1
|
Elsaid DS, Elbedewy TAE, Soliman NA, Shalaby KA, Haroun RAH. Diagnostic Implications of CD63 and CD64 Expression Levels and FcγRIIIA 158 V/F Gene Polymorphism in Primary Immune Thrombocytopenia Adult Patients. Int J Lab Hematol 2024. [PMID: 39503275 DOI: 10.1111/ijlh.14391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/01/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE Immune thrombocytopenic purpura (ITP) is an acquired autoimmune disease characterized by reduced platelet counts due to immune system dysregulation caused by many factors, including genetics, autoimmune diseases, infections, and inflammations. Therefore, the current study aimed to evaluate immunological markers such as the expression level of lysosomal associated membrane protein 3 (LAMP-3), also known as CD63, and the expression level of Fc-gamma receptor I (FcγRI), also known as CD64 and also investigate the association of Fc-gamma receptor IIIA (FcγRIIIA) 158 V/F polymorphism to the risk of ITP. METHODS A total of 180 subjects; 60 ITP patients, 60 patients with thrombocytopenia of other causes and 60 controls were enrolled into our study. The expression level of CD63 was done using reverse transcription quantitative PCR (RTqPCR), while CD64 expression level was done by flow cytometry. The polymorphism of FcγRIIIA 158 V/F gene was analyzed by polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP) analysis. Finally, CD63 and CD64 protein-protein interactions were done by using the STRING online database. RESULTS The expression of CD63 was significantly elevated in ITP patients than thrombocytopenia patients and healthy control. Also there was high expression level of CD64 on granulocytes and monocytes from ITP patients than other groups. Receiver operating characteristic curve (ROC curve) analysis of CD63 showed an area under the curve (AUC) revealed of 1.00, sensitivity of 100% and specificity of 100%; while for CD64 on granulocytes, AUC of 0.998 as well as a sensitivity of 96.66% and specificity of 93.33%. Regarding FcγRIIIa 158 V/F polymorphism, all patients and healthy volunteers included in this study showed the wild FF genotype. CONCLUSIONS The expression of both CD63 and CD64 were significantly increased in ITP patients and could be good biomarkers to diagnose ITP. Additionally, there is no association between FcγRIIIa 158 V/F polymorphism and the risk of ITP disease.
Collapse
Affiliation(s)
- Dina Samir Elsaid
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Nema Ali Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Kamal Ali Shalaby
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
2
|
Lopez Baltazar JM, Gu W, Yu Q. Enhancing Extracellular Vesicle Detection via Cotargeting Tetraspanin Biomarkers. Anal Chem 2024; 96:16406-16414. [PMID: 39360503 DOI: 10.1021/acs.analchem.4c04086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Extracellular vesicles (EVs) are emerging as key diagnostic biomarkers due to their widespread presence in body fluids and the proteins on their surfaces, which reflect the identity and condition of their parent cells. Research has focused on detecting EVs with biosensors that target individual transmembrane proteins (TMPs) like tetraspanins. However, due to TMP heterogeneity and the formation of tetraspanin-enriched microdomains (TEMs), cotargeting multiple TMPs is a promising strategy for enhancing EV detection. In this work, we introduce a dual-antibody surface functionalization approach using surface plasmon resonance (SPR) biosensors to cotarget tetraspanins on EVs derived from mouse macrophages. The expression of EV tetraspanin markers followed the trend of CD9 > CD63 > CD81, which was consistent with the EV detection targeting their nontetraspanin partners, exhibiting LFA-1 > ICAM-1 > VCAM-1, and suggesting a differential role of tetraspanins with their associated TMPs. Cotargeting EV tetraspanins via CD81/CD63, CD81/CD9, and CD63/CD9 dual monoclonal antibody surfaces resulted in higher EV detection compared to predictions based on binding with two monoclonal antibodies against tetraspanins without cotargeting. Furthermore, the optimization of dual monoclonal antibody surface ratios to improve cotargeting effect yielded a statistically significant enhancement in the sensitivity of EV detection. These findings underscore the importance of TEMs in designing EV-based biosensing platforms to achieve optimized sensitivity in EV detection.
Collapse
Affiliation(s)
- Jesus M Lopez Baltazar
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Wenchao Gu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qiuming Yu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Rhomberg-Kauert J, Karlsson M, Thiagarajan D, Kallas T, Karlsson F, Fredriksson S, Dahlberg J, Martinez Barrio A. Using adjusted local assortativity with Molecular Pixelation unveils colocalization of membrane proteins with immunological significance. Front Immunol 2024; 15:1309916. [PMID: 38983848 PMCID: PMC11231075 DOI: 10.3389/fimmu.2024.1309916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/09/2024] [Indexed: 07/11/2024] Open
Abstract
Advances in spatial proteomics and protein colocalization are a driving force in the understanding of cellular mechanisms and their influence on biological processes. New methods in the field of spatial proteomics call for the development of algorithms and open up new avenues of research. The newly introduced Molecular Pixelation (MPX) provides spatial information on surface proteins and their relationship with each other in single cells. This allows for in silico representation of neighborhoods of membrane proteins as graphs. In order to analyze this new data modality, we adapted local assortativity in networks of MPX single-cell graphs and created a method that is able to capture detailed information on the spatial relationships of proteins. The introduced method can evaluate the pairwise colocalization of proteins and access higher-order similarity to investigate the colocalization of multiple proteins at the same time. We evaluated the method using publicly available MPX datasets where T cells were treated with a chemokine to study uropod formation. We demonstrate that adjusted local assortativity detects the effects of the stimuli at both single- and multiple-marker levels, which enhances our understanding of the uropod formation. We also applied our method to treating cancerous B-cell lines using a therapeutic antibody. With the adjusted local assortativity, we recapitulated the effect of rituximab on the polarity of CD20. Our computational method together with MPX improves our understanding of not only the formation of cell polarity and protein colocalization under stimuli but also advancing the overall insight into immune reaction and reorganization of cell surface proteins, which in turn allows the design of novel therapies. We foresee its applicability to other types of biological spatial data when represented as undirected graphs.
Collapse
Affiliation(s)
- Jan Rhomberg-Kauert
- Pixelgen Technologies AB, Stockholm, Sweden
- Department of Geodesy and Geoinformation, TU Wien, Vienna, Austria
| | | | | | | | | | - Simon Fredriksson
- Pixelgen Technologies AB, Stockholm, Sweden
- Department of Protein Science, Royal Institute of Technology, Stockholm, Sweden
| | | | | |
Collapse
|
4
|
Ma J, Pang Y, Shang Y, Xie C, Xu X, Chan L, Zhang Z, Wang W. CyTOF analysis revealed platelet heterogeneity in breast cancer patients received T-DM1 treatment. Clin Immunol 2024; 263:110227. [PMID: 38643891 DOI: 10.1016/j.clim.2024.110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
T-DM1 (Trastuzumab Emtansine) belongs to class of Antibody-Drug Conjugates (ADC), where cytotoxic drugs are conjugated with the antibody Trastuzumab to specifically target HER2-positive cancer cells. Platelets, as vital components of the blood system, intricately influence the immune response to tumors through complex mechanisms. In our study, we examined platelet surface proteins in the plasma of patients before and after T-DM1 treatment, categorizing them based on treatment response. We identified a subgroup of platelets with elevated expression of CD63 and CD9 exclusively in patients with favorable treatment responses, while this subgroup was absent in patients with poor responses. Another noteworthy discovery was the elevated expression of CD36 in the platelet subgroups of patients exhibiting inadequate responses to treatment. These findings suggest that the expression of these platelet surface proteins may be correlated with the prognosis of T-DM1 treatment. These indicators offer valuable insights for predicting the therapeutic response to T-DM1 and may become important references in future clinical practice, contributing to a better understanding of the impact of ADC therapies and optimizing personalized cancer treatment strategies.
Collapse
Affiliation(s)
- Jianli Ma
- Department of Radiation Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Yuheng Pang
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Yuefeng Shang
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Chufei Xie
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, PR China
| | - Xiaoxue Xu
- Capital Medical University, Beijing, PR China
| | - Liujia Chan
- Capital Medical University, Beijing, PR China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin 150001, China.
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
5
|
Karlsson F, Kallas T, Thiagarajan D, Karlsson M, Schweitzer M, Navarro JF, Leijonancker L, Geny S, Pettersson E, Rhomberg-Kauert J, Larsson L, van Ooijen H, Petkov S, González-Granillo M, Bunz J, Dahlberg J, Simonetti M, Sathe P, Brodin P, Barrio AM, Fredriksson S. Molecular pixelation: spatial proteomics of single cells by sequencing. Nat Methods 2024; 21:1044-1052. [PMID: 38720062 PMCID: PMC11166577 DOI: 10.1038/s41592-024-02268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/02/2024] [Indexed: 06/13/2024]
Abstract
The spatial distribution of cell surface proteins governs vital processes of the immune system such as intercellular communication and mobility. However, fluorescence microscopy has limited scalability in the multiplexing and throughput needed to drive spatial proteomics discoveries at subcellular level. We present Molecular Pixelation (MPX), an optics-free, DNA sequence-based method for spatial proteomics of single cells using antibody-oligonucleotide conjugates (AOCs) and DNA-based, nanometer-sized molecular pixels. The relative locations of AOCs are inferred by sequentially associating them into local neighborhoods using the sequence-unique DNA pixels, forming >1,000 spatially connected zones per cell in 3D. For each single cell, DNA-sequencing reads are computationally arranged into spatial proteomics networks for 76 proteins. By studying immune cell dynamics using spatial statistics on graph representations of the data, we identify known and new patterns of spatial organization of proteins on chemokine-stimulated T cells, highlighting the potential of MPX in defining cell states by the spatial arrangement of proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Petter Brodin
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Department of Immunology and Inflammation, Imperial College London, London, UK
- Medical Research Council London Institute of Medical Sciences (LMS), Imperial College Hammersmith Campus, London, UK
| | | | - Simon Fredriksson
- Pixelgen Technologies AB, Stockholm, Sweden.
- Royal Institute of Technology, Department of Protein Science, Stockholm, Sweden.
| |
Collapse
|
6
|
Querol Cano L, Dunlock VME, Schwerdtfeger F, van Spriel AB. Membrane organization by tetraspanins and galectins shapes lymphocyte function. Nat Rev Immunol 2024; 24:193-212. [PMID: 37758850 DOI: 10.1038/s41577-023-00935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/29/2023]
Abstract
Immune receptors are not randomly distributed at the plasma membrane of lymphocytes but are segregated into specialized domains that function as platforms to initiate signalling, as exemplified by the B cell or T cell receptor complex and the immunological synapse. 'Membrane-organizing proteins' and, in particular, tetraspanins and galectins, are crucial for controlling the spatiotemporal organization of immune receptors and other signalling proteins. Deficiencies in specific tetraspanins and galectins result in impaired immune synapse formation, lymphocyte proliferation, antibody production and migration, which can lead to impaired immunity, tumour development and autoimmunity. In contrast to conventional ligand-receptor interactions, membrane organizers interact in cis (on the same cell) and modulate receptor clustering, receptor dynamics and intracellular signalling. New findings have uncovered their complex and dynamic nature, revealing shared binding partners and collaborative activity in determining the composition of membrane domains. Therefore, immune receptors should not be envisaged as independent entities and instead should be studied in the context of their spatial organization in the lymphocyte membrane. We advocate for a novel approach to study lymphocyte function by globally analysing the role of membrane organizers in the assembly of different membrane complexes and discuss opportunities to develop therapeutic approaches that act via the modulation of membrane organization.
Collapse
Affiliation(s)
- Laia Querol Cano
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vera-Marie E Dunlock
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabian Schwerdtfeger
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemiek B van Spriel
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Reseco L, Molina-Crespo A, Atienza M, Gonzalez E, Falcon-Perez JM, Cantero JL. Characterization of Extracellular Vesicles from Human Saliva: Effects of Age and Isolation Techniques. Cells 2024; 13:95. [PMID: 38201299 PMCID: PMC10778510 DOI: 10.3390/cells13010095] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Salivary extracellular vesicles (EVs) represent an attractive source of biomarkers due to the accessibility of saliva and its non-invasive sampling methods. However, the lack of comparative studies assessing the efficacy of different EV isolation techniques hampers the use of salivary EVs in clinical settings. Moreover, the effects of age on salivary EVs are largely unknown, hindering the identification of salivary EV-associated biomarkers across the lifespan. To address these questions, we compared salivary EV concentration, size mode, protein concentration, and purity using eight EV isolation techniques before and after magnetic bead immunocapture with antibodies against CD9, CD63, and CD81. The effects of age on salivary EVs obtained with each isolation technique were further investigated. Results showed higher expression of CD63 on isolated salivary EVs compared to the expression of CD81 and flotillin-1. Overall, magnetic bead immunocapture was more efficient in recovering salivary EVs with Norgen's Saliva Exosome Purification Kit and ExoQuick-TC ULTRA at the cost of EV yield. Regardless of age, Invitrogen Total Exosome Isolation Solution showed the highest level of protein concentration, whereas Izon qEVOriginal-70nm columns revealed the highest purity. This study provides the first comprehensive comparison of salivary EVs in younger and older adults using different EV isolation techniques, which represents a step forward for assessing salivary EVs as a source of potential biomarkers of tissue-specific diseases throughout the life cycle.
Collapse
Affiliation(s)
- Lucia Reseco
- Laboratory of Functional Neuroscience, Pablo de Olavide University, 41013 Seville, Spain; (L.R.); (A.M.-C.); (M.A.)
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angela Molina-Crespo
- Laboratory of Functional Neuroscience, Pablo de Olavide University, 41013 Seville, Spain; (L.R.); (A.M.-C.); (M.A.)
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, 41013 Seville, Spain; (L.R.); (A.M.-C.); (M.A.)
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Esperanza Gonzalez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (E.G.); (J.M.F.-P.)
| | - Juan Manuel Falcon-Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (E.G.); (J.M.F.-P.)
- CIBEREHD, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, 28029 Madrid, Spain
| | - Jose L. Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, 41013 Seville, Spain; (L.R.); (A.M.-C.); (M.A.)
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Xu SX, Xie XH, Yao L, Wang W, Zhang H, Chen MM, Sun S, Nie ZW, Nagy C, Liu Z. Human in vivo evidence of reduced astrocyte activation and neuroinflammation in patients with treatment-resistant depression following electroconvulsive therapy. Psychiatry Clin Neurosci 2023; 77:653-664. [PMID: 37675893 DOI: 10.1111/pcn.13596] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
AIM The current study aimed to investigate the neuroinflammatory hypothesis of depression and the potential anti-inflammatory effect of electroconvulsive therapy (ECT) in vivo, utilizing astrocyte-derived extracellular vesicles (ADEVs) isolated from plasma. METHODS A total of 40 patients with treatment-resistant depression (TRD) and 35 matched healthy controls were recruited at baseline, and 34 patients with TRD completed the post-ECT visits. Blood samples were collected at baseline and post-ECT. Plasma ADEVs were isolated and confirmed, and the concentrations of two astrocyte markers (glial fibrillary acidic protein [GFAP] and S100β), an extracellular vesicle marker cluster of differentiation 81 (CD81), and nine inflammatory markers in ADEVs were measured as main analyses. In addition, correlation analysis was conducted between clinical features and ADEV protein levels as exploratory analysis. RESULTS At baseline, the TRD group exhibited significantly higher levels of two astrocyte markers GFAP and S100β, as well as CD81 compared with the healthy controls. Inflammatory markers interferon γ (IFN-γ), interleukin (IL) 1β, IL-4, IL-6, tumor necrosis factor α, IL-10, and IL-17A were also significantly higher in the TRD group. After ECT, there was a significant reduction in the levels of GFAP, S100β, and CD81, along with a significant decrease in the levels of IFN-γ and IL-4. Furthermore, higher levels of GFAP, S100β, CD81, and inflammatory cytokines were associated with more severe depressive symptoms and poorer cognitive function. CONCLUSION This study provides direct insight supporting the astrocyte activation and neuroinflammatory hypothesis of depression using ADEVs. ECT may exert an anti-inflammatory effect through inhibition of such activation of astrocytes.
Collapse
Affiliation(s)
- Shu-Xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin-Hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Honghan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mian-Mian Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhao-Wen Nie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Corina Nagy
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Kmiotek-Wasylewska K, Bobis-Wozowicz S, Karnas E, Orpel M, Woźnicka O, Madeja Z, Dawn B, Zuba-Surma EK. Anti-inflammatory, Anti-fibrotic and Pro-cardiomyogenic Effects of Genetically Engineered Extracellular Vesicles Enriched in miR-1 and miR-199a on Human Cardiac Fibroblasts. Stem Cell Rev Rep 2023; 19:2756-2773. [PMID: 37700183 PMCID: PMC10661813 DOI: 10.1007/s12015-023-10621-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
RATIONALE Emerging evidence indicates that stem cell (SC)- derived extracellular vesicles (EVs) carrying bioactive miRNAs are able to repair damaged or infarcted myocardium and ameliorate adverse remodeling. Fibroblasts represent a major cell population responsible for scar formation in the damaged heart. However, the effects of EVs on cardiac fibroblast (CFs) biology and function has not been investigated. OBJECTIVE To analyze the biological impact of stem cell-derived EVs (SC-EVs) enriched in miR-1 and miR-199a on CFs and to elucidate the underlying molecular mechanisms. METHODS AND RESULTS Genetically engineered human induced pluripotent stem cells (hiPS) and umbilical cord-derived mesenchymal stem cells (UC-MSCs) expressing miR-1 or miR-199a were used to produce miR-EVs. Cells and EVs were thoughtfully analyzed for miRNA expression using RT-qPCR method. Both hiPS-miRs-EVs and UC-MSC-miRs-EVs effectively transferred miRNAs to recipient CFs, however, hiPS-miRs-EVs triggered cardiomyogenic gene expression in CFs more efficiently than UC-MSC-miRs-EVs. Importantly, hiPS-miR-1-EVs exhibited cytoprotective effects on CFs by reducing apoptosis, decreasing levels of pro-inflammatory cytokines (CCL2, IL-1β, IL-8) and downregulating the expression of a pro-fibrotic gene - α-smooth muscle actin (α-SMA). Notably, we identified a novel role of miR-199a-3p delivered by hiPS-EVs to CFs, in triggering the expression of cardiomyogenic genes (NKX2.5, TNTC, MEF2C) and ion channels involved in cardiomyocyte contractility (HCN2, SCN5A, KCNJ2, KCND3). By targeting SERPINE2, miR-199a-3p may reduce pro-fibrotic properties of CFs, whereas miR-199a-5p targeted BCAM and TSPAN6, which may be implicated in downregulation of inflammation. CONCLUSIONS hiPS-EVs carrying miR-1 and miR-199a attenuate apoptosis and pro-fibrotic and pro-inflammatory activities of CFs, and increase cardiomyogenic gene expression. These finding serve as rationale for targeting fibroblasts with novel EV-based miRNA therapies to improve heart repair after myocardial injury.
Collapse
Affiliation(s)
- Katarzyna Kmiotek-Wasylewska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Sylwia Bobis-Wozowicz
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Monika Orpel
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Olga Woźnicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Buddhadeb Dawn
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, 1701 W Charleston Blvd., Las Vegas, NV, 89102, USA
| | - Ewa K Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
10
|
Leinung N, Mentrup T, Patel M, Gallagher T, Schröder B. Dynamic association of the intramembrane proteases SPPL2a/b and their substrates with tetraspanin-enriched microdomains. iScience 2023; 26:107819. [PMID: 37736044 PMCID: PMC10509304 DOI: 10.1016/j.isci.2023.107819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Signal peptide peptidase-like 2a and b (SPPL2a/b) are aspartyl intramembrane proteases and cleave tail-anchored proteins as well as N-terminal fragments (NTFs) derived from type II-oriented transmembrane proteins. How these proteases recruit substrates and cleavage is regulated, is still incompletely understood. We found that SPPL2a/b localize to detergent-resistant membrane (DRM) domains with the characteristics of tetraspanin-enriched microdomains (TEMs). Based on this, association with several tetraspanins was evaluated. We demonstrate that not only SPPL2a/b but also their substrates tumor necrosis factor (TNF) and CD74 associate with tetraspanins like CD9, CD81, and CD82 and/or TEMs and analyze the stability of these complexes in different detergents. CD9 and CD81 deficiency has protease- and substrate-selective effects on SPPL2a/b function. Our findings suggest that reciprocal interactions with tetraspanins may assist protease-substrate encounters of SPPL2a/b within the membrane. Beyond SPP/SPPL proteases, this supports previous concepts that tetraspanins facilitate membrane-embedded proteolytic processes.
Collapse
Affiliation(s)
- Nadja Leinung
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Mehul Patel
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
11
|
Malla R, Marni R, Chakraborty A. Exploring the role of CD151 in the tumor immune microenvironment: Therapeutic and clinical perspectives. Biochim Biophys Acta Rev Cancer 2023; 1878:188898. [PMID: 37094754 DOI: 10.1016/j.bbcan.2023.188898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023]
Abstract
CD151 is a transmembrane protein implicated in tumor progression and has been shown to regulate various cellular and molecular mechanisms contributing to malignancy. More recently, the role of CD151 in the tumor immune microenvironment (TIME) has gained attention as a potential target for cancer therapy. This review aims to explore the role of CD151 in the TIME, focusing on the therapeutic and clinical perspectives. The role of CD151 in regulating the interactions between tumor cells and the immune system will be discussed, along with the current understanding of the molecular mechanisms underlying these interactions. The current state of the development of CD151-targeted therapies and the potential clinical applications of these therapies will also be reviewed. This review provides an overview of the current knowledge on the role of CD151 in the TIME and highlights the potential of CD151 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Dept of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India.
| | - Rakshmita Marni
- Cancer Biology Laboratory, Dept of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | | |
Collapse
|
12
|
Sabat R, Šimaitė D, Gudjonsson JE, Brembach TC, Witte K, Krause T, Kokolakis G, Bartnik E, Nikolaou C, Rill N, Coulibaly B, Levin C, Herrmann M, Salinas G, Leeuw T, Volk HD, Ghoreschi K, Wolk K. Neutrophilic granulocyte-derived B-cell activating factor supports B cells in skin lesions in hidradenitis suppurativa. J Allergy Clin Immunol 2023; 151:1015-1026. [PMID: 36481267 DOI: 10.1016/j.jaci.2022.10.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/17/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by painful inflamed nodules, abscesses, and pus-draining tunnels appearing in axillary, inguinal, and perianal skin areas. HS lesions contain various types of immigrated immune cells. OBJECTIVE This study aimed to characterize mediators that support lesional B/plasma cell persistence in HS. METHODS Skin samples from several cohorts of HS patients and control cohorts were assessed by mRNA sequencing, quantitative PCR on reverse-transcribed RNA, flow cytometry, and immunohistofluorescence. Blood plasma and cultured skin biopsy samples, keratinocytes, dermal fibroblasts, neutrophilic granulocytes (neutrophils), monocytes, and B cells were analyzed. Complex systems biology approaches were used to evaluate bulk and single-cell RNA sequencing data. RESULTS Proportions of B/plasma cells, neutrophils, CD8+ T cells, and M0 and M1 macrophages were elevated in HS lesions compared to skin of healthy and perilesional intertriginous areas. There was an association between B/plasma cells, neutrophils, and B-cell activating factor (BAFF, aka TNFSF13B). BAFF was abundant in HS lesions, particularly in nodules and abscesses. Among the cell types present in HS lesions, myeloid cells were the main BAFF producers. Mechanistically, granulocyte colony-stimulating factor in the presence of bacterial products was the major stimulus for neutrophils' BAFF secretion. Lesional upregulation of BAFF receptors was attributed to B cells (TNFRSF13C/BAFFR and TNFRSF13B/TACI) and plasma cells (TNFRSF17/BCMA). Characterization of the lesional BAFF pathway revealed molecules involved in migration/adhesion (eg, CXCR4, CD37, CD53, SELL), proliferation/survival (eg, BST2), activation (eg, KLF2, PRKCB), and reactive oxygen species production (eg, NCF1, CYBC1) of B/plasma cells. CONCLUSION Neutrophil-derived BAFF supports B/plasma cell persistence and function in HS lesions.
Collapse
Affiliation(s)
- Robert Sabat
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Deimantė Šimaitė
- Data and Data Sciences, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Johann Eli Gudjonsson
- Department of Dermatology, University of Michigan, and Taubman Medical Research Institute, University of Michigan Medical School, Ann Arbor, Mich
| | - Theresa-Charlotte Brembach
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Katrin Witte
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Inflammation and Regeneration of the Skin, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Torben Krause
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georgios Kokolakis
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eckart Bartnik
- Immunology & Inflammation Research TA, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Christos Nikolaou
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Natascha Rill
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Béma Coulibaly
- Molecular Histopathology & Bio-Imaging, R&D, Sanofi-Aventis, Vitry-sur-Seine, France
| | - Clément Levin
- Molecular Histopathology & Bio-Imaging, R&D, Sanofi-Aventis, Vitry-sur-Seine, France
| | - Matthias Herrmann
- Immunology & Inflammation Research TA, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Leeuw
- Immunology & Inflammation Research TA, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany; Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kerstin Wolk
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Inflammation and Regeneration of the Skin, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Higgins CB, Adams JA, Ward MH, Greenberg ZJ, Milewska M, Sun J, Zhang Y, Chiquetto Paracatu L, Dong Q, Ballentine S, Li W, Wandzik I, Schuettpelz LG, DeBosch BJ. The tetraspanin transmembrane protein CD53 mediates dyslipidemia and integrates inflammatory and metabolic signaling in hepatocytes. J Biol Chem 2023; 299:102835. [PMID: 36581203 PMCID: PMC9900517 DOI: 10.1016/j.jbc.2022.102835] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
Tetraspanins are transmembrane signaling and proinflammatory proteins. Prior work demonstrates that the tetraspanin, CD53/TSPAN25/MOX44, mediates B-cell development and lymphocyte migration to lymph nodes and is implicated in various inflammatory diseases. However, CD53 is also expressed in highly metabolic tissues, including adipose and liver; yet its function outside the lymphoid compartment is not defined. Here, we show that CD53 demarcates the nutritional and inflammatory status of hepatocytes. High-fat exposure and inflammatory stimuli induced CD53 in vivo in liver and isolated primary hepatocytes. In contrast, restricting hepatocyte glucose flux through hepatocyte glucose transporter 8 deletion or through trehalose treatment blocked CD53 induction in fat- and fructose-exposed contexts. Furthermore, germline CD53 deletion in vivo blocked Western diet-induced dyslipidemia and hepatic inflammatory transcriptomic activation. Surprisingly, metabolic protection in CD53 KO mice was more pronounced in the presence of an inciting inflammatory event. CD53 deletion attenuated tumor necrosis factor alpha-induced and fatty acid + lipopolysaccharide-induced cytokine gene expression and hepatocyte triglyceride accumulation in isolated murine hepatocytes. In vivo, CD53 deletion in nonalcoholic steatohepatitis diet-fed mice blocked peripheral adipose accumulation and adipose inflammation, insulin tolerance, and liver lipid accumulation. We then defined a stabilized and trehalase-resistant trehalose polymer that blocks hepatocyte CD53 expression in basal and over-fed contexts. The data suggest that CD53 integrates inflammatory and metabolic signals in response to hepatocyte nutritional status and that CD53 blockade may provide a means by which to attenuate pathophysiology in diseases that integrate overnutrition and inflammation, such as nonalcoholic steatohepatitis and type 2 diabetes.
Collapse
Affiliation(s)
- Cassandra B Higgins
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Joshua A Adams
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Matthew H Ward
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri, USA
| | - Zev J Greenberg
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Małgorzata Milewska
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland; Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
| | - Jiameng Sun
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Yiming Zhang
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | | | - Qian Dong
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Samuel Ballentine
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Weikai Li
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Ilona Wandzik
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland; Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
| | - Laura G Schuettpelz
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA; Siteman Cancer Center, Washington University, St. Louis, Missouri, USA
| | - Brian J DeBosch
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA; Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
14
|
Kim JS, Kim HK, Lee J, Jang S, Cho E, Mun SJ, Yoon S, Yang CS. Inhibition of CD82 improves colitis by increasing NLRP3 deubiquitination by BRCC3. Cell Mol Immunol 2023; 20:189-200. [PMID: 36600050 PMCID: PMC9887069 DOI: 10.1038/s41423-022-00971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
CD82 is a transmembrane protein that is involved in cancer suppression and activates immune cells; however, information on the NLRP3 inflammasome is limited. Herein, we show that although CD82 suppressed the activation of the NLRP3 inflammasome in vivo and in vitro, CD82 deficiency decreased the severity of colitis in mice. Furthermore, two binding partners of CD82, NLRP3 and BRCC3, were identified. CD82 binding to these partners increased the degradation of NLRP3 by blocking BRCC3-dependent K63-specific deubiquitination. Previous studies have shown that CD82-specific bacteria in the colon microbiota called Bacteroides vulgatus (B. vulgatus) regulated the expression of CD82 and promoted the activation of the NLRP3 inflammasome. Accordingly, we observed that B. vulgatus administration increased mouse survival by mediating CD82 expression and activating NLRP3 in mice with colitis. Overall, this study showed that CD82 suppression reduced the pathogenesis of colitis by elevating the activation of the NLRP3 inflammasome through BRCC3-dependent K63 deubiquitination. Based on our findings, we propose that B. vulgatus is a novel therapeutic candidate for colitis.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Department of Bionano Technology, Hanyang University, Seoul, 04673, Korea
- Institute of Natural Science & Technology, Hanyang University, Ansan, 15588, Korea
| | - Hyo Keun Kim
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Korea
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Korea
| | - Joongho Lee
- Department of Computer Science, College of SW Convergence, Dankook University, Yongin, 16890, Korea
| | - Sein Jang
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Korea
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Korea
| | - Euni Cho
- Department of Bionano Technology, Hanyang University, Seoul, 04673, Korea
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Korea
| | - Seok-Jun Mun
- Department of Bionano Technology, Hanyang University, Seoul, 04673, Korea
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Korea
| | - Seokhyun Yoon
- Department of Electronics & Electrical Engineering, College of Engineering, Dankook University, Yongin, 16890, Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Korea.
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Korea.
| |
Collapse
|
15
|
Hahn K, Sundar IK. Current Perspective on the Role of the Circadian Clock and Extracellular Matrix in Chronic Lung Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2455. [PMID: 36767821 PMCID: PMC9915635 DOI: 10.3390/ijerph20032455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The circadian clock is a biochemical oscillator that rhythmically regulates physiological and behavioral processes such as inflammation, immunity, and metabolism in mammals. Circadian clock disruption is a key driver for chronic inflammatory as well as fibrotic lung diseases. While the mechanism of circadian clock regulation in the lung has been minimally explored, some evidence suggests that the transforming growth factor β (TGFβ) signaling pathway and subsequent extracellular matrix (ECM) accumulation in the lung may be controlled via a clock-dependent mechanism. Recent advancements in this area led us to believe that pharmacologically targeting the circadian clock molecules may be a novel therapeutic approach for treating chronic inflammatory lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Here, we update the current perspective on the circadian clock role in TGFβ1 signaling and extracellular matrix production during chronic lung diseases.
Collapse
Affiliation(s)
- Kameron Hahn
- Department of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Isaac Kirubakaran Sundar
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
16
|
Malla R, Kamal MA. Tetraspanin-enriched Microdomain Containing CD151, CD9, and TSPAN 8 - Potential Mediators of Entry and Exit Mechanisms in Respiratory Viruses Including SARS-CoV-2. Curr Pharm Des 2022; 28:3649-3657. [PMID: 36173052 DOI: 10.2174/1381612828666220907105543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 01/28/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, the Hubei region of China, has become a pandemic worldwide. It can transmit through droplets and enter via oral, nasal, and eye mucous membranes. It consists of single-stranded RNA (positive-sense), nonstructural proteins including enzymes and transcriptional proteins, and structural proteins such as Spike, Membrane, Envelope, and Nucleocapsid -proteins. SARS-CoV-2 mediates S-proteins entry and exit via binding to host cell surface proteins like tetraspanins. The transmembrane tetraspanins, CD151, CD9, and tetraspanin 8 (TSPAN8), facilitate the entry of novel coronaviruses by scaffolding host cell receptors and proteases. Also, CD151 was reported to increase airway hyperresponsiveness to calcium and nuclear viral export signaling. They may facilitate entry and exit by activating the serine proteases required to prime S-proteins in tetraspanin-enriched microdomains (TEMs). This article updates recent advances in structural proteins, their epitopes and putative receptors, and their regulation by proteases associated with TEMs. This review furnishes recent updates on the role of CD151 in the pathophysiology of SARS-CoV-2. We describe the role of CD151 in a possible mechanism of entry and exit in the airway, a major site for infection of SARS-CoV-2. We also updated current knowledge on the role of CD9 and TSPAN 8 in the entry and exit mechanism of coronaviruses. Finally, we discussed the importance of some small molecules which target CD151 as possible targeted therapeutics for COVID-19. In conclusion, this study could identify new targets and specific therapeutics to control emerging virus infections.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Ashulia, Bangladesh.,Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham NSW 2770, Australia
| |
Collapse
|
17
|
Delgado M, Lennon-Duménil AM. How cell migration helps immune sentinels. Front Cell Dev Biol 2022; 10:932472. [PMID: 36268510 PMCID: PMC9577558 DOI: 10.3389/fcell.2022.932472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
The immune system relies on the migratory capacity of its cellular components, which must be mobile in order to defend the host from invading micro-organisms or malignant cells. This applies in particular to immune sentinels from the myeloid lineage, i.e. macrophages and dendritic cells. Cell migration is already at work during mammalian early development, when myeloid cell precursors migrate from the yolk sac, an extra embryonic structure, to colonize tissues and form the pool of tissue-resident macrophages. Later, this is accompanied by a migration wave of precursors and monocytes from the bone marrow to secondary lymphoid organs and the peripheral tissues. They differentiate into DCs and monocyte-derived macrophages. During adult life, cell migration endows immune cells with the ability to patrol their environment as well as to circulate between peripheral tissues and lymphoid organs. Hence migration of immune cells is key to building an efficient defense system for an organism. In this review, we will describe how cell migratory capacity regulates the various stages in the life of myeloid cells from development to tissue patrolling, and migration to lymph nodes. We will focus on the role of the actin cytoskeletal machinery and its regulators, and how it contributes to the establishment and function of the immune system.
Collapse
|
18
|
Xue W, Dong B, Wang Y, Xie Y, Li P, Gong Z, Niu Z. A novel prognostic index of stomach adenocarcinoma based on immunogenomic landscape analysis and immunotherapy options. Exp Mol Pathol 2022; 128:104832. [PMID: 36122795 DOI: 10.1016/j.yexmp.2022.104832] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/21/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022]
Abstract
Stomach adenocarcinoma (STAD) is one of the most common malignant tumors worldwide. In this study, we attempted to construct a valid immune-associated gene prognostic index risk model that can predict the survival of patients with STAD and the efficacy of immune checkpoint inhibitors (ICIs) treatment. Transcriptome, clinical, and gene mutational data were obtained from the TCGA database. Immune-related genes were downloaded from the ImmPort and InnateDB databases. A total of 493 immune-related genes were identified to be enriched in functions associated with immune response, as well as in immune and tumor-related pathways. Further, 36 candidate genes related to the overall survival (OS) of STAD were obtained by weighted gene co-expression network analysis (WGCNA). Next, based on a Cox regression analysis, we constructed an immune-associated gene prognostic index (IAGPI) risk model based on eight genes, which was verified using the GEO STAD cohort. The patients were divided into two subsets according to their risk score. Patients in the low-risk group had better OS than those in the high-risk group. In the low-risk group, there were more CD8, activated memory CD4, and follicular helper T cells, and M1 macrophages, whereas monocytes, M2 macrophages, eosinophils, and neutrophils were more abundant in the high-risk group. The patients in the low-risk group were more sensitive to ICIs therapy. The IAGPI risk model can precisely predict the prognosis, reflect the tumor immune microenvironment, and predict the efficacy of ICIs therapy in patients with STAD.
Collapse
Affiliation(s)
- Weijie Xue
- Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Yixiu Wang
- Department of Hepatic Surgery, Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Pu Li
- Department of Medical Ultrasound, Jinniu Maternity And Child Health Hospital of Chengdu, Sichuan, China
| | - Zhiqi Gong
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Zhaojian Niu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China.
| |
Collapse
|
19
|
Kaur S, Livak F, Daaboul G, Anderson L, Roberts DD. Single vesicle analysis of CD47 association with integrins and tetraspanins on extracellular vesicles released by T lymphoblast and prostate carcinoma cells. J Extracell Vesicles 2022; 11:e12265. [PMID: 36107309 PMCID: PMC9477112 DOI: 10.1002/jev2.12265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/08/2022] Open
Abstract
CD47 regulates the trafficking of specific coding and noncoding RNAs into extracellular vesicles (EVs), and the RNA contents of CD47+ EVs differ from that of CD63+ EVs released by the same cells. Single particle interferometric reflectance imaging sensing combined with immunofluorescent imaging was used to analyse the colocalization of tetraspanins, integrins, and CD47 on EVs produced by wild type and CD47-deficient Jurkat T lymphoblast and PC3 prostate carcinoma cell lines. On Jurkat cell-derived EVs, β1 and α4 integrin subunits colocalized predominantly with CD47 and CD81 but not with CD63 and CD9, conserving the known lateral interactions between these proteins in the plasma membrane. Although PC3 cell-derived EVs lacked detectable α4 integrin, specific association of CD81 with β1 and CD47 was preserved. Loss of CD47 expression in Jurkat cells significantly reduced β1 and α4 levels on EVs produced by these cells while elevating CD9+ , CD63+ , and CD81+ EVs. In contrast, loss of CD47 in PC3 cells decreased the abundance of CD63+ and CD81+ EVs. These data establish that CD47+ EVs are mostly distinct from EVs bearing the tetraspanins CD63 and CD9, but CD47 also indirectly regulates the abundance of EVs bearing these non-interacting tetraspanins via mechanisms that remain to be determined.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of PathologyCenter for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Ferenc Livak
- Flow Cytometry Core, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | | | | | - David D. Roberts
- Laboratory of PathologyCenter for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
20
|
Tertel T, Tomić S, Đokić J, Radojević D, Stevanović D, Ilić N, Giebel B, Kosanović M. Serum-derived extracellular vesicles: Novel biomarkers reflecting the disease severity of COVID-19 patients. J Extracell Vesicles 2022; 11:e12257. [PMID: 35979935 PMCID: PMC9451525 DOI: 10.1002/jev2.12257] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/10/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
COVID-19 is characterized by a wide spectrum of disease severity, whose indicators and underlying mechanisms need to be identified. The role of extracellular vesicles (EVs) in COVID-19 and their biomarker potential, however, remains largely unknown. Aiming to identify specific EV signatures of patients with mild compared to severe COVID-19, we characterized the EV composition of 20 mild and 26 severe COVID-19 patients along with 16 sex and age-matched healthy donors with a panel of eight different antibodies by imaging flow cytometry (IFCM). We correlated the obtained data with 37 clinical, prerecorded biochemical and immunological parameters. Severe patients' sera contained increased amounts of CD13+ and CD82+ EVs, which positively correlated with IL-6-producing and circulating myeloid-derived suppressor cells (MDSCs) and with the serum concentration of proinflammatory cytokines, respectively. Sera of mild COVID-19 patients contained more HLA-ABC+ EVs than sera of the healthy donors and more CD24+ EVs than severe COVID-19 patients. Their increased abundance negatively correlated with disease severity and accumulation of MDSCs, being considered as key drivers of immunopathogenesis in COVID-19. Altogether, our results support the potential of serum EVs as powerful biomarkers for COVID-19 severity and pave the way for future investigations aiming to unravel the role of EVs in COVID-19 progression.
Collapse
Affiliation(s)
- Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Zemun-Belgrade, Serbia
| | - Jelena Đokić
- Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | - Dušan Radojević
- Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | - Dejan Stevanović
- Clinical Hospital Center Zemun, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nataša Ilić
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Zemun-Belgrade, Serbia
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maja Kosanović
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Zemun-Belgrade, Serbia
| |
Collapse
|
21
|
Dong M, Wang W, Wang L, Liu Y, Ma Y, Li M, Liu H, Wang K, Song L. The characterization of an agranulocyte-specific marker (CgCD9) in the Pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2022; 127:446-454. [PMID: 35792345 DOI: 10.1016/j.fsi.2022.06.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/16/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The agranulocytes in the Pacific oyster Crassostrea gigas are a group of haemocytes that are significantly different from semi-granulocytes and granulocytes on the morphology. Agranulocytes are the smallest haemocytes characterized by a spherical shape, the largest ratio of nucleus to cytoplasm, and no granules in the cytoplasm. The lack of unique cell surface markers impedes the isolation of agranulocytes from total haemocytes. Previous transcriptome sequencing analysis of three subpopulations of haemocytes revealed that a homologue of CD9 (designed as CgCD9) was highly expressed in agranulocytes of oyster C. gigas (data not shown). In the present study, CgCD9 was identified to share a similarity of 60% with other vertebrates CD9s, and it harbored a typical four transmembrane domain and a conserved Cys-Cys-Gly (CCG) motif. The mRNA transcript of CgCD9 was found to be highly expressed in agranulocytes, which was 6.63-fold (p < 0.05) and 3.68-fold (p < 0.05) of that in granulocytes and semi-granulocytes, respectively. A specific monoclonal antibody of CgCD9 (named 3D8) was successfully prepared by traditional hybridoma technology, and a single positive band at 25.2 kDa was detected in the haemocyte proteins by Western Blotting, indicating that this monoclonal antibody exhibited high specificity and sensitivity to CgCD9 protein. The ELISA positive value of 3D8 monoclonal antibody to recognize agranulocytes, semi-granulocytes and granulocytes was 17.35, 4.48 and 1.55, respectively, indicating that monoclonal antibody was specific to agranulocytes. Immunocytochemistry assay revealed that CgCD9 was specifically distributed on the membrane of agranulocytes. Using immunomagnetic beads coated with 3D8 monoclonal antibody, CgCD9+cells with a purity of 94.53 ± 5.60% were successfully isolated with a smaller diameter, a larger N:C ratio and no granules in cytoplasm, and could be primary culture in the modified L-15 medium in vitro. Collectively, these results suggested that CgCD9 was a specific cell surface marker for agranulocytes, which offered a tool for high-purity capture of agranulocytes from total haemocytes in C. gigas.
Collapse
Affiliation(s)
- Miren Dong
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Youwen Ma
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Meijia Li
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Haipeng Liu
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Kejian Wang
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
22
|
McGowan ENS, Wong O, Jones E, Nguyen J, Wee J, Demaria MC, Deliyanti D, Johnson CJ, Hickey MJ, McConville MJ, Wilkinson-Berka JL, Wright MD, Binger KJ. Tetraspanin CD82 restrains phagocyte migration but supports macrophage activation. iScience 2022; 25:104520. [PMID: 35754722 PMCID: PMC9213772 DOI: 10.1016/j.isci.2022.104520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/31/2022] [Accepted: 05/27/2022] [Indexed: 12/03/2022] Open
Abstract
Phagocytes migrate into tissues to combat infection and maintain tissue homeostasis. As dysregulated phagocyte migration and function can lead to inflammation or susceptibility to infection, identifying molecules that control these processes is critical. Here, we show that the tetraspanin CD82 restrains the migration of neutrophils and macrophages into tissues. Cd82−/− phagocytes exhibited excessive migration during in vivo models of peritoneal inflammation, superfusion of CXCL1, retinopathy of prematurity, and infection with the protozoan parasite L. mexicana. However, with the latter, while Cd82−/− macrophages infiltrated infection sites at higher proportions, cutaneous L. mexicana lesions were larger and persisted, indicating a failure to control infection. Analyses of in vitro bone-marrow-derived macrophages showed CD82 deficiency altered cellular morphology, and impaired gene expression and metabolism in response to anti-inflammatory activation. Altogether, this work reveals an important role for CD82 in restraining phagocyte infiltration and mediating their differentiation in response to stimulatory cues. Tetraspanin CD82 restrains phagocyte migration in murine models of inflammation Excessive migration of Cd82−/− myeloid cells exacerbates retinal inflammation Cd82−/− macrophages have a reduced ability to clear Leishmania mexicana parasites CD82 is required for the normal morphology and activation of M2 macrophages
Collapse
Affiliation(s)
- Erin N S McGowan
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Osanna Wong
- Department of Immunology and Pathology, Alfred Research Alliance, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Eleanor Jones
- Department of Immunology and Pathology, Alfred Research Alliance, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.,Flow Cytometry and Imaging Facility, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Julie Nguyen
- Department of Immunology and Pathology, Alfred Research Alliance, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.,Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC 3168, Australia
| | - Janet Wee
- Department of Immunology and Pathology, Alfred Research Alliance, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.,Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC 3168, Australia
| | - Maria C Demaria
- Department of Immunology and Pathology, Alfred Research Alliance, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Devy Deliyanti
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Chad J Johnson
- Bioimaging Platform, La Trobe University, Bundoora, VIC 3086, Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC 3168, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Jennifer L Wilkinson-Berka
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark D Wright
- Department of Immunology and Pathology, Alfred Research Alliance, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Katrina J Binger
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia.,Department of Immunology and Pathology, Alfred Research Alliance, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
23
|
Song C, Qiao Z, Chen L, Ge J, Zhang R, Yuan S, Bian X, Wang C, Liu Q, Jia L, Fu R, Dou K. Identification of Key Genes as Early Warning Signals of Acute Myocardial Infarction Based on Weighted Gene Correlation Network Analysis and Dynamic Network Biomarker Algorithm. Front Immunol 2022; 13:879657. [PMID: 35795669 PMCID: PMC9251518 DOI: 10.3389/fimmu.2022.879657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose The specific mechanisms and biomarkersunderlying the progression of stable coronary artery disease (CAD) to acute myocardial infarction (AMI) remain unclear. The current study aims to explore novel gene biomarkers associated with CAD progression by analyzing the transcriptomic sequencing data of peripheral blood monocytes in different stages of CAD. Material and Methods A total of 24 age- and sex- matched patients at different CAD stages who received coronary angiography were enrolled, which included 8 patients with normal coronary angiography, 8 patients with angiographic intermediate lesion, and 8 patients with AMI. The RNA from peripheral blood monocytes was extracted and transcriptome sequenced to analyze the gene expression and the differentially expressed genes (DEG). A Gene Oncology (GO) enrichment analysis was performed to analyze the biological function of genes. Weighted gene correlation network analysis (WGCNA) was performed to classify genes into several gene modules with similar expression profiles, and correlation analysis was carried out to explore the association of each gene module with a clinical trait. The dynamic network biomarker (DNB) algorithm was used to calculate the key genes that promote disease progression. Finally, the overlapping genes between different analytic methods were explored. Results WGCNA analysis identified a total of nine gene modules, of which two modules have the highest positive association with CAD stages. GO enrichment analysis indicated that the biological function of genes in these two gene modules was closely related to inflammatory response, which included T-cell activation, cell response to inflammatory stimuli, lymphocyte activation, cytokine production, and the apoptotic signaling pathway. DNB analysis identified a total of 103 genes that may play key roles in the progression of atherosclerosis plaque. The overlapping genes between DEG/WGCAN and DNB analysis identified the following 13 genes that may play key roles in the progression of atherosclerosis disease: SGPP2, DAZAP2, INSIG1, CD82, OLR1, ARL6IP1, LIMS1, CCL5, CDK7, HBP1, PLAU, SELENOS, and DNAJB6. Conclusions The current study identified a total of 13 genes that may play key roles in the progression of atherosclerotic plaque and provides new insights for early warning biomarkers and underlying mechanisms underlying the progression of CAD.
Collapse
Affiliation(s)
- Chenxi Song
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Zheng Qiao
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jing Ge
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Zhang
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Sheng Yuan
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Xiaohui Bian
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Chunyue Wang
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Qianqian Liu
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Lei Jia
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Rui Fu
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- *Correspondence: Rui Fu, ; Kefei Dou,
| | - Kefei Dou
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- *Correspondence: Rui Fu, ; Kefei Dou,
| |
Collapse
|
24
|
Campos-Mora M, De Solminihac J, Rojas C, Padilla C, Kurte M, Pacheco R, Kaehne T, Wyneken Ú, Pino-Lagos K. Neuropilin-1 is present on Foxp3+ T regulatory cell-derived small extracellular vesicles and mediates immunity against skin transplantation. J Extracell Vesicles 2022; 11:e12237. [PMID: 35676234 PMCID: PMC9177693 DOI: 10.1002/jev2.12237] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Among the mechanisms of suppression that T regulatory (Treg) cells exert to control the immune responses, the secretion of small extracellular vesicles (sEV) has been recently proposed as a novel contact‐independent immunomodulatory mechanism. Previous studies have demonstrated that Treg cells produce sEV, including exosomes, able to modulate the effector function of CD4+ T cells, and antigen presenting cells (APCs) such as dendritic cells (DCs) through the transfer of microRNA, cytokines, the production of adenosine, among others. Previously, we have demonstrated that Neuropilin‐1 (Nrp1) is required for Tregs‐mediated immunosuppression mainly by impacting on the phenotype and function of effector CD4+ T cells. Here, we show that Foxp3+ Treg cells secrete sEV, which bear Nrp1 in their membrane. These sEV modulate effector CD4+ T cell phenotype and proliferation in vitro in a Nrp1‐dependent manner. Proteomic analysis indicated that sEV obtained from wild type (wt) and Nrp1KO Treg cells differed in proteins related to immune tolerance, finding less representation of CD73 and Granzyme B in sEV obtained from Nrp1KO Treg cells. Likewise, we show that Nrp1 is required in Treg cell‐derived sEV for inducing skin transplantation tolerance, since a reduction in graft survival and an increase on M1/M2 ratio were found in animals treated with Nrp1KO Treg cell‐derived sEV. Altogether, this study describes for the first time that Treg cells secrete sEV containing Nrp1 and that this protein, among others, is necessary to promote transplantation tolerance in vivo via sEV local administration.
Collapse
Affiliation(s)
- Mauricio Campos-Mora
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Javiera De Solminihac
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Carolina Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Cristina Padilla
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Mónica Kurte
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Thilo Kaehne
- Institute of Experimental Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Úrsula Wyneken
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Karina Pino-Lagos
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
25
|
Sawada J, Hiraoka N, Qi R, Jiang L, Fournier-Goss AE, Yoshida M, Kawashima H, Komatsu M. Molecular Signature of Tumor-Associated High Endothelial Venules That Can Predict Breast Cancer Survival. Cancer Immunol Res 2022; 10:468-481. [PMID: 35201289 DOI: 10.1158/2326-6066.cir-21-0369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/11/2021] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
Abstract
High endothelial venules (HEV) are specialized post-capillary venules that recruit naïve lymphocytes to lymph nodes. HEVs are essential for the development of adaptive immunity. HEVs can also develop in tumors where they are thought to be important for recruiting naïve T cells and B cells into the tumors and locally enhancing antitumor immunity by supporting the formation of tertiary lymphoid structures. Herein, we used comparative transcriptome analysis of human breast cancer to investigate genes differentially expressed between tumor-associated HEVs and the rest of the tumor vasculature. Tumor vessels highly expressing HEV-upregulated genes, such as the homeobox gene MEOX2 and the tetraspanin gene TSPAN7, were associated with extensive infiltration of T and B cells and the occurrence of tertiary lymphoid structures, which is known to predict therapeutic responses to immune-checkpoint inhibitors. Moreover, high transcript counts of these genes in clinical tumor specimens were associated with a significant survival benefit in advanced breast cancer. The molecular signature of HEVs identified herein may be useful for guiding immunotherapies and provides a new direction for investigating tumor-associated HEVs and their clinical significance. See related Spotlight by Gallimore, p. 371.
Collapse
Affiliation(s)
- Junko Sawada
- Cancer and Blood Disorders Institute and Department of Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, Florida.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nobuyoshi Hiraoka
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital/Division of Molecular Pathology, Analytical Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Rongsu Qi
- Department of Health Informatics, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Lu Jiang
- Cancer and Blood Disorders Institute and Department of Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, Florida.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashley E Fournier-Goss
- Cancer and Blood Disorders Institute and Department of Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, Florida.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Masayuki Yoshida
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital/Division of Molecular Pathology, Analytical Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroto Kawashima
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Masanobu Komatsu
- Cancer and Blood Disorders Institute and Department of Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, Florida.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
26
|
Siu JHY, Pitcher MJ, Tull TJ, Velounias RL, Guesdon W, Montorsi L, Mahbubani KT, Ellis R, Dhami P, Todd K, Kadolsky UD, Kleeman M, D'Cruz DP, Saeb-Parsy K, Bemark M, Pettigrew GJ, Spencer J. Two subsets of human marginal zone B cells resolved by global analysis of lymphoid tissues and blood. Sci Immunol 2022; 7:eabm9060. [PMID: 35302862 DOI: 10.1126/sciimmunol.abm9060] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
B cells generate antibodies that are essential for immune protection, but their subgroups are poorly defined. Here, we perform undirected deep profiling of B cells in matched human lymphoid tissues from deceased transplant organ donors and blood. In addition to identifying unanticipated features of tissue-based B cell differentiation, we resolve two subsets of marginal zone B (MZB) cells differing in cell surface and transcriptomic profiles, clonal relationships to other subsets, enrichment of genes in the NOTCH pathway, distribution bias within splenic marginal zone microenvironment, and immunoglobulin repertoire diversity and hypermutation frequency. Each subset is present in spleen, gut-associated lymphoid tissue, mesenteric lymph nodes, and blood. MZB cells and the lineage from which they are derived are depleted in lupus nephritis. Here, we show that this depletion is of only one MZB subset. The other remains unchanged as a proportion of total B cells compared with health. Thus, it is important to factor MZB cell heterogeneity into studies of human B cell responses and pathology.
Collapse
Affiliation(s)
- Jacqueline H Y Siu
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Michael J Pitcher
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London SE1 9RT, UK
| | - Thomas J Tull
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London SE1 9RT, UK
| | - Rebekah L Velounias
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London SE1 9RT, UK
| | - William Guesdon
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London SE1 9RT, UK
| | - Lucia Montorsi
- School of Cancer Sciences, King's College London, Guy's Campus, London, UK.,Cancer Systems Biology Laboratory, Francis Crick Institute, London, UK
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Richard Ellis
- NIHR Guy's and St Thomas' Biomedical Research Centre, Guy's and St Thomas NHS Foundation Trust, Guy's Hospital, London SE1 9RT, UK
| | - Pawan Dhami
- NIHR Guy's and St Thomas' Biomedical Research Centre, Guy's and St Thomas NHS Foundation Trust, Guy's Hospital, London SE1 9RT, UK
| | - Katrina Todd
- NIHR Guy's and St Thomas' Biomedical Research Centre, Guy's and St Thomas NHS Foundation Trust, Guy's Hospital, London SE1 9RT, UK
| | - Ulrich D Kadolsky
- NIHR Guy's and St Thomas' Biomedical Research Centre, Guy's and St Thomas NHS Foundation Trust, Guy's Hospital, London SE1 9RT, UK
| | - Michelle Kleeman
- NIHR Guy's and St Thomas' Biomedical Research Centre, Guy's and St Thomas NHS Foundation Trust, Guy's Hospital, London SE1 9RT, UK
| | - David P D'Cruz
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London SE1 9RT, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE 405 30 Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gavin J Pettigrew
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Jo Spencer
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London SE1 9RT, UK
| |
Collapse
|
27
|
Mata-Martínez P, Bergón-Gutiérrez M, del Fresno C. Dectin-1 Signaling Update: New Perspectives for Trained Immunity. Front Immunol 2022; 13:812148. [PMID: 35237264 PMCID: PMC8882614 DOI: 10.3389/fimmu.2022.812148] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
The C-type lectin receptor Dectin-1 was originally described as the β-glucan receptor expressed in myeloid cells, with crucial functions in antifungal responses. However, over time, different ligands both of microbial-derived and endogenous origin have been shown to be recognized by Dectin-1. The outcomes of this recognition are diverse, including pro-inflammatory responses such as cytokine production, reactive oxygen species generation and phagocytosis. Nonetheless, tolerant responses have been also attributed to Dectin-1, depending on the specific ligand engaged. Dectin-1 recognition of their ligands triggers a plethora of downstream signaling pathways, with complex interrelationships. These signaling routes can be modulated by diverse factors such as phosphatases or tetraspanins, resulting either in pro-inflammatory or regulatory responses. Since its first depiction, Dectin-1 has recently gained a renewed attention due to its role in the induction of trained immunity. This process of long-term memory of innate immune cells can be triggered by β-glucans, and Dectin-1 is crucial for its initiation. The main signaling pathways involved in this process have been described, although the understanding of the above-mentioned complexity in the β-glucan-induced trained immunity is still scarce. In here, we have reviewed and updated all these factors related to the biology of Dectin-1, highlighting the gaps that deserve further research. We believe on the relevance to fully understand how this receptor works, and therefore, how we could harness it in different pathological conditions as diverse as fungal infections, autoimmunity, or cancer.
Collapse
Affiliation(s)
| | | | - Carlos del Fresno
- Immune response and Immunomodulation Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|
28
|
Binger KJ, Wright MD. Seeing your partner: Structural elucidation of the first C8 tetraspanin protein. Structure 2022; 30:203-205. [PMID: 35120595 DOI: 10.1016/j.str.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tetraspanins are proteins that organize cell membranes via interactions with partner proteins mediated by their large ectodomain. In this issue of Structure, Lipper et al., 2022 have elucidated the structure of the first C8 tetraspanin and expand functional insight into how C8 tetraspanins regulate substrate specificity for the transmembrane protease ADAM10.
Collapse
Affiliation(s)
- Katrina J Binger
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Immunology and Pathology, Alfred Research Alliance, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Mark D Wright
- Department of Immunology and Pathology, Alfred Research Alliance, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
29
|
Oncogenic tetraspanins: Implications for metastasis, drug resistance, cancer stem cell maintenance and diagnosis of leading cancers in females. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Definition of an Inflammatory Biomarker Signature in Plasma-Derived Extracellular Vesicles of Glioblastoma Patients. Biomedicines 2022; 10:biomedicines10010125. [PMID: 35052804 PMCID: PMC8773644 DOI: 10.3390/biomedicines10010125] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GB) is an aggressive type of tumour for which therapeutic options and biomarkers are limited. GB diagnosis mostly relies on symptomatic presentation of the tumour and, in turn, brain imaging and invasive biopsy that can delay its diagnosis. Description of easily accessible and effective biomarkers present in biofluids would thus prove invaluable in GB diagnosis. Extracellular vesicles (EVs) derived from both GB and stromal cells are essential to intercellular crosstalk in the tumour bulk, and circulating EVs have been described as a potential reservoir of GB biomarkers. Therefore, EV-based liquid biopsies have been suggested as a promising tool for GB diagnosis and follow up. To identify GB specific proteins, sEVs were isolated from plasma samples of GB patients as well as healthy volunteers using differential ultracentrifugation, and their content was characterised through mass spectrometry. Our data indicate the presence of an inflammatory biomarker signature comprising members of the complement and regulators of inflammation and coagulation including VWF, FCGBP, C3, PROS1, and SERPINA1. Overall, this study is a step forward in the development of a non-invasive liquid biopsy approach for the identification of valuable biomarkers that could significantly improve GB diagnosis and, consequently, patients’ prognosis and quality of life.
Collapse
|
31
|
Belyaeva V, Wachner S, Gyoergy A, Emtenani S, Gridchyn I, Akhmanova M, Linder M, Roblek M, Sibilia M, Siekhaus D. Fos regulates macrophage infiltration against surrounding tissue resistance by a cortical actin-based mechanism in Drosophila. PLoS Biol 2022; 20:e3001494. [PMID: 34990456 PMCID: PMC8735623 DOI: 10.1371/journal.pbio.3001494] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/25/2021] [Indexed: 12/20/2022] Open
Abstract
The infiltration of immune cells into tissues underlies the establishment of tissue-resident macrophages and responses to infections and tumors. Yet the mechanisms immune cells utilize to negotiate tissue barriers in living organisms are not well understood, and a role for cortical actin has not been examined. Here, we find that the tissue invasion of Drosophila macrophages, also known as plasmatocytes or hemocytes, utilizes enhanced cortical F-actin levels stimulated by the Drosophila member of the fos proto oncogene transcription factor family (Dfos, Kayak). RNA sequencing analysis and live imaging show that Dfos enhances F-actin levels around the entire macrophage surface by increasing mRNA levels of the membrane spanning molecular scaffold tetraspanin TM4SF, and the actin cross-linking filamin Cheerio, which are themselves required for invasion. Both the filamin and the tetraspanin enhance the cortical activity of Rho1 and the formin Diaphanous and thus the assembly of cortical actin, which is a critical function since expressing a dominant active form of Diaphanous can rescue the Dfos macrophage invasion defect. In vivo imaging shows that Dfos enhances the efficiency of the initial phases of macrophage tissue entry. Genetic evidence argues that this Dfos-induced program in macrophages counteracts the constraint produced by the tension of surrounding tissues and buffers the properties of the macrophage nucleus from affecting tissue entry. We thus identify strengthening the cortical actin cytoskeleton through Dfos as a key process allowing efficient forward movement of an immune cell into surrounding tissues. The infiltration of immune cells into tissue underlies the establishment of tissue-resident macrophages, and responses to infections and tumors, but how do they overcome tissue barriers? This study shows that macrophages upregulate the proto-oncogene Fos, increasing the density and crosslinking of cortical actin, thereby counteracting the tension of surrounding tissues and protecting the macrophage nucleus.
Collapse
Affiliation(s)
- Vera Belyaeva
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Stephanie Wachner
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Attila Gyoergy
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Shamsi Emtenani
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Igor Gridchyn
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Maria Akhmanova
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Markus Linder
- Institute of Cancer Research, Department of Medicine 1, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Marko Roblek
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine 1, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Daria Siekhaus
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- * E-mail:
| |
Collapse
|
32
|
Liang S, Willis J, Dou J, Mohanty V, Huang Y, Vilar E, Chen K. Sensei: how many samples to tell a change in cell type abundance? BMC Bioinformatics 2022; 23:2. [PMID: 34983369 PMCID: PMC8728970 DOI: 10.1186/s12859-021-04526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
Cellular heterogeneity underlies cancer evolution and metastasis. Advances in single-cell technologies such as single-cell RNA sequencing and mass cytometry have enabled interrogation of cell type-specific expression profiles and abundance across heterogeneous cancer samples obtained from clinical trials and preclinical studies. However, challenges remain in determining sample sizes needed for ascertaining changes in cell type abundances in a controlled study. To address this statistical challenge, we have developed a new approach, named Sensei, to determine the number of samples and the number of cells that are required to ascertain such changes between two groups of samples in single-cell studies. Sensei expands the t-test and models the cell abundances using a beta-binomial distribution. We evaluate the mathematical accuracy of Sensei and provide practical guidelines on over 20 cell types in over 30 cancer types based on knowledge acquired from the cancer cell atlas (TCGA) and prior single-cell studies. We provide a web application to enable user-friendly study design via https://kchen-lab.github.io/sensei/table_beta.html .
Collapse
Affiliation(s)
- Shaoheng Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
- Department of Computer Science, Rice University, Houston, TX USA
| | - Jason Willis
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Yuefan Huang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
33
|
Yu N, Liu X, Shi D, Bai L, Niu T, Liu Y. CD63 and C3AR1: The Potential Molecular Targets in the Progression of Septic Shock. Int J Gen Med 2022; 15:711-728. [PMID: 35082520 PMCID: PMC8784317 DOI: 10.2147/ijgm.s338486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
Background The molecular mechanism of septic shock is unknown. We studied the pathogenesis of septic shock and provide a novel strategy for treating and improving the prognosis of septic shock. Methods Gluten-Sensitive Enteropathy (GSE) 131761, GSE119217, GSE26378 datasets were downloaded from the Gene Expression Omnibus (GEO) database. The three datasets included 204 septic shock samples and 48 normal samples. The R packages “affy” and “limma” were employed to identify the differently expressed genes (DEGs) between septic shock and normal samples. Weighted gene co-expression network analysis (WGCNA) was performed to search for modules that play an important role in septic shock. Functional annotation of DEGs and construction and analysis of hub genes were used to explore the pathomechanism of septic shock. The receiver operating characteristic (ROC) curves were obtained using MedCalc software. The drug molecules that could regulate hub genes associated with septic shock were searched for in the CMap database. An animal model of septic shock was constructed to analyze the role of these hub genes. Results The merged series contained 321 up-regulated and 255 down-regulated genes. WGCNA showed the brown module had the highest correlation with the status of septic shock. GO and KEGG enrichment analysis results of the brown module genes showed they were mainly enriched in “leukocyte differentiation”, “Ras-proximate-1 (Rap1) signaling pathway”, and “cytokine–cytokine receptor interaction”. Through construction and analysis of a protein–protein interaction (PPI) network, cluster of differentiation 63 (CD63) and complement component 3a receptor 1 (C3AR1) were identified as hub genes of septic shock. The area under curve (AUC) of C3AR1 for the septic shock is 0.772 (P<0.001), and the AUC of CD63 for the septic shock is 0.871 (P<0.001). Small molecule drugs were filtered by the number of instances (n>3) and P-values <0.05, including “monensin”, “verteporfin”, “ikarugamycin”, “tetrahydroalstonine”, “cefamandole”, “etoposide”. In the animal model, the relative expression levels of interleukin-6 (IL-6), Tumor Necrosis Factor-α (TNF-α), and lactic acid were significantly higher in the septic shock group compared with the control group. Results of Real Time Quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) analysis for CD63 and C3AR1 showed that their relative expression levels were significantly lower in the septic shock group compared with the control group (P<0.05). Conclusion CD63 and C3AR1 are significant hub genes of septic shock and may represent potential molecular targets for future studies of septic shock.
Collapse
Affiliation(s)
- Ning Yu
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
| | - Xuefang Liu
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
| | - Dandan Shi
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
| | - Long Bai
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
| | - Tianfu Niu
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
| | - Ya Liu
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
- Correspondence: Ya Liu, Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China, Email ;
| |
Collapse
|
34
|
Abstract
CD63 is one of the tetraspanin protein family members that is ubiquitously expressed on exosomes and is involved in the signal transduction of various types of immune cells. It may thus contribute to immunometabolic mechanisms of cellular and organ dysfunction in sepsis. Nonetheless, the association of exosomal CD63 with the severity and mortality of sepsis is not well known. Therefore, in the present study, the overall levels of exosomal CD63 were evaluated to ascertain whether they were associated with organ failure and mortality in patients with sepsis. Exosomal CD63 was measured from prospectively enrolled critically-ill patients with sepsis (n = 217) and healthy control (n = 20). To detect and quantify exosomes in plasma, a commercially available enzyme-linked immunosorbent assay kit was used according to the manufacturer's protocol. The total number of exosomal CD63 was determined by quantifying the immunoreactive CD63. The association between plasma levels of exosomal CD63 and sequential organ failure assessment (SOFA) score was assessed by a linear regression method. The best cut-off level of exosomal CD63 for 28-day mortality prediction was determined by Youden's index. Among 217 patients with sepsis, 143 (66%) patients were diagnosed with septic shock. Trends of increased exosomal CD63 levels were observed in control, sepsis, and septic-shock groups (6.6 µg/mL vs. 42 µg/mL vs. 90 µg/mL, p < 0.001). A positive correlation between exosomal CD63 and SOFA scores was observed in patients with sepsis (r value = 0.35). When patients were divided into two groups according to the best cut-off level, the group with higher exosomal CD63 levels (more than 126 µg/mL) was significantly associated with 28-day and in-hospital mortality. Moreover, the Kaplan-Meier survival method showed a significant difference in 90-day survival between patients with high- and low-exosomal CD63 levels (log-rank p = 0.005). Elevated levels of exosomal CD63 were associated with the severity of organ failure and predictive of mortality in critically ill patients with sepsis.
Collapse
|
35
|
Hariharan H, Kesavan Y, Raja NS. Impact of native and external factors on exosome release: understanding reactive exosome secretion and its biogenesis. Mol Biol Rep 2021; 48:7559-7573. [PMID: 34626311 DOI: 10.1007/s11033-021-06733-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/29/2021] [Indexed: 02/04/2023]
Abstract
Exosomes are minuscule vesicles secreted in the endolytic region of most mammalian cells. The release of exosomes from the cell engenders cell-to-cell signaling between cellular-compartments. The trading of exosomes between tumor and yonder cells plays a hypercritical role in tumor growth and progression. The exosome released from each tumor cell sequestrates a unique biogenetic pathway reflecting its cellular origin depending on the tumor type. However, treatment of tumor cells with certain physiological factors like drugs, chemotherapy, radiation, etc., enhance the release of exosomes and alters its biogenetic pathway compared with untreated tumor cells. In this review, we will discuss how the non-native physiological factors influence the release of exosomes and how these reactive exosomes orchestrate a unique patterning of a cargo sorting mechanism. We will also discuss the role of reactively secreted exosomes in mediating tumor metastasis, angiogenesis, and tumor progression.
Collapse
Affiliation(s)
- Harini Hariharan
- MPI Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu, India
| | - Yasodha Kesavan
- MPI Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu, India
| | - Natesan Sella Raja
- MPI Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu, India.
| |
Collapse
|
36
|
Yeung L, Gottschalk TA, Hall P, Tsantikos E, Gallagher RH, Kitching AR, Hibbs ML, Wright MD, Hickey MJ. Tetraspanin CD53 modulates lymphocyte trafficking but not systemic autoimmunity in Lyn-deficient mice. Immunol Cell Biol 2021; 99:1053-1066. [PMID: 34514627 DOI: 10.1111/imcb.12501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/01/2022]
Abstract
The leukocyte-restricted tetraspanin CD53 has been shown to promote lymphocyte homing to lymph nodes (LNs) and myeloid cell recruitment to acutely inflamed peripheral organs, and accelerate the onset of immune-mediated disease. However, its contribution in the setting of chronic systemic autoimmunity has not been investigated. We made use of the Lyn-/- autoimmune model, generating Cd53-/- Lyn-/- mice, and compared trafficking of immune cells into secondary lymphoid organs and systemic autoimmune disease development with mice lacking either gene alone. Consistent with previous observations, absence of CD53 led to reduced LN cellularity via reductions in both B and T cells, a phenotype also observed in Cd53-/- Lyn-/- mice. In some settings, Cd53-/- Lyn-/- lymphocytes showed greater loss of surface L-selectin and CD69 upregulation above that imparted by Lyn deficiency alone, indicating that absence of these two proteins can mediate additive effects in the immune system. Conversely, prototypical effects of Lyn deficiency including splenomegaly, plasma cell expansion, elevated serum immunoglobulin M and anti-nuclear antibodies were unaffected by CD53 deficiency. Furthermore, while Lyn-/- mice developed glomerular injury and showed elevated glomerular neutrophil retention above than that in wild-type mice, absence of CD53 in Lyn-/- mice did not alter these responses. Together, these findings demonstrate that while tetraspanin CD53 promotes lymphocyte trafficking into LNs independent of Lyn, it does not make an important contribution to development of autoimmunity, plasma cell dysfunction or glomerular injury in the Lyn-/- model of systemic autoimmunity.
Collapse
Affiliation(s)
- Louisa Yeung
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Timothy A Gottschalk
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Pam Hall
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Evelyn Tsantikos
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rebecca H Gallagher
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia.,Departments of Nephrology and Pediatric Nephrology, Monash Medical Centre, Clayton, VIC, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mark D Wright
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| |
Collapse
|
37
|
Silva-Gomes R, Mapelli SN, Boutet MA, Mattiola I, Sironi M, Grizzi F, Colombo F, Supino D, Carnevale S, Pasqualini F, Stravalaci M, Porte R, Gianatti A, Pitzalis C, Locati M, Oliveira MJ, Bottazzi B, Mantovani A. Differential expression and regulation of MS4A family members in myeloid cells in physiological and pathological conditions. J Leukoc Biol 2021; 111:817-836. [PMID: 34346525 PMCID: PMC9290968 DOI: 10.1002/jlb.2a0421-200r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The MS4A gene family encodes 18 tetraspanin-like proteins, most of which with unknown function. MS4A1 (CD20), MS4A2 (FcεRIβ), MS4A3 (HTm4), and MS4A4A play important roles in immunity, whereas expression and function of other members of the family are unknown. The present investigation was designed to obtain an expression fingerprint of MS4A family members, using bioinformatics analysis of public databases, RT-PCR, and protein analysis when possible. MS4A3, MS4A4A, MS4A4E, MS4A6A, MS4A7, and MS4A14 were expressed by myeloid cells. MS4A6A and MS4A14 were expressed in circulating monocytes and decreased during monocyte-to-Mϕ differentiation in parallel with an increase in MS4A4A expression. Analysis of gene expression regulation revealed a strong induction of MS4A4A, MS4A6A, MS4A7, and MS4A4E by glucocorticoid hormones. Consistently with in vitro findings, MS4A4A and MS4A7 were expressed in tissue Mϕs from COVID-19 and rheumatoid arthritis patients. Interestingly, MS4A3, selectively expressed in myeloid precursors, was found to be a marker of immature circulating neutrophils, a cellular population associated to COVID-19 severe disease. The results reported here show that members of the MS4A family are differentially expressed and regulated during myelomonocytic differentiation, and call for assessment of their functional role and value as therapeutic targets.
Collapse
Affiliation(s)
- Rita Silva-Gomes
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde and Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | | | - Marie-Astrid Boutet
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Regenerative Medicine and Skeleton, RMeS, Inserm UMR 1229, Oniris, CHU Nantes, Université de Nantes, Nantes, France
| | - Irene Mattiola
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Mucosal and Developmental Immunology, Berlin, Germany
| | - Marina Sironi
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Fabio Grizzi
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Domenico Supino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Silvia Carnevale
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Fabio Pasqualini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Rémi Porte
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Andrea Gianatti
- Unit of Pathology, Azienda Ospedaliera Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Constantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Massimo Locati
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Maria José Oliveira
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde and Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
38
|
Milburn JV, Hoog AM, Winkler S, van Dongen KA, Leitner J, Patzl M, Saalmüller A, de Luca K, Steinberger P, Mair KH, Gerner W. Expression of CD9 on porcine lymphocytes and its relation to T cell differentiation and cytokine production. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104080. [PMID: 33781781 DOI: 10.1016/j.dci.2021.104080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
In this work, we report on two novel monoclonal antibodies, specific for porcine CD9. CD9 is a tetraspanin that is expressed on a wide variety of cells. We phenotyped porcine immune cell subsets and found that CD9 was expressed on all monocytes as well as a subset of B cells. CD9 was variably expressed on T cells, with CD4 T cells containing the highest frequency of CD9+ cells. CD9 expression positively correlated with the frequency of central memory CD4 T cells in ex vivo PBMC. Therefore, we proceeded to explore CD9 as a marker of T cell function. Here we observed that CD9 was expressed on the vast majority of long-lived influenza A virus-specific effector cells that retained the capacity for cytokine production in response to in vitro recall antigen. Therefore, the new antibodies enable the detection of a cell surface molecule with functional relevance to T cells. Considering the importance of CD9 in membrane remodelling across many cell types, they will also benefit the wider field of swine biomedical research.
Collapse
Affiliation(s)
- Jemma V Milburn
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Anna M Hoog
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Simona Winkler
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Katinka A van Dongen
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Judith Leitner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Martina Patzl
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Karelle de Luca
- Laboratory of Veterinary Immunology, Global Innovation, Boehringer Ingelheim Animal Health, Lyon, France
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Kerstin H Mair
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria; Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Wilhelm Gerner
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria; Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
39
|
Duan H, Hu Y. CD81, a new actor in the development of preeclampsia. Cell Mol Immunol 2021; 18:2061. [PMID: 33980992 PMCID: PMC8322397 DOI: 10.1038/s41423-021-00681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Honglei Duan
- Department of Obstetrics and Gynecology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
40
|
Santos AF, Alpan O, Hoffmann H. Basophil activation test: Mechanisms and considerations for use in clinical trials and clinical practice. Allergy 2021; 76:2420-2432. [PMID: 33475181 DOI: 10.1111/all.14747] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
The basophil activation test (BAT) is a functional assay that measures the degree of degranulation following stimulation with allergen or controls by flow cytometry. It correlates directly with histamine release. From the dose-response curve resulting from BAT in allergic patients, basophil reactivity (%CD63+ basophils) and basophil sensitivity (EC50 or similar) are the main outcomes of the test. BAT takes into account all characteristics of IgE and allergen and thus can be more specific than sensitization tests in the diagnosis of allergic disease. BAT reduces the need for in vivo procedures, such as intradermal tests and allergen challenges, which can cause allergic reactions of unpredictable severity. As it closely reflects the patients' phenotype in most cases, it may be used to support the diagnosis of food, venom and drug allergies and chronic urticaria, to monitor the natural resolution of food allergies and to predict and monitor clinical the response to immunomodulatory treatments, such as allergen-specific immunotherapy and biologicals. Clinical application of BAT requires analytical validation, clinical validation, standardization of procedures and quality assurance to ensure reproducibility and reliability of results. Currently, efforts are ongoing to establish a platform that could be used by laboratories in Europe and in the USA for quality assurance and certification.
Collapse
Affiliation(s)
- Alexandra F. Santos
- Department of Women and Children's Health (Pediatric Allergy) School of Life Course Sciences Faculty of Life Sciences and Medicine King's College London London UK
- Peter Gorer Department of Immunobiology School of Immunology and Microbial Sciences King's College London London UK
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
- Children's Allergy ServiceEvelina London Children's HospitalGuy's and St Thomas' Hospital London UK
| | | | - Hans‐Jürgen Hoffmann
- Department of Clinical Medicine Aarhus University Aarhus Denmark
- Department of Respiratory Diseases and Allergy Aarhus University Hospital Aarhus Denmark
| |
Collapse
|
41
|
Abstract
Worldwide about one million patients are given anti-CD20 antibodies such as rituximab (RTX) for the treatment of B cell-associated diseases. Despite the success of this first therapeutic antibody, little is known about the function of its target. The role of CD20 only becomes clear in the context of the nanoscale compartmentalization of the B lymphocyte membrane. We found that CD20 is an organizer of the IgD-class nanocluster on the B cell membrane. The loss of CD20 on human B cells results in a dissolution of the IgD-class nanocluster and a transient B cell activation inducing a B cell-to-PC differentiation. Thus, CD20 is an essential gatekeeper of a membrane nanodomain and the resting state of naive B cells. CD20 is a B cell-specific membrane protein and represents an attractive target for therapeutic antibodies. Despite widespread usage of anti-CD20 antibodies for B cell depletion therapies, the biological function of their target remains unclear. Here, we demonstrate that CD20 controls the nanoscale organization of receptors on the surface of resting B lymphocytes. CRISPR/Cas9-mediated ablation of CD20 in resting B cells resulted in relocalization and interaction of the IgM-class B cell antigen receptor with the coreceptor CD19. This receptor rearrangement led to a transient activation of B cells, accompanied by the internalization of many B cell surface marker proteins. Reexpression of CD20 restored the expression of the B cell surface proteins and the resting state of Ramos B cells. Similarly, treatment of Ramos or naive human B cells with the anti-CD20 antibody rituximab induced nanoscale receptor rearrangements and transient B cell activation in vitro and in vivo. A departure from the resting B cell state followed by the loss of B cell identity of CD20-deficient Ramos B cells was accompanied by a PAX5 to BLIMP-1 transcriptional switch, metabolic reprogramming toward oxidative phosphorylation, and a shift toward plasma cell development. Thus, anti-CD20 engagement or the loss of CD20 disrupts membrane organization, profoundly altering the fate of human B cells.
Collapse
|
42
|
Akbar N, Paget D, Choudhury RP. Extracellular Vesicles in Innate Immune Cell Programming. Biomedicines 2021; 9:biomedicines9070713. [PMID: 34201592 PMCID: PMC8301301 DOI: 10.3390/biomedicines9070713] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EV) are a heterogeneous group of bilipid-enclosed envelopes that carry proteins, metabolites, RNA, DNA and lipids from their parent cell of origin. They mediate cellular communication to other cells in local tissue microenvironments and across organ systems. EV size, number and their biologically active cargo are often altered in response to pathological processes, including infection, cancer, cardiovascular diseases and in response to metabolic perturbations such as obesity and diabetes, which also have a strong inflammatory component. Here, we discuss the broad repertoire of EV produced by neutrophils, monocytes, macrophages, their precursor hematopoietic stem cells and discuss their effects on the innate immune system. We seek to understand the immunomodulatory properties of EV in cellular programming, which impacts innate immune cell differentiation and function. We further explore the possibilities of using EV as immune targeting vectors, for the modulation of the innate immune response, e.g., for tissue preservation during sterile injury such as myocardial infarction or to promote tissue resolution of inflammation and potentially tissue regeneration and repair.
Collapse
Affiliation(s)
- Naveed Akbar
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.P.); (R.P.C.)
- Correspondence:
| | - Daan Paget
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.P.); (R.P.C.)
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Robin P. Choudhury
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.P.); (R.P.C.)
| |
Collapse
|
43
|
Rajani HF, Shahidi S, Gomari MM. Protein and Antibody Engineering: Suppressing Degranulation of the Mast Cells and Type I Hypersensitivity Reaction. Curr Protein Pept Sci 2021; 21:831-841. [PMID: 32392111 DOI: 10.2174/1389203721666200511094717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/09/2020] [Accepted: 04/23/2020] [Indexed: 11/22/2022]
Abstract
With an increase in atopic cases and owing to a significant role of mast cells in type I hypersensitivity, a therapeutic need to inhibit degranulation of mast cells has risen. Mast cells are notorious for IgE-mediated allergic response. Advancements have allowed researchers to improve clinical outcomes of already available therapies. Engineered peptides and antibodies can be easily manipulated to attain desired characteristics as per the biological environment. A number of these molecules are designed to target mast cells in order to regulate the release of histamine and other mediators, thereby controlling type I hypersensitivity response. The aim of this review paper is to highlight some of the significant molecules designed for the purpose.
Collapse
Affiliation(s)
- Huda Fatima Rajani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical
Sciences, Tehran, Iran
| | - Solmaz Shahidi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical
Sciences, Tehran, Iran
| |
Collapse
|
44
|
Abstract
Lang and Hochheimer introduce the physiological and pathological functions of tetraspanins.
Collapse
Affiliation(s)
- Thorsten Lang
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany.
| | - Nikolas Hochheimer
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| |
Collapse
|
45
|
Mitochondrial Mutations and Genetic Factors Determining NAFLD Risk. Int J Mol Sci 2021; 22:ijms22094459. [PMID: 33923295 PMCID: PMC8123173 DOI: 10.3390/ijms22094459] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
NAFLD (non-alcoholic fatty liver disease) is a widespread liver disease that is often linked with other life-threatening ailments (metabolic syndrome, insulin resistance, diabetes, cardiovascular disease, atherosclerosis, obesity, and others) and canprogress to more severe forms, such as NASH (non-alcoholic steatohepatitis), cirrhosis, and HCC (hepatocellular carcinoma). In this review, we summarized and analyzed data about single nucleotide polymorphism sites, identified in genes related to NAFLD development and progression. Additionally, the causative role of mitochondrial mutations and mitophagy malfunctions in NAFLD is discussed. The role of mitochondria-related metabolites of the urea cycle as a new non-invasive NAFLD biomarker is discussed. While mitochondria DNA mutations and SNPs (single nucleotide polymorphisms) canbe used as effective diagnostic markers and target for treatments, age and ethnic specificity should be taken into account.
Collapse
|
46
|
Erfani S, Hua H, Pan Y, Zhou BP, Yang XH. The Context-Dependent Impact of Integrin-Associated CD151 and Other Tetraspanins on Cancer Development and Progression: A Class of Versatile Mediators of Cellular Function and Signaling, Tumorigenesis and Metastasis. Cancers (Basel) 2021; 13:cancers13092005. [PMID: 33919420 PMCID: PMC8122392 DOI: 10.3390/cancers13092005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Tetraspanins are a family of molecules abundantly expressed on the surface of normal or tumor cells. They have been implicated in recruiting or sequestering key molecular regulators of malignancy of a variety of human cancers, including breast and lung cancers, glioblastoma and leukemia. Yet, how their actions take place remains mysterious due to a lack of traditional platform for molecular interactions. The current review digs into this mystery by examining findings from recent studies of multiple tetraspanins, particularly CD151. The molecular basis for differential impact of tetraspanins on tumor development, progression, and spreading to secondary sites is highlighted, and the complexity and plasticity of their control over tumor cell activities and interaction with their surroundings is discussed. Finally, an outlook is provided regarding tetraspanins as candidate biomarkers and targets for the diagnosis and treatment of human cancer. Abstract As a family of integral membrane proteins, tetraspanins have been functionally linked to a wide spectrum of human cancers, ranging from breast, colon, lung, ovarian, prostate, and skin carcinomas to glioblastoma. CD151 is one such prominent member of the tetraspanin family recently suggested to mediate tumor development, growth, and progression in oncogenic context- and cell lineage-dependent manners. In the current review, we summarize recent advances in mechanistic understanding of the function and signaling of integrin-associated CD151 and other tetraspanins in multiple cancer types. We also highlight emerging genetic and epigenetic evidence on the intrinsic links between tetraspanins, the epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs), and the Wnt/β-catenin pathway, as well as the dynamics of exosome and cellular metabolism. Finally, we discuss the implications of the highly plastic nature and epigenetic susceptibility of CD151 expression, function, and signaling for clinical diagnosis and therapeutic intervention for human cancer.
Collapse
Affiliation(s)
- Sonia Erfani
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
- Pharmacy Department, St. Elizabeth Healthcare, Edgewood, KY 41017, USA
| | - Hui Hua
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China; (H.H.); (Y.P.)
- Provincial Hospital, Hefei, Anhui 230001, China
| | - Yueyin Pan
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China; (H.H.); (Y.P.)
- Provincial Hospital, Hefei, Anhui 230001, China
| | - Binhua P. Zhou
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Xiuwei H. Yang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-859-323-1996
| |
Collapse
|
47
|
Estébanez B, Visavadiya NP, de Paz JA, Whitehurst M, Cuevas MJ, González-Gallego J, Huang CJ. Resistance Training Diminishes the Expression of Exosome CD63 Protein without Modification of Plasma miR-146a-5p and cfDNA in the Elderly. Nutrients 2021; 13:nu13020665. [PMID: 33669497 PMCID: PMC7922765 DOI: 10.3390/nu13020665] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Aging-associated inflammation is characterized by senescent cell-mediated secretion of high levels of inflammatory mediators, such as microRNA (miR)-146a. Moreover, a rise of circulating cell-free DNA (cfDNA) is also related to systemic inflammation and frailty in the elderly. Exosome-mediated cell-to-cell communication is fundamental in cellular senescence and aging. The plasma changes in exercise-promoted miR-146a-5p, cfDNA, and exosome release could be the key to facilitate intercellular communication and systemic adaptations to exercise in aging. Thirty-eight elderly subjects (28 trained and 10 controls) volunteered in an 8-week resistance training protocol. The levels of plasma miR-146a-5p, cfDNA, and exosome markers (CD9, CD14, CD63, CD81, Flotillin [Flot]-1, and VDAC1) were measured prior to and following training. Results showed no changes in plasma miR-146a-5p and cfDNA levels with training. The levels of exosome markers (Flot-1, CD9, and CD81) as well as exosome-carried proteins (CD14 and VDAC1) remained unchanged, whereas an attenuated CD63 response was found in the trained group compared to the controls. These findings might partially support the anti-inflammatory effect of resistance training in the elderly as evidenced by the diminishment of exosome CD63 protein expression, without modification of plasma miR-146a-5p and cfDNA.
Collapse
Affiliation(s)
- Brisamar Estébanez
- Institute of Biomedicine (IBIOMED), University of León, 24007 León, Spain; (J.A.d.P.); (M.J.C.); (J.G.-G.)
- Correspondence: (B.E.); (C.-J.H.); Tel.: +34-987-29-1997 (B.E.); +1-561-297-1271 (C.-J.H.)
| | - Nishant P. Visavadiya
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, USA; (N.P.V.); (M.W.)
| | - José A. de Paz
- Institute of Biomedicine (IBIOMED), University of León, 24007 León, Spain; (J.A.d.P.); (M.J.C.); (J.G.-G.)
| | - Michael Whitehurst
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, USA; (N.P.V.); (M.W.)
| | - María J. Cuevas
- Institute of Biomedicine (IBIOMED), University of León, 24007 León, Spain; (J.A.d.P.); (M.J.C.); (J.G.-G.)
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, 24007 León, Spain; (J.A.d.P.); (M.J.C.); (J.G.-G.)
| | - Chun-Jung Huang
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, USA; (N.P.V.); (M.W.)
- Correspondence: (B.E.); (C.-J.H.); Tel.: +34-987-29-1997 (B.E.); +1-561-297-1271 (C.-J.H.)
| |
Collapse
|
48
|
Saco A, Rey-Campos M, Novoa B, Figueras A. Transcriptomic Response of Mussel Gills After a Vibrio splendidus Infection Demonstrates Their Role in the Immune Response. Front Immunol 2020; 11:615580. [PMID: 33391288 PMCID: PMC7772429 DOI: 10.3389/fimmu.2020.615580] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Mussels (Mytilus galloprovincialis) are filter feeder bivalves that are constantly in contact with a wide range of microorganisms, some of which are potentially pathogenic. How mussels recognize and respond to pathogens has not been fully elucidated to date; therefore, we investigated the immune mechanisms that these animals employ in response to a bacterial bath infection from the surrounding water, mimicking the response that mussels mount under natural conditions. After the bath infection, mussels were able to remove the bacteria from their bodies and from the water tank. Accordingly, antibacterial activity was detected in gill extracts, demonstrating that this tissue plays a central role in removing and clearing potential pathogens. A transcriptomic study performed after a bath infection with Vibrio splendidus identified a total of 1,156 differentially expressed genes. The expression levels of genes contributing to a number of biological processes, such as immune response activation pathways and their regulation with cytokines, cell recognition, adhesion and apoptosis, were significantly modulated after infection, suggesting that the gills play important roles in pathogen recognition, as well as being activators and regulators of the mussel innate immune response. In addition to RNA-seq analysis, long non-coding RNAs and their neighboring genes were also analyzed and exhibited modulation after the bacterial challenge. The response of gills against bath infection was compared with the findings of a previous transcriptomic study on hemocytes responding to systemic infection, demonstrating the different and specific functions of gills. The results of this study indicate that recognition processes occur in the gill, thereby activating the effector agents of the immune response to overcome bacterial infection.
Collapse
Affiliation(s)
- Amaro Saco
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Magalí Rey-Campos
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
49
|
Yang X, Chatterjee V, Ma Y, Zheng E, Yuan SY. Protein Palmitoylation in Leukocyte Signaling and Function. Front Cell Dev Biol 2020; 8:600368. [PMID: 33195285 PMCID: PMC7655920 DOI: 10.3389/fcell.2020.600368] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Palmitoylation is a post-translational modification (PTM) based on thioester-linkage between palmitic acid and the cysteine residue of a protein. This covalent attachment of palmitate is reversibly and dynamically regulated by two opposing sets of enzymes: palmitoyl acyltransferases containing a zinc finger aspartate-histidine-histidine-cysteine motif (PAT-DHHCs) and thioesterases. The reversible nature of palmitoylation enables fine-tuned regulation of protein conformation, stability, and ability to interact with other proteins. More importantly, the proper function of many surface receptors and signaling proteins requires palmitoylation-meditated partitioning into lipid rafts. A growing number of leukocyte proteins have been reported to undergo palmitoylation, including cytokine/chemokine receptors, adhesion molecules, pattern recognition receptors, scavenger receptors, T cell co-receptors, transmembrane adaptor proteins, and signaling effectors including the Src family of protein kinases. This review provides the latest findings of palmitoylated proteins in leukocytes and focuses on the functional impact of palmitoylation in leukocyte function related to adhesion, transmigration, chemotaxis, phagocytosis, pathogen recognition, signaling activation, cytotoxicity, and cytokine production.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ethan Zheng
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
50
|
Yang Y, Liu XR, Greenberg ZJ, Zhou F, He P, Fan L, Liu S, Shen G, Egawa T, Gross ML, Schuettpelz LG, Li W. Open conformation of tetraspanins shapes interaction partner networks on cell membranes. EMBO J 2020; 39:e105246. [PMID: 32974937 PMCID: PMC7507038 DOI: 10.15252/embj.2020105246] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
Tetraspanins, including CD53 and CD81, regulate a multitude of cellular processes through organizing an interaction network on cell membranes. Here, we report the crystal structure of CD53 in an open conformation poised for partner interaction. The large extracellular domain (EC2) of CD53 protrudes away from the membrane surface and exposes a variable region, which is identified by hydrogen-deuterium exchange as the common interface for CD53 and CD81 to bind partners. The EC2 orientation in CD53 is supported by an extracellular loop (EC1). At the closed conformation of CD81, however, EC2 disengages from EC1 and rotates toward the membrane, thereby preventing partner interaction. Structural simulation shows that EC1-EC2 interaction also supports the open conformation of CD81. Disrupting this interaction in CD81 impairs the accurate glycosylation of its CD19 partner, the target for leukemia immunotherapies. Moreover, EC1 mutations in CD53 prevent the chemotaxis of pre-B cells toward a chemokine that supports B-cell trafficking and homing within the bone marrow, a major CD53 function identified here. Overall, an open conformation is required for tetraspanin-partner interactions to support myriad cellular processes.
Collapse
Affiliation(s)
- Yihu Yang
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | | | - Zev J Greenberg
- Division of Hematology and OncologyDepartment of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Fengbo Zhou
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Peng He
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Lingling Fan
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Shixuan Liu
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Guomin Shen
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Takeshi Egawa
- Department of Pediatrics Pathology and ImmunologyWashington University School of MedicineSt. LouisMOUSA
| | | | - Laura G Schuettpelz
- Division of Hematology and OncologyDepartment of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Weikai Li
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|