1
|
Fakhar M, Najafi Ghobadi K, Barati N, Zafari S, Hosseini SA, Soleymani E, Motavallihaghi S. Prevalence of Toxoplasma gondii infection in COVID-19 patients: A systematic review and meta-analysis. Microb Pathog 2024; 197:107064. [PMID: 39442817 DOI: 10.1016/j.micpath.2024.107064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Toxoplasma gondii is a parasite that affects over one billion people worldwide. COVID-19, caused by the SARS-CoV-2 virus, has resulted in over 4.8 million deaths worldwide. Both diseases activate the innate immune response via the same pathway. Studies have suggested that toxoplasmosis may either protect against or worsen the severity of COVID-19. This meta-analysis investigated the relationship between toxoplasmosis prevalence and COVID-19. The selection of studies was based on a systematic search using specific keywords in Scopus, Web of Science, PubMed, and Google Scholar databases between 2019 and 2023. The study findings were analyzed using STATA software version 17.0, and the prevalence of toxoplasmosis in people with COVID-19 and its confidence interval were extracted from the selected studies. The study's heterogeneity was assessed using the I2 test, and publication bias was evaluated using a funnel plot and Egger's test. A p value of 0.05 was considered significant. The meta-analysis included nine studies with a total of 1745 COVID-19-positive individuals, and the results showed a significant association between toxoplasmosis and COVID-19 severity. The I2 statistic was almost 99 %, indicating large heterogeneity among the studies. The Egger's test showed no publication bias. The pooled prevalence of toxoplasmosis in COVID-19-positive individuals was 0.48 (95 % CI: 0.30-0.66), which was significantly different from that of 0 % (P < 0.001). The meta-analysis found that the prevalence oftoxoplasmosis was significantly higher in individuals with COVID-19 than in the general population, indicating a possible association between the two infections. However, the significant heterogeneity among the studies underscores the need for further research to understand the underlying mechanisms and clinical implications of this association.
Collapse
Affiliation(s)
- Mahdi Fakhar
- Iranian National Registry Center for Lophomoniasis (INRCL) and Toxoplasmosis (INRCT), Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Microbiology and Immunology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Khadijeh Najafi Ghobadi
- Department of Biostatistics, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Nastaran Barati
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salman Zafari
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Hosseini
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Eissa Soleymani
- Department of Parasitology, Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedmousa Motavallihaghi
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Akins GKH, Furtado JM, Smith JR. Diseases Caused by and Behaviors Associated with Toxoplasma gondii Infection. Pathogens 2024; 13:968. [PMID: 39599521 PMCID: PMC11597819 DOI: 10.3390/pathogens13110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Toxoplasma gondii is an Apicomplexan parasite that is estimated to infect at least one-third of the global human population. T. gondii infection may be transmitted horizontally or vertically. The main risk factors for transmission to humans are related to diet, especially the consumption of undercooked meat, along with soil contact. In immunocompetent persons, the acute infection may go undetected as it typically produces minor, non-specific symptoms that are self-limited. After infection is established, recurrent retinochoroiditis is the most common clinical disease. In contrast, severe systemic or cerebral toxoplasmosis may be life-threatening for immunocompromised individuals. Furthermore, congenital toxoplasmosis acquired in utero may have devastating consequences if not recognized and promptly treated. A growing body of research has identified associations between latent T. gondii infection, and personality traits and risk-taking behaviors. Other studies have documented associations between latent infection and psychiatric conditions that include schizophrenia and bipolar affective disorder. With no current treatment regimens being curative of T. gondii infection, effective prevention measures at both the public health and individual levels are vitally important.
Collapse
Affiliation(s)
- Ginger K. H. Akins
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia;
| | - João M. Furtado
- Division of Ophthalmology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil;
| | - Justine R. Smith
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia;
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| |
Collapse
|
3
|
ten Hoeve AL, Rodriguez ME, Säflund M, Michel V, Magimel L, Ripoll A, Yu T, Hakimi MA, Saeij JPJ, Ozata DM, Barragan A. Hypermigration of macrophages through the concerted action of GRA effectors on NF-κB/p38 signaling and host chromatin accessibility potentiates Toxoplasma dissemination. mBio 2024; 15:e0214024. [PMID: 39207098 PMCID: PMC11481493 DOI: 10.1128/mbio.02140-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Mononuclear phagocytes facilitate the dissemination of the obligate intracellular parasite Toxoplasma gondii. Here, we report how a set of secreted parasite effector proteins from dense granule organelles (GRA) orchestrates dendritic cell-like chemotactic and pro-inflammatory activation of parasitized macrophages. These effects enabled efficient dissemination of the type II T. gondii lineage, a highly prevalent genotype in humans. We identify novel functions for effectors GRA15 and GRA24 in promoting CCR7-mediated macrophage chemotaxis by acting on NF-κB and p38 mitogen-activated protein kinase signaling pathways, respectively, with contributions by GRA16/18 and counter-regulation by effector TEEGR. Furthermore, GRA28 boosted chromatin accessibility and GRA15/24/NF-κB-dependent transcription at the Ccr7 gene locus in primary macrophages. In vivo, adoptively transferred macrophages infected with wild-type T. gondii outcompeted macrophages infected with a GRA15/24 double mutant in migrating to secondary organs in mice. The data show that T. gondii, rather than being passively shuttled, actively promotes its dissemination by inducing a finely regulated pro-migratory state in parasitized human and murine phagocytes via co-operating polymorphic GRA effectors. IMPORTANCE Intracellular pathogens can hijack the cellular functions of infected host cells to their advantage, for example, for intracellular survival and dissemination. However, how microbes orchestrate the hijacking of complex cellular processes, such as host cell migration, remains poorly understood. As such, the common parasite Toxoplasma gondii actively invades the immune cells of humans and other vertebrates and modifies their migratory properties. Here, we show that the concerted action of a number of secreted effector proteins from the parasite, principally GRA15 and GRA24, acts on host cell signaling pathways to activate chemotaxis. Furthermore, the protein effector GRA28 selectively acted on chromatin accessibility in the host cell nucleus to selectively boost host gene expression. The joint activities of GRA effectors culminated in pro-migratory signaling within the infected phagocyte. We provide a molecular framework delineating how T. gondii can orchestrate a complex biological phenotype, such as the migratory activation of phagocytes to boost dissemination.
Collapse
Affiliation(s)
- Arne L. ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Matias E. Rodriguez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Martin Säflund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Valentine Michel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lucas Magimel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Albert Ripoll
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology, and Immunology, University of California Davis, Davis, California, USA
| | - Deniz M. Ozata
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Ren Z, Yang Z, Yuan H, Song Y, He H, Nie L, Wang X, Yuan ZG, Zhang XX. 4D label-free proteomic analysis reveals key potential pathways of Toxoplasma invasion into the central nervous system. Int Immunopharmacol 2024; 138:112618. [PMID: 38996663 DOI: 10.1016/j.intimp.2024.112618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024]
Abstract
Toxoplasma gondii is a successful parasite capable of infecting a wide range of warm-blooded animals, including people, livestock, and wildlife. In individuals with intact immune function, T. gondii can invade the host brain tissue by altering the blood-brain barrier permeability, leading to chronic infection. Proteins play crucial regulatory roles in disease progression. By monitoring changes in proteins, a deeper understanding of the molecular mechanisms underlying host resistance to infection and the potential pathogenic mechanisms of pathogens can be gained. This study analyzed differential protein expression and associated signaling pathways in mouse brain tissues during acute and chronic T. gondii infection using proteomic and bioinformatics methods. The results showed that during acute and chronic T. gondii infection stages, 74 and 498 differentially expressed proteins (DEPs) were identified in mouse brain tissue, respectively. Among them, 45 and 309 were up-regulated, while 29 and 189 were down-regulated. GO and KEGG analyses revealed that some of these DEPs were implicated in host immunity, pathogen immune evasion, and T. gondii invasion of the central nervous system, particularly interleukin production and secretion, complement system activation, and alterations in tight junction pathways. Notably, the upregulation of Rab13 was identified as a potential molecular mechanism for T. gondii to regulate blood-brain barrier permeability and facilitate central nervous system invasion. Our findings provided fundamental data for understanding host control of Toxoplasmosis infection and offered new insights into parasite immune evasion and invasion mechanisms within the central nervous system. These insights are crucial for developing strategies to prevent the establishment of chronic T. gondii infection.
Collapse
Affiliation(s)
- Zhaowen Ren
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
| | - Zipeng Yang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hao Yuan
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yining Song
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Houjing He
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Linchong Nie
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaohu Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China.
| | - Zi-Guo Yuan
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Xiu-Xiang Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Vicentini LPP, Pereira-Chioccola VL, Fux B. Involvement of extracellular vesicles in the interaction of hosts and Toxoplasma gondii. CURRENT TOPICS IN MEMBRANES 2024; 94:133-155. [PMID: 39370205 DOI: 10.1016/bs.ctm.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis, is widely distributed. This protozoan parasite is one of the best adapted, being able to infect innumerous species of animals and different types of cells. This chapter reviews current literature on extracellular vesicles secreted by T. gondii and by its hosts. The topics describe the life cycle and transmission (1); toxoplasmosis epidemiology (2); laboratorial diagnosis approach (3); The T. gondii interaction with extracellular vesicles and miRNAs (4); and the perspectives on T. gondii infection. Each topic emphases the host immune responses to the parasite antigens and the interaction with the extracellular vesicles and miRNAs.
Collapse
Affiliation(s)
| | - Vera Lucia Pereira-Chioccola
- Laboratório de Biologia Molecular de Parasitas e Fungos, Centro de Parasitologia e Micologia Instituto Adolfo Lutz, São Paulo, SP, Brazil.
| | - Blima Fux
- Programa em Doenças Infecciosas, Centro de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil; Unidade de Medicina Tropical, Departamento de Patologia, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil.
| |
Collapse
|
6
|
Boubaker G, Bernal A, Vigneswaran A, Imhof D, de Sousa MCF, Hänggeli KPA, Haudenschild N, Furrer J, Păunescu E, Desiatkina O, Hemphill A. In vitro and in vivo activities of a trithiolato-diRuthenium complex conjugated with sulfadoxine against the apicomplexan parasite Toxoplasma gondii. Int J Parasitol Drugs Drug Resist 2024; 25:100544. [PMID: 38703737 PMCID: PMC11087982 DOI: 10.1016/j.ijpddr.2024.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Organometallic compounds, including Ruthenium complexes, have been widely developed as anti-cancer chemotherapeutics, but have also attracted much interest as potential anti-parasitic drugs. Recently hybrid drugs composed of organometallic Ruthenium moieties that were complexed to different antimicrobial agents were synthesized. One of these compounds, a trithiolato-diRuthenium complex (RU) conjugated to sulfadoxine (SDX), inhibited proliferation of Toxoplasma gondii tachyzoites grown in human foreskin fibroblast (HFF) monolayers with an IC50 < 150 nM, while SDX and the non-modified RU complex applied either individually or as an equimolar mixture were much less potent. In addition, conjugation of SDX to RU lead to decreased HFF cytotoxicity. RU-SDX did not impair the in vitro proliferation of murine splenocytes at concentrations ranging from 0.1 to 0.5 μM but had an impact at 2 μM, and induced zebrafish embryotoxicity at 20 μM, but not at 2 or 0.2 μM. RU-SDX acted parasitostatic but not parasiticidal, and induced transient ultrastructural changes in the mitochondrial matrix of tachyzoites early during treatment. While other compounds that target the mitochondrion such as the uncouplers FCCP and CCCP and another trithiolato-Ruthenium complex conjugated to adenine affected the mitochondrial membrane potential, no such effect was detected for RU-SDX. Evaluation of the in vivo efficacy of RU-SDX in a murine T. gondii oocyst infection model comprised of non-pregnant outbred CD1 mice showed no effects on the cerebral parasite burden, but reduced parasite load in the eyes and in heart tissue.
Collapse
Affiliation(s)
- Ghalia Boubaker
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern. Länggass-Strasse 122, 3012, Bern, Switzerland.
| | - Alice Bernal
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern. Länggass-Strasse 122, 3012, Bern, Switzerland.
| | - Anitha Vigneswaran
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern. Länggass-Strasse 122, 3012, Bern, Switzerland.
| | - Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern. Länggass-Strasse 122, 3012, Bern, Switzerland.
| | - Maria Cristina Ferreira de Sousa
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern. Länggass-Strasse 122, 3012, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland.
| | - Kai Pascal Alexander Hänggeli
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern. Länggass-Strasse 122, 3012, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland.
| | - Noé Haudenschild
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern. Länggass-Strasse 122, 3012, Bern, Switzerland.
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
| | - Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern. Länggass-Strasse 122, 3012, Bern, Switzerland.
| |
Collapse
|
7
|
Lima MLF, de Sousa AMAFLS, Marques LL, Ferreira IB, Giuffrida R, Kmetiuk LB, Biondo AW, Santarém VA. Household Location (Urban, Peri-Urban and Rural Settlements) as an Associated Risk Factor for Toxoplasmosis during Pregnancy in Southeastern Brazil. Trop Med Infect Dis 2024; 9:173. [PMID: 39195611 PMCID: PMC11358893 DOI: 10.3390/tropicalmed9080173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Brazil has a high prevalence of toxoplasmosis. However, there is a gap in comparing seroprevalence for Toxoplasma gondii across different environments, particularly among pregnant residents of rural and urban areas. METHODS The prevalence of IgG and IgM for T. gondii was compared among pregnant residents of the urban, peri-urban, and rural settlement areas in a municipality in southeastern Brazil. Information regarding age and area of residence was compiled from January 2015 to December 2022. Logistic regression analysis was used to assess the age and area of residence as risk factors. RESULTS A total of 1614 examinations were recorded, revealing 54.0% seropositivity, which was highest in the rural settlement (61.1%), followed by the peri-urban area (55.9%), and lowest in the urban area (49.2%). CONCLUSIONS The high prevalence of IgG and presence of IgM in pregnant residents of rural, peri-urban, and urban areas highlights the significance of the results obtained for strengthening maternal health programs aimed at preventing toxoplasmosis, regardless of their residence.
Collapse
Affiliation(s)
- Maria Linda Ferreira Lima
- Graduate College in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente 19067-175, São Paulo, Brazil (V.A.S.)
| | | | | | - Isabella Braghin Ferreira
- Graduate College in Animal Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente 19067-175, São Paulo, Brazil
| | - Rogério Giuffrida
- Graduate College in Animal Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente 19067-175, São Paulo, Brazil
| | - Louise Bach Kmetiuk
- Zoonoses Surveillance Unit, Municipal Secretary of Health, Curitiba 81265-320, Paraná, Brazil
| | - Alexander Welker Biondo
- Department of Veterinary Medicine, Federal University of Paraná (UFPR), Curitiba 80060-000, Paraná, Brazil
| | - Vamilton Alvares Santarém
- Graduate College in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente 19067-175, São Paulo, Brazil (V.A.S.)
| |
Collapse
|
8
|
Morales P, Brown AJ, Sangaré LO, Yang S, Kuihon SVNP, Chen B, Saeij JPJ. The Toxoplasma secreted effector TgWIP modulates dendritic cell motility by activating host tyrosine phosphatases Shp1 and Shp2. Cell Mol Life Sci 2024; 81:294. [PMID: 38977495 PMCID: PMC11335217 DOI: 10.1007/s00018-024-05283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 07/10/2024]
Abstract
The obligate intracellular parasite Toxoplasma gondii causes life-threatening toxoplasmosis to immunocompromised individuals. The pathogenesis of Toxoplasma relies on its swift dissemination to the central nervous system through a 'Trojan Horse' mechanism using infected leukocytes as carriers. Previous work found TgWIP, a protein secreted from Toxoplasma, played a role in altering the actin cytoskeleton and promoting cell migration in infected dendritic cells (DCs). However, the mechanism behind these changes was unknown. Here, we report that TgWIP harbors two SH2-binding motifs that interact with tyrosine phosphatases Shp1 and Shp2, leading to phosphatase activation. DCs infected with Toxoplasma exhibited hypermigration, accompanying enhanced F-actin stress fibers and increased membrane protrusions such as filopodia and pseudopodia. By contrast, these phenotypes were abrogated in DCs infected with Toxoplasma expressing a mutant TgWIP lacking the SH2-binding motifs. We further demonstrated that the Rho-associated kinase (Rock) is involved in the induction of these phenotypes, in a TgWIP-Shp1/2 dependent manner. Collectively, the data uncover a molecular mechanism by which TgWIP modulates the migration dynamics of infected DCs in vitro.
Collapse
Affiliation(s)
- Pavel Morales
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Abbigale J Brown
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Lamba Omar Sangaré
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Sheng Yang
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
- Target & Protein Sciences, Johnson & Johnson, New Brunswick, USA
| | - Simon V N P Kuihon
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Jeroen P J Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
9
|
Kazemi Arababadi M, Abdollahi SH, Ramezani M, Zare-Bidaki M. A Review of Immunological and Neuropsychobehavioral Effects of Latent Toxoplasmosis on Humans. Parasite Immunol 2024; 46:e13060. [PMID: 39072801 DOI: 10.1111/pim.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Toxoplasmosis as a zoonotic disease has a worldwide distribution and can infect a wide range of animal hosts, as well as at least one third of the world's human population. The disease is usually mild or asymptomatic in immunocompetent individuals, but dormant tissue cysts survive especially in the brain for the host lifespan, known as latent toxoplasmosis (LT). Recent studies suggest that LT can have certain neurological, immunological psychological and behavioural effects on human including schizophrenia, bipolar disorder, Alzheimer's disease, depression, suicide anxiety and sleeping disorders. LT effects are controversial, and their exact mechanisms of action is not yet fully understood. This review aims to provide an overview of the potential effects, their basic mechanisms including alteration of neurotransmitter levels, immune activation in the central nervous system and induction of oxidative stress. Additionally, beneficial effects of LT, and an explanation of the effects within the framework of manipulation hypothesis, and finally, the challenges and limitations of the current research are discussed.
Collapse
Affiliation(s)
- Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, , Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Seyyed Hossein Abdollahi
- Molecular Medicine Research Center, , Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahnaz Ramezani
- Immunology of Infectious Diseases Research Center, , Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Zare-Bidaki
- Immunology of Infectious Diseases Research Center, , Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
10
|
Lee KH, Jiamsakul A, Kiertiburanakul S, Borse R, Khol V, Yunihastuti E, Azwa I, Somia IKA, Chaiwarith R, Pham TN, Khusuwan S, Do CD, Kumarasamy N, Gani Y, Ditangco R, Ng OT, Pujari S, Lee MP, Avihingsanon A, Chen HP, Zhang F, Tanuma J, Ross J, Choi JY. Risk factors for toxoplasmosis in people living with HIV in the Asia-Pacific region. PLoS One 2024; 19:e0306245. [PMID: 38950027 PMCID: PMC11216616 DOI: 10.1371/journal.pone.0306245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
INTRODUCTION Toxoplasma gondii can cause symptomatic toxoplasmosis in immunodeficient hosts, including in people living with human immunodeficiency virus (PLWH), mainly because of the reactivation of latent infection. We assessed the prevalence of toxoplasmosis and its associated risk factors in PLWH in the Asia-Pacific region using data from the TREAT Asia Human Immunodeficiency Virus (HIV) Observational Database (TAHOD) of the International Epidemiology Databases to Evaluate AIDS (IeDEA) Asia-Pacific. METHODS This study included both retrospective and prospective cases of toxoplasmosis reported between 1997 and 2020. A matched case-control method was employed, where PLWH diagnosed with toxoplasmosis (cases) were each matched to two PLWH without a toxoplasmosis diagnosis (controls) from the same site. Sites without toxoplasmosis were excluded. Risk factors for toxoplasmosis were analyzed using conditional logistic regression. RESULTS A total of 269/9576 (2.8%) PLWH were diagnosed with toxoplasmosis in 19 TAHOD sites. Of these, 227 (84%) were reported retrospectively and 42 (16%) were prospective diagnoses after cohort enrollment. At the time of toxoplasmosis diagnosis, the median age was 33 years (interquartile range 28-38), and 80% participants were male, 75% were not on antiretroviral therapy (ART). Excluding 63 out of 269 people without CD4 values, 192 (93.2%) had CD4 ≤200 cells/μL and 162 (78.6%) had CD4 ≤100 cells/μL. By employing 538 matched controls, we found that factors associated with toxoplasmosis included abstaining from ART (odds ratio [OR] 3.62, 95% CI 1.81-7.24), in comparison to receiving nucleoside reverse transcriptase inhibitors plus non-nucleoside reverse transcriptase inhibitors, HIV exposure through injection drug use (OR 2.27, 95% CI 1.15-4.47) as opposed to engaging in heterosexual intercourse and testing positive for hepatitis B virus surface antigen (OR 3.19, 95% CI 1.41-7.21). Toxoplasmosis was less likely with increasing CD4 counts (51-100 cells/μL: OR 0.41, 95% CI 0.18-0.96; 101-200 cells/μL: OR 0.14, 95% CI 0.06-0.34; >200 cells/μL: OR 0.02, 95% CI 0.01-0.06), when compared to CD4 ≤50 cells/μL. Moreover, the use of prophylactic cotrimoxazole was not associated with toxoplasmosis. CONCLUSIONS Symptomatic toxoplasmosis is rare but still occurs in PLWH in the Asia-Pacific region, especially in the context of delayed diagnosis, causing advanced HIV disease. Immune reconstitution through early diagnosis and ART administration remains a priority in Asian PLWH.
Collapse
Affiliation(s)
- Ki Hyun Lee
- Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Awachana Jiamsakul
- The Kirby Institute, UNSW Sydney, Kensington, New South Wales, Australia
| | | | - Rohidas Borse
- BJ Government Medical College and Sassoon General Hospital, Pune, India
| | - Vohith Khol
- National Center for HIV/AIDS, Dermatology & STDs, Phnom Penh, Cambodia
| | - Evy Yunihastuti
- Faculty of Medicine Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Iskandar Azwa
- Infectious Diseases Unit, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - I. Ketut Agus Somia
- Faculty of Medicine, Udayana University - Prof. Dr. I.G.N.G. Ngoerah Hospital, Bali, Indonesia
| | - Romanee Chaiwarith
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine and Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | | - Yasmin Gani
- Hospital Sungai Buloh, Sungai Buloh, Malaysia
| | - Rossana Ditangco
- Research Institute for Tropical Medicine, Muntinlupa City, Philippines
| | - Oon Tek Ng
- National Centre for Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | | | - Man Po Lee
- Queen Elizabeth Hospital, Yau Ma Tei, Hong Kong SAR
| | - Anchalee Avihingsanon
- HIV-NAT/ Thai Red Cross AIDS Research Centre and Center of Excellence in Tuberculosis, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Fujie Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Junko Tanuma
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Jeremy Ross
- TREAT Asia, amfAR - The Foundation for AIDS Research, Bangkok, Thailand
| | - Jun Yong Choi
- Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Morales P, Brown AJ, Sangare LO, Yang S, Kuihon S, Chen B, Saeij J. The Toxoplasma secreted effector TgWIP modulates dendritic cell motility by activating host tyrosine phosphatases Shp1 and Shp2. RESEARCH SQUARE 2024:rs.3.rs-4539584. [PMID: 38978596 PMCID: PMC11230507 DOI: 10.21203/rs.3.rs-4539584/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The obligate intracellular parasite Toxoplasma gondii causes life-threatening toxoplasmosis to immunocompromised individuals. The pathogenesis of Toxoplasma relies on its swift dissemination to the central nervous system through a 'Trojan Horse' mechanism using infected leukocytes as carriers. Previous work found TgWIP, a protein secreted from Toxoplasma, played a role in altering the actin cytoskeleton and promoting cell migration in infected dendritic cells (DCs). However, the mechanism behind these changes was unknown. Here, we report that TgWIP harbors two SH2-binding motifs that interact with tyrosine phosphatases Shp1 and Shp2, leading to phosphatase activation. DCs infected with Toxoplasma exhibited hypermigration, accompanying enhanced F-actin stress fibers and increased membrane protrusions such as filopodia and pseudopodia. By contrast, these phenotypes were abrogated in DCs infected with Toxoplasma expressing a mutant TgWIP lacking the SH2-binding motifs. We further demonstrated that the Rho-associated kinase (Rock) is involved in the induction of these phenotypes, in a TgWIP-Shp1/2 dependent manner. Collectively, the data uncover a molecular mechanism by which TgWIP modulates the migration dynamics of infected DCs in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jeroen Saeij
- University of California Davis School of Veterinary Medicine
| |
Collapse
|
12
|
Itani S, Hamie M, El Jammal R, Abdine W, Doumit M, Charafeddine A, El-Sabban M, Patinote C, Masquefa C, Bonnet PA, Obeid M, El Hajj H. Imiquimod Reverses Chronic Toxoplasmosis-Associated Behavioral and Neurocognitive Anomalies in a Rat Model. Biomedicines 2024; 12:1295. [PMID: 38927503 PMCID: PMC11202296 DOI: 10.3390/biomedicines12061295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Toxoplasma gondii is the etiologic agent of toxoplasmosis, a highly prevalent parasitosis. Toxoplasma gondii (T. gondii) transits in the brain from acute (AT) to chronic toxoplasmosis (CT), under host immune control. In immunocompromised patients, reactivation of CT is potentially life-threatening. Behavioral and neurological complications have been associated with CT. Furthermore, an effective treatment targeting CT is still lacking. We previously reported the efficacy of imiquimod against CT. Here, we demonstrate the molecular effects of imiquimod or imiquimod followed by the clinically used combination of sulfadiazine and pyrimethamine (SDZ + PYR) on CT-associated behavior in a rat model. Imiquimod decreased the number of cysts in the brains of chronically infected rats due to an induced reactivation of bradyzoites into tachyzoites. Importantly, this decrease was more pronounced in rats treated with imiquimod followed by SDZ + PYR. Rats chronically infected with T. gondii exhibited an anxiety-like behavior. Notably, treatment with imiquimod reversed this behavior aberrancy, with even a more pronounced effect with imiquimod followed by SDZ/PYR. Similarly, rats chronically infected with T. gondii exhibited learning deficits, and imiquimod alone or followed by SDZ/PYR reversed this behavior. Our results enhance our knowledge of the implications of CT on behavioral aberrancies and highlight the potency of imiquimod followed by SDZ + PYR on these CT-associated complications.
Collapse
Affiliation(s)
- Shaymaa Itani
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (S.I.); (M.H.); (W.A.)
| | - Maguy Hamie
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (S.I.); (M.H.); (W.A.)
| | - Reem El Jammal
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (R.E.J.); (M.D.); (M.E.-S.); (M.O.)
| | - Wassim Abdine
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (S.I.); (M.H.); (W.A.)
| | - Mark Doumit
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (R.E.J.); (M.D.); (M.E.-S.); (M.O.)
| | - Adib Charafeddine
- College of Pharmacy, American University of Iraq-Baghdad, Baghdad 10071, Iraq;
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (R.E.J.); (M.D.); (M.E.-S.); (M.O.)
| | - Cindy Patinote
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (C.P.); (C.M.); (P.-A.B.)
| | - Carine Masquefa
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (C.P.); (C.M.); (P.-A.B.)
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (C.P.); (C.M.); (P.-A.B.)
| | - Makram Obeid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (R.E.J.); (M.D.); (M.E.-S.); (M.O.)
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (S.I.); (M.H.); (W.A.)
| |
Collapse
|
13
|
Bando H, Murata Y, Han Y, Sugi T, Fukuda Y, Bzik DJ, Fox BA, Kato K. Toxoplasma gondii chitinase-like protein TgCLP1 regulates the parasite cyst burden. Front Cell Infect Microbiol 2024; 14:1359888. [PMID: 38828265 PMCID: PMC11140023 DOI: 10.3389/fcimb.2024.1359888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
Toxoplasma, an important intracellular parasite of humans and animals, causes life-threatening toxoplasmosis in immunocompromised individuals. Although Toxoplasma secretory proteins during acute infection (tachyzoite, which divides rapidly and causes inflammation) have been extensively characterized, those involved in chronic infection (bradyzoite, which divides slowly and is surrounded by a cyst wall) remain uncertain. Regulation of the cyst wall is essential to the parasite life cycle, and polysaccharides, such as chitin, in the cyst wall are necessary to sustain latent infection. Toxoplasma secretory proteins during the bradyzoite stage may have important roles in regulating the cyst wall via polysaccharides. Here, we focused on characterizing the hypothetical T. gondii chitinase, chitinase-like protein 1 (TgCLP1). We found that the chitinase-like domain containing TgCLP1 is partially present in the bradyzoite microneme and confirmed, albeit partially, its previous identification in the tachyzoite microneme. Furthermore, although parasites lacking TgCLP1 could convert from tachyzoites to bradyzoites and make an intact cyst wall, they failed to convert from bradyzoites to tachyzoites, indicating that TgCLP1 is necessary for bradyzoite reactivation. Taken together, our findings deepen our understanding of the molecular basis of recrudescence and could contribute to the development of novel strategies for the control of toxoplasmosis.
Collapse
Affiliation(s)
- Hironori Bando
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
- Department of Parasitology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yuho Murata
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yongmei Han
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tatsuki Sugi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Fukuda
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
| | - David J. Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Barbara A. Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
14
|
Silva ZM, Toledo DNM, Pio S, Machado BAA, dos Santos PV, Hó FG, Medina YN, Cordeiro PHDM, Perucci LO, Pinto KMDC, Talvani A. Neuroserpin, IL-33 and IL-17A as potential markers of mild symptoms of depressive syndrome in Toxoplasma gondii-infected pregnant women. Front Immunol 2024; 15:1394456. [PMID: 38835777 PMCID: PMC11148649 DOI: 10.3389/fimmu.2024.1394456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Depressive syndrome (DS) is a common complication during pregnancy and the postpartum period, and is triggered by multiple organic/genetic and environmental factors. Clinical and biochemical follow-up is essential for the early diagnosis and prognosis of DS. The protozoan Toxoplasma gondii causes infectious damage to the fetus during parasite primary-infection. However, in long-term infections, pregnant women develop immune protection to protect the fetus, although they remain susceptible to pathological or inflammatory effects induced by T. gondii. This study aimed to investigate plasma inflammatory biomarkers in pregnant women seropositive and seronegative for T. gondii, with diagnoses of minor and moderate/severe DS. Methods Pregnant women (n=45; age=18-39 years) were recruited during prenatal care at health centers in Ouro Preto, Minas Gerais, Brazil. Participants were asked to complete a socio-demographic questionnaire to be submitted to well-standardized DS scale calculators (Beck Depression Inventory Questionnaire, Edinburgh Postnatal Depression Scale, and Major Depressive Episode Module). Additionally, 4 mL of blood was collected for plasma neuroserpin, CCL2, IL-17A, and IL-33 analysis. Results Pregnant volunteers with chronic T. gondii contact were all IgG+ (44%; n=21) and exhibited increased plasma IL-33, IL-17A, and neuroserpin levels, but not CCL2, compared to uninfected pregnant women. Using Beck's depression inventory, we observed an increase in plasma IL-17A and IL-33 in women with T. gondii infeCction diagnosed with mild DS, whereas neuroserpin was associated with minor and moderate/severe DS. Discussion Our data suggest a close relationship between DS in pregnant women with chronic T. gondii infection and neurological conditions, which may be partially mediated by plasma neuroserpin, IL-33, and IL-17A levels.
Collapse
Affiliation(s)
- Zolder Marinho Silva
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Débora Nonato Miranda Toledo
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Sirlaine Pio
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Bianca Alves Almeida Machado
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Evolução Crustal e Recursos Naturais, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Escola de Medicina, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Priscilla Vilela dos Santos
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Flávia Galvão Hó
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Escola de Medicina, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Yasmim Nogueira Medina
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Escola de Medicina, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Paulo Henrique de Miranda Cordeiro
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Escola de Medicina, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Luiza Oliveira Perucci
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Department of Obstetrics Gynecology and Reproductive Sciences, California University, San Diego, CA, United States
| | - Kelerson Mauro de Castro Pinto
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Escola de Educação Física, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - André Talvani
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas/ICEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Programa de Pós-Graduação em Infectologia e Medicina Tropical, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
15
|
Castillo-Castillo JM, Rufino-Moya PJ, Martínez-Moreno Á, Salvador Castaño Á, Martínez-Moreno FJ, Leva RZ. Revealing the Prevalence of Toxoplasma in Sierra Morena's Wild Boar: An ELISA-Based Study Using Meat Juice. Pathogens 2024; 13:281. [PMID: 38668236 PMCID: PMC11053865 DOI: 10.3390/pathogens13040281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024] Open
Abstract
This research work focused on the prevalence of Toxoplasma gondii in wild boar from the Sierra Morena region. We conducted an ELISA analysis using meat juice samples. A total of 892 samples from six hunting seasons (2013-2019) were collected from the provinces that constitute the Sierra Morena Mountain range. These samples were analyzed using the Pigtype® ELISA kit, specifically developed for detecting T. gondii in meat juice. The overall prevalence of T. gondii in Sierra Morena was 23.2%. The highest prevalences were observed in Córdoba (31.6%) and Jaén (25.9%). These provinces exhibit the highest density of wild boar as well as the greatest presence of the Iberian lynx (Lynx pardinus). Further in-depth studies are necessary, but it appears that the presence of wild felids and scavenger behavior may be associated with this observation.
Collapse
Affiliation(s)
| | | | | | | | - Francisco Javier Martínez-Moreno
- Departamento de Sanidad Animal (Parasitología), Facultad de Veterinaria, Universidad de Córdoba, Edificio de Sanidad Animal, Campus de Rabanales, Ctra. Madrid-Cádiz km 396, 14014 Córdoba, Spain; (J.M.C.-C.); (P.J.R.-M.); (Á.M.-M.); (Á.S.C.); (R.Z.L.)
| | | |
Collapse
|
16
|
Eraghi AT, Garweg JG, Pleyer U. The role of age in ocular toxoplasmosis: clinical signs of immunosenescence and inflammaging. Front Med (Lausanne) 2024; 11:1311145. [PMID: 38504919 PMCID: PMC10950095 DOI: 10.3389/fmed.2024.1311145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Purpose This study aimed to investigate the association between age, immune response, and clinical presentation of ocular toxoplasmosis (OT). Design This was a monocentric, retrospective, observational cohort study. Methods A review of the medical records of patients with active OT at the Uveitis Center, Charité Universitätsmedizin, was conducted. Baseline parameters included age at presentation, visual acuity, intraocular pressure (IOP), size and location of active lesions, inflammatory activity, antibody index (AI), and complications of intraocular inflammation. The data were presented as the mean ± standard deviation (SD). The level of significance was set at a p-value of <0.05. Results Between 1998 and 2019, 290 patients with active OT were diagnosed at our tertiary reference center. The mean age of the participants was 37.7 ± 17.1 years, 53.8% of them were female individuals, and 195 patients (70.9%) showed recurrent disease. Older age was associated with lower baseline visual acuity (p = 0.043), poor visual outcome (p = 0.019), increased inflammatory activity (p < 0.005), and larger retinal lesions (p < 0.005). Older patients presented a lower AI (<35 years: 45.1 ± 82.7, median: 12.1; ≥35 years: 18.6 ± 50.5, median: 5.8; p = 0.046), confirmed by a decrease in AI with increasing age (R2 = 0.045; p = 0.024). Finally, AI was correlated with lesion size (multiple linear regression analysis: p = 0.043). Macular involvement (24.3% of patients) was positively correlated with complications (macular/peripapillary edema and retinal detachment, p < 0.005) and poor visual outcome (p < 0.005) and was negatively correlated with inflammatory activity (p < 0.005). Conclusion We found a strong and clinically relevant impact of age on the clinical presentation and course of OT. While an unspecific inflammatory response increased with age, the specific, local humoral immune response declined. These findings are well in line with the concept of immunosenescence and inflammaging in uveitis.
Collapse
Affiliation(s)
- Armin Taghavi Eraghi
- Augenklinik, Charité Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
| | - Justus G. Garweg
- Swiss Eye Institute, Rotkreuz, Zug, Switzerland
- Berner Augenklinik, Bern, Switzerland
- Klinik und Poliklinik für Augenheilkunde, Inselspital, Universität Bern, Bern, Switzerland
| | - Uwe Pleyer
- Augenklinik, Charité Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
17
|
ten Hoeve AL, Rodriguez ME, Säflund M, Michel V, Magimel L, Ripoll A, Yu T, Hakimi MA, Saeij JPJ, Ozata DM, Barragan A. Hypermigration of macrophages through the concerted action of GRA effectors on NF-κB/p38 signaling and host chromatin accessibility potentiates Toxoplasma dissemination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579146. [PMID: 38370679 PMCID: PMC10871220 DOI: 10.1101/2024.02.06.579146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Mononuclear phagocytes facilitate the dissemination of the obligate intracellular parasite Toxoplasma gondii. Here, we report how a set of secreted parasite effector proteins from dense granule organelles (GRA) orchestrates dendritic cell-like chemotactic and pro-inflammatory activation of parasitized macrophages. These effects enabled efficient dissemination of the type II T. gondii lineage, a highly prevalent genotype in humans. We identify novel functions for effectors GRA15 and GRA24 in promoting CCR7-mediated macrophage chemotaxis by acting on NF-κB and p38 MAPK signaling pathways, respectively, with contributions of GRA16/18 and counter-regulation by effector TEEGR. Further, GRA28 boosted chromatin accessibility and GRA15/24/NF-κB-dependent transcription at the Ccr7 gene locus in primary macrophages. In vivo, adoptively transferred macrophages infected with wild-type T. gondii outcompeted macrophages infected with a GRA15/24 double mutant in migrating to secondary organs in mice. The data show that T. gondii, rather than being passively shuttled, actively promotes its dissemination by inducing a finely regulated pro-migratory state in parasitized human and murine phagocytes via co-operating polymorphic GRA effectors.
Collapse
Affiliation(s)
- Arne L. ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Matias E. Rodriguez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Martin Säflund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Valentine Michel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lucas Magimel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Albert Ripoll
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology, and Immunology, University of California Davis, Davis, CA 95616 California, USA
| | - Deniz M. Ozata
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
18
|
Getzmann S, Golka K, Bröde P, Reinders J, Kadhum T, Hengstler JG, Wascher E, Gajewski PD. Chronic Toxoplasma gondii Infection Modulates Hearing Ability across the Adult Life Span. Life (Basel) 2024; 14:194. [PMID: 38398703 PMCID: PMC10890099 DOI: 10.3390/life14020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
While several studies have shown associations between hearing disorders and congenital toxoplasmosis, the present study investigated the impact of chronic, latent Toxoplasma gondii (T. gondii) infection on hearing loss. We used a regression analysis to explore whether latent T. gondii infection modulates changes in hearing thresholds over an age range from 20 to 70 years. We analyzed audiometric data of 162 T. gondii IgG-positive and 430 T. gondii-negative participants, collected in the Dortmund Vital Study (DVS, ClinicalTrials.gov Identifier: NCT05155397), a prospective study on healthy cognitive aging. The regression analysis indicated that latent toxoplasmosis was associated with an accelerated development in hearing loss over the observed age range. Hearing loss was less frequent in IgG-positive than in IgG-negative participants up to the age of about 40 for a low (0.125-1 kHz)-frequency range. For high (2-8 kHz) frequencies, this pattern reversed for ages above 65 years. We discuss these findings on hearing function in the context of a recently proposed model, suggesting that latent toxoplasmosis can differentially affect brain functions across a lifespan.
Collapse
Affiliation(s)
- Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), D-44139 Dortmund, Germany; (K.G.); (P.B.); (J.R.); (J.G.H.); (E.W.); (P.D.G.)
| | - Klaus Golka
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), D-44139 Dortmund, Germany; (K.G.); (P.B.); (J.R.); (J.G.H.); (E.W.); (P.D.G.)
| | - Peter Bröde
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), D-44139 Dortmund, Germany; (K.G.); (P.B.); (J.R.); (J.G.H.); (E.W.); (P.D.G.)
| | - Jörg Reinders
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), D-44139 Dortmund, Germany; (K.G.); (P.B.); (J.R.); (J.G.H.); (E.W.); (P.D.G.)
| | - Thura Kadhum
- Clinic for Psychosomatic Rehabilitation, Mittelrhein-Klinik, D-56154 Boppard-Bad Salzig, Germany;
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), D-44139 Dortmund, Germany; (K.G.); (P.B.); (J.R.); (J.G.H.); (E.W.); (P.D.G.)
| | - Edmund Wascher
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), D-44139 Dortmund, Germany; (K.G.); (P.B.); (J.R.); (J.G.H.); (E.W.); (P.D.G.)
- German Center for Mental Health (DZPG), Partner Site Bochum/Marburg, 44787 Bochum, Germany
| | - Patrick D. Gajewski
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), D-44139 Dortmund, Germany; (K.G.); (P.B.); (J.R.); (J.G.H.); (E.W.); (P.D.G.)
| |
Collapse
|
19
|
Luo X, Yang X, Tan S, Zhang Y, Liu Y, Tian X, Huang Y, Zhou Y, He C, Yin K, Xu D, Li X, Sun F, Tang R, Cao J, Zheng K, Yu Y, Pan W. Gut microbiota mediates anxiety-like behaviors induced by chronic infection of Toxoplasma gondii in mice. Gut Microbes 2024; 16:2391535. [PMID: 39182245 PMCID: PMC11346544 DOI: 10.1080/19490976.2024.2391535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/05/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Chronic infection with the neurotropic parasite Toxoplasma gondii (T. gondii) can cause anxiety and gut microbiota dysbiosis in hosts. However, the potential role of gut microbiota in anxiety induced by the parasite remains unclear. METHODS C57BL/6J mice were infected with 10 cysts of T. gondii. Antibiotic depletion of gut microbiota and fecal microbiota transplantation experiments were utilized to investigate the causal relationship between gut microbiota and anxiety. Anxiety-like behaviors were examined by the elevated plus maze test and the open field test; blood, feces, colon and amygdala were collected to evaluate the profiles of serum endotoxin (Lipopolysaccharide, LPS) and serotonin (5-hydroxytryptamine, 5-HT), gut microbiota composition, metabolomics, global transcriptome and neuroinflammation in the amygdala. Furthermore, the effects of Diethyl butylmalonate (DBM, an inhibitor of mitochondrial succinate transporter, which causes the accumulation of endogenous succinate) on the disorders of the gut-brain axis were evaluated. RESULTS Here, we found that T. gondii chronic infection induced anxiety-like behaviors and disturbed the composition of the gut microbiota in mice. In the amygdala, T. gondii infection triggered the microglial activation and neuroinflammation. In the colon, T. gondii infection caused the intestinal dyshomeostasis including elevated colonic inflammation, enhanced bacterial endotoxin translocation to blood and compromised intestinal barrier. In the serum, T. gondii infection increased the LPS levels and decreased the 5-HT levels. Interestingly, antibiotics ablation of gut microbiota alleviated the anxiety-like behaviors induced by T. gondii infection. More importantly, transplantation of the fecal microbiota from T. gondii-infected mice resulted in anxiety and the transcriptomic alteration in the amygdala of the antibiotic-pretreated mice. Notably, the decreased abundance of succinate-producing bacteria and the decreased production of succinate were observed in the feces of the T. gondii-infected mice. Moreover, DBM administration ameliorated the anxiety and gut barrier impairment induced by T. gondii infection. CONCLUSIONS The present study uncovers a novel role of gut microbiota in mediating the anxiety-like behaviors induced by chronic T. gondii infection. Moreover, we show that DBM supplementation has a beneficial effect on anxiety. Overall, these findings provide new insights into the treatment of T. gondii-related mental disorders.
Collapse
Affiliation(s)
- Xiaotong Luo
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shimin Tan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yongsheng Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yunqiu Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaokang Tian
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yingting Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuying Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kun Yin
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, China
| | - Daxiang Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fenfen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, China
| |
Collapse
|
20
|
Vizcarra EA, Goerner AL, Ulu A, Hong DD, Bergersen KV, Talavera MA, Le Roch K, Wilson EH, White MW. An ex vivo model of Toxoplasma recrudescence reveals developmental plasticity of the bradyzoite stage. mBio 2023; 14:e0183623. [PMID: 37675999 PMCID: PMC10653814 DOI: 10.1128/mbio.01836-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/08/2023] Open
Abstract
IMPORTANCE The classical depiction of the Toxoplasma lifecycle is bradyzoite excystation conversion to tachyzoites, cell lysis, and immune control, followed by the reestablishment of bradyzoites and cysts. In contrast, we show that tachyzoite growth slows independent of the host immune response at a predictable time point following excystation. Furthermore, we demonstrate a host cell-dependent pathway of continuous amplification of the cyst-forming bradyzoite population. The developmental plasticity of the excysted bradyzoites further underlines the critical role the cyst plays in the flexibility of the lifecycle of this ubiquitous parasite. This revised model of Toxoplasma recrudescence uncovers previously unknown complexity in the clinically important bradyzoite stage of the parasite, which opens the door to further study these novel developmental features of the Toxoplasma intermediate life cycle.
Collapse
Affiliation(s)
- Edward A. Vizcarra
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Amber L. Goerner
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - David D. Hong
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kristina V. Bergersen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Michael A. Talavera
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Karine Le Roch
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California, USA
| | - Emma H. Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Michael W. White
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
21
|
Guo HT, Tan J, He YL, Li X, Liang X, Li ZY. Immunization of BALB/c Mice with Killed Tachyzoites of Toxoplasma gondii against Acute Toxoplasmosis. IRANIAN JOURNAL OF PARASITOLOGY 2023; 18:435-444. [PMID: 38169648 PMCID: PMC10758075 DOI: 10.18502/ijpa.v18i4.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/18/2023] [Indexed: 01/05/2024]
Abstract
Background Toxoplasma gondii with widespread distribution infects over one third of human populations in the world and can cause serious life-threatening diseases especially for the immunodeficient patients in acute toxoplasmosis. As the clinical pharmaceutical drugs with severe side effects for treatment and non-ideal extant vaccines for prevention, more work starves to be done for keeping advantages in the athletics. Methods Aluminum adjuvant and hybrid formaldehyde-killed tachyzoites of T. gondii RH and GT1 isolates were prepared to intramuscularly immunize BALB/c mice for five times at 0, 3, 7, 14 and 21 days post first injection. The triggered humoral and cellular immune responses at two weeks post the last immunization and the survival times of infected mice were examined for the hybrid immunization scheme judgement. Results The anti-RH and anti-GT1 specific antibodies were both increased at one week prior to challenge (P < 0.05), and the survival times of immunized mice (7.33 ± 0.71 d for RH, 7.22 ± 0.97 d for GT1) against acute toxoplasmosis were significantly prolonged by the immunizations performed in the study compared to blank control (6.67 ± 0.50 d for RH, 6.33 ± 0.71 d for GT1; P < 0.05), with the higher IFN-γ, IL-2 and IL-12p70 in sera, the elevated CD3e+CD4+ T and CD3e+CD8a+ T cells, and the enhanced lymphocyte proliferation in spleen (P < 0.05). Conclusion The hybrid killed tachyzoites with aluminum adjuvant induced humoral and cellular immune responses of mice, and offered mildly protective efficacy against acute toxoplasmosis.
Collapse
Affiliation(s)
- Hai-Ting Guo
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, College of Basic Medicine, Guilin Medical University, Guilin, P.R. China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, College of Basic Medicine, Guilin Medical University, Guilin, P.R. China
| | - Yu-Lin He
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, College of Basic Medicine, Guilin Medical University, Guilin, P.R. China
| | - Xia Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, College of Basic Medicine, Guilin Medical University, Guilin, P.R. China
| | - Xue Liang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, College of Basic Medicine, Guilin Medical University, Guilin, P.R. China
| | - Zhong-Yuan Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, College of Basic Medicine, Guilin Medical University, Guilin, P.R. China
| |
Collapse
|
22
|
Yuan H, Jiang T, Zhang WD, Yang Z, Luo S, Wang X, Zhu X, Qi S, Mahmmod YS, Zhang XX, Yuan ZG. Multiomics and bioinformatics identify differentially expressed effectors in the brain of Toxoplasma gondii infected masked palm civet. Front Cell Infect Microbiol 2023; 13:1267629. [PMID: 37818043 PMCID: PMC10561248 DOI: 10.3389/fcimb.2023.1267629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/01/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction The masked palm civet (Paguma larvata) serves as a reservoir in transmitting pathogens, such as Toxoplasma gondii, to humans. However, the pathogenesis of T. gondii infection in masked palm civets has not been explored. We studied the molecular changes in the brain tissue of masked palm civets chronically infected with T. gondii ME49. Methods The differentially expressed proteins in the brain tissue were investigated using iTRAQ and bioinformatics. Results A total of 268 differential proteins were identified, of which 111 were upregulated and 157 were downregulated. KEGG analysis identified pathways including PI3K-Akt signaling pathway, proteoglycans in cancer, carbon metabolism, T-cell receptor signaling pathway. Combing transcriptomic and proteomics data, we identified 24 genes that were differentially expressed on both mRNA and protein levels. The top four upregulated proteins were REEP3, REEP4, TEP1, and EEPD1, which was confirmed by western blot and immunohistochemistry. KEGG analysis of these 24 genes identified signaling cascades that were associated with small cell lung cancer, breast cancer, Toll-like receptor signaling pathway, Wnt signaling pathways among others. To understand the mechanism of the observed alteration, we conducted immune infiltration analysis using TIMER databases which identified immune cells that are associated with the upregulation of these proteins. Protein network analysis identified 44 proteins that were in close relation to all four proteins. These proteins were significantly enriched in immunoregulation and cancer pathways including PI3K-Akt signaling pathway, Notch signaling pathway, chemokine signaling pathway, cell cycle, breast cancer, and prostate cancer. Bioinformatics utilizing two cancer databases (TCGA and GEPIA) revealed that the four genes were upregulated in many cancer types including glioblastoma (GBM). In addition, higher expression of REEP3 and EEPD1 was associated with better prognosis, while higher expression of REEP4 and TEP1 was associated with poor prognosis in GBM patients. Discussion We identified the differentially expressed genes in the brain of T. gondii infected masked palm civets. These genes were associated with various cellular signaling pathways including those that are immune- and cancer-related.
Collapse
Affiliation(s)
- Hao Yuan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Tiantian Jiang
- Department of Pediatrics, School of Medicine, University of California, La Jolla, San Diego, CA, United States
| | - Wei-Dong Zhang
- South China Agricultural University Hospital, Guangzhou, China
| | - Zipeng Yang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shengjun Luo
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaohu Wang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaojing Zhu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shuting Qi
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yasser S. Mahmmod
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Veterinary Sciences Division, Faculty of Health Sciences, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| | - Xiu-Xiang Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zi-Guo Yuan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Tiberti N, Longoni SS, Combes V, Piubelli C. Host-Derived Extracellular Vesicles in Blood and Tissue Human Protozoan Infections. Microorganisms 2023; 11:2318. [PMID: 37764162 PMCID: PMC10536481 DOI: 10.3390/microorganisms11092318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Blood and tissue protozoan infections are responsible for an enormous burden in tropical and subtropical regions, even though they can also affect people living in high-income countries, mainly as a consequence of migration and travel. These pathologies are responsible for heavy socio-economic issues in endemic countries, where the lack of proper therapeutic interventions and effective vaccine strategies is still hampering their control. Moreover, the pathophysiological mechanisms associated with the establishment, progression and outcome of these infectious diseases are yet to be fully described. Among all the players, extracellular vesicles (EVs) have raised significant interest during the last decades due to their capacity to modulate inter-parasite and host-parasite interactions. In the present manuscript, we will review the state of the art of circulating host-derived EVs in clinical samples or in experimental models of human blood and tissue protozoan diseases (i.e., malaria, leishmaniasis, Chagas disease, human African trypanosomiasis and toxoplasmosis) to gain novel insights into the mechanisms of pathology underlying these conditions and to identify novel potential diagnostic markers.
Collapse
Affiliation(s)
- Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| | - Silvia Stefania Longoni
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| | - Valéry Combes
- Microvesicles and Malaria Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| |
Collapse
|
24
|
Zawadzki R, Modzelewski S, Naumowicz M, Matyja AM, Urbaniak AD, Zajkowska J, Kubas B. Evaluation of imaging methods in cerebral toxoplasmosis. Pol J Radiol 2023; 88:e389-e398. [PMID: 37701171 PMCID: PMC10493861 DOI: 10.5114/pjr.2023.130981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/27/2023] [Indexed: 09/14/2023] Open
Abstract
Cerebral toxoplasmosis is a parasitic disease resulting, in most cases, from a reactivation of a latent cyst with Toxoplasma gondii. The disease mainly affects immunosuppressed individuals, such as HIV (human immunodeficiency virus)-infected patients. Diagnosis is based on specialized antibody testing, clinical symptoms, neuroimaging methods, and histological examination. The gold standard for diagnosis is a brain biopsy, but more often the response to treatment seen in clinical symptoms and neuroimaging studies is sufficient. The imaging features support the diagnosis of cerebral toxoplasmosis and help assess the effectiveness of treatment.
Collapse
Affiliation(s)
- Radosław Zawadzki
- Department of Radiology, Medical University of Białystok, Białystok, Poland
| | - Stefan Modzelewski
- Department of Radiology, Medical University of Białystok, Białystok, Poland
| | - Maciej Naumowicz
- Department of Radiology, Medical University of Białystok, Białystok, Poland
| | | | | | - Joanna Zajkowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Białystok, Poland
| | - Bożena Kubas
- Department of Radiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
25
|
Symeonidou I, Sioutas G, Lazou T, Gelasakis AI, Papadopoulos E. A Review of Toxoplasma gondii in Animals in Greece: A FoodBorne Pathogen of Public Health Importance. Animals (Basel) 2023; 13:2530. [PMID: 37570337 PMCID: PMC10416908 DOI: 10.3390/ani13152530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Toxoplasma gondii is a zoonotic protozoon with a complex life cycle and the second most important foodborne pathogen in Europe. Surveillance of toxoplasmosis is based on national considerations since there are no mandatory controls along the food chain in the European Union, and underreporting of meat is still a problem in many countries like Greece. The current review provides an overview of T. gondii prevalence, associated risk factors, and surveillance in animals in Greece, focusing on the transmission role of meat and highlighting the control measures that should be adopted by consumers. Sows, wild boars, hares, equines, and cats had lower, while sheep and goats generally had higher seroprevalence than their respective pooled European and global values. Seroprevalence in chickens was similar between Greece and Europe, while there was high variation in cattle studies, with no data regarding dairy products. Though a comprehensive meat safety assurance system is the most effective approach to control the principal biological hazards associated with meat, such as T. gondii, the prerequisite risk categorisation of farms and abattoirs based on EFSA's proposed harmonised epidemiological indicators has not materialised as yet in Greece. Therefore, comprehensive control strategies are still required to ensure food safety and safeguard public health.
Collapse
Affiliation(s)
- Isaia Symeonidou
- Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.S.); (G.S.)
| | - Georgios Sioutas
- Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.S.); (G.S.)
| | - Thomai Lazou
- Laboratory of Hygiene of Foods of Animal Origin—Veterinary Public Health, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 11855 Athens, Greece;
| | - Elias Papadopoulos
- Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.S.); (G.S.)
| |
Collapse
|
26
|
Wang C, Xie L, Xing Y, Liu M, Yang J, Gao N, Cai Y. Iron-overload-induced ferroptosis in mouse cerebral toxoplasmosis promotes brain injury and could be inhibited by Deferiprone. PLoS Negl Trop Dis 2023; 17:e0011607. [PMID: 37651502 PMCID: PMC10508604 DOI: 10.1371/journal.pntd.0011607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/19/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023] Open
Abstract
Iron is a trace metal element that is essential for the survival of cells and parasites. The role of iron in cerebral toxoplasmosis (CT) is still unclear. Deferiprone (DFP) is the orally active iron chelator that binds iron in a molar ratio of 3:1 (ligand:iron) and promotes urinary iron excretion to remove excess iron from the body. The aims of this experiment were to observe the alterations in iron in brains with Toxoplasma gondii (T. gondii) acute infections and to investigate the mechanism of ferroptosis in CT using DFP. We established a cerebral toxoplasmosis model in vivo using TgCtwh3, the dominant strains of which are prevalent in China, and treated the mice with DFP at a dose of 75 mg/kg/d. Meanwhile, we treated the HT-22 cells with 100 μM DFP for half an hour and then infected cells with TgCtwh3 in vitro. A qRT-PCR assay of TgSAG1 levels showed a response to the T. gondii burden. We used inductively coupled plasma mass spectrometry, an iron ion assay kit, Western blot analysis, glutathione and glutathione disulfide assay kits, a malonaldehyde assay kit, and immunofluorescence to detect the ferroptosis-related indexes in the mouse hippocampus and HT-22 cells. The inflammatory factors interferon-γ, tumor necrosis factor-α, transforming growth factor-β, and arginase 1 in the hippocampus and cells were detected using the Western blot assay. Hematoxylin and eosin staining, electron microscopy, and the Morris water maze experiment were used to evaluate the brain injuries of the mice. The results showed that TgCtwh3 infection is followed by the activation of ferroptosis-related signaling pathways and hippocampal pathological damage in mice. The use of DFP led to ferroptosis resistance and attenuated pathological changes, inflammatory reactions and T. gondii burden of the mice, prolonging their survival time. The HT-22 cells with TgCtwh3 activated the ferroptosis pathway and was inhibit by DFP in vitro. In TgCtwh3-infected cells, inflammatory response and mitochondrial damage were severe, but these effects could be reduced by DFP. Our study elucidates the mechanism by which T. gondii interferes with the host's iron metabolism and activates ferroptosis, complementing the pathogenic mechanism of CT and further demonstrating the potential value of DFP for the treatment of CT.
Collapse
Affiliation(s)
- Chong Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Microbiology and Parasitology, and Anhui Provincial Laboratory of Zoonoses of High Institutions, Anhui Medical University, Hefei, China
| | - Linding Xie
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Microbiology and Parasitology, and Anhui Provincial Laboratory of Zoonoses of High Institutions, Anhui Medical University, Hefei, China
| | - Yien Xing
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Microbiology and Parasitology, and Anhui Provincial Laboratory of Zoonoses of High Institutions, Anhui Medical University, Hefei, China
| | - Min Liu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Microbiology and Parasitology, and Anhui Provincial Laboratory of Zoonoses of High Institutions, Anhui Medical University, Hefei, China
| | - Jun Yang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Microbiology and Parasitology, and Anhui Provincial Laboratory of Zoonoses of High Institutions, Anhui Medical University, Hefei, China
| | - Nannan Gao
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Microbiology and Parasitology, and Anhui Provincial Laboratory of Zoonoses of High Institutions, Anhui Medical University, Hefei, China
| | - Yihong Cai
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Microbiology and Parasitology, and Anhui Provincial Laboratory of Zoonoses of High Institutions, Anhui Medical University, Hefei, China
| |
Collapse
|
27
|
Shen Y, Zheng B, Sun H, Wu S, Fan J, Ding J, Gao M, Kong Q, Lou D, Ding H, Zhuo X, Lu S. A live attenuated RHΔompdcΔuprt mutant of Toxoplasma gondii induces strong protective immunity against toxoplasmosis in mice and cats. Infect Dis Poverty 2023; 12:60. [PMID: 37322556 DOI: 10.1186/s40249-023-01109-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular apicomplexan parasite and is responsible for zoonotic toxoplasmosis. It is essential to develop an effective anti-T. gondii vaccine for the control of toxoplasmosis, and this study is to explore the immunoprotective effects of a live attenuated vaccine in mice and cats. METHODS First, the ompdc and uprt genes of T. gondii were deleted through the CRISPR-Cas9 system. Then, the intracellular proliferation and virulence of this mutant strain were evaluated. Subsequently, the immune responses induced by this mutant in mice and cats were detected, including antibody titers, cytokine levels, and subsets of T lymphocytes. Finally, the immunoprotective effects were evaluated by challenge with tachyzoites of different strains in mice or cysts of the ME49 strain in cats. Furthermore, to discover the effective immune element against toxoplasmosis, passive immunizations were carried out. GraphPad Prism software was used to conduct the log-rank (Mantel-Cox) test, Student's t test and one-way ANOVA. RESULTS The RHΔompdcΔuprt were constructed by the CRISPR-Cas9 system. Compared with the wild-type strain, the mutant notably reduced proliferation (P < 0.05). In addition, the mutant exhibited virulence attenuation in both murine (BALB/c and BALB/c-nu) and cat models. Notably, limited pathological changes were found in tissues from RHΔompdcΔuprt-injected mice. Furthermore, compared with nonimmunized group, high levels of IgG (IgG1 and IgG2a) antibodies and cytokines (IFN-γ, IL-4, IL-10, IL-2 and IL-12) in mice were detected by the mutant (P < 0.05). Remarkably, all RHΔompdcΔuprt-vaccinated mice survived a lethal challenge with RHΔku80 and ME49 and WH6 strains. The immunized sera and splenocytes, especially CD8+ T cells, could significantly extend (P < 0.05) the survival time of mice challenged with the RHΔku80 strain compared with naïve mice. In addition, compared with nonimmunized cats, cats immunized with the mutant produced high levels of antibodies and cytokines (P < 0.05), and notably decreased the shedding numbers of oocysts in feces (95.3%). CONCLUSIONS The avirulent RHΔompdcΔuprt strain can provide strong anti-T. gondii immune responses, and is a promising candidate for developing a safe and effective live attenuated vaccine.
Collapse
Affiliation(s)
- Yu Shen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bin Zheng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Hao Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Songrui Wu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiyuan Fan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianzu Ding
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Meng Gao
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Qingming Kong
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Di Lou
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Haojie Ding
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Xunhui Zhuo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
| | - Shaohong Lu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
28
|
Abdelhamid GA, Abdelaal AA, Shalaby MA, Fahmy MEA, Badawi MA, Afife AA, Fadl HO. Type-1 diabetes mellitus down-regulated local cerebral glial fibrillary acidic protein expression in experimental toxoplasmosis. J Parasit Dis 2023; 47:319-328. [PMID: 37193484 PMCID: PMC10182235 DOI: 10.1007/s12639-023-01573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/26/2023] [Indexed: 05/18/2023] Open
Abstract
Cerebral toxoplasmosis is an opportunistic infection, occurring mostly in immunosuppressed patients due to the reactivation of latent Toxoplasma cysts. The cerebral comorbidity in diabetic patients tends to intensify the burden of pathogenic infection within the brain. The aim of this work was to study the effect of cerebral toxoplasmosis in experimentally infected hyperglycemic mice, on histopathology and glial fibrillary acidic protein (GFAP) expression, compared to normoglycemic mice at different time intervals. Vasculopathy was exclusively observed in diabetic groups, with features of increased severity during Toxoplasma infection. Gliosis was observed in diabetic groups, while hyperactive astroglial activity was detected in normoglycemic groups, especially at 6 weeks of infection. GFAP expression showed significant up-regulation in normoglycemic mice at 6 weeks of infection (40.03 ± 1.41) afterwards, it decreased to 22.22 ± 3.14 at 12 weeks which was statistically insignificant to the normal level, possibly indicating the successful Toxoplasma stage transformation (to bradyzoite), thereby limiting the infection within the brain. In hyperglycemic infected groups, GFAP was significantly down-regulated, in both acute and chronic phases of infection, most likely indicating failure of stage transformation and infection limitation. This may expose those vulnerable groups to the risk of dissemination, resulting in life-threatening diffuse encephalitis. The current study emphasized the importance of rapid diagnosis of Toxoplasma infection in diabetic subjects, and highlighted the value of using GFAP as a neurological indicator of disease progression in those comorbid cases.
Collapse
Affiliation(s)
| | - Amany Ahmed Abdelaal
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Medical Parasitology Department, Faculty of Medicine, Armed Forces College of Medicine, (AFCM), Cairo, Egypt
| | - Maisa Ahmed Shalaby
- Medical Parasitology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | | | | | - Adam Ashraf Afife
- College of Life Sciences, Faculty of Medicine, Leicester University, Leicester, UK
| | - Hanaa Omar Fadl
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
29
|
Wang Q, Zhong Y, Chen N, Chen J. From the immune system to mood disorders especially induced by Toxoplasma gondii: CD4+ T cell as a bridge. Front Cell Infect Microbiol 2023; 13:1078984. [PMID: 37077528 PMCID: PMC10106765 DOI: 10.3389/fcimb.2023.1078984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Toxoplasma gondii (T. gondii), a ubiquitous and obligatory intracellular protozoa, not only alters peripheral immune status, but crosses the blood-brain barrier to trigger brain parenchymal injury and central neuroinflammation to establish latent cerebral infection in humans and other vertebrates. Recent findings underscore the strong correlation between alterations in the peripheral and central immune environment and mood disorders. Th17 and Th1 cells are important pro-inflammatory cells that can drive the pathology of mood disorders by promoting neuroinflammation. As opposed to Th17 and Th1, regulatory T cells have inhibitory inflammatory and neuroprotective functions that can ameliorate mood disorders. T. gondii induces neuroinflammation, which can be mediated by CD4+ T cells (such as Tregs, Th17, Th1, and Th2). Though the pathophysiology and treatment of mood disorder have been currently studied, emerging evidence points to unique role of CD4+ T cells in mood disorder, especially those caused by T. gondii infection. In this review, we explore some recent studies that extend our understanding of the relationship between mood disorders and T. gondii.
Collapse
|
30
|
Basmalah AN, Sugianto P. Significant clinical outcome using pyrimethamine and clindamycin in cerebral toxoplasmosis with severe edema: a case report. Ann Med Surg (Lond) 2023; 85:1034-1037. [PMID: 37113934 PMCID: PMC10129152 DOI: 10.1097/ms9.0000000000000313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/12/2023] [Indexed: 04/29/2023] Open
Abstract
Cerebral toxoplasmosis is a complication in HIV/AIDS patients that has recently increased in new cases due to increased HIV/AIDS incidents. Case Presentation An Indonesian male, 26-year old, complained of severe headache, left hemiparesis, and tremors. A brain computed tomography scan with contrast showed a large mass, extensive edema, and a significant midline shift resembling a brain tumor. The HIV test was positive, and CD4 decreased. The patient was treated with dexamethasone, mannitol, and pyrimethamine-clindamycin as therapy. After 2 weeks of treatment, the headache, hemiparesis, and tremor were clinically improved. Two months later, a brain computed tomography scan and MRI showed a good prognosis. Clinical Discussion The diagnosis of cerebral toxoplasmosis is based on a radiological examination and an HIV/AIDS test. Management of cerebral toxoplasmosis using pyrimethamine-clindamycin, while steroids are not recommended unless disproportionate cytotoxic edema is displayed and life-threatening. Conclusion A combination of pyrimethamine-clindamycin, and steroids can improve the prognosis of cerebral toxoplasmosis with severe edema.
Collapse
Affiliation(s)
- Affan Nadzar Basmalah
- Corresponding author. Address: Department of Neurology, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Academic Hospital, Jl. Mayjend Professor Dr. Moestopo. No. 6-8, Airlangga, Gubeng, Surabaya 60286, East Java, Indonesia. Tel: +62 315 501 670; Fax:+6231-5022472. E-mail address: (A.N. Basmalah)
| | | |
Collapse
|
31
|
S. Muhsin S, A. Al-Safar M, Mahmood SA. Men's ND1 gene genetic makeup Toxoplasmosis and Oligospermia affecting couples' infertility. BIONATURA 2023. [DOI: 10.21931/rb/2023.08.01.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Introduction: Toxoplasma infection was higher in infertile couples than fertile couples, probably due to anti-sperm antibodies that were higher in couples with Toxoplasmosis. Investigations of T. gondii infections in men with infertility showed that among 100 cases of men's infertility, 36% were serologically positive for Toxoplasma-IgG and IgM. It has been concluded that T. gondii can affect men's fertility and result in infertility. Materials and Methods: Selective infertile males were asked about days of sexual abstinence. Seminal fluid samples were collected following a minimum of 2 days and a maximum of 7 days from abstinence. Every patient was given a clean, wide mouth, sterile, dry, graduated plastic and warm disposable container. The samples were obtained by masturbation in a private room near the semen analysis lab to reduce seminal exposure to temperature fluctuations and control the time from collection to analysis. Results: For the ND1 gene, samples of 8 different fertility groups have been sequenced. These sequences have been compared to reference sequences taken from the NCBI database. Several mutations in various nucleotide positions of the ND1 regions have been detected in samples from multiple groups. The base substitution has been positioned on the nucleotides (nts) 3480, 3567, 3591, 3693, and 4216. The T to C evolution was notorious at nt 3480 in ND1 genes. The SNP was detected in an asthenospermia human (Sample code: 010480).
Keywords: Sequence, ND1 gen, Oligospermia Toxoplasmosis, Couples infertility
Collapse
Affiliation(s)
- Salwa S. Muhsin
- Department of Community, Medical Technical Institute, Baghdad, Middle Technical, University, Iraq (MTU)
| | - Montaha A. Al-Safar
- Department of Community, Medical Technical Institute, Baghdad, Middle Technical, University, Iraq (MTU)
| | - Sarah A. Mahmood
- Department of Community, Medical Technical Institute, Baghdad, Middle Technical, University, Iraq (MTU)
| |
Collapse
|
32
|
Abstract
Toxoplasma gondii infection in the central nervous system commonly occurs among immunodeficient patients. Its prevalence is high in countries with a high burden of HIV and low coverage of antiretroviral drugs. The brain is one of the predilections for T. gondii infection due to its low inflammatory reaction, and cerebral toxoplasmosis occurs solely due to the reactivation of a latent infection rather than a new infection. Several immune elements have recently been recognized to have an essential role in the immunopathogenesis of cerebral toxoplasmosis. Although real-time isothermal amplification, next-generation sequencing, and enzyme-linked aptamer assays from blood samples have been the recommended diagnostic tools in some in-vivo studies, a combination of clinical symptoms, serology examination, and neuroimaging are still the daily standard for the presumptive diagnosis of cerebral toxoplasmosis and early anti-toxoplasma administration. Clinical trials are needed to find a new therapy that is less likely to affect folate synthesis, have neuroprotective properties, or cure the latent phase of infection. The development of a vaccine is being extensively tested in animals, but its efficacy and safety for humans are still not proven.
Collapse
Affiliation(s)
- Sofiati Dian
- Department of Neurology, Faculty of Medicine, Universitas Padjdjaran/Hasan Sadikin Hospital, Bandung, Indonesia
- Health Research Unit, Faculty of Medicine, Padjadjaran University/Hasan Sadikin Hospital, Bandung, Indonesia
| | - Ahmad Rizal Ganiem
- Department of Neurology, Faculty of Medicine, Universitas Padjdjaran/Hasan Sadikin Hospital, Bandung, Indonesia
- Health Research Unit, Faculty of Medicine, Padjadjaran University/Hasan Sadikin Hospital, Bandung, Indonesia
| | - Savira Ekawardhani
- Parasitology Division, Department of Biomedical Sciences, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| |
Collapse
|
33
|
Wesołowski R, Pawłowska M, Smoguła M, Szewczyk-Golec K. Advances and Challenges in Diagnostics of Toxoplasmosis in HIV-Infected Patients. Pathogens 2023; 12:110. [PMID: 36678458 PMCID: PMC9862295 DOI: 10.3390/pathogens12010110] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
Toxoplasma gondii is a worldwide distributed protozoan parasite. This apicomplexan parasite infects one-third of the population worldwide, causing toxoplasmosis, considered one of the neglected parasitic infections. In healthy humans, most infections are asymptomatic. However, in immunocompromised patients, the course of the disease can be life-threatening. Human immunodeficiency virus (HIV)-infected patients have a very high burden of Toxoplasma gondii co-infection. Thus, it is essential to use modern, sensitive, and specific methods to properly monitor the course of toxoplasmosis in immunodeficient patients.
Collapse
Affiliation(s)
| | - Marta Pawłowska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | | | | |
Collapse
|
34
|
Zhang Y, Li D, Shen Y, Li S, Lu S, Zheng B. Immunization with a novel mRNA vaccine, TGGT1_216200 mRNA-LNP, prolongs survival time in BALB/c mice against acute toxoplasmosis. Front Immunol 2023; 14:1161507. [PMID: 37122740 PMCID: PMC10140528 DOI: 10.3389/fimmu.2023.1161507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Toxoplasma gondii, a specialized intracellular parasite, causes a widespread zoonotic disease and is a severe threat to social and economic development. There is a lack of effective drugs and vaccines against T. gondii infection. Recently, mRNA vaccines have been rapidly developed, and their packaging materials and technologies are well established. In this study, TGGT1_216200 (TG_200), a novel molecule from T. gondii, was identified using bioinformatic screening analysis. TG_200 was purified and encapsulated with a lipid nanoparticle (LNP) to produce the TG_200 mRNA-LNP vaccine. The immune protection provided by the new vaccine and its mechanisms after immunizing BABL/C mice via intramuscular injection were investigated. There was a strong immune response when mice were vaccinated with TG_200 mRNA-LNP. Elevated levels of anti-T. gondii-specific immunoglobulin G (IgG), and a higher IgG2a-to-IgG1 ratio was observed. The levels of interleukin-12 (IL-12), interferon-γ (IFN-γ), IL-4, and IL-10 were also elevated. The result showed that the vaccine induced a mixture of Th1 and Th2 cells, and Th1-dominated humoral immune response. Significantly increased antigen-specific splenocyte proliferation was induced by TG_200 mRNA-LNP immunization. The vaccine could also induce T. gondii-specific cytotoxic T lymphocytes (CTLs). The expression levels of interferon regulatory factor 8 (IRF8), T-Box 21 (T-bet), and nuclear factor kappa B (NF-κB) were significantly elevated after TG_200 mRNA-LNP immunization. The levels of CD83, CD86, MHC-I, MHC-II, CD8, and CD4 molecules were also higher. The results indicated that TG_200 mRNA-LNP produced specific cellular and humoral immune responses. Most importantly, TG_200 mRNA-LNP immunized mice survived significantly longer (19.27 ± 3.438 days) than the control mice, which died within eight days after T. gondii challenge (P< 0.001). The protective effect of adoptive transfer was also assessed, and mice receiving serum and splenocytes from mice immunized with TG_200 mRNA-LNP showed improved survival rates of 9.70 ± 1.64 days and, 13.40 ± 2.32 days, respectively (P< 0.001). The results suggested that TG_200 mRNA-LNP is a safe and promising vaccine against T. gondii infection.
Collapse
Affiliation(s)
- Yizhuo Zhang
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Dan Li
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yu Shen
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Shiyu Li
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Shaohong Lu
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Shaohong Lu, ; Bin Zheng,
| | - Bin Zheng
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Shaohong Lu, ; Bin Zheng,
| |
Collapse
|
35
|
de Medeiros Brito RM, Meurer YDSR, Batista JAL, de Sá AL, de Medeiros Souza CR, de Souto JT, de Andrade-Neto VF. Chronic Toxoplasma gondii infection contributes to perineuronal nets impairment in the primary somatosensory cortex. Parasit Vectors 2022; 15:487. [PMID: 36566237 PMCID: PMC9790132 DOI: 10.1186/s13071-022-05596-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/18/2022] [Indexed: 12/25/2022] Open
Abstract
Toxoplasma gondii is able to manipulate the host immune system to establish a persistent and efficient infection, contributing to the development of brain abnormalities with behavioral repercussions. In this context, this work aimed to evaluate the effects of T. gondii infection on the systemic inflammatory response and structure of the primary somatosensory cortex (PSC). C57BL/6 and BALB/c mice were infected with T. gondii ME49 strain tissue cysts and accompanied for 30 days. After this period, levels of cytokines IFN-γ, IL-12, TNF-α and TGF-β were measured. After blood collection, mice were perfused and the brains were submitted to immunohistochemistry for perineuronal net (PNN) evaluation and cyst quantification. The results showed that C57BL/6 mice presented higher levels of TNF-α and IL-12, while the levels of TGF-β were similar between the two mouse lineages, associated with the elevated number of tissue cysts, with a higher occurrence of cysts in the posterior area of the PSC when compared to BALB/c mice, which presented a more homogeneous cyst distribution. Immunohistochemistry analysis revealed a greater loss of PNN labeling in C57BL/6 animals compared to BALB/c. These data raised a discussion about the ability of T. gondii to stimulate a systemic inflammatory response capable of indirectly interfering in the brain structure and function.
Collapse
Affiliation(s)
- Ramayana Morais de Medeiros Brito
- grid.411233.60000 0000 9687 399XPostgraduate Program in Parasitary Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil ,grid.411233.60000 0000 9687 399XLaboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil
| | - Ywlliane da Silva Rodrigues Meurer
- grid.411216.10000 0004 0397 5145Postgraduate Program in Cognitive Neuroscience and Behavior, Memory and Cognition Studies Laboratory, Federal University of Paraíba, João Pessoa, Paraíba Brazil
| | - Jully Anne Lemos Batista
- grid.411233.60000 0000 9687 399XLaboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil
| | - Andréa Lima de Sá
- grid.411233.60000 0000 9687 399XLaboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil
| | - Cássio Ricardo de Medeiros Souza
- grid.411233.60000 0000 9687 399XLaboratory of Immunopharmacology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil
| | - Janeusa Trindade de Souto
- grid.411233.60000 0000 9687 399XLaboratory of Immunopharmacology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil
| | - Valter Ferreira de Andrade-Neto
- grid.411233.60000 0000 9687 399XLaboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil
| |
Collapse
|
36
|
Alloo J, Leleu I, Grangette C, Pied S. Parasite infections, neuroinflammation, and potential contributions of gut microbiota. Front Immunol 2022; 13:1024998. [PMID: 36569929 PMCID: PMC9772015 DOI: 10.3389/fimmu.2022.1024998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Many parasitic diseases (including cerebral malaria, human African trypanosomiasis, cerebral toxoplasmosis, neurocysticercosis and neuroschistosomiasis) feature acute or chronic brain inflammation processes, which are often associated with deregulation of glial cell activity and disruption of the brain blood barrier's intactness. The inflammatory responses of astrocytes and microglia during parasite infection are strongly influenced by a variety of environmental factors. Although it has recently been shown that the gut microbiota influences the physiology and immunomodulation of the central nervous system in neurodegenerative diseases like Alzheimer's disease and Parkinson's, the putative link in parasite-induced neuroinflammatory diseases has not been well characterized. Likewise, the central nervous system can influence the gut microbiota. In parasite infections, the gut microbiota is strongly perturbed and might influence the severity of the central nervous system inflammation response through changes in the production of bacterial metabolites. Here, we review the roles of astrocytes and microglial cells in the neuropathophysiological processes induced by parasite infections and their possible regulation by the gut microbiota.
Collapse
Affiliation(s)
| | | | | | - Sylviane Pied
- Center for Infection and Immunity of Lille-CIIL, Centre National de la Recherche Scientifique-CNRS UMR 9017-Institut National de la Recherche Scientifique et Médicale-Inserm U1019, Institut Pasteur de Lille, Univ. Lille, Lille, France
| |
Collapse
|
37
|
Figueiredo CA, Düsedau HP, Steffen J, Ehrentraut S, Dunay MP, Toth G, Reglödi D, Heimesaat MM, Dunay IR. The neuropeptide PACAP alleviates T. gondii infection-induced neuroinflammation and neuronal impairment. J Neuroinflammation 2022; 19:274. [PMCID: PMC9675261 DOI: 10.1186/s12974-022-02639-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background Cerebral infection with the protozoan Toxoplasma gondii (T. gondii) is responsible for inflammation of the central nervous system (CNS) contributing to subtle neuronal alterations. Albeit essential for brain parasite control, continuous microglia activation and recruitment of peripheral immune cells entail distinct neuronal impairment upon infection-induced neuroinflammation. PACAP is an endogenous neuropeptide known to inhibit inflammation and promote neuronal survival. Since PACAP is actively transported into the CNS, we aimed to assess the impact of PACAP on the T. gondii-induced neuroinflammation and subsequent effects on neuronal homeostasis. Methods Exogenous PACAP was administered intraperitoneally in the chronic stage of T. gondii infection, and brains were isolated for histopathological analysis and determination of pathogen levels. Immune cells from the brain, blood, and spleen were analyzed by flow cytometry, and the further production of inflammatory mediators was investigated by intracellular protein staining as well as expression levels by RT-qPCR. Neuronal and synaptic alterations were assessed on the transcriptional and protein level, focusing on neurotrophins, neurotrophin-receptors and signature synaptic markers. Results Here, we reveal that PACAP administration reduced the inflammatory foci and the number of apoptotic cells in the brain parenchyma and restrained the activation of microglia and recruitment of monocytes. The neuropeptide reduced the expression of inflammatory mediators such as IFN-γ, IL-6, iNOS, and IL-1β. Moreover, PACAP diminished IFN-γ production by recruited CD4+ T cells in the CNS. Importantly, PACAP promoted neuronal health via increased expression of the neurotrophin BDNF and reduction of p75NTR, a receptor related to neuronal cell death. In addition, PACAP administration was associated with increased expression of transporters involved in glutamatergic and GABAergic signaling that are particularly affected during cerebral toxoplasmosis. Conclusions Together, our findings unravel the beneficial effects of exogenous PACAP treatment upon infection-induced neuroinflammation, highlighting the potential implication of neuropeptides to promote neuronal survival and minimize synaptic prejudice. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02639-z.
Collapse
Affiliation(s)
- Caio Andreeta Figueiredo
- grid.5807.a0000 0001 1018 4307Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany
| | - Henning Peter Düsedau
- grid.5807.a0000 0001 1018 4307Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany
| | - Johannes Steffen
- grid.5807.a0000 0001 1018 4307Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany
| | - Stefanie Ehrentraut
- grid.5807.a0000 0001 1018 4307Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany
| | - Miklos P. Dunay
- grid.483037.b0000 0001 2226 5083Department and Clinic of Surgery and Ophthalmology, University of Veterinary Medicine, Budapest, Hungary
| | - Gabor Toth
- grid.9008.10000 0001 1016 9625Department of Medical Chemistry, University of Szeged, Budapest, Hungary
| | - Dora Reglödi
- grid.9679.10000 0001 0663 9479Department of Anatomy, MTA-PTE PACAP Research Team and Szentagothai Research Center, University of Pecs Medical School, Pecs, Hungary
| | - Markus M. Heimesaat
- grid.6363.00000 0001 2218 4662Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Ildiko Rita Dunay
- grid.5807.a0000 0001 1018 4307Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Center for Behavioral Brain Sciences – CBBS, Magdeburg, Germany
| |
Collapse
|
38
|
Ten Hoeve AL, Braun L, Rodriguez ME, Olivera GC, Bougdour A, Belmudes L, Couté Y, Saeij JPJ, Hakimi MA, Barragan A. The Toxoplasma effector GRA28 promotes parasite dissemination by inducing dendritic cell-like migratory properties in infected macrophages. Cell Host Microbe 2022; 30:1570-1588.e7. [PMID: 36309013 PMCID: PMC9710525 DOI: 10.1016/j.chom.2022.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/26/2022] [Accepted: 10/03/2022] [Indexed: 11/03/2022]
Abstract
Upon pathogen detection, macrophages normally stay sessile in tissues while dendritic cells (DCs) migrate to secondary lymphoid tissues. The obligate intracellular protozoan Toxoplasma gondii exploits the trafficking of mononuclear phagocytes for dissemination via unclear mechanisms. We report that, upon T. gondii infection, macrophages initiate the expression of transcription factors normally attributed to DCs, upregulate CCR7 expression with a chemotactic response, and perform systemic migration when adoptively transferred into mice. We show that parasite effector GRA28, released by the MYR1 secretory pathway, cooperates with host chromatin remodelers in the host cell nucleus to drive the chemotactic migration of parasitized macrophages. During in vivo challenge studies, bone marrow-derived macrophages infected with wild-type T. gondii outcompeted those challenged with MYR1- or GRA28-deficient strains in migrating and reaching secondary organs. This work reveals how an intracellular parasite hijacks chemotaxis in phagocytes and highlights a remarkable migratory plasticity in differentiated cells of the mononuclear phagocyte system.
Collapse
Affiliation(s)
- Arne L Ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Laurence Braun
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Matias E Rodriguez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Gabriela C Olivera
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Alexandre Bougdour
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Lucid Belmudes
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Jeroen P J Saeij
- Department of Pathology, Microbiology, and Immunology, University of California Davis, Davis, CA 95616, USA
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France.
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
39
|
Jin GN, Lu JM, Lan HW, Lu YN, Shen XY, Xu X, Piao LX. Protective effect of ginsenoside Rh2 against Toxoplasma gondii infection-induced neuronal injury through binding TgCDPK1 and NLRP3 to inhibit microglial NLRP3 inflammasome signaling pathway. Int Immunopharmacol 2022; 112:109176. [PMID: 36067653 DOI: 10.1016/j.intimp.2022.109176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is a neurotropic obligate intracellular parasite that can activate microglial and promote neuronal apoptosis, leading to central nervous system diseases. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling complex plays a key role in inducing neuroinflammation. Our previous studies have found that ginsenoside Rh2 (GRh2) inhibits T. gondii infection-induced microglial activation and neuroinflammation by downregulating the Toll-like receptor 4/nuclear factor-kappa B signaling pathway. However, whether GRh2 reduces T. gondii infection-induced neuronal injury through actions on microglial NLRP3 inflammasome signaling has not yet been clarified. METHODS In this study, we employed T. gondii RH strain to establish in vitro and in vivo infection models in BV2 microglia cell line and BALB/c mice. Molecular docking, localized surface plasmon resonance assay, quantitative competitive-PCR, ELISA, western blotting, flow cytometric analysis, and immunofluorescence were performed. RESULTS Our results showed that GRh2 alleviated neuropathological damage and neuronal apoptosis in cortical tissue of T. gondii-infected mice. GRh2 and CY-09 (an inhibitor of NLRP3) exhibited potent anti-T. gondii effects through binding T. gondii calcium-dependent protein kinase 1 (TgCDPK1). GRh2 decreased Iba-1 (a specific microglial marker) and NLRP3 inflammasome signaling pathway-related protein expression by binding NLRP3. Co-culture of microglia/primary cortical neurons revealed that T. gondii-induced microglial activation caused neuronal apoptosis, but GRh2 reduced this effect, consistent with the effects of CY-09. CONCLUSION Taken together, our results show that GRh2 has a protective effect against T. gondii infection-induced neuronal injury by binding TgCDPK1 and NLRP3 to inhibit NLRP3 inflammasome signaling pathway in microglia.
Collapse
Affiliation(s)
- Guang-Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Jing-Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Hui-Wen Lan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Yu-Nan Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Xin-Yu Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China.
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China.
| |
Collapse
|
40
|
Liu B, Yan Y, Wang X, Chen N, Wu J. Locally generated C3 regulates the clearance of Toxoplasma gondii by IFN-γ-primed macrophage through regulation of xenophagy. Front Microbiol 2022; 13:944006. [PMID: 35992649 PMCID: PMC9386420 DOI: 10.3389/fmicb.2022.944006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Exogenous pathogen infection can induce autophagy in cells. Autophagy is essential for cell survival, development, and homeostasis. It not only regulates cell defense and stress, but also has a close relationship with innate and adaptive immunity. Complement is an important part of innate immunity, which could be activated by three approaches, including classic, alternative, and lectin pathways. All the three pathways result in the activation of C3, and generate anaphylatoxin fragments C3a and C5a, and formation of the membrane attack complex. Either C3a or C5a induces the inflammatory cytokines through binding to C3aR or C5aR, respectively. However, it is still unknown whether the complement could regulate the autophagy of intracellular microorganisms or not. In this study, we constructed a Toxoplasma gondii (T. gondii) and macrophages co-culture experimental model using T. gondii expressing enhanced green fluorescence protein (EGFP) fluorescence and C3−/-C57BL/6 J mice for that T. gondii invaded peritoneal macrophages in mice. Western blot, laser confocal microscopy (LCM), and transmission electron microscopy (TEM) were used to observe the changes of autophagy between the macrophages from wild-type (WT) and C3−/− mice. Flow cytometry and LCM were used to investigate the effect of autophagy on the killing ability of macrophages against T. gondii. Here, we found that local C3 could suppress not only the canonical autophagy of macrophage, but also the xenophagy to T. gondii. Interestingly, the inhibition of C3 on host cell autophagy could significantly suppress the clearance of T. gondii by the IFN-γ-primed macrophage. Finally, we investigated the mechanism of the autophagy regulation of C3 that the effect of C3 on the macrophage-specific autophagy against T. gondii depends on mTOR. And, there is C3a but not C5a/C5aR involved in regulating macrophage xenophagy against T. gondii. Collectively, our findings suggest locally generated C3 regulates the clearance of T. gondii by Macrophage through the regulation of the non-canonical IFN-γ-dependent autophagy pathway, and paint a clearer picture in the regulation of autophagy by innate immune components.
Collapse
Affiliation(s)
- Bo Liu
- Department of Hematology. The No. 967 Hospital of PLA Joint Logistics Support Force, Dalian, Liaoning, China
| | - Yan Yan
- Translational Medicine Research Center, Medical Innovation Research Division, The Chinese PLA General Hospital, Beijing, China
| | - Xiaoreng Wang
- Laboratory of Radiation Injury Treatment, Medical Innovation Research Division, The Chinese PLA General Hospital, Beijing, China
| | - Nannan Chen
- Department of Hematology. The No. 967 Hospital of PLA Joint Logistics Support Force, Dalian, Liaoning, China
- Nannan Chen,
| | - Jue Wu
- Translational Medicine Research Center, Medical Innovation Research Division, The Chinese PLA General Hospital, Beijing, China
- *Correspondence: Jue Wu,
| |
Collapse
|
41
|
Ross EC, Hoeve ALT, Saeij JPJ, Barragan A. Toxoplasma effector-induced ICAM-1 expression by infected dendritic cells potentiates transmigration across polarised endothelium. Front Immunol 2022; 13:950914. [PMID: 35990682 PMCID: PMC9381734 DOI: 10.3389/fimmu.2022.950914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/12/2022] [Indexed: 12/23/2022] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii makes use of infected leukocytes for systemic dissemination. Yet, how infection impacts the processes of leukocyte diapedesis has remained unresolved. Here, we addressed the effects of T. gondii infection on the trans-endothelial migration (TEM) of dendritic cells (DCs) across polarised brain endothelial monolayers. We report that upregulated expression of leukocyte ICAM-1 is a feature of the enhanced TEM of parasitised DCs. The secreted parasite effector GRA15 induced an elevated expression of ICAM-1 in infected DCs that was associated with enhanced cell adhesion and TEM. Consequently, gene silencing of Icam-1 in primary DCs or deletion of parasite GRA15 reduced TEM. Further, the parasite effector TgWIP, which impacts the regulation of host actin dynamics, facilitated TEM across polarised endothelium. The data highlight that the concerted action of the secreted effectors GRA15 and TgWIP modulate the leukocyte-endothelial interactions of TEM in a parasite genotype-related fashion to promote dissemination. In addition to the canonical roles of endothelial ICAM-1, this study identifies a previously unappreciated role for leukocyte ICAM-1 in infection-related TEM.
Collapse
Affiliation(s)
- Emily C. Ross
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Arne L. ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, Davis, CA, United States
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden,*Correspondence: Antonio Barragan,
| |
Collapse
|
42
|
Florescu AM, Sørensen ALT, Nielsen HV, Tolnai D, Sjö LD, Larsen KL, Al-Karagholi MAM. Blastic plasmacytoid dendritic cell neoplasm and cerebral toxoplasmosis: a case report. BMC Neurol 2022; 22:233. [PMID: 35751052 PMCID: PMC9229753 DOI: 10.1186/s12883-022-02748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The present case contributes to the limited literature on central nervous system involvement of blastic plasmacytoid dendritic cell neoplasm (BPDCN). CASE PRESENTATION : A 63-year-old male presented to the department of neurology with a three-day history of rapidly progressing headache, fatigue, and confusion. Physical examination revealed multiple bruise-like skin lesions. Initial laboratory workup raised suspicion of acute leukemia, and a brain computer tomography identified several hyperdense processes. A bone marrow biopsy gave the diagnosis BPDCN, a rare and aggressive hematologic malignancy derived from plasmacytoid dendritic cells with a poor prognosis. Lumbar puncture showed not only signs of BPDCN, but also cerebral toxoplasmosis, thus providing a differential diagnosis. Despite intensive systemic and intrathecal chemotherapy, the patient died 25 days later due to multi-organ failure. DISCUSSION The exact incidence of BPDCN is unknown and perhaps underestimated but may account for 0.5 - 1% of all hematological malignancies. The median age at onset is 60 to 70 years, and most patients are men. Cutaneous lesions are the most frequent clinical manifestation at diagnosis. Other symptoms present at time of diagnosis or during disease progression include lymphadenopathy, splenomegaly and cytopenia caused by bone marrow involvement. Although the majority of BPDCN patients have no symptoms or signs of central nervous system involvement, plasmacytoid dendritic cells have been detected in the cerebrospinal fluid in more than 50%. CONCLUSIONS This case highlights the importance of considering hematological malignancies as a differential diagnosis in patients developing acute neurological symptoms and raises suspicion of a possible association between toxoplasmosis and hematological malignancies.
Collapse
Affiliation(s)
- Anna Maria Florescu
- Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark.
| | - Anne Louise Tølbøll Sørensen
- Department of Hematology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Vedel Nielsen
- Laboratory of Parasitology, Department of Bacteria, Parasites & Fungi, Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Daniel Tolnai
- Department of Diagnostic Radiology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Lene Dissing Sjö
- Department of Pathology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katja Lohmann Larsen
- Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
43
|
Hu D, Tang Y, Wang C, Qi Y, Ente M, Li X, Zhang D, Li K, Chu H. The Role of Intestinal Microbial Metabolites in the Immunity of Equine Animals Infected With Horse Botflies. Front Vet Sci 2022; 9:832062. [PMID: 35812868 PMCID: PMC9257286 DOI: 10.3389/fvets.2022.832062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The microbiota and its metabolites play an important role in regulating the host metabolism and immunity. However, the underlying mechanism is still not well studied. Thus, we conducted the LC-MS/MS analysis and RNA-seq analysis on Equus przewalskii with and without horse botfly infestation to determine the metabolites produced by intestinal microbiota in feces and differentially expressed genes (DEGs) related to the immune response in blood and attempted to link them together. The results showed that parasite infection could change the composition of microbial metabolites. These identified metabolites could be divided into six categories, including compounds with biological roles, bioactive peptides, endocrine-disrupting compounds, pesticides, phytochemical compounds, and lipids. The three pathways involving most metabolites were lipid metabolism, amino acid metabolism, and biosynthesis of other secondary metabolites. The significant differences between the host with and without parasites were shown in 31 metabolites with known functions, which were related to physiological activities of the host. For the gene analysis, we found that parasite infection could alarm the host immune response. The gene of “cathepsin W” involved in innate and adaptive immune responses was upregulated. The two genes of the following functions were downregulated: “protein S100-A8” and “protein S100-A9-like isoform X2” involved in chemokine and cytokine production, the toll-like receptor signaling pathway, and immune and inflammatory responses. GO and KEGG analyses showed that immune-related functions of defense response and Th17 cell differentiation had significant differences between the host with and without parasites, respectively. Last, the relationship between metabolites and genes was determined in this study. The purine metabolism and pyrimidine metabolism contained the most altered metabolites and DEGs, which mainly influenced the conversion of ATP, ADP, AMP, GTP, GMP, GDP, UTP, UDP, UMP, dTTP, dTDP, dTMP, and RNA. Thus, it could be concluded that parasitic infection can change the intestinal microbial metabolic activity and enhance immune response of the host through the pathway of purine and pyrimidine metabolism. This results will be a valuable contribution to understanding the bidirectional association of the parasite, intestinal microbiota, and host.
Collapse
Affiliation(s)
- Dini Hu
- Key Laboratory of Non-invasive Research Technology for Endangered Species, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yujun Tang
- Xinjiang Research Centre for Breeding Przewalski's Horse, Ürümqi, China
| | - Chen Wang
- Altay Management Station of Mt. Kalamaili Ungulate Nature Reserve, Altay, China
| | - Yingjie Qi
- Altay Management Station of Mt. Kalamaili Ungulate Nature Reserve, Altay, China
| | - Make Ente
- Xinjiang Research Centre for Breeding Przewalski's Horse, Ürümqi, China
| | - Xuefeng Li
- Xinjiang Research Centre for Breeding Przewalski's Horse, Ürümqi, China
| | - Dong Zhang
- Key Laboratory of Non-invasive Research Technology for Endangered Species, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Kai Li
- Key Laboratory of Non-invasive Research Technology for Endangered Species, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- *Correspondence: Kai Li
| | - Hongjun Chu
- Institute of Forest Ecology, Xinjiang Academy of Forestry, Ürümqi, China
- Hongjun Chu
| |
Collapse
|
44
|
Alvarado-Esquivel C, Estrada-Martínez S, Pérez-Álamos AR, Ramos-Nevárez A, Botello-Calderón K, Alvarado-Félix ÁO, Vaquera-Enríquez R, Alvarado-Félix GA, Sifuentes-Álvarez A, Guido-Arreola CA, Rábago-Sánchez E, Saenz-Soto L. Toxoplasma gondii infection and insomnia: A case control seroprevalence study. PLoS One 2022; 17:e0266214. [PMID: 35679264 PMCID: PMC9182222 DOI: 10.1371/journal.pone.0266214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
We determined the association between Toxoplasma gondii (T. gondii) infection and insomnia. Through an age-and gender-matched case-control study, 577 people with insomnia (cases) and 577 people without insomnia (controls) were tested for anti-T. gondii IgG and IgM antibodies using commercially available enzyme-immunoassays. Anti-T. gondii IgG antibodies were found in 71 (12.3%) of 577 individuals with insomnia and in 46 (8.0%) of 577 controls (OR = 1.62; 95% CI: 1.09–2.39; P = 0.01). Men with insomnia had a higher (16/73: 21.9%) seroprevalence of T. gondii infection than men without insomnia (5/73: 6.8%) (OR: 3.81; 95% CI: 1.31–11.06; P = 0.009). The rate of high (>150 IU/ml) anti-T. gondii IgG antibody levels in cases was higher than the one in controls (OR = 2.21; 95% CI: 1.13–4.31; P = 0.01). Men with insomnia had a higher (8/73: 11.0%) rate of high anti-T. gondii IgG antibody levels than men without insomnia (0/73: 0.0%) (P = 0.006). The rate of high anti-T. gondii IgG antibody levels in cases >50 years old (11/180: 6.1%) was higher than that (3/180: 1.7%) in controls of the same age group (OR: 3.84; 95% CI: 1.05–14.00; P = 0.05). No difference in the rate of IgM seropositivity between cases and controls was found (OR = 1.33; 95% CI: 0.57–3.11; P = 0.50). Results of this seroepidemiology study suggest that infection with T. gondii is associated with insomnia. Men older than 50 years with T. gondii exposure might be prone to insomnia. Further research to confirm the association between seropositivity and serointensity to T. gondii and insomnia is needed.
Collapse
Affiliation(s)
- Cosme Alvarado-Esquivel
- Biomedical Research Laboratory, Faculty of Medicine and Nutrition, Juárez University of Durango State, Durango, Mexico
- * E-mail:
| | - Sergio Estrada-Martínez
- Institute for Scientific Research “Dr. Roberto Rivera-Damm”, Juárez University of Durango State, Durango, Mexico
| | - Alma Rosa Pérez-Álamos
- Institute for Scientific Research “Dr. Roberto Rivera-Damm”, Juárez University of Durango State, Durango, Mexico
| | - Agar Ramos-Nevárez
- Clínica de Medicina Familiar, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Durango, Mexico
| | - Karina Botello-Calderón
- Biomedical Research Laboratory, Faculty of Medicine and Nutrition, Juárez University of Durango State, Durango, Mexico
| | - Ángel Osvaldo Alvarado-Félix
- Biomedical Research Laboratory, Faculty of Medicine and Nutrition, Juárez University of Durango State, Durango, Mexico
| | - Raquel Vaquera-Enríquez
- Health Center No. 2 “Dr. Carlos Santamaría”, Servicios de Salud de Durango, Durango, Durango, Mexico
| | - Gustavo Alexis Alvarado-Félix
- Biomedical Research Laboratory, Faculty of Medicine and Nutrition, Juárez University of Durango State, Durango, Mexico
| | - Antonio Sifuentes-Álvarez
- Biomedical Research Laboratory, Faculty of Medicine and Nutrition, Juárez University of Durango State, Durango, Mexico
| | - Carlos Alberto Guido-Arreola
- Clínica de Medicina Familiar, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Durango, Mexico
| | - Elizabeth Rábago-Sánchez
- Biomedical Research Laboratory, Faculty of Medicine and Nutrition, Juárez University of Durango State, Durango, Mexico
| | - Leandro Saenz-Soto
- Clínica de Medicina Familiar, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Durango, Mexico
| |
Collapse
|
45
|
Arora N, Kotwani S, Chhabra M, H M. Hemorrhagic Lesions in the Central Nervous System: Toxoplasmosis in a Person Living With Human Immunodeficiency Virus Infection and Acquired Immunodeficiency Syndrome. Cureus 2022; 14:e24827. [PMID: 35693374 PMCID: PMC9173227 DOI: 10.7759/cureus.24827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2022] [Indexed: 11/19/2022] Open
Abstract
Central nervous system (CNS) toxoplasmosis is one of the common causes of hemorrhagic brain lesions in people living with HIV and AIDS (PLWHA), resulting in high mortality and morbidity. It has a broad clinical and neuro-radiological spectrum, which may or may not be limited to typical findings of focal and subacute neurological deficits or ring-enhancing lesions in the basal ganglia. Here, we present a case of a patient who is a newly detected person living with HIV and AIDS with a low CD4 cell count and classical imaging findings of central nervous system toxoplasmosis on his magnetic resonance imaging (MRI) of the brain. The incidence of opportunistic infections has been reduced after introducing highly active antiretroviral therapy (HAART); this case will be helpful to clinicians in identifying CNS toxoplasmosis as it has classical imaging findings on the MRI brain.
Collapse
|
46
|
Idro R, Ogwang R, Barragan A, Raimondo JV, Masocha W. Neuroimmunology of Common Parasitic Infections in Africa. Front Immunol 2022; 13:791488. [PMID: 35222377 PMCID: PMC8866860 DOI: 10.3389/fimmu.2022.791488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Parasitic infections of the central nervous system are an important cause of morbidity and mortality in Africa. The neurological, cognitive, and psychiatric sequelae of these infections result from a complex interplay between the parasites and the host inflammatory response. Here we review some of the diseases caused by selected parasitic organisms known to infect the nervous system including Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei spp., and Taenia solium species. For each parasite, we describe the geographical distribution, prevalence, life cycle, and typical clinical symptoms of infection and pathogenesis. We pay particular attention to how the parasites infect the brain and the interaction between each organism and the host immune system. We describe how an understanding of these processes may guide optimal diagnostic and therapeutic strategies to treat these disorders. Finally, we highlight current gaps in our understanding of disease pathophysiology and call for increased interrogation of these often-neglected disorders of the nervous system.
Collapse
Affiliation(s)
- Richard Idro
- College of Health Sciences, Makerere University, Kampala, Uganda.,Centre of Tropical Neuroscience, Kitgum, Uganda.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Rodney Ogwang
- College of Health Sciences, Makerere University, Kampala, Uganda.,Centre of Tropical Neuroscience, Kitgum, Uganda.,Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, Nairobi, Kenya
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Joseph Valentino Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| |
Collapse
|
47
|
Wu J, Luo X, Huang N, Li Y, Luo Y. Misdiagnosis of HIV With Toxoplasmosis Encephalopathy With Progressive Memory Loss as the Initial Symptom: A Case Report. Front Neurol 2022; 13:809811. [PMID: 35370876 PMCID: PMC8964960 DOI: 10.3389/fneur.2022.809811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
Toxoplasmosis encephalopathy (TE) is a kind of encephalopathy parasitic disease caused by Toxoplasma gondii. It is the most common opportunistic for central system infection in patients with acquired immunodeficiency syndrome (AIDS) or human immunodeficiency virus. Without early diagnosis and proper treatment, this opportunistic infection can be life-threatening. The common clinical manifestations of the disease include altered mental state, epilepsy, cranial nerve damage, paresthesia, cerebellar signs, meningitis, motor disorders, and neuropsychiatry. The most common presentation in about 75% of cases is a subacute episode of focal neurological abnormalities such as hemiplegia, personality changes, or aphasia. Imaging needs to be differentiated from multiple sclerosis, lymphoma, and metastases. We report a case of acquired immune deficiency syndrome complicated with toxoplasma encephalopathy with rapid progressive memory loss as the initial symptom and misdiagnosed as multiple sclerosis. Through the comprehensive analysis of the clinical symptoms and imaging examination of this disease, we hope to enhance the confidence of clinicians in the diagnosis of this disease.
Collapse
Affiliation(s)
- Jingjing Wu
- Medical College of Soochow University, Suzhou, China.,Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Xiumei Luo
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Yuanyuan Li
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Yong Luo
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| |
Collapse
|
48
|
Soares GLDS, Leão ERLPD, Freitas SF, Alves RMC, Tavares NDP, Costa MVN, Menezes GCD, Oliveira JHPD, Guerreiro LCF, Assis ACLD, Araújo SC, Franco FTDC, Anaissi AKM, Carmo ELD, Morais RDAPB, Demachki S, Diniz JAP, Nunes HM, Anthony DC, Diniz DG, Diniz CWP. Behavioral and Neuropathological Changes After Toxoplasma gondii Ocular Conjunctival Infection in BALB/c Mice. Front Cell Infect Microbiol 2022; 12:812152. [PMID: 35372100 PMCID: PMC8965508 DOI: 10.3389/fcimb.2022.812152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/07/2022] [Indexed: 11/15/2022] Open
Abstract
Ocular infection with Toxoplasma gondii causes toxoplasmosis in mice. However, following ocular infection with tachyzoites, the cause of the accompanying progressive changes in hippocampal-dependent tasks, and their relationship with the morphology and number of microglia, is less well understood. Here, in 6-month-old, female BALB/c mice, 5 μl of a suspension containing 48.5 × 106 tachyzoites/ml was introduced into the conjunctival sac; control received an equal volume of saline. Before and after instillation, all mice were subject to an olfactory discrimination (OD) test, using predator (cat) feces, and to an open-field (OF) task. After the behavioral tests, the animals were culled at either 22 or 44 days post-instillation (dpi), and the brains and retinas were dissected and processed for immunohistochemistry. The total number of Iba-1-immunolabeled microglia in the molecular layer of the dentate gyrus was estimated, and three-dimensional reconstructions of the cells were evaluated. Immobility was increased in the infected group at 12, 22, and 43 dpi, but the greatest immobility was observed at 22 dpi and was associated with reduced line crossing in the OF and distance traveled. In the OD test, infected animals spent more time in the compartment with feline fecal material at 14 and at 43 dpi. No OD changes were observed in the control group. The number of microglia was increased at 22 dpi but returned to control levels by 44 dpi. These changes were associated with the differentiation of T. gondii tachyzoites into bradyzoite-enclosed cysts within the brain and retina. Thus, infection of mice with T. gondii alters exploratory behavior, gives rise to a loss in predator’s odor avoidance from 2 weeks after infection, increased microglia number, and altered their morphology in the molecular layer of the dentate gyrus.
Collapse
|
49
|
Ross EC, Olivera GC, Barragan A. Early passage of Toxoplasma gondii across the blood–brain barrier. Trends Parasitol 2022; 38:450-461. [DOI: 10.1016/j.pt.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/29/2022]
|
50
|
Figueiredo CA, Steffen J, Morton L, Arumugam S, Liesenfeld O, Deli MA, Kröger A, Schüler T, Dunay IR. Immune response and pathogen invasion at the choroid plexus in the onset of cerebral toxoplasmosis. J Neuroinflammation 2022; 19:17. [PMID: 35027063 PMCID: PMC8759173 DOI: 10.1186/s12974-021-02370-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is a highly successful parasite being able to cross all biological barriers of the body, finally reaching the central nervous system (CNS). Previous studies have highlighted the critical involvement of the blood-brain barrier (BBB) during T. gondii invasion and development of subsequent neuroinflammation. Still, the potential contribution of the choroid plexus (CP), the main structure forming the blood-cerebrospinal fluid (CSF) barrier (BCSFB) have not been addressed. METHODS To investigate T. gondii invasion at the onset of neuroinflammation, the CP and brain microvessels (BMV) were isolated and analyzed for parasite burden. Additionally, immuno-stained brain sections and three-dimensional whole mount preparations were evaluated for parasite localization and morphological alterations. Activation of choroidal and brain endothelial cells were characterized by flow cytometry. To evaluate the impact of early immune responses on CP and BMV, expression levels of inflammatory mediators, tight junctions (TJ) and matrix metalloproteinases (MMPs) were quantified. Additionally, FITC-dextran was applied to determine infection-related changes in BCSFB permeability. Finally, the response of primary CP epithelial cells to T. gondii parasites was tested in vitro. RESULTS Here we revealed that endothelial cells in the CP are initially infected by T. gondii, and become activated prior to BBB endothelial cells indicated by MHCII upregulation. Additionally, CP elicited early local immune response with upregulation of IFN-γ, TNF, IL-6, host-defence factors as well as swift expression of CXCL9 chemokine, when compared to the BMV. Consequently, we uncovered distinct TJ disturbances of claudins, associated with upregulation of MMP-8 and MMP-13 expression in infected CP in vivo, which was confirmed by in vitro infection of primary CP epithelial cells. Notably, we detected early barrier damage and functional loss by increased BCSFB permeability to FITC-dextran in vivo, which was extended over the infection course. CONCLUSIONS Altogether, our data reveal a close interaction between T. gondii infection at the CP and the impairment of the BCSFB function indicating that infection-related neuroinflammation is initiated in the CP.
Collapse
Affiliation(s)
- Caio Andreeta Figueiredo
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Johannes Steffen
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lorena Morton
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sushmitha Arumugam
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Oliver Liesenfeld
- Institute for Microbiology and Hygiene, Charité Medical School, Berlin, Germany
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, 6726, Szeged, Hungary
| | - Andrea Kröger
- Institute for Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, CBBS, Magdeburg, Germany.
| |
Collapse
|