1
|
Lorkiewicz P, Waszkiewicz N. Viral infections in etiology of mental disorders: a broad analysis of cytokine profile similarities - a narrative review. Front Cell Infect Microbiol 2024; 14:1423739. [PMID: 39206043 PMCID: PMC11349683 DOI: 10.3389/fcimb.2024.1423739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
The recent pandemic caused by the SARS-CoV-2 virus and the associated mental health complications have renewed scholarly interest in the relationship between viral infections and the development of mental illnesses, a topic that was extensively discussed in the previous century in the context of other viruses, such as influenza. The most probable and analyzable mechanism through which viruses influence the onset of mental illnesses is the inflammation they provoke. Both infections and mental illnesses share a common characteristic: an imbalance in inflammatory factors. In this study, we sought to analyze and compare cytokine profiles in individuals infected with viruses and those suffering from mental illnesses. The objective was to determine whether specific viral diseases can increase the risk of specific mental disorders and whether this risk can be predicted based on the cytokine profile of the viral disease. To this end, we reviewed existing literature, constructed cytokine profiles for various mental and viral diseases, and conducted comparative analyses. The collected data indicate that the risk of developing a specific mental illness cannot be determined solely based on cytokine profiles. However, it was observed that the combination of IL-8 and IL-10 is frequently associated with psychotic symptoms. Therefore, to assess the risk of mental disorders in infected patients, it is imperative to consider the type of virus, the mental complications commonly associated with it, the predominant cytokines to evaluate the risk of psychotic symptoms, and additional patient-specific risk factors.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Białystok, Poland
| | | |
Collapse
|
2
|
Gordon AC, Alipanah-Lechner N, Bos LD, Dianti J, Diaz JV, Finfer S, Fujii T, Giamarellos-Bourboulis EJ, Goligher EC, Gong MN, Karakike E, Liu VX, Lumlertgul N, Marshall JC, Menon DK, Meyer NJ, Munroe ES, Myatra SN, Ostermann M, Prescott HC, Randolph AG, Schenck EJ, Seymour CW, Shankar-Hari M, Singer M, Smit MR, Tanaka A, Taccone FS, Thompson BT, Torres LK, van der Poll T, Vincent JL, Calfee CS. From ICU Syndromes to ICU Subphenotypes: Consensus Report and Recommendations for Developing Precision Medicine in the ICU. Am J Respir Crit Care Med 2024; 210:155-166. [PMID: 38687499 PMCID: PMC11273306 DOI: 10.1164/rccm.202311-2086so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
Critical care uses syndromic definitions to describe patient groups for clinical practice and research. There is growing recognition that a "precision medicine" approach is required and that integrated biologic and physiologic data identify reproducible subpopulations that may respond differently to treatment. This article reviews the current state of the field and considers how to successfully transition to a precision medicine approach. To impact clinical care, identification of subpopulations must do more than differentiate prognosis. It must differentiate response to treatment, ideally by defining subgroups with distinct functional or pathobiological mechanisms (endotypes). There are now multiple examples of reproducible subpopulations of sepsis, acute respiratory distress syndrome, and acute kidney or brain injury described using clinical, physiological, and/or biological data. Many of these subpopulations have demonstrated the potential to define differential treatment response, largely in retrospective studies, and that the same treatment-responsive subpopulations may cross multiple clinical syndromes (treatable traits). To bring about a change in clinical practice, a precision medicine approach must be evaluated in prospective clinical studies requiring novel adaptive trial designs. Several such studies are underway, but there are multiple challenges to be tackled. Such subpopulations must be readily identifiable and be applicable to all critically ill populations around the world. Subdividing clinical syndromes into subpopulations will require large patient numbers. Global collaboration of investigators, clinicians, industry, and patients over many years will therefore be required to transition to a precision medicine approach and ultimately realize treatment advances seen in other medical fields.
Collapse
Affiliation(s)
| | - Narges Alipanah-Lechner
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Jose Dianti
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Departamento de Cuidados Intensivos, Centro de Educación Médica e Investigaciones Clínicas, Buenos Aires, Argentina
| | | | - Simon Finfer
- School of Public Health, Imperial College London, London, United Kingdom
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Tomoko Fujii
- Jikei University School of Medicine, Jikei University Hospital, Tokyo, Japan
| | | | - Ewan C. Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michelle Ng Gong
- Division of Critical Care Medicine and
- Division of Pulmonary Medicine, Department of Medicine and Department of Epidemiology and Population Health, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Eleni Karakike
- Second Department of Critical Care Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vincent X. Liu
- Division of Research, Kaiser Permanente, Oakland, California
| | - Nuttha Lumlertgul
- Excellence Center for Critical Care Nephrology, Division of Nephrology, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - John C. Marshall
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David K. Menon
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Elizabeth S. Munroe
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sheila N. Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Marlies Ostermann
- King’s College London, Guy’s & St Thomas’ Hospital, London, United Kingdom
| | - Hallie C. Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Veterans Affairs Center for Clinical Management Research, Ann Arbor, Michigan
| | - Adrienne G. Randolph
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Anaesthesia and
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Edward J. Schenck
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Christopher W. Seymour
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | | | - Aiko Tanaka
- Department of Intensive Care, University of Fukui Hospital, Yoshida, Fukui, Japan
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Fabio S. Taccone
- Department des Soins Intensifs, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium; and
| | - B. Taylor Thompson
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Lisa K. Torres
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, and
- Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Louis Vincent
- Department des Soins Intensifs, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium; and
| | - Carolyn S. Calfee
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
3
|
Jordan PM, Günther K, Nischang V, Ning Y, Deinhardt-Emmer S, Ehrhardt C, Werz O. Influenza A virus selectively elevates prostaglandin E 2 formation in pro-resolving macrophages. iScience 2024; 27:108775. [PMID: 38261967 PMCID: PMC10797193 DOI: 10.1016/j.isci.2023.108775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/15/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Respiratory influenza A virus (IAV) infections are major health concerns worldwide, where bacterial superinfections substantially increase morbidity and mortality. The underlying mechanisms of how IAV impairs host defense remain elusive. Macrophages are pivotal for the innate immune response and crucially regulate the entire inflammatory process, occurring as inflammatory M1- or pro-resolving M2-like phenotypes. Lipid mediators (LM), produced from polyunsaturated fatty acids by macrophages, are potent immune regulators and impact all stages of inflammation. Using LM metabololipidomics, we show that human pro-resolving M2-macrophages respond to IAV infections with specific and robust production of prostaglandin (PG)E2 along with upregulation of cyclooxygenase-2 (COX-2), which persists after co-infection with Staphylococcus aureus. In contrast, cytokine/interferon production in macrophages was essentially unaffected by IAV infection, and the functionality of M1-macrophages was not influenced. Conclusively, IAV infection of M2-macrophages selectively elevates PGE2 formation, suggesting inhibition of the COX-2/PGE2 axis as strategy to limit IAV exacerbation.
Collapse
Affiliation(s)
- Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Kerstin Günther
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Vivien Nischang
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Yuping Ning
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | | | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, 07745 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
4
|
Kirk NM, Liang Y, Ly H. Comparative Pathology of Animal Models for Influenza A Virus Infection. Pathogens 2023; 13:35. [PMID: 38251342 PMCID: PMC10820042 DOI: 10.3390/pathogens13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Animal models are essential for studying disease pathogenesis and to test the efficacy and safety of new vaccines and therapeutics. For most diseases, there is no single model that can recapitulate all features of the human condition, so it is vital to understand the advantages and disadvantages of each. The purpose of this review is to describe popular comparative animal models, including mice, ferrets, hamsters, and non-human primates (NHPs), that are being used to study clinical and pathological changes caused by influenza A virus infection with the aim to aid in appropriate model selection for disease modeling.
Collapse
Affiliation(s)
| | | | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA; (N.M.K.); (Y.L.)
| |
Collapse
|
5
|
Novak T, Crawford JC, Hahn G, Hall MW, Thair SA, Newhams MM, Chou J, Mourani PM, Tarquinio KM, Markovitz B, Loftis LL, Weiss SL, Higgerson R, Schwarz AJ, Pinto NP, Thomas NJ, Gedeit RG, Sanders RC, Mahapatra S, Coates BM, Cvijanovich NZ, Ackerman KG, Tellez DW, McQuillen P, Kurachek SC, Shein SL, Lange C, Thomas PG, Randolph AG. Transcriptomic profiles of multiple organ dysfunction syndrome phenotypes in pediatric critical influenza. Front Immunol 2023; 14:1220028. [PMID: 37533854 PMCID: PMC10390830 DOI: 10.3389/fimmu.2023.1220028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023] Open
Abstract
Background Influenza virus is responsible for a large global burden of disease, especially in children. Multiple Organ Dysfunction Syndrome (MODS) is a life-threatening and fatal complication of severe influenza infection. Methods We measured RNA expression of 469 biologically plausible candidate genes in children admitted to North American pediatric intensive care units with severe influenza virus infection with and without MODS. Whole blood samples from 191 influenza-infected children (median age 6.4 years, IQR: 2.2, 11) were collected a median of 27 hours following admission; for 45 children a second blood sample was collected approximately seven days later. Extracted RNA was hybridized to NanoString mRNA probes, counts normalized, and analyzed using linear models controlling for age and bacterial co-infections (FDR q<0.05). Results Comparing pediatric samples collected near admission, children with Prolonged MODS for ≥7 days (n=38; 9 deaths) had significant upregulation of nine mRNA transcripts associated with neutrophil degranulation (RETN, TCN1, OLFM4, MMP8, LCN2, BPI, LTF, S100A12, GUSB) compared to those who recovered more rapidly from MODS (n=27). These neutrophil transcripts present in early samples predicted Prolonged MODS or death when compared to patients who recovered, however in paired longitudinal samples, they were not differentially expressed over time. Instead, five genes involved in protein metabolism and/or adaptive immunity signaling pathways (RPL3, MRPL3, HLA-DMB, EEF1G, CD8A) were associated with MODS recovery within a week. Conclusion Thus, early increased expression of neutrophil degranulation genes indicated worse clinical outcomes in children with influenza infection, consistent with reports in adult cohorts with influenza, sepsis, and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Tanya Novak
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
- National Institute of Allergy and Infectious Diseases (NIAID), Centers of Excellence for Influenza Research and Response (CEIRR), Center for Influenza Disease and Emergence Response (CIDER), Athens, GA, United States
| | - Jeremy Chase Crawford
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- National Institute of Allergy and Infectious Diseases (NIAID), Centers of Excellence for Influenza Research and Response (CEIRR), St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN, United States
| | - Georg Hahn
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Mark W. Hall
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Simone A. Thair
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Division of Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Margaret M. Newhams
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- National Institute of Allergy and Infectious Diseases (NIAID), Centers of Excellence for Influenza Research and Response (CEIRR), Center for Influenza Disease and Emergence Response (CIDER), Athens, GA, United States
| | - Janet Chou
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Peter M. Mourani
- Department of Pediatrics, Section of Critical Care Medicine, University of Arkansas for Medical Sciences and Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Keiko M. Tarquinio
- Division of Critical Care Medicine, Department of Pediatrics, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Barry Markovitz
- Department of Anesthesiology Critical Care Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Laura L. Loftis
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Scott L. Weiss
- Nemours Children’s Hospital Delaware, Critical Care Medicine, Wilmington, DE, United States
| | - Renee Higgerson
- Pediatric Critical Care Medicine, St. David’s Children’s Hospital, Austin, TX, United States
| | - Adam J. Schwarz
- Department of Pediatrics, Children’s Hospital of Orange County, Orange, CA, United States
| | - Neethi P. Pinto
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Neal J. Thomas
- Department of Pediatrics, Penn State Health Children’s Hospital, Penn State University College of Medicine, Hershey, PA, United States
| | - Rainer G. Gedeit
- Pediatric Critical Care, Milwaukee Hospital-Children’s Wisconsin, Milwaukee, WI, United States
| | - Ronald C. Sanders
- Section of Pediatric Critical Care, Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Sidharth Mahapatra
- Pediatric Critical Care Medicine, Children’s Hospital & Medical Center Omaha, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bria M. Coates
- Division of Critical Care Medicine, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Natalie Z. Cvijanovich
- Division of Critical Care Medicine, UCSF Benioff Children’s Hospital, Oakland, CA, United States
| | - Kate G. Ackerman
- Department of Pediatrics, University of Rochester/UR Medicine Golisano Children’s Hospital, Rochester, NY, United States
| | - David W. Tellez
- Pediatric Critical Care Medicine, Phoenix Children’s Hospital, Phoenix, AZ, United States
| | - Patrick McQuillen
- Department of Pediatrics, Benioff Children’s Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Stephen C. Kurachek
- Department of Critical Care, Children’s Specialty Center, Children’s Minnesota, Minneapolis, MN, United States
| | - Steven L. Shein
- Division of Pediatric Critical Care Medicine, University Hospitals Rainbow Babies and Children’s Hospital, Cleveland, OH, United States
| | - Christoph Lange
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Paul G. Thomas
- National Institute of Allergy and Infectious Diseases (NIAID), Centers of Excellence for Influenza Research and Response (CEIRR), St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN, United States
| | - Adrienne G. Randolph
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
- National Institute of Allergy and Infectious Diseases (NIAID), Centers of Excellence for Influenza Research and Response (CEIRR), Center for Influenza Disease and Emergence Response (CIDER), Athens, GA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Maddux AB, Grunwell JR, Newhams MM, Chen SR, Olson SM, Halasa NB, Weiss SL, Coates BM, Schuster JE, Hall MW, Nofziger RA, Flori HR, Gertz SJ, Kong M, Sanders RC, Irby K, Hume JR, Cullimore ML, Shein SL, Thomas NJ, Miller K, Patel M, Fitzpatrick AM, Phipatanakul W, Randolph AG. Association of Asthma With Treatments and Outcomes in Children With Critical Influenza. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:836-843.e3. [PMID: 36379408 PMCID: PMC10006305 DOI: 10.1016/j.jaip.2022.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND Hospitalization for severe influenza infection in childhood may result in postdischarge sequelae. OBJECTIVE To evaluate inpatient management and postdischarge sequelae in children with critical respiratory illness owing to influenza with or without preexisting asthma. METHODS This was a prospective, observational multicenter study of children (aged 8 months to 17 years) admitted to a pediatric intensive care or high-acuity unit (in November 2019 to April 2020) for influenza. Results were stratified by preexisting asthma. Prehospital status, hospital treatments, and outcomes were collected. Surveys at approximately 90 days after discharge evaluated postdischarge health resource use, functional status, and respiratory symptoms. RESULTS A total of 165 children had influenza: 56 with preexisting asthma (33.9%) and 109 without it (66.1%; 41.1% and 39.4%, respectively, were fully vaccinated against influenza). Fifteen patients with preexisting asthma (26.7%) and 34 without it (31.1%) were intubated. More patients with versus without preexisting asthma received pharmacologic asthma treatments during hospitalization (76.7% vs 28.4%). Of 136 patients with 90-day survey data (82.4%; 46 with preexisting asthma [33.8%] and 90 without it [66.1%]), a similar proportion had an emergency department/urgent care visit (4.3% vs 6.6%) or hospital readmission (8.6% vs 3.3%) for a respiratory condition. Patients with preexisting asthma more frequently experienced asthma symptoms (78.2% vs 3.3%) and had respiratory specialist visits (52% vs 20%) after discharge. Of 109 patients without preexisting asthma, 10 reported receiving a new diagnosis of asthma (11.1%). CONCLUSIONS Respiratory health resource use and symptoms are important postdischarge outcomes after influenza critical illness in children with and without preexisting asthma. Less than half of children were vaccinated for influenza, a tool that could mitigate critical illness and its sequelae.
Collapse
Affiliation(s)
- Aline B Maddux
- Department of Pediatrics, Section of Critical Care Medicine, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colo
| | - Jocelyn R Grunwell
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Ga; Division of Critical Care Medicine, Children's Healthcare of Atlanta, Atlanta, Ga
| | - Margaret M Newhams
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, Mass
| | - Sabrina R Chen
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, Mass
| | - Samantha M Olson
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control of Prevention, Atlanta, Ga
| | - Natasha B Halasa
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tenn
| | - Scott L Weiss
- Division of Critical Care, Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| | - Bria M Coates
- Division of Critical Care Medicine, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| | - Jennifer E Schuster
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Miss
| | - Mark W Hall
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| | - Ryan A Nofziger
- Division of Critical Care Medicine, Department of Pediatrics, Akron Children's Hospital, Akron, Ohio
| | - Heidi R Flori
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Mott Children's Hospital and University of Michigan, Ann Arbor, Mich
| | - Shira J Gertz
- Division of Pediatric Critical Care, Department of Pediatrics, Cooperman Barnabas Medical Center, Livingston, NJ
| | - Michele Kong
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Ala
| | - Ronald C Sanders
- Section of Pediatric Critical Care, Department of Pediatrics, Arkansas Children's Hospital, Little Rock, Ark
| | - Katherine Irby
- Section of Pediatric Critical Care, Department of Pediatrics, Arkansas Children's Hospital, Little Rock, Ark
| | - Janet R Hume
- Division of Pediatric Critical Care, University of Minnesota Masonic Children's Hospital, Minneapolis, Minn
| | - Melissa L Cullimore
- Division of Pediatric Critical Care, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Neb
| | - Steven L Shein
- Division of Pediatric Critical Care Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| | - Neal J Thomas
- Department of Pediatrics, Penn State Hershey Children's Hospital, Penn State University College of Medicine, Hershey, Pa
| | - Kristen Miller
- Department of Pediatrics, Section of Critical Care Medicine, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colo
| | - Manish Patel
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control of Prevention, Atlanta, Ga
| | - Anne M Fitzpatrick
- Children's Healthcare of Atlanta, Division of Pulmonology, Cystic Fibrosis, and Sleep Medicine, Atlanta, Ga
| | - Wanda Phipatanakul
- Department of Pediatrics, Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Adrienne G Randolph
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, Mass; Department of Anaesthesia, Harvard Medical School, Boston, Mass.
| |
Collapse
|
7
|
Pathobiology, Severity, and Risk Stratification of Pediatric Acute Respiratory Distress Syndrome: From the Second Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 2023; 24:S12-S27. [PMID: 36661433 DOI: 10.1097/pcc.0000000000003156] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To review the literature for studies published in children on the pathobiology, severity, and risk stratification of pediatric acute respiratory distress syndrome (PARDS) with the intent of guiding current medical practice and identifying important areas for future research related to severity and risk stratification. DATA SOURCES Electronic searches of PubMed and Embase were conducted from 2013 to March 2022 by using a combination of medical subject heading terms and text words to capture the pathobiology, severity, and comorbidities of PARDS. STUDY SELECTION We included studies of critically ill patients with PARDS that related to the severity and risk stratification of PARDS using characteristics other than the oxygenation defect. Studies using animal models, adult only, and studies with 10 or fewer children were excluded from our review. DATA EXTRACTION Title/abstract review, full-text review, and data extraction using a standardized data collection form. DATA SYNTHESIS The Grading of Recommendations Assessment, Development, and Evaluation approach was used to identify and summarize relevant evidence and develop recommendations for clinical practice. There were 192 studies identified for full-text extraction to address the relevant Patient/Intervention/Comparator/Outcome questions. One clinical recommendation was generated related to the use of dead space fraction for risk stratification. In addition, six research statements were generated about the impact of age on acute respiratory distress syndrome pathobiology and outcomes, addressing PARDS heterogeneity using biomarkers to identify subphenotypes and endotypes, and use of standardized ventilator, physiologic, and nonpulmonary organ failure measurements for future research. CONCLUSIONS Based on an extensive literature review, we propose clinical management and research recommendations related to characterization and risk stratification of PARDS severity.
Collapse
|
8
|
Golovacheva EG, Starikova EA, Kudryavtseva TA, Apryatina VA. The Effect of Drugs with α-Glutamyl-Tryptophan for Cytokine Secretion and Level of Surface Molecule ICAM-1 In Vitro. CELL AND TISSUE BIOLOGY 2023; 17:146-152. [PMID: 37131521 PMCID: PMC10134718 DOI: 10.1134/s1990519x23020050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 05/04/2023]
Abstract
The study of the molecular mechanisms underlying the action of immunomodulatory drugs is important for substantiating their therapeutic effect. In the present work, spontaneous and TNFα-induced secretion of IL-1α and IL-8 pro-inflammatory cytokines, as well as the level of the ICAM-1 adhesion molecule in EA.hy 926 endothelial cell culture and peripheral blood mononuclear cells of healthy donors, is studied using an in vitro model of inflammation in the presence of α-glutamyl-tryptophan (α-Glu-Trp) and Cytovir-3. The aim was to evaluate cellular mechanisms mediating the immunomodulatory effect of α-Glu-Trp and Cytovir-3 drugs. It was shown that α-Glu-Trp reduced TNFα-induced IL-1α production and increased TNFα-stimulated level of the ICAM-1 surface molecule of endothelial cells. At the same time, the drug reduced secretion of the IL-8 cytokine induced by TNFα and increased the spontaneous level of ICAM-1 in mononuclear cells. Cytovir-3 had an activating effect on EA.hy 926 endothelial cells and human peripheral blood mononuclear leukocytes. In its presence, there was an increase in the spontaneous secretion of IL-8 by endothelial and mononuclear cells. In addition, Cytovir-3 increased the level of TNFα-induced ICAM-1 on endothelial cells and increased the spontaneous level of this surface molecule on mononuclear cells. Suppression of stimulated production of pro-inflammatory cytokines under the action of α-Glu-Trp both separately and as a part of Cytovir-3 may determine its anti-inflammatory properties. However, an increased level of the surface ICAM-1 molecule indicates mechanisms that enhance the functional activity of these cells, which is equally important for the implementation of an effective immune response to infection and repair of damaged tissues during inflammatory response.
Collapse
Affiliation(s)
- E. G. Golovacheva
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376 St. Petersburg, Russia
| | - E. A. Starikova
- Institute of Experimental Medicine, Northwest Branch, Russian Academy of Medical Sciences, 197376 St. Petersburg, Russia
- Department of Immunology, First Pavlov State Medical University, 197022 St. Petersburg, Russia
| | - T. A. Kudryavtseva
- Institute of Experimental Medicine, Northwest Branch, Russian Academy of Medical Sciences, 197376 St. Petersburg, Russia
| | - V. A. Apryatina
- St. Petersburg Institute of Bioregulation and Gerontology, 197110 St. Petersburg, Russia
| |
Collapse
|
9
|
Latha K, Rao S, Sakamoto K, Watford WT. Tumor Progression Locus 2 Protects against Acute Respiratory Distress Syndrome in Influenza A Virus-Infected Mice. Microbiol Spectr 2022; 10:e0113622. [PMID: 35980186 PMCID: PMC9604045 DOI: 10.1128/spectrum.01136-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/16/2022] [Indexed: 12/30/2022] Open
Abstract
Excessive inflammation in patients with severe influenza disease may lead to acute lung injury that results in acute respiratory distress syndrome (ARDS). ARDS is associated with alveolar damage and pulmonary edema that severely impair gas exchange, leading to hypoxia. With no existing FDA-approved treatment for ARDS, it is important to understand the factors that lead to virus-induced ARDS development to improve prevention, diagnosis, and treatment. We have previously shown that mice deficient in the serine-threonine mitogen-activated protein kinase, Tpl2 (MAP3K8 or COT), succumb to infection with a typically low-pathogenicity strain of influenza A virus (IAV; HKX31, H3N2 [x31]). The goal of the current study was to evaluate influenza A virus-infected Tpl2-/- mice clinically and histopathologically to gain insight into the disease mechanism. We hypothesized that Tpl2-/- mice succumb to IAV infection due to development of ARDS-like disease and pulmonary dysfunction. We observed prominent signs of alveolar septal necrosis, hyaline membranes, pleuritis, edema, and higher lactate dehydrogenase (LDH) levels in the lungs of IAV-infected Tpl2-/- mice compared to wild-type (WT) mice from 7 to 9 days postinfection (dpi). Notably, WT mice showed signs of regenerating epithelium, indicative of repair and recovery, that were reduced in Tpl2-/- mice. Furthermore, biomarkers associated with human ARDS cases were upregulated in Tpl2-/- mice at 7 dpi, demonstrating an ARDS-like phenotype in Tpl2-/- mice in response to IAV infection. IMPORTANCE This study demonstrates the protective role of the serine-threonine mitogen-activated protein kinase, Tpl2, in influenza virus pathogenesis and reveals that host Tpl2 deficiency is sufficient to convert a low-pathogenicity influenza A virus infection into severe influenza disease that resembles ARDS, both histopathologically and transcriptionally. The IAV-infected Tpl2-/- mouse thereby represents a novel murine model for studying ARDS-like disease that could improve our understanding of this aggressive disease and assist in the design of better diagnostics and treatments.
Collapse
Affiliation(s)
- Krishna Latha
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Sanjana Rao
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | - Wendy T. Watford
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
10
|
Koch CM, Prigge AD, Setar L, Anekalla KR, Do-Umehara HC, Abdala-Valencia H, Politanska Y, Shukla A, Chavez J, Hahn GR, Coates BM. Cilia-related gene signature in the nasal mucosa correlates with disease severity and outcomes in critical respiratory syncytial virus bronchiolitis. Front Immunol 2022; 13:924792. [PMID: 36211387 PMCID: PMC9540395 DOI: 10.3389/fimmu.2022.924792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) can cause life-threatening respiratory failure in infants. We sought to characterize the local host response to RSV infection in the nasal mucosa of infants with critical bronchiolitis and to identify early admission gene signatures associated with clinical outcomes. Methods Nasal scrape biopsies were obtained from 33 infants admitted to the pediatric intensive care unit (PICU) with critical RSV bronchiolitis requiring non-invasive respiratory support (NIS) or invasive mechanical ventilation (IMV), and RNA sequencing (RNA-seq) was performed. Gene expression in participants who required shortened NIS (</= 3 days), prolonged NIS (> 3 days), and IMV was compared. Findings Increased expression of ciliated cell genes and estimated ciliated cell abundance, but not immune cell abundance, positively correlated with duration of hospitalization in infants with critical bronchiolitis. A ciliated cell signature characterized infants who required NIS for > 3 days while a basal cell signature was present in infants who required NIS for </= 3 days, despite both groups requiring an equal degree of respiratory support at the time of sampling. Infants who required invasive mechanical ventilation had increased expression of genes involved in neutrophil activation and cell death. Interpretation Increased expression of cilia-related genes in clinically indistinguishable infants with critical RSV may differentiate between infants who will require prolonged hospitalization and infants who will recover quickly. Validation of these findings in a larger cohort is needed to determine whether a cilia-related gene signature can predict duration of illness in infants with critical bronchiolitis. The ability to identify which infants with critical RSV bronchiolitis may require prolonged hospitalization using non-invasive nasal samples would provide invaluable prognostic information to parents and medical providers.
Collapse
Affiliation(s)
- Clarissa M. Koch
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrew D. Prigge
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Leah Setar
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | | | | | | | - Yuliya Politanska
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Avani Shukla
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Jairo Chavez
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Grant R. Hahn
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Bria M. Coates
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- *Correspondence: Bria M. Coates,
| |
Collapse
|
11
|
Pacheco-Hernández LM, Ramírez-Noyola JA, Gómez-García IA, Ignacio-Cortés S, Zúñiga J, Choreño-Parra JA. Comparing the Cytokine Storms of COVID-19 and Pandemic Influenza. J Interferon Cytokine Res 2022; 42:369-392. [PMID: 35674675 PMCID: PMC9422807 DOI: 10.1089/jir.2022.0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
Emerging respiratory viruses are major health threats due to their potential to cause massive outbreaks. Over the past 2 years, the coronavirus disease 2019 (COVID-19) pandemic has caused millions of cases of severe infection and deaths worldwide. Although natural and vaccine-induced protective immune mechanisms against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been increasingly identified, the factors that determine morbimortality are less clear. Comparing the immune signatures of COVID-19 and other severe respiratory infections such as the pandemic influenza might help dissipate current controversies about the origin of their severe manifestations. As such, identifying homologies in the immunopathology of both diseases could provide targets for immunotherapy directed to block shared pathogenic mechanisms. Meanwhile, finding unique characteristics that differentiate each infection could shed light on specific immune alterations exploitable for diagnostic and individualized therapeutics for each case. In this study, we summarize immunopathological aspects of COVID-19 and pandemic influenza from the perspective of cytokine storms as the driving force underlying morbidity. Thereby, we analyze similarities and differences in the cytokine profiles of both infections, aiming to bring forward those molecules more attractive for translational medicine and drug development.
Collapse
Affiliation(s)
- Lynette Miroslava Pacheco-Hernández
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Jazmín Ariadna Ramírez-Noyola
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Programa de Maestría en Ciencias de la Salud, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón and Plan de San Luis, Mexico City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Sergio Ignacio-Cortés
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| |
Collapse
|
12
|
Britto C, Mohorianu I, Yeung T, Cheung E, Novak T, Hall MW, Mourani PM, Weiss SL, Thomas NJ, Markovitz B, Randolph AG, Moffitt KL. Host respiratory transcriptome signature associated with poor outcome in children with influenza-Staphylococcus aureus pneumonia. J Infect Dis 2022; 226:1286-1294. [PMID: 35899844 DOI: 10.1093/infdis/jiac325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
Respiratory coinfection of influenza with Staphylococcus aureus often causes severe disease; methicillin resistant S. aureus (MRSA) coinfection is frequently fatal. Understanding disease pathogenesis may inform therapies. We aimed to identify host and pathogen transcriptomic (mRNA) signatures from the respiratory compartment of patients with influenza-S. aureus coinfection (ISAC) critical illness that predict worse outcomes. mRNA extracted from endotracheal aspirates was evaluated for S. aureus and host transcriptomic biosignatures. Influenza-MRSA outcomes were worse, but of 190 S. aureus virulence-associated genes, 6 were differentially expressed between MRSA- versus methicillin-susceptible S. aureus coinfected patients and none discriminated outcome. Host gene expression in ISAC patients was compared to influenza infection alone. Patients with poor clinical outcomes (death or prolonged multi-organ dysfunction) had relatively reduced expression of interferons and down-regulation of interferon gamma-induced immune cell chemoattractants CXCL10 and CXCL11. In influenza-S. aureus respiratory coinfection, airway host but not pathogen gene expression profiles predicted worse clinical outcomes.
Collapse
Affiliation(s)
- Carl Britto
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK.,Division of Infectious Disease, St. John's Research Institute, Bengaluru, India
| | - Irina Mohorianu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK.,Wellcome-MRC Cambridge, Stem Cell Institute, University of Cambridge, UK
| | - Tracy Yeung
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Elaine Cheung
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Tanya Novak
- Department of Anesthesia, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Mark W Hall
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Peter M Mourani
- Department of Pediatrics, Section of Critical Care Medicine, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Scott L Weiss
- Division of Critical Care, Department of Anesthesiology and Critical Care, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Neal J Thomas
- Department of Pediatrics, Penn State Hershey Children's Hospital, Penn State University College of Medicine, Hershey, PA, USA
| | - Barry Markovitz
- Department of Anesthesiology Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Adrienne G Randolph
- Department of Anesthesia, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Anesthesia, Harvard Medical School, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Kristin L Moffitt
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Froggatt HM, Heaton NS. Nonrespiratory sites of influenza-associated disease: mechanisms and experimental systems for continued study. FEBS J 2022; 289:4038-4060. [PMID: 35060315 PMCID: PMC9300775 DOI: 10.1111/febs.16363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/20/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
The productive replication of human influenza viruses is almost exclusively restricted to cells in the respiratory tract. However, a key aspect of the host response to viral infection is the production of inflammatory cytokines and chemokines that are not similarly tissue restricted. As such, circulating inflammatory mediators, as well as the resulting activated immune cells, can induce damage throughout the body, particularly in individuals with underlying conditions. As a result, more holistic experimental approaches are required to fully understand the pathogenesis and scope of influenza virus-induced disease. This review summarizes what is known about some of the most well-appreciated nonrespiratory tract sites of influenza virus-induced disease, including neurological, cardiovascular, gastrointestinal, muscular and fetal developmental phenotypes. In the context of this discussion, we describe the in vivo experimental systems currently being used to study nonrespiratory symptoms. Finally, we highlight important future questions and potential models that can be used for a more complete understanding of influenza virus-induced disease.
Collapse
Affiliation(s)
- Heather M. Froggatt
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
14
|
Xia C, Xu W, Ai X, Zhu Y, Geng P, Niu Y, Zhu H, Zhou W, Huang H, Shi X. Autophagy and Exosome Coordinately Enhance Macrophage M1 Polarization and Recruitment in Influenza A Virus Infection. Front Immunol 2022; 13:722053. [PMID: 35371077 PMCID: PMC8967985 DOI: 10.3389/fimmu.2022.722053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
Background Influenza A virus infection results in viral pneumonia, which is often accompanied by the infiltration and recruitment of macrophages, overactivation of inflammatory responses, and obvious cell autophagy and exosome production. However, little is known about the roles of autophagy and exosome production in these inflammatory responses. Methods In this study, multiple methods, such as flow cytometry, real-time quantitative reverse transcription-polymerase chain reaction, immune–fluorescence technology, and western blot, were applied to explore the possible effects of autophagy and exosome production by H1N1-infected host cells. Results It was observed that a high number of polarized macrophages (CD11b+/F4/80+/CD86+) were recruited to the lung tissues of infected mice, which could be mimicked by tracking the movement of macrophages to H1N1-infected cells in vitro (transwell assays). Furthermore, there was some coordinated upregulation of M1 polarization signs (iNOS/Arg-1 bias) as well as autophagy (LC3) and exosome (CD63) biomarkers in the infected macrophages and epithelial cells. Moreover, exosomes extracted from the supernatant of virus-infected cells were shown to promote the recruitment and polarization of more peritoneal macrophages than the normal group. The fluorescence colocalization of LC3-CD63 and the inhibition of autophagy and exosome signaling pathway further revealed that H1N1 infection seemed to sequentially activate the M1 polarization and recruitment of macrophages via autophagy–exosome dependent pathway. Conclusion Autophagy and exosome production coordinately enhance the M1 polarization and recruitment of macrophages in influenza virus infection, which also provides potential therapeutic targets.
Collapse
Affiliation(s)
- Chengjie Xia
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Weiming Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xin Ai
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Yingqi Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Ping Geng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Yijun Niu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Wei Zhou
- Department of Chemistry, Fudan University, Shanghai, China
| | - Hai Huang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xunlong Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| |
Collapse
|
15
|
Abstract
Although the need for a universal influenza vaccine has long been recognized, only a handful of candidates have been identified so far, with even fewer advancing in the clinical pipeline. The 24–amino acid ectodomain of M2 protein (M2e) has been developed over the past two decades. However, M2e-based vaccine candidates have shortcomings, including the need for several administrations and the lack of sustained antibody titers over time. We report here a vaccine targeting strategy that has the potential to confer sustained and strong protection upon a single shot of a small amount of M2e antigen. The current COVID-19 pandemic has highlighted the importance of developing versatile, powerful platforms for the rapid deployment of vaccines against any incoming threat. Influenza, commonly referred to as “flu,” is a major global public health concern and a huge economic burden to societies. Current influenza vaccines need to be updated annually to match circulating strains, resulting in low take-up rates and poor coverage due to inaccurate prediction. Broadly protective universal flu vaccines that do not need to be updated annually have therefore been pursued. The highly conserved 24–amino acid ectodomain of M2 protein (M2e) is a leading candidate, but its poor immunogenicity has been a major roadblock in its clinical development. Here, we report a targeting strategy that shuttles M2e to a specific dendritic cell subset (cDC1) by engineering a recombinant anti-Clec9A monoclonal antibody fused at each of its heavy chains with three copies of M2e. Single administration in mice of 2 µg of the Clec9A–M2e construct triggered an exceptionally sustained anti-M2e antibody response and resulted in a strong anamnestic protective response upon influenza challenge. Furthermore, and importantly, Clec9A–M2e immunization significantly boosted preexisting anti-M2e titers from prior flu exposure. Thus, the Clec9A-targeting strategy allows antigen and dose sparing, addressing the shortcomings of current M2e vaccine candidates. As the cDC1 subset exists in humans, translation to humans is an exciting and realistic avenue.
Collapse
|
16
|
Rappe JC, Finsterbusch K, Crotta S, Mack M, Priestnall SL, Wack A. A TLR7 antagonist restricts interferon-dependent and -independent immunopathology in a mouse model of severe influenza. J Exp Med 2021; 218:e20201631. [PMID: 34473195 PMCID: PMC8421264 DOI: 10.1084/jem.20201631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 11/04/2022] Open
Abstract
Cytokine-mediated immune-cell recruitment and inflammation contribute to protection in respiratory virus infection. However, uncontrolled inflammation and the "cytokine storm" are hallmarks of immunopathology in severe infection. Cytokine storm is a broad term for a phenomenon with diverse characteristics and drivers, depending on host genetics, age, and other factors. Taking advantage of the differential use of virus-sensing systems by different cell types, we test the hypothesis that specifically blocking TLR7-dependent, immune cell-produced cytokines reduces influenza-related immunopathology. In a mouse model of severe influenza characterized by a type I interferon (IFN-I)-driven cytokine storm, TLR7 antagonist treatment leaves epithelial antiviral responses unaltered but acts through pDCs and monocytes to reduce IFN-I and other cytokines in the lung, thus ameliorating inflammation and severity. Moreover, even in the absence of IFN-I signaling, TLR7 antagonism reduces inflammation and mortality driven by monocyte-produced chemoattractants and neutrophil recruitment into the infected lung. Hence, TLR7 antagonism reduces diverse types of cytokine storm in severe influenza.
Collapse
Affiliation(s)
- Julie C.F. Rappe
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | | | - Stefania Crotta
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Simon L. Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
- Experimental Histopathology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Andreas Wack
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
17
|
Lin CH, Chen CH, Hong SY, Lin SS, Chou IC, Lin HC, Chang JS. Comparison of severe pediatric complicated influenza patients with and without neurological involvement. Medicine (Baltimore) 2021; 100:e25716. [PMID: 33907160 PMCID: PMC8084033 DOI: 10.1097/md.0000000000025716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/28/2020] [Accepted: 03/31/2021] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Although influenza is generally an acute, self-limited, and uncomplicated disease in healthy children, it can result in severe morbidity and mortality. The objectives of this study were to analyze and compare the clinical features and outcome of severe pediatric influenza with and without central nervous system (CNS) involvement.We conducted a retrospective observational study of children admitted to the pediatric intensive care unit (PICU) of China Medical University Children's Hospital in Taiwan with a confirmed diagnosis of influenza. The demographic data, clinical and laboratory presentations, therapeutic strategies, and neurodevelopmental outcomes for these patients were analyzed. Furthermore, comparison of patients with and without CNS involvement was conducted.A total of 32 children with severe influenza were admitted during the study periods. Sixteen children were categorized as the non-CNS (nCNS) group and 16 children were categorized as the CNS group. Nine of them had underlying disease. The most common complication in the nCNS group was acute respiratory distress syndrome, (n = 8/16), followed by pneumonia (n = 7/16, 44%). In the CNS group, the most lethal complication was acute necrotizing encephalopathy (n = 3/16) which led to 3 deaths. The overall mortality rate was higher in the CNS group (n = 6) than in the nCNS group (n = 1) (37.5% vs 6.25%, P = .03).The mortality rate of severe complicated influenza was significantly higher with CNS involvement. Children with primary cardiopulmonary abnormalities were at high risk of developing severe complicated influenza, while previously healthy children exhibited risk for influenza-associated encephalitis/encephalopathy.
Collapse
Affiliation(s)
- Chien-Heng Lin
- Division of Pediatric Pulmonology, China Medical University Children's Hospital
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung
| | - Chieh-Ho Chen
- Division of Pediatric Pulmonology, China Medical University Children's Hospital
| | | | | | | | | | - Jeng-Sheng Chang
- Divison of Pediatric Cardiology, China Medical University Children's Hospital, Taiwan
| |
Collapse
|
18
|
Ryabkova VA, Churilov LP, Shoenfeld Y. Influenza infection, SARS, MERS and COVID-19: Cytokine storm - The common denominator and the lessons to be learned. Clin Immunol 2021; 223:108652. [PMID: 33333256 PMCID: PMC7832378 DOI: 10.1016/j.clim.2020.108652] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/29/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
The outbreak of COVID-19 reminds us that the emerging and reemerging respiratory virus infections pose a continuing threat to human life. Cytokine storm syndromes of viral origin seem to have a common pathogenesis of the imbalanced immune response with the exaggerated inflammatory reaction combined with the reduction and functional exhaustion of T cells. Immunomodulatory therapy is gaining interest in COVID-19, but this strategy has received less attention in other respiratory viral infections than it deserved. In this review we suggest that based on the similarities of the immune dysfunction in the severe cases of different respiratory viral infections, some lessons from the immunomodulatory therapy of COVID-19 (particularly regarding the choice of an immunomodulatory drug, the selection of patients and optimal time window for this kind of therapy) could be applied for some cases of severe influenza infection and probably for some future outbreaks of novel severe respiratory viral infections.
Collapse
Affiliation(s)
- Varvara A Ryabkova
- Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, Saint-Petersburg, Russian Federation
| | - Leonid P Churilov
- Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, Saint-Petersburg, Russian Federation
| | - Yehuda Shoenfeld
- Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, Saint-Petersburg, Russian Federation; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated to Tel-Aviv University School of Medicine, Tel-Hashomer, Israel.
| |
Collapse
|
19
|
Ma N, Li X, Jiang H, Dai Y, Xu G, Zhang Z. Influenza Virus Neuraminidase Engages CD83 and Promotes Pulmonary Injury. J Virol 2021; 95:e01753-20. [PMID: 33177200 PMCID: PMC7925101 DOI: 10.1128/jvi.01753-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Influenza A viruses cause severe respiratory illnesses in humans and animals. Overreaction of the innate immune response to influenza virus infection results in hypercytokinemia, which is responsible for mortality and morbidity. However, the mechanism by which influenza induces hypercytokinemia is not fully understood. In this study, we established a mouse-adapted H9N2 virus, MA01, to evaluate the innate immune response to influenza in the lung. MA01 infection caused high levels of cytokine release, enhanced pulmonary injury in mice, and upregulated CD83 protein in dendritic cells and macrophages in the lung. Influenza virus neuraminidase (NA) unmasked CD83 protein and contributed to high cytokine levels. Furthermore, we provide evidence that CD83 is a sialylated glycoprotein. Neuraminidase treatment enhanced lipopolysaccharide (LPS)-stimulated NF-κB activation in RAW264.7 cells. Anti-CD83 treatment alleviated influenza virus-induced lung injury in mice. Our study indicates that influenza virus neuraminidase modulates CD83 status and contributes to the "cytokine storm," which may suggest a new approach to curb this immune injury.IMPORTANCE The massive release of circulating mediators of inflammation is responsible for lung injury during influenza A virus infection. This phenomenon is referred to as the "cytokine storm." However, the mechanism by which influenza induces the cytokine storm is not fully understood. In this study, we have shown that neuraminidase unmasked CD83 protein in the lung and contributed to high cytokine levels. Anti-CD83 treatment could diminish immune damage to lung tissue. The NA-CD83 axis may represent a target for an interruption of influenza-induced lung damage.
Collapse
Affiliation(s)
- Ning Ma
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xingjie Li
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Hongyu Jiang
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yulong Dai
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Guofeng Xu
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zongde Zhang
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
20
|
Exuberant fibroblast activity compromises lung function via ADAMTS4. Nature 2020; 587:466-471. [PMID: 33116313 DOI: 10.1038/s41586-020-2877-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Severe respiratory infections can result in acute respiratory distress syndrome (ARDS)1. There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS1,2. Here we demonstrate that respiratory viral infection induces distinct fibroblast activation states, which we term extracellular matrix (ECM)-synthesizing, damage-responsive and interferon-responsive states. We provide evidence that excess activity of damage-responsive lung fibroblasts drives lethal immunopathology during severe influenza virus infection. By producing ECM-remodelling enzymes-in particular the ECM protease ADAMTS4-and inflammatory cytokines, damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell infiltration at the expense of lung function. In three cohorts of human participants, the levels of ADAMTS4 in the lower respiratory tract were associated with the severity of infection with seasonal or avian influenza virus. A therapeutic agent that targets the ECM protease activity of damage-responsive lung fibroblasts could provide a promising approach to preserving lung function and improving clinical outcomes following severe respiratory infections.
Collapse
|
21
|
Flerlage T, Souquette A, Allen EK, Brahm T, Crawford JC, Tang L, Sun Y, Maron G, Wolf J, Triplett B, Thomas PG. Nasal Wash Cytokines during Respiratory Viral Infection in Pediatric Allogeneic Hematopoietic Cell-Transplant Recipients. Am J Respir Cell Mol Biol 2020; 63:349-361. [PMID: 32551899 DOI: 10.1165/rcmb.2020-0014oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Allogeneic hematopoietic cell-transplant (alloHCT) recipients are at increased risk of complications from viral respiratory-tract infections (vRTIs). We measured cytokine concentrations in nasal washes (NWs) from pediatric alloHCT recipients to better understand their local response to vRTI. Forty-one immunologic analytes were measured in 70 NWs, collected during and after vRTI, from 15 alloHCT recipients (median age, 11 yr) with 19 episodes of vRTI. These were compared with NW cytokine concentrations from an independent group of otherwise healthy patients. AlloHCT recipients are able to produce a local response to vRTI and produce IFN-α2 and IL-12p40 in significant quantities above an uninfected baseline early in infection. Compared with otherwise healthy comparator-group patients, alloHCT recipients have higher NW concentrations of IL-4 when challenged with vRTI. Further study of these immunologic analytes as well as of type 1 versus type 2 balance in the respiratory mucosa in the context of vRTI during immune reconstitution may be of future research interest in this vulnerable patient population.
Collapse
Affiliation(s)
- Tim Flerlage
- Department of Infectious Diseases.,Division of Pediatric Critical Care Medicine and
| | | | | | | | | | - Li Tang
- Department of Biostatistics, and
| | | | | | - Joshua Wolf
- Department of Infectious Diseases.,Department of Pediatrics, Health Science Center, University of Tennessee, Memphis, Tennessee
| | - Brandon Triplett
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee; and
| | | |
Collapse
|
22
|
Saldanha-Araujo F, Melgaço Garcez E, Silva-Carvalho AE, Carvalho JL. Mesenchymal Stem Cells: A New Piece in the Puzzle of COVID-19 Treatment. Front Immunol 2020; 11:1563. [PMID: 32719683 PMCID: PMC7347794 DOI: 10.3389/fimmu.2020.01563] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is a disease characterized by a strong inflammatory response in severe cases, which fails to respond to corticosteroid therapy. In the context of the current COVID-19 outbreak and the critical information gaps regarding the disease, several different therapeutic strategies are under investigation, including the use of stem cells. In the present manuscript, we provide an analysis of the rationale underlying the application of stem cells to manage COVID-19, and also a comprehensive compendium of the 69 clinical trials underway worldwide aiming to investigate the application of stem cells to treat COVID-19. Even though data are still scarce, it is already possible to observe the protagonism of China in testing mesenchymal stem cells (MSCs) for COVID-19. Furthermore, it is possible to determine that current efforts focus on the use of multiple infusions of high numbers of stem cells and derived products, as well as to acknowledge the positive results obtained by independent groups who publicized the therapeutic benefits provided by such therapies in 51 COVID-19 patients. In such a rapid-paced field, up-to-date systematic studies and meta-analysis will aid the scientific community to separate hype from hope and offer an unbiased position to the society and governments.
Collapse
Affiliation(s)
- Felipe Saldanha-Araujo
- Hematology and Stem Cells Laboratory, Health Sciences Department, University of Brasília, Brasilia, Brazil
- Molecular Pharmacology Laboratory, Health Sciences Department, University of Brasília, Brasilia, Brazil
| | - Emãnuella Melgaço Garcez
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | | | - Juliana Lott Carvalho
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, Brasilia, Brazil
| |
Collapse
|
23
|
Abstract
It has been over 100 years since the 1918 influenza pandemic, one of the most infamous examples of viral immunopathology. Since that time, there has been an inevitable repetition of influenza pandemics every few decades and yearly influenza seasons, which have a significant impact on human health. Recently, noteworthy progress has been made in defining the cellular and molecular mechanisms underlying pathology induced by an exuberant host response to influenza virus infection. Infection with influenza viruses is associated with a wide spectrum of disease, from mild symptoms to severe complications including respiratory failure, and the severity of influenza disease is driven by a complex interplay of viral and host factors. This chapter will discuss mechanisms of infection severity using concepts of disease resistance and tolerance as a framework for understanding the balance between viral clearance and immunopathology. We review mechanistic studies in animal models of infection and correlational studies in humans that have begun to define these factors and discuss promising host therapeutic targets to improve outcomes from severe influenza disease.
Collapse
Affiliation(s)
- David F Boyd
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Taylor L Wilson
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States; Department of Microbiology, Immunology, and Biochemistry, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States; Department of Microbiology, Immunology, and Biochemistry, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
24
|
Novak T, Hall MW, McDonald DR, Newhams MM, Mistry AJ, Panoskaltsis-Mortari A, Mourani PM, Loftis LL, Weiss SL, Tarquinio KM, Markovitz B, Hartman ME, Schwarz A, Junger WG, Randolph AG. RIG-I and TLR4 responses and adverse outcomes in pediatric influenza-related critical illness. J Allergy Clin Immunol 2020; 145:1673-1680.e11. [PMID: 32035159 PMCID: PMC7323584 DOI: 10.1016/j.jaci.2020.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Decreased TNF-α production in whole blood after ex vivo LPS stimulation indicates suppression of the Toll-like receptor (TLR)4 pathway. This is associated with increased mortality in pediatric influenza critical illness. Whether antiviral immune signaling pathways are also suppressed in these patients is unclear. OBJECTIVES We sought to evaluate suppression of the TLR4 and the antiviral retinoic acid-inducible gene-I (RIG-I) pathways with clinical outcomes in children with severe influenza infection. METHODS In this 24-center, prospective, observational cohort study of children with confirmed influenza infection, blood was collected within 72 hours of intensive care unit admission. Ex vivo whole blood stimulations were performed with matched controls using the viral ligand polyinosinic-polycytidylic acid-low-molecular-weight/LyoVec and LPS to evaluate IFN-α and TNF-α production capacities (RIG-I and TLR4 pathways, respectively). RESULTS Suppression of either IFN-α or TNF-α production capacity was associated with longer duration of mechanical ventilation and hospitalization, and increased organ dysfunction. Children with suppression of both RIG-I and TLR4 pathways (n = 33 of 103 [32%]) were more likely to have prolonged (≥7 days) multiple-organ dysfunction syndrome (30.3% vs 8.6%; P = .004) or prolonged hypoxemic respiratory failure (39.4% vs 11.4%; P = .001) compared with those with single- or no pathway suppression. CONCLUSIONS Suppression of both RIG-I and TLR4 signaling pathways, essential for respective antiviral and antibacterial responses, is common in previously immunocompetent children with influenza-related critical illness and is associated with bacterial coinfection and adverse outcomes. Prospective testing of both pathways may aid in risk-stratification and in immune monitoring.
Collapse
Affiliation(s)
- Tanya Novak
- Boston Children's Hospital, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Mass; Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass; Department of Anesthesia, Harvard Medical School, Boston
| | - Mark W Hall
- Nationwide Children's Hospital, Division of Critical Care Medicine, Department of Pediatrics, Columbus, Ohio
| | - Douglas R McDonald
- Boston Children's Hospital, Division of Immunology and Harvard Medical School Department of Pediatrics, Boston, Mass
| | - Margaret M Newhams
- Boston Children's Hospital, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Mass
| | - Anushay J Mistry
- Boston Children's Hospital, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Mass
| | | | - Peter M Mourani
- Section of Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colo
| | - Laura L Loftis
- Section of Critical Care Medicine, Department of Pediatrics, Texas Children's Hospital, Houston, Tex
| | - Scott L Weiss
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Keiko M Tarquinio
- Division of Pediatric Critical Care Medicine, Children's Healthcare of Atlanta at Egleston, Department of Pediatrics, Emory University School of Medicine, Atlanta, Ga
| | - Barry Markovitz
- Department of Anesthesiology Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, Calif
| | - Mary E Hartman
- Department of Pediatrics, St Louis Children's Hospital, St Louis, Mo
| | - Adam Schwarz
- Department of Pediatrics, Children's Hospital of Orange County, Orange, Calif
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass
| | - Adrienne G Randolph
- Boston Children's Hospital, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Mass; Department of Anesthesia, Harvard Medical School, Boston.
| |
Collapse
|
25
|
Anania VG, Randolph AG, Yang X, Nguyen A, Newhams MM, Mathews WR, Rosenberger CM, McBride JM. Early Amplified Respiratory Bioactive Lipid Response Is Associated With Worse Outcomes in Pediatric Influenza-Related Respiratory Failure. Open Forum Infect Dis 2020; 7:ofaa122. [PMID: 32420403 PMCID: PMC7216777 DOI: 10.1093/ofid/ofaa122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
Background Biomarkers are needed for early identification of patients at risk of severe complications from influenza infection, including prolonged respiratory failure and death. Eicosanoids are bioactive lipid mediators with pro- and anti-inflammatory properties produced in response to infection. This study assessed the relationships between the host bioactive lipid response, influenza viral load, and clinical outcomes. Methods Influenza-positive, intubated children ≤18 years old were enrolled across 26 US pediatric intensive care units (PICUs). Mass spectrometry was used to measure >100 lipid metabolites in endotracheal and nasopharyngeal samples. Influenza viral load was measured by quantitative polymerase chain reaction. Results Age and bacterial co-infection were associated with multiple bioactive lipids (P < .05). Influenza viral load was lower in patients with bacterial co-infection compared with those without, and pro-inflammatory bioactive lipids positively correlated with viral load in bacterially co-infected children (P < .05). Lipids associated with disease resolution correlated with viral load in patients without bacterial co-infection (P < .01). After adjusting for age and bacterial co-infection status, elevated pro- and anti-inflammatory lipids measured early in the intensive care unit course were associated with higher mortality, whereas influenza viral load and endotracheal cytokine levels were not associated with clinical outcomes. Prostaglandin E2, arachidonic acid, docosahexaenoic acid, and 12-hydroxyeicosatetraenoic acid measured within 72 hours of PICU admission predicted death or prolonged (≥28 days) mechanical ventilator support (area under the curve, 0.72-0.79; P < .02) not explained by admission illness severity. Conclusions Children with influenza-related complications have early bioactive lipid responses that may reflect lung disease severity. Respiratory bioactive lipids are candidate prognostic biomarkers to identify children with the most severe clinical outcomes.
Collapse
Affiliation(s)
- Veronica G Anania
- Department of Biomarker Development, Genentech, Inc., South San Francisco, California, USA
| | - Adrienne G Randolph
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Departments of Anaesthesia and Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoying Yang
- Department of Biostatistics, Genentech, Inc., South San Francisco, California, USA
| | - Allen Nguyen
- Department of Biomarker Development, Genentech, Inc., South San Francisco, California, USA
| | - Margaret M Newhams
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - W Rodney Mathews
- Department of Biomarker Development, Genentech, Inc., South San Francisco, California, USA
| | - Carrie M Rosenberger
- Department of Biomarker Discovery, Genentech, Inc., South San Francisco, California, USA
| | - Jacqueline M McBride
- Department of Biomarker Development, Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
26
|
Higher virulence of swine H1N2 influenza viruses containing avian-origin HA and 2009 pandemic PA and NP in pigs and mice. Arch Virol 2020; 165:1141-1150. [PMID: 32222822 PMCID: PMC7223331 DOI: 10.1007/s00705-020-04572-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/31/2020] [Indexed: 01/08/2023]
Abstract
Pigs are capable of harbouring influenza A viruses of human and avian origin in their respiratory tracts and thus act as an important intermediary host to generate novel influenza viruses with pandemic potential by genetic reassortment between the two viruses. Here, we show that two distinct H1N2 swine influenza viruses contain avian-like or classical swine-like hemagglutinins with polymerase acidic (PA) and nucleoprotein (NP) genes from 2009 pandemic H1N1 influenza viruses that were found to be circulating in Korean pigs in 2018. Swine H1N2 influenza virus containing an avian-like hemagglutinin gene had enhanced pathogenicity, causing severe interstitial pneumonia in infected pigs and mice. The mortality rate of mice infected with swine H1N2 influenza virus containing an avian-like hemagglutinin gene was higher by 100% when compared to that of mice infected with swine H1N2 influenza virus harbouring classical swine-like hemagglutinin. Further, chemokines attracting inflammatory cells were strongly induced in lung tissues of pigs and mice infected by swine H1N2 influenza virus containing an avian-like hemagglutinin gene. In conclusion, it is necessary for the well-being of humans and pigs to closely monitor swine influenza viruses containing avian-like hemagglutinin with PA and NP genes from 2009 pandemic H1N1 influenza viruses.
Collapse
|
27
|
Randolph AG, Xu R, Novak T, Newhams MM, Bubeck Wardenburg J, Weiss SL, Sanders RC, Thomas NJ, Hall MW, Tarquinio KM, Cvijanovich N, Gedeit RG, Truemper EJ, Markovitz B, Hartman ME, Ackerman KG, Giuliano JS, Shein SL, Moffitt KL. Vancomycin Monotherapy May Be Insufficient to Treat Methicillin-resistant Staphylococcus aureus Coinfection in Children With Influenza-related Critical Illness. Clin Infect Dis 2020; 68:365-372. [PMID: 29893805 PMCID: PMC6336914 DOI: 10.1093/cid/ciy495] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/08/2018] [Indexed: 12/28/2022] Open
Abstract
Background Coinfection with influenza virus and methicillin-resistant Staphylococcus aureus (MRSA) causes life-threatening necrotizing pneumonia in children. Sporadic incidence precludes evaluation of antimicrobial efficacy. We assessed the clinical characteristics and outcomes of critically ill children with influenza–MRSA pneumonia and evaluated antibiotic use. Methods We enrolled children (<18 years) with influenza infection and respiratory failure across 34 pediatric intensive care units 11/2008–5/2016. We compared baseline characteristics, clinical courses, and therapies in children with MRSA coinfection, non-MRSA bacterial coinfection, and no bacterial coinfection. Results We enrolled 170 children (127 influenza A, 43 influenza B). Children with influenza–MRSA pneumonia (N = 30, 87% previously healthy) were older than those with non-MRSA (N = 61) or no (N = 79) bacterial coinfections. Influenza–MRSA was associated with increased leukopenia, acute lung injury, vasopressor use, extracorporeal life support, and mortality than either group (P ≤ .0001). Influenza-related mortality was 40% with MRSA compared to 4.3% without (relative risk [RR], 9.3; 95% confidence interval [CI], 3.8–22.9). Of 29/30 children with MRSA who received vancomycin within the first 24 hours of hospitalization, mortality was 12.5% (N = 2/16) if treatment also included a second anti-MRSA antibiotic compared to 69.2% (N = 9/13) with vancomycin monotherapy (RR, 5.5; 95% CI, 1.4, 21.3; P = .003). Vancomycin dosing did not influence initial trough levels; 78% were <10 µg/mL. Conclusions Influenza–MRSA coinfection is associated with high fatality in critically ill children. These data support early addition of a second anti-MRSA antibiotic to vancomycin in suspected severe cases.
Collapse
Affiliation(s)
- Adrienne G Randolph
- Department of Anesthesia, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Ruifei Xu
- Department of Anesthesia, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Tanya Novak
- Department of Anesthesia, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Margaret M Newhams
- Department of Anesthesia, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | | | - Scott L Weiss
- Department of Pediatrics, Children's Hospital of Philadelphia, Pennsylvania
| | - Ronald C Sanders
- Section of Pediatric Critical Care, Department of Pediatrics, Arkansas Children's Hospital, Little Rock
| | - Neal J Thomas
- Division of Pediatric Critical Care Medicine, Penn State Hershey Children's Hospital, Pennsylvania
| | - Mark W Hall
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| | - Keiko M Tarquinio
- Division of Critical Care Medicine, Children's Healthcare of Atlanta at Egleston, Emory University School of Medicine, Georgia
| | - Natalie Cvijanovich
- Department of Critical Care Medicine, University of California-San Francisco, Benioff Children's Hospital Oakland
| | - Rainer G Gedeit
- Department of Pediatrics, Children's Hospital of Wisconsin, Milwaukee
| | - Edward J Truemper
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Barry Markovitz
- Department of Anesthesiology Critical Care Medicine, Children's Hospital Los Angeles, California
| | - Mary E Hartman
- Department of Pediatrics, St. Louis Children's Hospital, Missouri
| | - Kate G Ackerman
- Department of Pediatrics, Golisano Children's Hospital, Rochester, New York
| | - John S Giuliano
- Department of Pediatrics, Yale-New Haven Children's Hospital, Connecticut
| | - Steven L Shein
- Division of Pediatric Critical Care Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| | - Kristin L Moffitt
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Massachusetts
| | | |
Collapse
|
28
|
Carlton EF, Flori HR. Biomarkers in pediatric acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:505. [PMID: 31728358 DOI: 10.21037/atm.2019.09.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pediatric acute respiratory distress syndrome (PARDS) is a heterogenous process resulting in a severe acute lung injury. A single indicator does not exist for PARDS diagnosis. Rather, current diagnosis requires a combination of clinical and physiologic variables. Similarly, there is little ability to predict the path of disease, identify those at high risk of poor outcomes or target therapies specific to the underlying pathophysiology. Biomarkers, a measured indicator of a pathologic state or response to intervention, have been studied in PARDS due to their potential in diagnosis, prognostication and measurement of therapeutic response. Additionally, PARDS biomarkers show great promise in furthering our understanding of specific subgroups or endotypes in this highly variable disease, and thereby predict which patients may benefit and which may be harmed by PARDS specific therapies. In this chapter, we review the what, when, why and how of biomarkers in PARDS and discuss future directions in this quickly changing landscape.
Collapse
Affiliation(s)
- Erin F Carlton
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Heidi R Flori
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Noroviruses are a major cause of gastroenteritis. This review summarizes new information on noroviruses that may lead to the development of improved measures for limiting their human health impact. RECENT FINDINGS GII.4 strains remain the most common human noroviruses causing disease, although GII.2 and GII.17 strains have recently emerged as dominant strains in some populations. Histo-blood group antigen (HBGA) expression on the gut mucosa drives susceptibility to different norovirus strains. Antibodies that block virus binding to these glycans correlate with protection from infection and illness. Immunocompromised patients are significantly impacted by norovirus infection, and the increasing availability of molecular diagnostics has improved infection recognition. Human noroviruses can be propagated in human intestinal enteroid cultures containing enterocytes that are a significant primary target for initiating infection. Strain-specific requirements for replication exist with bile being essential for some strains. Several vaccine candidates are progressing through preclinical and clinical development and studies of potential antiviral interventions are underway. SUMMARY Norovirus epidemiology is complex and requires continued surveillance to track the emergence of new strains and recombinants, especially with the continued progress in vaccine development. Humans are the best model to study disease pathogenesis and prevention. New in-vitro cultivation methods should lead to better approaches for understanding virus-host interactions and ultimately to improved strategies for mitigation of human norovirus-associated disease.
Collapse
|
30
|
Cohen L, Fiore-Gartland A, Randolph AG, Panoskaltsis-Mortari A, Wong SS, Ralston J, Wood T, Seeds R, Huang QS, Webby RJ, Thomas PG, Hertz T. A Modular Cytokine Analysis Method Reveals Novel Associations With Clinical Phenotypes and Identifies Sets of Co-signaling Cytokines Across Influenza Natural Infection Cohorts and Healthy Controls. Front Immunol 2019; 10:1338. [PMID: 31275311 PMCID: PMC6594355 DOI: 10.3389/fimmu.2019.01338] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
Cytokines and chemokines are key signaling molecules of the immune system. Recent technological advances enable measurement of multiplexed cytokine profiles in biological samples. These profiles can then be used to identify potential biomarkers of a variety of clinical phenotypes. However, testing for such associations for each cytokine separately ignores the highly context-dependent covariation in cytokine secretion and decreases statistical power to detect associations due to multiple hypothesis testing. Here we present CytoMod-a novel data-driven approach for analysis of cytokine profiles that uses unsupervised clustering and regression to identify putative functional modules of co-signaling cytokines. Each module represents a biosignature of co-signaling cytokines. We applied this approach to three independent clinical cohorts of subjects naturally infected with influenza in which cytokine profiles and clinical phenotypes were collected. We found that in two out of three cohorts, cytokine modules were significantly associated with clinical phenotypes, and in many cases these associations were stronger than the associations of the individual cytokines within them. By comparing cytokine modules across datasets, we identified cytokine "cores"-specific subsets of co-expressed cytokines that clustered together across the three cohorts. Cytokine cores were also associated with clinical phenotypes. Interestingly, most of these cores were also co-expressed in a cohort of healthy controls, suggesting that in part, patterns of cytokine co-signaling may be generalizable. CytoMod can be readily applied to any cytokine profile dataset regardless of measurement technology, increases the statistical power to detect associations with clinical phenotypes and may help shed light on the complex co-signaling networks of cytokines in both health and infection.
Collapse
Affiliation(s)
- Liel Cohen
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Adrienne G. Randolph
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Departments of Anaesthesia and Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Angela Panoskaltsis-Mortari
- Department of Pediatrics, Bone Marrow Transplantation, Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Sook-San Wong
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Jacqui Ralston
- Institute for Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Upper Hutt, New Zealand
| | - Timothy Wood
- Institute for Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Upper Hutt, New Zealand
| | - Ruth Seeds
- Institute for Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Upper Hutt, New Zealand
| | - Q. Sue Huang
- Institute for Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Upper Hutt, New Zealand
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Tomer Hertz
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| |
Collapse
|
31
|
Martin JM, Avula R, Nowalk MP, Lin CJ, Horne WT, Chandran UR, Nagg JP, Zimmerman RK, Cole KS, Alcorn JF. Inflammatory Mediator Expression Associated With Antibody Response Induced by Live Attenuated vs Inactivated Influenza Virus Vaccine in Children. Open Forum Infect Dis 2018; 5:ofy277. [PMID: 30515427 PMCID: PMC6262113 DOI: 10.1093/ofid/ofy277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/23/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The reasons for differences in vaccine effectiveness between live attenuated influenza vaccine (LAIV) and inactivated influenza vaccine (IIV) are not clear. METHODS Blood samples were obtained before vaccination and at days 7 and 21 postvaccination with 2015-2016 quadrivalent IIV or LAIV. Serologic response to the vaccine was measured by hemagglutination inhibition assay. Targeted RNA sequencing and serum cytokine analysis were performed. Paired analyses were used to determine gene expression and were compared between IIV and LAIV recipients. Classification And Regression Trees analysis (CART) identified the strongest associations with vaccine response. RESULTS Forty-six enrollees received IIV, and 25 received LAIV. The mean age was 11.5 (±3.7) years. Seroconversion with IIV was associated with changes in expression of PRKRA and IFI6. Nonseroconversion for both IIV and LAIV was characterized by increased interferon-stimulated gene expression. Seroprotection with both vaccines was associated with altered expression of CXCL2 and CD36. For LAIV, CART showed that changes in expression of CD80, CXCL2, and CASP1 were associated with seroprotection. Serum cytokines showed that IIV seroconversion was associated with decreased CCL3. LAIV seroprotection tracked with decreased tumor necrosis factor-α and interferon-γ. CONCLUSIONS Distinct markers of seroconversion and seroprotection against IIV and LAIV were identified using immunophenotyping and CART analysis.
Collapse
Affiliation(s)
- Judith M Martin
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Raghunandan Avula
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mary Patricia Nowalk
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chyongchiou Jeng Lin
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William T Horne
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Uma R Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer P Nagg
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Richard K Zimmerman
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kelly S Cole
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John F Alcorn
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
32
|
Clemens EB, van de Sandt C, Wong SS, Wakim LM, Valkenburg SA. Harnessing the Power of T Cells: The Promising Hope for a Universal Influenza Vaccine. Vaccines (Basel) 2018; 6:vaccines6020018. [PMID: 29587436 PMCID: PMC6027237 DOI: 10.3390/vaccines6020018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Next-generation vaccines that utilize T cells could potentially overcome the limitations of current influenza vaccines that rely on antibodies to provide narrow subtype-specific protection and are prone to antigenic mismatch with circulating strains. Evidence from animal models shows that T cells can provide heterosubtypic protection and are crucial for immune control of influenza virus infections. This has provided hope for the design of a universal vaccine able to prime against diverse influenza virus strains and subtypes. However, multiple hurdles exist for the realisation of a universal T cell vaccine. Overall primary concerns are: extrapolating human clinical studies, seeding durable effective T cell resident memory (Trm), population human leucocyte antigen (HLA) coverage, and the potential for T cell-mediated immune escape. Further comprehensive human clinical data is needed during natural infection to validate the protective role T cells play during infection in the absence of antibodies. Furthermore, fundamental questions still exist regarding the site, longevity and duration, quantity, and phenotype of T cells needed for optimal protection. Standardised experimental methods, and eventually simplified commercial assays, to assess peripheral influenza-specific T cell responses are needed for larger-scale clinical studies of T cells as a correlate of protection against influenza infection. The design and implementation of a T cell-inducing vaccine will require a consensus on the level of protection acceptable in the community, which may not provide sterilizing immunity but could protect the individual from severe disease, reduce the length of infection, and potentially reduce transmission in the community. Therefore, increasing the standard of care potentially offered by T cell vaccines should be considered in the context of pandemic preparedness and zoonotic infections, and in combination with improved antibody vaccine targeting methods. Current pandemic vaccine preparedness measures and ongoing clinical trials under-utilise T cell-inducing vaccines, reflecting the myriad questions that remain about how, when, where, and which T cells are needed to fight influenza virus infection. This review aims to bring together basic fundamentals of T cell biology with human clinical data, which need to be considered for the implementation of a universal vaccine against influenza that harnesses the power of T cells.
Collapse
Affiliation(s)
- E Bridie Clemens
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Carolien van de Sandt
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sook San Wong
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sophie A Valkenburg
- HKU Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|