1
|
Rutkowski D, Scholey R, Davies J, Pye D, Blackhall F, Warren RB, Jimenez F, Griffiths CEM, Paus R. Epidermal growth factor receptor/mitogen-activated kinase inhibitor treatment induces a distinct inflammatory hair follicle response that includes collapse of immune privilege. Br J Dermatol 2024; 191:791-804. [PMID: 38857906 DOI: 10.1093/bjd/ljae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Inhibitors of epidermal growth factor receptor (EGFRi) or mitogen-activated kinase (MEKi) induce a folliculitis in 75-90% of patients, the pathobiology of which remains insufficiently understood. OBJECTIVES To characterize changes in the skin immune status and global transcriptional profile of patients treated with EGFRi; to investigate whether EGFRi affects the hair follicle's (HF) immune privilege (IP); and to identify early proinflammatory signals induced by EGFRi/MEKi in human scalp HFs ex vivo. METHODS Scalp biopsies were taken from patients exhibiting folliculitis treated long term with EGFRi ('chronic EGFRi' group, n = 9) vs. healthy scalp skin (n = 9) and patients prior to commencing EGFRi treatment and after 2 weeks of EGFRi therapy ('acute EGFRi' group, n = 5). Healthy organ-cultured scalp HFs were exposed to an EGFRi (erlotinib, n = 5) or a MEKi (cobimetinib, n = 5). Samples were assessed by quantitative immunohistomorphometry, RNA sequencing (RNAseq) and in situ hybridization. RESULTS The 'chronic EGFRi' group showed CD8+ T-cell infiltration of the bulge alongside a partial collapse of the HF's IP, evidenced by upregulated major histocompatibility complex (MHC) class I, β2-microglobulin (B2 M) and MHC class II, and decreased transforming growth factor-β1 protein expression. Healthy HFs treated with EGFRi/MEKi ex vivo also showed partial HF IP collapse and increased transcription of human leucocyte antigen (HLA)-A, HLA-DR and B2 M transcripts. RNAseq analysis showed increased transcription of chemokines (CXCL1, CXCL13, CCL18, CCL3, CCL7) and interleukin (IL)-26 in biopsies from the 'chronic EGFRi' cohort, as well as increased IL-33 and decreased IL-37 expression in HF biopsies from the 'acute EGFRi' group and in organ-cultured HFs. CONCLUSIONS The data show that EGFRi/MEKi compromise the physiological IP of human scalp HFs and suggest that future clinical management of EGFRi/MEKi-induced folliculitis requires HF IP protection and inhibition of IL-33.
Collapse
Affiliation(s)
- David Rutkowski
- Dermatology Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
- Manchester University Foundation Trust, Manchester, UK
| | | | - John Davies
- Department of Safety Assessment, Genentech, Inc., South San Francisco, CA, USA
| | - Derek Pye
- Dermatology Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| | | | - Richard B Warren
- Dermatology Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| | - Francisco Jimenez
- Mediteknia Skin and Hair Lab, Las Palmas de Gran Canaria, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Christopher E M Griffiths
- Dermatology Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
- Department of Dermatology, King's College Hospital, King's College London, London, UK
| | - Ralf Paus
- Dermatology Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Monasterium Laboratory, Münster, Germany
- CUTANEON - Skin & Hair Innovations, Hamburg, Germany
| |
Collapse
|
2
|
Chandwaskar R, Dalal R, Gupta S, Sharma A, Parashar D, Kashyap VK, Sohal JS, Tripathi SK. Dysregulation of T cell response in the pathogenesis of inflammatory bowel disease. Scand J Immunol 2024:e13412. [PMID: 39394898 DOI: 10.1111/sji.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Inflammatory bowel disease (IBD), comprised of Crohn's disease (CD) and ulcerative colitis (UC), are gut inflammatory diseases that were earlier prevalent in the Western Hemisphere but now are on the rise in the East, with India standing second highest in the incidence rate in the world. Inflammation in IBD is a cause of dysregulated immune response, wherein helper T (Th) cell subsets and their cytokines play a major role in the pathogenesis of IBD. In addition, gut microbiota, environmental factors such as dietary factors and host genetics influence the outcome and severity of IBD. Dysregulation between effector and regulatory T cells drives gut inflammation, as effector T cells like Th1, Th17 and Th9 subsets Th cell lineages were found to be increased in IBD patients. In this review, we attempted to discuss the role of different Th cell subsets together with other T cells like CD8+ T cells, NKT and γδT cells in the outcome of gut inflammation in IBD. We also highlighted the potential therapeutic candidates for IBD.
Collapse
Affiliation(s)
- Rucha Chandwaskar
- Amity Institute of Microbial Technology (AIMT), Amity University Jaipur, Rajasthan, India
| | - Rajdeep Dalal
- Infection and Immunology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Saurabh Gupta
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur, Karnataka, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Jagdip Singh Sohal
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Subhash K Tripathi
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
3
|
Mukherjee S, Ghosh P, Ghosh S, Sengupta A, Sarkar S, Chatterjee R, Saha A, Bawali S, Choudhury A, Daptary AH, Gangopadhyay A, Keswani T, Bhattacharyya A. Administration of rIL-33 Restores Altered mDC/pDC Ratio, MDSC Frequency, and Th-17/Treg Ratio during Experimental Cerebral Malaria. Pathogens 2024; 13:877. [PMID: 39452748 PMCID: PMC11509898 DOI: 10.3390/pathogens13100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
The onset of malaria causes the induction of various inflammatory markers in the host's body, which in turn affect the body's homeostasis and create several cerebral complications. Polarization of myeloid-derived suppressor cells (MDSCs) from the classically activated M1 to alternatively activated M2 phenotype increases the secretion of pro-inflammatory molecules. Treatment with recombinant IL-33 (rIL-33) not only alters this MDSC's polarization but also targets the glycolysis pathway of the metabolism in MDSCs, rendering them less immunosuppressive. Along with that, the Helper T-cells subset 17 (Th17)/T regulatory cells (Tregs) ratio is skewed towards Th17, which increases inflammation by producing more IL-17. However, treating with rIL-33 also helps to restore this ratio, which brings back homeostasis. During malaria infection, there is an upregulation of IL-12 production from dendritic cells along with a distorted myeloid dendritic cells (mDC)/plasmacytoid dendritic cells (pDC) ratio towards mDCs promoting inflammation. Administering rIL-33 will also subvert this IL-12 production and increase the population of pDC in the host's immune system during malaria infection, thus restoring mDC/pDC to homeostasis. Therefore, treatment with rIL-33 to reduce the pro-inflammatory signatures and maintenance of immune homeostasis along with the increase in survivability could be a potential therapeutic approach for cerebral malaria.
Collapse
Affiliation(s)
- Saikat Mukherjee
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| | - Pronabesh Ghosh
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| | - Soubhik Ghosh
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| | - Anirban Sengupta
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinksa Institutet, 14152 Stockholm, Sweden;
| | - Samrat Sarkar
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| | - Rimbik Chatterjee
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| | - Atreyee Saha
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| | - Sriparna Bawali
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| | - Abhishek Choudhury
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| | - Altamas Hossain Daptary
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| | - Anwesha Gangopadhyay
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| | - Tarun Keswani
- Center for Immunological and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; (S.M.); (P.G.); (S.G.); (S.S.); (R.C.); (A.S.); (S.B.); (A.C.); (A.H.D.); (A.G.)
| |
Collapse
|
4
|
Liu L, Zhang L, Hao X, Wang Y, Zhang X, Ge L, Wang P, Tian B, Zhang M. Coronavirus envelope protein activates TMED10-mediated unconventional secretion of inflammatory factors. Nat Commun 2024; 15:8708. [PMID: 39379362 PMCID: PMC11461611 DOI: 10.1038/s41467-024-52818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
The precise cellular mechanisms underlying heightened proinflammatory cytokine production during coronavirus infection remain incompletely understood. Here we identify the envelope (E) protein in severe coronaviruses (SARS-CoV-2, SARS, or MERS) as a potent inducer of interleukin-1 release, intensifying lung inflammation through the activation of TMED10-mediated unconventional protein secretion (UcPS). In contrast, the E protein of mild coronaviruses (229E, HKU1, or OC43) demonstrates a less pronounced effect. The E protein of severe coronaviruses contains an SS/DS motif, which is not present in milder strains and facilitates interaction with TMED10. This interaction enhances TMED10-oligomerization, facilitating UcPS cargo translocation into the ER-Golgi intermediate compartment (ERGIC)-a pivotal step in interleukin-1 UcPS. Progesterone analogues were identified as compounds inhibiting E-enhanced release of proinflammatory factors and lung inflammation in a Mouse Hepatitis Virus (MHV) infection model. These findings elucidate a molecular mechanism driving coronavirus-induced hyperinflammation, proposing the E-TMED10 interaction as a potential therapeutic target to counteract the adverse effects of coronavirus-induced inflammation.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Lijingyao Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinyan Hao
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaochun Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Peihui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Boxue Tian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Min Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Panir K, Schjenken JE, Breen J, Chan HY, Greaves E, Robertson SA, Hull ML. RNA sequencing reveals molecular mechanisms of endometriosis lesion development in mice. Dis Model Mech 2024; 17:dmm050566. [PMID: 39385609 PMCID: PMC11524442 DOI: 10.1242/dmm.050566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Understanding of molecular mechanisms contributing to the pathophysiology of endometriosis, and upstream drivers of lesion formation, remains limited. Using a C57Bl/6 mouse model in which decidualized endometrial tissue is injected subcutaneously in the abdomen of recipient mice, we generated a comprehensive profile of gene expression in decidualized endometrial tissue (n=4), and in endometriosis-like lesions at Day 7 (n=4) and Day 14 (n=4) of formation. High-throughput mRNA sequencing allowed identification of genes and pathways involved in the initiation and progression of endometriosis-like lesions. We observed distinct patterns of gene expression with substantial differences between the lesions and the decidualized endometrium that remained stable across the two lesion timepoints, and showed similarity to transcriptional changes implicated in human endometriosis lesion formation. Pathway enrichment analysis revealed several immune and inflammatory response-associated canonical pathways, multiple potential upstream regulators, and involvement of genes not previously implicated in endometriosis pathogenesis, including IRF2BP2 and ZBTB10, suggesting novel roles in disease progression. Collectively, the provided data will be a useful resource to inform research on the molecular mechanisms contributing to endometriosis-like lesion development in this mouse model.
Collapse
Affiliation(s)
- Kavita Panir
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - John E. Schjenken
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - James Breen
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- South Australian Genomics Centre (SAGC), South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
- Computational and Systems Biology Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Hon Yeung Chan
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - Erin Greaves
- Centre for Early Life, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Sarah A. Robertson
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - M. Louise Hull
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Department of Obstetrics and Gynaecology, Women's and Children's Hospital, Adelaide, SA 5006, Australia
| |
Collapse
|
6
|
Roosa CA, Lempke SL, Hannan RT, Nicklow E, Sturek JM, Ewald SE, Griffin D. Conjugation of IL-33 to Microporous Annealed Particle Scaffolds Enhances Type 2-Like Immune Responses In Vitro and In Vivo. Adv Healthc Mater 2024; 13:e2400249. [PMID: 38648258 PMCID: PMC11461124 DOI: 10.1002/adhm.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/11/2024] [Indexed: 04/25/2024]
Abstract
The inflammatory foreign body response (FBR) is the main driver of biomaterial implant failure. Current strategies to mitigate the onset of a FBR include modification of the implant surface, release of anti-inflammatory drugs, and cell-scale implant porosity. The microporous annealed particle (MAP) scaffold platform is an injectable, porous biomaterial composed of individual microgels, which are annealed in situ to provide a structurally stable scaffold with cell-scale microporosity. MAP scaffold does not induce a discernible foreign body response in vivo and, therefore, can be used a "blank canvas" for biomaterial-mediated immunomodulation. Damage associated molecular patterns (DAMPs), such as IL-33, are potent regulators of type 2 immunity that play an important role in tissue repair. In this manuscript, IL-33 is conjugated to the microgel building-blocks of MAP scaffold to generate a bioactive material (IL33-MAP) capable of stimulating macrophages in vitro via a ST-2 receptor dependent pathway and modulating immune cell recruitment to the implant site in vivo, which indicates an upregulation of a type 2-like immune response and downregulation of a type 1-like immune response.
Collapse
Affiliation(s)
- Colleen A. Roosa
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| | - Samantha L. Lempke
- Department of Microbiology, Immunology, and Cancer Biology, Beirne B. Carter Immunology Center, University of Virginia, 200 Jeanette Lancaster Way, Charlottesville, Virginia 22903, USA
| | - Riley T. Hannan
- Department of Medicine, Pulmonary and Critical Care, University of Virginia, 1221 Lee St, Charlottesville, Virginia 22903, USA
| | - Ethan Nicklow
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| | - Jeffrey M. Sturek
- Department of Medicine, Pulmonary and Critical Care, University of Virginia, 1221 Lee St, Charlottesville, Virginia 22903, USA
| | - Sarah E. Ewald
- Department of Microbiology, Immunology, and Cancer Biology, Beirne B. Carter Immunology Center, University of Virginia, 200 Jeanette Lancaster Way, Charlottesville, Virginia 22903, USA
| | - Donald Griffin
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| |
Collapse
|
7
|
Wu Y, Chen B, Wu H, Gao J, Meng X, Chen H. How maternal factors shape the immune system of breastfed infants to alleviate food allergy: A systematic and updated review. Immunology 2024. [PMID: 39344356 DOI: 10.1111/imm.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
What infants eat early in life may shape the immune system and have long-standing consequences on the health of the host during later life. In the early months post-birth, breast milk serves as the exclusive and optimal nourishment for infants, facilitating crucial molecular exchanges between mother and infant. Recent advances have uncovered that some maternal factors influence breastfed infant outcomes, including the risk of food allergy (FA). To date, accumulated data show that breastfed infants have a lower risk of FA. However, the issue remains disputed, some reported preventive allergy effects, while others did not confirm such effects, or if identified, protective effects were limited to early childhood. The disputed outcomes may be attributed to the maternal status, as it determines the compounds of the breast milk that breastfed infants are exposed to. In this review, we first detail the compounds in breast milk and their roles in infant FA. Then, we present maternal factors resulting in alterations in breast milk compounds, such as maternal health status, maternal diet intake, and maternal food allergen intake, which subsequently impact FA in breastfed infants. Finally, we analyze how these compounds in breast milk alleviated the infant FA by mother-to-infant transmission. Altogether, the mechanisms are primarily linked to the synergetic and direct effects of compounds in breast milk, via promoting the colonization of gut microbiota and the development of the immune system in infants.
Collapse
Affiliation(s)
- Yuhong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Bihua Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Huan Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Luo Z, Li Y, Xie M, Yi S, Xu S, Luo J. Soluble suppression of tumorigenicity 2 associated with contrast-induced acute kidney injury in patients with STEMI. Int Urol Nephrol 2024:10.1007/s11255-024-04204-4. [PMID: 39264493 DOI: 10.1007/s11255-024-04204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Contrast-induced acute kidney injury (CI-AKI) is a common complication after percutaneous coronary intervention (PCI) in patients with ST-segment elevation myocardial infarction (STEMI). Soluble suppression of tumorigenicity 2 (sST2) is associated with AKI. However, the relationship between sST2 and CI-AKI is unclear. This study aimed to investigate the relationship between sST2 and CI-AKI in patients with STEMI. METHODS This was a single-center retrospective observational study. Patients diagnosed with STEMI in the Yichun People's Hospital from February 2020 to May 2024 were continuously included. CI-AKI was defined as an increase in serum creatinine of at least 50% or 0.3 mg/dL from baseline within 48-72 h after contrast exposure. RESULTS The incidence of CI-AKI after PCI was 12.4% (98/791). Univariate analysis showed that age, fasting plasma glucose, diabetes mellitus, Killip class, left ventricular ejection fraction, estimated glomerular filtration rate, high sensitivity troponin T, N-terminal pro-B-type natriuretic peptide, and sST2 were associated with CI-AKI. The above factors were included in a multivariate analysis, which showed that sST2 was an independent factor for CI-AKI after PCI. The restricted cubic splines showed a nonlinear dose-response relationship between sST2 and CI-AKI (P < 0.001). The integration of the sST2 could significantly improve the ability of the model to identify CI-AKI (NRI 0.681, 95% CI 0.474-0.887; IDI 0.063, 95% CI 0.038-0.099). CONCLUSION Elevated sST2 is an independent risk factor for CI-AKI after PCI in patients with STEMI. Integration of sST2 can significantly improve the risk model for CI-AKI.
Collapse
Affiliation(s)
- Ziyun Luo
- Department of Nephrology, Yichun People's Hospital, Yichun, 336000, Jiangxi, China
| | - Yong Li
- Department of Cardiology, The First People's Hospital of Yuhang District, Hangzhou, 311100, Zhejiang, China
| | - Minjuan Xie
- Department of Medicine, Yichun University, Yichun, 336000, Jiangxi, China
| | - Song Yi
- Department of Cardiology, Yichun People's Hospital, Yichun, 336000, Jiangxi, China
| | - Shizhang Xu
- Department of Nephrology, Yichun People's Hospital, Yichun, 336000, Jiangxi, China
| | - Jun Luo
- Department of Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
9
|
Mai TT, Lam TP, Pham LHD, Nguyen KH, Nguyen QT, Le MT, Thai KM. Toward Unveiling Putative Binding Sites of Interleukin-33: Insights from Mixed-Solvent Molecular Dynamics Simulations of the Interleukin-1 Family. J Phys Chem B 2024; 128:8362-8375. [PMID: 39178050 DOI: 10.1021/acs.jpcb.4c03057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
The interleukin (IL)-1 family is a major proinflammatory cytokine family, ranging from the well-studied IL-1s to the most recently discovered IL-33. As a new focus, IL-33 has attracted extensive research for its crucial immunoregulatory roles, leading to the development of notable monoclonal antibodies as clinical candidates. Efforts to develop small molecules disrupting IL-33/ST2 interaction remain highly desired but encounter challenges due to the shallow and featureless interfaces. The information from relative cytokines has shown that traditional binding site identification methods still struggle in mapping cryptic sites, necessitating dynamic approaches to uncover druggable pockets on IL-33. Here, we employed mixed-solvent molecular dynamics (MixMD) simulations with diverse-property probes to map the hotspots of IL-33 and identify potential binding sites. The protocol was first validated using the known binding sites of two IL-1 family members and then applied to the structure of IL-33. Our simulations revealed several binding sites and proposed side-chain rearrangements essential for the binding of a known inhibitor, aligning well with experimental NMR findings. Further microsecond-time scale simulations of this IL-33-protein complex unveiled distinct binding modes with varying occurrences. These results could facilitate future efforts in developing ligands to target challenging flexible pockets of IL-33 and IL-1 family cytokines in general.
Collapse
Affiliation(s)
- Tan Thanh Mai
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Thua-Phong Lam
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Long-Hung Dinh Pham
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
- Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| | - Kim-Hung Nguyen
- Department of Biochemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Quoc-Thai Nguyen
- Department of Biochemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Minh-Tri Le
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
- University of Health Sciences, Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
- Research Center for Discovery and Development of Healthcare Products, Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Khac-Minh Thai
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
10
|
Walker H, Haeusler GM, Cole T, Neeland M, Hanna D, Shanthikumar S. Biomarkers to predict and diagnose pulmonary complications in children post haematopoietic stem cell transplant. Clin Transl Immunology 2024; 13:e70002. [PMID: 39290231 PMCID: PMC11407825 DOI: 10.1002/cti2.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVES Haematopoietic cell transplant (HCT) is a cellular therapy for a group of high-risk children with cancer, immunodeficiency and metabolic disorders. Whilst curative for a child's underlying condition, HCT has significant risks associated, including lung injury. These complications are associated with increased post HCT mortality and require improved methods of risk stratification, diagnosis and treatment. METHODS Biomarkers measured in bronchoalveolar fluid and peripheral blood have been identified for both acute and chronic lung injury post HCT.This review evaluates the current research available investigating the use of these biomarkers to improve clinical care, with a focus on the paediatric cohort. RESULTS Elevated levels of cytokines such as IL-6, IL-8, G-CSF and TNF were identified as potential predictive biomarkers for the development of post HCT lung disease. The pulmonary microbiome was found to have strong potential as a biomarker pre and post HCT for the development of pulmonary complications. General limitations of the studies identified were study design, retrospective or single centre and not exclusively performed in the paediatric population. CONCLUSION To translate biomarker discovery into clinical implementation further research is required, utilising larger cohorts of children in prospective trials to validate these biomarkers and determine how they can be translated into better outcomes for children post HCT.
Collapse
Affiliation(s)
- Hannah Walker
- Children's Cancer Centre Royal Children's Hospital Parkville VIC Australia
- Department of Paediatrics University of Melbourne Parkville VIC Australia
- Murdoch Children's Research Institute Parkville VIC Australia
| | - Gabrielle M Haeusler
- Department of Paediatrics University of Melbourne Parkville VIC Australia
- Murdoch Children's Research Institute Parkville VIC Australia
- Infection Diseases Unit, Department of General Medicine Royal Children's Hospital Parkville VIC Australia
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne VIC Australia
- Sir Peter MacCallum Department of Oncology, NHMRC National Centre for Infections in Cancer University of Melbourne Parkville VIC Australia
- The Paediatric Integrated Cancer Service Parkville VIC Australia
| | - Theresa Cole
- Children's Cancer Centre Royal Children's Hospital Parkville VIC Australia
- Department of Paediatrics University of Melbourne Parkville VIC Australia
- Murdoch Children's Research Institute Parkville VIC Australia
- Allergy and Immunology Royal Children's Hospital Parkville VIC Australia
| | - Melanie Neeland
- Department of Paediatrics University of Melbourne Parkville VIC Australia
- Murdoch Children's Research Institute Parkville VIC Australia
| | - Diane Hanna
- Children's Cancer Centre Royal Children's Hospital Parkville VIC Australia
- Department of Paediatrics University of Melbourne Parkville VIC Australia
- Murdoch Children's Research Institute Parkville VIC Australia
- The Paediatric Integrated Cancer Service Parkville VIC Australia
| | - Shivanthan Shanthikumar
- Department of Paediatrics University of Melbourne Parkville VIC Australia
- Murdoch Children's Research Institute Parkville VIC Australia
- Respiratory and Sleep Medicine Royal Children's Hospital Parkville VIC Australia
| |
Collapse
|
11
|
Belfrage H, Kuuliala K, Kuuliala A, Mustonen H, Puolakkainen P, Kylänpää L, Louhimo J. Circulating Markers of Necroptosis in Acute Pancreatitis. Dig Dis Sci 2024; 69:3333-3343. [PMID: 38940973 PMCID: PMC11415434 DOI: 10.1007/s10620-024-08530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVES Necroptosis, a programmed inflammatory cell death, is involved in the pathogenesis of acute pancreatitis (AP). We compared levels of interleukin (IL)-33 (released upon necroptosis), sST2 (soluble IL-33 receptor), MLKL, RIPK1 and RIPK3 (necroptosis executioner proteins), and proinflammatory cytokines IL-6, TNF and IL-1β at various severity categories and stages of AP. METHODS Plasma from 20 patients with early mild AP (MAP) (symptom onset < 72 h), 7 with severe AP (SAP) without and 4 with persistent organ failure (OF) at sampling, 8 patients with late SAP and 20 healthy controls (HC) were studied by ELISAs. RESULTS Early sST2 and IL-6 levels predicted the development of SAP and were higher in both MAP and early and late SAP than in HC. RIPK3 levels were higher than in HC in the patients who had or would later have SAP. MLKL levels were associated with the presence of OFs, particularly in the late phase, but were also higher in MAP than in HC. CONCLUSIONS sST2, RIPK3 and IL-6 levels may have prognostic value in AP. Elevated MLKL levels are associated with OF in AP. Better understanding of necroptosis in AP pathophysiology is needed to evaluate whether inhibiting and targeting necroptosis is a potential therapeutic option in AP.
Collapse
Affiliation(s)
- Hanna Belfrage
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00290, Helsinki, Finland.
| | - Krista Kuuliala
- Department of Bacteriology and Immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Antti Kuuliala
- Department of Bacteriology and Immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00290, Helsinki, Finland
| | - Pauli Puolakkainen
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00290, Helsinki, Finland
| | - Leena Kylänpää
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00290, Helsinki, Finland
| | - Johanna Louhimo
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00290, Helsinki, Finland
| |
Collapse
|
12
|
Sabapathy V, Price A, Cheru NT, Venkatadri R, Dogan M, Costlow G, Mohammad S, Sharma R. ST2 + T-Regulatory Cells in Renal Inflammation and Fibrosis after Ischemic Kidney Injury. J Am Soc Nephrol 2024:00001751-990000000-00404. [PMID: 39186386 DOI: 10.1681/asn.0000000000000471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Key Points
IL-33/ST2 alarmin pathway regulates inflammation, fibrosis, and resolution of ischemia-reperfusion injury of kidneys.ST2 regulates the transcriptome of T-regulatory cells related to suppressive and reparative functions.The secretome of ST2+ T-regulatory cells regulates hypoxic injury in an amphiregulin-dependent manner.
Background
Inflammation is a major cause of kidney injury. IL-1 family cytokine IL-33 is released from damaged cells and modulates the immune response through its receptor ST2 expressed on many cell types, including regulatory T cells (Tregs). Although a proinflammatory role of IL-33 has been proposed, exogenous IL-33 expanded Tregs and suppressed renal inflammation. However, the contribution of endogenous IL-33/ST2 for the role of Tregs in the resolution of kidney injury has not been investigated.
Methods
We used murine renal ischemia-reperfusion injury and kidney organoids (KDOs) to delineate the role of the ST2 and amphiregulin (AREG) specifically in Tregs using targeted deletion. Bulk and single-cell RNA sequencing were performed on flow-sorted Tregs from spleen and CD4 T cells from postischemic kidneys, respectively. The protective role of ST2-sufficient Tregs was analyzed using a novel coculture system of syngeneic KDOs and Tregs under hypoxic conditions.
Results
Bulk RNA sequencing of splenic and single-cell RNA sequencing of kidney CD4 T cells showed that ST2+ Tregs are enriched for genes related to Treg proliferation and function. Genes for reparative factors, such as Areg, were also enriched in ST2+ Tregs. Treg-specific deletion of ST2 or AREG exacerbated kidney injury and fibrosis in the unilateral ischemia-reperfusion injury model. In coculture studies, wild-type but not ST2-deficient Tregs preserved hypoxia-induced loss of kidney organoid viability, which was restored by AREG supplementation.
Conclusions
Our study identified the role of the IL-33/ST2 pathway in Tregs for resolution of kidney injury. The transcriptome of ST2+ Tregs was enriched for reparative factors including Areg. Lack of ST2 or AREG in Tregs worsened kidney injury. Tregs protected KDOs from hypoxia in a ST2- and AREG-dependent manner.
Collapse
Affiliation(s)
- Vikram Sabapathy
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
| | - Airi Price
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
- Department of International Health, Georgetown University, Washington, DC
| | - Nardos Tesfaye Cheru
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut
| | - Rajkumar Venkatadri
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
- Immunology Research Unit, GlaxoSmithKline (GSK), Collegeville, Pennsylvania
| | - Murat Dogan
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
- Department of Transplant Surgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Gabrielle Costlow
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
| | - Saleh Mohammad
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
| | - Rahul Sharma
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
| |
Collapse
|
13
|
Wu F, Zhang S, Zhuang R, Hu C, Zhu K. Blocking IL-33 decelerates cartilage degeneration in knee osteoarthritis through mice model. PLoS One 2024; 19:e0301199. [PMID: 39172956 PMCID: PMC11340949 DOI: 10.1371/journal.pone.0301199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/12/2024] [Indexed: 08/24/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a chronic inflammatory disease where pro-inflammatory cytokines, damage-associated molecular patterns and macrophages play a crucial role. However, the interaction of these mediators, the exact cause, and the treatment of knee osteoarthritis (KOA) are still unclear. Moreover, the interaction of interleukin (IL)-33, platelet-derived growth factor-BB (PDGF-BB), and matrix metalloproteinase-9 (MMP-9) with other factors in the pathogenesis of KOA has not been elaborately explored. METHOD Therefore, in this study, we analyzed the expression of IL-33, PDGF-BB, and MMP-9 in the knee cartilage tissue of model mice, murine KOA was induced by using the destabilization of the medial meniscus (DMM) model. RESULTS Compared with the sham operation control group, the expression levels of PDGF-BB, IL-33, and MMP-9 were increased significantly, and the pathological sections showed obvious cartilage damage. Additionally, we assessed the levels of IL-33 and MMP-9 expression in the knee joint of KOA model mice following intervention with PDGF-BB antibody, and we found that the expression level of MMP-9 was reduced following intervention with IL-33 antibody. When the effects of the three antibodies were compared in a mouse disease model, it was discovered that the IL-33 antibody could dramatically lower the relative expression level of MMP-9, resulting in the least amount of cartilage damage and improved protection. In conclusion, inhibiting IL-33 can significantly lower inflammatory factor levels in the knee joint, including IL-33 and MMP-9, and it can improve cartilage breakdown in osteoarthritis of the knee. CONCLUSION Overall, the results indicate that IL-33 has a therapeutic function in the treatment of knee osteoarthritis and may be a novel target for treatment of the underlying causes of KOA. Additionally, PDGF-BB might be an upstream pathway of IL-33, and KOA's MMP-9 is an downstream pathway of IL-33.
Collapse
Affiliation(s)
- Fan Wu
- Department of Orthopaedics, Quzhou Traditional Chinese Medicine Hospital at the Junction of Four Provinces Affiliated to Zhejiang Chinese Medical University, Quzhou, Zhejiang, China
| | - Siyuan Zhang
- Department of Orthopaedics, Quzhou Traditional Chinese Medicine Hospital at the Junction of Four Provinces Affiliated to Zhejiang Chinese Medical University, Quzhou, Zhejiang, China
| | - Rujie Zhuang
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Chuanxiao Hu
- Department of Neuroelectrophysiology, People’s Hospital of Quzhou, Quzhou, Zhejiang, China
| | - Kangxiang Zhu
- Department of Orthopaedics, Quzhou Traditional Chinese Medicine Hospital at the Junction of Four Provinces Affiliated to Zhejiang Chinese Medical University, Quzhou, Zhejiang, China
| |
Collapse
|
14
|
Babiker-Mohamed MH, Bhandari S, Ranganathan P. Pharmacogenetics of therapies in rheumatoid arthritis: An update. Best Pract Res Clin Rheumatol 2024:101974. [PMID: 39034216 DOI: 10.1016/j.berh.2024.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune inflammatory arthritis. Despite many treatment advances, achieving remission or low-disease activity in RA remains challenging, often requiring trial and error approaches with numerous medications. Precision medicine, particularly pharmacogenomics, explores how genetic factors influence drug response in individual patients, and incorporates such factors to develop personalized treatments for individual patients. Genetic variations in drug-metabolizing enzymes, transporters, and targets may contribute to inter-individual differences in drug efficacy and toxicity. Advancements in molecular sequencing have allowed rapid identification of such variants, including single nucleotide polymorphisms (SNPs). This review highlights recent major findings in the pharmacogenetics of therapies in RA, focusing on key genes and SNPs to provide insights into current trends and developments in this field.
Collapse
Affiliation(s)
- Mohamed H Babiker-Mohamed
- Division of Rheumatology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Sambhawana Bhandari
- Division of Rheumatology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Prabha Ranganathan
- Division of Rheumatology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
15
|
Tsuji G, Yumine A, Kawamura K, Takemura M, Kido-Nakahara M, Yamamura K, Nakahara T. Difamilast, a Topical Phosphodiesterase 4 Inhibitor, Produces Soluble ST2 via the AHR-NRF2 Axis in Human Keratinocytes. Int J Mol Sci 2024; 25:7910. [PMID: 39063153 PMCID: PMC11277015 DOI: 10.3390/ijms25147910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Difamilast, a phosphodiesterase 4 (PDE4) inhibitor, has been shown to be effective in the treatment of atopic dermatitis (AD), although the mechanism involved remains unclear. Since IL-33 plays an important role in the pathogenesis of AD, we investigated the effect of difamilast on IL-33 activity. Since an in vitro model of cultured normal human epidermal keratinocytes (NHEKs) has been utilized to evaluate the pharmacological potential of adjunctive treatment of AD, we treated NHEKs with difamilast and analyzed the expression of the suppression of tumorigenicity 2 protein (ST2), an IL-33 receptor with transmembrane (ST2L) and soluble (sST2) isoforms. Difamilast treatment increased mRNA and protein levels of sST2, a decoy receptor suppressing IL-33 signal transduction, without affecting ST2L expression. Furthermore, supernatants from difamilast-treated NHEKs inhibited IL-33-induced upregulation of TNF-α, IL-5, and IL-13 in KU812 cells, a basophil cell line sensitive to IL-33. We also found that difamilast activated the aryl hydrocarbon receptor (AHR)-nuclear factor erythroid 2-related factor 2 (NRF2) axis. Additionally, the knockdown of AHR or NRF2 abolished the difamilast-induced sST2 production. These results indicate that difamilast treatment produces sST2 via the AHR-NRF2 axis, contributing to improving AD symptoms by inhibiting IL-33 activity.
Collapse
Affiliation(s)
- Gaku Tsuji
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan; (A.Y.); (K.Y.); (T.N.)
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| | - Ayako Yumine
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan; (A.Y.); (K.Y.); (T.N.)
| | - Koji Kawamura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| | - Masaki Takemura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| | - Makiko Kido-Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| | - Kazuhiko Yamamura
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan; (A.Y.); (K.Y.); (T.N.)
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| | - Takeshi Nakahara
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan; (A.Y.); (K.Y.); (T.N.)
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| |
Collapse
|
16
|
Bao Y, Tong C, Xiong X. CXCL3: A key player in tumor microenvironment and inflammatory diseases. Life Sci 2024; 348:122691. [PMID: 38714265 DOI: 10.1016/j.lfs.2024.122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
CXCL3 (C-X-C Motif Chemokine 3), a member of the C-X-C chemokine subfamily, operates as a potent chemoattractant for neutrophils, thereby orchestrating the recruitment and migration of leukocytes alongside eliciting an inflammatory response. Recent inquiries have shed light on the pivotal roles of CXCL3 in the context of carcinogenesis. In the tumor microenvironment, CXCL3 emanating from both tumor and stromal cells intricately modulates cellular behaviors through autocrine and paracrine actions, primarily via interaction with its receptor CXCR2. Activation of signaling cascades such as ERK/MAPK, AKT, and JAK2/STAT3 underscores CXCL3's propensity to favor tumorigenic processes. However, CXCL3 exhibits dualistic behaviors, as evidenced by its capacity to exert anti-tumor effects under specific conditions. Additionally, the involvement of CXCL3 extends to inflammatory disorders like eclampsia, obesity, and asthma. This review encapsulates the structural attributes, biological functionalities, and molecular underpinnings of CXCL3 across both tumorigenesis and inflammatory diseases.
Collapse
Affiliation(s)
- Yuxuan Bao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Queen Mary School of Nanchang University, Nanchang 330006, China
| | - Chang Tong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
17
|
Teräsjärvi JT, Toivonen L, Mertsola J, Peltola V, He Q. ST2 and IL-33 polymorphisms and the development of childhood asthma: a prospective birth cohort study in Finnish children. APMIS 2024; 132:515-525. [PMID: 38566447 DOI: 10.1111/apm.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
The ST2/IL-33 signaling pathway has an important role in the host inflammatory response. Here we aimed to study the association of ST2 and IL-33 polymorphisms with serum soluble (s) ST2 and IL-33 concentrations in healthy Finnish children and, in addition, their association with childhood asthma. In total, 146 children were followed from birth to the age 7 years for the development of asthma. Single-nucleotide polymorphisms (SNPs) in ST2 and IL-33 were determined, and associations of the SNP variants with serum levels of sST2 and IL-33 at age of 13 months and with recurrent wheezing and childhood asthma at 7 years of age were analyzed. Children with ST2 rs1041973 AC/AA genotypes had significantly lower level of serum sST2 (2453 pg/mL; IQR 2265) than those with CC genotype (5437 pg/mL; IQR 2575; p = < 0.0001). Similar difference was also observed with ST2 rs13408661. No differences were observed between subjects with studied IL-33 SNPs. Children who carried genetic variants of ST2 rs1041973 or rs13408661 seemed to have a higher risk of asthma. In contrast, children who carried genetic variants of IL-33 rs12551268 were less often diagnosed with asthma. Even though these SNPs seemed to associate with asthma, the differences were not statistically significant.
Collapse
Affiliation(s)
- Johanna T Teräsjärvi
- Institute of Biomedicine, Research Centre for Infections and Immunity, University of Turku, Turku, Finland
| | - Laura Toivonen
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Jussi Mertsola
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Ville Peltola
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- InFLAMES Research Flagship Centre, University of Turku, Turku, Finland
| | - Qiushui He
- Institute of Biomedicine, Research Centre for Infections and Immunity, University of Turku, Turku, Finland
- InFLAMES Research Flagship Centre, University of Turku, Turku, Finland
| |
Collapse
|
18
|
Etra A, El Jurdi N, Katsivelos N, Kwon D, Gergoudis S, Morales G, Spyrou N, Kowalyk S, Aguayo-Hiraldo P, Akahoshi Y, Ayuk F, Baez J, Betts BC, Chanswangphuwana C, Chen YB, Choe H, DeFilipp Z, Gleich S, Hexner E, Hogan WJ, Holler E, Kitko CL, Kraus S, Al Malki M, MacMillan M, Pawarode A, Quagliarella F, Qayed M, Reshef R, Schechter T, Vasova I, Weisdorf D, Wölfl M, Young R, Nakamura R, Ferrara JLM, Levine JE, Holtan S. Amphiregulin, ST2, and REG3α biomarker risk algorithms as predictors of nonrelapse mortality in patients with acute GVHD. Blood Adv 2024; 8:3284-3292. [PMID: 38640195 PMCID: PMC11226972 DOI: 10.1182/bloodadvances.2023011049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
ABSTRACT Graft-versus-host disease (GVHD) is a major cause of nonrelapse mortality (NRM) after allogeneic hematopoietic cell transplantation. Algorithms containing either the gastrointestinal (GI) GVHD biomarker amphiregulin (AREG) or a combination of 2 GI GVHD biomarkers (suppressor of tumorigenicity-2 [ST2] + regenerating family member 3 alpha [REG3α]) when measured at GVHD diagnosis are validated predictors of NRM risk but have never been assessed in the same patients using identical statistical methods. We measured the serum concentrations of ST2, REG3α, and AREG by enzyme-linked immunosorbent assay at the time of GVHD diagnosis in 715 patients divided by the date of transplantation into training (2004-2015) and validation (2015-2017) cohorts. The training cohort (n = 341) was used to develop algorithms for predicting the probability of 12-month NRM that contained all possible combinations of 1 to 3 biomarkers and a threshold corresponding to the concordance probability was used to stratify patients for the risk of NRM. Algorithms were compared with each other based on several metrics, including the area under the receiver operating characteristics curve, proportion of patients correctly classified, sensitivity, and specificity using only the validation cohort (n = 374). All algorithms were strong discriminators of 12-month NRM, whether or not patients were systemically treated (n = 321). An algorithm containing only ST2 + REG3α had the highest area under the receiver operating characteristics curve (0.757), correctly classified the most patients (75%), and more accurately risk-stratified those who developed Minnesota standard-risk GVHD and for patients who received posttransplant cyclophosphamide-based prophylaxis. An algorithm containing only AREG more accurately risk-stratified patients with Minnesota high-risk GVHD. Combining ST2, REG3α, and AREG into a single algorithm did not improve performance.
Collapse
Affiliation(s)
- Aaron Etra
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Najla El Jurdi
- Hematology, Oncology and Transplant, University of Minnesota, Minneapolis, MN
| | - Nikolaos Katsivelos
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Deukwoo Kwon
- Department of Population Health Science and Policy, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Stephanie Gergoudis
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - George Morales
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nikolaos Spyrou
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Steven Kowalyk
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Paibel Aguayo-Hiraldo
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA
| | - Yu Akahoshi
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janna Baez
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Brian C. Betts
- Hematology, Oncology and Transplant, University of Minnesota, Minneapolis, MN
| | | | - Yi-Bin Chen
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital, Boston, MA
| | - Hannah Choe
- Division of Hematology, James Cancer Center, The Ohio State University, Columbus, OH
| | - Zachariah DeFilipp
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital, Boston, MA
| | - Sigrun Gleich
- Department of Hematology and Oncology, Internal Medicine III, University of Regensburg, Regensburg, Germany
| | - Elizabeth Hexner
- Blood and Marrow Transplantation Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | - Ernst Holler
- Department of Hematology and Oncology, Internal Medicine III, University of Regensburg, Regensburg, Germany
| | - Carrie L. Kitko
- Pediatric Stem Cell Transplant Program, Vanderbilt University Medical Center, Nashville, TN
| | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Monzr Al Malki
- Hematology/Hematopoietic Cell Transplant, City of Hope National Medical Center, Duarte, CA
| | - Margaret MacMillan
- Hematology, Oncology and Transplant, University of Minnesota, Minneapolis, MN
| | - Attaphol Pawarode
- Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI
| | | | - Muna Qayed
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA
| | - Ran Reshef
- Blood and Marrow Transplantation Program, Columbia University Medical Center, New York, NY
| | - Tal Schechter
- Division of Hematology/Oncology/BMT, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Ingrid Vasova
- Med. Klinik III/Poliklinik, Universitatsklinik Erlangen, Erlangen, Germany
| | - Daniel Weisdorf
- Hematology, Oncology and Transplant, University of Minnesota, Minneapolis, MN
| | - Matthias Wölfl
- Pediatric Blood and Marrow Transplantation Program, Children’s Hospital, University of Würzburg, Würzburg, Germany
| | - Rachel Young
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ryotaro Nakamura
- Hematology/Hematopoietic Cell Transplant, City of Hope National Medical Center, Duarte, CA
| | - James L. M. Ferrara
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John E. Levine
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Shernan Holtan
- Hematology, Oncology and Transplant, University of Minnesota, Minneapolis, MN
| |
Collapse
|
19
|
Wei Z, Tang X, Yi C, Ocansey DKW, Mao F, Mao Z. HucMSC-Ex alleviates DSS-induced colitis in mice by decreasing mast cell activation via the IL-33/ST2 axis. Am J Transl Res 2024; 16:2727-2744. [PMID: 39006299 PMCID: PMC11236658 DOI: 10.62347/exze5413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammatory disease that poses challenges in terms of treatment. The precise mechanism underlying the role of human umbilical cord mesenchymal stem cell-derived exosome (HucMSC-Ex) in the inflammatory repair process of IBD remains elusive. Mucosal mast cells accumulate within the intestinal tract and exert regulatory functions in IBD, thus presenting a novel target for addressing this intestinal disease. METHODS A mouse model of Dextran Sulfate Sodium (DSS)-induced colitis was established and hucMSC-Ex were administered to investigate their impact on the regulation of intestinal mast cells. An in vitro co-culture model using the human clonal colorectal adenocarcinoma cell line (Caco-2) and human mast cell line (LAD2) was also established for further exploration of the effect of hucMSC-Ex. RESULTS We observed the accumulation of mast cells in the intestines of patients with IBD as well as mice. In colitis mice, there was an upregulation of mast cell-related tryptase, interleukin-33 (IL-33), and suppression of tumorigenicity 2 receptor (ST2 or IL1RL1), and the function of the intestinal mucosal barrier related to intestinal tight junction protein was weakened. HucMSC-Ex treatment significantly reduced mast cell infiltration and intestinal damage. In the co-culture model, a substantial number of mast cells interact with the epithelial barrier, triggering activation of the IL-33/IL1RL1 (ST2) pathway and subsequent release of inflammatory factors and trypsin. This disruption leads to aberrant expression of tight junction proteins, which can be alleviated by supplementation with hucMSC-Ex. CONCLUSION Our results suggest that hucMSC-Ex may reduce the release of mast cell mediators via the IL-33/IL1RL1 (ST2) axis, thereby mitigating its detrimental effects on intestinal barrier function.
Collapse
Affiliation(s)
- Zhiping Wei
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu UniversityZhenjiang 212002, Jiangsu, P. R. China
- Department of Clinical Laboratory, The Third People’s Hospital of Xindu DistrictChengdu 610500, Sichuan, P. R. China
| | - Xiaohua Tang
- Department of Orthopaedics, The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong UniversityZhenjiang 212300, Jiangsu, P. R. China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang CollegeZhenjiang 212028, Jiangsu, P. R. China
| | - Dickson Kofi Wiredu Ocansey
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu UniversityZhenjiang 212002, Jiangsu, P. R. China
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape CoastCape Coast CC0959347, Ghana
| | - Fei Mao
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu UniversityZhenjiang 212002, Jiangsu, P. R. China
| | - Zhenwei Mao
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang 212002, Jiangsu, P. R. China
| |
Collapse
|
20
|
Alhallak K, Nagai J, Zaleski K, Marshall S, Salloum T, Derakhshan T, Hayashi H, Feng C, Kratchmarov R, Lai J, Kuchibhotla V, Nishida A, Balestrieri B, Laidlaw T, Dwyer DF, Boyce JA. Mast cells control lung type 2 inflammation via prostaglandin E 2-driven soluble ST2. Immunity 2024; 57:1274-1288.e6. [PMID: 38821053 PMCID: PMC11168874 DOI: 10.1016/j.immuni.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/26/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Severe asthma and sinus disease are consequences of type 2 inflammation (T2I), mediated by interleukin (IL)-33 signaling through its membrane-bound receptor, ST2. Soluble (s)ST2 reduces available IL-33 and limits T2I, but little is known about its regulation. We demonstrate that prostaglandin E2 (PGE2) drives production of sST2 to limit features of lung T2I. PGE2-deficient mice display diminished sST2. In humans with severe respiratory T2I, urinary PGE2 metabolites correlate with serum sST2. In mice, PGE2 enhanced sST2 secretion by mast cells (MCs). Mice lacking MCs, ST2 expression by MCs, or E prostanoid (EP)2 receptors by MCs showed reduced sST2 lung concentrations and strong T2I. Recombinant sST2 reduced T2I in mice lacking PGE2 or ST2 expression by MCs back to control levels. PGE2 deficiency also reversed the hyperinflammatory phenotype in mice lacking ST2 expression by MCs. PGE2 thus suppresses T2I through MC-derived sST2, explaining the severe T2I observed in low PGE2 states.
Collapse
Affiliation(s)
- Kinan Alhallak
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jun Nagai
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kendall Zaleski
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sofia Marshall
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tamara Salloum
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tahereh Derakhshan
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Hiroaki Hayashi
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Chunli Feng
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Radomir Kratchmarov
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Juying Lai
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Virinchi Kuchibhotla
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Airi Nishida
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Barbara Balestrieri
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tanya Laidlaw
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel F Dwyer
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Joshua A Boyce
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
21
|
Clausen H, Friberg E, Lannering K, Koivu A, Sairanen M, Mellander M, Liuba P. Newborn Screening for High-Risk Congenital Heart Disease by Dried Blood Spot Biomarker Analysis. JAMA Netw Open 2024; 7:e2418097. [PMID: 38913376 PMCID: PMC11197454 DOI: 10.1001/jamanetworkopen.2024.18097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/20/2024] [Indexed: 06/25/2024] Open
Abstract
Importance Congenital heart disease (CHD) is the most common human organ malformation, affecting approximately 1 of 125 newborns globally. Objectives Assessing the performance of 2 diagnostic tests using minimal amounts of dried blood spots (DBS) to identify high-risk CHD compared with controls in a Swedish cohort of neonates. Design, Setting, and Participants This diagnostic study took place in Sweden between 2019 and 2023 and enrolled full-term babies born between 2005 and 2023. All cases were identified through centralized pediatric cardiothoracic surgical services in Lund and Gothenburg, Sweden. Controls were followed up for 1 year to ensure no late presentations of high-risk CHD occurred. Cases were verified through surgical records and echocardiography. Exposure High-risk CHD, defined as cases requiring cardiac surgical management during infancy due to evolving signs of heart failure or types in which the postnatal circulation depends on patency of the arterial duct. Using 3-μL DBS samples, automated quantitative tests for NT-proBNP and interleukin 1 receptor-like 1 (IL-1 RL1; formerly known as soluble ST2) were compared against established CHD screening methods. Main Outcomes and Measures Performance of DBS tests to detect high-risk CHD using receiver operating characteristic curves; Bland-Altman and Pearson correlation analyses to compare IL-1 RL1 DBS with plasma blood levels. Results A total of 313 newborns were included (mean [SD] gestational age, 39.4 [1.3] weeks; 181 [57.8%] male). Mean (SD) birthweight was 3495 (483) grams. Analyzed DBS samples included 217 CHD cases and 96 controls. Among the CHD cases, 188 participants (89.3%) were high-risk types, of which 73 (38.8%) were suspected prenatally. Of the 188 high-risk cases, 94 (50.0%) passed pulse oximetry screening and 36 (19.1%) were initially discharged after birth without diagnoses. Combining NT-proBNP and IL-1 RL1 tests performed well in comparison with existing screening methods and enabled additional identification of asymptomatic babies with receiver operating characteristic area under the curve 0.95 (95% CI, 0.93-0.98). Conclusions and relevance In this diagnostic study, NT-proBNP and IL-1 RL1 DBS assays identified high-risk CHD in a timely manner, including in asymptomatic newborns, and improved overall screening performance in this cohort from Sweden. Prospective evaluation of this novel approach is warranted.
Collapse
Affiliation(s)
- Henning Clausen
- Medical Faculty, Lund University, Sweden
- Children’s Heart Centre, Skane’s University Hospital, Lund, Sweden
| | - Elin Friberg
- Medical Faculty, Lund University, Sweden
- Children’s Heart Centre, Skane’s University Hospital, Lund, Sweden
| | - Katarina Lannering
- Medical Faculty, Gothenburg University, Gothenburg, Sweden
- Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Aki Koivu
- Revvity, Diagnostics Research & Development, Turku, Finland
| | - Mikko Sairanen
- Revvity, Diagnostics Research & Development, Turku, Finland
| | - Mats Mellander
- Medical Faculty, Gothenburg University, Gothenburg, Sweden
- Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Petru Liuba
- Medical Faculty, Lund University, Sweden
- Children’s Heart Centre, Skane’s University Hospital, Lund, Sweden
| |
Collapse
|
22
|
Roy S, Roy S, Halder S, Jana K, Ukil A. Leishmania exploits host cAMP/EPAC/calcineurin signaling to induce an IL-33-mediated anti-inflammatory environment for the establishment of infection. J Biol Chem 2024; 300:107366. [PMID: 38750790 PMCID: PMC11208913 DOI: 10.1016/j.jbc.2024.107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 06/10/2024] Open
Abstract
Host anti-inflammatory responses are critical for the progression of visceral leishmaniasis, and the pleiotropic cytokine interleukin (IL)-33 was found to be upregulated in infection. Here, we documented that IL-33 induction is a consequence of elevated cAMP-mediated exchange protein activated by cAMP (EPAC)/calcineurin-dependent signaling and essential for the sustenance of infection. Leishmania donovani-infected macrophages showed upregulation of IL-33 and its neutralization resulted in decreased parasite survival and increased inflammatory responses. Infection-induced cAMP was involved in IL-33 production and of its downstream effectors PKA and EPAC, only the latter was responsible for elevated IL-33 level. EPAC initiated Rap-dependent phospholipase C activation, which triggered the release of intracellular calcium followed by calcium/calmodulin complex formation. Screening of calmodulin-dependent enzymes affirmed involvement of the phosphatase calcineurin in cAMP/EPAC/calcium/calmodulin signaling-induced IL-33 production and parasite survival. Activated calcineurin ensured nuclear localization of the transcription factors, nuclear factor of activated T cell 1 and hypoxia-inducible factor 1 alpha required for IL-33 transcription, and we further confirmed this by chromatin immunoprecipitation assay. Administering specific inhibitors of nuclear factor of activated T cell 1 and hypoxia-inducible factor 1 alpha in BALB/c mouse model of visceral leishmaniasis decreased liver and spleen parasite burden along with reduction in IL-33 level. Splenocyte supernatants of inhibitor-treated infected mice further documented an increase in tumor necrosis factor alpha and IL-12 level with simultaneous decrease of IL-10, thereby indicating an overall disease-escalating effect of IL-33. Thus, this study demonstrates that cAMP/EPAC/calcineurin signaling is crucial for the activation of IL-33 and in effect creates anti-inflammatory responses, essential for infection.
Collapse
Affiliation(s)
- Souravi Roy
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Shalini Roy
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata, India.
| |
Collapse
|
23
|
Hofherr A, Liarte Marin E, Musial B, Seth A, Slidel T, Conway J, Baker D, Hansen PB, Challis B, Bartesaghi S, Bhat M, Pecoits-Filho R, Tu X, Selvarajah V, Woollard K, Heerspink HJ. Inhibition of Interleukin-33 to Reduce Glomerular Endothelial Inflammation in Diabetic Kidney Disease. Kidney Int Rep 2024; 9:1876-1891. [PMID: 38899206 PMCID: PMC11184260 DOI: 10.1016/j.ekir.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Inflammation is a significant contributor to cardiorenal morbidity and mortality in diabetic kidney disease (DKD). The pathophysiological mechanisms linking systemic, subacute inflammation and local, kidney injury-initiated immune maladaptation is partially understood. Methods Here, we explored the expression of proinflammatory cytokines in patients with DKD; investigated mouse models of type 1 and type 2 diabetes (T2D); evaluated glomerular signaling in vitro; performed post hoc analyses of systemic and urinary markers of inflammation; and initiated a phase 2b clinical study (FRONTIER-1; NCT04170543). Results Transcriptomic profiling of kidney biopsies from patients with DKD revealed significant glomerular upregulation of interleukin-33 (IL-33). Inhibition of IL-33 signaling reduced glomerular damage and albuminuria in the uninephrectomized db/db mouse model (T2D/DKD). On a cellular level, inhibiting IL-33 improved glomerular endothelial health by decreasing cellular inflammation and reducing release of proinflammatory cytokines. Therefore, FRONTIER-1 was designed to test the safety and efficacy of the IL-33-targeted monoclonal antibody tozorakimab in patients with DKD. So far, 578 patients are enrolled in FRONTIER-1. The baseline inflammation status of participants (N > 146) was assessed in blood and urine. Comparison to independent reference cohorts (N > 200) validated the distribution of urinary tumor necrosis factor receptor 1 (TNFR1) and C-C motif chemokine ligand 2 (CCL2). Treatment with dapagliflozin for 6 weeks did not alter these biomarkers significantly. Conclusion We show that blocking the IL-33 pathway may mitigate glomerular endothelial inflammation in DKD. The findings from the FRONTIER-1 study will provide valuable insights into the therapeutic potential of IL-33 inhibition in DKD.
Collapse
Affiliation(s)
- Alexis Hofherr
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elena Liarte Marin
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Barbara Musial
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Asha Seth
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Tim Slidel
- Bioinformatics, Oncology R&D, AstraZeneca, Cambridge, UK
| | - James Conway
- Bioinformatics, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - David Baker
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Pernille B.L. Hansen
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Benjamin Challis
- Translational Science and Experimental Medicine, Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stefano Bartesaghi
- Translational Science and Experimental Medicine, Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Bhat
- Translational Science and Experimental Medicine, Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Roberto Pecoits-Filho
- Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA
- School of Medicine, Pontificia Universidade de Catolica do Parana, Curitiba, Brazil
- The George Institute for Global Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Xiao Tu
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Viknesh Selvarajah
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Kevin Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Hiddo J.L. Heerspink
- The George Institute for Global Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
24
|
Qian Z, Shaofang F, Chen C, Chunhua S, Nan W, Chao L. IL-33 Suppresses the Progression of Atherosclerosis via the ERK1/2-IRF1-VCAM-1 Pathway. Cardiovasc Drugs Ther 2024; 38:569-580. [PMID: 37957490 DOI: 10.1007/s10557-023-07523-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE This study was designed to explore the effects of interleukin 33 (IL-33) on the progression of atherosclerosis and the possible mechanism. METHODS The adhesion assay was performed on isolated peripheral blood mononuclear cells (PBMCs) and human umbilical vein endothelial cells (HUVEC). The expression of proteins and messenger RNA (mRNA) were detected by western blot and quantitative real-time polymerase chain reaction (PCR), including intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and P-selectin. The effect of IL-33 on the interaction of growth stimulation expressed gene 2 (ST2) with myeloid differentiation factor 88 (MyD88) and interleukin-1 receptor-associated kinase (IRAK) 1/4 were investigated using co-immunoprecipitation assay. An apolipoprotein (Apo) E-/- mice model was used to confirm the effect of IL-33 on atherosclerosis progression. Area of plaques was recorded by hematoxylin-eosin (H&E) staining. The severity of atherosclerosis plaque was evaluated using immunohistochemistry assay, and lipid accumulation was measured by an oil red O staining. In contrast, western blot was performed to detect the expression levels of VCAM-1, extracellular signal-regulated kinase (ERK) 1/2, and interferon regulatory factor 1 (IRF1). RESULTS Our study observed that IL-33 suppressed cell adhesion and the expression of VCAM-1 in tumor necrosis factor-α (TNF-α) exposed HUVEC. Moreover, the addition of IL-33 significantly inhibited the expression of IRF1 and the binding level of IRF1 to VCAM-1 and also promoted the phosphorylation level of IRAK1/4 and ERK1/2 compared to TNF-α-stimulated HUVEC. The ST2 neutralizing antibody or ERK pathway inhibitor SCH772984 reversed the regulatory effects of IL-33 on HUVEC, suggesting that IL-33 suppressed IRF1 and VCAM-1 dependent on binding to ST2 and activating the ERK1/2 signaling pathway. Further investigation in vivo confirmed that IL-33 decreased the expressions of IRF1 and VCAM-1 by activating the phosphorylation of ERK1/2 in the thoracic aorta of Apo E-/- mice. CONCLUSION In conclusion, our results demonstrated that IL-33 plays a protective role in the progression of atherosclerosis by inhibiting cell adhesion via the ERK1/2-IRF1-VCAM-1 pathway. This study may provide a potential therapeutic way to prevent the development of atherosclerosis.
Collapse
Affiliation(s)
- Zhang Qian
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, 68 Changle Rd, Nanjing, 210006, Jiangsu, China
| | - Feng Shaofang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Chen Chen
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, 68 Changle Rd, Nanjing, 210006, Jiangsu, China
| | - Shi Chunhua
- Medical Department, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Wang Nan
- Jinling Hospital, Medical School of Nanjing University, 22 Hankou Rd, Nanjing, 210093, Jiangsu, China.
| | - Liu Chao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, 68 Changle Rd, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
25
|
Ebrahimi R, Nasri F, Kalantari T. Coagulation and Inflammation in COVID-19: Reciprocal Relationship between Inflammatory and Coagulation Markers. Ann Hematol 2024; 103:1819-1831. [PMID: 38349409 DOI: 10.1007/s00277-024-05630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/16/2024] [Indexed: 05/14/2024]
Abstract
The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), formerly known as 2019-nCoV. Numerous cellular and biochemical issues arise after COVID-19 infection. The severe inflammation that is caused by a number of cytokines appears to be one of the key hallmarks of COVID-19. Additionally, people with severe COVID-19 have coagulopathy and fulminant thrombotic events. We briefly reviewed the COVID-19 disease at the beginning of this paper. The inflammation and coagulation markers and their alterations in COVID-19 illness are briefly discussed in the parts that follow. Next, we talked about NETosis, which is a crucial relationship between coagulation and inflammation. In the end, we mentioned the two-way relationship between inflammation and coagulation, as well as the factors involved in it. We suggest that inflammation and coagulation are integrated systems in COVID-19 that act on each other in such a way that not only inflammation can activate coagulation but also coagulation can activate inflammation.
Collapse
Affiliation(s)
- Rasoul Ebrahimi
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Nasri
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Kalantari
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
26
|
Park JH, Mortaja M, Son HG, Zhao X, Sloat LM, Azin M, Wang J, Collier MR, Tummala KS, Mandinova A, Bardeesy N, Semenov YR, Mino-Kenudson M, Demehri S. Statin prevents cancer development in chronic inflammation by blocking interleukin 33 expression. Nat Commun 2024; 15:4099. [PMID: 38816352 PMCID: PMC11139893 DOI: 10.1038/s41467-024-48441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Chronic inflammation is a major cause of cancer worldwide. Interleukin 33 (IL-33) is a critical initiator of cancer-prone chronic inflammation; however, its induction mechanism by environmental causes of chronic inflammation is unknown. Herein, we demonstrate that Toll-like receptor (TLR)3/4-TBK1-IRF3 pathway activation links environmental insults to IL-33 induction in the skin and pancreas inflammation. An FDA-approved drug library screen identifies pitavastatin to effectively suppress IL-33 expression by blocking TBK1 membrane recruitment/activation through the mevalonate pathway inhibition. Accordingly, pitavastatin prevents chronic pancreatitis and its cancer sequela in an IL-33-dependent manner. The IRF3-IL-33 axis is highly active in chronic pancreatitis and its associated pancreatic cancer in humans. Interestingly, pitavastatin use correlates with a significantly reduced risk of chronic pancreatitis and pancreatic cancer in patients. Our findings demonstrate that blocking the TBK1-IRF3-IL-33 signaling axis suppresses cancer-prone chronic inflammation. Statins present a safe and effective prophylactic strategy to prevent chronic inflammation and its cancer sequela.
Collapse
Affiliation(s)
- Jong Ho Park
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, South Korea
| | - Mahsa Mortaja
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Heehwa G Son
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xutu Zhao
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren M Sloat
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marjan Azin
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun Wang
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael R Collier
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Krishna S Tummala
- Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Quantitative Biosciences, Merck Research Laboratories, Boston, MA, USA
| | - Anna Mandinova
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nabeel Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Yevgeniy R Semenov
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Shi T, Ge J, Li S, Zhang Y. Soluble suppression of tumorigenicity 2 associated with major adverse cardiac events in children with myocarditis. Front Cardiovasc Med 2024; 11:1404432. [PMID: 38807947 PMCID: PMC11130408 DOI: 10.3389/fcvm.2024.1404432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Objective Soluble suppression of tumorigenicity 2 (sST2) is associated with the prognosis of some cardiac diseases, but studies on sST2 and the prognosis of patients with myocarditis are rare. This study investigated the relationship between major adverse cardiovascular events (MACEs) and sST2 during hospitalization in pediatric patients with myocarditis. Methods This was a single-center retrospective cohort study. A total of 252 patients aged ≤14 years diagnosed with myocarditis were enrolled. Events during the hospitalization were defined as MACEs (all-cause death > new heart failure > ventricular arrhythmia). Results A total of 25 people had MACEs during their hospital stay. The mortality during hospitalization was 6/23 (26%) in patients with heart failure and 3/10 (30%) in patients with ventricular arrhythmias. After including these risk factors in a multivariate logistic regression analysis, NT-proBNP (OR 4.323; 95% CI, 2.433-7.679; p < 0.001) and sST2 (OR 1.020; 95% CI, 1.003-1.037; p = 0.022) remained statistically significant and were independent risk factors for MACEs during hospitalization in pediatric myocarditis patients. Conclusions Elevated levels of NT-proBNP and sST2 were independently associated with major adverse cardiovascular events during hospitalization in children with myocarditis, and both showed good predictive efficacy.
Collapse
Affiliation(s)
- Tongtong Shi
- Department of Cardiology, The Affiliated Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Ge
- Department of Clinical Nutrition, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People’s Hospital, Huai'an, Jiangsu, China
| | - Shan Li
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People’s Hospital, Huai'an, Jiangsu, China
| | - Yali Zhang
- Department of Clinical Nutrition, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People’s Hospital, Huai'an, Jiangsu, China
| |
Collapse
|
28
|
Kamboj M, Keerthika R, Narwal A, Gupta A, Devi A, Kumar A, Sharma G. The intriguing role of IL33/ST2 axis signaling in oral diseases - A systematic review. Adv Med Sci 2024; 69:264-271. [PMID: 38705460 DOI: 10.1016/j.advms.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/03/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE Oral diseases act as a silent epidemic, and the pathogenetic role of interleukin-33/suppression of tumorigenicity-2 axis (IL-33/ST2) remains unclear due to a lack of literature. This review has attempted to highlight the importance of this axis in oral diseases, which may be helpful in developing therapeutic modalities required to halt disease progression. MATERIALS AND METHODS A thorough search was conducted using various databases. Original research articles that assessed both IL-33 and ST2 levels in oral diseases using different techniques were included in the review. The risk of bias for each study was analyzed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool and Review Manager 5.4 was used to output the results. RESULTS In the qualitative data synthesis we included 13 published articles. The most commonly used method was serum estimation, while methods with optimistic results were saliva, real-time quantitative polymerase chain reaction and immunohistochemistry. The predominant mechanism of action was nuclear factor kappa B signaling and type 2 immune response. However, salivary gland epithelial cell activation, activation of mast cells, type 1 immune response, and upregulated angiogenesis are crucial in mediating IL-33/ST2 signaling in oral diseases. CONCLUSIONS Accumulating evidence demonstrates that the IL-33/ST2 axis is a fundamental pathogenetic mechanism of oral diseases of inflammatory, autoimmune, or neoplastic origin.
Collapse
Affiliation(s)
- Mala Kamboj
- Department of Oral Pathology and Microbiology, Post Graduate Institute of Dental Sciences, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India.
| | - R Keerthika
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anjali Narwal
- Department of Oral Pathology and Microbiology, Post Graduate Institute of Dental Sciences, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Ambika Gupta
- Department of Oral Medicine and Radiology, Post Graduate Institute of Dental Sciences, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Anju Devi
- Department of Oral Pathology and Microbiology, Post Graduate Institute of Dental Sciences, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Adarsh Kumar
- Department of Public Health Dentistry, Post Graduate Institute of Dental Sciences, PGIMS Campus, Pt BD Sharma University of Health Sciences, Rohtak, India
| | - Gitika Sharma
- Department of Oral Pathology and Microbiology, Post Graduate Institute of Dental Sciences, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India
| |
Collapse
|
29
|
Polat MC, Sönmez Ç, Yarali N, Özbek NY. Serum interleukin-33 and soluble suppression of tumorigenicity 2 in pediatric leukemia with febrile neutropenia. Eur J Pediatr 2024; 183:2155-2162. [PMID: 38367066 DOI: 10.1007/s00431-024-05478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
The purpose of this study was to evaluate the association between interleukin-33 (IL-33) and its receptor Soluble Suppression of Tumorigenicity-2 (sST2) levels and bacterial infections during febrile neutropenia (FN) in pediatric patients with acute lymphoblastic leukemia (ALL). In this prospective, case-control study, participants were divided into 3 groups: ALL patients with FN (Group A), ALL patients without neutropenia and fever (Group B), and healthy children without infection and chronic disease (Group C). There were 30 cases in each group. Blood samples for IL-33 and sST2 have been drawn from patients in Group A before the initiation of treatment and on days 1 and 5 of treatment, and from patients in Groups B and C at initiation. At admission, mean IL-33 level (39.02 ± 26.40 ng/L) in Group B and mean sST2 level (185.3 ± 371.49 ng/ml) in Group A were significantly higher than the other groups (p = 0.038, p < 0.001, respectively). No difference was observed in the mean IL-33 and sST2 levels in the 5-day follow-up of patients in Group A (p = 0.82, p = 0.86, respectively). IL-33 and sST2 levels were not associated with fever duration, neutropenia duration or length of hospitalization. While C-reactive protein (CRP) was significantly higher in patients with positive blood culture (p = 0.021), IL-33 (p = 0.49) and sST2 (p = 0.21) levels were not associated with culture positivity. Conclusion: IL-33 and sST2 levels were not found valuable as diagnostic and prognostic markers to predict bacterial sepsis in patients with FN. What is Known: • Neutropenic patients are at high risk of serious bacterial and viral infections, but the admission symptom is often only fever. • Febrile neutropenia has a high mortality rate if not treated effectively. What is New: • Febrile neutropenia is not only caused by bacterial infections. Therefore, new biomarkers should be identified to prevent overuse of antibiotics. • Specific biomarkers are needed to diagnose bacterial sepsis in the early phase of febrile neutropenia.
Collapse
Affiliation(s)
- Merve Cansu Polat
- Department of Pediatrics, Ankara Bilkent City Hospital, The University of Health Sciences, Ankara, Turkey.
| | - Çiğdem Sönmez
- Department of Medical Biochemistry, Dr.Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara, Turkey
| | - Neşe Yarali
- Department of Pediatric Hematology/Oncology, Ankara Bilkent City Hospital, Yıldırım Beyazıt University, Ankara, Turkey
| | - Namık Yaşar Özbek
- Department of Pediatric Hematology/Oncology, Ankara Bilkent City Hospital, The University of Health Sciences, Ankara, Turkey
| |
Collapse
|
30
|
Danto SI, Tsamandouras N, Reddy P, Gilbert S, Mancuso J, Page K, Peeva E, Vincent MS, Beebe JS. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of PF-06817024 in Healthy Participants, Participants with Chronic Rhinosinusitis with Nasal Polyps, and Participants with Atopic Dermatitis: A Phase 1, Randomized, Double-Blind, Placebo-Controlled Study. J Clin Pharmacol 2024; 64:529-543. [PMID: 37772436 DOI: 10.1002/jcph.2360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
PF-06817024 is a high affinity, humanized antibody that binds interleukin-33, a proinflammatory type 2 cytokine, and thereby has the potential to inhibit downstream type 2 inflammation. This Phase 1, randomized, placebo-controlled study was conducted in 3 parts to evaluate the safety, tolerability, pharmacokinetics (PK), immunogenicity, and pharmacodynamics of escalating single and limited repeat PF-06817024 doses in healthy participants (Part 1), a single dose of PF-06817024 in participants with chronic rhinosinusitis with nasal polyps (Part 2), and repeat doses of PF-06817024 in participants with moderate to severe atopic dermatitis (atoptic dermatitis; Part 3). PF-06817024 was generally well tolerated in all participant populations. Most participants experienced a treatment-emergent adverse event (healthy participants, 78.4% and 100%; participants with chronic rhinosinusitis with nasal polyps, 90.9% and 88.9%; and participants with atoptic dermatitis, 60.0% and 62.5% in the PF-06817024 and placebo groups, respectively). No substantial deviations from dose proportionality were observed for single intravenous doses of 10-1000 mg, indicating linear PK in healthy participants. Mean terminal half-life ranged from 83 to 94 days after single intravenous administration in healthy participants and was similar to that observed after administration in the studied patient populations. Incidences of antidrug antibodies in the studied populations were 10.8%, 9.1%, and 5.0% for healthy participants, participants with chronic rhinosinusitis with nasal polyps, and participants with atoptic dermatitis, respectively. In addition, dose-dependent increases were observed in total serum interleukin-33 levels of treated participants, indicating target engagement. Overall, the PK and safety profile of PF-06817024 supports further investigation of the drug as a potential treatment for allergic diseases.
Collapse
|
31
|
Ranjitkar S, Krajewski D, Garcia C, Tedeschi C, Polukort SH, Rovatti J, Mire M, Blesso CN, Jellison E, Schneider SS, Ryan JJ, Mathias CB. IL-10 Differentially Promotes Mast Cell Responsiveness to IL-33, Resulting in Enhancement of Type 2 Inflammation and Suppression of Neutrophilia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1407-1419. [PMID: 38497670 PMCID: PMC11018500 DOI: 10.4049/jimmunol.2300884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
Mast cells (MCs) play critical roles in the establishment of allergic diseases. We recently demonstrated an unexpected, proinflammatory role for IL-10 in regulating MC responses. IL-10 enhanced MC activation and promoted IgE-dependent responses during food allergy. However, whether these effects extend to IgE-independent stimuli is not clear. In this article, we demonstrate that IL-10 plays a critical role in driving IL-33-mediated MC responses. IL-10 stimulation enhanced MC expansion and degranulation, ST2 expression, IL-13 production, and phospho-relA upregulation in IL-33-treated cells while suppressing TNF-α. These effects were partly dependent on endogenous IL-10 and further amplified in MCs coactivated with both IL-33 and IgE/Ag. IL-10's divergent effects also extended in vivo. In a MC-dependent model of IL-33-induced neutrophilia, IL-10 treatment enhanced MC responsiveness, leading to suppression of neutrophils and decreased TNF-α. In contrast, during IL-33-induced type 2 inflammation, IL-10 priming exacerbated MC activity, resulting in MC recruitment to various tissues, enhanced ST2 expression, induction of hypothermia, recruitment of eosinophils, and increased MCPT-1 and IL-13 levels. Our data elucidate an important role for IL-10 as an augmenter of IL-33-mediated MC responses, with implications during both allergic diseases and other MC-dependent disorders. IL-10 induction is routinely used as a prognostic marker of disease improvement. Our data suggest instead that IL-10 can enhance ST2 responsiveness in IL-33-activated MCs, with the potential to both aggravate or suppress disease severity depending on the inflammatory context.
Collapse
Affiliation(s)
- Saurav Ranjitkar
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Dylan Krajewski
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Chelsea Garcia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Caitlin Tedeschi
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Stephanie H. Polukort
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Jeffrey Rovatti
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Mohamed Mire
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | | | - Evan Jellison
- Department of Immunology, University of Connecticut, Farmington, CT 06030
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199
| | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Clinton B. Mathias
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
32
|
Yilmaz M, He Q, Demir E, Teräsjärvi J, Gürsoy UK. Salivary IL-33 and sST2 levels in relation to TLR2 rs111200466 polymorphism and periodontitis. Oral Dis 2024; 30:2254-2261. [PMID: 37427857 DOI: 10.1111/odi.14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES Toll-like receptor-2 (TLR2) signalling pathway is involved in the regulation of interleukin (IL)-33 and its receptor suppression of tumorigenicity-2 (ST2). This study aimed to compare salivary IL-33 and soluble ST2 (sST2) levels of periodontitis patients with those of periodontally healthy individuals in relation to their TLR2 rs111200466 23-bp insertion/deletion polymorphism within the promoter region. MATERIALS AND METHODS Unstimulated saliva samples were collected, and periodontal parameters were recorded from 35 periodontally healthy individuals and 44 periodontitis patients. Non-surgical treatments were applied to periodontitis patients, and sample collections and clinical measurements were repeated 3 months following therapy. Salivary IL-33 and sST2 levels were measured with enzyme-linked immunosorbent assay kits, and TLR2 rs111200466 polymorphism was detected by polymerase chain reaction. RESULTS Elevated salivary IL-33 (p = 0.007) and sST2 (p = 0.020) levels were observed in periodontitis patients, in comparison to controls. sST2 levels declined 3-months following treatment (p < 0.001). Increased salivary IL-33 and sST2 levels were found to be associated with periodontitis, with no significant relation to the TLR2 polymorphism. CONCLUSION Periodontitis, but not TLR2 rs111200466 polymorphism, is associated with elevated salivary sST2 and possibly IL-33 levels, and periodontal treatment is effective in reducing salivary sST2 levels.
Collapse
Affiliation(s)
- Mustafa Yilmaz
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Periodontology, Faculty of Dentistry, Biruni University, Istanbul, Turkey
| | - Qiushui He
- Institute of Biomedicine, Research Centre for Infections and Immunity, University of Turku, Turku, Finland
- InFLAMES Research Flagship Centre, University of Turku, Turku, Finland
| | - Esra Demir
- Department of Periodontology, Faculty of Dentistry, Bezmialem Vakif University, Istanbul, Turkey
| | - Johanna Teräsjärvi
- Institute of Biomedicine, Research Centre for Infections and Immunity, University of Turku, Turku, Finland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
33
|
Huang S, Liu D, Han L, Deng J, Wang Z, Jiang J, Zeng L. Decoding the potential role of regulatory T cells in sepsis-induced immunosuppression. Eur J Immunol 2024; 54:e2350730. [PMID: 38430202 DOI: 10.1002/eji.202350730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Sepsis, a multiorgan dysfunction with high incidence and mortality, is caused by an imbalanced host-to-infection immune response. Organ-support therapy improves the early survival rate of sepsis patients. In the long term, those who survive the "cytokine storm" and its secondary damage usually show higher susceptibility to secondary infections and sepsis-induced immunosuppression, in which regulatory T cells (Tregs) are evidenced to play an essential role. However, the potential role and mechanism of Tregs in sepsis-induced immunosuppression remains elusive. In this review, we elucidate the role of different functional subpopulations of Tregs during sepsis and then review the mechanism of sepsis-induced immunosuppression from the aspects of regulatory characteristics, epigenetic modification, and immunometabolism of Tregs. Thoroughly understanding how Tregs impact the immune system during sepsis may shed light on preclinical research and help improve the translational value of sepsis immunotherapy.
Collapse
Affiliation(s)
- Siyuan Huang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Di Liu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Lei Han
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jin Deng
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Zhen Wang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jianxin Jiang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Ling Zeng
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| |
Collapse
|
34
|
Carpenter S, O'Neill LAJ. From periphery to center stage: 50 years of advancements in innate immunity. Cell 2024; 187:2030-2051. [PMID: 38670064 PMCID: PMC11060700 DOI: 10.1016/j.cell.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Over the past 50 years in the field of immunology, something of a Copernican revolution has happened. For a long time, immunologists were mainly concerned with what is termed adaptive immunity, which involves the exquisitely specific activities of lymphocytes. But the other arm of immunity, so-called "innate immunity," had been neglected. To celebrate Cell's 50th anniversary, we have put together a review of the processes and components of innate immunity and trace the seminal contributions leading to the modern state of this field. Innate immunity has joined adaptive immunity in the center of interest for all those who study the body's defenses, as well as homeostasis and pathology. We are now entering the era where therapeutic targeting of innate immune receptors and downstream signals hold substantial promise for infectious and inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Susan Carpenter
- University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA.
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
35
|
Vera IM, Kessler A, Harawa V, Ahmadu A, Keller TE, Ray ST, Taylor TE, Rogerson SJ, Mandala WL, Reyes Gil M, Seydel KB, Kim K. Prothrombotic autoantibodies targeting platelet factor 4/polyanion are associated with pediatric cerebral malaria. J Clin Invest 2024; 134:e176466. [PMID: 38652559 PMCID: PMC11142751 DOI: 10.1172/jci176466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUNDFeatures of consumptive coagulopathy and thromboinflammation are prominent in cerebral malaria (CM). We hypothesized that thrombogenic autoantibodies contribute to a procoagulant state in CM.METHODSPlasma from children with uncomplicated malaria (UM) (n = 124) and CM (n = 136) was analyzed by ELISA for a panel of 8 autoantibodies including anti-platelet factor 4/polyanion (anti-PF4/P), anti-phospholipid, anti-phosphatidylserine, anti-myeloperoxidase, anti-proteinase 3, anti-dsDNA, anti-β-2-glycoprotein I, and anti-cardiolipin. Plasma samples from individuals with nonmalarial coma (NMC) (n = 49) and healthy controls (HCs) (n = 56) were assayed for comparison. Associations with clinical and immune biomarkers were determined using univariate and logistic regression analyses.RESULTSMedian anti-PF4/P and anti-PS IgG levels were elevated in individuals with malaria infection relative to levels in HCs (P < 0.001) and patients with NMC (PF4/P: P < 0.001). Anti-PF4/P IgG levels were elevated in children with CM (median = 0.27, IQR: 0.19-0.41) compared with those with UM (median = 0.19, IQR: 0.14-0.22, P < 0.0001). Anti-PS IgG levels did not differ between patients with UM and those with CM (P = 0.39). When patients with CM were stratified by malaria retinopathy (Ret) status, the levels of anti-PF4/P IgG correlated negatively with the peripheral platelet count in patients with Ret+ CM (Spearman's rho [Rs] = 0.201, P = 0.04) and associated positively with mortality (OR = 15.2, 95% CI: 1.02-275, P = 0.048). Plasma from patients with CM induced greater platelet activation in an ex vivo assay relative to plasma from patients with UM (P = 0.02), and the observed platelet activation was associated with anti-PF4/P IgG levels (Rs= 0.293, P = 0.035).CONCLUSIONSThrombosis mediated by elevated anti-PF4/P autoantibodies may be one mechanism contributing to the clinical complications of CM.
Collapse
Affiliation(s)
- Iset M. Vera
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, University of South Florida, Tampa, Florida, USA
| | - Anne Kessler
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, USA
| | - Visopo Harawa
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Biomedical Department, University of Malawi College of Medicine, Blantyre, Malawi
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Ajisa Ahmadu
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Thomas E. Keller
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, University of South Florida, Tampa, Florida, USA
| | - Stephen T.J. Ray
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Terrie E. Taylor
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, Michigan, USA
| | - Stephen J. Rogerson
- Department of Medicine (RMH), and
- Department of Infectious Diseases, Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Wilson L. Mandala
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Biomedical Department, University of Malawi College of Medicine, Blantyre, Malawi
- Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
| | - Morayma Reyes Gil
- Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Karl B. Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, Michigan, USA
| | - Kami Kim
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
36
|
Taruselli MT, Qayum AA, Abebayehu D, Caslin HL, Dailey JM, Kotha A, Burchett JR, Kee SA, Maldonado TD, Ren B, Chao W, Zou L, Haque TT, Straus D, Ryan JJ. IL-33 Induces Cellular and Exosomal miR-146a Expression as a Feedback Inhibitor of Mast Cell Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1277-1286. [PMID: 38381001 PMCID: PMC10984763 DOI: 10.4049/jimmunol.2200916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
IL-33 is an inflammatory cytokine that promotes allergic disease by activating group 2 innate lymphoid cells, Th2 cells, and mast cells. IL-33 is increased in asthmatics, and its blockade suppresses asthma-like inflammation in mouse models. Homeostatic control of IL-33 signaling is poorly understood. Because the IL-33 receptor, ST2, acts via cascades used by the TLR family, similar feedback mechanisms may exist. MicroRNA (miR)-146a is induced by LPS-mediated TLR4 signaling and serves as a feedback inhibitor. Therefore, we explored whether miR-146a has a role in IL-33 signaling. IL-33 induced cellular and exosomal miR-146a expression in mouse bone marrow-derived mast cells (BMMCs). BMMCs transfected with a miR-146a antagonist or derived from miR-146a knockout mice showed enhanced cytokine expression in response to IL-33, suggesting that miR-146a is a negative regulator of IL-33-ST2 signaling. In vivo, miR-146a expression in plasma exosomes was elevated after i.p. injection of IL-33 in wild-type but not mast cell-deficient KitW-sh/W-sh mice. Finally, KitW-sh/W-sh mice acutely reconstituted with miR-146a knockout BMMCs prior to IL-33 challenge had elevated plasma IL-6 levels compared with littermates receiving wild-type BMMCs. These results support the hypothesis that miR-146a is a feedback regulator of IL-33-mediated mast cell functions associated with allergic disease.
Collapse
Affiliation(s)
| | - Amina Abdul Qayum
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Daniel Abebayehu
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Heather L. Caslin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Jordan M. Dailey
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Aditya Kotha
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Jason R. Burchett
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Sydney A. Kee
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Tania D. Maldonado
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Boyang Ren
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, HSF2 G-S003B, 20 Penn Street, Baltimore, 21201
| | - Wei Chao
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, HSF2 G-S003B, 20 Penn Street, Baltimore, 21201
| | - Lin Zou
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, HSF2 G-S003B, 20 Penn Street, Baltimore, 21201
| | - Tamara T. Haque
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - David Straus
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| |
Collapse
|
37
|
Yanagihara T, Hata K, Matsubara K, Kunimura K, Suzuki K, Tsubouchi K, Ikegame S, Baba Y, Fukui Y, Okamoto I. Exploratory mass cytometry analysis reveals immunophenotypes of cancer treatment-related pneumonitis. eLife 2024; 12:RP87288. [PMID: 38607373 PMCID: PMC11014725 DOI: 10.7554/elife.87288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Anticancer treatments can result in various adverse effects, including infections due to immune suppression/dysregulation and drug-induced toxicity in the lung. One of the major opportunistic infections is Pneumocystis jirovecii pneumonia (PCP), which can cause severe respiratory complications and high mortality rates. Cytotoxic drugs and immune-checkpoint inhibitors (ICIs) can induce interstitial lung diseases (ILDs). Nonetheless, the differentiation of these diseases can be difficult, and the pathogenic mechanisms of such diseases are not yet fully understood. To better comprehend the immunophenotypes, we conducted an exploratory mass cytometry analysis of immune cell subsets in bronchoalveolar lavage fluid from patients with PCP, cytotoxic drug-induced ILD (DI-ILD), and ICI-associated ILD (ICI-ILD) using two panels containing 64 markers. In PCP, we observed an expansion of the CD16+ T cell population, with the highest CD16+ T proportion in a fatal case. In ICI-ILD, we found an increase in CD57+ CD8+ T cells expressing immune checkpoints (TIGIT+ LAG3+ TIM-3+ PD-1+), FCRL5+ B cells, and CCR2+ CCR5+ CD14+ monocytes. These findings uncover the diverse immunophenotypes and possible pathomechanisms of cancer treatment-related pneumonitis.
Collapse
Affiliation(s)
- Toyoshi Yanagihara
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
- Department of Respiratory Medicine, NHO Fukuoka National HospitalFukuokaJapan
| | - Kentaro Hata
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Keisuke Matsubara
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Kazufumi Kunimura
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Kunihiro Suzuki
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Kazuya Tsubouchi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Satoshi Ikegame
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| |
Collapse
|
38
|
Caputo LDS, Alves CDL, Laranjeira IM, Fonseca-Rodrigues D, da Silva Filho AA, Dias ACP, Pinto-Ribeiro F, Pereira Junior ODS, de Paula ACC, Nagato AC, Corrêa JODA. Copaiba oil minimizes inflammation and promotes parenchyma re-epithelization in acute allergic asthma model induced by ovalbumin in BALB/c mice. Front Pharmacol 2024; 15:1356598. [PMID: 38666018 PMCID: PMC11043548 DOI: 10.3389/fphar.2024.1356598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction: Asthma is a condition of airflow limitation, common throughout the world, with high mortality rates, especially as it still faces some obstacles in its management. As it constitutes a public health challenge, this study aimed to investigate the effect of copaiba oil (e.g., Copaifera langsdorffii), as a treatment resource, at doses of 50 and 100 mg/kg on certain mediators of acute lung inflammation (IL-33, GATA3, FOXP3, STAT3, and TBET) and early mechanisms of lung remodeling (degradation of elastic fiber tissues, collagen deposition, and goblet cell hyperplasia). Methods: Using an ovalbumin-induced acute allergic asthma model in BALB/c mice, we analyzed the inflammatory mediators through immunohistochemistry and the mechanisms of lung remodeling through histopathology, employing orcein, Masson's trichrome, and periodic acid-Schiff staining. Results: Copaiba oil treatment (CO) reduced IL-33 and increased FOXP3 by stimulating the FOXP3/GATA3 and FOXP3/STAT3 pathways. Additionally, it upregulated TBET, suggesting an additional role in controlling GATA3 activity. In the respiratory epithelium, CO decreased the fragmentation of elastic fibers while increasing the deposition of collagen fibers, favoring epithelial restructuring. Simultaneously, CO reduced goblet cell hyperplasia. Discussion: Although additional research is warranted, the demonstrated anti-inflammatory and re-epithelializing action makes CO a viable option in exploring new treatments for acute allergic asthma.
Collapse
Affiliation(s)
- Ludmila de Souza Caputo
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Carolina de Lima Alves
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Inês Martins Laranjeira
- Life and Health Sciences Research Institute, ICVS, School of Medicine, Campus of Gualtar, University of Minho, Braga, Portugal
- ICVS/3B‟s - PT Government Associate Laboratory, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Centre of Molecular and Environmental Biology, CBMA, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Diana Fonseca-Rodrigues
- Life and Health Sciences Research Institute, ICVS, School of Medicine, Campus of Gualtar, University of Minho, Braga, Portugal
- ICVS/3B‟s - PT Government Associate Laboratory, Braga, Portugal
| | | | - Alberto Carlos Pires Dias
- Centre of Molecular and Environmental Biology, CBMA, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute, ICVS, School of Medicine, Campus of Gualtar, University of Minho, Braga, Portugal
- ICVS/3B‟s - PT Government Associate Laboratory, Braga, Portugal
| | | | | | - Akinori Cardozo Nagato
- Department of Physiology, Federal University of Juiz de Fora, UFJF, Juiz de Fora, Brazil
| | | |
Collapse
|
39
|
Sun J, Xu Y, Wu Y, Sun J, Yin G, Chen Y, Xie Q. The diagnostic value of sST2 for myocardial fibrosis in idiopathic inflammatory myopathies in subclinical stage of cardiac involvement. Rheumatology (Oxford) 2024; 63:1172-1179. [PMID: 37094178 DOI: 10.1093/rheumatology/kead182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/11/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
OBJECTIVE Myocardial fibrosis occurs in the early subclinical stage of cardiac involvement in idiopathic inflammatory myopathies (IIMs). Soluble suppression of tumorigenicity 2 (sST2) is known to have an immunomodulatory impact during autoimmune disease development. The current study investigated the diagnostic value of sST2 for myocardial fibrosis during early stage of cardiac involvement in IIM. METHODS A total of 44 IIM patients with normal heart function and 32 age- and gender-matched healthy controls (HCs) were enrolled. Serum sST2 levels were measured by ELISA and cardiac magnetic resonance (CMR) parameters for myocardial fibrosis [native T1, extracellular volume (ECV), late-gadolinium enhancement (LGE)] and oedema (T2 values) were analysed. RESULTS IIM patients had significantly higher sST2 levels than HCs [67.5 ng/ml (s.d. 30.4)] vs 14.4 (5.5), P < 0.001] and levels correlated positively with diffuse myocardial fibrosis parameters, native T1 (r = 0.531, P = 0.000), ECV (r = 0.371, P = 0.013) and focal myocardial fibrosis index and LGE (r = 0.339, P = 0.024) by Spearman's correlation analysis. sST2 was an independent predictive factor for diffuse and focal myocardial fibrosis after adjustment for age, gender, BMI and ESR. Risk increased ≈15.4% for diffuse [odds ratio (OR) 1.154 (95% CI 1.021, 1.305), P = 0.022] and 3.8% for focal [OR 1.038 (95% CI 1.006, 1.072), P = 0.020] myocardial fibrosis per unit increase of sST2. Cut-off values for diagnosing diffuse and focal myocardial fibrosis were sST2 ≥51.3 ng/ml [area under the curve (AUC) = 0.942, sensitivity = 85.7%, specificity = 98.9%, P < 0.001] and 53.3 ng/ml (AUC = 0.753, sensitivity = 87.5%, specificity = 58.3%, P < 0.01), respectively. CONCLUSION sST2 showed a marked elevation during the subclinical stage of cardiac involvement in IIM and has potential as a biomarker for predicting diffuse and focal myocardial fibrosis in IIM.
Collapse
Affiliation(s)
- Jianhong Sun
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanwei Xu
- Cardiovascular Division, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Wu
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayu Sun
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yucheng Chen
- Cardiovascular Division, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
40
|
Sasakura M, Urakami H, Tachibana K, Ikeda K, Hasui KI, Matsuda Y, Sunagawa K, Ennishi D, Tomida S, Morizane S. Topical application of activator protein-1 inhibitor T-5224 suppresses inflammation and improves skin barrier function in a murine atopic dermatitis-like dermatitis. Allergol Int 2024; 73:323-331. [PMID: 38350816 DOI: 10.1016/j.alit.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Selective activator protein (AP)-1 inhibitors are potentially promising therapeutic agents for atopic dermatitis (AD) because AP-1 is an important regulator of skin inflammation. However, few studies have investigated the effect of topical application of AP-1 inhibitors in treating inflammatory skin disorders. METHODS Immunohistochemistry was conducted to detect phosphorylated AP-1/c-Jun expression of skin lesions in AD patients. In the in vivo study, 1 % T-5224 ointment was topically applied for 8 days to the ears of 2,4 dinitrofluorobenzene challenged AD-like dermatitis model mice. Baricitinib, a conventional therapeutic agent Janus kinase (JAK) inhibitor, was also topically applied. In the in vitro study, human epidermal keratinocytes were treated with T-5224 and stimulated with AD-related cytokines. RESULTS AP-1/c-Jun was phosphorylated at skin lesions in AD patients. In vivo, topical T-5224 application inhibited ear swelling (P < 0.001), restored filaggrin (Flg) expression (P < 0.01), and generally suppressed immune-related pathways. T-5224 significantly suppressed Il17a and l17f expression, whereas baricitinib did not. Baricitinib suppressed Il4, Il19, Il33 and Ifnb expression, whereas T-5224 did not. Il1a, Il1b, Il23a, Ifna, S100a8, and S100a9 expression was cooperatively downregulated following the combined use of T-5224 and baricitinib. In vitro, T-5224 restored the expression of FLG and loricrin (LOR) (P < 0.05) and suppressed IL33 expression (P < 0.05) without affecting cell viability and cytotoxicity. CONCLUSIONS Topical T-5224 ameliorates clinical manifestations of AD-like dermatitis in mice. The effect of this inhibitor is amplified via combined use with JAK inhibitors.
Collapse
Affiliation(s)
- Minori Sasakura
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Urakami
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kota Tachibana
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kenta Ikeda
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ken-Ichi Hasui
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiro Matsuda
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ko Sunagawa
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Ennishi
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
41
|
Okano M, Kanai K, Oka A. Pathogenesis-based application of biologics for chronic rhinosinusitis: Current and future perspectives. Auris Nasus Larynx 2024; 51:371-378. [PMID: 37743131 DOI: 10.1016/j.anl.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023]
Abstract
Chronic rhinosinusitis (CRS) is heterogeneous and contains diverse pathogenesis including type 1, type 2, and/or type 3 inflammation. For severe type 2 CRS especially CRS with nasal polyps (CRSwNP), biologics that target inflammatory molecules have recently been applied along with further changes in the treatment algorithm for CRS. Currently, a completed phase 3 clinical trial for biologics for severe CRSwNP with inadequate response to surgery and/or intranasal corticosteroids, including omalizumab (anti-IgE), mepolizumab (anti-IL-5), benralizumab (anti-IL-5Rα), and dupilumab (anti-IL-4Rα), have all shown efficacy. Similar phase 3 clinical trials for tezepelumab (anti-TSLP) and etokimab (anti-IL-33) are now underway and completed, respectively. Further studies need to evaluate how to optimally and cost-effectively use biologics for CRS and determine if any biomarkers are indicative of which biologics should be administered. A definition of complete and/or clinical remission of CRS is also needed to determine when to reduce or discontinue biologics. In addition, more precise basic research on CRS, such as endotyping and genotyping, will need to be undertaken in order to determine novel targets for biologics.
Collapse
Affiliation(s)
- Mitsuhiro Okano
- Department of Otorhinolaryngology, International University School of Medicine, Narita, Japan.
| | - Kengo Kanai
- Department of Otorhinolaryngology, International University School of Medicine, Narita, Japan
| | - Aiko Oka
- Department of Otorhinolaryngology, International University School of Medicine, Narita, Japan
| |
Collapse
|
42
|
He PY, Wu MY, Zheng LY, Duan Y, Fan Q, Zhu XM, Yao YM. Interleukin-33/serum stimulation-2 pathway: Regulatory mechanisms and emerging implications in immune and inflammatory diseases. Cytokine Growth Factor Rev 2024; 76:112-126. [PMID: 38155038 DOI: 10.1016/j.cytogfr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Interleukin (IL)- 33, a nuclear factor and pleiotropic cytokine of the IL-1 family, is gaining attention owing to its important role in chronic inflammatory and autoimmune diseases. This review extends our knowledge of the effects exerted by IL-33 on target cells by binding to its specific receptor serum stimulation-2 (ST2). Depending on the tissue context, IL-33 performs multiple functions encompassing host defence, immune response, initiation and amplification of inflammation, tissue repair, and homeostasis. The levels and activity of IL-33 in the body are controlled by complex IL-33-targeting regulatory pathways. The unique temporal and spatial expression patterns of IL-33 are associated with host homeostasis and the development of immune and inflammatory disorders. Therefore, understanding the origin, function, and processes of IL-33 under various conditions is crucial. This review summarises the regulatory mechanisms underlying the IL-33/ST2 signalling axis and its potential role and clinical significance in immune and inflammatory diseases, and discusses the current complex and conflicting findings related to IL-33 in host responses.
Collapse
Affiliation(s)
- Peng-Yi He
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China
| | - Meng-Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Duan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi Fan
- Emergency Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Xiao-Mei Zhu
- Tissue Repair and Regeneration Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
43
|
Liu A, Hayashi M, Ohsugi Y, Katagiri S, Akira S, Iwata T, Nakashima T. The IL-33/ST2 axis is protective against acute inflammation during the course of periodontitis. Nat Commun 2024; 15:2707. [PMID: 38548743 PMCID: PMC10978877 DOI: 10.1038/s41467-024-46746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Periodontitis, which is induced by repeated bacterial invasion and the ensuing immune reactions that follow, is the leading cause of tooth loss. Periodontal tissue is comprised of four different components, each with potential role in pathogenesis, however, most studies on immune responses focus on gingival tissue. Here, we present a modified ligature-induced periodontitis model in male mice to analyze the pathogenesis, which captures the complexity of periodontal tissue. We find that the inflammatory response in the peri-root tissues and the expression of IL-6 and RANKL by Thy-1.2- fibroblasts/stromal cells are prominent throughout the bone destruction phase, and present already at an early stage. The initiation phase is characterized by high levels of ST2 (encoded by Il1rl1) expression in the peri-root tissue, suggesting that the IL-33/ST2 axis is involved in the pathogenesis. Both Il1rl1- and Il33-deficient mice exhibit exacerbated bone loss in the acute phase of periodontitis, along with macrophage polarization towards a classically activated phenotype and increased neutrophil infiltration, indicating a protective role of the IL-33/ST2 axis in acute inflammation. Thus, our findings highlight the hidden role of the peri-root tissue and simultaneously advance our understanding of the etiology of periodontitis via implicating the IL-33/ST2 axis.
Collapse
Affiliation(s)
- Anhao Liu
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Mikihito Hayashi
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, IFReC,Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Tomoki Nakashima
- Faculty of Dentistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
44
|
Wachtendorf S, Jonin F, Ochel A, Heinrich F, Westendorf AM, Tiegs G, Neumann K. The ST2 + Treg/amphiregulin axis protects from immune-mediated hepatitis. Front Immunol 2024; 15:1351405. [PMID: 38571949 PMCID: PMC10987816 DOI: 10.3389/fimmu.2024.1351405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction The alarmin IL-33 has been implicated in the pathology of immune-mediated liver diseases. IL-33 activates regulatory T cells (Tregs) and type 2 innate lymphoid cells (ILC2s) expressing the IL-33 receptor ST2. We have previously shown that endogenous IL-33/ST2 signaling activates ILC2s that aggravate liver injury in murine immune-mediated hepatitis. However, treatment of mice with exogenous IL-33 before induction of hepatitis ameliorated disease severity. Since IL-33 induces expression of amphiregulin (AREG) crucial for Treg function, we investigated the immunoregulatory role of the ST2+ Treg/AREG axis in immune-mediated hepatitis. Methods C57BL/6, ST2-deficient (Il1rl1-/-) and Areg-/- mice received concanavalin A to induce immune-mediated hepatitis. Foxp3Cre+ x ST2fl/fl mice were pre-treated with IL-33 before induction of immune-mediated hepatitis. Treg function was assessed by adoptive transfer experiments and suppression assays. The effects of AREG and IL-33 on ST2+ Tregs and ILC2s were investigated in vitro. Immune cell phenotype was analyzed by flow cytometry. Results and discussion We identified IL-33-responsive ST2+ Tregs as an effector Treg subset in the murine liver, which was highly activated in immune-mediated hepatitis. Lack of endogenous IL-33 signaling in Il1rl1-/- mice aggravated disease pathology. This was associated with reduced Treg activation. Adoptive transfer of exogenous IL-33-activated ST2+ Tregs before induction of hepatitis suppressed inflammatory T-cell responses and ameliorated disease pathology. We further showed increased expression of AREG by hepatic ST2+ Tregs and ILC2s in immune-mediated hepatitis. Areg-/- mice developed more severe liver injury, which was associated with enhanced ILC2 activation and less ST2+ Tregs in the inflamed liver. Exogenous AREG suppressed ILC2 cytokine expression and enhanced ST2+ Treg activation in vitro. In addition, Tregs from Areg-/- mice were impaired in their capacity to suppress CD4+ T-cell activation in vitro. Moreover, application of exogenous IL-33 before disease induction did not protect Foxp3Cre+ x ST2fl/fl mice lacking ST2+ Tregs from immune-mediated hepatitis. In summary, we describe an immunoregulatory role of the ST2+ Treg/AREG axis in immune-mediated hepatitis, in which AREG suppresses the activation of hepatic ILC2s while maintaining ST2+ Tregs and reinforcing their immunosuppressive capacity in liver inflammation.
Collapse
Affiliation(s)
- Selina Wachtendorf
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fitriasari Jonin
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Aaron Ochel
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Heinrich
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
45
|
Li Y, Zhang C, Jiang A, Lin A, Liu Z, Cheng X, Wang W, Cheng Q, Zhang J, Wei T, Luo P. Potential anti-tumor effects of regulatory T cells in the tumor microenvironment: a review. J Transl Med 2024; 22:293. [PMID: 38509593 PMCID: PMC10953261 DOI: 10.1186/s12967-024-05104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Regulatory T cells (Tregs) expressing the transcription factor FoxP3 are essential for maintaining immunological balance and are a significant component of the immunosuppressive tumor microenvironment (TME). Single-cell RNA sequencing (ScRNA-seq) technology has shown that Tregs exhibit significant plasticity and functional diversity in various tumors within the TME. This results in Tregs playing a dual role in the TME, which is not always centered around supporting tumor progression as typically believed. Abundant data confirms the anti-tumor activities of Tregs and their correlation with enhanced patient prognosis in specific types of malignancies. In this review, we summarize the potential anti-tumor actions of Tregs, including suppressing tumor-promoting inflammatory responses and boosting anti-tumor immunity. In addition, this study outlines the spatial and temporal variations in Tregs function to emphasize that their predictive significance in malignancies may change. It is essential to comprehend the functional diversity and potential anti-tumor effects of Tregs to improve tumor therapy strategies.
Collapse
Affiliation(s)
- Yu Li
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Anqi Lin
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, China
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Xiangshu Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road. Nangang District, Harbin, Heilongiiang, China
| | - Wanting Wang
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jian Zhang
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Ting Wei
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
46
|
Soedono S, Sharlene S, Vo DHN, Averia M, Rosalie EE, Lee YK, Cho KW. Obese visceral adipose dendritic cells downregulate regulatory T cell development through IL-33. Front Immunol 2024; 15:1335651. [PMID: 38566998 PMCID: PMC10985834 DOI: 10.3389/fimmu.2024.1335651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Regulatory T cells (Tregs) residing in visceral adipose tissue (VAT) play a pivotal role in regulating tissue inflammation and metabolic dysfunction associated with obesity. However, the specific phenotypic and functional characteristics of Tregs in obese VAT, as well as the regulatory mechanisms shaping them, remain elusive. This study demonstrates that obesity selectively reduces Tregs in VAT, characterized by restrained proliferation, heightened PD-1 expression, and diminished ST2 expression. Additionally, obese VAT displays distinctive maturation of dendritic cells (DCs), marked by elevated expressions of MHC-II, CD86, and PD-L1, which are inversely correlated with VAT Tregs. In an in vitro co-culture experiment, only obese VAT DCs, not macrophages or DCs from subcutaneous adipose tissue (SAT) and spleen, result in decreased Treg differentiation and proliferation. Furthermore, Tregs differentiated by obese VAT DCs exhibit distinct characteristics resembling those of Tregs in obese VAT, such as reduced ST2 and IL-10 expression. Mechanistically, obesity lowers IL-33 production in VAT DCs, contributing to the diminished Treg differentiation. These findings collectively underscore the critical role of VAT DCs in modulating Treg generation and shaping Treg phenotype and function during obesity, potentially contributing to the regulation of VAT Treg populations.
Collapse
Affiliation(s)
- Shindy Soedono
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Sharlene Sharlene
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Dan Hoang Nguyet Vo
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Maria Averia
- Magister of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Eufrasia Elaine Rosalie
- Faculty of Biotechnology, Department of Food Technology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Yun Kyung Lee
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Kae Won Cho
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
47
|
Ni M, Wang Y, Yang J, Ma Q, Pan W, Li Y, Xu Q, Lv H, Wang Y. IL-33 aggravates extranodal NK/T cell lymphoma aggressiveness and angiogenesis by activating the Wnt/β-catenin signaling pathway. Mol Cell Biochem 2024:10.1007/s11010-024-04944-y. [PMID: 38443748 DOI: 10.1007/s11010-024-04944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/16/2024] [Indexed: 03/07/2024]
Abstract
Extranodal NK/T cell lymphoma (ENKTCL) is an extremely aggressive form of lymphoma and lacks of specific diagnostic markers. The study intended to unearth the role of interleukin-33 (IL-33) in ENKTCL. RT-qPCR was conducted to assess mRNA levels of ENKTCL tissues and cells, while western blot assay was performed for evaluating protein levels. Plate cloning experiment and transwell assay were employed to measure aggressiveness of ENKTCL. Tube formation assay was executed to determine the angiogenesis ability. Mice ENKTCL xenograft model was designed to probe the impacts of IL-33 in vivo. IL-33 and suppression of tumorigenicity 2 receptor (ST2, receptor of IL-33) were enhanced in ENKTCL. IL-33 inhibition suppressed viability, migration, and invasion of ENKTCL cells. Moreover, IL-33 knockdown restricted angiogenesis in human umbilical vein endothelial cells (HUVECs). Furthermore, Wnt/β-catenin pathway associated proteins (β-catenin, c-myc, and cyclin D1) were downregulated by loss of IL-33. However, these impacts were overturned by Wnt/β-catenin signaling agonist lithium chloride (LiCl). Additionally, IL-33 silencing exerted anti-tumor effect via Wnt/β-catenin pathway in vivo. Silencing of IL-33 inhibited ENKTCL tumorigenesis and angiogenesis by inactivating Wnt/β-catenin signaling pathway. As such, IL-33 might be a prospective treatment target for ENKTCL.
Collapse
Affiliation(s)
- Mingli Ni
- Department of Oncology, The First Affiliated Hospital of Henan University of CM, Zhengzhou, 450099, Henan, China
- Medical Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471099, Henan, China
| | - Yuhui Wang
- Day Operating Room, Luoyang Central Hospital, Luoyang, 471099, Henan, China
| | - Jiezhi Yang
- Medical Oncology, Luoyang Central Hospital, Luoyang, 471099, Henan, China
| | - Qianwen Ma
- Medical Oncology, Luoyang Central Hospital, Luoyang, 471099, Henan, China
| | - Wei Pan
- Medical Oncology, Luoyang Central Hospital, Luoyang, 471099, Henan, China
| | - Yulin Li
- Medical Oncology, Luoyang Central Hospital, Luoyang, 471099, Henan, China
| | - Qian Xu
- Medical Oncology, Luoyang Central Hospital, Luoyang, 471099, Henan, China
| | - Hongqiong Lv
- Medical Oncology, Luoyang Central Hospital, Luoyang, 471099, Henan, China
| | - Yunlong Wang
- Department of Oncology, The First Affiliated Hospital of Henan University of CM, Zhengzhou, 450099, Henan, China.
- Henan Bioengineering Research Center, No. 81, Zhengshang Road, Zhengzhou, 450066, Henan, China.
| |
Collapse
|
48
|
Ngo TB, Josyula A, DeStefano S, Fertil D, Faust M, Lokwani R, Sadtler K. Intersection of Immunity, Metabolism, and Muscle Regeneration in an Autoimmune-Prone MRL Mouse Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306961. [PMID: 38192168 PMCID: PMC10953568 DOI: 10.1002/advs.202306961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Indexed: 01/10/2024]
Abstract
Due to the limited capacity of mammals to regenerate complex tissues, researchers have worked to understand the mechanisms of tissue regeneration in organisms that maintain that capacity. One example is the MRL/MpJ mouse strain with unique regenerative capacity in ear pinnae that is absent from other strains, such as the common C57BL/6 strain. The MRL/MpJ mouse has also been associated with an autoimmune phenotype even in the absence of the mutant Fas gene described in its parent strain MRL/lpr. Due to these findings, the differences between the responses of MRL/MpJ versus C57BL/6 strain are evaluated in volumetric muscle injury and subsequent material implantation. One salient feature of the MRL/MpJ response to injury is robust adipogenesis within the muscle. This is associated with a decrease in M2-like polarization in response to biologically derived extracellular matrix scaffolds. In pro-fibrotic materials, such as polyethylene, there are fewer foreign body giant cells in the MRL/MpJ mice. As there are reports of both positive and negative influences of adipose tissue and adipogenesis on wound healing, this model can provide an important lens to investigate the interplay between stem cells, adipose tissue, and immune responses in trauma and material implantation.
Collapse
Affiliation(s)
- Tran B. Ngo
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| | - Aditya Josyula
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| | - Sabrina DeStefano
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| | - Daphna Fertil
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| | - Mondreakest Faust
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| | - Ravi Lokwani
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| | - Kaitlyn Sadtler
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| |
Collapse
|
49
|
Toskas A, Milias S, Papamitsou T, Meditskou S, Kamperidis N, Sioga A. The role of IL-19, IL-24, IL-21 and IL-33 in intestinal mucosa of inflammatory bowel disease: A narrative review. Arab J Gastroenterol 2024:S1687-1979(24)00002-9. [PMID: 38395629 DOI: 10.1016/j.ajg.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2023] [Accepted: 01/03/2024] [Indexed: 02/25/2024]
Abstract
Interleukins are potential therapeutic targets that can alter the prognosis and progression of inflammatory bowel disease (IBD). The roles of IL-6, IL-10, IL-17, and IL-23 have been extensively studied, setting the stage for the development of novel treatments for patients with IBD. Other cytokines have been less extensively studied. Members of the IL-20 family, mainly IL-19 and IL-24, are involved in the pathogenesis of IBD, but their exact role remains unclear. Similarly, IL-33, a newly identified cytokine, has been shown to control the Th1 effector response and the action of colonic Tregs in animal models of colitis and patients with IBD. IL-21 is involved in the Th1, Th2, and Th17 responses. Data support a promising future use of these interleukins as biomarkers of severe diseases and as potential therapeutic targets for novel monoclonal antibodies. This review aims to summarize the existing studies involving animal models of colitis and patients with IBD to clarify their role in the intestinal mucosa.
Collapse
Affiliation(s)
- Alexandros Toskas
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; St Marks Hospital, Watford Rd, Harrow, London, United Kingdom.
| | - Stefanos Milias
- Private Histopathology Laboratory, Ploutonos 27, Thessaloniki, Greece.
| | - Theodora Papamitsou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Soultana Meditskou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | - Antonia Sioga
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
50
|
Noel OD, Hassouneh Z, Svatek RS, Mukherjee N. Innate Lymphoid Cells in Bladder Cancer: From Mechanisms of Action to Immune Therapies. Cancer Immunol Res 2024; 12:149-160. [PMID: 38060011 PMCID: PMC11492724 DOI: 10.1158/2326-6066.cir-23-0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/10/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Bladder tumors have a high mutational burden and tend to be responsive to immune therapies; however, response rates remain modest. To date, immunotherapy in bladder cancer has largely focused on enhancing T-cell immune responses in the bladder tumor microenvironment. It is anticipated that other immune cells, including innate lymphoid cells (ILC), which play an important role in bladder oncogenesis and tumor suppression, could be targeted to improve response to existing therapies. ILCs are classified into five groups: natural killer cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer cells. ILCs are pleiotropic and play dual and sometimes paradoxical roles in cancer development and progression. Here, a comprehensive discussion of the current knowledge and recent advancements in understanding the role of ILCs in bladder cancer is provided. We discuss the multifaceted roles that ILCs play in bladder immune surveillance, tumor protection, and immunopathology of bladder cancer. This review provides a rationale for targeting ILCs in bladder cancer, which is relevant for other solid tumors.
Collapse
Affiliation(s)
- Onika D.V. Noel
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
| | - Zaineb Hassouneh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas
| | - Robert S. Svatek
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
| | - Neelam Mukherjee
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|