, Park C, Yoo S, Lee H, Song H, Do JT, Choi Y, Hong K. Common and distinct functions of mouse Dot1l in the regulation of endothelial transcriptome. Front Cell Dev Biol 2023; 11:1176115. [PMID: 37397258 PMCID: PMC10311421 DOI: 10.3389/fcell.2023.1176115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Epigenetic mechanisms are mandatory for endothelial called lymphangioblasts during cardiovascular development. Dot1l-mediated gene transcription in mice is essential for the development and function of lymphatic ECs (LECs). The role of Dot1l in the development and function of blood ECs blood endothelial cells is unclear. RNA-seq datasets from Dot1l-depleted or -overexpressing BECs and LECs were used to comprehensively analyze regulatory networks of gene transcription and pathways. Dot1l depletion in BECs changed the expression of genes involved in cell-to-cell adhesion and immunity-related biological processes. Dot1l overexpression modified the expression of genes involved in different types of cell-to-cell adhesion and angiogenesis-related biological processes. Genes involved in specific tissue development-related biological pathways were altered in Dot1l-depleted BECs and LECs. Dot1l overexpression altered ion transportation-related genes in BECs and immune response regulation-related genes in LECs. Importantly, Dot1l overexpression in BECs led to the expression of genes related to the angiogenesis and increased expression of MAPK signaling pathways related was found in both Dot1l-overexpressing BECs and LECs. Therefore, our integrated analyses of transcriptomics in Dot1l-depleted and Dot1l-overexpressed ECs demonstrate the unique transcriptomic program of ECs and the differential functions of Dot1l in the regulation of gene transcription in BECs and LECs.
Collapse
|
29
|
Knežević D, Ćurko-Cofek B, Batinac T, Laškarin G, Rakić M, Šoštarič M, Zdravković M, Šustić A, Sotošek V, Batičić L. Endothelial Dysfunction in Patients Undergoing Cardiac Surgery: A Narrative Review and Clinical Implications. J Cardiovasc Dev Dis 2023; 10:jcdd10050213. [PMID: 37233179 DOI: 10.3390/jcdd10050213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Cardiac surgery is one of the highest-risk procedures, usually involving cardiopulmonary bypass and commonly inducing endothelial injury that contributes to the development of perioperative and postoperative organ dysfunction. Substantial scientific efforts are being made to unravel the complex interaction of biomolecules involved in endothelial dysfunction to find new therapeutic targets and biomarkers and to develop therapeutic strategies to protect and restore the endothelium. This review highlights the current state-of-the-art knowledge on the structure and function of the endothelial glycocalyx and mechanisms of endothelial glycocalyx shedding in cardiac surgery. Particular emphasis is placed on potential strategies to protect and restore the endothelial glycocalyx in cardiac surgery. In addition, we have summarized and elaborated the latest evidence on conventional and potential biomarkers of endothelial dysfunction to provide a comprehensive synthesis of crucial mechanisms of endothelial dysfunction in patients undergoing cardiac surgery, and to highlight their clinical implications.
Collapse
Affiliation(s)
- Danijel Knežević
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
| | - Gordana Laškarin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", M. Tita 188, 51410 Opatija, Croatia
| | - Marijana Rakić
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", M. Tita 188, 51410 Opatija, Croatia
| | - Maja Šoštarič
- Clinical Department of Anesthesiology and Perioperative Intensive Therapy, Division of Cardiac Anesthesiology and Intensive Therapy, University Clinical Center Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia
- Department of Anesthesiology and Reanimatology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Marko Zdravković
- Department of Anaesthesiology, Intensive Care and Pain Management, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| | - Alan Šustić
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Vlatka Sotošek
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
30
|
Li J, Wu C, Hu H, Qin G, Wu X, Bai F, Zhang J, Cai Y, Huang Y, Wang C, Yang J, Luan Y, Jiang Z, Ling J, Wu Z, Chen Y, Xie Z, Deng Y. Remodeling of the immune and stromal cell compartment by PD-1 blockade in mismatch repair-deficient colorectal cancer. Cancer Cell 2023:S1535-6108(23)00137-X. [PMID: 37172580 DOI: 10.1016/j.ccell.2023.04.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/06/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
Immune checkpoint inhibitor (ICI) therapy can induce complete responses in mismatch repair-deficient and microsatellite instability-high (d-MMR/MSI-H) colorectal cancers (CRCs). However, the underlying mechanism for pathological complete response (pCR) to immunotherapy has not been completely understood. We utilize single-cell RNA sequencing (scRNA-seq) to investigate the dynamics of immune and stromal cells in 19 patients with d-MMR/MSI-H CRC who received neoadjuvant PD-1 blockade. We found that in tumors with pCR, there is a concerted decrease in CD8+ Trm-mitotic, CD4+ Tregs, proinflammatory IL1B+ Mono and CCL2+ Fibroblast following treatment, while the proportions of CD8+ Tem, CD4+ Th, CD20+ B, and HLA-DRA+ Endothelial cells increase. Proinflammatory features in the tumor microenvironment mediate the persistence of residual tumors by modulating CD8+ T cells and other response-associated immune cell populations. Our study provides valuable resources and biological insights into the mechanism of successful ICI therapy and potential targets for improving treatment efficacy.
Collapse
Affiliation(s)
- Jianxia Li
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Cheng Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510627, China
| | - Huabin Hu
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Ge Qin
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xueqian Wu
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Fan Bai
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jianwei Zhang
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yue Cai
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yan Huang
- Department of Pathology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Chao Wang
- Department of Pathology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jiaqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510627, China
| | - Yizhao Luan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510627, China
| | - Zehang Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510627, China
| | - Jiayu Ling
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Zehua Wu
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yaoxu Chen
- Medical Affairs, 3D Medicines Inc., Shanghai 201114, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510627, China
| | - Yanhong Deng
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| |
Collapse
|
31
|
Nolin SJ, Taylor RL, Edens FW, Siegel PB, Ashwell CM. Combining supervised machine learning with statistics reveals differential gene expression patterns related to energy metabolism in the jejuna of chickens divergently selected for antibody response to sheep red blood cells. Poult Sci 2023; 102:102751. [PMID: 37244088 DOI: 10.1016/j.psj.2023.102751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/29/2023] Open
Abstract
Since the 1970s, 2 lines of White Leghorn chickens, HAS and LAS, have been continuously divergently selected for 5-day postinjection antibody titer to injection with sheep red blood cells (SRBC). Antibody response is a complex genetic trait and characterizing differences in gene expression could facilitate better understanding of physiological changes due to selection and antigen exposure. At 41 d of age, randomly selected HAS and LAS chickens, which had been coraised from hatch, were either injected with SRBC (HASI and LASI) or kept as the noninjected cohort (HASN and LASN). Five days later, all were euthanized, and samples collected from the jejunum for RNA isolation and sequencing. Resulting gene expression data were analyzed combining traditional statistics with machine learning to obtain signature gene lists for functional analysis. Differences in ATP production and cellular processes were observed in the jejunum between lines and following SRBC injection. HASN vs. LASN exhibited upregulation of ATP production, immune cell motility, and inflammation. LASI exhibits upregulation of ATP production and protein synthesis vs. LASN, reflective of what was observed in HASN vs. LASN. In contrast, no corresponding upregulation of ATP production was observed in HASI vs. HASN, and most other cellular processes appear inhibited. Without exposure to SRBC, gene expression in the jejunum indicates HAS generates more ATP than LAS, suggesting HAS maintains a "primed" system; and gene expression of HASI vs. HASN further suggests this basal ATP production is sufficient for robust antibody responses. Conversely, LASI vs. LASN jejunal gene expression implies a physiological need for increased ATP production with only minimal correlating antibody production. The results of this experiment provide insight into energetic resource needs and allocations in the jejunum in response to genetic selection and antigen exposure in HAS and LAS which may help explain phenotypic differences observed in antibody response.
Collapse
Affiliation(s)
- Shelly J Nolin
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA.
| | - Robert L Taylor
- Davis College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown West, VA 26506-6108, USA
| | - Frank W Edens
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Paul B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Christopher M Ashwell
- Davis College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown West, VA 26506-6108, USA
| |
Collapse
|
32
|
Himmels P, Nguyen TTT, Mitzner MC, Arrazate A, Yeung S, Burton J, Clark R, Totpal K, Jesudason R, Yang A, Solon M, Eastham J, Modrusan Z, Webster JD, Lo AA, Piskol R, Ye W. T cell-dependent bispecific antibodies alter organ-specific endothelial cell-T cell interaction. EMBO Rep 2023; 24:e55532. [PMID: 36621885 PMCID: PMC9986820 DOI: 10.15252/embr.202255532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023] Open
Abstract
Preclinical and clinical studies demonstrate that T cell-dependent bispecific antibodies (TDBs) induce systemic changes in addition to tumor killing, leading to adverse events. Here, we report an in-depth characterization of acute responses to TDBs in tumor-bearing mice. Contrary to modest changes in tumors, rapid and substantial lymphocyte accumulation and endothelial cell (EC) activation occur around large blood vessels in normal organs including the liver. We hypothesize that organ-specific ECs may account for the differential responses in normal tissues and tumors, and we identify a list of genes selectively upregulated by TDB in large liver vessels. Using one of the genes as an example, we demonstrate that CD9 facilitates ICAM-1 to support T cell-EC interaction in response to soluble factors released from a TDB-mediated cytotoxic reaction. Our results suggest that multiple factors may cooperatively promote T cell infiltration into normal organs as a secondary response to TDB-mediated tumor killing. These data shed light on how different vascular beds respond to cancer immunotherapy and may help improve their safety and efficacy.
Collapse
Affiliation(s)
- Patricia Himmels
- Department of Molecular OncologyGenentechSouth San FranciscoCAUSA
| | | | - Maresa Caunt Mitzner
- Department of Molecular OncologyGenentechSouth San FranciscoCAUSA
- Product DevelopmentGenentechSouth San FranciscoCAUSA
| | - Alfonso Arrazate
- Department of Translational OncologyGenentechSouth San FranciscoCAUSA
| | - Stacey Yeung
- Department of Molecular OncologyGenentechSouth San FranciscoCAUSA
| | - Jeremy Burton
- Department of Molecular OncologyGenentechSouth San FranciscoCAUSA
| | - Robyn Clark
- Department of Translational OncologyGenentechSouth San FranciscoCAUSA
| | - Klara Totpal
- Department of Translational OncologyGenentechSouth San FranciscoCAUSA
| | - Raj Jesudason
- Department of Research PathologyGenentechSouth San FranciscoCAUSA
| | - Angela Yang
- GSK‐Laboratory for Genomic ResearchSan FranciscoCAUSA
- Department of Microchemistry, Proteomics and Lipidomics, and Next Generation Sequencing (MPL‐NGS)GenentechSouth San FranciscoCAUSA
| | - Margaret Solon
- Department of Research PathologyGenentechSouth San FranciscoCAUSA
| | - Jeffrey Eastham
- Department of Research PathologyGenentechSouth San FranciscoCAUSA
| | - Zora Modrusan
- Department of Microchemistry, Proteomics and Lipidomics, and Next Generation Sequencing (MPL‐NGS)GenentechSouth San FranciscoCAUSA
| | - Joshua D Webster
- Department of Research PathologyGenentechSouth San FranciscoCAUSA
| | - Amy A Lo
- Department of Research PathologyGenentechSouth San FranciscoCAUSA
| | - Robert Piskol
- Department of Oncology BioinformaticsGenentechSouth San FranciscoCAUSA
| | - Weilan Ye
- Department of Molecular OncologyGenentechSouth San FranciscoCAUSA
| |
Collapse
|
33
|
Vazgiourakis VM, Zervou MI, Papageorgiou L, Chaniotis D, Spandidos DA, Vlachakis D, Eliopoulos E, Goulielmos GN. Association of endometriosis with cardiovascular disease: Genetic aspects (Review). Int J Mol Med 2023; 51:29. [PMID: 36799179 PMCID: PMC9943539 DOI: 10.3892/ijmm.2023.5232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Cardiovascular disease (CVD) comprises a broad spectrum of pathological conditions that affect the heart or blood vessels, including sequelae that arise from damaged vasculature in other organs of the body, such as the brain, kidneys or eyes. Atherosclerosis is a chronic inflammatory disease of the arterial intima and is the primary cause of coronary artery disease, peripheral vascular disease, heart attack, stroke and renal pathology. It represents a leading cause of mortality worldwide and the loss of human productivity that is marked by an altered immune response. Endometriosis is a heritable, heterogeneous, common gynecological condition influenced by multiple genetic, epigenetic and environmental factors, affecting up to 10% of the female population of childbearing age, causing pain and infertility; it is characterized by the ectopic growth of endometrial tissue outside the uterine cavity. Of note, epidemiological data obtained thus far have suggested a link between endometriosis and the risk of developing CVD. The similarities observed in specific molecular and cellular pathways of endometriosis and CVD may be partially explained by a shared genetic background. The present review presents and discusses the shared genetic factors which have been reported to be associated with the development of both disorders.
Collapse
Affiliation(s)
- Vassilios M. Vazgiourakis
- Intensive Care Unit, University Hospital of Larissa, University of Thessaly, Faculty of Medicine, 41110 Larissa, Greece
| | - Maria I. Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
| | - Louis Papageorgiou
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 12243 Athens, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Chaniotis
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 12243 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - George N. Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
- Department of Internal Medicine, University Hospital of Heraklion, 71500 Heraklion, Greece
| |
Collapse
|
34
|
Li Y, Li S, Gu M, Liu G, Li Y, Ji Z, Li K, Wang Y, Zhai H, Wang Y. Application of network composite module analysis and verification to explore the bidirectional immunomodulatory effect of Zukamu granules on Th1 / Th2 cytokines in lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115674. [PMID: 36064149 DOI: 10.1016/j.jep.2022.115674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/07/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zukamu granules (ZKMG), as the preferred drug for the treatment of colds in Uygur medical theory, has been used for 1500 years. It is also widely used in China and included in the National Essential Drugs List (2018 edition). It has unique anti-inflammatory, antitussive and analgesic effects. AIM OF THE STUDY Aiming at the research of traditional Chinese medicine (TCM) with the characteristics of overall regulation of body diseases and the immune regulation mechanism with the concept of integrity, this paper put forward the integrated application of network composite module analysis and animal experiment verification to study the immune regulation mechanism of TCM. MATERIALS AND METHODS The active components and targets of ZKMG were predicted, and network module analysis was performed to explore their potential immunomodulatory mechanisms. Then acute lung injury (ALI) mice and idiopathic pulmonary fibrosis (IPF) rats were used as pathological models to observe the effects of ZKMG on the pathological conditions of infected ALI and IPF rats, determine the contents of Th1, Th2 characteristic cytokines and immunoglobulins, and study the intervention of GATA3/STAT6 signal pathway. RESULTS The results of network composite module analysis showed that ZKMG contained 173 pharmacodynamic components and 249 potential targets, and four key modules were obtained. The immunomodulatory effects of ZKMG were related to T cell receptor signaling pathway. The validation results of bioeffects that ZKMG could carry out bidirectional immune regulation on Th1/Th2 cytokines in the stage of ALI and IPF, so as to play the role of regulating immune homeostasis and organ protection. CONCLUSIONS The network composite module analysis and verification method is an exploration to study the immune regulation mechanism of TCM by combining the network module prediction analysis with animal experiments, which provides a reference for subsequent research.
Collapse
Affiliation(s)
- Yixuan Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Siyu Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Min Gu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Guoxiu Liu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yanan Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhihong Ji
- New Cicon Pharmaceutical Co. LTD., Urumchi, 830001, China
| | - Keao Li
- New Cicon Pharmaceutical Co. LTD., Urumchi, 830001, China.
| | - Yanping Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huaqiang Zhai
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Institute of Traditional Uygur Medicine, Xinjiang Medical University, Urumqi, 830011, China.
| | - Yongyan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
35
|
Medina-Rodriguez EM, Beurel E. Blood brain barrier and inflammation in depression. Neurobiol Dis 2022; 175:105926. [PMID: 36375722 PMCID: PMC10035601 DOI: 10.1016/j.nbd.2022.105926] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
The blood brain barrier (BBB) is a vital structure to protect the brain, tightly filtering the passage of nutrients and molecules from the blood to the brain. This is critical for maintaining the proper functioning of the brain, and any disruption in the BBB has detrimental consequences often leading to diseases. It is not clear whether disruption of the BBB occurs first in depression or is the consequence of the disease, however disruption of the BBB has been observed in depressed patients and evidence points to the role of important culprits in depression, stress and inflammation in disrupting the integrity of the BBB. The mechanisms whereby stress, and inflammation affect the BBB remain to be fully understood. Yet, the role of cytokines in regulating tight junction protein expression seems crucial. Altogether, the findings in depression suggest that acting at the BBB level might provide therapeutic benefit in depression.
Collapse
Affiliation(s)
- Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, United States of America
| | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, United States of America; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States of America.
| |
Collapse
|
36
|
Tokano M, Matsushita S, Takagi R, Yamamoto T, Kawano M. Extracellular adenosine induces hypersecretion of IL-17A by T-helper 17 cells through the adenosine A2a receptor. Brain Behav Immun Health 2022; 26:100544. [PMID: 36467126 PMCID: PMC9712818 DOI: 10.1016/j.bbih.2022.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/12/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022] Open
Abstract
Extracellular adenosine, produced from ATP secreted by neuronal or immune cells, may play a role in endogenous regulation of inflammatory responses. Studies show that adenosine induces hypersecretion of IL-17A by CD4+ T cells upon treatment with an A2aR agonist (PSB0777), and that adenosine-mediated IL-17A hypersecretion is suppressed by the A2aR antagonist (Istradefylline) in humans. However, it is unclear whether A2aR downstream signaling is involved in IL-17A hypersecretion. Here, we show that inhibitors of adenyl cyclase (AC), protein kinase A (PKA), and cAMP response element binding protein (CREB) (which are signaling molecules downstream of the Gs protein coupled to the A2aR), suppress IL-17A production, suggesting that activation of A2aR signaling induces IL-17A production by CD4+ T cells. Furthermore, immune subset studies revealed that adenosine induces hypersecretion of IL-17A by T-helper (Th)17 cells. These results indicate that adenosine is an endogenous modulator of neutrophilic inflammation. Administration of an A2aR antagonist to mice with experimental autoimmune encephalomyelitis led to marked amelioration of symptoms. Thus, inhibitors of the novel A2aR-AC-cAMP-PKA-CREB signaling pathway for IL-17A hypersecretion by TCR-activated Th17 cells suppresses adenosine-mediated IL-17A production, suggesting that it may be an effective treatment for Th17-related autoimmune diseases.
Collapse
Affiliation(s)
- Mieko Tokano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Department of Infectious Disease and Infection Control, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Sho Matsushita
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Allergy Center, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Rie Takagi
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Toshimasa Yamamoto
- Department of Neurology, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Masaaki Kawano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Allergy Center, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| |
Collapse
|
37
|
Zeng L, Yang K, Zhang T, Zhu X, Hao W, Chen H, Ge J. Research progress of single-cell transcriptome sequencing in autoimmune diseases and autoinflammatory disease: A review. J Autoimmun 2022; 133:102919. [PMID: 36242821 DOI: 10.1016/j.jaut.2022.102919] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/07/2022]
Abstract
Autoimmunity refers to the phenomenon that the body's immune system produces antibodies or sensitized lymphocytes to its own tissues to cause an immune response. Immune disorders caused by autoimmunity can mediate autoimmune diseases. Autoimmune diseases have complicated pathogenesis due to the many types of cells involved, and the mechanism is still unclear. The emergence of single-cell research technology can solve the problem that ordinary transcriptome technology cannot be accurate to cell type. It provides unbiased results through independent analysis of cells in tissues and provides more mRNA information for identifying cell subpopulations, which provides a novel approach to study disruption of immune tolerance and disturbance of pro-inflammatory pathways on a cellular basis. It may fundamentally change the understanding of molecular pathways in the pathogenesis of autoimmune diseases and develop targeted drugs. Single-cell transcriptome sequencing (scRNA-seq) has been widely applied in autoimmune diseases, which provides a powerful tool for demonstrating the cellular heterogeneity of tissues involved in various immune inflammations, identifying pathogenic cell populations, and revealing the mechanism of disease occurrence and development. This review describes the principles of scRNA-seq, introduces common sequencing platforms and practical procedures, and focuses on the progress of scRNA-seq in 41 autoimmune diseases, which include 9 systemic autoimmune diseases and autoinflammatory diseases (rheumatoid arthritis, systemic lupus erythematosus, etc.) and 32 organ-specific autoimmune diseases (5 Skin diseases, 3 Nervous system diseases, 4 Eye diseases, 2 Respiratory system diseases, 2 Circulatory system diseases, 6 Liver, Gallbladder and Pancreas diseases, 2 Gastrointestinal system diseases, 3 Muscle, Bones and joint diseases, 3 Urinary system diseases, 2 Reproductive system diseases). This review also prospects the molecular mechanism targets of autoimmune diseases from the multi-molecular level and multi-dimensional analysis combined with single-cell multi-omics sequencing technology (such as scRNA-seq, Single cell ATAC-seq and single cell immune group library sequencing), which provides a reference for further exploring the pathogenesis and marker screening of autoimmune diseases and autoimmune inflammatory diseases in the future.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.
| | - Tianqing Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaofei Zhu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua Chen
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, China.
| |
Collapse
|
38
|
Fournier AP, Tastet O, Charabati M, Hoornaert C, Bourbonnière L, Klement W, Larouche S, Tea F, Wang YC, Larochelle C, Arbour N, Ragoussis J, Zandee S, Prat A. Single-Cell Transcriptomics Identifies Brain Endothelium Inflammatory Networks in Experimental Autoimmune Encephalomyelitis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 10:10/1/e200046. [PMID: 36446612 PMCID: PMC9709715 DOI: 10.1212/nxi.0000000000200046] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/31/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease characterized by infiltration of immune cells in multifocal areas of the CNS. The specific molecular processes allowing autoreactive immune cells to enter the CNS compartment through the blood-brain barrier remain elusive. METHODS Using endothelial cell (EC) enrichment and single-cell RNA sequencing, we characterized the cells implicated in the neuroinflammatory processes in experimental autoimmune encephalomyelitis, an animal model of MS. Validations on human MS brain sections of the most differentially expressed genes in venous ECs were performed using immunohistochemistry and confocal microscopy. RESULTS We found an upregulation of genes associated with antigen presentation and interferon in most populations of CNS-resident cells, including ECs. Interestingly, instead of transcriptionally distinct profiles, a continuous gradient of gene expression separated the arteriovenous zonation of the brain vasculature. However, differential gene expression analysis presented more transcriptomic alterations on the venous side of the axis, suggesting a prominent role of venous ECs in neuroinflammation. Furthermore, analysis of ligand-receptor interactions identified important potential molecular communications between venous ECs and infiltrated immune populations. To confirm the relevance of our observation in the context of human disease, we validated the protein expression of the most upregulated genes (Ackr1 and Lcn2) in MS lesions. DISCUSSION In this study, we provide a landscape of the cellular heterogeneity associated with neuroinflammation. We also present important molecular insights for further exploration of specific cell processes that promote infiltration of immune cells inside the brain of experimental autoimmune encephalomyelitis mice.
Collapse
Affiliation(s)
- Antoine Philippe Fournier
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Olivier Tastet
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Marc Charabati
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Chloé Hoornaert
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Lyne Bourbonnière
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Wendy Klement
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Sandra Larouche
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Fiona Tea
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Yu Chang Wang
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Catherine Larochelle
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Nathalie Arbour
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Jiannis Ragoussis
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Stephanie Zandee
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Alexandre Prat
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada.
| |
Collapse
|
39
|
Immunosenescence in Aging-Related Vascular Dysfunction. Int J Mol Sci 2022; 23:ijms232113269. [PMID: 36362055 PMCID: PMC9654630 DOI: 10.3390/ijms232113269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The immunosenescence-related disproportion in T lymphocytes may have important consequences for endothelial dysfunction, which is a key event in vascular aging. The study was designed to assess the prognostic values of the inflammatory-immune profile to better predict and prevent vascular diseases associated with old age. Eighty individuals aged 70.9 ± 5.3 years were allocated to a low- (LGI) or high-grade inflammation (HGI) group based on CRP (<3 or ≥3 mg/L) as a conventional risk marker of cardiovascular diseases. Significant changes in inflammatory and endothelium-specific variables IL-1β, IL-6, TNFα, oxLDL, H2O2, NO, 3-nitrotyrosine, and endothelial progenitor cells (OR 7.61, 95% CI 2.56−29.05, p < 0.0001), confirmed their interplay in vascular inflammation. The flow-cytometry analysis demonstrated a high disproportion in T lymphocytes CD4+ and CD8+ between LGI and HGI groups. CRP was <3 mg/mL for the CD4/CD8 ratio within the reference values ≥ 1 or ≤2.5, unlike for the CD4/CD8 ratio < 1 and >2.5. The odds ratios for the distribution of CD4+ (OR 5.98, 95% CI 0.001−0.008, p < 0.001), CD8+ (OR 0.23, 95% CI 0.08−0.59, p < 0.01), and CD8CD45RO+ T naïve cells (OR 0.27, 95% CI 0.097−0.695, p < 0.01) and CD4/CD8 (OR 5.69, 95% CI 2.07−17.32, p < 0.001) indicated a potential diagnostic value of T lymphocytes for clinical prognosis in aging-related vascular dysfunction.
Collapse
|
40
|
Hamdi L, Nabat H, Goldberg Y, Fainstein N, Segal S, Mediouni E, Asis Y, Touloumi O, Grigoriadis N, Katz A, Ben-Hur T, Einstein O. Exercise training alters autoimmune cell invasion into the brain in autoimmune encephalomyelitis. Ann Clin Transl Neurol 2022; 9:1792-1806. [PMID: 36217574 DOI: 10.1002/acn3.51677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The mechanisms by which exercise training (ET) elicits beneficial effects on the systemic immune system and the central nervous system (CNS) in autoimmune neuroinflammation are not fully understood. OBJECTIVES To investigate (1) the systemic effects of high-intensity continuous training (HICT) on the migratory potential of autoimmune cells; (2) the direct effects of HICT on blood-brain-barrier (BBB) properties. METHODS Healthy mice were subjected to high-intensity continuous training (HICT) by treadmill running. The proteolipid protein (PLP) transfer EAE model was utilized to examine the immunomodulatory effects of training, where PLP-reactive lymph-node cells (LNCs) from HICT and sedentary donor mice were analyzed in vitro and transferred to naïve recipients that developed EAE. To examine neuroprotection, encephalitogenic LNCs from donor mice were transferred into HICT or sedentary recipient mice and the BBB was analyzed. RESULTS Transfer of PLP-reactive LNCs obtained from HICT donor mice attenuated EAE severity and inflammation in recipient mice. HICT markedly inhibited very late antigen (VLA)-4 and lymphocyte function-associated antigen (LFA)-1 expression in LNCs. Transfer of encephalitogenic LNCs into HICT recipients resulted in milder EAE and attenuated CNS inflammation. HICT reduced BBB permeability and the expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in CNS blood vessels. INTERPRETATION HICT attenuates EAE development by both immunomodulatory and neuroprotective effects. The reduction in destructive CNS inflammation in EAE is attributed to systemic inhibition of autoreactive cell migratory potential, as well as reduction in BBB permeability, which are associated with reduced VLA-4/VCAM-1 and LFA-1/ICAM-1 interactions.
Collapse
Affiliation(s)
- Liel Hamdi
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Hanan Nabat
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Yehuda Goldberg
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Nina Fainstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Shir Segal
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Efrat Mediouni
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Yarden Asis
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Olga Touloumi
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Greece
| | | | - Abram Katz
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
41
|
Maiorano BA, Parisi A, Maiello E, Ciardiello D. The Interplay between Anti-Angiogenics and Immunotherapy in Colorectal Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101552. [PMID: 36294987 PMCID: PMC9604892 DOI: 10.3390/life12101552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
Simple Summary Colorectal cancer is a frequent and lethal neoplasm. The tumor often creates new vessels to grow and spread—a process called ‘angiogenesis’. Therefore, drugs blocking angiogenesis are effective against this malignancy. On the other side, immune checkpoint inhibitors, which unleash the immune system to fight against tumors, have limited efficacy in patients carrying instability of DNA regions called microsatellites. However, there is an interaction between angiogenic factors and the immune system. This gives a chance to combine anti-angiogenic agents and immune checkpoint inhibitors to improve the efficacy of treating this malignancy. Abstract Angiogenesis, a hallmark of cancer, plays a fundamental role in colorectal cancer (CRC). Anti-angiogenic drugs and chemotherapy represent a standard of care for treating metastatic disease. Immune checkpoint inhibitors (ICIs) have changed the therapeutic algorithm of many solid tumors. However, the efficacy of ICIs is limited to mCRC patients carrying microsatellite instability (MSI-H), which represent approximately 3–5% of mCRC. Emerging evidence suggests that anti-angiogenic drugs could exhibit immunomodulatory properties. Thus, there is a strong rationale for combining anti-angiogenics and ICIs to improve efficacy in the metastatic setting. Our review summarizes the pre-clinical and clinical evidence regarding the combination of anti-angiogenics and ICIs in mCRC to deepen the possible application in daily clinical practice.
Collapse
Affiliation(s)
- Brigida Anna Maiorano
- Oncology Unit, IRCCS Foundation Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Correspondence:
| | - Alessandro Parisi
- Department of Oncology, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, 60126 Ancona, Italy
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Evaristo Maiello
- Oncology Unit, IRCCS Foundation Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Davide Ciardiello
- Oncology Unit, IRCCS Foundation Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Medical Oncology Unit, Department of Precision Medicine, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy
| |
Collapse
|
42
|
Li D, Yu H, Hu J, Li S, Yan Y, Li S, Sun L, Jiang G, Hou L, Zhang L, Zhang P. Comparative profiling of single-cell transcriptome reveals heterogeneity of tumor microenvironment between solid and acinar lung adenocarcinoma. J Transl Med 2022; 20:423. [PMID: 36138435 PMCID: PMC9502652 DOI: 10.1186/s12967-022-03620-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The diversity of histologic composition reflects the inter- and intra-tumor heterogeneity of lung adenocarcinomas (LUADs) macroscopically. Insights into the oncological characteristics and tumor microenvironment (TME) of different histologic subtypes of LUAD at the single-cell level can help identify potential therapeutic vulnerabilities and combinational approaches to improve the survival of LUAD patients. METHODS Through comparative profiling of cell communities defined by scRNA-seq data, we characterized the TME of LUAD samples of distinct histologic subtypes, with relevant results further confirmed in multiple bulk transcriptomic, proteomic datasets and an independent immunohistochemical validation cohort. RESULTS We find that the hypoxic and acidic situation is the worst in the TME of solid LUADs compared to other histologic subtypes. Besides, the tumor metabolic preferences vary across histologic subtypes and may correspondingly impinge on the metabolism and function of immune cells. Remarkably, tumor cells from solid LUADs upregulate energy and substance metabolic activities, particularly the folate-mediated one-carbon metabolism and the key gene MTHFD2, which could serve as a potential therapeutic target. Additionally, ubiquitination modifications may also be involved in the progression of histologic patterns. Immunologically, solid LUADs are characterized by a predominance of exhausted T cells and immunosuppressive myeloid cells, where the hypoxic, acidified and nutrient-deprived TME has a non-negligible impact. Discrepancies in stromal cell function, evidenced by varying degrees of stromal remodeling and fibrosis, may also contribute to the specific immune phenotype of solid LUADs. CONCLUSIONS Overall, our research proposes several potential entry points to improve the immunosuppressive TME of solid LUADs, thereby synergistically potentiating their immunotherapeutic efficacy, and may provide precise therapeutic strategies for LUAD patients of distinct histologic subtype constitution.
Collapse
Affiliation(s)
- Dianke Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Huansha Yu
- Experimental Animal Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Junjie Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Shaoling Li
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Yilv Yan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Shuangyi Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Liangdong Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China.
| | - Lele Zhang
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China.
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China. .,Department of Thoracic Surgery, The First Affiliated Hospital of Shihezi University Medical College, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
43
|
Single cell atlas identifies lipid-processing and immunomodulatory endothelial cells in healthy and malignant breast. Nat Commun 2022; 13:5511. [PMID: 36127427 PMCID: PMC9489707 DOI: 10.1038/s41467-022-33052-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/30/2022] [Indexed: 01/03/2023] Open
Abstract
Since a detailed inventory of endothelial cell (EC) heterogeneity in breast cancer (BC) is lacking, here we perform single cell RNA-sequencing of 26,515 cells (including 8433 ECs) from 9 BC patients and compare them to published EC taxonomies from lung tumors. Angiogenic ECs are phenotypically similar, while other EC subtypes are different. Predictive interactome analysis reveals known but also previously unreported receptor-ligand interactions between ECs and immune cells, suggesting an involvement of breast EC subtypes in immune responses. We also identify a capillary EC subtype (LIPEC (Lipid Processing EC)), which expresses genes involved in lipid processing that are regulated by PPAR-γ and is more abundant in peri-tumoral breast tissue. Retrospective analysis of 4648 BC patients reveals that treatment with metformin (an indirect PPAR-γ signaling activator) provides long-lasting clinical benefit and is positively associated with LIPEC abundance. Our findings warrant further exploration of this LIPEC/PPAR-γ link for BC treatment. Tumor blood vessels contribute to cancer growth, invasion and metastasis. Here, by using single cell transcriptomics, the authors report an inventory of endothelial cell heterogeneity in patients with breast cancer, including a subtype that expresses genes involved in lipid processing and is regulated by PPAR-γ.
Collapse
|
44
|
Wienke J, Veldkamp SR, Struijf EM, Yousef Yengej FA, van der Wal MM, van Royen-Kerkhof A, van Wijk F. T cell interaction with activated endothelial cells primes for tissue-residency. Front Immunol 2022; 13:827786. [PMID: 36172363 PMCID: PMC9510578 DOI: 10.3389/fimmu.2022.827786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue-resident memory T cells (TRM) are suspected drivers of chronic inflammation, but their induction remains unclear. Since endothelial cells (EC) are obligate interaction partners for T cells trafficking into inflamed tissues, they may play a role in TRM development. Here, we used an in vitro co-culture system of human cytokine-activated EC and FACS-sorted T cells to study the effect of EC on T(RM) cell differentiation. T cell phenotypes were assessed by flow cytometry, including proliferation measured by CellTrace Violet dilution assay. Soluble mediators were analyzed by multiplex immunoassay. Co-culture of T cells with cytokine-activated, but not resting EC induced CD69 expression without activation (CD25, Ki67) or proliferation. The dynamic of CD69 expression induced by EC was distinct from that induced by TCR triggering, with rapid induction and stable expression over 7 days. CD69 induction by activated EC was higher in memory than naive T cells, and most pronounced in CD8+ effector memory T cells. Early CD69 induction was mostly mediated by IL-15, whereas later effects were also mediated by interactions with ICAM-1 and/or VCAM-1. CD69+ T cells displayed a phenotype associated with tissue-residency, with increased CD49a, CD103, CXCR6, PD-1 and CD57 expression, and decreased CD62L and S1PR1. EC-induced CD69+ T cells were poised for high production of pro-inflammatory cytokines and showed increased expression of T-helper 1 transcription factor T-bet. Our findings demonstrate that activated EC can induce functional specialization in T cells with sustained CD69 expression, increased cytokine response and a phenotypic profile reminiscent of TRM. Interaction with activated EC during transmigration into (inflamed) tissues thus contributes to TRM-residency priming.
Collapse
Affiliation(s)
- Judith Wienke
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Saskia R. Veldkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva M. Struijf
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Fjodor A. Yousef Yengej
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - M. Marlot van der Wal
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Annet van Royen-Kerkhof
- Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Femke van Wijk,
| |
Collapse
|
45
|
Chamma H, Vila IK, Taffoni C, Turtoi A, Laguette N. Activation of STING in the pancreatic tumor microenvironment: A novel therapeutic opportunity. Cancer Lett 2022; 538:215694. [PMID: 35489447 DOI: 10.1016/j.canlet.2022.215694] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/21/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer of poor prognosis that presents with a dense desmoplastic stroma that contributes to therapeutic failure. PDAC patients are mostly unresponsive to immunotherapy. However, hopes to elicit response to immunotherapy have emerged with novel strategies targeting the Stimulator of Interferon Genes (STING) protein, which is a major regulator of tumor-associated inflammation. Combination of STING agonists with conventional immunotherapy approaches has proven to potentiate therapeutic benefits in several cancers. However, recent data underscore that the output of STING activation varies depending on the cellular and tissue context. This suggests that tumor heterogeneity, and in particular the heterogeneity of the tumor microenvironment (TME), is a key factor determining whether STING activation would bear benefits for patients. In this review, we discuss the potential benefits of STING activation in PDAC. To this aim, we describe the major components of the PDAC TME, and the expected consequences of STING activation.
Collapse
Affiliation(s)
- Hanane Chamma
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| | - Isabelle K Vila
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| | - Clara Taffoni
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| | - Andrei Turtoi
- Tumor Microenvironment Laboratory, Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM U1194, 34000, Montpellier, France.
| | - Nadine Laguette
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France.
| |
Collapse
|
46
|
Gao J, Zhang X, Jiang L, Li Y, Zheng Q. Tumor endothelial cell-derived extracellular vesicles contribute to tumor microenvironment remodeling. Cell Commun Signal 2022; 20:97. [PMID: 35752798 PMCID: PMC9233793 DOI: 10.1186/s12964-022-00904-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/22/2022] [Indexed: 11/12/2022] Open
Abstract
Cancer progression involves several biological steps where angiogenesis is a key tumorigenic phenomenon. Extracellular vesicles (EVs) derived from tumor cells and other cells in the tumor microenvironment (TME) help modulate and maintain favorable microenvironments for tumors. Endothelial cells (ECs) activated by cancer-derived EVs have important roles in tumor angiogenesis. Interestingly, EVs from ECs activate tumor cells, i.e. extracellular matrix (ECM) remodeling and provide more supplements for tumor cells. Thus, EV communications between cancer cells and ECs may be effective therapeutic targets for controlling cancer progression. In this review, we describe the current knowledge on EVs derived from ECs and we examine how these EVs affect TME remodeling. Video abstract
Collapse
Affiliation(s)
- Jian Gao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, China.,Science Experiment Center of China Medical University, Shenyang, 110122, China
| | - Xiaodong Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100000, China.,National Clinical Research Center for Digestive Diseases, Beijing, 100000, China
| | - Lei Jiang
- Department of General Surgery, Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Yan Li
- Department of Radiotherapy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China.
| | - Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
47
|
Li R, Yang X. De novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data with DeepLinc. Genome Biol 2022; 23:124. [PMID: 35659722 PMCID: PMC9164488 DOI: 10.1186/s13059-022-02692-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Based on a deep generative model of variational graph autoencoder (VGAE), we develop a new method, DeepLinc (deep learning framework for Landscapes of Interacting Cells), for the de novo reconstruction of cell interaction networks from single-cell spatial transcriptomic data. DeepLinc demonstrates high efficiency in learning from imperfect and incomplete spatial transcriptome data, filtering false interactions, and imputing missing distal and proximal interactions. The latent representations learned by DeepLinc are also used for inferring the signature genes contributing to the cell interaction landscapes, and for reclustering the cells based on the spatially coded cell heterogeneity in complex tissues at single-cell resolution.
Collapse
Affiliation(s)
- Runze Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
48
|
Burnie J, Persaud AT, Thaya L, Liu Q, Miao H, Grabinsky S, Norouzi V, Lusso P, Tang VA, Guzzo C. P-selectin glycoprotein ligand-1 (PSGL-1/CD162) is incorporated into clinical HIV-1 isolates and can mediate virus capture and subsequent transfer to permissive cells. Retrovirology 2022; 19:9. [PMID: 35597982 PMCID: PMC9123692 DOI: 10.1186/s12977-022-00593-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background P-selectin glycoprotein ligand-1 (PSGL-1/CD162) has been studied extensively for its role in mediating leukocyte rolling through interactions with its cognate receptor, P-selectin. Recently, PSGL-1 was identified as a novel HIV-1 host restriction factor, particularly when expressed at high levels in the HIV envelope. Importantly, while the potent antiviral activity of PSGL-1 has been clearly demonstrated in various complementary model systems, the breadth of PSGL-1 incorporation across genetically diverse viral isolates and clinical isolates has yet to be described. Additionally, the biological activity of virion-incorporated PSGL-1 has also yet to be shown. Results Herein we assessed the levels of PSGL-1 on viruses produced through transfection with various amounts of PSGL-1 plasmid DNA (0–250 ng), compared to levels of PSGL-1 on viruses produced through infection of T cell lines and primary PBMC. We found that very low levels of PSGL-1 plasmid DNA (< 2.5 ng/well) were necessary to generate virus models that could closely mirror the phenotype of viruses produced via infection of T cells and PBMC. Unique to this study, we show that PSGL-1 is incorporated in a broad range of HIV-1 and SIV isolates and that virions with incorporated PSGL-1 are detectable in plasma from viremic HIV-1-infected individuals, corroborating the relevance of PSGL-1 in natural infection. Additionally, we show that PSGL-1 on viruses can bind its cognate selectin receptors, P-, E-, and L-selectins. Finally, we show viruses with endogenous levels of PSGL-1 can be captured by P-selectin and transferred to HIV-permissive bystander cells, highlighting a novel role for PSGL-1 in HIV-1 infection. Notably, viruses which contained high levels of PSGL-1 were noninfectious in our hands, in line with previous findings reporting the potent antiviral activity of PSGL-1. Conclusions Our results indicate that levels of PSGL-1 incorporation into virions can vary widely among model systems tested, and that careful tailoring of plasmid levels is required to recapitulate physiological systems when using pseudovirus models. Taken together, our data suggest that PSGL-1 may play diverse roles in the physiology of HIV-1 infection, particularly due to the functionally active state of PSGL-1 on virion surfaces and the breadth of PSGL-1 incorporation among a wide range of viral isolates. Supplementary Information The online version contains supplementary material available at 10.1186/s12977-022-00593-5.
Collapse
Affiliation(s)
- Jonathan Burnie
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada
| | - Arvin Tejnarine Persaud
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada
| | - Laxshaginee Thaya
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada
| | - Qingbo Liu
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Huiyi Miao
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stephen Grabinsky
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Vanessa Norouzi
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Paolo Lusso
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Vera A Tang
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, Flow Cytometry and Virometry Core Facility, University of Ottawa, Ottawa, ON, Canada
| | - Christina Guzzo
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada. .,Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada.
| |
Collapse
|
49
|
Hypoxia as a Modulator of Inflammation and Immune Response in Cancer. Cancers (Basel) 2022; 14:cancers14092291. [PMID: 35565420 PMCID: PMC9099524 DOI: 10.3390/cancers14092291] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
A clear association between hypoxia and cancer has heretofore been established; however, it has not been completely developed. In this sense, the understanding of the tumoral microenvironment is critical to dissect the complexity of cancer, including the reduction in oxygen distribution inside the tumoral mass, defined as tumoral hypoxia. Moreover, hypoxia not only influences the tumoral cells but also the surrounding cells, including those related to the inflammatory processes. In this review, we analyze the participation of HIF, NF-κB, and STAT signaling pathways as the main components that interconnect hypoxia and immune response and how they modulate tumoral growth. In addition, we closely examine the participation of the immune cells and how they are affected by hypoxia, the effects of the progression of cancer, and some innovative applications that take advantage of this knowledge, to suggest potential therapies. Therefore, we contribute to the understanding of the complexity of cancer to propose innovative therapeutic strategies in the future.
Collapse
|
50
|
Enhanced T-Cell Priming and Improved Anti-Tumor Immunity through Lymphatic Delivery of Checkpoint Blockade Immunotherapy. Cancers (Basel) 2022; 14:cancers14071823. [PMID: 35406595 PMCID: PMC8997812 DOI: 10.3390/cancers14071823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
An infusion of checkpoint blockade immunotherapy (CBI) has revolutionized cancer treatments for some patients, but the majority of patients experience disappointing responses. Because adaptive immune responses are mounted by the concentrated assembly of antigens, immune cells, and mediators in the secluded and protective environment of draining lymph nodes (dLNs), we hypothesize that lymphatic delivery of CBI (αCTLA-4 and αPD-1) to tumor dLNs (tdLNs) improves anti-tumor responses over intravenous (i.v.) administration, and that vaccination against tumor associated antigen (TAA) further enhances these responses. Mono- and combination CBI were administered i.v. or through image-guided intradermal (i.d.) injection to reach tdLNs in vaccinated and unvaccinated animals bearing either primary or orthotopically metastasizing B16F10 melanoma. Vaccination and boost against TAA, Melan-A, was accomplished with virus-like particles (VLP) directed to tdLNs followed by VLP boost after CBI administration. Lymphatic delivery of CBIs reduced primary tumor size and metastatic tumor burden, alleviated the pro-tumorigenic immune environment, and improved survival over systemic administration of CBIs. Animals receiving CBIs lymphatically exhibited significantly enhanced survival over those receiving therapies administered partially or completely through systemic routes. By combining vaccination and CBI for effective T-cell priming in the protected environment of dLNs, anti-tumor responses may be improved.
Collapse
|