1
|
Noureddine N, Holtzhauer G, Wawrzyniak P, Srikanthan P, Krämer SD, Rogler G, Lucchinetti E, Zaugg M, Hersberger M. Size of lipid emulsion droplets influences metabolism in human CD4 + T cells. Biochem Biophys Res Commun 2024; 733:150680. [PMID: 39278094 DOI: 10.1016/j.bbrc.2024.150680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
SCOPE Triglyceride-based lipid emulsions are critical for total parenteral nutrition (TPN), but their long-term use has adverse effects, such as severe liver dysfunction necessitating improved formulations. This study compares the uptake mechanism and intracellular fate of novel glycerol-stabilized nano-sized lipid emulsions with conventional emulsions in CD4+ T cells, focusing on their impact on cellular metabolism. METHODS AND RESULTS Nanoemulsions were formulated with increased glycerol content. Uptake of emulsions in primary human CD4+ T cells was investigated using different endocytic blockers, then quantified by flow cytometry, and visualized by confocal microscopy. To investigate emulsion intracellular fate, fatty acids in membrane phospholipids were quantified by GC-MS/MS and cellular metabolism was assessed by Seahorse technology. Results show T cells internalize both conventional and nano-sized emulsions using macropinocytosis. Fatty acids from emulsions are stored as neutral lipids in intracellular vesicles and are incorporated into phospholipids of cellular membranes. However, only nanoemulsions additionally use clathrin-mediated endocytosis and deliver fatty acids to mitochondria for increased β-oxidation. CONCLUSIONS Size of lipid emulsion droplets significantly influences their uptake and subsequent metabolism in CD4+ T cells. Our results highlight the potential for improved nutrient utilization with nanoemulsions in TPN formulations possibly leading to less adverse effects.
Collapse
Affiliation(s)
- Nazek Noureddine
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland; Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| | - Gregory Holtzhauer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Paulina Wawrzyniak
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Pakeerathan Srikanthan
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Eliana Lucchinetti
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Michael Zaugg
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland; Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Perera TRW, Bromfield EG, Gibb Z, Nixon B, Sheridan AR, Rupasinghe T, Skerrett-Byrne DA, Swegen A. Plasma Lipidomics Reveals Lipid Signatures of Early Pregnancy in Mares. Int J Mol Sci 2024; 25:11073. [PMID: 39456856 PMCID: PMC11508387 DOI: 10.3390/ijms252011073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Understanding the systemic biochemistry of early pregnancy in the mare is essential for developing new diagnostics and identifying causes for pregnancy loss. This study aimed to elucidate the dynamic lipidomic changes occurring during the initial stages of equine pregnancy, with a specific focus on days 7 and 14 post-ovulation. By analysing and comparing the plasma lipid profiles of pregnant and non-pregnant mares, the objective of this study was to identify potential biomarkers for pregnancy and gain insights into the biochemical adaptations essential for supporting maternal recognition of pregnancy and early embryonic development. Employing discovery lipidomics, we analysed plasma samples from pregnant and non-pregnant mares on days 7 and 14 post-conception using the SCIEX ZenoTOF 7600 system. This high-resolution mass spectrometry approach enabled us to comprehensively profile and compare the lipidomes across these critical early gestational timepoints. Our analysis revealed significant lipidomic alterations between pregnant and non-pregnant mares and between days 7 and 14 of pregnancy. Key findings include the upregulation of bile acids, sphingomyelins, phosphatidylinositols, and triglycerides in pregnant mares. These changes suggest enhanced lipid synthesis and mobilization, likely associated with the embryo's nutritional requirements and the establishment of embryo-maternal interactions. There were significant differences in lipid metabolism between pregnant and non-pregnant mares, with a notable increase in the sterol lipid BA 24:1;O5 in pregnant mares as early as day 7 of gestation, suggesting it as a sensitive biomarker for early pregnancy detection. Notably, the transition from day 7 to day 14 in pregnant mares is characterized by a shift towards lipids indicative of membrane biosynthesis, signalling activity, and preparation for implantation. The study demonstrates the profound lipidomic shifts that occur in early equine pregnancy, highlighting the critical role of lipid metabolism in supporting embryonic development. These findings provide valuable insights into the metabolic adaptations during these period and potential biomarkers for early pregnancy detection in mares.
Collapse
Affiliation(s)
- Tharangani R. W. Perera
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Elizabeth G. Bromfield
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville 3052, Australia
| | - Zamira Gibb
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Alecia R. Sheridan
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | | | - David A. Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| | - Aleona Swegen
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| |
Collapse
|
3
|
Collins TJC, Morgan PK, Man K, Lancaster GI, Murphy AJ. The influence of metabolic disorders on adaptive immunity. Cell Mol Immunol 2024; 21:1109-1119. [PMID: 39134802 PMCID: PMC11442657 DOI: 10.1038/s41423-024-01206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/19/2024] [Indexed: 10/02/2024] Open
Abstract
The immune system plays a crucial role in protecting the body from invading pathogens and maintaining tissue homoeostasis. Maintaining homoeostatic lipid metabolism is an important aspect of efficient immune cell function and when disrupted immune cell function is impaired. There are numerous metabolic diseases whereby systemic lipid metabolism and cellular function is impaired. In the context of metabolic disorders, chronic inflammation is suggested to be a major contributor to disease progression. A major contributor to tissue dysfunction in metabolic disease is ectopic lipid deposition, which is generally caused by diet and genetic factors. Thus, we propose the idea, that similar to tissue and organ damage in metabolic disorders, excessive accumulation of lipid in immune cells promotes a dysfunctional immune system (beyond the classical foam cell) and contributes to disease pathology. Herein, we review the evidence that lipid accumulation through diet can modulate the production and function of immune cells by altering cellular lipid content. This can impact immune cell signalling, activation, migration, and death, ultimately affecting key aspects of the immune system such as neutralising pathogens, antigen presentation, effector cell activation and resolving inflammation.
Collapse
Affiliation(s)
- Thomas J C Collins
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Pooranee K Morgan
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Kevin Man
- Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Graeme I Lancaster
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
4
|
Sarandi E, Krueger-Krasagakis S, Tsoukalas D, Evangelou G, Sifaki M, Kyriakakis M, Paramera E, Papakonstantinou E, Rudofsky G, Tsatsakis A. Novel Fatty Acid Biomarkers in Psoriasis and the Role of Modifiable Factors: Results from the METHAP Clinical Study. Biomolecules 2024; 14:1114. [PMID: 39334880 PMCID: PMC11430636 DOI: 10.3390/biom14091114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Psoriasis is a chronic, immune-mediated skin condition with significant metabolic complications. Although lipid metabolism is linked to its pathogenesis, reliable biomarkers and the impact of modifiable factors remain underexplored. The aim of the present study was to identify potential biomarkers, study the affected metabolic networks, and assess the role of dietary and lifestyle factors in psoriasis. Plasma samples from 56 patients with psoriasis and 49 healthy controls were analyzed, as part of the Metabolic Biomarkers in Hashimoto's Thyroiditis and Psoriasis (METHAP) clinical trial. Using Gas Chromatography-Mass Spectrometry 23 fatty acids and their ratios were quantified, revealing significant changes in psoriasis. Specifically, lower levels of α-linoleic acid (C18:3n3), linoleic acid (C18:2n6), and gamma-linolenic acid (C18:3n6) were observed along with higher levels of eicosatrienoic acid (C20:3n3), eicosapentaenoic acid (C20:5n3), and erucic acid (C22:1n9). Total polyunsaturated fatty acids (PUFA) were significantly decreased, and the ratio of saturated to total fatty acids (SFA/Total) was increased in psoriasis (p-values < 0.0001). Linear regression identified α-linoleic acid, linoleic acid, eicosatrienoic acid, and eicosapentaenoic acid as potential biomarkers for psoriasis, adjusting for demographic, dietary, and lifestyle confounders. Network analysis revealed key contributors in the metabolic reprogramming of psoriasis. These findings highlight the association between psoriasis and fatty acid biomarkers of inflammation, insulin resistance and micronutrients deficiency, suggesting their potency in disease management.
Collapse
Affiliation(s)
- Evangelia Sarandi
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
- Metabolomic Medicine, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | | | - Dimitris Tsoukalas
- Metabolomic Medicine, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
- European Institute of Molecular Medicine, 00198 Rome, Italy
| | - George Evangelou
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Maria Sifaki
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Michael Kyriakakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Efstathia Paramera
- Neolab SA Medical Laboratory, 125 Michalakopoulou Street, 11527 Athens, Greece
| | | | - Gottfried Rudofsky
- Clinic of Endocrinology and Metabolic Disorders, Cantonal Hospital Olten, 4600 Olten, Switzerland
| | - Aristides Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
5
|
Ben-Aicha S, Anwar M, Vilahur G, Martino F, Kyriazis PG, de Winter N, Punjabi PP, Angelini GD, Sattler S, Emanueli C. Small Extracellular Vesicles in the Pericardium Modulate Macrophage Immunophenotype in Coronary Artery Disease. JACC Basic Transl Sci 2024; 9:1057-1072. [PMID: 39444932 PMCID: PMC11494395 DOI: 10.1016/j.jacbts.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 10/25/2024]
Abstract
Coronary artery disease (CAD) is a major health issue. This study focused on pericardial macrophages and small extracellular vesicles (sEVs) in CAD. The macrophages in CAD patients showed reduced expression of protective markers and unchanged levels of proinflammatory receptors. Similar changes were observed in buffy-coat-derived macrophages when stimulated with CAD pericardial fluid-derived sEVs. The sEV contained miRNA-6516-5p, which inhibited CD36 and affected macrophage lipid uptake. These findings indicate that sEV-mediated miRNA actions contribute to the decrease in protective pericardial macrophages in CAD.
Collapse
Affiliation(s)
- Soumaya Ben-Aicha
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Maryam Anwar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Fabiana Martino
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Panagiotis G. Kyriazis
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Hammersmith Hospital, Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Natasha de Winter
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Prakash P. Punjabi
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Gianni D. Angelini
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Hammersmith Hospital, Imperial College Healthcare National Health Service Trust, London, United Kingdom
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Pharmacology, Otto-Loewi Research Center, Medical University of Graz, Graz, Austria
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Yan Y, Yu F, Li Q, Feng X, Geng L, Sun L. Metabolic alterations in vitamin D deficient systemic lupus erythematosus patients. Sci Rep 2024; 14:18879. [PMID: 39143130 PMCID: PMC11325032 DOI: 10.1038/s41598-024-67588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024] Open
Abstract
Vitamin D deficiency is increasingly common in systemic lupus erythematosus (SLE) patients and is associated with the disease activity and proteinuria. Recently, alterations in metabolism have been recognized as key regulators of SLE pathogenesis. Our objective was to identify differential metabolites in the serum metabolome of SLE with vitamin D deficiency. In this study, serum samples from 31 SLE patients were collected. Levels of 25(OH)D3 were assayed by ELISA. Patients were divided into two groups according to their vitamin D level (20 ng/ml). Untargeted metabolomics were used to study the metabolite profiles in serum by high-performance liquid chromatography-tandem mass spectrometry. Subsequently, we performed metabolomics profiling analysis to identify 52 significantly altered metabolites in vitamin D deficient SLE patients. The area under the curve (AUC) from ROC analyses was calculated to assess the diagnostic potential of each candidate metabolite biomarker. Lipids accounted for 66.67% of the differential metabolites in the serum, highlighted the disruption of lipid metabolism. The 52 differential metabolites were mapped to 27 metabolic pathways, with fat digestion and absorption, as well as lipid metabolism, emerging as the most significant pathways. The AUC of (S)-Oleuropeic acid and 2-Hydroxylinolenic acid during ROC analysis were 0.867 and 0.833, respectively, indicating their promising diagnostic potential. In conclusion, our results revealed vitamin D deficiency alters SLE metabolome, impacting lipid metabolism, and thrown insights into the pathogenesis and diagnosis of SLE.
Collapse
Affiliation(s)
- Yunxia Yan
- Department of Rheumatology and Immunology, The Drum Tower Clinical Medical School of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Fangyuan Yu
- School of Medicine, Southeast University, Nanjing, China
| | - Qi Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Linyu Geng
- Department of Rheumatology and Immunology, The Drum Tower Clinical Medical School of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Drum Tower Clinical Medical School of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
7
|
Lim JJ, Lim SW, Reginald K, Say Y, Liu MH, Chew FT. Association of frequent intake of trans fatty acids and saturated fatty acids in diets with increased susceptibility of atopic dermatitis exacerbation in young Chinese adults: A cross-sectional study in Singapore/Malaysia. SKIN HEALTH AND DISEASE 2024; 4:e330. [PMID: 39104637 PMCID: PMC11297457 DOI: 10.1002/ski2.330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/17/2023] [Accepted: 12/24/2023] [Indexed: 08/07/2024]
Abstract
Background & Objective Numerous evidence has attributed diets with a high fatty acids (FAs) intake to be associated with atopic dermatitis (AD) development. Therefore, this study investigated the association between intake frequencies of five dietary FAs and AD exacerbations among young Chinese adults from Singapore and Malaysia. Methods A validated International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire was investigator-administered to 13,561 subjects to collect information on socioeconomic, anthropometric, dietary and lifestyles habits, and personal/family medical histories. Six novel dietary indices were derived to analyse the associations between total FAs, trans fatty acids (TFAs), saturated fatty acids (SFAs), monounsaturated fatty acids, linoleic acids, and alpha-linolenic acids in diets and AD exacerbation. Synergy factor (SF) analysis was used to identify interactions between the dietary FAs to influence disease susceptibility. Results In our multivariable model adjusted for age, gender, BMI, parental eczema, and lifestyle factors, a diet high in total estimated FAs was strongly associated with AD (Adjusted Odds Ratio (AOR): 1.227; 95% Confidence Interval (CI): 1.054-1.429; adjusted p-value <0.01). Particularly, high estimated total TFAs and SFAs were significantly associated with AD exacerbations including chronic and current moderate-to-severe AD. The association between TFAs and AD remained strong even controlled for the total FAs in diets and false discovery rate corrected (AOR: 1.516; 95% CI: 1.094-2.097; adjusted p-value <0.05). Similarly, having a high SFAs in diets was associated with AD (AOR: 1.581; 95% CI: 1.106-2.256; adjusted p-value <0.05) independently on the total FAs in diets. FAs in diets do not interact to influence AD. Conclusion Overall, these results highlighted an association between high dietary TFAs and SFAs and AD exacerbations in an Asian population.
Collapse
Affiliation(s)
- Jun Jie Lim
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Sing Wei Lim
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Kavita Reginald
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- Department of Biological SciencesSchool of Medicine and Life SciencesSunway UniversityPetaling JayaMalaysia
| | - Yee‐How Say
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- Department of Biological SciencesSchool of Medicine and Life SciencesSunway UniversityPetaling JayaMalaysia
- Department of Biomedical ScienceFaculty of ScienceUniversiti Tunku Abdul Rahman (UTAR)KamparMalaysia
| | - Mei Hui Liu
- Department of Food Science & TechnologyFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Fook Tim Chew
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| |
Collapse
|
8
|
Peeters R, Jellusova J. Lipid metabolism in B cell biology. Mol Oncol 2024; 18:1795-1813. [PMID: 38013654 PMCID: PMC11223608 DOI: 10.1002/1878-0261.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
In recent years, the field of immunometabolism has solidified its position as a prominent area of investigation within the realm of immunological research. An expanding body of scientific literature has unveiled the intricate interplay between energy homeostasis, signalling molecules, and metabolites in relation to fundamental aspects of our immune cells. It is now widely accepted that disruptions in metabolic equilibrium can give rise to a myriad of pathological conditions, ranging from autoimmune disorders to cancer. Emerging evidence, although sometimes fragmented and anecdotal, has highlighted the indispensable role of lipids in modulating the behaviour of immune cells, including B cells. In light of these findings, this review aims to provide a comprehensive overview of the current state of knowledge regarding lipid metabolism in the context of B cell biology.
Collapse
Affiliation(s)
- Rens Peeters
- School of Medicine and Health, Institute of Clinical Chemistry and PathobiochemistryTechnical University of MunichGermany
- TranslaTUM, Center for Translational Cancer ResearchTechnical University of MunichGermany
| | - Julia Jellusova
- School of Medicine and Health, Institute of Clinical Chemistry and PathobiochemistryTechnical University of MunichGermany
- TranslaTUM, Center for Translational Cancer ResearchTechnical University of MunichGermany
| |
Collapse
|
9
|
Joy J, Gervassi A, Chen L, Kirshenbaum B, Styrchak S, Ko D, McLaughlin S, Shao D, Kosmider E, Edlefsen PT, Maenza J, Collier AC, Mullins JI, Horton H, Frenkel LM. Antigen specificities and proviral integration sites differ in HIV-infected cells by timing of antiretroviral treatment initiation. J Clin Invest 2024; 134:e159569. [PMID: 38833307 PMCID: PMC11245156 DOI: 10.1172/jci159569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Despite effective antiretroviral therapy (ART), persons living with HIV harbor reservoirs of persistently infected CD4+ cells, which constitute a barrier to cure. Initiation of ART during acute infection reduces the size of the HIV reservoir, and we hypothesized that in addition, it would favor integration of proviruses in HIV-specific CD4+ T cells, while initiation of ART during chronic HIV infection would favor relatively more proviruses in herpesvirus-specific cells. We further hypothesized that proviruses in acute ART initiators would be integrated into antiviral genes, whereas integration sites (ISs) in chronic ART initiators would favor genes associated with cell proliferation and exhaustion. We found that the HIV DNA distribution across HIV-specific versus herpesvirus-specific CD4+ T cells was as hypothesized. HIV ISs in acute ART initiators were significantly enriched in gene sets controlling lipid metabolism and HIF-1α-mediated hypoxia, both metabolic pathways active in early HIV infection. Persistence of these infected cells during prolonged ART suggests a survival advantage. ISs in chronic ART initiators were enriched in a gene set controlling EZH2 histone methylation, and methylation has been associated with diminished long terminal repeat transcription. These differences that we found in antigen specificities and IS distributions within HIV-infected cells might be leveraged in designing cure strategies tailored to the timing of ART initiation.
Collapse
Affiliation(s)
- Jaimy Joy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Ana Gervassi
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Lennie Chen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | | | - Sheila Styrchak
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Daisy Ko
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Sherry McLaughlin
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Danica Shao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ewelina Kosmider
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Department of Medicine
- Department of Global Health
| | - Helen Horton
- Center for Infectious Disease Research, Seattle, Washington, USA
| | - Lisa M. Frenkel
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Medicine
- Department of Global Health
- Department of Pediatrics, and
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Atehortua L, Sean Davidson W, Chougnet CA. Interactions Between HDL and CD4+ T Cells: A Novel Understanding of HDL Anti-Inflammatory Properties. Arterioscler Thromb Vasc Biol 2024; 44:1191-1201. [PMID: 38660807 PMCID: PMC11111342 DOI: 10.1161/atvbaha.124.320851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Several studies in animal models and human cohorts have recently suggested that HDLs (high-density lipoproteins) not only modulate innate immune responses but also adaptative immune responses, particularly CD4+ T cells. CD4+ T cells are central effectors and regulators of the adaptive immune system, and any alterations in their homeostasis contribute to the pathogenesis of cardiovascular diseases, autoimmunity, and inflammatory diseases. In this review, we focus on how HDLs and their components affect CD4+ T-cell homeostasis by modulating cholesterol efflux, immune synapsis, proliferation, differentiation, oxidative stress, and apoptosis. While the effects of apoB-containing lipoproteins on T cells have been relatively well established, this review focuses specifically on new connections between HDL and CD4+ T cells. We present a model where HDL may modulate T cells through both direct and indirect mechanisms.
Collapse
Affiliation(s)
- Laura Atehortua
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH
| | - W. Sean Davidson
- Division of Experimental Pathology, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
11
|
Parab A, Bhatt LK. T-cell metabolism in rheumatoid arthritis: focus on mitochondrial and lysosomal dysfunction. Immunopharmacol Immunotoxicol 2024; 46:378-384. [PMID: 38478010 DOI: 10.1080/08923973.2024.2330645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by immune cell dysregulation, synovial hyperplasia, and progressive cartilage destruction. The loss of immunological self-tolerance against autoantigens is the crucial insult responsible for the pathogenesis of RA. These immune abnormalities are experienced many years before the onset of clinical arthritis. OBJECTIVE This review aims to discuss the metabolic status of T-cells in RA and focuses mainly on mitochondrial and lysosomal dysfunctions involved in altering the T-cell metabolism. DISCUSSION T-cells are identified as the primary initiators of immunological abnormalities in RA. These RA T-cells show a distinct metabolic pattern compared to the healthy individuals. Dampened glycolytic flux, poor ATP production, and shifting of glucose to the pentose phosphate pathway resulting in increased NADPH and decreased ROS levels are the common metabolic patterns observed in RA T-cells. Defective mtDNA due to lack of MRE11A gene, a key molecular actor for resection, and inefficient lysosomal function due to misplacement of AMPK on the lysosomal surface were found to be responsible for mitochondrial and lysosome dysfunction in RA. Targeting this mechanism in RA can alleviate aggressive T-cell phenotype and may control the severity of RA.
Collapse
Affiliation(s)
- Asmita Parab
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
12
|
Liu C, Lin Y, Wang Y, Lin S, Zhou J, Tang H, Yi X, Ma Z, Xia T, Jiang B, Tian F, Ju Z, Liu B, Gu X, Yang Z, Wang W. HuR promotes triglyceride synthesis and intestinal fat absorption. Cell Rep 2024; 43:114238. [PMID: 38748875 DOI: 10.1016/j.celrep.2024.114238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/02/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
Triacylglyceride (TAG) synthesis in the small intestine determines the absorption of dietary fat, but the underlying mechanisms remain to be further studied. Here, we report that the RNA-binding protein HuR (ELAVL1) promotes TAG synthesis in the small intestine. HuR associates with the 3' UTR of Dgat2 mRNA and intron 1 of Mgat2 pre-mRNA. Association of HuR with Dgat2 3' UTR stabilizes Dgat2 mRNA, while association of HuR with intron 1 of Mgat2 pre-mRNA promotes the processing of Mgat2 pre-mRNA. Intestinal epithelium-specific HuR knockout reduces the expression of DGAT2 and MGAT2, thereby reducing the dietary fat absorption through TAG synthesis and mitigating high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and obesity. Our findings highlight a critical role of HuR in promoting dietary fat absorption.
Collapse
Affiliation(s)
- Cihang Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Yunping Lin
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Shuyong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jing Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Central China Fuwai Hospital and Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan 450003, China
| | - Xia Yi
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Tianjiao Xia
- Medical School, Nanjing University, Nanjing 210093, China
| | - Bin Jiang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Feng Tian
- Department of Laboratory Animal Science, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Zhongzhou Yang
- Medical School, Nanjing University, Nanjing 210093, China.
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Center for Healthy Aging, Changzhi Medical College, Changzhi 046000, China; Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranostics, Collaborative Innovation Center for Age-related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou 121001, Liaoning, China.
| |
Collapse
|
13
|
Chang MH, Fuhlbrigge RC, Nigrovic PA. Joint-specific memory, resident memory T cells and the rolling window of opportunity in arthritis. Nat Rev Rheumatol 2024; 20:258-271. [PMID: 38600215 PMCID: PMC11295581 DOI: 10.1038/s41584-024-01107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
In rheumatoid arthritis, juvenile idiopathic arthritis and other forms of inflammatory arthritis, the immune system targets certain joints but not others. The pattern of joints affected varies by disease and by individual, with flares most commonly involving joints that were previously inflamed. This phenomenon, termed joint-specific memory, is difficult to explain by systemic immunity alone. Mechanisms of joint-specific memory include the involvement of synovial resident memory T cells that remain in the joint during remission and initiate localized disease recurrence. In addition, arthritis-induced durable changes in synovial fibroblasts and macrophages can amplify inflammation in a site-specific manner. Together with ongoing systemic processes that promote extension of arthritis to new joints, these local factors set the stage for a stepwise progression in disease severity, a paradigm for arthritis chronicity that we term the joint accumulation model. Although durable drug-free remission through early treatment remains elusive for most forms of arthritis, the joint accumulation paradigm defines new therapeutic targets, emphasizes the importance of sustained treatment to prevent disease extension to new joints, and identifies a rolling window of opportunity for altering the natural history of arthritis that extends well beyond the initiation phase of disease.
Collapse
Affiliation(s)
- Margaret H Chang
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Robert C Fuhlbrigge
- Department of Paediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
14
|
Liu S, Zhao Y, Gao Y, Li F, Zhang Y. Targeting metabolism to improve CAR-T cells therapeutic efficacy. Chin Med J (Engl) 2024; 137:909-920. [PMID: 38501360 PMCID: PMC11046027 DOI: 10.1097/cm9.0000000000003046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 03/20/2024] Open
Abstract
ABSTRACT Chimeric antigen receptor T (CAR-T) cell therapy achieved advanced progress in the treatment of hematological tumors. However, the application of CAR-T cell therapy for solid tumors still faces many challenges. Competition with tumor cells for metabolic resources in an already nutrient-poor tumor microenvironment is a major contributing cause to CAR-T cell therapy's low effectiveness. Abnormal metabolic processes are now acknowledged to shape the tumor microenvironment, which is characterized by increased interstitial fluid pressure, low pH level, hypoxia, accumulation of immunosuppressive metabolites, and mitochondrial dysfunction. These factors are important contributors to restriction of T cell proliferation, cytokine release, and suppression of tumor cell-killing ability. This review provides an overview of how different metabolites regulate T cell activity, analyzes the current dilemmas, and proposes key strategies to reestablish the CAR-T cell therapy's effectiveness through targeting metabolism, with the aim of providing new strategies to surmount the obstacle in the way of solid tumor CAR-T cell treatment.
Collapse
Affiliation(s)
- Shasha Liu
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyu Zhao
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yaoxin Gao
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Feng Li
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Engineering Key Laboratory for Cell Therapy of Henan Province, Zhengzhou, Henan 450052, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
- Engineering Key Laboratory for Cell Therapy of Henan Province, Zhengzhou, Henan 450052, China
- School of Public Health, Zhengzhou University, Zhengzhou, Henan 450000, China
| |
Collapse
|
15
|
Reilly NA, Sonnet F, Dekkers KF, Kwekkeboom JC, Sinke L, Hilt S, Suleiman HM, Hoeksema MA, Mei H, van Zwet EW, Everts B, Ioan-Facsinay A, Jukema JW, Heijmans BT. Oleic acid triggers metabolic rewiring of T cells poising them for T helper 9 differentiation. iScience 2024; 27:109496. [PMID: 38558932 PMCID: PMC10981094 DOI: 10.1016/j.isci.2024.109496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/29/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
T cells are the most common immune cells in atherosclerotic plaques, and the function of T cells can be altered by fatty acids. Here, we show that pre-exposure of CD4+ T cells to oleic acid, an abundant fatty acid linked to cardiovascular events, upregulates core metabolic pathways and promotes differentiation into interleukin-9 (IL-9)-producing cells upon activation. RNA sequencing of non-activated T cells reveals that oleic acid upregulates genes encoding key enzymes responsible for cholesterol and fatty acid biosynthesis. Transcription footprint analysis links these expression changes to the differentiation toward TH9 cells, a pro-atherogenic subset. Spectral flow cytometry shows that pre-exposure to oleic acid results in a skew toward IL-9+-producing T cells upon activation. Importantly, pharmacological inhibition of either cholesterol or fatty acid biosynthesis abolishes this effect, suggesting a beneficial role for statins beyond cholesterol lowering. Taken together, oleic acid may affect inflammatory diseases like atherosclerosis by rewiring T cell metabolism.
Collapse
Affiliation(s)
- Nathalie A. Reilly
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Friederike Sonnet
- Leiden University Center for Infectious Diseases (LUCID), Leiden, the Netherlands
| | - Koen F. Dekkers
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden, the Netherlands
| | | | - Lucy Sinke
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden, the Netherlands
| | - Stan Hilt
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden, the Netherlands
| | - Hayat M. Suleiman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden, the Netherlands
| | - Marten A. Hoeksema
- Department of Medical Biochemistry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden, the Netherlands
| | - Erik W. van Zwet
- Medical Statistics, Department of Biomedical Data Sciences, Leiden, the Netherlands
| | - Bart Everts
- Leiden University Center for Infectious Diseases (LUCID), Leiden, the Netherlands
| | - Andreea Ioan-Facsinay
- Department of Rheumatology Leiden University Medical Center, Leiden, the Netherlands
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Bastiaan T. Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden, the Netherlands
| |
Collapse
|
16
|
Suzuki H, Iwamoto H, Tanaka T, Sakaue T, Imamura Y, Masuda A, Nakamura T, Koga H, Hoshida Y, Kawaguchi T. Fibroblast growth factor inhibition by molecular-targeted agents mitigates immunosuppressive tissue microenvironment in hepatocellular carcinoma. Hepatol Int 2024; 18:610-622. [PMID: 37864726 PMCID: PMC11014819 DOI: 10.1007/s12072-023-10603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/24/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND & AIMS Combination immunotherapy refers to the use of immune checkpoint inhibitors (ICI) and molecular-targeted agents (MTA), which have recently been approved for the treatment of advanced hepatocellular carcinoma (HCC). Owing to its relatively low antitumor effect (up to 30%), sequential therapy following ICIs treatment is required in patients with HCC. This study aimed to determine the impact of MTAs on the tumor immune microenvironment (TIME). METHODS We established immune syngeneic orthotopic HCC mouse models using Hep-55.1C and Hep-53.4, and treated them with MTAs (lenvatinib, sorafenib, regorafenib, cabozantinib, and DC101 as anti-vascular endothelial growth factor receptor-2 antibodies, and AZD4547 as a fibroblast growth factor receptor (FGFR)-1/2/3/4 inhibitor) for 2 weeks. Subsequently, alterations in the TIME caused by MTAs were evaluated using immunohistochemistry (antibodies for CD3, CD8, Foxp3, Granzyme B, Arginase-1, NK1.1, F4/80, CD11c, PD-1, and PD-L1). We conducted RNA-seq analysis using lenvatinib- and AZD4547-treated tumors. To confirm the clinical relevance of these findings, we analyzed the transcriptome data of human HCC cells (MHCC-97H) treated with various concentrations of lenvatinib for 24 h using RNA-seq data from the Gene Expression Omnibus database. RESULTS The number of Foxp3- and F4/80-positive cells in the TIME was decreased in many MTAs. Cabozantinib increased the numbers in NK1.1-, Granzyme B, and CD11c-positive cells. Lenvatinib and AZD4547 increased the number of CD8, Granzyme B, and PD-L1-positive cells. Gene ontology enrichment analysis revealed that lipid metabolism-related genes were downregulated by lenvatinib and AZD4547. In total, 161 genes downregulated by FGFR inhibition in rodent models overlapped with those downregulated by lenvatinib in human HCC cells. CONCLUSIONS In this study, we showed that cabozantinib activated the innate immune system, and lenvatinib and AZD4547, which commonly inhibit FGFR signaling, altered TIME to a hot immune state by downregulating lipid metabolism-related genes. These findings support the therapeutic use of combination immunotherapies.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, 830-0011, Japan.
| | - Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, 830-0011, Japan.
- Iwamoto Internal Medicine Clinic, Kitakyushu, 802-0832, Japan.
| | - Toshimitsu Tanaka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, 830-0011, Japan
| | - Takahiko Sakaue
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, 830-0011, Japan
| | - Yasuko Imamura
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, 830-0011, Japan
| | - Atsutaka Masuda
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, 830-0011, Japan
| | - Toru Nakamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, 830-0011, Japan
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, 830-0011, Japan
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| |
Collapse
|
17
|
Nakano H, Sato K, Izawa J, Takayama N, Hayakawa H, Ikeda T, Kawaguchi SI, Mashima K, Umino K, Morita K, Ito R, Ohno N, Tominaga K, Endo H, Kanda Y. Fatty Acids Play a Critical Role in Mitochondrial Oxidative Phosphorylation in Effector T Cells in Graft-versus-Host Disease. Immunohorizons 2024; 8:228-241. [PMID: 38441482 PMCID: PMC10985061 DOI: 10.4049/immunohorizons.2300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 03/07/2024] Open
Abstract
Although the role of aerobic glycolysis in activated T cells has been well characterized, whether and how fatty acids (FAs) contribute to donor T cell function in allogeneic hematopoietic stem cell transplantation is unclear. Using xenogeneic graft-versus-host disease (GVHD) models, this study demonstrated that exogenous FAs serve as a crucial source of mitochondrial respiration in donor T cells in humans. By comparing human T cells isolated from wild-type NOD/Shi-scid-IL2rγnull (NOG) mice with those from MHC class I/II-deficient NOG mice, we found that donor T cells increased extracellular FA uptake, the extent of which correlates with their proliferation, and continued to increase FA uptake during effector differentiation. Gene expression analysis showed the upregulation of a wide range of lipid metabolism-related genes, including lipid hydrolysis, mitochondrial FA transport, and FA oxidation. Extracellular flux analysis demonstrated that mitochondrial FA transport was required to fully achieve the mitochondrial maximal respiration rate and spare respiratory capacity, whereas the substantial disruption of glucose supply by either glucose deprivation or mitochondrial pyruvate transport blockade did not impair oxidative phosphorylation. Taken together, FA-driven mitochondrial respiration is a hallmark that differentiates TCR-dependent T cell activation from TCR-independent immune response after hematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Hirofumi Nakano
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kazuya Sato
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Junko Izawa
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Norihito Takayama
- Core Center of Research Apparatus, Jichi Medical University, Tochigi, Japan
| | - Hiroko Hayakawa
- Core Center of Research Apparatus, Jichi Medical University, Tochigi, Japan
| | - Takashi Ikeda
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shin-Ichiro Kawaguchi
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kiyomi Mashima
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kento Umino
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kaoru Morita
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Ryoji Ito
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Nobuhiko Ohno
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University, Tochigi, Japan
| | - Kaoru Tominaga
- Department of Biochemistry, Jichi Medical University, Tochigi, Japan
| | - Hitoshi Endo
- Department of Biochemistry, Jichi Medical University, Tochigi, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
18
|
Shukla M, Bhowmick R, Ganguli P, Sarkar RR. Metabolic reprogramming and signalling cross-talks in tumour-immune interaction: a system-level exploration. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231574. [PMID: 38481985 PMCID: PMC10933535 DOI: 10.1098/rsos.231574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 04/26/2024]
Abstract
Tumour-immune microenvironment (TIME) is pivotal in tumour progression and immunoediting. Within TIME, immune cells undergo metabolic adjustments impacting nutrient supply and the anti-tumour immune response. Metabolic reprogramming emerges as a promising approach to revert the immune response towards a pro-inflammatory state and conquer tumour dominance. This study proposes immunomodulatory mechanisms based on metabolic reprogramming and employs the regulatory flux balance analysis modelling approach, which integrates signalling, metabolism and regulatory processes. For the first time, a comprehensive system-level model is constructed to capture signalling and metabolic cross-talks during tumour-immune interaction and regulatory constraints are incorporated by considering the time lag between them. The model analysis identifies novel features to enhance the immune response while suppressing tumour activity. Particularly, altering the exchange of succinate and oxaloacetate between glioma and macrophage enhances the pro-inflammatory response of immune cells. Inhibition of glutamate uptake in T-cells disrupts the antioxidant mechanism of glioma and reprograms metabolism. Metabolic reprogramming through adenosine monophosphate (AMP)-activated protein kinase (AMPK), coupled with glutamate uptake inhibition, was identified as the most impactful combination to restore T-cell function. A comprehensive understanding of metabolism and gene regulation represents a favourable approach to promote immune cell recovery from tumour dominance.
Collapse
Affiliation(s)
- Mudita Shukla
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Rupa Bhowmick
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Piyali Ganguli
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
19
|
Zhang S, Lv K, Liu Z, Zhao R, Li F. Fatty acid metabolism of immune cells: a new target of tumour immunotherapy. Cell Death Discov 2024; 10:39. [PMID: 38245525 PMCID: PMC10799907 DOI: 10.1038/s41420-024-01807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
Metabolic competition between tumour cells and immune cells for limited nutrients is an important feature of the tumour microenvironment (TME) and is closely related to the outcome of tumour immune escape. A large number of studies have proven that tumour cells need metabolic reprogramming to cope with acidification and hypoxia in the TME while increasing energy uptake to support their survival. Among them, synthesis, oxidation and uptake of fatty acids (FAs) in the TME are important manifestations of lipid metabolic adaptation. Although different immune cell subsets often show different metabolic characteristics, various immune cell functions are closely related to fatty acids, including providing energy, providing synthetic materials and transmitting signals. In the face of the current situation of poor therapeutic effects of tumour immunotherapy, combined application of targeted immune cell fatty acid metabolism seems to have good therapeutic potential, which is blocked at immune checkpoints. Combined application of adoptive cell therapy and cancer vaccines is reflected. Therefore, it is of great interest to explore the role of fatty acid metabolism in immune cells to discover new strategies for tumour immunotherapy and improve anti-tumour immunity.
Collapse
Affiliation(s)
- Sheng Zhang
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kebing Lv
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Liu
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ran Zhao
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Li
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
- Jiangxi Clinical Research Center for Hematologic Disease, Nanchang, China.
- Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, China.
| |
Collapse
|
20
|
Mitchelson KAJ, O’Connell F, O’Sullivan J, Roche HM. Obesity, Dietary Fats, and Gastrointestinal Cancer Risk-Potential Mechanisms Relating to Lipid Metabolism and Inflammation. Metabolites 2024; 14:42. [PMID: 38248845 PMCID: PMC10821017 DOI: 10.3390/metabo14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Obesity is a major driving factor in the incidence, progression, and poor treatment response in gastrointestinal cancers. Herein, we conducted a comprehensive analysis of the impact of obesity and its resulting metabolic perturbations across four gastrointestinal cancer types, namely, oesophageal, gastric, liver, and colorectal cancer. Importantly, not all obese phenotypes are equal. Obese adipose tissue heterogeneity depends on the location, structure, cellular profile (including resident immune cell populations), and dietary fatty acid intake. We discuss whether adipose heterogeneity impacts the tumorigenic environment. Dietary fat quality, in particular saturated fatty acids, promotes a hypertrophic, pro-inflammatory adipose profile, in contrast to monounsaturated fatty acids, resulting in a hyperplastic, less inflammatory adipose phenotype. The purpose of this review is to examine the impact of obesity, including dietary fat quality, on adipose tissue biology and oncogenesis, specifically focusing on lipid metabolism and inflammatory mechanisms. This is achieved with a particular focus on gastrointestinal cancers as exemplar models of obesity-associated cancers.
Collapse
Affiliation(s)
- Kathleen A. J. Mitchelson
- Nutrigenomics Research Group, UCD Conway Institute, UCD Institute of Food and Health, and School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 H1W8 Dublin, Ireland
| | - Fiona O’Connell
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Helen M. Roche
- Nutrigenomics Research Group, UCD Conway Institute, UCD Institute of Food and Health, and School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 H1W8 Dublin, Ireland
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5DL, UK
| |
Collapse
|
21
|
Jové-Juncà T, Crespo-Piazuelo D, González-Rodríguez O, Pascual M, Hernández-Banqué C, Reixach J, Quintanilla R, Ballester M. Genomic architecture of carcass and pork traits and their association with immune capacity. Animal 2024; 18:101043. [PMID: 38113634 DOI: 10.1016/j.animal.2023.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Carcass and pork traits have traditionally been considered of prime importance in pig breeding programmes. However, the changing conditions in modern farming, coupled with antimicrobial resistance issues, are raising the importance of health and robustness-related traits. Here, we explore the genetic architecture of carcass and pork traits and their relationship with immunity phenotypes in a commercial Duroc pig population. A total of nine traits related to fatness, lean content and meat pH were measured at slaughter (∼190 d of age) in 378 pigs previously phenotyped (∼70 d of age) for 36 immunity-related traits, including plasma concentrations of immunoglobulins, acute-phase proteins, leukocytes subpopulations and phagocytosis. Our study showed medium to high heritabilities and strong genetic correlations between fatness, lean content and meat pH at 24 h postmortem. Genetic correlations were found between carcass and pork traits and white blood cells. pH showed strong positive genetic correlations with leukocytes and eosinophils, and strong negative genetic correlations with haemoglobin, haematocrit and cytotoxic T cell proportion. In addition, genome-wide association studies (GWASs) pointed out four significantly associated genomic regions for lean meat percentages in different muscles, ham fat, backfat thickness, and semimembranosus pH at 24 h. The functional annotation of genes located in these regions reported a total of 14 candidate genes, with BGN, DPP10, LEPR, LEPROT, PDE4B and SLC6A8 being the strongest candidates. After performing an expression GWAS for the expression of these genes in muscle, two signals were detected in cis for the BGN and SLC6A8 genes. Our results indicate a genetic relationship between carcass fatness, lean content and meat pH with a variety of immunity-related traits that should be considered to improve immunocompetence without impairing production traits.
Collapse
Affiliation(s)
- T Jové-Juncà
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - D Crespo-Piazuelo
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - O González-Rodríguez
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - M Pascual
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - C Hernández-Banqué
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - J Reixach
- Selección Batallé S.A., Av. dels Segadors s/n, 17421 Riudarenes, Girona, Spain
| | - R Quintanilla
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - M Ballester
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain.
| |
Collapse
|
22
|
Ma M, Yang Y, Chen Z, Li X, Yang Z, Wang K, Li X, Fang H, Cheng Y, Qiao T, Zou X, Lu Z, Wang X, Wu D. T-cell senescence induced by peripheral phospholipids. Cell Biol Toxicol 2023; 39:2937-2952. [PMID: 37261679 DOI: 10.1007/s10565-023-09811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
We present an integrated analysis of the clinical measurements, immune cells, and plasma lipidomics of 2000 individuals representing different age stages. In the study, we explore the interplay of systemic lipids metabolism and circulating immune cells through in-depth analysis of immune cell phenotype and function in peripheral dynamic lipids environment. The population makeup of circulation lymphocytes and lipid metabolites changes dynamically with age. We identified a major shift between young group and middle age group, at which point elevated, immune response is accompanied by the elevation of specific classes of peripheral phospholipids. We tested the effects in mouse model and found that 10-month-dietary added phospholipids induced T-cell senescence. However, the chronic malignant disease, the crosstalk between systemic metabolism and immunity, is completely changed. In cancer patients, the unusual plasma cholesteryl esters emerged, and free fatty acids decreased. The study reveals how immune cell classes and peripheral metabolism coordinate during age acceleration and suggests immune senescence is not isolated, and thus, system effect is the critical point for cell- and function-specific immune-metabolic targeting. • The study identifies a major shift of immune phenotype between young group and middle age group, and the immune response is accompanied by the elevation of specific classes of peripheral phospholipids; • The study suggests potential implications for translational studies such as using metabolic drug to regulate immune activity.
Collapse
Affiliation(s)
- Mingyue Ma
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ying Yang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Zhouyi Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoyan Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhicheng Yang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Ke Wang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Xusuo Li
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yunfeng Cheng
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Tiankui Qiao
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| | - Xin Zou
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| | - Zhiqiang Lu
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Xiangdong Wang
- Respiratory Medicine Department of Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Duojiao Wu
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
- Respiratory Medicine Department of Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
23
|
Goswami S, Zhang Q, Celik CE, Reich EM, Yilmaz ÖH. Dietary fat and lipid metabolism in the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2023; 1878:188984. [PMID: 37722512 PMCID: PMC10937091 DOI: 10.1016/j.bbcan.2023.188984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
Metabolic reprogramming has been considered a core hallmark of cancer, in which excessive accumulation of lipids promote cancer initiation, progression and metastasis. Lipid metabolism often includes the digestion and absorption of dietary fat, and the ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment. Among multiple cancer risk factors, obesity has a positive association with multiple cancer types, while diets like calorie restriction and fasting improve health and delay cancer. Impact of these diets on tumorigenesis or cancer prevention are generally studied on cancer cells, despite heterogeneity of the tumor microenvironment. Cancer cells regularly interact with these heterogeneous microenvironmental components, including immune and stromal cells, to promote cancer progression and metastasis, and there is an intricate metabolic crosstalk between these compartments. Here, we focus on discussing fat metabolism and response to dietary fat in the tumor microenvironment, focusing on both immune and stromal components and shedding light on therapeutic strategies surrounding lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Swagata Goswami
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Qiming Zhang
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Cigdem Elif Celik
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Hacettepe Univ, Canc Inst, Department Basic Oncol, Ankara TR-06100, Turkiye
| | - Ethan M Reich
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital and Beth Israel Deaconness Medical Center and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
24
|
Sportiello M, Poindexter A, Reilly EC, Geber A, Lambert Emo K, Jones TN, Topham DJ. Mouse Memory CD8 T Cell Subsets Defined by Tissue-Resident Memory Integrin Expression Exhibit Distinct Metabolic Profiles. Immunohorizons 2023; 7:652-669. [PMID: 37855738 PMCID: PMC10615656 DOI: 10.4049/immunohorizons.2300040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/24/2023] [Indexed: 10/20/2023] Open
Abstract
Tissue-resident memory CD8 T cells (TRM) principally reside in peripheral nonlymphoid tissues, such as lung and skin, and confer protection against a variety of illnesses ranging from infections to cancers. The functions of different memory CD8 T cell subsets have been linked with distinct metabolic pathways and differ from other CD8 T cell subsets. For example, skin-derived memory T cells undergo fatty acid oxidation and oxidative phosphorylation to a greater degree than circulating memory and naive cells. Lung TRMs defined by the cell-surface expression of integrins exist as distinct subsets that differ in gene expression and function. We hypothesize that TRM subsets with different integrin profiles will use unique metabolic programs. To test this, differential expression and pathway analysis were conducted on RNA sequencing datasets from mouse lung TRMs yielding significant differences related to metabolism. Next, metabolic models were constructed, and the predictions were interrogated using functional metabolite uptake assays. The levels of oxidative phosphorylation, mitochondrial mass, and neutral lipids were measured. Furthermore, to investigate the potential relationships to TRM development, T cell differentiation studies were conducted in vitro with varying concentrations of metabolites. These demonstrated that lipid conditions impact T cell survival, and that glucose concentration impacts the expression of canonical TRM marker CD49a, with no effect on central memory-like T cell marker CCR7. In summary, it is demonstrated that mouse resident memory T cell subsets defined by integrin expression in the lung have unique metabolic profiles, and that nutrient abundance can alter differentiation.
Collapse
Affiliation(s)
- Mike Sportiello
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
- Medical Scientist Training Program, University of Rochester Medical Center, Rochester, NY
| | - Alexis Poindexter
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Emma C. Reilly
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Adam Geber
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
- Medical Scientist Training Program, University of Rochester Medical Center, Rochester, NY
| | - Kris Lambert Emo
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Taylor N. Jones
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - David J. Topham
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
25
|
Rollins ZA, Faller R, George SC. A dynamic biomimetic model of the membrane-bound CD4-CD3-TCR complex during pMHC disengagement. Biophys J 2023; 122:3133-3145. [PMID: 37381600 PMCID: PMC10432225 DOI: 10.1016/j.bpj.2023.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023] Open
Abstract
The coordinated (dis)engagement of the membrane-bound T cell receptor (TCR)-CD3-CD4 complex from the peptide-major histocompatibility complex (pMHC) is fundamental to TCR signal transduction and T cell effector function. As such, an atomic-scale understanding would not only enhance our basic understanding of the adaptive immune response but would also accelerate the rational design of TCRs for immunotherapy. In this study, we explore the impact of the CD4 coreceptor on the TCR-pMHC (dis)engagement by constructing a molecular-level biomimetic model of the CD3-TCR-pMHC and CD4-CD3-TCR-pMHC complexes within a lipid bilayer. After allowing the system complexes to equilibrate (engage), we use steered molecular dynamics to dissociate (disengage) the pMHC. We find that 1) the CD4 confines the pMHC closer to the T cell by 1.8 nm at equilibrium; 2) CD4 confinement shifts the TCR along the MHC binding groove engaging a different set of amino acids and enhancing the TCR-pMHC bond lifetime; 3) the CD4 translocates under load increasing the interaction strength between the CD4-pMHC, CD4-TCR, and CD4-CD3; and 4) upon dissociation, the CD3-TCR complex undergoes structural oscillation and increased energetic fluctuation between the CD3-TCR and CD3-lipids. These atomic-level simulations provide mechanistic insight on how the CD4 coreceptor impacts TCR-pMHC (dis)engagement. More specifically, our results provide further support (enhanced bond lifetime) for a force-dependent kinetic proofreading model and identify an alternate set of amino acids in the TCR that dominate the TCR-pMHC interaction and could thus impact the design of TCRs for immunotherapy.
Collapse
Affiliation(s)
- Zachary A Rollins
- Department of Chemical Engineering, University of California, Davis, Davis, California
| | - Roland Faller
- Department of Chemical Engineering, University of California, Davis, Davis, California
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, California.
| |
Collapse
|
26
|
Konadu B, Cox CK, Garrett MR, Gibert Y. Excess glucose or fat differentially affects metabolism and appetite-related gene expression during zebrafish embryogenesis. iScience 2023; 26:107063. [PMID: 37534154 PMCID: PMC10391732 DOI: 10.1016/j.isci.2023.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/28/2023] [Accepted: 06/02/2023] [Indexed: 08/04/2023] Open
Abstract
Zebrafish embryos use their yolk sac reserve as the sole nutrient source during embryogenesis. The two main forms of energy fuel can be found in the form of glucose or fat. Zebrafish embryos were exposed to glucose or injected with free fatty acid/Triacylglycerol (FFA/TAG) into the yolk sac at 24 hpf. At 72 hpf, glucose exposed or FFA/TAG injected had differential effects on gene expression in embryos, with fat activating lipolysis and β-oxidation and glucose activating the insulin pathway. Bulk RNA-seq revealed that more gene expression was affected by glucose exposure compared to FFA/TAGs injection. Appetite-controlling genes were also differently affected by glucose exposure or FFA/TAG injections. Because the embryo did not yet feed itself at the time of our analysis, gene expression changes occurred in absence of actual hunger and revealed how the embryo manages its nutrient intake before active feeding.
Collapse
Affiliation(s)
- Bridget Konadu
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Carol K. Cox
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Michael R. Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yann Gibert
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
27
|
Sebag SC, Qian Q, Upara C, Ding Q, Cao H, Hong L, Yang L. A Medium Chain Fatty Acid, 6-hydroxyhexanoic acid (6-HHA), Protects Against Obesity and Insulin Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549684. [PMID: 37502899 PMCID: PMC10370144 DOI: 10.1101/2023.07.19.549684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Obesity, a worldwide health problem, increases the risk for developing metabolic diseases such as insulin resistance and diabetes. It is well recognized that obesity-associated chronic inflammation plays a key role in the pathogenesis of systemic metabolic dysfunction. Previously, we revealed an anti-inflammatory role for spent culture supernatants isolated from the oral commensal bacterial species Streptococcus gordonii (Sg-SCS). Here, we identified that 6-hydroxyhexanoic acid (6-HHA), a medium chain fatty acid (MCFA), is the one of the key components of Sg-SCS . We found that treatment of 6-HHA in mice fed a high-fat diet (HFD) significantly reduced HFD-mediated weight gain which was largely attributed to a decrease in fat mass. Systemically, 6-HHA improves obesity-associated glucose intolerance and insulin resistance. Furthermore, administration of 6-HHA suppressed obesity-associated systemic inflammation and dyslipidemia. At the cellular level, treatment of 6-HHA ameliorated aberrant inflammatory and metabolic transcriptomic signatures in white adipose tissue of mice with diet-induced obesity (HFD). Mechanistically, we found that 6-HHA suppressed adipocyte-proinflammatory cytokine production and lipolysis, the latter through Gαi-mediated signaling. This work provides direct evidence for the anti-obesity effects of a novel MCFA, which could be a new therapeutic treatment for combating obesity. KEY POINTS Hydroxyhexanoic medium chain fatty acids (MCFAs) are dietary and bacterial-derived energy sources, however, the outcomes of using MCFAs in treating metabolic disorders are diverse and complex. The MCFA 6-hydroxyhexanoic acid (6-HHA) is a metabolite secreted by the oral bacterial commensal species Streptococcus gordonii; here we investigated its role in modulating high-fat diet (HFD)-induced metabolic dysfunction. In a murine model of obesity, we found 6-HHA-mediated improvement of diet-mediated adiposity, insulin resistance and inflammation were in part due to actions on white adipose tissue (WAT).6-HHA suppressed proinflammatory cytokine production and lipolysis through Gi-mediated signaling in differentiated white adipocytes.
Collapse
|
28
|
Wang Y, Huang T, Gu J, Lu L. Targeting the metabolism of tumor-infiltrating regulatory T cells. Trends Immunol 2023:S1471-4906(23)00109-6. [PMID: 37442660 DOI: 10.1016/j.it.2023.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023]
Abstract
Although targeting the tumor metabolism is performed in cooperation with immunotherapy in the era of precision oncology, ignorance of immune cells' metabolism has resulted in unstable antitumor responses. Tumor-infiltrating regulatory T cells (TI-Tregs) are unique, overcoming the hypoxic, acidic, and nutrient-deficient tumor microenvironments (TMEs) and maintaining immunosuppressive functions. However, secondary autoimmunity caused by systemic Treg depletion remains the 'Sword of Damocles' for current Treg-targeted therapies. In this opinion piece, we propose that metabolically reprogrammed TI-Tregs might represent an obstacle to cancer therapies. Indeed, metabolism-based Treg-targeted therapy might provide higher selectivity for clearing TI-Tregs than traditional kinase/checkpoint inhibitors and chemokine/chemokine receptor blockade; it might also restore the efficacy of targeting the tumor metabolism and eliminate certain metabolic barriers to immunotherapy.
Collapse
Affiliation(s)
- Yiming Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tianning Huang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
29
|
Mani N, Andrews D, Obeng RC. Modulation of T cell function and survival by the tumor microenvironment. Front Cell Dev Biol 2023; 11:1191774. [PMID: 37274739 PMCID: PMC10232912 DOI: 10.3389/fcell.2023.1191774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Cancer immunotherapy is shifting paradigms in cancer care. T cells are an indispensable component of an effective antitumor immunity and durable clinical responses. However, the complexity of the tumor microenvironment (TME), which consists of a wide range of cells that exert positive and negative effects on T cell function and survival, makes achieving robust and durable T cell responses difficult. Additionally, tumor biology, structural and architectural features, intratumoral nutrients and soluble factors, and metabolism impact the quality of the T cell response. We discuss the factors and interactions that modulate T cell function and survive in the TME that affect the overall quality of the antitumor immune response.
Collapse
Affiliation(s)
- Nikita Mani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dathan Andrews
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Rebecca C. Obeng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
30
|
Mehta A, Ratre YK, Soni VK, Shukla D, Sonkar SC, Kumar A, Vishvakarma NK. Orchestral role of lipid metabolic reprogramming in T-cell malignancy. Front Oncol 2023; 13:1122789. [PMID: 37256177 PMCID: PMC10226149 DOI: 10.3389/fonc.2023.1122789] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/12/2023] [Indexed: 06/01/2023] Open
Abstract
The immune function of normal T cells partially depends on the maneuvering of lipid metabolism through various stages and subsets. Interestingly, T-cell malignancies also reprogram their lipid metabolism to fulfill bioenergetic demand for rapid division. The rewiring of lipid metabolism in T-cell malignancies not only provides survival benefits but also contributes to their stemness, invasion, metastasis, and angiogenesis. Owing to distinctive lipid metabolic programming in T-cell cancer, quantitative, qualitative, and spatial enrichment of specific lipid molecules occur. The formation of lipid rafts rich in cholesterol confers physical strength and sustains survival signals. The accumulation of lipids through de novo synthesis and uptake of free lipids contribute to the bioenergetic reserve required for robust demand during migration and metastasis. Lipid storage in cells leads to the formation of specialized structures known as lipid droplets. The inimitable changes in fatty acid synthesis (FAS) and fatty acid oxidation (FAO) are in dynamic balance in T-cell malignancies. FAO fuels the molecular pumps causing chemoresistance, while FAS offers structural and signaling lipids for rapid division. Lipid metabolism in T-cell cancer provides molecules having immunosuppressive abilities. Moreover, the distinctive composition of membrane lipids has implications for immune evasion by malignant cells of T-cell origin. Lipid droplets and lipid rafts are contributors to maintaining hallmarks of cancer in malignancies of T cells. In preclinical settings, molecular targeting of lipid metabolism in T-cell cancer potentiates the antitumor immunity and chemotherapeutic response. Thus, the direct and adjunct benefit of lipid metabolic targeting is expected to improve the clinical management of T-cell malignancies.
Collapse
Affiliation(s)
- Arundhati Mehta
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Yashwant Kumar Ratre
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Subhash C. Sonkar
- Multidisciplinary Research Unit, Maulana Azad Medical College, University of Delhi, New Delhi, India
| | - Ajay Kumar
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
31
|
Piper M, Hoen M, Darragh LB, Knitz MW, Nguyen D, Gadwa J, Durini G, Karakoc I, Grier A, Neupert B, Van Court B, Abdelazeem KNM, Yu J, Olimpo NA, Corbo S, Ross RB, Pham TT, Joshi M, Kedl RM, Saviola AJ, Amann M, Umaña P, Codarri Deak L, Klein C, D'Alessandro A, Karam SD. Simultaneous targeting of PD-1 and IL-2Rβγ with radiation therapy inhibits pancreatic cancer growth and metastasis. Cancer Cell 2023; 41:950-969.e6. [PMID: 37116489 PMCID: PMC10246400 DOI: 10.1016/j.ccell.2023.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/05/2023] [Accepted: 03/31/2023] [Indexed: 04/30/2023]
Abstract
In pancreatic ductal adenocarcinoma (PDAC) patients, we show that response to radiation therapy (RT) is characterized by increased IL-2Rβ and IL-2Rγ along with decreased IL-2Rα expression. The bispecific PD1-IL2v is a PD-1-targeted IL-2 variant (IL-2v) immunocytokine with engineered IL-2 cis targeted to PD-1 and abolished IL-2Rα binding, which enhances tumor-antigen-specific T cell activation while reducing regulatory T cell (Treg) suppression. Using PD1-IL2v in orthotopic PDAC KPC-driven tumor models, we show marked improvement in local and metastatic survival, along with a profound increase in tumor-infiltrating CD8+ T cell subsets with a transcriptionally and metabolically active phenotype and preferential activation of antigen-specific CD8+ T cells. In combination with single-dose RT, PD1-IL2v treatment results in a robust, durable expansion of polyfunctional CD8+ T cells, T cell stemness, tumor-specific memory immune response, natural killer (NK) cell activation, and decreased Tregs. These data show that PD1-IL2v leads to profound local and distant response in PDAC.
Collapse
Affiliation(s)
- Miles Piper
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Maureen Hoen
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laurel B Darragh
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Microbiology and Immunology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Greta Durini
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Idil Karakoc
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Abby Grier
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Khalid N M Abdelazeem
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin Yu
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nicholas A Olimpo
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard Blake Ross
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tiffany T Pham
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ross M Kedl
- Department of Microbiology and Immunology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Maria Amann
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Pablo Umaña
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Laura Codarri Deak
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Microbiology and Immunology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
32
|
Jeon YG, Kim YY, Lee G, Kim JB. Physiological and pathological roles of lipogenesis. Nat Metab 2023; 5:735-759. [PMID: 37142787 DOI: 10.1038/s42255-023-00786-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Lipids are essential metabolites, which function as energy sources, structural components and signalling mediators. Most cells are able to convert carbohydrates into fatty acids, which are often converted into neutral lipids for storage in the form of lipid droplets. Accumulating evidence suggests that lipogenesis plays a crucial role not only in metabolic tissues for systemic energy homoeostasis but also in immune and nervous systems for their proliferation, differentiation and even pathophysiological roles. Thus, excessive or insufficient lipogenesis is closely associated with aberrations in lipid homoeostasis, potentially leading to pathological consequences, such as dyslipidaemia, diabetes, fatty liver, autoimmune diseases, neurodegenerative diseases and cancers. For systemic energy homoeostasis, multiple enzymes involved in lipogenesis are tightly controlled by transcriptional and post-translational modifications. In this Review, we discuss recent findings regarding the regulatory mechanisms, physiological roles and pathological importance of lipogenesis in multiple tissues such as adipose tissue and the liver, as well as the immune and nervous systems. Furthermore, we briefly introduce the therapeutic implications of lipogenesis modulation.
Collapse
Affiliation(s)
- Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Gung Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
33
|
Su X, Yang S, Li Y, Xiang Z, Tao Q, Liu S, Yin Z, Zhong L, Lv X, Zhou L. γδ T cells recruitment and local proliferation in brain parenchyma benefit anti-neuroinflammation after cerebral microbleeds. Front Immunol 2023; 14:1139601. [PMID: 37063908 PMCID: PMC10090560 DOI: 10.3389/fimmu.2023.1139601] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundCerebral microbleeds (CMBs) are an early sign of many neurological disorders and accompanied by local neuroinflammation and brain damage. As important regulators of immune response and neuroinflammation, the biological behavior and role of γδ T cells after CMBs remain largely unknown.MethodsWe made a spot injury of microvessel in the somatosensory cortex to mimic the model of CMBs by two-photon laser and in vivo tracked dynamical behaviors of γδ T cells induced by CMBs using TCR-δGFP transgenic mice. Biological features of γδ T cells in the peri-CMBs parenchyma were decoded by flow cytometry and Raman spectra. In wildtype and γδ T cell-deficient mice, neuroinflammation and neurite degeneration in the peri-CMBs cortex were studied by RNAseq, immunostaining and in vivo imaging respectively.ResultsAfter CMBs, γδ T cells in the dural vessels were tracked to cross the meningeal structure and invade the brain parenchyma in a few days, where the division process of γδ T cells were captured. Parenchymal γδ T cells were highly expressed by CXCR6 and CCR6, similar to meningeal γδ T cells, positive for IL-17A and Ki67 (more than 98%), and they contained abundant substances for energy metabolism and nucleic acid synthesis. In γδ T cell-deficient mice, cortical samples showed the upregulation of neuroinflammatory signaling pathways, enhanced glial response and M1 microglial polarization, and earlier neuronal degeneration in the peri-CMBs brain parenchyma compared with wildtype mice.ConclusionCMBs induce the accumulation and local proliferation of γδ T cells in the brain parenchyma, and γδ T cells exert anti-neuroinflammatory and neuroprotective effects at the early stage of CMBs.
Collapse
Affiliation(s)
- Xin Su
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, Guangdong, China
- Guangdong-Hongkong-Macau Central Nervous System Regeneration (CNS) Institute of Jinan University, Key Laboratory of Central Nervous System Regeneration (CNS) (Jinan University)-Ministry of Education, Guangzhou, Guangdong, China
| | - Shuxian Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, China
| | - Yanxiang Li
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, China
| | - Zongqin Xiang
- Laboratory for Neuroscience in Health and Disease, Guangzhou First People’s Hospital School of Medicine, South China University of Technology, Guangzhou, China
| | - Qiao Tao
- Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Shengde Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, Guangdong, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
- *Correspondence: Libing Zhou, ; Xiaoxu Lv, ; Liyun Zhong, ; Zhinan Yin,
| | - Liyun Zhong
- Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou, Guangdong, China
- *Correspondence: Libing Zhou, ; Xiaoxu Lv, ; Liyun Zhong, ; Zhinan Yin,
| | - Xiaoxu Lv
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, Guangdong, China
- *Correspondence: Libing Zhou, ; Xiaoxu Lv, ; Liyun Zhong, ; Zhinan Yin,
| | - Libing Zhou
- Guangdong-Hongkong-Macau Central Nervous System Regeneration (CNS) Institute of Jinan University, Key Laboratory of Central Nervous System Regeneration (CNS) (Jinan University)-Ministry of Education, Guangzhou, Guangdong, China
- Department of Neurology and Stroke Center, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, Guangdong, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Libing Zhou, ; Xiaoxu Lv, ; Liyun Zhong, ; Zhinan Yin,
| |
Collapse
|
34
|
Nava Lauson CB, Tiberti S, Corsetto PA, Conte F, Tyagi P, Machwirth M, Ebert S, Loffreda A, Scheller L, Sheta D, Mokhtari Z, Peters T, Raman AT, Greco F, Rizzo AM, Beilhack A, Signore G, Tumino N, Vacca P, McDonnell LA, Raimondi A, Greenberg PD, Huppa JB, Cardaci S, Caruana I, Rodighiero S, Nezi L, Manzo T. Linoleic acid potentiates CD8 + T cell metabolic fitness and antitumor immunity. Cell Metab 2023; 35:633-650.e9. [PMID: 36898381 DOI: 10.1016/j.cmet.2023.02.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/19/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023]
Abstract
The metabolic state represents a major hurdle for an effective adoptive T cell therapy (ACT). Indeed, specific lipids can harm CD8+ T cell (CTL) mitochondrial integrity, leading to defective antitumor responses. However, the extent to which lipids can affect the CTL functions and fate remains unexplored. Here, we show that linoleic acid (LA) is a major positive regulator of CTL activity by improving metabolic fitness, preventing exhaustion, and stimulating a memory-like phenotype with superior effector functions. We report that LA treatment enhances the formation of ER-mitochondria contacts (MERC), which in turn promotes calcium (Ca2+) signaling, mitochondrial energetics, and CTL effector functions. As a direct consequence, the antitumor potency of LA-instructed CD8 T cells is superior in vitro and in vivo. We thus propose LA treatment as an ACT potentiator in tumor therapy.
Collapse
Affiliation(s)
- Carina B Nava Lauson
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Silvia Tiberti
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Paola A Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Federica Conte
- Institute for Systems Analysis and Computer Science "Antonio Ruberti," National Research Council, Rome, Italy
| | - Punit Tyagi
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Markus Machwirth
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Stefan Ebert
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Alessia Loffreda
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milano, Italy
| | - Lukas Scheller
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
| | - Dalia Sheta
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
| | - Zeinab Mokhtari
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
| | - Timo Peters
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Ayush T Raman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Francesco Greco
- Fondazione Pisana per la Scienza, ONLUS, San Giuliano Terme, Italy; Institute of Life Sciences, Sant' Anna School of Advanced Studies, Pisa, Italy
| | - Angela M Rizzo
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
| | - Giovanni Signore
- Fondazione Pisana per la Scienza, ONLUS, San Giuliano Terme, Italy
| | - Nicola Tumino
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza, ONLUS, San Giuliano Terme, Italy
| | - Andrea Raimondi
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milano, Italy
| | - Philip D Greenberg
- Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Johannes B Huppa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Simone Cardaci
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ignazio Caruana
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Simona Rodighiero
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Luigi Nezi
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Teresa Manzo
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy.
| |
Collapse
|
35
|
Hsieh Y, Tsai T, Huang S, Heng J, Huang Y, Tsai P, Tu C, Chao T, Tsai Y, Chang P, Lee C, Yu G, Chang S, Dzhagalov IL, Hsu C. IFN-stimulated metabolite transporter ENT3 facilitates viral genome release. EMBO Rep 2023; 24:e55286. [PMID: 36652307 PMCID: PMC9986816 DOI: 10.15252/embr.202255286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
An increasing amount of evidence emphasizes the role of metabolic reprogramming in immune cells to fight infections. However, little is known about the regulation of metabolite transporters that facilitate and support metabolic demands. In this study, we found that the expression of equilibrative nucleoside transporter 3 (ENT3, encoded by solute carrier family 29 member 3, Slc29a3) is part of the innate immune response, which is rapidly upregulated upon pathogen invasion. The transcription of Slc29a3 is directly regulated by type I interferon-induced signaling, demonstrating that this metabolite transporter is an interferon-stimulated gene (ISG). Suprisingly, we unveil that several viruses, including SARS-CoV-2, require ENT3 to facilitate their entry into the cytoplasm. The removal or suppression of Slc29a3 expression is sufficient to significantly decrease viral replication in vitro and in vivo. Our study reveals that ENT3 is a pro-viral ISG co-opted by some viruses to gain a survival advantage.
Collapse
Affiliation(s)
- Yu‐Ting Hsieh
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Tsung‐Lin Tsai
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| | - Shen‐Yan Huang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Jian‐Wen Heng
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yu‐Chia Huang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Pei‐Yuan Tsai
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chia‐Chun Tu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | | | - Ya‐Min Tsai
- Department of Clinical Laboratory Sciences and Medical BiotechnologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Pei‐Ching Chang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chien‐Kuo Lee
- Graduate Institute of Immunology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Guann‐Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research InstitutesMiaoliTaiwan
| | - Sui‐Yuan Chang
- Department of Clinical Laboratory Sciences and Medical BiotechnologyNational Taiwan University College of MedicineTaipeiTaiwan
- Department of Laboratory MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - Ivan L. Dzhagalov
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chia‐Lin Hsu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| |
Collapse
|
36
|
Househam AM. Effects of stress and mindfulness on epigenetics. VITAMINS AND HORMONES 2023; 122:283-306. [PMID: 36863798 DOI: 10.1016/bs.vh.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Epigenetics are heritable changes in the rate of gene expression without any modification of the DNA sequence and occur in response to environmental changes. Tangible changes to the external surroundings may be practical causes for epigenetic modifications, playing a potential evolutionary role. While fight, flight, or freeze responses once served a concrete role in survival, modern humans may not face similar existential threats that warrant psychological stress. Yet, chronic mental stress is predominant in modern life. This chapter elucidates the deleterious epigenetic changes that occur due to chronic stress. In an exploration of mindfulness-based interventions (MBIs) as a potential antidote to such stress-induced epigenetic modifications, several pathways of action are uncovered. The epigenetic changes that occur because of mindfulness practice are demonstrated across the hypothalamic-pituitary-adrenal axis, serotonergic transmission, genomic health and aging, and neurological biomarkers.
Collapse
Affiliation(s)
- Ayman Mukerji Househam
- Department of Social Work, New York University, New York, NY, United States; Department of Psychology, New York University, New York, NY, United States.
| |
Collapse
|
37
|
Choudhary N, Osorio RC, Oh JY, Aghi MK. Metabolic Barriers to Glioblastoma Immunotherapy. Cancers (Basel) 2023; 15:1519. [PMID: 36900311 PMCID: PMC10000693 DOI: 10.3390/cancers15051519] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor with a poor prognosis with the current standard of care treatment. To address the need for novel therapeutic options in GBM, immunotherapies which target cancer cells through stimulating an anti-tumoral immune response have been investigated in GBM. However, immunotherapies in GBM have not met with anywhere near the level of success they have encountered in other cancers. The immunosuppressive tumor microenvironment in GBM is thought to contribute significantly to resistance to immunotherapy. Metabolic alterations employed by cancer cells to promote their own growth and proliferation have been shown to impact the distribution and function of immune cells in the tumor microenvironment. More recently, the diminished function of anti-tumoral effector immune cells and promotion of immunosuppressive populations resulting from metabolic alterations have been investigated as contributory to therapeutic resistance. The GBM tumor cell metabolism of four nutrients (glucose, glutamine, tryptophan, and lipids) has recently been described as contributory to an immunosuppressive tumor microenvironment and immunotherapy resistance. Understanding metabolic mechanisms of resistance to immunotherapy in GBM can provide insight into future directions targeting the anti-tumor immune response in combination with tumor metabolism.
Collapse
Affiliation(s)
| | | | | | - Manish K. Aghi
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
38
|
Role of T Cells in the Pathogenesis of Rheumatoid Arthritis: Focus on Immunometabolism Dysfunctions. Inflammation 2023; 46:88-102. [PMID: 36215002 DOI: 10.1007/s10753-022-01751-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Evidence demonstrated that metabolic-associated T cell abnormalities could be detected in the early stage of RA development. In this context, molecular evaluations have revealed changes in metabolic pathways, leading to the aggressive phenotype of RA T cells. A growing list of genes is downregulated or upregulated in RA T cells, and most of these genes with abnormal expression fall into the category of metabolic pathways. It has been shown that RA T cells shunt glucose towards the pentose phosphate pathway (PPP), which is associated with a high level of nicotinamide adenine dinucleotide phosphate (NADPH) and intermediate molecules. An increased level of NADPH inhibits ATM activation and thereby increases the proliferation capabilities of the RA T cells. Defects in the DNA repair nuclease MRE11A cause failures in repairing mitochondrial DNA, resulting in inhibiting the fatty acid oxidation pathway and further elevated cytoplasmic lipid droplets. Accumulated lipid droplets employ to generate lipid membranes for the cell building program and are also used to form the front-end membrane ruffles that are accomplices with invasive phenotypes of RA T cells. Metabolic pathway involvement in RA pathogenesis expands the pathogenic concept of the disease beyond the common view of autoimmunity triggered by autoantigen recognition. Increased knowledge about metabolic pathways' implications in RA pathogenesis paves the way to understand better the environment/gene interactions and host/microbiota interactions and introduce potential therapeutic approaches. This review summarized emerging data about the roles of T cells in RA pathogenesis with a focus on immunometabolism dysfunctions and how these metabolic alterations can affect the disease process.
Collapse
|
39
|
Tse BCY, Ferguson AL, Koay YC, Grau GE, Don AS, Byrne SN. Exposure to solar ultraviolet radiation establishes a novel immune suppressive lipidome in skin-draining lymph nodes. Front Immunol 2023; 13:1045731. [PMID: 36741361 PMCID: PMC9895826 DOI: 10.3389/fimmu.2022.1045731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/22/2022] [Indexed: 01/21/2023] Open
Abstract
The ability of ultraviolet radiation to suppress the immune system is thought to be central to both its beneficial (protection from autoimmunity) and detrimental (carcinogenic) effects. Previous work revealed a key role for lipids particularly platelet-activating factor and sphingosine-1-phosphate in mediating UV-induced immune suppression. We therefore hypothesized that there may be other UV-induced lipids that have immune regulatory roles. To assess this, mice were exposed to an immune suppressive dose of solar-simulated UV (8 J/cm2). Lipidomic analysis identified 6 lipids (2 acylcarnitines, 2 neutral lipids, and 2 phospholipids) with significantly increased levels in the skin-draining lymph nodes of UV-irradiated mice. Imaging mass spectrometry of the lipids in combination with imaging mass cytometry identification of lymph node cell subsets indicated a preferential location of UV-induced lipids to T cell areas. In vitro co-culture of skin-draining lymph node lipids with lymphocytes showed that lipids derived from UV-exposed mice have no effect on T cell activation but significantly inhibited T cell proliferation, indicating that the lipids play an immune regulatory role. These studies are important first steps in identifying novel lipids that contribute to UV-mediated immune suppression.
Collapse
Affiliation(s)
- Benita C. Y. Tse
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Angela L. Ferguson
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Yen Chin Koay
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia,Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Georges E. Grau
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Anthony S. Don
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Scott N. Byrne
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia,Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Sydney, NSW, Australia,*Correspondence: Scott N. Byrne,
| |
Collapse
|
40
|
De Martino M, Daviaud C, Hajjar E, Vanpouille-Box C. Fatty acid metabolism and radiation-induced anti-tumor immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:121-141. [PMID: 36997267 DOI: 10.1016/bs.ircmb.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fatty acid metabolic reprogramming has emerged as a major regulator of anti-tumor immune responses with large body of evidence that demonstrate its ability to impact the differentiation and function of immune cells. Therefore, depending on the metabolic cues that stem in the tumor microenvironment, the tumor fatty acid metabolism can tilt the balance of inflammatory signals to either promote or impair anti-tumor immune responses. Oxidative stressors such as reactive oxygen species generated from radiation therapy can rewire the tumor energy supply, suggesting that radiation therapy can further perturb the energy metabolism of a tumor by promoting fatty acid production. In this review, we critically discuss the network of fatty acid metabolism and how it regulates immune response especially in the context of radiation therapy.
Collapse
|
41
|
Chen C, Wang Z, Ding Y, Qin Y. Manipulating T-cell metabolism to enhance immunotherapy in solid tumor. Front Immunol 2022; 13:1090429. [PMID: 36618408 PMCID: PMC9812959 DOI: 10.3389/fimmu.2022.1090429] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Cellular metabolism is not only essential for tumor cells to sustain their rapid growth and proliferation, but also crucial to maintain T cell fitness and robust immunity. Dysregulated metabolism has been recognized as a hallmark of cancer, which provides survival advantages for tumor cells under stress conditions. Also, emerging evidence suggests that metabolic reprogramming impacts the activation, differentiation, function, and exhaustion of T cells. Normal stimulation of resting T cells promotes the conversion of catabolic and oxidative metabolism to aerobic glycolysis in effector T cells, and subsequently back to oxidative metabolism in memory T cells. These metabolic transitions profoundly affect the trajectories of T-cell differentiation and fate. However, these metabolic events of T cells could be dysregulated by their interplays with tumor or the tumor microenvironment (TME). Importantly, metabolic competition in the tumor ecosystem is a new mechanism resulting in strong suppression of effector T cells. It is appreciated that targeting metabolic reprogramming is a promising way to disrupt the hypermetabolic state of tumor cells and enhance the capacity of immune cells to obtain nutrients. Furthermore, immunotherapies, such as immune checkpoint inhibitor (ICI), adoptive cell therapy (ACT), and oncolytic virus (OV) therapy, have significantly refashioned the clinical management of solid tumors, they are not sufficiently effective for all patients. Understanding how immunotherapy affects T cell metabolism provides a bright avenue to better modulate T cell anti-tumor response. In this review, we provide an overview of the cellular metabolism of tumor and T cells, provide evidence on their dynamic interaction, highlight how metabolic reprogramming of tumor and T cells regulate the anti-tumor responses, describe T cell metabolic patterns in the context of ICI, ACT, and OV, and propose hypothetical combination strategies to favor potent T cell functionality.
Collapse
|
42
|
A Whole-Genome Sequencing Study Implicates GRAMD1B in Multiple Sclerosis Susceptibility. Genes (Basel) 2022; 13:genes13122392. [PMID: 36553660 PMCID: PMC9777893 DOI: 10.3390/genes13122392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
While the role of common genetic variants in multiple sclerosis (MS) has been elucidated in large genome-wide association studies, the contribution of rare variants to the disease remains unclear. Herein, a whole-genome sequencing study in four affected and four healthy relatives of a consanguineous Italian family identified a novel missense c.1801T > C (p.S601P) variant in the GRAMD1B gene that is shared within MS cases and resides under a linkage peak (LOD: 2.194). Sequencing GRAMD1B in 91 familial MS cases revealed two additional rare missense and two splice-site variants, two of which (rs755488531 and rs769527838) were not found in 1000 Italian healthy controls. Functional studies demonstrated that GRAMD1B, a gene with unknown function in the central nervous system (CNS), is expressed by several cell types, including astrocytes, microglia and neurons as well as by peripheral monocytes and macrophages. Notably, GRAMD1B was downregulated in vessel-associated astrocytes of active MS lesions in autopsied brains and by inflammatory stimuli in peripheral monocytes, suggesting a possible role in the modulation of inflammatory response and disease pathophysiology.
Collapse
|
43
|
Bulygin AS, Khantakova JN, Shkaruba NS, Shiku H, Sennikov SS. The role of metabolism on regulatory T cell development and its impact in tumor and transplantation immunity. Front Immunol 2022; 13:1016670. [PMID: 36569866 PMCID: PMC9767971 DOI: 10.3389/fimmu.2022.1016670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Regulatory CD4+ T (Treg) cells play a key role in the induction of immune tolerance and in the prevention of autoimmune diseases. Treg cells are defined by the expression of transcription factor FOXP3, which ensures proliferation and induction of the suppressor activity of this cell population. In a tumor microenvironment, after transplantation or during autoimmune diseases, Treg cells can respond to various signals from their environment and this property ensures their suppressor function. Recent studies showed that a metabolic signaling pathway of Treg cells are essential in the control of Treg cell proliferation processes. This review presents the latest research highlights on how the influence of extracellular factors (e.g. nutrients, vitamins and metabolites) as well as intracellular metabolic signaling pathways regulate tissue specificity of Treg cells and heterogeneity of this cell population. Understanding the metabolic regulation of Treg cells should provide new insights into immune homeostasis and disorders along with important therapeutic implications for autoimmune diseases, cancer and other immune-system-mediated disorders.
Collapse
|
44
|
Abstract
Significance: Immune cell therapy involves the administration of immune cells into patients, and it has emerged as one of the most common type of immunotherapy for cancer treatment. Knowledge on the biology and metabolism of the adoptively transferred immune cells and the metabolic requirements of different cell types in the tumor is fundamental for the development of immune cell therapy with higher efficacy. Recent Advances: Adoptive T cell therapy has been shown to be effective in limited types of cancer. Different types and generations of adoptive T cell therapies have evolved in the recent decade. This review covers the basic principles and development of these therapies in cancer treatment. Critical Issues: Our review provides an overview on the basic concepts on T cell metabolism and highlights the metabolic requirements of T and adoptively transferred T cells. Future Directions: Integrating the knowledge just cited will facilitate the development of strategies to maximize the expansion of adoptively transferred T cells ex vivo and in vivo and to promote their durability and antitumor effects. Antioxid. Redox Signal. 37, 1303-1324.
Collapse
Affiliation(s)
- Ge Hui Tan
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Carmen Chak-Lui Wong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Center for Oncology and Immunology, Hong Kong Science Park, Hong Kong, SAR, China
| |
Collapse
|
45
|
Thymic involution caused by repeated cocaine administration includes apoptotic cell loss followed by ectopic adipogenesis. PLoS One 2022; 17:e0277032. [PMID: 36441681 PMCID: PMC9704633 DOI: 10.1371/journal.pone.0277032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
Abstract
Cocaine abuse has a negative impact on the immune system. To investigate the adverse effects of binge cocaine administration on lymphoid organs such as thymus and spleen, we examined the effects of repeated intravenous (i.v.) administration of cocaine on rats. Sprague Dawley rats (male, 8 weeks old) received 20 mg/kg body weight of cocaine hydrochloride per day for 7 or 14 days. In addition to a significant loss in the weight of the spleen, consistent with our previous intraperitoneal (i.p.) injection model of binge cocaine abuse (50 mg/kg cocaine for 7 days), we also found a significant loss of weight as well as apparent shrinkage of the thymus in the cocaine group. Transcriptome analysis of the thymus revealed increased expressions of genes involved in apoptosis, such as Ifi27 and Traf2, as well as decreased expressions of several genes related to lipid metabolism, such as Cd36, Adipoq, Scd1, and Fabp4, in the thymus of the cocaine group (7 days), suggesting an apoptotic loss of thymic cells as well as alterations in lipid metabolism. Paradoxically, cocaine activates PPARγ, a key transcriptional factor activating lipid metabolism, although ectopic adipogenesis was scarcely observed in the thymus. Further analysis of rats administered 20 mg/kg cocaine for 14 days revealed ectopic adipogenesis, which was accompanied with the activation of PPARγ as well as increased expression of Adipoq and Fabp4, in the thymus. Taken together, these results indicate that repeated cocaine administration induces thymic involution, which is initiated by the loss of thymic cells through apoptosis and subsequent ectopic adipocyte development.
Collapse
|
46
|
Sánchez-Sanz A, Posada-Ayala M, Sabín-Muñoz J, Fernández-Miranda I, Aladro-Benito Y, Álvarez-Lafuente R, Royuela A, García-Hernández R, la Fuente ORD, Romero J, García-Merino A, Sánchez-López AJ. Endocannabinoid levels in peripheral blood mononuclear cells of multiple sclerosis patients treated with dimethyl fumarate. Sci Rep 2022; 12:20300. [PMID: 36434122 PMCID: PMC9700785 DOI: 10.1038/s41598-022-21807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/04/2022] [Indexed: 11/27/2022] Open
Abstract
The endocannabinoid system (ECS), a signalling network with immunomodulatory properties, is a potential therapeutic target in multiple sclerosis (MS). Dimethyl fumarate (DMF) is an approved drug for MS whose mechanism of action has not been fully elucidated; the possibility exists that its therapeutic effects could imply the ECS. With the aim of studying if DMF can modulate the ECS, the endocannabinoids 2-arachidonoylglycerol (2-AG), anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) were determined by liquid chromatography-mass spectrometry in peripheral blood mononuclear cells from 21 healthy donors (HD) and 32 MS patients at baseline and after 12 and 24 months of DMF treatment. MS patients presented lower levels of 2-AG and PEA compared to HD. 2-AG increased at 24 months, reaching HD levels. AEA and PEA remained stable at 12 and 24 months. OEA increased at 12 months and returned to initial levels at 24 months. Patients who achieved no evidence of disease activity (NEDA3) presented the same modulation over time as EDA3 patients. PEA was modulated differentially between females and males. Our results show that the ECS is dysregulated in MS patients. The increase in 2-AG and OEA during DMF treatment suggests a possible role of DMF in ECS modulation.
Collapse
Affiliation(s)
- Alicia Sánchez-Sanz
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain ,grid.5515.40000000119578126PhD Program in Molecular Biosciences, Doctoral School, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Posada-Ayala
- grid.449795.20000 0001 2193 453XFaculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Julia Sabín-Muñoz
- grid.73221.350000 0004 1767 8416Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Ismael Fernández-Miranda
- grid.5515.40000000119578126PhD Program in Molecular Biosciences, Doctoral School, Universidad Autónoma de Madrid, Madrid, Spain ,Lymphoma Research Group, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Yolanda Aladro-Benito
- grid.411244.60000 0000 9691 6072Department of Neurology, Hospital Universitario de Getafe, Madrid, Spain
| | - Roberto Álvarez-Lafuente
- grid.414780.eGrupo de Investigación de Factores Ambientales en Enfermedades Degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain ,grid.483890.e0000 0004 6095 7779Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
| | - Ana Royuela
- Clinical Biostatistics Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Ruth García-Hernández
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Ofir Rodríguez-De la Fuente
- grid.73221.350000 0004 1767 8416Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Julián Romero
- grid.449795.20000 0001 2193 453XFaculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Antonio García-Merino
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain ,grid.73221.350000 0004 1767 8416Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain ,grid.483890.e0000 0004 6095 7779Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain ,grid.5515.40000000119578126Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio José Sánchez-López
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain ,grid.483890.e0000 0004 6095 7779Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain ,Biobank, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| |
Collapse
|
47
|
Wojciuk B, Bogucka A, Czaplewska P, Okulewicz P, Wojciechowska‐Koszko I, Ciechanowski K, Kabat‐Koperska J. Proteomic study on the lymphocytes from pregnant Wistar rat females treated with immunosuppressive regimen. Clin Transl Sci 2022; 16:118-127. [PMID: 36366854 PMCID: PMC9841302 DOI: 10.1111/cts.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney transplantation remains the therapeutic option for patients with end-stage kidney disease. Current immunosuppressive regimens are efficient in combating acute kidney rejection. However, insights into chronic kidney allograft injury remains limited. Simultaneously, pregnancy is more common after kidney transplantation than during dialysis treatment. Due to ethical issues, comprehensive studies on the impact of immunosuppressive regimens on pregnancy are challenging. The study aimed to investigate the proteomic status of lymphocytes obtained from pregnant female rats under immunosuppressive treatment. The experiment involved a group of 10 female, pregnant Wistar rats, five of which were treated with tacrolimus, mofetil mycophenolate, and glucocorticosteroids; five were used as control. The lymphocytes were obtained and analyzed with mass spectrometry. Measurements were processed by a database search in the ProteinPilot software with a cutoff of 1% false discovery rate. The outcomes were verified statistically by a t-test (p value < 0.05) regarding proteins up- and downregulation. A total of 2082 proteins were identified in all experiments. Eight hundred five proteins were quantified in an absolute manner in a data-independent acquisition-total protein approach analysis. Ninety-five proteins were recognized as present at different concentrations in analyzed groups and were annotated to intracellular pathways. The proteins involved in nonsense-mediated decay and L13a-mediated translational silencing of ceruloplasmin expression were recognized as downregulated. The set of proteins clinically identified as acute phase proteins was upregulated. Despite the blockade of adaptive cellular immunity, the lymphocytes in the analyzed group reveal sustained proinflammatory status with decreased ability to regulate translation. This potentially affects pregnancy and immunity.
Collapse
Affiliation(s)
- Bartosz Wojciuk
- Department of Diagnostic ImmunologyPomeranian Medical University in SzczecinSzczecinPoland
| | - Aleksandra Bogucka
- Laboratory of Biopolymers Structure, Intercollegiate Faculty of BiotechnologyMedical University of Gdańsk and University of GdańskGdańskPoland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of BiotechnologyMedical University of Gdańsk and University of GdańskGdańskPoland
| | - Patrycja Okulewicz
- Department of Diagnostic ImmunologyPomeranian Medical University in SzczecinSzczecinPoland
| | | | - Kazimierz Ciechanowski
- Clinic of Internal Medicine, Nephrology and TransplantationPomeranian Medical University in SzczecinSzczecinPoland
| | - Joanna Kabat‐Koperska
- Clinic of Internal Medicine, Nephrology and TransplantationPomeranian Medical University in SzczecinSzczecinPoland
| |
Collapse
|
48
|
Zheng M, Zhang W, Chen X, Guo H, Wu H, Xu Y, He Q, Ding L, Yang B. The impact of lipids on the cancer–immunity cycle and strategies for modulating lipid metabolism to improve cancer immunotherapy. Acta Pharm Sin B 2022; 13:1488-1497. [PMID: 37139414 PMCID: PMC10149904 DOI: 10.1016/j.apsb.2022.10.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 01/11/2023] Open
Abstract
Lipids have been found to modulate tumor biology, including proliferation, survival, and metastasis. With the new understanding of tumor immune escape that has developed in recent years, the influence of lipids on the cancer-immunity cycle has also been gradually discovered. First, regarding antigen presentation, cholesterol prevents tumor antigens from being identified by antigen presenting cells. Fatty acids reduce the expression of major histocompatibility complex class I and costimulatory factors in dendritic cells, impairing antigen presentation to T cells. Prostaglandin E2 (PGE2) reduce the accumulation of tumor-infiltrating dendritic cells. Regarding T-cell priming and activation, cholesterol destroys the structure of the T-cell receptor and reduces immunodetection. In contrast, cholesterol also promotes T-cell receptor clustering and relative signal transduction. PGE2 represses T-cell proliferation. Finally, regarding T-cell killing of cancer cells, PGE2 and cholesterol weaken granule-dependent cytotoxicity. Moreover, fatty acids, cholesterol, and PGE2 can improve the activity of immunosuppressive cells, increase the expression of immune checkpoints and promote the secretion of immunosuppressive cytokines. Given the regulatory role of lipids in the cancer-immunity cycle, drugs that modulate fatty acids, cholesterol and PGE2 have been envisioned as effective way in restoring antitumor immunity and synergizing with immunotherapy. These strategies have been studied in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Mingming Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanjun Xu
- Department of Medical Thoracic Oncology, the Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
- Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Corresponding authors. Tel./fax: +86 571 88208400.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
- Corresponding authors. Tel./fax: +86 571 88208400.
| |
Collapse
|
49
|
Martin-Perez M, Urdiroz-Urricelqui U, Bigas C, Benitah SA. The role of lipids in cancer progression and metastasis. Cell Metab 2022; 34:1675-1699. [PMID: 36261043 DOI: 10.1016/j.cmet.2022.09.023] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lipids have essential biological functions in the body (e.g., providing energy storage, acting as a signaling molecule, and being a structural component of membranes); however, an excess of lipids can promote tumorigenesis, colonization, and metastatic capacity of tumor cells. To metastasize, a tumor cell goes through different stages that require lipid-related metabolic and structural adaptations. These adaptations include altering the lipid membrane composition for invading other niches and overcoming cell death mechanisms and promoting lipid catabolism and anabolism for energy and oxidative stress protective purposes. Cancer cells also harness lipid metabolism to modulate the activity of stromal and immune cells to their advantage and to resist therapy and promote relapse. All this is especially worrying given the high fat intake in Western diets. Thus, metabolic interventions aiming to reduce lipid availability to cancer cells or to exacerbate their metabolic vulnerabilities provide promising therapeutic opportunities to prevent cancer progression and treat metastasis.
Collapse
Affiliation(s)
- Miguel Martin-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, 08028 Barcelona, Spain.
| | - Uxue Urdiroz-Urricelqui
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Claudia Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
50
|
Darragh LB, Knitz MM, Hu J, Clambey ET, Backus J, Dumit A, Samedi V, Bubak A, Greene C, Waxweiler T, Mehrotra S, Bhatia S, Gadwa J, Bickett T, Piper M, Fakhoury K, Liu A, Petit J, Bowles D, Thaker A, Atiyeh K, Goddard J, Hoyer R, Van Bokhoven A, Jordan K, Jimeno A, D'Alessandro A, Raben D, McDermott JD, Karam SD. A phase I/Ib trial and biological correlate analysis of neoadjuvant SBRT with single-dose durvalumab in HPV-unrelated locally advanced HNSCC. NATURE CANCER 2022; 3:1300-1317. [PMID: 36434392 PMCID: PMC9701140 DOI: 10.1038/s43018-022-00450-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
Abstract
Five-year survival for human papilloma virus-unrelated head and neck squamous cell carcinomas remain below 50%. We assessed the safety of administering combination hypofractionated stereotactic body radiation therapy with single-dose durvalumab (anti-PD-L1) neoadjuvantly (n = 21) ( NCT03635164 ). The primary endpoint of the study was safety, which was met. Secondary endpoints included radiographic, pathologic and objective response; locoregional control; progression-free survival; and overall survival. Among evaluable patients at an early median follow-up of 16 months (448 d or 64 weeks), overall survival was 80.1% with 95% confidence interval (95% CI) (62.0%, 100.0%), locoregional control and progression-free survival were 75.8% with 95% CI (57.5%, 99.8%), and major pathological response or complete response was 75% with 95% exact CI (51.6%, 100.0%). For patients treated with 24 Gy, 89% with 95% CI (57.1%, 100.0%) had MPR or CR. Using high-dimensional multi-omics and spatial data as well as biological correlatives, we show that responders had: (1) an increase in effector T cells; (2) a decrease in immunosuppressive cells; and (3) an increase in antigen presentation post-treatment.
Collapse
Affiliation(s)
- Laurel B Darragh
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Michael M Knitz
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Junxiao Hu
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Eric T Clambey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer Backus
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Dumit
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Von Samedi
- Department of Pathology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Bubak
- Department of Neurology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Casey Greene
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Timothy Waxweiler
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Sanjana Mehrotra
- Department of Pathology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Shilpa Bhatia
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Gadwa
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas Bickett
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Miles Piper
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Kareem Fakhoury
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Arthur Liu
- Department of Radiation Oncology, University of Colorado, Poudre Valley Hospital, Fort Collins, CO, USA
| | - Joshua Petit
- Department of Radiation Oncology, University of Colorado, Poudre Valley Hospital, Fort Collins, CO, USA
| | - Daniel Bowles
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ashesh Thaker
- Department of Radiology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Kimberly Atiyeh
- Department of Otolaryngology Head and Neck Surgery, University of Colorado, Memorial South Hospital, Colorado Springs, CO, USA
| | - Julie Goddard
- Department of Otolaryngology Head and Neck Surgery, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Robert Hoyer
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Adrie Van Bokhoven
- Department of Pathology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Kimberly Jordan
- Department of Immunology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Antonio Jimeno
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - David Raben
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica D McDermott
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sana D Karam
- Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA.
- Department of Immunology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|