1
|
Nishihara K, Villot C, Cangiano L, Guan LL, Steele M. Bacteria colonization and gene expression related to immune function in colon mucosa is associated with growth in neonatal calves regardless of live yeast supplementation. J Anim Sci Biotechnol 2024; 15:76. [PMID: 38835065 DOI: 10.1186/s40104-024-01030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/01/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND As Holstein calves are susceptible to gastrointestinal disorders during the first week of life, understanding how intestinal immune function develops in neonatal calves is important to promote better intestinal health. Feeding probiotics in early life may contribute to host intestinal health by facilitating beneficial bacteria colonization and developing intestinal immune function. The objective of this study was to characterize the impact of early life yeast supplementation and growth on colon mucosa-attached bacteria and host immune function. RESULTS Twenty Holstein bull calves received no supplementation (CON) or Saccharomyces cerevisiae boulardii (SCB) from birth to 5 d of life. Colon tissue biopsies were taken within 2 h of life (D0) before the first colostrum feeding and 3 h after the morning feeding at d 5 of age (D5) to analyze mucosa-attached bacteria and colon transcriptome. Metagenome sequencing showed that there was no difference in α and β diversity of mucosa-attached bacteria between day and treatment, but bacteria related to diarrhea were more abundant in the colon mucosa on D0 compared to D5. In addition, qPCR indicated that the absolute abundance of Escherichia coli (E. coli) decreased in the colon mucosa on D5 compared to D0; however, that of Bifidobacterium, Lactobacillus, and Faecalibacterium prausnitzii, which could competitively exclude E. coli, increased in the colon mucosa on D5 compared to D0. RNA-sequencing showed that there were no differentially expressed genes between CON and SCB, but suggested that pathways related to viral infection such as "Interferon Signaling" were activated in the colon mucosa of D5 compared to D0. CONCLUSIONS Growth affected mucosa-attached bacteria and host immune function in the colon mucosa during the first 5 d of life in dairy calves independently of SCB supplementation. During early life, opportunistic pathogens may decrease due to intestinal environmental changes by beneficial bacteria and/or host immune function. Predicted activation of immune function-related pathways may be the result of host immune function development or suggest other antigens in the intestine during early life. Further studies focusing on the other antigens and host immune function in the colon mucosa are required to better understand intestinal immune function development.
Collapse
Affiliation(s)
- Koki Nishihara
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, N1G 1Y2, Canada
| | - Clothilde Villot
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
- Lallemand SAS, Blagnac, F-31702, France
| | - Lautaro Cangiano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Le Luo Guan
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Michael Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, N1G 1Y2, Canada.
- Present Address: Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
2
|
Sojati J, Parks OB, Zhang Y, Walters S, Lan J, Eddens T, Lou D, Fan L, Chen K, Oury TD, Williams JV. IFN-λ drives distinct lung immune landscape changes and antiviral responses in human metapneumovirus infection. mBio 2024; 15:e0055024. [PMID: 38530032 PMCID: PMC11077986 DOI: 10.1128/mbio.00550-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Human metapneumovirus (HMPV) is a primary cause of acute respiratory infection, yet there are no approved vaccines or antiviral therapies for HMPV. Early host responses to HMPV are poorly characterized, and further understanding could identify important antiviral pathways. Type III interferon (IFN-λ) displays potent antiviral activity against respiratory viruses and is being investigated for therapeutic use. However, its role in HMPV infection remains largely unknown. Here, we show that IFN-λ is highly upregulated during HMPV infection in vitro in human and mouse airway epithelial cells and in vivo in mice. We found through several immunological and molecular assays that type II alveolar cells are the primary producers of IFN-λ. Using mouse models, we show that IFN-λ limits lung HMPV replication and restricts virus spread from upper to lower airways but does not contribute to clinical disease. Moreover, we show that IFN-λ signaling is predominantly mediated by CD45- non-immune cells. Mice lacking IFN-λ signaling showed diminished loss of ciliated epithelial cells and decreased recruitment of lung macrophages in early HMPV infection along with higher inflammatory cytokine and interferon-stimulated gene expression, suggesting that IFN-λ may maintain immunomodulatory responses. Administration of IFN-λ for prophylaxis or post-infection treatment in mice reduced viral load without inflammation-driven weight loss or clinical disease. These data offer clinical promise for IFN-λ in HMPV treatment. IMPORTANCE Human metapneumovirus (HMPV) is a common respiratory pathogen and often contributes to severe disease, particularly in children, immunocompromised people, and the elderly. There are currently no licensed HMPV antiviral treatments or vaccines. Here, we report novel roles of host factor IFN-λ in HMPV disease that highlight therapeutic potential. We show that IFN-λ promotes lung antiviral responses by restricting lung HMPV replication and spread from upper to lower airways but does so without inducing lung immunopathology. Our data uncover recruitment of lung macrophages, regulation of ciliated epithelial cells, and modulation of inflammatory cytokines and interferon-stimulated genes as likely contributors. Moreover, we found these roles to be distinct and non-redundant, as they are not observed with knockout of, or treatment with, type I IFN. These data elucidate unique antiviral functions of IFN-λ and suggest IFN-λ augmentation as a promising therapeutic for treating HMPV disease and promoting effective vaccine responses.
Collapse
Affiliation(s)
- Jorna Sojati
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Olivia B. Parks
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sara Walters
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jie Lan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Taylor Eddens
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dequan Lou
- Department of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Li Fan
- Department of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kong Chen
- Department of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tim D. Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute for Infection, Immunity, and Inflammation in Children, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Zannikou M, Fish EN, Platanias LC. Signaling by Type I Interferons in Immune Cells: Disease Consequences. Cancers (Basel) 2024; 16:1600. [PMID: 38672681 PMCID: PMC11049350 DOI: 10.3390/cancers16081600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review addresses interferon (IFN) signaling in immune cells and the tumor microenvironment (TME) and examines how this affects cancer progression. The data reveal that IFNs exert dual roles in cancers, dependent on the TME, exhibiting both anti-tumor activity and promoting cancer progression. We discuss the abnormal IFN signaling induced by cancerous cells that alters immune responses to permit their survival and proliferation.
Collapse
Affiliation(s)
- Markella Zannikou
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada;
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA
| |
Collapse
|
4
|
Zhong C, She G, Zhao Y, Liu Y, Li J, Wei X, Chen Z, Zhao K, Zhao Z, Xu Z, Zhang H, Cao Y, Xue C. Swine acute diarrhea syndrome coronavirus Nsp1 suppresses IFN-λ1 production by degrading IRF1 via ubiquitin-proteasome pathway. Vet Res 2024; 55:45. [PMID: 38589958 PMCID: PMC11003034 DOI: 10.1186/s13567-024-01299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine enteric coronavirus that causes acute watery diarrhea, vomiting, and dehydration in newborn piglets. The type III interferon (IFN-λ) response serves as the primary defense against viruses that replicate in intestinal epithelial cells. However, there is currently no information available on how SADS-CoV modulates the production of IFN-λ. In this study, we utilized IPI-FX cells (a cell line of porcine ileum epithelium) as an in vitro model to investigate the potential immune evasion strategies employed by SADS-CoV against the IFN-λ response. Our results showed that SADS-CoV infection suppressed the production of IFN-λ1 induced by poly(I:C). Through screening SADS-CoV-encoded proteins, nsp1, nsp5, nsp10, nsp12, nsp16, E, S1, and S2 were identified as antagonists of IFN-λ1 production. Specifically, SADS-CoV nsp1 impeded the activation of the IFN-λ1 promoter mediated by MAVS, TBK1, IKKε, and IRF1. Both SADS-CoV and nsp1 obstructed poly(I:C)-induced nuclear translocation of IRF1. Moreover, SADS-CoV nsp1 degraded IRF1 via the ubiquitin-mediated proteasome pathway without interacting with it. Overall, our study provides the first evidence that SADS-CoV inhibits the type III IFN response, shedding light on the molecular mechanisms employed by SADS-CoV to evade the host immune response.
Collapse
Affiliation(s)
- Chunhui Zhong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Gaoli She
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yukun Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yufang Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jingmin Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiaona Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zexin Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Keyu Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhiqing Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
5
|
Cao L, Qian W, Li W, Ma Z, Xie S. Type III interferon exerts thymic stromal lymphopoietin in mediating adaptive antiviral immune response. Front Immunol 2023; 14:1250541. [PMID: 37809098 PMCID: PMC10556530 DOI: 10.3389/fimmu.2023.1250541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Previously, it was believed that type III interferon (IFN-III) has functions similar to those of type I interferon (IFN-I). However, recently, emerging findings have increasingly indicated the non-redundant role of IFN-III in innate antiviral immune responses. Still, the regulatory activity of IFN-III in adaptive immune response has not been clearly reported yet due to the low expression of IFN-III receptors on most immune cells. In the present study, we reviewed the adjuvant, antiviral, antitumor, and disease-moderating activities of IFN-III in adaptive immunity; moreover, we further elucidated the mechanisms of IFN-III in mediating the adaptive antiviral immune response in a thymic stromal lymphopoietin (TSLP)-dependent manner, a pleiotropic cytokine involved in mucosal adaptive immunity. Research has shown that IFN-III can enhance the antiviral immunogenic response in mouse species by activating germinal center B (GC B) cell responses after stimulating TSLP production by microfold (M) cells, while in human species, TSLP exerts OX40L for regulating GC B cell immune responses, which may also depend on IFN-III. In conclusion, our review highlights the unique role of the IFN-III/TSLP axis in mediating host adaptive immunity, which is mechanically different from IFN-I. Therefore, the IFN-III/TSLP axis may provide novel insights for clinical immunotherapy.
Collapse
Affiliation(s)
- Luhong Cao
- Department of Otolaryngology Head and Neck Surgery Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weiwei Qian
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, Sichuan, China
| | - Wanlin Li
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Zhiyue Ma
- Department of Otolaryngology Head and Neck Surgery Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shenglong Xie
- Department of Thoracic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
An H, Liu Y, Shu M, Chen J. Interleukin-22 facilitates the interferon-λ-mediated production of tripartite motif protein 25 to inhibit replication of duck viral hepatitis A virus type 1. Vet Res 2023; 54:53. [PMID: 37391858 PMCID: PMC10314556 DOI: 10.1186/s13567-023-01188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/31/2023] [Indexed: 07/02/2023] Open
Abstract
The innate immune system provides a defense against invading pathogens by inducing various interferon (IFN)-stimulated genes (ISGs). We recently reported that tripartite motif protein 25 (TRIM25), an important ISG, was highly upregulated in duck embryo hepatocyte cells (DEFs) after infection with duck viral hepatitis A virus type 1 (DHAV-1). However, the mechanism of upregulation of TRIM25 remains unknown. Here we reported that interleukin-22 (IL-22), whose expression was highly facilitated in DEFs and various organs of 1-day-old ducklings after DHAV-1 infection, highly enhanced the IFN-λ-induced production of TRIM25. The treatment with IL-22 neutralizing antibody or the overexpression of IL-22 highly suppressed or facilitated TRIM25 expression, respectively. The phosphorylation of signal transducer and activator of transcription 3 (STAT3) was crucial for the process of IL-22 enhancing IFN-λ-induced TRIM25 production, which was suppressed by WP1066, a novel inhibitor of STAT3 phosphorylation. The overexpression of TRIM25 in DEFs resulted in a high production of IFNs and reduced DHAV-1 replication, whereas the attenuated expression of IFNs and facilitated replication of DHAV-1 were observed in the RNAi group, implying that TRIM25 defended the organism against DHAV-1 propagation by inducing the production of IFNs. In summary, we reported that IL-22 activated the phosphorylation of STAT3 to enhance the IFN-λ-mediated TRIM25 expression and provide a defense against DHAV-1 by inducing IFN production.
Collapse
Affiliation(s)
- Hao An
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Yumei Liu
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Ming Shu
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Junhao Chen
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China.
| |
Collapse
|
7
|
Xu J, Gao Q, Zhang W, Zheng J, Chen R, Han X, Mao J, Shan Y, Shi F, He F, Fang W, Li X. Porcine Epidemic Diarrhea Virus Antagonizes Host IFN-λ-Mediated Responses by Tilting Transcription Factor STAT1 toward Acetylation over Phosphorylation To Block Its Activation. mBio 2023:e0340822. [PMID: 37052505 DOI: 10.1128/mbio.03408-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the main etiologic agent causing acute swine epidemic diarrhea, leading to severe economic losses to the pig industry. PEDV has evolved to deploy complicated antagonistic strategies to escape from host antiviral innate immunity. Our previous study demonstrated that PEDV downregulates histone deacetylase 1 (HDAC1) expression by binding viral nucleocapsid (N) protein to the transcription factor Sp1, inducing enhanced protein acetylation. We hypothesized that PEDV inhibition of HDAC1 expression would enhance acetylation of the molecules critical in innate immune signaling. Signal transducer and activator of transcription 1 (STAT1) is a crucial transcription factor regulating expression of interferon (IFN)-stimulated genes (ISGs) and anti-PEDV immune responses, as shown by overexpression, chemical inhibition, and gene knockdown in IPEC-J2 cells. We further show that PEDV infection and its N protein overexpression, although they upregulated STAT1 transcription level, could significantly block poly(I·C) and IFN-λ3-induced STAT1 phosphorylation and nuclear localization. Western blotting revealed that PEDV and its N protein promote STAT1 acetylation via downregulation of HDAC1. Enhanced STAT1 acetylation due to HDAC1 inhibition by PEDV or MS-275 (an HDAC1 inhibitor) impaired STAT1 phosphorylation, indicating that STAT1 acetylation negatively regulated its activation. These results, together with our recent report on PEDV N-mediated inhibition of Sp1, clearly indicate that PEDV manipulates the Sp1-HDAC1-STAT1 signaling axis to inhibit transcription of OAS1 and ISG15 in favor of its replication. This novel immune evasion mechanism is realized by suppression of STAT1 activation through preferential modulation of STAT1 acetylation over phosphorylation as a result of HDAC1 expression inhibition. IMPORTANCE PEDV has developed sophisticated evasion mechanisms to escape host IFN signaling via its structural and nonstructural proteins. STAT1 is one of the key transcription factors in regulating expression of ISGs. We found that PEDV and its N protein inhibit STAT1 phosphorylation and nuclear localization via inducing STAT1 acetylation as a result of HDAC1 downregulation, which, in turn, dampens the host IFN signaling activation. Our study demonstrates a novel mechanism that PEDV evades host antiviral innate immunity through manipulating the reciprocal relationship of STAT1 acetylation and phosphorylation. This provides new insights into the pathogenetic mechanisms of PEDV and even other coronaviruses.
Collapse
Affiliation(s)
- Jidong Xu
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Veterinary Medicine, MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qin Gao
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiwu Zhang
- Hangzhou Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jingyou Zheng
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rong Chen
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Han
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junyong Mao
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, China
| | - Ying Shan
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Veterinary Medicine, MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Veterinary Medicine, MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fang He
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Veterinary Medicine, MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weihuan Fang
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Veterinary Medicine, MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoliang Li
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Veterinary Medicine, MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou, Zhejiang, China
- Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, China
| |
Collapse
|
8
|
Pan YY, Wang LC, Yang F, Yu M. Interferon-lambda: New role in intestinal symptoms of COVID-19. World J Gastroenterol 2023; 29:1942-1954. [PMID: 37155525 PMCID: PMC10122791 DOI: 10.3748/wjg.v29.i13.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
The tremendous public health and economic impact of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a huge challenge globally. There is increasing evidence that SARS-CoV-2 induces intestinal infections. Type III interferon (IFN-λ) has an antiviral role in intestinal infection, with focused, long-lasting, and non-inflammatory characteristics. This review presents a summary of the structure of SARS-CoV-2, including its invasion and immune escape mechanisms. Emphasis was placed on the gastrointestinal impact of SARS-CoV-2, including changes to the intestinal microbiome, activation of immune cells, and inflammatory responses. We also describe the comprehensive functions of IFN-λ in anti-enteric SARS-CoV-2 infection, and discuss the potential application of IFN-λ as a therapeutic agent for COVID-19 with intestinal symptoms.
Collapse
Affiliation(s)
- Yi-Yang Pan
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Liu-Can Wang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Feng Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Min Yu
- Department of General Surgery, Chongqing General Hospital, Chongqing 400013, China
| |
Collapse
|
9
|
He W, Peng Q, Li J, Huang J, Cai X, Li S, Zhang B, Xiao L, Gao J, Wang C, Qian J, Gu L, Wang R, Tang X, Li K, Song X, Zhou J, Zhu M, Li B. Attenuation of a Highly Pathogenic Porcine Deltacoronavirus Strain CZ2020 by a Serial Passage In Vitro. Transbound Emerg Dis 2023; 2023:1-12. [DOI: 10.1155/2023/2830485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine coronavirus that causes severe diarrhea to pigs of all ages, especially the suckling piglets under one-week-old. We previously isolated a highly pathogenic PDCoV strain, CZ2020, from a diarrheal piglet and have passaged it for over 100 passages. The adaptability of the CZ2020 increased gradually in vitro as the passage increased. Amino acid mutations were observed in pp1a, pp1ab, spike, envelop, and membrane proteins, and the spike protein accounts for 66.7% of all amino acid mutations. Then, the high passage strains, CZ2020-F80 and CZ2020-F100, were selected for evaluation of the pathogenicity in three-day-old piglets to examine whether these amino acid changes affected their virulence. At 2 days postchallenge (DPC), 2/5 piglets started to show typical diarrhea, and at 4 DPC, severe diarrhea was observed in the CZ2020-challenged piglets. Viral RNA could be detected at 1 DPC in rectal swabs and reached its highest at 4 DPC in the CZ2020-challenged group. CZ2020-F80- and CZ2020-F100-challenged groups have one piglet exhibiting mild diarrhea at 4 and 6 DPC, respectively. Compared with the CZ2020-challenged group, the piglets in CZ2020-F80- and F100-challenged groups had lower viral loads in rectal swabs, intestines, and other organs. No obvious histopathological lesions were observed in the intestines of CZ2020-F80- and F100-challenged piglets. Virulent PDCoV infection could also induce strong interferons and proinflammatory cytokines in vitro and in vivo. These data indicate that the strains, CZ2020-F80 and CZ2020-F100, were significantly attenuated via serial passaging in vitro and have the potential for developing attenuated vaccine candidates.
Collapse
Affiliation(s)
- Wenlong He
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Qi Peng
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330045, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jin Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Xuhang Cai
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Siyuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Baotai Zhang
- College of Veterinary Medicine, Guizhou University, Guiyang 550025, China
| | - Li Xiao
- College of Veterinary Medicine, Guizhou University, Guiyang 550025, China
| | - Jie Gao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Chuanhong Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Jiali Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Laqiang Gu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Rui Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Xuechao Tang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Kemang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Xu Song
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Mingjun Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Bin Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Accapezzato D, Caccavale R, Paroli MP, Gioia C, Nguyen BL, Spadea L, Paroli M. Advances in the Pathogenesis and Treatment of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:6578. [PMID: 37047548 PMCID: PMC10095030 DOI: 10.3390/ijms24076578] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a genetically predisposed, female-predominant disease, characterized by multiple organ damage, that in its most severe forms can be life-threatening. The pathogenesis of SLE is complex and involves cells of both innate and adaptive immunity. The distinguishing feature of SLE is the production of autoantibodies, with the formation of immune complexes that precipitate at the vascular level, causing organ damage. Although progress in understanding the pathogenesis of SLE has been slower than in other rheumatic diseases, new knowledge has recently led to the development of effective targeted therapies, that hold out hope for personalized therapy. However, the new drugs available to date are still an adjunct to conventional therapy, which is known to be toxic in the short and long term. The purpose of this review is to summarize recent advances in understanding the pathogenesis of the disease and discuss the results obtained from the use of new targeted drugs, with a look at future therapies that may be used in the absence of the current standard of care or may even cure this serious systemic autoimmune disease.
Collapse
Affiliation(s)
- Daniele Accapezzato
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Rosalba Caccavale
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Pia Paroli
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Gioia
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Bich Lien Nguyen
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Spadea
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
| | - Marino Paroli
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
11
|
Santa Cruz A, Mendes-Frias A, Azarias-da-Silva M, André S, Oliveira AI, Pires O, Mendes M, Oliveira B, Braga M, Lopes JR, Domingues R, Costa R, Silva LN, Matos AR, Ângela C, Costa P, Carvalho A, Capela C, Pedrosa J, Castro AG, Estaquier J, Silvestre R. Post-acute sequelae of COVID-19 is characterized by diminished peripheral CD8 +β7 integrin + T cells and anti-SARS-CoV-2 IgA response. Nat Commun 2023; 14:1772. [PMID: 36997530 PMCID: PMC10061413 DOI: 10.1038/s41467-023-37368-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Several millions of individuals are estimated to develop post-acute sequelae SARS-CoV-2 condition (PASC) that persists for months after infection. Here we evaluate the immune response in convalescent individuals with PASC compared to convalescent asymptomatic and uninfected participants, six months following their COVID-19 diagnosis. Both convalescent asymptomatic and PASC cases are characterised by higher CD8+ T cell percentages, however, the proportion of blood CD8+ T cells expressing the mucosal homing receptor β7 is low in PASC patients. CD8 T cells show increased expression of PD-1, perforin and granzyme B in PASC, and the plasma levels of type I and type III (mucosal) interferons are elevated. The humoral response is characterized by higher levels of IgA against the N and S viral proteins, particularly in those individuals who had severe acute disease. Our results also show that consistently elevated levels of IL-6, IL-8/CXCL8 and IP-10/CXCL10 during acute disease increase the risk to develop PASC. In summary, our study indicates that PASC is defined by persisting immunological dysfunction as late as six months following SARS-CoV-2 infection, including alterations in mucosal immune parameters, redistribution of mucosal CD8+β7Integrin+ T cells and IgA, indicative of potential viral persistence and mucosal involvement in the etiopathology of PASC.
Collapse
Affiliation(s)
- André Santa Cruz
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal.
- Clinical Academic Center-Braga, Braga, Portugal.
| | - Ana Mendes-Frias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Sónia André
- INSERM-U1124, Université Paris Cité, Paris, France
| | | | - Olga Pires
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Marta Mendes
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Bárbara Oliveira
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Marta Braga
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Joana Rita Lopes
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Rui Domingues
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Ricardo Costa
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Luís Neves Silva
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Ana Rita Matos
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Cristina Ângela
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Patrício Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandre Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
- Clinical Academic Center-Braga, Braga, Portugal
| | - Carlos Capela
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
- Clinical Academic Center-Braga, Braga, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António Gil Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jérôme Estaquier
- INSERM-U1124, Université Paris Cité, Paris, France.
- CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada.
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
12
|
Zhang B, Liu JB, Zhou L, Wang X, Khan S, Hu WH, Ho WZ. Cytosolic DNA sensor activation inhibits HIV infection of macrophages. J Med Virol 2023; 95:e28253. [PMID: 36286245 PMCID: PMC9839519 DOI: 10.1002/jmv.28253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 01/17/2023]
Abstract
Cytosolic recognition of microbial DNA in macrophages results in the activation of the interferon (IFN)-dependent antiviral innate immunity. Here, we examined whether activating DNA sensors in peripheral blood monocyte-derived macrophages (MDMs) can inhibit human immunodeficiency virus (HIV). We observed that the stimulation of MDMs with poly(dA:dT) or poly(dG:dC) (synthetic ligands for the DNA sensors) inhibited HIV infection and replication. MDMs treated with poly(dA:dT) or poly(dG:dC) expressed higher levels of both type I and type III IFNs than untreated cells. Activation of the DNA sensors in MDMs also induced the expression of the multiple intracellular anti-HIV factors, including IFN-stimulated genes (ISGs: ISG15, ISG56, Viperin, OAS2, GBP5, MxB, and Tetherin) and the HIV restriction microRNAs (miR-29c, miR-138, miR-146a, miR-155, miR-198, and miR-223). In addition, the DNA sensor activation of MDM upregulated the expression of the CC chemokines (RANTES, MIP-1α, MIP-1β), the ligands for HIV entry coreceptor CCR5. These observations indicate that the cytosolic DNA sensors have a protective role in the macrophage intracellular immunity against HIV and that targeting the DNA sensors has therapeutic potential for immune activation-based anti-HIV treatment.
Collapse
Affiliation(s)
| | | | - Lina Zhou
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shazheb Khan
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wen-Hui Hu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Mochochoko BM, Pohl CH, O’Neill HG. Candida albicans-enteric viral interactions-The prostaglandin E 2 connection and host immune responses. iScience 2022; 26:105870. [PMID: 36647379 PMCID: PMC9839968 DOI: 10.1016/j.isci.2022.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human microbiome comprises trillions of microorganisms residing within different mucosal cavities and across the body surface. The gut microbiota modulates host susceptibility to viral infections in several ways, and microbial interkingdom interactions increase viral infectivity within the gut. Candida albicans, a frequently encountered fungal species in the gut, produces highly structured biofilms and eicosanoids such as prostaglandin E2 (PGE2), which aid in viral protection and replication. These biofilms encompass viruses and provide a shield from antiviral drugs or the immune system. PGE2 is a key modulator of active inflammation with the potential to regulate interferon signaling upon microbial invasion or viral infections. In this review, we raise the perspective of gut interkingdom interactions involving C. albicans and enteric viruses, with a special focus on biofilms, PGE2, and viral replication. Ultimately, we discuss the possible implications of C. albicans-enteric virus associations on host immune responses, particularly the interferon signaling pathway.
Collapse
Affiliation(s)
- Bonang M. Mochochoko
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa
| | - Carolina H. Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| |
Collapse
|
14
|
Yin GQ, Chen KP, Gu XC. Heterogeneity of immune control in chronic hepatitis B virus infection: Clinical implications on immunity with interferon-α treatment and retreatment. World J Gastroenterol 2022; 28:5784-5800. [PMID: 36353205 PMCID: PMC9639659 DOI: 10.3748/wjg.v28.i40.5784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health issue. Interferon-α (IFN-α) treatment has been used to treat hepatitis B for over 20 years, but fewer than 5% of Asians receiving IFN-α treatment achieve functional cure. Thus, IFN-α retreatment has been introduced to enhance antiviral function. In recent years, immune-related studies have found that the complex interactions between immune cells and cytokines could modulate immune response networks, in-cluding both innate and adaptive immunity, triggering immune responses that control HBV replication. However, heterogeneity of the immune system to control HBV infection, particularly HBV-specific CD8+ T cell heterogeneity, has consequ-ential effects on T cell-based immunotherapy for treating HBV infection. Altogether, the host’s genetic variants, negative-feedback regulators and HBV components affecting the immune system's ability to control HBV. In this study, we reviewed the literature on potential immune mechanisms affecting the immune control of HBV and the clinical effects of IFN-α treatment and retreatment.
Collapse
Affiliation(s)
- Guo-Qing Yin
- Center of Hepatology, Zhong-Da Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ke-Ping Chen
- Center of Hepatology, Zhong-Da Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Xiao-Chun Gu
- Center of Hepatology, Zhong-Da Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
15
|
Chen P, Zhu J, Yu J, Liu R, Lao M, Yu L, Gao F, Jiang Y, Liu C, Tong W, Liu H, Tong G, Zhou Y. Porcine epidemic diarrhea virus strain FJzz1 infection induces type I/III IFNs production through RLRs and TLRs-mediated signaling. Front Immunol 2022; 13:984448. [PMID: 35958569 PMCID: PMC9357978 DOI: 10.3389/fimmu.2022.984448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Interferons (IFNs) including type I/III IFNs are the major components of the host innate immune response against porcine epidemic diarrhea virus (PEDV) infection, and several viral proteins have been identified to antagonize type I/III IFNs productions through diverse strategies. However, the modulation of PEDV infection upon the activation of the host’s innate immune response has not been fully characterized. In this study, we observed that various IFN-stimulated genes (ISGs) were upregulated significantly in a time- and dose-dependent manner in LLC-PK1 cells infected with the PEDV G2 strain FJzz1. The transcriptions of IRF9 and STAT1 were increased markedly in the late stage of FJzz1 infection and the promotion of the phosphorylation and nuclear translocation of STAT1, implicating the activation of the JAK-STAT signaling pathway during FJzz1 infection. In addition, abundant type I/III IFNs were produced after FJzz1 infection. However, type I/III IFNs and ISGs decreased greatly in FJzz1-infected LLC-PK1 cells following the silencing of the RIG-I-like receptors (RLRs), including RIG-I and MDA5, and the Toll-like receptors (TLRs) adaptors, MyD88 and TRIF. Altogether, FJzz1 infection induces the production of type-I/III IFNs in LLC-PK1 cells, in which RLRs and TLRs signaling pathways are involved, followed by the activation of the JAK-STAT signaling cascade, triggering the production of numerous ISGs to exert antiviral effects of innate immunity.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Junrui Zhu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jiarong Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ruilin Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Mengqin Lao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Changlong Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Guangzhi Tong, ; Yanjun Zhou,
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Guangzhi Tong, ; Yanjun Zhou,
| |
Collapse
|
16
|
Gao C, Koko MYF, Ding M, Hong W, Li J, Dong N, Hui M. Intestinal alkaline phosphatase (IAP, IAP Enhancer) attenuates intestinal inflammation and alleviates insulin resistance. Front Immunol 2022; 13:927272. [PMID: 35958560 PMCID: PMC9359302 DOI: 10.3389/fimmu.2022.927272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, we investigated the effects of intestinal alkaline phosphatase (IAP) in controlled intestinal inflammation and alleviated associated insulin resistance (IR). We also explored the possible underlying molecular mechanisms, showed the preventive effect of IAP on IR in vivo, and verified the dephosphorylation of IAP for the inhibition of intestinal inflammation in vitro. Furthermore, we examined the preventive role of IAP in IR induced by a high-fat diet in mice. We found that an IAP + IAP enhancer significantly ameliorated blood glucose, insulin, low-density lipoprotein, gut barrier function, inflammatory markers, and lipopolysaccharide (LPS) in serum. IAP could dephosphorylate LPS and nucleoside triphosphate in a pH-dependent manner in vitro. Firstly, LPS is inactivated by IAP and IAP reduces LPS-induced inflammation. Secondly, adenosine, a dephosphorylated product of adenosine triphosphate, elicited anti-inflammatory effects by binding to the A2A receptor, which inhibits NF-κB, TNF, and PI3K-Akt signalling pathways. Hence, IAP can be used as a natural anti-inflammatory agent to reduce intestinal inflammation-induced IR.
Collapse
Affiliation(s)
- Chenzhe Gao
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | | | | | - Weichen Hong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jianping Li
- College of Food, Northeast Agricultural University, Harbin, China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
- *Correspondence: Na Dong, ; Mizhou Hui,
| | - Mizhou Hui
- College of Food, Northeast Agricultural University, Harbin, China
- *Correspondence: Na Dong, ; Mizhou Hui,
| |
Collapse
|
17
|
The role of IFNL4 in liver inflammation and progression of fibrosis. Genes Immun 2022; 23:111-117. [PMID: 35585257 DOI: 10.1038/s41435-022-00173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022]
Abstract
The discovery that genetic variation within the interferon lambda locus has a profound effect on the outcome of hepatitis C virus (HCV) treatment and spontaneous clearance of HCV is one of the great triumphs of genomic medicine. Subsequently, the IFNL4 gene was discovered and proposed as the causal gene underlying this association. However, there has been a lively debate within the field concerning the causality, which has been further complicated by a change in naming. This review summarizes the genetic data available for the IFNL3/IFNl4 loci and provides an in-depth discussion of causality. We also discuss a new series of interesting data suggesting that the genetic variation at the IFNL4 loci influences the evolution of the HCV virus and the implication this relationship between our genetic makeup and virus evolution has upon our understanding of the IFNL4 system. Finally, new data support an influence of the IFNL4 gene upon liver inflammation and fibrosis that is independent of etiology, thereby linking the IFNL4 gene to some of the major liver diseases of today.
Collapse
|
18
|
Mechanisms involved in controlling RNA virus-induced intestinal inflammation. Cell Mol Life Sci 2022; 79:313. [PMID: 35604464 PMCID: PMC9125963 DOI: 10.1007/s00018-022-04332-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022]
Abstract
Gastroenteritis is inflammation of the lining of stomach and intestines and causes significant morbidity and mortality worldwide. Many viruses, especially RNA viruses are the most common cause of enteritis. Innate immunity is the first line of host defense against enteric RNA viruses and virus-induced intestinal inflammation. The first layer of defense against enteric RNA viruses in the intestinal tract is intestinal epithelial cells (IECs), dendritic cells and macrophages under the intestinal epithelium. These innate immune cells express pathogen-recognition receptors (PRRs) for recognizing enteric RNA viruses through sensing viral pathogen-associated molecular patterns (PAMPs). As a result of this recognition type I interferon (IFN), type III IFN and inflammasome activation occurs, which function cooperatively to clear infection and reduce viral-induced intestinal inflammation. In this review, we summarize recent findings about mechanisms involved in enteric RNA virus-induced intestinal inflammation. We will provide an overview of the enteric RNA viruses, their RNA sensing mechanisms by host PRRs, and signaling pathways triggered by host PRRs, which shape the intestinal immune response to maintain intestinal homeostasis.
Collapse
|
19
|
Wallace JW, Constant DA, Nice TJ. Interferon Lambda in the Pathogenesis of Inflammatory Bowel Diseases. Front Immunol 2021; 12:767505. [PMID: 34712246 PMCID: PMC8547615 DOI: 10.3389/fimmu.2021.767505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Interferon λ (IFN-λ) is critical for host viral defense at mucosal surfaces and stimulates immunomodulatory signals, acting on epithelial cells and few other cell types due to restricted IFN-λ receptor expression. Epithelial cells of the intestine play a critical role in the pathogenesis of Inflammatory Bowel Disease (IBD), and the related type II interferons (IFN-γ) have been extensively studied in the context of IBD. However, a role for IFN-λ in IBD onset and progression remains unclear. Recent investigations of IFN-λ in IBD are beginning to uncover complex and sometimes opposing actions, including pro-healing roles in colonic epithelial tissues and potentiation of epithelial cell death in the small intestine. Additionally, IFN-λ has been shown to act through non-epithelial cell types, such as neutrophils, to protect against excessive inflammation. In most cases IFN-λ demonstrates an ability to coordinate the host antiviral response without inducing collateral hyperinflammation, suggesting that IFN-λ signaling pathways could be a therapeutic target in IBD. This mini review discusses existing data on the role of IFN-λ in the pathogenesis of inflammatory bowel disease, current gaps in the research, and therapeutic potential of modulating the IFN-λ-stimulated response.
Collapse
Affiliation(s)
- Jonathan W Wallace
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - David A Constant
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
20
|
Cheng Z, Lin P, Cheng N. HBV/HIV Coinfection: Impact on the Development and Clinical Treatment of Liver Diseases. Front Med (Lausanne) 2021; 8:713981. [PMID: 34676223 PMCID: PMC8524435 DOI: 10.3389/fmed.2021.713981] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a common contributor to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Approximately 10% of people with human immunodeficiency virus (HIV) also have chronic HBV co-infection, owing to shared transmission routes. HIV/HBV coinfection accelerates the progression of chronic HBV to cirrhosis, end-stage liver disease, or hepatocellular carcinoma compared to chronic HBV mono-infection. HBV/HIV coinfection alters the natural history of hepatitis B and renders the antiviral treatment more complex. In this report, we conducted a critical review on the epidemiology, natural history, and pathogenesis of liver diseases related to HBV/HIV coinfection. We summarized the novel therapeutic options for these coinfected patients.
Collapse
Affiliation(s)
- Zhimeng Cheng
- Department of Bile Duct Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Panpan Lin
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Nansheng Cheng
- Department of Bile Duct Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Ramos TI, Villacis-Aguirre CA, Santiago Vispo N, Santiago Padilla L, Pedroso Santana S, Parra NC, Alonso JRT. Forms and Methods for Interferon's Encapsulation. Pharmaceutics 2021; 13:1533. [PMID: 34683824 PMCID: PMC8538586 DOI: 10.3390/pharmaceutics13101533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Interferons (IFNs) are cytokines involved in the immune response that act on innate and adaptive immunity. These proteins are natural cell-signaling glycoproteins expressed in response to viral infections, tumors, and biological inducers and constitute the first line of defense of vertebrates against infectious agents. They have been marketed for more than 30 years with considerable impact on the global therapeutic protein market thanks to their diversity in terms of biological activities. They have been used as single agents or with combination treatment regimens, demonstrating promising clinical results, resulting in 22 different formulations approved by regulatory agencies. The 163 clinical trials with currently active IFNs reinforce their importance as therapeutics for human health. However, their application has presented difficulties due to the molecules' size, sensitivity to degradation, and rapid elimination from the bloodstream. For some years now, work has been underway to obtain new drug delivery systems to provide adequate therapeutic concentrations for these cytokines, decrease their toxicity and prolong their half-life in the circulation. Although different research groups have presented various formulations that encapsulate IFNs, to date, there is no formulation approved for use in humans. The current review exhibits an updated summary of all encapsulation forms presented in the scientific literature for IFN-α, IFN-ß, and IFN-γ, from the year 1996 to the year 2021, considering parameters such as: encapsulating matrix, route of administration, target, advantages, and disadvantages of each formulation.
Collapse
Affiliation(s)
- Thelvia I. Ramos
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160-C, Chile; (T.I.R.); (C.A.V.-A.); (S.P.S.); (N.C.P.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador
| | - Carlos A. Villacis-Aguirre
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160-C, Chile; (T.I.R.); (C.A.V.-A.); (S.P.S.); (N.C.P.)
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador;
| | | | - Seidy Pedroso Santana
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160-C, Chile; (T.I.R.); (C.A.V.-A.); (S.P.S.); (N.C.P.)
| | - Natalie C. Parra
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160-C, Chile; (T.I.R.); (C.A.V.-A.); (S.P.S.); (N.C.P.)
| | - Jorge Roberto Toledo Alonso
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160-C, Chile; (T.I.R.); (C.A.V.-A.); (S.P.S.); (N.C.P.)
| |
Collapse
|
22
|
Zhang C, Li W, Lei X, Xie Z, Qi L, Wang H, Xiao X, Xiao J, Zheng Y, Dong C, Zheng X, Chen S, Chen J, Sun B, Qin J, Zhai Q, Li J, Wei B, Wang J, Wang H. Targeting lysophospholipid acid receptor 1 and ROCK kinases promotes antiviral innate immunity. SCIENCE ADVANCES 2021; 7:eabb5933. [PMID: 34533996 PMCID: PMC8448453 DOI: 10.1126/sciadv.abb5933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Growing evidence indicates the vital role of lipid metabolites in innate immunity. The lipid lysophosphatidic acid (LPA) concentrations are enhanced in patients upon HCV or SARS-CoV-2 infection, but the function of LPA and its receptors in innate immunity is largely unknown. Here, we found that viral infection promoted the G protein–coupled receptor LPA1 expression, and LPA restrained type I/III interferon production through LPA1. Mechanistically, LPA1 signaling activated ROCK1/2, which phosphorylated IRF3 Ser97 to suppress IRF3 activation. Targeting LPA1 or ROCK in macrophages, fibroblasts, epithelial cells, and LPA1 conditional KO mice promoted interferon-induced clearance of multiple viruses. LPA1 was colocalized with the receptor ACE2 in lung and intestine. Together with previous findings that LPA1 and ROCK1/2 promoted vascular leaking or lung fibrosis, we propose that the current available preclinical drugs targeting the LPA1-ROCK module might protect from SARS-CoV-2 or various virus infections in the intestine or lung.
Collapse
Affiliation(s)
- Chi Zhang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Weiyun Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaobo Lei
- National Health Commission of the People’s Republic of China, Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenfei Xie
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Linlin Qi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Wuhan, China
| | - Hui Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xia Xiao
- National Health Commission of the People’s Republic of China, Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuxiao Zheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chen Dong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Zheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiyang Chen
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianfeng Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Qin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Zhai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Wuhan, China
- College of Life Sciences, Shanghai University, Shanghai 200444, China
- Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jianwei Wang
- National Health Commission of the People’s Republic of China, Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongyan Wang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Bio-Research Innovation Center Suzhou, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Suzhou, Jiangsu 215121, China
| |
Collapse
|
23
|
Musella M, Galassi C, Manduca N, Sistigu A. The Yin and Yang of Type I IFNs in Cancer Promotion and Immune Activation. BIOLOGY 2021; 10:856. [PMID: 34571733 PMCID: PMC8467547 DOI: 10.3390/biology10090856] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022]
Abstract
Type I Interferons (IFNs) are key regulators of natural and therapy-induced host defense against viral infection and cancer. Several years of remarkable progress in the field of oncoimmunology have revealed the dual nature of these cytokines. Hence, Type I IFNs may trigger anti-tumoral responses, while leading immune dysfunction and disease progression. This dichotomy relies on the duration and intensity of the transduced signaling, the nature of the unleashed IFN stimulated genes, and the subset of responding cells. Here, we discuss the role of Type I IFNs in the evolving relationship between the host immune system and cancer, as we offer a view of the therapeutic strategies that exploit and require an intact Type I IFN signaling, and the role of these cytokines in inducing adaptive resistance. A deep understanding of the complex, yet highly regulated, network of Type I IFN triggered molecular pathways will help find a timely and immune"logical" way to exploit these cytokines for anticancer therapy.
Collapse
Affiliation(s)
- Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Claudia Galassi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
24
|
Cananzi M, Wohler E, Marzollo A, Colavito D, You J, Jing H, Bresolin S, Gaio P, Martin R, Mescoli C, Bade S, Posey JE, Dalle Carbonare M, Tung W, Jhangiani SN, Bosa L, Zhang Y, Filho JS, Gabelli M, Kellermayer R, Kader HA, Oliva-Hemker M, Perilongo G, Lupski JR, Biffi A, Valle D, Leon A, de Macena Sobreira NL, Su HC, Guerrerio AL. IFIH1 loss-of-function variants contribute to very early-onset inflammatory bowel disease. Hum Genet 2021; 140:1299-1312. [PMID: 34185153 PMCID: PMC8423350 DOI: 10.1007/s00439-021-02300-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Genetic defects of innate immunity impairing intestinal bacterial sensing are linked to the development of Inflammatory Bowel Disease (IBD). Although much evidence supports a role of the intestinal virome in gut homeostasis, most studies focus on intestinal viral composition rather than on host intestinal viral sensitivity. To demonstrate the association between the development of Very Early Onset IBD (VEOIBD) and variants in the IFIH1 gene which encodes MDA5, a key cytosolic sensor for viral nucleic acids. Whole exome sequencing (WES) was performed in two independent cohorts of children with VEOIBD enrolled in Italy (n = 18) and USA (n = 24). Luciferase reporter assays were employed to assess MDA5 activity. An enrichment analysis was performed on IFIH1 comparing 42 VEOIBD probands with 1527 unrelated individuals without gastrointestinal or immunological issues. We identified rare, likely loss-of-function (LoF), IFIH1 variants in eight patients with VEOIBD from a combined cohort of 42 children. One subject, carrying a homozygous truncating variant resulting in complete LoF, experienced neonatal-onset, pan-gastrointestinal, IBD-like enteropathy plus multiple infectious episodes. The remaining seven subjects, affected by VEOIBD without immunodeficiency, were carriers of one LoF variant in IFIH1. Among these, two patients also carried a second hypomorphic variant, with partial function apparent when MDA5 was weakly stimulated. Furthermore, IFIH1 variants were significantly enriched in children with VEOIBD as compared to controls (p = 0.007). Complete and partial MDA5 deficiency is associated with VEOIBD with variable penetrance and expressivity, suggesting a role for impaired intestinal viral sensing in IBD pathogenesis.
Collapse
Affiliation(s)
- Mara Cananzi
- Unit of Pediatric Gastroenterology, Digestive Endoscopy, Hepatology and Care of the Child with Liver Transplantation, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy.
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, Padova, Italy
| | - Davide Colavito
- Research & Innovation (R&I Genetics) Srl, C.so Stati Uniti 4, Padova, Italy
| | - Jing You
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Huie Jing
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Silvia Bresolin
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, Padova, Italy
| | - Paola Gaio
- Unit of Pediatric Gastroenterology, Digestive Endoscopy, Hepatology and Care of the Child with Liver Transplantation, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Renan Martin
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Claudia Mescoli
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University Hospital of Padova, Padova, Italy
| | - Sangeeta Bade
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Wesley Tung
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Luca Bosa
- Unit of Pediatric Gastroenterology, Digestive Endoscopy, Hepatology and Care of the Child with Liver Transplantation, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joselito Sobreira Filho
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Maria Gabelli
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Richard Kellermayer
- Section of Pediatric Gastroenterology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Howard A Kader
- Department of Pediatrics, Division of Pediatric Gastroenterology & Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria Oliva-Hemker
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Giorgio Perilongo
- Unit of Pediatric Gastroenterology, Digestive Endoscopy, Hepatology and Care of the Child with Liver Transplantation, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - David Valle
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Alberta Leon
- Research & Innovation (R&I Genetics) Srl, C.so Stati Uniti 4, Padova, Italy
| | | | - Helen C Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anthony L Guerrerio
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
25
|
Abstract
Skewing of type I interferon (IFN) production and responses is a hallmark of systemic lupus erythematosus (SLE). Genetic and environmental contributions to IFN production lead to aberrant innate and adaptive immune activation even before clinical development of disease. Basic and translational research in this arena continues to identify contributions of IFNs to disease pathogenesis, and several promising therapeutic options for targeting of type I IFNs and their signaling pathways are in development for treatment of SLE patients.
Collapse
Affiliation(s)
- Sirisha Sirobhushanam
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5568 MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA
| | - Stephanie Lazar
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5568 MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5570A MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA; Department of Dermatology, University of Michigan, 5570A MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA.
| |
Collapse
|
26
|
Gryglewski A, Richter P, Szczepanik M. Changes in γδT Cells in Peripheral Blood of Patients with Ulcerative Colitis Exacerbations. Arch Immunol Ther Exp (Warsz) 2021; 69:18. [PMID: 34287711 PMCID: PMC8295081 DOI: 10.1007/s00005-021-00620-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
The role of γδT cells in ulcerative colitis (UC) is well confirmed in experimental animals and demonstrated in many clinical observations. Recent investigations have indicated that UC is associated with several forms of immune imbalance, such as an imbalance between effector T cells and regulatory T cells. However, little is known about the cellular aspect of clinical colitis exacerbations. We observed 140 patients with histologically confirmed UC over the course of 8 years. We investigated the percentage of γδT and αβT cells in peripheral blood of patients and also the expression of various surface markers (CD25, CD54, CD62L). Patients were assembled into stable colitis and exacerbated colitis groups. The percentage of γδT and αβT cells was evaluated by Ortho Cytorone Absolute flow cytometer. In patients with exacerbated colitis we observed a decrease of γδT cells in peripheral blood and an increased ratio of αβT/γδT. Additionally, we found that exacerbation results in a significant increase of percentage of γδTCD25, γδTCD54 and γδTCD62L lymphocytes in peripheral blood when compared to patients with stable colitis. Exacerbation of ulcerative colitis results in a decreased percentage of γδT cells in peripheral blood with increase of CD25, CD54 and CD62L expressing γδT cells. This may represent the effect of cell activation and migration, similar to that observed after the surgical trauma. We hope that this observation may help to predict exacerbations in colitis patients.
Collapse
Affiliation(s)
- Andrzej Gryglewski
- Department of Anatomy and Department of General Surgery, Gastroenterology, Oncology and Transplantology, Jagiellonian University Medical College, Kraków, Poland.
| | - Piotr Richter
- Department of General Surgery, Gastroenterology, Oncology and Transplantology, Jagiellonian University Medical College, Kraków, Poland
| | - Marian Szczepanik
- Department of Medical Biology, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
27
|
Triana S, Stanifer ML, Metz‐Zumaran C, Shahraz M, Mukenhirn M, Kee C, Serger C, Koschny R, Ordoñez‐Rueda D, Paulsen M, Benes V, Boulant S, Alexandrov T. Single-cell transcriptomics reveals immune response of intestinal cell types to viral infection. Mol Syst Biol 2021; 17:e9833. [PMID: 34309190 PMCID: PMC8311733 DOI: 10.15252/msb.20209833] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Human intestinal epithelial cells form a primary barrier protecting us from pathogens, yet only limited knowledge is available about individual contribution of each cell type to mounting an immune response against infection. Here, we developed a framework combining single-cell RNA-Seq and highly multiplex RNA FISH and applied it to human intestinal organoids infected with human astrovirus, a model human enteric virus. We found that interferon controls the infection and that astrovirus infects all major cell types and lineages and induces expression of the cell proliferation marker MKI67. Intriguingly, each intestinal epithelial cell lineage exhibits a unique basal expression of interferon-stimulated genes and, upon astrovirus infection, undergoes an antiviral transcriptional reprogramming by upregulating distinct sets of interferon-stimulated genes. These findings suggest that in the human intestinal epithelium, each cell lineage plays a unique role in resolving virus infection. Our framework is applicable to other organoids and viruses, opening new avenues to unravel roles of individual cell types in viral pathogenesis.
Collapse
Affiliation(s)
- Sergio Triana
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint PhD degree between EMBL and Heidelberg UniversityHeidelbergGermany
| | - Megan L Stanifer
- Department of Infectious Diseases, Molecular VirologyHeidelberg UniversityHeidelbergGermany
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Camila Metz‐Zumaran
- Department of Infectious Diseases, VirologyHeidelberg UniversityHeidelbergGermany
| | - Mohammed Shahraz
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Markus Mukenhirn
- Department of Infectious Diseases, VirologyHeidelberg UniversityHeidelbergGermany
| | - Carmon Kee
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Infectious Diseases, VirologyHeidelberg UniversityHeidelbergGermany
| | - Clara Serger
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Ronald Koschny
- Department of Internal Medicine IVInterdisciplinary Endoscopy CenterUniversity Hospital HeidelbergHeidelbergGermany
| | - Diana Ordoñez‐Rueda
- Flow Cytometry Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Malte Paulsen
- Flow Cytometry Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Vladimir Benes
- Genomics Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Steeve Boulant
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Infectious Diseases, VirologyHeidelberg UniversityHeidelbergGermany
| | - Theodore Alexandrov
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Molecular Medicine Partnership UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
28
|
Schnepf D, Crotta S, Thamamongood T, Stanifer M, Polcik L, Ohnemus A, Vier J, Jakob C, Llorian M, Gad HH, Hartmann R, Strobl B, Kirschnek S, Boulant S, Schwemmle M, Wack A, Staeheli P. Selective Janus kinase inhibition preserves interferon-λ-mediated antiviral responses. Sci Immunol 2021; 6:eabd5318. [PMID: 33990378 PMCID: PMC7610871 DOI: 10.1126/sciimmunol.abd5318] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/23/2020] [Accepted: 04/15/2021] [Indexed: 01/12/2023]
Abstract
Inflammatory diseases are frequently treated with Janus kinase (JAK) inhibitors to diminish cytokine signaling. These treatments can lead to inadvertent immune suppression and may increase the risk of viral infection. Tyrosine kinase 2 (TYK2) is a JAK family member required for efficient type I interferon (IFN-α/β) signaling. We report here that selective TYK2 inhibition preferentially blocked potentially detrimental type I IFN signaling, whereas IFN-λ-mediated responses were largely preserved. In contrast, the clinically used JAK1/2 inhibitor baricitinib was equally potent in blocking IFN-α/β- or IFN-λ-driven responses. Mechanistically, we showed that epithelial cells did not require TYK2 for IFN-λ-mediated signaling or antiviral protection. TYK2 deficiency diminished IFN-α-induced protection against lethal influenza virus infection in mice but did not impair IFN-λ-mediated antiviral protection. Our findings suggest that selective TYK2 inhibitors used in place of broadly acting JAK1/2 inhibitors may represent a superior treatment option for type I interferonopathies to counteract inflammatory responses while preserving antiviral protection mediated by IFN-λ.
Collapse
Affiliation(s)
- Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Stefania Crotta
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | - Thiprampai Thamamongood
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Megan Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Laura Polcik
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Annette Ohnemus
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Juliane Vier
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center University of Freiburg, Freiburg, Germany
| | - Celia Jakob
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Miriam Llorian
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Hans Henrik Gad
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Susanne Kirschnek
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center University of Freiburg, Freiburg, Germany
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | - Peter Staeheli
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
29
|
Ullah H, Sajid M, Yan K, Feng J, He M, Shereen MA, Li Q, Xu T, Hao R, Guo D, Chen Y, Zhou L, Zhou L. Antiviral Activity of Interferon Alpha-Inducible Protein 27 Against Hepatitis B Virus Gene Expression and Replication. Front Microbiol 2021; 12:656353. [PMID: 33868214 PMCID: PMC8044325 DOI: 10.3389/fmicb.2021.656353] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the availability of effective vaccines, hepatitis B virus (HBV) is still a major health issue, and approximately 350 million people have been chronically infected with HBV throughout the world. Interferons (IFNs) are the key molecules in the innate immune response that restrict several kinds of viral infections via the induction of hundreds of IFN-stimulated genes (ISGs). The objective of this study was to confirm if interferon alpha-inducible protein 27 (IFI27) as an ISG could inhibit HBV gene expression and DNA replication both in cell culture and in a mouse model. In human hepatoma cells, IFI27 was highly induced by the stimulation of IFN-alpha (IFN-α), and it potentiated the anti-HBV activity. The overexpression of IFI27 inhibited, while its silencing enhanced the HBV replication in HepG2 cell. However, the knocking out of IFI27 in HepG2 cells robustly increases the formation of viral DNA, RNA, and proteins. Detailed mechanistic analysis of the HBV genome showed that a sequence [nucleotide (nt) 1715-1815] of the EnhII/Cp promoter was solely responsible for viral inhibition. Similarly, the hydrodynamic injection of IFI27 expression constructs along with the HBV genome into mice resulted in a significant reduction in viral gene expression and DNA replication. In summary, our studies suggested that IFI27 contributed a vital role in HBV gene expression and replication and IFI27 may be a potential antiviral agent for the treatment of HBV.
Collapse
Affiliation(s)
- Hafiz Ullah
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Sajid
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kun Yan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Miao He
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
- MOE Key Laboratory of Tropical Disease Control, The Infection and Immunity Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiaohong Li
- Animal Biosafety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan, China
| | - Tianmo Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ruidong Hao
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Deyin Guo
- MOE Key Laboratory of Tropical Disease Control, The Infection and Immunity Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Limin Zhou
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Zhang MQ, Zhao Q, Zhang JP. A new transcription factor ATG10S activates IFNL2 transcription by binding at an IRF1 site in HepG2 cells. Autophagy 2020; 16:2167-2179. [PMID: 31996071 PMCID: PMC7751675 DOI: 10.1080/15548627.2020.1719681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 10/25/2022] Open
Abstract
IFNL2 is a potent antiviral interferon, but the regulation of its gene expression is not fully clear. Here, we report the regulation of ATG10S for IFNL2 transcription. Through sequential deletion of the IFNL2 promoter sequence, we found LP1-1, a fragment of the promoter responding to ATG10S activity. Subcellular localization and DNA immunoprecipitation assays showed ATG10S translocating into the nucleus and binding to LP1-1. Online prediction for transcription factor binding sites showed an IRF1 targeting locus in LP1-1. Luciferase assays, RT-PCR, and western blot analysis revealed a core motif (CAAGAC) existing in LP1-1, which determined ATG10S and IRF1 activity; individual nucleotide substitution showed that the functional nucleotides of ATG10S targeting were C1, A3, and C6, and the ones associated with IRF1 were A3 and G4 within the core motif. Co-immunoprecipitation assays revealed ATG10S combination with KPNA1/importin α, KPNB1/importin β, and IRF1. The knockdown of endogenous IRF1 increased ATG10S activity on IFNL2 transcription. These results indicate that ATG10S as a transcription factor competes with IRF1 for the same binding site to promote IFNL2 gene transcription. Abbreviations: ATG10: autophagy related 10; ATG10S: the shorter isoform of autophagy related 10; BD: binding domain; CM: core motif; co-IP: co-immunoprecipitation; GFP: green fluorescent protein; HCV: hepatitis C virus; IF: immunofluorescence; IFN: interferon; IRF: interferon regulatory factor; LP: lambda promoter; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; RLU: relative light unit; SQSTM1: sequestosome 1.
Collapse
Affiliation(s)
- Miao-Qing Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Postdoctoral Scientific Research Workstation, China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, China
- Postdoctoral Mobile Research Station, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Qiong Zhao
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Pu Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Rathnayake AD, Kim Y, Dampalla CS, Nguyen HN, Jesri ARM, Kashipathy MM, Lushington GH, Battaile KP, Lovell S, Chang KO, Groutas WC. Structure-Guided Optimization of Dipeptidyl Inhibitors of Norovirus 3CL Protease. J Med Chem 2020; 63:11945-11963. [PMID: 32945669 DOI: 10.1021/acs.jmedchem.0c01252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute gastroenteritis caused by noroviruses has a major impact on public health worldwide in terms of morbidity, mortality, and economic burden. The disease impacts most severely immunocompromised patients, the elderly, and children. The current lack of approved vaccines and small-molecule therapeutics for the treatment and prophylaxis of norovirus infections underscores the need for the development of norovirus-specific drugs. The studies described herein entail the use of the gem-dimethyl moiety as a means of improving the pharmacological activity and physicochemical properties of a dipeptidyl series of transition state inhibitors of norovirus 3CL protease, an enzyme essential for viral replication. Several compounds were found to be potent inhibitors of the enzyme in biochemical and cell-based assays. The pharmacological activity and cellular permeability of the inhibitors were found to be sensitive to the location of the gem-dimethyl group.
Collapse
Affiliation(s)
- Athri D Rathnayake
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Chamandi S Dampalla
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Harry Nhat Nguyen
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Abdul-Rahman M Jesri
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Maithri M Kashipathy
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | | | - Kevin P Battaile
- NYX, New York Structural Biology Center, Upton, New York 11973, United States
| | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - William C Groutas
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| |
Collapse
|
32
|
Wiatr M, Figueiredo R, Stump-Guthier C, Winter P, Ishikawa H, Adams O, Schwerk C, Schroten H, Rudolph H, Tenenbaum T. Polar Infection of Echovirus-30 Causes Differential Barrier Affection and Gene Regulation at the Blood-Cerebrospinal Fluid Barrier. Int J Mol Sci 2020; 21:E6268. [PMID: 32872518 PMCID: PMC7503638 DOI: 10.3390/ijms21176268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Echovirus-30 (E-30) is responsible for the extensive global outbreaks of meningitis in children. To gain access to the central nervous system, E-30 first has to cross the epithelial blood-cerebrospinal fluid barrier. Several meningitis causing bacteria preferentially infect human choroid plexus papilloma (HIBCPP) cells in a polar fashion from the basolateral cell side. Here, we investigated the polar infection of HIBCPP cells with E-30. Both apical and basolateral infections caused a significant decrease in the transepithelial electrical resistance of HIBCPP cells. However, to reach the same impact on the barrier properties, the multiplicity of infection of the apical side had to be higher than that of the basolateral infection. Furthermore, the number of infected cells at respective time-points after basolateral infection was significantly higher compared to apical infection. Cytotoxic effects of E-30 on HIBCPP cells during basolateral infection were observed following prolonged infection and appeared more drastically compared to the apical infection. Gene expression profiles determined by massive analysis of cDNA ends revealed distinct regulation of specific genes depending on the side of HIBCPP cells' infection. Altogether, our data highlights the polar effects of E-30 infection in a human in vitro model of the blood-cerebrospinal fluid barrier leading to central nervous system inflammation.
Collapse
Affiliation(s)
- Marie Wiatr
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| | - Ricardo Figueiredo
- GenXpro GmbH, 60438 Frankfurt am Main, Germany; (R.F.); (P.W.)
- Johann Wolfgang Goethe University Frankfurt, 60438 Frankfurt Am Main, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| | - Peter Winter
- GenXpro GmbH, 60438 Frankfurt am Main, Germany; (R.F.); (P.W.)
| | - Hiroshi Ishikawa
- Department of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-0005, Japan;
| | - Ortwin Adams
- Institute for Virology, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Christian Schwerk
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| | - Henriette Rudolph
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| | - Tobias Tenenbaum
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| |
Collapse
|
33
|
Hussain S, Xie YJ, Li D, Malik SI, Hou JC, Leung ELH, Fan XX. Current strategies against COVID-19. Chin Med 2020; 15:70. [PMID: 32665783 PMCID: PMC7344049 DOI: 10.1186/s13020-020-00353-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently was declared a pandemic by world health organization (WHO) Due to sudden outbreaks, currently, no completely effective vaccine or drug is clinically approved. Several therapeutic strategies can be envisaged to prevent further mortality and morbidity. Based on the past contribution of traditional Chinese medicines (TCM) and immune-based therapies as a treatment option in crucial pathogen outbreaks, we aimed to summarize potential therapeutic strategies that could be helpful to stop further spread of SARS-CoV-2 by effecting its structural components or modulation of immune responses. Several TCM with or without modification could be effective against the structural protein, enzymes, and nucleic acid should be tested from available libraries or to identify their immune-stimulatory activities to enhance several antiviral biological agents for effective elimination of SARS-CoV-2 from the host. TCM is not only effective in the direct inhibition of virus attachment and internalization in a cell but can also prevent their replication and can also help to boost up host immune response. Immune-modulatory effects of TCMs may lead to new medications and can guide us for the scientific validity of drug development. Besides, we also summarized the effective therapies in clinical for controlling inflammation. This review will be not only helpful for the current situation of COVID-19, but can also play a major role in such epidemics in the future.
Collapse
Affiliation(s)
- Shahid Hussain
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR China
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Ya-Jia Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR China
| | - Dan Li
- Beijing Wante’er Biological Pharmaceutical Co., Ltd., No. 32 Yard, East 2nd Road, Yanqi Economic Development Zone, Huairou District, Beijing, China
| | - Shaukat Iqbal Malik
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Jin-cai Hou
- Beijing Wante’er Biological Pharmaceutical Co., Ltd., No. 32 Yard, East 2nd Road, Yanqi Economic Development Zone, Huairou District, Beijing, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR China
| |
Collapse
|
34
|
Liu S, Fang P, Ke W, Wang J, Wang X, Xiao S, Fang L. Porcine deltacoronavirus (PDCoV) infection antagonizes interferon-λ1 production. Vet Microbiol 2020; 247:108785. [PMID: 32768229 PMCID: PMC7331541 DOI: 10.1016/j.vetmic.2020.108785] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 01/10/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that causes watery diarrhea, vomiting and mortality in nursing piglets. Type III interferons (IFN-λs) are the major antiviral cytokines in intestinal epithelial cells, the target cells in vivo for PDCoV. In this study, we found that PDCoV infection remarkably inhibited Sendai virus-induced IFN-λ1 production by suppressing transcription factors IRF and NF-κB in IPI-2I cells, a line of porcine intestinal mucosal epithelial cells. We also confirmed that PDCoV infection impeded the activation of IFN-λ1 promoter stimulated by RIG-I, MDA5 and MAVS, but not by TBK1 and IRF1. Although the expression levels of IRF1 and MAVS were not changed, PDCoV infection resulted in reduction of the number of peroxisomes, the platform for MAVS to activate IRF1, and subsequent type III IFN production. Taken together, our study demonstrates that PDCoV suppresses type III IFN responses to circumvent the host's antiviral immunity.
Collapse
Affiliation(s)
- Shudan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wenting Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jing Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xunlei Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
35
|
Campillay-Véliz CP, Carvajal JJ, Avellaneda AM, Escobar D, Covián C, Kalergis AM, Lay MK. Human Norovirus Proteins: Implications in the Replicative Cycle, Pathogenesis, and the Host Immune Response. Front Immunol 2020; 11:961. [PMID: 32612600 PMCID: PMC7308418 DOI: 10.3389/fimmu.2020.00961] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022] Open
Abstract
Human noroviruses (HuNoVs) are the cause of more than 95% of epidemic non-bacterial gastroenteritis worldwide, with some lethal cases. These viral agents affect people of all ages. However, young children and older adults are the highest-risk groups, being affected with the greatest rate of hospitalizations and morbidity cases. HuNoV structural proteins, especially VP1, have been studied extensively. In contrast, the functions of the non-structural proteins of the virus have been undescribed in depth. Studies on HuNoV non-structural proteins have mostly been made by expressing them individually in in vitro cultures, providing insights of their functions and the role that they play in HuNoV replication and pathogenesis. This review examines exhaustively the functions of both HuNoV structural and non-structural proteins and their possible role within the viral replicative cycle and the pathogenesis of the virus. It also highlights recent findings regarding the host's innate and adaptive immune responses against HuNoV, which are of great relevance for diagnostics and vaccine development so as to prevent infections caused by these fastidious viruses.
Collapse
Affiliation(s)
- Claudia P Campillay-Véliz
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Jonatan J Carvajal
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Andrea M Avellaneda
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Darling Escobar
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Camila Covián
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad de Chile, Santiago, Chile
| |
Collapse
|
36
|
Effects of infectious bursal disease virus infection on interferon and antiviral gene expression in layer chicken bursa. Microb Pathog 2020; 144:104182. [PMID: 32247644 DOI: 10.1016/j.micpath.2020.104182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 11/21/2022]
Abstract
Layer chickens were artificially challenged with infectious bursal disease virus (IBDV), and the kinetics of IFN-λ and antiviral genes in the bursa were explored using quantitative real-time PCR. Data showed that after the chickens were infected with IBDV, the virus load in the bursa of the Fabricius peaked at 96 h and gradually decreased. The relative mRNA expression levels of IFN-λ and antiviral genes (zinc-finger antiviral protein [ZAP], interferon alpha-inducible protein 6 [IFI6], laboratory of genetics and physiology 2 [LGP2], virus inhibitory protein [Viperin], and Mx) of the infected group dramatically increased at 24-168 h compared with those of the negative-infected group. Furthermore, the ZAP mRNA expression peaked at 24 h (3.97-fold). The Viperin mRNA transcript level was highest at 48 h (384.60-fold). The mRNA expression levels of IFI6 (96.31-fold), LGP2 (18.29-fold), and Mx (88.85-fold) peaked at 72 h, and that of IFN-λ was most remarkable at 96 h (2978.81-fold). Furthermore, the ZAP change rule was significantly positively correlated with the change rule of the IBDV load. The mRNA expression levels of IFN-λ and antiviral genes (ZAP, IFI6, LGP2, Viperin, and Mx) increased as the virus expression increased and then decreased. These results further corroborated that the IBDV infection seriously interfered with the chicken's innate immune response.
Collapse
|
37
|
Host Factors Affecting Generation of Immunity Against Porcine Epidemic Diarrhea Virus in Pregnant and Lactating Swine and Passive Protection of Neonates. Pathogens 2020; 9:pathogens9020130. [PMID: 32085410 PMCID: PMC7168134 DOI: 10.3390/pathogens9020130] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly virulent re-emerging enteric coronavirus that causes acute diarrhea, dehydration, and up to 100% mortality in neonatal suckling piglets. Despite this, a safe and effective PEDV vaccine against highly virulent strains is unavailable, making PEDV prevention and control challenging. Lactogenic immunity induced via the gut-mammary gland-secretory IgA (sIgA) axis, remains the most promising and effective way to protect suckling piglets from PEDV. Therefore, a successful PEDV vaccine must induce protective maternal IgA antibodies that passively transfer into colostrum and milk. Identifying variables that influence lymphocyte migration and IgA secretion during gestation and lactation is imperative for designing maternal immunization strategies that generate the highest amount of lactogenic immune protection against PEDV in suckling piglets. Because pregnancy-associated immune alterations influence viral pathogenesis and adaptive immune responses in many different species, a better understanding of host immune responses to PEDV in pregnant swine may translate into improved maternal immunization strategies against enteric pathogens for multiple species. In this review, we discuss the role of host factors during pregnancy on antiviral immunity and their implications for generating protective lactogenic immunity in suckling neonates.
Collapse
|
38
|
Hassan E, Baldridge MT. Norovirus encounters in the gut: multifaceted interactions and disease outcomes. Mucosal Immunol 2019; 12:1259-1267. [PMID: 31501514 PMCID: PMC7479810 DOI: 10.1038/s41385-019-0199-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/20/2019] [Indexed: 02/04/2023]
Abstract
Noroviruses are major causes of gastroenteritis, with epidemic outbreaks occurring frequently. They are an important global health concern, especially for pediatric and immunocompromised populations, and are challenging pathogens to target immunologically due to their rapid rates of genetic and antigenic evolution and failure to stimulate durable protective immunity. In this Review, we summarize our current understanding of norovirus pathogenesis, noting the prominent role of murine norovirus as a small animal model for norovirus research. We highlight intriguing data supporting the possible involvement of norovirus in sequelae including irritable bowel syndrome and inflammatory bowel diseases, and describe the innate and adaptive immune mechanisms involved in control of both human and murine norovirus infection. Furthermore, we discuss the potential implications of recent discoveries regarding norovirus interactions with the gut microbiota, and briefly detail current understanding of noroviral evolution and its influence on viral pathogenesis. Our mechanistic understanding of norovirus pathogenesis continues to improve with increasing availability of powerful model systems, which will ultimately facilitate development of effective preventive and therapeutic approaches for this pathogen.
Collapse
Affiliation(s)
- Ebrahim Hassan
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.,Correspondence: Megan T. Baldridge, MD, PhD, Phone: 314-273-1212, Fax: 314-362-2156,
| |
Collapse
|
39
|
Kolawole AO, Mirabelli C, Hill DR, Svoboda SA, Janowski AB, Passalacqua KD, Rodriguez BN, Dame MK, Freiden P, Berger RP, Vu DL, Hosmillo M, O'Riordan MXD, Schultz-Cherry S, Guix S, Spence JR, Wang D, Wobus CE. Astrovirus replication in human intestinal enteroids reveals multi-cellular tropism and an intricate host innate immune landscape. PLoS Pathog 2019; 15:e1008057. [PMID: 31671153 PMCID: PMC6957189 DOI: 10.1371/journal.ppat.1008057] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 01/13/2020] [Accepted: 08/30/2019] [Indexed: 12/26/2022] Open
Abstract
Human astroviruses (HAstV) are understudied positive-strand RNA viruses that cause gastroenteritis mostly in children and the elderly. Three clades of astroviruses, classic, MLB-type and VA-type have been reported in humans. One limitation towards a better understanding of these viruses has been the lack of a physiologically relevant cell culture model that supports growth of all clades of HAstV. Herein, we demonstrate infection of HAstV strains belonging to all three clades in epithelium-only human intestinal enteroids (HIE) isolated from biopsy-derived intestinal crypts. A detailed investigation of infection of VA1, a member of the non-canonical HAstV-VA/HMO clade, showed robust replication in HIE derived from different patients and from different intestinal regions independent of the cellular differentiation status. Flow cytometry and immunofluorescence analysis revealed that VA1 infects several cell types, including intestinal progenitor cells and mature enterocytes, in HIE cultures. RNA profiling of VA1-infected HIE uncovered that the host response to infection is dominated by interferon (IFN)-mediated innate immune responses. A comparison of the antiviral host response in non-transformed HIE and transformed human colon carcinoma Caco-2 cells highlighted significant differences between these cells, including an increased magnitude of the response in HIE. Additional studies confirmed the sensitivity of VA1 to exogenous IFNs, and indicated that the endogenous IFN response of HIE to curtail the growth of strains from all three clades. Genotypic variation in the permissiveness of different HIE lines to HAstV could be overcome by pharmacologic inhibition of JAK/STAT signaling. Collectively, our data identify HIE as a universal infection model for HAstV and an improved model of the intestinal epithelium to investigate enteric virus-host interactions. Human astroviruses (HAstV) are understudied positive-strand RNA viruses that typically cause gastroenteritis mostly in children and the elderly, but more recent studies also implicate them in neurological disease in immunocompromised patients. To better understand these viruses, a physiologically relevant cell culture model that supports growth of all clades of HAstV would be highly beneficial. Herein, we demonstrated robust infection of HAstV strains belonging to all three clades in epithelium-only human intestinal enteroids (HIE) isolated from biopsy-derived intestinal crypts from different patients and intestinal regions, making HIE a valuable model to study HAstV biology. Using this system, we identify for the first time that VA1 infects several cell types, including intestinal progenitor cells and mature enterocytes. Analysis of the antiviral host response to infection demonstrated that HIE respond to infection with a type I and III interferon response. This response reduced HAstV replication and when blocked resulted in increased infection. Establishment of the HIE system for HAstV research lays the foundation for future basic and translational discoveries.
Collapse
Affiliation(s)
- Abimbola O Kolawole
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Carmen Mirabelli
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David R Hill
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sophia A Svoboda
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrew B Janowski
- Department of Pediatrics, Washington University, St. Louis, Missouri, United States of America
| | - Karla D Passalacqua
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Benancio N Rodriguez
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael K Dame
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pamela Freiden
- St. Jude Children's Hospital, Memphis, Tennessee, United States of America
| | - Ryan P Berger
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Diem-Lan Vu
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Mary X D O'Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Jason R Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.,Department of Biomedical Engineering, University of Michigan, Ann arbor, Michigan, United States of America
| | - David Wang
- Departments of Molecular Microbiology, and Pathology and Immunology, Washington University, St. Louis, Missouri, United States of America
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
40
|
Disruption of Type III Interferon (IFN) Genes Ifnl2 and Ifnl3 Recapitulates Loss of the Type III IFN Receptor in the Mucosal Antiviral Response. J Virol 2019; 93:JVI.01073-19. [PMID: 31462571 DOI: 10.1128/jvi.01073-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Type III interferon (IFN), or IFN lambda (IFN-λ), is an essential component of the innate immune response to mucosal viral infections. In both the intestine and the lung, signaling via the IFN-λ receptor (IFNLR) controls clinically important viral pathogens, including influenza virus, norovirus, and rotavirus. While it is thought that IFN-λ cytokines are the exclusive ligands for signaling through IFNLR, it is not known whether genetic ablation of these cytokines phenotypically recapitulates disruption of the receptor. Here, we report the serendipitous establishment of Ifnl2- / - Ifnl3- / - mice, which lack all known functional murine IFN-λ cytokines. We demonstrate that, like Ifnlr1- / - mice lacking IFNLR signaling, these mice display defective control of murine norovirus, reovirus, and influenza virus and therefore genocopy Ifnlr1- / - mice. Thus, for regulation of viral infections at mucosal sites of both the intestine and lung, signaling via IFNLR can be fully explained by the activity of known cytokines IFN-λ2 and IFN-λ3. Our results confirm the current understanding of ligand-receptor interactions for type III IFN signaling and highlight the importance of this pathway in regulation of mucosal viral pathogens.IMPORTANCE Type III interferons are potent antiviral cytokines important for regulation of viruses that infect at mucosal surfaces. Studies using mice lacking the Ifnlr1 gene encoding the type III interferon receptor have demonstrated that signaling through this receptor is critical for protection against influenza virus, norovirus, and reovirus. Using a genetic approach to disrupt murine type III interferon cytokine genes Ifnl2 and Ifnl3, we found that mice lacking these cytokines fully recapitulate the impaired control of viruses observed in mice lacking Ifnlr1 Our results support the idea of an exclusive role for known type III interferon cytokines in signaling via IFNLR to mediate antiviral effects at mucosal surfaces. These findings emphasize the importance of type III interferons in regulation of a variety of viral pathogens and provide important genetic evidence to support our understanding of the ligand-receptor interactions in this pathway.
Collapse
|
41
|
Li L, Xue M, Fu F, Yin L, Feng L, Liu P. IFN-Lambda 3 Mediates Antiviral Protection Against Porcine Epidemic Diarrhea Virus by Inducing a Distinct Antiviral Transcript Profile in Porcine Intestinal Epithelia. Front Immunol 2019; 10:2394. [PMID: 31681286 PMCID: PMC6811514 DOI: 10.3389/fimmu.2019.02394] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Type III interferon-lambda (IFN-λ) plays a critical role against infection, particularly in mucosal infection in the respiratory and gastrointestinal tract. Our study and other previous studies have shown that porcine IFN-λ more efficiently curtails the infection of porcine epidemic diarrhea virus (PEDV) in the intestine epithelia than type I IFN, whereas IFN-λ3 exerts a more potent effect than IFN-λ1. However, the underlying mechanism remains elusive, and in particular, the transcriptional profile induced by IFN-λ3 has not been reported. Here, to resolve the mechanism responsible for the disparity between IFN-λ3 and type I IFN in anti-mucosal virus infection, we compared the transcription profiles induced by the two IFNs in porcine intestinal epithelial (IPEC-J2) cells by RNA-Seq. Our results showed that the pretreatment of IPEC-J2 cells with IFN-λ3 resulted in the differential expression of 983 genes. In contrast, IFN-α only modified the expression of 134 genes, and 110 of these genes were also observed in the response to IFN-λ3. A transcriptional enrichment analysis indicated that IFN-λ3 or IFN-α regulates multiple cellular processes and that IFN-λ3 activates more robust signaling pathways, particularly the antiviral Jak-STAT signaling pathway, than IFN-α. Furthermore, we verified the RNA-Seq results through an RT-qPCR analysis of IPEC-J2 cells and porcine enteroids. Moreover, transient expression of the porcine rsad2 and mx2 genes among the top 10 genes induced by IFN-λ3 significantly inhibited PEDV infection. Collectively, the data showed that IFN-λ3 induces a unique transcriptional profile that does not completely overlap with that induced by IFN-α and strongly elicits a set of genes responsible for the antiviral activity of IFN-λ3. These findings provide important knowledge regarding the elicited ISGs of type I and III IFNs in restricting porcine intestinal viral infection.
Collapse
Affiliation(s)
- Liang Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mei Xue
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Fu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lingdan Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pinghuang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
42
|
Yeh ML, Huang JF, Dai CY, Yu ML, Chuang WL. Pharmacokinetics and pharmacodynamics of pegylated interferon for the treatment of hepatitis B. Expert Opin Drug Metab Toxicol 2019; 15:779-785. [PMID: 31593639 DOI: 10.1080/17425255.2019.1678584] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Interferon (IFN) had both antiviral and immunomodulatory effects, and was one of the approved treatments for hepatitis B virus (HBV). Herein, we reviewed the pharmacokinetics and pharmacodynamics of pegylated IFN-α (PegIFN-α) for the treatment of HBV. Areas covered: The steady-state serum levels of PegIFN-α were reached within 5 to 8 weeks, and the week 48 mean trough concentrations were approximately 2-fold higher than week 1. There was also no difference of the pharmacokinetics in male or female, healthy volunteers or patients with hepatitis B or C infection. PegIFN-α did not affect the metabolism of the cytochrome P450 (CYP) isozymes, except inhibition of CYP1A2. There was also no pharmacokinetic interaction between PegIFN-α and HBV nucleot(s)ide analogues (NUCs). Forty-eight weeks of PegIFN-α achieved 32% of HBeAg seroconversion, 32-43% of HBV DNA suppression, 41-59% of ALT normalization, and 3% of HBsAg seroconversion rate with a post-treatment durable response up to 80% in the initial responders. Expert opinion: On-treatment HBsAg titer guided the treatment of HBV with PegIFN-α. The recommendation of PegIFN-α and NUC combination or switch remained controversial. New immunotherapeutic agents are now in development. Although, PegIFN-α should continue to play a role in the treatment of HBV.
Collapse
Affiliation(s)
- Ming-Lun Yeh
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital , Kaohsiung , Taiwan.,School of Medicine and Hepatitis Research Center, College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Jee-Fu Huang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital , Kaohsiung , Taiwan.,School of Medicine and Hepatitis Research Center, College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan.,Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Chia-Yen Dai
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital , Kaohsiung , Taiwan.,School of Medicine and Hepatitis Research Center, College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan.,Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Ming-Lung Yu
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital , Kaohsiung , Taiwan.,School of Medicine and Hepatitis Research Center, College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan.,Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University , Kaohsiung , Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B) and Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University , Hsin-Chu , Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University , Kaohsiung , Taiwan
| | - Wan-Long Chuang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital , Kaohsiung , Taiwan.,School of Medicine and Hepatitis Research Center, College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan.,Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University , Kaohsiung , Taiwan
| |
Collapse
|
43
|
Carrick DM. Interferon Lambda: An Immune System Factor That Cancer Epidemiologists Should Consider. J Interferon Cytokine Res 2019; 39:592-593. [PMID: 30892117 PMCID: PMC6767861 DOI: 10.1089/jir.2019.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- Danielle Mercatante Carrick
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
44
|
Arthur SE, Sorgeloos F, Hosmillo M, Goodfellow IG. Epigenetic Suppression of Interferon Lambda Receptor Expression Leads to Enhanced Human Norovirus Replication In Vitro. mBio 2019; 10:e02155-19. [PMID: 31575769 PMCID: PMC6775457 DOI: 10.1128/mbio.02155-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022] Open
Abstract
Human norovirus (HuNoV) is the main cause of gastroenteritis worldwide, yet no therapeutics are currently available. Here, we utilize a human norovirus replicon in human gastric tumor (HGT) cells to identify host factors involved in promoting or inhibiting HuNoV replication. We observed that an interferon (IFN)-cured population of replicon-harboring HGT cells (HGT-Cured) was enhanced in their ability to replicate transfected HuNoV RNA compared to parental HGT cells, suggesting that differential gene expression in HGT-Cured cells created an environment favoring norovirus replication. Microarrays were used to identify genes differentially regulated in HGT-NV and HGT-Cured compared to parental cells. We found that IFN lambda receptor (IFNLR1) expression was highly reduced in HGT-NV and HGT-Cured cells. While all three cell lines responded to exogenous IFN-β by inducing interferon-stimulated genes, HGT-NV and HGT-Cured cells failed to respond to exogenous IFN-λ. Methylation-sensitive PCR showed that an increased methylation of the IFNLR1 promoter and inhibition of DNA methyltransferase activity partially reactivated IFNLR1 expression in HGT-NV and HGT-Cured cells, indicating that host adaptation occurred via epigenetic reprogramming. Moreover, IFNLR1 ectopic expression rescued response to IFN-λ and restricted HuNoV replication in HGT-NV cells. We conclude that type III IFN is important in inhibiting HuNoV replication in vitro and that the loss of IFNLR1 enhances replication of HuNoV. This study unravels for the first time epigenetic reprogramming of the interferon lambda receptor as a new mechanism of cellular adaptation during long-term RNA virus replication and shows that an endogenous level of interferon lambda signaling is able to control human norovirus replication.IMPORTANCE Noroviruses are one of the most widespread causes of gastroenteritis, yet no suitable therapeutics are available for their control. Moreover, to date, knowledge of the precise cellular processes that control the replication of the human norovirus remains ill defined. Recent work has highlighted the importance of type III interferon (IFN) responses in the restriction of viruses that infect the intestine. Here, we analyzed the adaptive changes required to support long-term replication of noroviruses in cell culture and found that the receptor for type III IFN is decreased in its expression. We confirmed that this decreased expression was driven by epigenetic modifications and that cells lacking the type III IFN receptor are more permissive for norovirus replication. This work provides new insights into key host-virus interactions required for the control of noroviruses and opens potential novel avenues for their therapeutic control.
Collapse
Affiliation(s)
- Sabastine E Arthur
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Frédéric Sorgeloos
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
45
|
Hemann EA, Green R, Turnbull JB, Langlois RA, Savan R, Gale M. Interferon-λ modulates dendritic cells to facilitate T cell immunity during infection with influenza A virus. Nat Immunol 2019; 20:1035-1045. [PMID: 31235953 PMCID: PMC6642690 DOI: 10.1038/s41590-019-0408-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/29/2019] [Indexed: 12/12/2022]
Abstract
Type III interferon (IFN-λ) is important for innate immune protection at mucosal surfaces and has therapeutic benefit against influenza A virus (IAV) infection. However, the mechanisms by which IFN-λ programs adaptive immune protection against IAV are undefined. Here we found that IFN-λ signaling in dendritic cell (DC) populations was critical for the development of protective IAV-specific CD8+ T cell responses. Mice lacking the IFN-λ receptor (Ifnlr1-/-) had blunted CD8+ T cell responses relative to wild type and exhibited reduced survival after heterosubtypic IAV re-challenge. Analysis of DCs revealed IFN-λ signaling directed the migration and function of CD103+ DCs for development of optimal antiviral CD8+ T cell responses, and bioinformatic analyses identified IFN-λ regulation of a DC IL-10 immunoregulatory network. Thus, IFN-λ serves a critical role in bridging innate and adaptive immunity from lung mucosa to lymph nodes to program DCs to direct effective T cell immunity against IAV.
Collapse
Affiliation(s)
- Emily A Hemann
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Richard Green
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - J Bryan Turnbull
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Ryan A Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Ram Savan
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA.
| |
Collapse
|
46
|
Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat Rev Immunol 2019; 19:614-625. [DOI: 10.1038/s41577-019-0182-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
|
47
|
Kotenko SV, Rivera A, Parker D, Durbin JE. Type III IFNs: Beyond antiviral protection. Semin Immunol 2019; 43:101303. [PMID: 31771761 PMCID: PMC7141597 DOI: 10.1016/j.smim.2019.101303] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 09/15/2019] [Indexed: 12/29/2022]
Abstract
The unexpected discovery of a novel family of antiviral mediators, type III IFNs or IFN-λs, challenged the widely accepted primacy of type I IFNs in antiviral immunity, and it is now well recognized that the IFN-λ-based antiviral system plays a major role in antiviral protection of epithelial barriers. The recent characterization of previously unknown IFN-λ-mediated activities has prompted further reassessment of the role of type I IFNs in innate and adaptive immune and inflammatory responses. Since type I and type III IFNs are co-produced in response to a variety of stimuli, it is likely that many physiological processes are simultaneously and coordinately regulated by these cytokines in pathological conditions, and likely at steady state, as baseline expression of both IFN types is maintained by microbiota. In this review, we discuss emerging differences in the production and signaling of type I and type III IFNs, and summarize results of recent studies describing the involvement of type III IFNs in anti-bacterial and anti-fungal, as well as antiviral, defenses.
Collapse
Affiliation(s)
- Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Newark, NJ, 07103, USA; Center for Cell Signaling, Newark, NJ, 07103, USA; Center for Immunity and Inflammation, Rutgers New Jersey Medical School, RBHS, Newark, NJ, 07103, USA.
| | - Amariliz Rivera
- Department of Pediatrics, Newark, NJ, 07103, USA; Center for Immunity and Inflammation, Rutgers New Jersey Medical School, RBHS, Newark, NJ, 07103, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Newark, NJ, 07103, USA; Center for Immunity and Inflammation, Rutgers New Jersey Medical School, RBHS, Newark, NJ, 07103, USA
| | - Joan E Durbin
- Department of Pathology, Immunology and Laboratory Medicine, Newark, NJ, 07103, USA; Center for Immunity and Inflammation, Rutgers New Jersey Medical School, RBHS, Newark, NJ, 07103, USA.
| |
Collapse
|
48
|
Coronavirus Endoribonuclease Activity in Porcine Epidemic Diarrhea Virus Suppresses Type I and Type III Interferon Responses. J Virol 2019; 93:JVI.02000-18. [PMID: 30728254 PMCID: PMC6450110 DOI: 10.1128/jvi.02000-18] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/25/2019] [Indexed: 12/21/2022] Open
Abstract
Coronaviruses (CoVs) can emerge from an animal reservoir into a naive host species to cause pandemic respiratory or gastrointestinal diseases with significant mortality in humans or domestic animals. Porcine epidemic diarrhea virus (PEDV), an alphacoronavirus (alpha-CoV), infects gut epithelial cells and macrophages, inducing diarrhea and resulting in high mortality in piglets. How PEDV suppresses the innate immune response was unknown. We found that mutating a viral endoribonuclease, EndoU, results in a virus that activates both the type I interferon response and the type III interferon response in macrophages and epithelial cells. This activation of interferon resulted in limited viral replication in epithelial cell cultures and was associated with reduced virus shedding and mortality in piglets. This study reveals a role for EndoU activity as a virulence factor in PEDV infection and provides an approach for generating live-attenuated vaccine candidates for emerging coronaviruses. Identifying viral antagonists of innate immunity and determining if they contribute to pathogenesis are critical for developing effective strategies to control emerging viruses. Previously, we reported that an endoribonuclease (EndoU) encoded by murine coronavirus plays a pivotal role in evasion of host innate immune defenses in macrophages. Here, we asked if the EndoU activity of porcine epidemic diarrhea coronavirus (PEDV), which causes acute diarrhea in swine, plays a role in antagonizing the innate response in porcine epithelial cells and macrophages, the sites of viral replication. We constructed an infectious clone of PEDV-Colorado strain (icPEDV-wt) and an EndoU-mutant PEDV (icPEDV-EnUmt) by changing the codon for a catalytic histidine residue of EndoU to alanine (His226Ala). We found that both icPEDV-wt and icPEDV-EnUmt propagated efficiently in interferon (IFN)-deficient Vero cells. In contrast, the propagation of icPEDV-EnUmt was impaired in porcine epithelial cells (LLC-PK1), where we detected an early and robust transcriptional activation of type I and type III IFNs. Infection of piglets with the parental Colorado strain, icPEDV-wt, or icPEDV-EnUmt revealed that all viruses replicated in the gut and induced diarrhea; however, there was reduced viral shedding and mortality in the icPEDV-EnUmt-infected animals. These results demonstrate that EndoU activity is not required for PEDV replication in immortalized, IFN-deficient Vero cells, but is important for suppressing the IFN response in epithelial cells and macrophages, which facilitates replication, shedding, and pathogenesis in vivo. We conclude that PEDV EndoU activity is a key virulence factor that suppresses both type I and type III IFN responses. IMPORTANCE Coronaviruses (CoVs) can emerge from an animal reservoir into a naive host species to cause pandemic respiratory or gastrointestinal diseases with significant mortality in humans or domestic animals. Porcine epidemic diarrhea virus (PEDV), an alphacoronavirus (alpha-CoV), infects gut epithelial cells and macrophages, inducing diarrhea and resulting in high mortality in piglets. How PEDV suppresses the innate immune response was unknown. We found that mutating a viral endoribonuclease, EndoU, results in a virus that activates both the type I interferon response and the type III interferon response in macrophages and epithelial cells. This activation of interferon resulted in limited viral replication in epithelial cell cultures and was associated with reduced virus shedding and mortality in piglets. This study reveals a role for EndoU activity as a virulence factor in PEDV infection and provides an approach for generating live-attenuated vaccine candidates for emerging coronaviruses.
Collapse
|
49
|
Nucleic Acid Induced Interferon and Inflammasome Responses in Regulating Host Defense to Gastrointestinal Viruses. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 345:137-171. [PMID: 30904192 PMCID: PMC7104954 DOI: 10.1016/bs.ircmb.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gut bacterial and fungal communities residing in the gastrointestinal tract have undisputed far-reaching effects in regulating host health. In the meantime, however, metagenomic sequencing efforts are revealing enteric viruses as the most abundant dimension of the intestinal gut ecosystem, and the first gut virome-wide association studies showed that inflammatory bowel disease as well as type 1 diabetes could be linked to the presence or absence of particular viral inhabitants in the intestine. In line with the genetic component of these human diseases, mouse model studies demonstrated how beneficial functions of a resident virus can switch to detrimental inflammatory effects in a genetically predisposed host. Such viral-induced intestinal immune disturbances are also recapitulated by several gastrointestinal infectious viruses such as rotavirus and human norovirus. This wide range of viral effects on intestinal immunity emphasizes the need for understanding the innate immune responses to gastrointestinal viruses. Numerous nucleic acid sensors such as DexD/H helicases and AIM2 serve as cytosolic viral guardians to induce antiviral interferon and/or pro-inflammatory inflammasome responses. In both cases, pioneering examples are emerging in which RNA helicases cooperate with particular Nod-like receptors to trigger these cellular responses to enteric viruses. Here we summarize the reported beneficial versus detrimental effects of enteric viruses in the intestinal immune system, and we zoom in on the mechanisms through which sensing of nucleic acids from these enteric viruses trigger interferon and inflammasome responses.
Collapse
|
50
|
HOIL1 Is Essential for the Induction of Type I and III Interferons by MDA5 and Regulates Persistent Murine Norovirus Infection. J Virol 2018; 92:JVI.01368-18. [PMID: 30209176 DOI: 10.1128/jvi.01368-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
The linear ubiquitin chain assembly complex (LUBAC), composed of heme-oxidized IRP2 ubiquitin ligase 1 (HOIL1), HOIL1-interacting protein (HOIP), and SHANK-associated RH domain-interacting protein (SHARPIN), is a crucial regulator of multiple immune signaling pathways. In humans, HOIL1 or HOIP deficiency is associated with an immune disorder involving autoinflammation, immunodeficiency, and inflammatory bowel disease (IBD)-like symptoms. During viral infection, LUBAC is reported to inhibit the induction of interferon (IFN) by the cytosolic RNA sensor retinoic acid-inducible gene I (RIG-I). Surprisingly, we found that HOIL1 is essential for the induction of both type I and type III IFNs, as well as the phosphorylation of IFN regulatory factor 3 (IRF3), during murine norovirus (MNoV) infection in cultured dendritic cells. The RIG-I-like receptor, melanoma differentiation-associated protein 5 (MDA5), is also required for IFN induction and IRF3 phosphorylation during MNoV infection. Furthermore, HOIL1 and MDA5 were required for IFN induction after Theiler's murine encephalomyelitis virus infection and poly(I·C) transfection, but not Sendai virus or vesicular stomatitis virus infection, indicating that HOIL1 and LUBAC are required selectively for MDA5 signaling. Moreover, Hoil1 - / - mice exhibited defective control of acute and persistent murine norovirus infection and defective regulation of MNoV persistence by the microbiome as also observed previously for mice deficient in interferon lambda (IFN-λ) receptor, signal transducer and activator of transcription factor 1 (STAT1), and IRF3. These data indicate that LUBAC plays a critical role in IFN induction to control RNA viruses sensed by MDA5.IMPORTANCE Human noroviruses are a leading cause of gastroenteritis throughout the world but are challenging to study in vivo and in vitro Murine norovirus (MNoV) provides a tractable genetic and small-animal model to study norovirus biology and immune responses. Interferons are critical mediators of antiviral immunity, but excessive expression can dysregulate the immune system. IFN-λ plays an important role at mucosal surfaces, including the gastrointestinal tract, and both IFN-λ and commensal enteric bacteria are important modulators of persistent MNoV infection. LUBAC, of which HOIL1 is a component, is reported to inhibit type I IFN induction after RIG-I stimulation. We show, in contrast, that HOIL1 is critical for type I and III IFN induction during infection with MNoV, a virus that preferentially activates MDA5. Moreover, HOIL1 regulates MNoV infection in vivo These data reveal distinct functions for LUBAC in these closely related signaling pathways and in modulation of IFN expression.
Collapse
|