1
|
Hamza H, Ghosh M, Löffler MW, Rammensee HG, Planz O. Identification and relative abundance of naturally presented and cross-reactive influenza A virus MHC class I-restricted T cell epitopes. Emerg Microbes Infect 2024; 13:2306959. [PMID: 38240239 PMCID: PMC10854457 DOI: 10.1080/22221751.2024.2306959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024]
Abstract
Cytotoxic T lymphocytes are key for controlling viral infection. Unravelling CD8+ T cell-mediated immunity to distinct influenza virus strains and subtypes across prominent HLA types is relevant for combating seasonal infections and emerging new variants. Using an immunopeptidomics approach, naturally presented influenza A virus-derived ligands restricted to HLA-A*24:02, HLA-A*68:01, HLA-B*07:02, and HLA-B*51:01 molecules were identified. Functional characterization revealed multifunctional memory CD8+ T cell responses for nine out of sixteen peptides. Peptide presentation kinetics was optimal around 12 h post infection and presentation of immunodominant epitopes shortly after infection was not always persistent. Assessment of immunogenic epitopes revealed that they are highly conserved across the major zoonotic reservoirs and may contain a single substitution in the vicinity of the anchor residues. These findings demonstrate how the identified epitopes promote T cell pools, possibly cross-protective in individuals and can be potential targets for vaccination.
Collapse
Affiliation(s)
- Hazem Hamza
- Institute for Immunology, University of Tübingen, Tübingen, Germany
- Virology Laboratory, Environmental Research Division, National Research Centre, Giza, Egypt
| | - Michael Ghosh
- Institute for Immunology, University of Tübingen, Tübingen, Germany
| | - Markus W Löffler
- Institute for Immunology, University of Tübingen, Tübingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, Tübingen, Germany
- Centre for Clinical Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Institute for Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence CMFI (EXC2124) "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Oliver Planz
- Institute for Immunology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Hohensee L, Scheibner D, Luttermann C, Shelton H, Dorhoi A, Abdelwhab EM, Blohm U. PB1-F2 of low pathogenicity H7N7 restricts apoptosis in avian cells. Virus Res 2024; 349:199444. [PMID: 39089370 PMCID: PMC11386312 DOI: 10.1016/j.virusres.2024.199444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Avian influenza viruses (AIV) pose a continuous challenge to global health and economy. While countermeasures exist to control outbreaks in poultry, the persistent circulation of AIV in wild aquatic and shorebirds presents a significant challenge to effective disease prevention efforts. PB1-F2 is a non-structural protein expressed from a second open reading frame (+1) of the polymerase basic 1 (PB1) segment. The sequence and length of the PB1-F2 protein can vary depending on the host of origin. While avian isolates typically carry full-length PB1-F2, isolates from mammals, often express truncated forms. The selective advantage of the full-length PB1-F2 in avian isolates is not fully understood. Most research on the role of PB1-F2 in influenza virus replication has been conducted in mammalian systems, where PB1-F2 interfered with the host immune response and induced apoptosis. Here, we used Low Pathogenicity (LP) AIV H7N7 expressing full-length PB1-F2 as well as a knockout mutant. We found that the full-length PB1-F2 of LPAIV prolonged survival of infected cells by limiting apoptotic cell death. Furthermore, PB1-F2 knockout LPAIV significantly decreased MHC-I expression on fibroblasts, delayed tissue healing and increased phagocytic uptake of infected cells, whereas LPAIV expressing PB1-F2 has limited effects. These findings indicate that full-length PB1-F2 enables AIV to cause prolonged infections without severely harming the avian host. Our observations may explain maintenance of AIV in the natural bird reservoir in absence of severe clinical signs.
Collapse
Affiliation(s)
- Luise Hohensee
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany; Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Christine Luttermann
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Holly Shelton
- The Pirbright Institute, Pirbright, Ash Road, Surrey GU24 0NF, United Kingdom
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany.
| |
Collapse
|
3
|
Olp MD, Laufer VA, Valesano AL, Zimmerman A, Woodside KJ, Lu Y, Lauring AS, Cusick MF. HLA-C Peptide Repertoires as Predictors of Clinical Response during Early SARS-CoV-2 Infection. Life (Basel) 2024; 14:1181. [PMID: 39337964 PMCID: PMC11433606 DOI: 10.3390/life14091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The human leukocyte antigen (HLA) system plays a pivotal role in the immune response to viral infections, mediating the presentation of viral peptides to T cells and influencing both the strength and specificity of the host immune response. Variations in HLA genotypes across individuals lead to differences in susceptibility to viral infection and severity of illness. This study uses observations from the early phase of the COVID-19 pandemic to explore how specific HLA class I molecules affect clinical responses to SARS-CoV-2 infection. By analyzing paired high-resolution HLA types and viral genomic sequences from 60 patients, we assess the relationship between predicted HLA class I peptide binding repertoires and infection severity as measured by the sequential organ failure assessment score. This approach leverages functional convergence across HLA-C alleles to identify relationships that may otherwise be inaccessible due to allelic diversity and limitations in sample size. Surprisingly, our findings show that severely symptomatic infection in this cohort is associated with disproportionately abundant binding of SARS-CoV-2 structural and non-structural protein epitopes by patient HLA-C molecules. In addition, the extent of overlap between a given patient's predicted HLA-C and HLA-A peptide binding repertoires correlates with worse prognoses in this cohort. The findings highlight immunologic mechanisms linking HLA-C molecules with the human response to viral pathogens that warrant further investigation.
Collapse
Affiliation(s)
- Michael D Olp
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Vincent A Laufer
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrew L Valesano
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrea Zimmerman
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Kenneth J Woodside
- Sharing Hope of South Carolina, Charleston, SC 29414, USA
- Gift of Life Michigan, Ann Arbor, MI 48108, USA
- Academia Invisus LLC, Ann Arbor, MI 48107, USA
| | - Yee Lu
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew F Cusick
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Pymm P, Saunders PM, Anand S, MacLachlan BJ, Faoro C, Hitchen C, Rossjohn J, Brooks AG, Vivian JP. The Structural Basis for Recognition of Human Leukocyte Antigen Class I Molecules by the Pan-HLA Antibody W6/32. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:876-885. [PMID: 39093013 DOI: 10.4049/jimmunol.2400328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
The central immunological role of HLA class I (HLA-I) in presenting peptide Ags to cellular components of the immune system has been the focus of intense study for >60 y. A confounding factor in the study of HLA-I has been the extreme polymorphism of these molecules. The mAb W6/32 has been a fundamental reagent bypassing the issue of polymorphism by recognizing an epitope that is conserved across diverse HLA-I allotypes. However, despite the widespread use of W6/32, the epitope of this Ab has not been definitively mapped. In this study, we present the crystal structure of the Fab fragment of W6/32 in complex with peptide-HLA-B*27:05. W6/32 bound to HLA-B*27:05 beneath the Ag-binding groove, recognizing a discontinuous epitope comprised of the α1, α2, and α3 domains of HLA-I and β2-microglobulin. The epitope comprises a region of low polymorphism reflecting the pan-HLA-I nature of the binding. Notably, the W6/32 epitope neither overlaps the HLA-I binding sites of either T cell Ag receptors or killer cell Ig-like receptors. However, it does coincide with the binding sites for leukocyte Ig-like receptors and CD8 coreceptors. Consistent with this, the use of W6/32 to block the interaction of NK cells with HLA-I only weakly impaired inhibition mediated by KIR3DL1, but impacted HLA-LILR recognition.
Collapse
Affiliation(s)
- Phillip Pymm
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Philippa M Saunders
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Sushma Anand
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Bruce J MacLachlan
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Camilla Faoro
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Corinne Hitchen
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff
| | - Andrew G Brooks
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Julian P Vivian
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Macauslane KL, Pegg CL, Short KR, Schulz BL. Modulation of endoplasmic reticulum stress response pathways by respiratory viruses. Crit Rev Microbiol 2024; 50:750-768. [PMID: 37934111 DOI: 10.1080/1040841x.2023.2274840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023]
Abstract
Acute respiratory infections (ARIs) are amongst the leading causes of death and disability, and the greatest burden of disease impacts children, pregnant women, and the elderly. Respiratory viruses account for the majority of ARIs. The unfolded protein response (UPR) is a host homeostatic defence mechanism primarily activated in response to aberrant endoplasmic reticulum (ER) resident protein accumulation in cell stresses including viral infection. The UPR has been implicated in the pathogenesis of several respiratory diseases, as the respiratory system is particularly vulnerable to chronic and acute activation of the ER stress response pathway. Many respiratory viruses therefore employ strategies to modulate the UPR during infection, with varying effects on the host and the pathogens. Here, we review the specific means by which respiratory viruses affect the host UPR, particularly in association with the high production of viral glycoproteins, and the impact of UPR activation and subversion on viral replication and disease pathogenesis. We further review the activation of UPR in common co-morbidities of ARIs and discuss the therapeutic potential of modulating the UPR in virally induced respiratory diseases.
Collapse
Affiliation(s)
- Kyle L Macauslane
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
Lobato-Martinez E, Muriel-Serrano J, García-Payá E, Gonzalez-de-la-Aleja P, Garcia-Sevila R, Navarro-de-Miguel M, Marco-de-la-Calle F, Ramos-Rincon JM, Sanchez-Martinez R. Association of Human Leukocyte Antigen Alleles with COVID-19 Severity and Mortality in a Spanish Population. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1392. [PMID: 39336433 PMCID: PMC11434301 DOI: 10.3390/medicina60091392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: The aim of the following cross-sectional study is to determine the association between human leukocyte antigen (HLA) alleles and outcomes in patients presenting to the emergency department (ED) with SARS-CoV-2 infection. Methods and Materials: Genotyping was made using the Axiom Human Genotyping SARS-CoV-2 Research Array. Statistical analysis was made with Fisher's exact test and multivariable logistic regression, adjusted for sex, age and clinical variables. Results: Of 190 patients, 11.1% were discharged from the ED; 57.9% were admitted to the COVID-19 ward, without intensive care unit (ICU) admission; 15.3% survived an ICU admission; and 15.8% died. After multivariable analysis, two HLA alleles protected against hospital admission (HLA-C*05:01, adjusted odds ratio [aOR] 0.2, 95% confidence interval [CI] 0.055-0.731; and HLA-DQB1*02:02, aOR 0.046, CI 0.002-0.871) and one was associated with higher risk for ICU admission or death (HLA-DQA1*05:01, aOR 2.517, CI 1.086-5.833). Conclusions: In this population, HLA-C*05:01 and HLA-DQB1*02:02 are associated with a protective effect against hospital admission and HLA-DQA1*05:01 is associated with higher risk of ICU admission or death in the multivariable analysis. This may help stratify risk in COVID-19 patients.
Collapse
Affiliation(s)
- Ester Lobato-Martinez
- Internal Medicine Department, Dr. Balmis Universitary General Hospital, Avenida Pintor Baeza, 12, 03010 Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Centro de Diagnóstico, Edif Gris, Planta 5ª, Avenida Pintor Baeza, 12, 03010 Alicante, Spain
| | - Javier Muriel-Serrano
- Alicante Institute for Health and Biomedical Research (ISABIAL), Centro de Diagnóstico, Edif Gris, Planta 5ª, Avenida Pintor Baeza, 12, 03010 Alicante, Spain
| | - Elena García-Payá
- Alicante Institute for Health and Biomedical Research (ISABIAL), Centro de Diagnóstico, Edif Gris, Planta 5ª, Avenida Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Analysis Department, Dr. Balmis Universitary General Hospital, Avenida Pintor Baeza, 12, 03010 Alicante, Spain
| | - Pilar Gonzalez-de-la-Aleja
- Alicante Institute for Health and Biomedical Research (ISABIAL), Centro de Diagnóstico, Edif Gris, Planta 5ª, Avenida Pintor Baeza, 12, 03010 Alicante, Spain
- Infectious Diseases Unit, Dr. Balmis Universitary General Hospital, Avenida Pintor Baeza, 12, 03010 Alicante, Spain
| | - Raquel Garcia-Sevila
- Alicante Institute for Health and Biomedical Research (ISABIAL), Centro de Diagnóstico, Edif Gris, Planta 5ª, Avenida Pintor Baeza, 12, 03010 Alicante, Spain
- Pneumology Department, Dr. Balmis Universitary General Hospital, Avenida Pintor Baeza, 12, 03010 Alicante, Spain
| | - Mercedes Navarro-de-Miguel
- Alicante Institute for Health and Biomedical Research (ISABIAL), Centro de Diagnóstico, Edif Gris, Planta 5ª, Avenida Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Analysis Department, Dr. Balmis Universitary General Hospital, Avenida Pintor Baeza, 12, 03010 Alicante, Spain
| | - Francisco Marco-de-la-Calle
- Alicante Institute for Health and Biomedical Research (ISABIAL), Centro de Diagnóstico, Edif Gris, Planta 5ª, Avenida Pintor Baeza, 12, 03010 Alicante, Spain
- Immunology Department, Dr. Balmis Universitary General Hospital, Avenida Pintor Baeza, 12, 03010 Alicante, Spain
| | - Jose-Manuel Ramos-Rincon
- Internal Medicine Department, Dr. Balmis Universitary General Hospital, Avenida Pintor Baeza, 12, 03010 Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Centro de Diagnóstico, Edif Gris, Planta 5ª, Avenida Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Medicine Department, Miguel Hernández University, N-332, 87, 03550 Alicante, Spain
| | - Rosario Sanchez-Martinez
- Internal Medicine Department, Dr. Balmis Universitary General Hospital, Avenida Pintor Baeza, 12, 03010 Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Centro de Diagnóstico, Edif Gris, Planta 5ª, Avenida Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Medicine Department, Miguel Hernández University, N-332, 87, 03550 Alicante, Spain
| |
Collapse
|
7
|
Yu Q, Dong Y, Wang X, Su C, Zhang R, Xu W, Jiang S, Dang Y, Jiang W. Pharmacological induction of MHC-I expression in tumor cells revitalizes T cell antitumor immunity. JCI Insight 2024; 9:e177788. [PMID: 39106105 PMCID: PMC11385079 DOI: 10.1172/jci.insight.177788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/18/2024] [Indexed: 08/09/2024] Open
Abstract
Antigen presentation by major histocompatibility complex class I (MHC-I) is crucial for T cell-mediated killing, and aberrant surface MHC-I expression is tightly associated with immune evasion. To address MHC-I downregulation, we conducted a high-throughput flow cytometry screen, identifying bleomycin (BLM) as a potent inducer of cell surface MHC-I expression. BLM-induced MHC-I augmentation rendered tumor cells more susceptible to T cells in coculture assays and enhanced antitumor responses in an adoptive cellular transfer mouse model. Mechanistically, BLM remodeled the tumor immune microenvironment, inducing MHC-I expression in a manner dependent on ataxia-telangiectasia mutated/ataxia telangiectasia and Rad3-related-NF-κB. Furthermore, BLM improved T cell-dependent immunotherapeutic approaches, including bispecific antibody therapy, immune checkpoint therapy, and autologous tumor-infiltrating lymphocyte therapy. Importantly, low-dose BLM treatment in mouse models amplified the antitumor effect of immunotherapy without detectable pulmonary toxicity. In summary, our findings repurpose BLM as a potential inducer of MHC-I, enhancing its expression to improve the efficacy of T cell-based immunotherapy.
Collapse
Affiliation(s)
- Qian Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and
| | - Yu Dong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaobo Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and
| | - Chenxuan Su
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Runkai Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Xu
- Institute of Immunological Innovation and Translation and
| | - Shuai Jiang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and
| |
Collapse
|
8
|
Serafino A, Bertinat YA, Bueno J, Pittaluga JR, Birnberg Weiss F, Milillo MA, Barrionuevo P. Beyond its preferential niche: Brucella abortus RNA down-modulates the IFN-γ-induced MHC-I expression in epithelial and endothelial cells. PLoS One 2024; 19:e0306429. [PMID: 38980867 PMCID: PMC11232970 DOI: 10.1371/journal.pone.0306429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024] Open
Abstract
Brucella abortus (Ba) is a pathogen that survives inside macrophages. Despite being its preferential niche, Ba infects other cells, as shown by the multiple signs and symptoms humans present. This pathogen can evade our immune system. Ba displays a mechanism of down-modulating MHC-I on monocytes/macrophages in the presence of IFN-γ (when Th1 response is triggered) without altering the total expression of MHC-I. The retained MHC-I proteins are located within the Golgi Apparatus (GA). The RNA of Ba is one of the PAMPs that trigger this phenomenon. However, we acknowledged whether this event could be triggered in other cells relevant during Ba infection. Here, we demonstrate that Ba RNA reduced the surface expression of MHC-I induced by IFN-γ in the human bronchial epithelium (Calu-6), the human alveolar epithelium (A-549) and the endothelial microvasculature (HMEC) cell lines. In Calu-6 and HMEC cells, Ba RNA induces the retention of MHC-I in the GA. This phenomenon was not observed in A-549 cells. We then evaluated the effect of Ba RNA on the secretion of IL-8, IL-6 and MCP-1, key cytokines in Ba infection. Contrary to our expectations, HMEC, Calu-6 and A-549 cells treated with Ba RNA had higher IL-8 and IL-6 levels compared to untreated cells. In addition, we showed that Ba RNA down-modulates the MHC-I surface expression induced by IFN-γ on human monocytes/macrophages via the pathway of the Epidermal Growth Factor Receptor (EGFR). So, cells were stimulated with an EGFR ligand-blocking antibody (Cetuximab) and Ba RNA. Neutralization of the EGFR to some extent reversed the down-modulation of MHC-I mediated by Ba RNA in HMEC and A-549 cells. In conclusion, this is the first study exploring a central immune evasion strategy, such as the downregulation of MHC-I surface expression, beyond monocytes and could shed light on how it persists effectively within the host, enduring unseen and escaping CD8+ T cell surveillance.
Collapse
Affiliation(s)
- Agustina Serafino
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Academia Nacional de Medicina; Buenos Aires, Argentina
| | - Yasmín A. Bertinat
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Academia Nacional de Medicina; Buenos Aires, Argentina
| | - Jorgelina Bueno
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Academia Nacional de Medicina; Buenos Aires, Argentina
| | - José R. Pittaluga
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Academia Nacional de Medicina; Buenos Aires, Argentina
| | - Federico Birnberg Weiss
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Academia Nacional de Medicina; Buenos Aires, Argentina
| | - M. Ayelén Milillo
- Universidad Nacional de Río Negro. Instituto de Estudios en Ciencia, Tecnología, Cultura y Desarrollo. Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas. Argentina
| | - Paula Barrionuevo
- Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Academia Nacional de Medicina; Buenos Aires, Argentina
| |
Collapse
|
9
|
Taefehshokr N, Lac A, Vrieze AM, Dickson BH, Guo PN, Jung C, Blythe EN, Fink C, Aktar A, Dikeakos JD, Dekaban GA, Heit B. SARS-CoV-2 NSP5 antagonizes MHC II expression by subverting histone deacetylase 2. J Cell Sci 2024; 137:jcs262172. [PMID: 38682259 PMCID: PMC11166459 DOI: 10.1242/jcs.262172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
SARS-CoV-2 interferes with antigen presentation by downregulating major histocompatibility complex (MHC) II on antigen-presenting cells, but the mechanism mediating this process is unelucidated. Herein, analysis of protein and gene expression in human antigen-presenting cells reveals that MHC II is downregulated by the SARS-CoV-2 main protease, NSP5. This suppression of MHC II expression occurs via decreased expression of the MHC II regulatory protein CIITA. CIITA downregulation is independent of the proteolytic activity of NSP5, and rather, NSP5 delivers HDAC2 to the transcription factor IRF3 at an IRF-binding site within the CIITA promoter. Here, HDAC2 deacetylates and inactivates the CIITA promoter. This loss of CIITA expression prevents further expression of MHC II, with this suppression alleviated by ectopic expression of CIITA or knockdown of HDAC2. These results identify a mechanism by which SARS-CoV-2 limits MHC II expression, thereby delaying or weakening the subsequent adaptive immune response.
Collapse
Affiliation(s)
- Nima Taefehshokr
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Alex Lac
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Angela M. Vrieze
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Brandon H. Dickson
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Peter N. Guo
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Catherine Jung
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Eoin N. Blythe
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Corby Fink
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Amena Aktar
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Gregory A. Dekaban
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Bryan Heit
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| |
Collapse
|
10
|
Hartmann JA, Cardoso MR, Talarico MCR, Kenney DJ, Leone MR, Reese DC, Turcinovic J, O'Connell AK, Gertje HP, Marino C, Ojeda PE, De Paula EV, Orsi FA, Velloso LA, Cafiero TR, Connor JH, Ploss A, Hoelzemer A, Carrington M, Barczak AK, Crossland NA, Douam F, Boucau J, Garcia-Beltran WF. Evasion of NKG2D-mediated cytotoxic immunity by sarbecoviruses. Cell 2024; 187:2393-2410.e14. [PMID: 38653235 PMCID: PMC11088510 DOI: 10.1016/j.cell.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
SARS-CoV-2 and other sarbecoviruses continue to threaten humanity, highlighting the need to characterize common mechanisms of viral immune evasion for pandemic preparedness. Cytotoxic lymphocytes are vital for antiviral immunity and express NKG2D, an activating receptor conserved among mammals that recognizes infection-induced stress ligands (e.g., MIC-A/B). We found that SARS-CoV-2 evades NKG2D recognition by surface downregulation of MIC-A/B via shedding, observed in human lung tissue and COVID-19 patient serum. Systematic testing of SARS-CoV-2 proteins revealed that ORF6, an accessory protein uniquely conserved among sarbecoviruses, was responsible for MIC-A/B downregulation via shedding. Further investigation demonstrated that natural killer (NK) cells efficiently killed SARS-CoV-2-infected cells and limited viral spread. However, inhibition of MIC-A/B shedding with a monoclonal antibody, 7C6, further enhanced NK-cell activity toward SARS-CoV-2-infected cells. Our findings unveil a strategy employed by SARS-CoV-2 to evade cytotoxic immunity, identify the culprit immunevasin shared among sarbecoviruses, and suggest a potential novel antiviral immunotherapy.
Collapse
Affiliation(s)
- Jordan A Hartmann
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | | | - Devin J Kenney
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Madison R Leone
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Dagny C Reese
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jacquelyn Turcinovic
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Aoife K O'Connell
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Hans P Gertje
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Caitlin Marino
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Pedro E Ojeda
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Erich V De Paula
- School of Medical Sciences, University of Campinas, Campinas, SP, Brazil; Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | - Fernanda A Orsi
- School of Medical Sciences, University of Campinas, Campinas, SP, Brazil; Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | - Licio Augusto Velloso
- School of Medical Sciences, University of Campinas, Campinas, SP, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | - Thomas R Cafiero
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - John H Connor
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Angelique Hoelzemer
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Institute for Infection and Vaccine Development (IIRVD), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Research Department Virus Immunology, Leibniz Institute for Virology, Hamburg, Germany
| | - Mary Carrington
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Amy K Barczak
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nicholas A Crossland
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Florian Douam
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Julie Boucau
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
| | - Wilfredo F Garcia-Beltran
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
11
|
Tian J, Ashique AM, Weeks S, Lan T, Yang H, Chen HIH, Song C, Koyano K, Mondal K, Tsai D, Cheung I, Moshrefi M, Kekatpure A, Fan B, Li B, Qurashi S, Rocha L, Aguayo J, Rodgers C, Meza M, Heeke D, Medfisch SM, Chu C, Starck S, Basak NP, Sankaran S, Malhotra M, Crawley S, Tran TT, Duey DY, Ho C, Mikaelian I, Liu W, Rivera LB, Huang J, Paavola KJ, O'Hollaren K, Blum LK, Lin VY, Chen P, Iyer A, He S, Roda JM, Wang Y, Sissons J, Kutach AK, Kaplan DD, Stone GW. ILT2 and ILT4 Drive Myeloid Suppression via Both Overlapping and Distinct Mechanisms. Cancer Immunol Res 2024; 12:592-613. [PMID: 38393969 DOI: 10.1158/2326-6066.cir-23-0568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/28/2023] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Solid tumors are dense three-dimensional (3D) multicellular structures that enable efficient receptor-ligand trans interactions via close cell-cell contact. Immunoglobulin-like transcript (ILT)2 and ILT4 are related immune-suppressive receptors that play a role in the inhibition of myeloid cells within the tumor microenvironment. The relative contribution of ILT2 and ILT4 to immune inhibition in the context of solid tumor tissue has not been fully explored. We present evidence that both ILT2 and ILT4 contribute to myeloid inhibition. We found that although ILT2 inhibits myeloid cell activation in the context of trans-engagement by MHC-I, ILT4 efficiently inhibits myeloid cells in the presence of either cis- or trans-engagement. In a 3D spheroid tumor model, dual ILT2/ILT4 blockade was required for the optimal activation of myeloid cells, including the secretion of CXCL9 and CCL5, upregulation of CD86 on dendritic cells, and downregulation of CD163 on macrophages. Humanized mouse tumor models showed increased immune activation and cytolytic T-cell activity with combined ILT2 and ILT4 blockade, including evidence of the generation of immune niches, which have been shown to correlate with clinical response to immune-checkpoint blockade. In a human tumor explant histoculture system, dual ILT2/ILT4 blockade increased CXCL9 secretion, downregulated CD163 expression, and increased the expression of M1 macrophage, IFNγ, and cytolytic T-cell gene signatures. Thus, we have revealed distinct contributions of ILT2 and ILT4 to myeloid cell biology and provide proof-of-concept data supporting the combined blockade of ILT2 and ILT4 to therapeutically induce optimal myeloid cell reprogramming in the tumor microenvironment.
Collapse
Affiliation(s)
- Jane Tian
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Sabrina Weeks
- NGM Biopharmaceuticals, South San Francisco, California
| | - Tian Lan
- NGM Biopharmaceuticals, South San Francisco, California
| | - Hong Yang
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | - Kikuye Koyano
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Daniel Tsai
- NGM Biopharmaceuticals, South San Francisco, California
| | - Isla Cheung
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | - Bin Fan
- NGM Biopharmaceuticals, South San Francisco, California
| | - Betty Li
- NGM Biopharmaceuticals, South San Francisco, California
| | - Samir Qurashi
- NGM Biopharmaceuticals, South San Francisco, California
| | - Lauren Rocha
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Col Rodgers
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Darren Heeke
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Chun Chu
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | | | | | | | | | - Dana Y Duey
- NGM Biopharmaceuticals, South San Francisco, California
| | - Carmence Ho
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Wenhui Liu
- NGM Biopharmaceuticals, South San Francisco, California
| | - Lee B Rivera
- NGM Biopharmaceuticals, South San Francisco, California
| | - Jiawei Huang
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | - Lisa K Blum
- NGM Biopharmaceuticals, South San Francisco, California
| | - Vicky Y Lin
- NGM Biopharmaceuticals, South San Francisco, California
| | - Peirong Chen
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Sisi He
- NGM Biopharmaceuticals, South San Francisco, California
| | - Julie M Roda
- NGM Biopharmaceuticals, South San Francisco, California
| | - Yan Wang
- NGM Biopharmaceuticals, South San Francisco, California
| | - James Sissons
- NGM Biopharmaceuticals, South San Francisco, California
| | - Alan K Kutach
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | |
Collapse
|
12
|
Jing Z, Wu L, Pan Y, Zhang L, Zhang X, Shi D, Shi H, Chen J, Ji Z, Zhang J, Feng T, Tian J, Feng L. Rotavirus infection inhibits SLA-I expression on the cell surface by degrading β2 M via ERAD-proteasome pathway. Vet Microbiol 2024; 292:110036. [PMID: 38458048 DOI: 10.1016/j.vetmic.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Group A Rotavirus (RVA) is a major cause of diarrhea in infants and piglets. β2-microglobulin (β2 M), encoded by the B2M gene, serves as a crucial subunit of the major histocompatibility complex class I (MHC-I) molecules. β2 M is indispensable for the transport of MHC-I to the cell membrane. MHC-I, also known as swine leukocyte antigen class I (SLA-I) in pigs, presents viral antigens to the cell surface. In this study, RVA infection down-regulated β2 M expression in both porcine intestinal epithelial cells-J2 (IPEC-J2) and MA-104 cells. RVA infection did not down-regulate the mRNA level of the B2M gene, indicating that the down-regulation of β2 M occurred on the protein level. Mechanismly, RVA infection triggered β2 M aggregation in the endoplasmic reticulum (ER) and enhanced the Lys48 (K48)-linked ubiquitination of β2 M, leading to the degradation of β2 M through ERAD-proteasome pathway. Furthermore, we found that RVA infection significantly impeded the level of SLA-I on the surface, and the overexpression of β2 M could recover its expression. In this study, our study demonstrated that RVA infection degrades β2 M via ERAD-proteasome pathway, consequently hampering SLA-I expression on the cell surface. This study would enhance the understanding of the mechanism of how RVA infection induces immune escape.
Collapse
Affiliation(s)
- Zhaoyang Jing
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Ling Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Yudi Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Liaoyuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Da Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Hongyan Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Jianfei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Zhaoyang Ji
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Jiyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Tingshuai Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Jin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China.
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China.
| |
Collapse
|
13
|
Finn CM, McKinstry KK. Ex Pluribus Unum: The CD4 T Cell Response against Influenza A Virus. Cells 2024; 13:639. [PMID: 38607077 PMCID: PMC11012043 DOI: 10.3390/cells13070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Current Influenza A virus (IAV) vaccines, which primarily aim to generate neutralizing antibodies against the major surface proteins of specific IAV strains predicted to circulate during the annual 'flu' season, are suboptimal and are characterized by relatively low annual vaccine efficacy. One approach to improve protection is for vaccines to also target the priming of virus-specific T cells that can protect against IAV even in the absence of preexisting neutralizing antibodies. CD4 T cells represent a particularly attractive target as they help to promote responses by other innate and adaptive lymphocyte populations and can also directly mediate potent effector functions. Studies in murine models of IAV infection have been instrumental in moving this goal forward. Here, we will review these findings, focusing on distinct subsets of CD4 T cell effectors that have been shown to impact outcomes. This body of work suggests that a major challenge for next-generation vaccines will be to prime a CD4 T cell population with the same spectrum of functional diversity generated by IAV infection. This goal is encapsulated well by the motto 'ex pluribus unum': that an optimal CD4 T cell response comprises many individual specialized subsets responding together.
Collapse
Affiliation(s)
| | - K. Kai McKinstry
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| |
Collapse
|
14
|
Zhu B, Ouda R, Kasuga Y, de Figueiredo P, Kobayashi KS. NLRC5/MHC class I transactivator: A key target for immune escape by SARS-CoV-2. Bioessays 2024; 46:e2300109. [PMID: 38461519 DOI: 10.1002/bies.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/11/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024]
Abstract
Antigen presentation to CD8+ T cells by MHC class I molecules is essential for host defense against viral infections. Various mechanisms have evolved in multiple viruses to escape immune surveillance and defense to support viral proliferation in host cells. Through in vitro SARS-CoV-2 infection studies and analysis of COVID-19 patient samples, we found that SARS-CoV-2 suppresses the induction of the MHC class I pathway by inhibiting the expression and function of NLRC5, a major transcriptional regulator of MHC class I genes. In this review, we discuss the molecular mechanisms for suppression of the MHC class I pathway and clinical implications for COVID-19.
Collapse
Affiliation(s)
- Baohui Zhu
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Ryota Ouda
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Yusuke Kasuga
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Paul de Figueiredo
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Koichi S Kobayashi
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, USA
| |
Collapse
|
15
|
Zhao Q, Chen DP, Chen HD, Wang YZ, Shi W, Lu YT, Ren YZ, Wu YK, Pang YH, Deng H, He X, Kuang DM, Guo ZY. NK-cell-elicited gasdermin-D-dependent hepatocyte pyroptosis induces neutrophil extracellular traps that facilitate HBV-related acute-on-chronic liver failure. Hepatology 2024:01515467-990000000-00823. [PMID: 38537134 DOI: 10.1097/hep.0000000000000868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/27/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND AND AIMS HBV infection is a major etiology of acute-on-chronic liver failure (ACLF). At present, the pattern and regulation of hepatocyte death during HBV-ACLF progression are still undefined. Evaluating the mode of cell death and its inducers will provide new insights for developing therapeutic strategies targeting cell death. In this study, we aimed to elucidate whether and how immune landscapes trigger hepatocyte death and lead to the progression of HBV-related ACLF. APPROACH AND RESULTS We identified that pyroptosis represented the main cell death pattern in the liver of patients with HBV-related ACLF. Deficiency of MHC-I in HBV-reactivated hepatocytes activated cytotoxic NK cells, which in turn operated in a perforin/granzyme-dependent manner to trigger GSDMD/caspase-8-dependent pyroptosis of hepatocytes. Neutrophils selectively accumulated in the pyroptotic liver, and HMGB1 derived from the pyroptotic liver constituted an important factor triggering the generation of pathogenic extracellular traps in neutrophils (NETs). Clinically, elevated plasma levels of myeloperoxidase-DNA complexes were a promising prognostic biomarker for HBV-related ACLF. More importantly, targeting GSDMD pyroptosis-HMGB1 release in the liver abrogates NETs that intercept the development of HBV-related ACLF. CONCLUSIONS Studying the mechanisms that selectively modulate GSDMD-dependent pyroptosis, as well as its immune landscapes, will provide a novel strategy for restoring the liver function of patients with HBV-related ACLF.
Collapse
Affiliation(s)
- Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dong-Ping Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hua-Di Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying-Zhe Wang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Shi
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Tong Lu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Zheng Ren
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuan-Kai Wu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi-Hua Pang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Deng
- Guangdong Provincial Key Laboratory of Liver Disease Research, Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
- NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Dong-Ming Kuang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Yong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
- NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| |
Collapse
|
16
|
Ware BC, Parks MG, da Silva MOL, Morrison TE. Chikungunya virus infection disrupts MHC-I antigen presentation via nonstructural protein 2. PLoS Pathog 2024; 20:e1011794. [PMID: 38483968 DOI: 10.1371/journal.ppat.1011794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/26/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
Infection by chikungunya virus (CHIKV), a mosquito-borne alphavirus, causes severe polyarthralgia and polymyalgia, which can last in some people for months to years. Chronic CHIKV disease signs and symptoms are associated with the persistence of viral nucleic acid and antigen in tissues. Like humans and nonhuman primates, CHIKV infection in mice results in the development of robust adaptive antiviral immune responses. Despite this, joint tissue fibroblasts survive CHIKV infection and can support persistent viral replication, suggesting that they escape immune surveillance. Here, using a recombinant CHIKV strain encoding the fluorescent protein VENUS with an embedded CD8+ T cell epitope, SIINFEKL, we observed a marked loss of both MHC class I (MHC-I) surface expression and antigen presentation by CHIKV-infected joint tissue fibroblasts. Both in vivo and ex vivo infected joint tissue fibroblasts displayed reduced cell surface levels of H2-Kb and H2-Db MHC-I proteins while maintaining similar levels of other cell surface proteins. Mutations within the methyl transferase-like domain of the CHIKV nonstructural protein 2 (nsP2) increased MHC-I cell surface expression and antigen presentation efficiency by CHIKV-infected cells. Moreover, expression of WT nsP2 alone, but not nsP2 with mutations in the methyltransferase-like domain, resulted in decreased MHC-I antigen presentation efficiency. MHC-I surface expression and antigen presentation was rescued by replacing VENUS-SIINFEKL with SIINFEKL tethered to β2-microglobulin in the CHIKV genome, which bypasses the requirement for peptide processing and TAP-mediated peptide transport into the endoplasmic reticulum. Collectively, this work suggests that CHIKV escapes the surveillance of antiviral CD8+ T cells, in part, by nsP2-mediated disruption of MHC-I antigen presentation.
Collapse
Affiliation(s)
- Brian C Ware
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - M Guston Parks
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Mariana O L da Silva
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
17
|
Rowe T, Davis W, Wentworth DE, Ross T. Differential interferon responses to influenza A and B viruses in primary ferret respiratory epithelial cells. J Virol 2024; 98:e0149423. [PMID: 38294251 PMCID: PMC10878268 DOI: 10.1128/jvi.01494-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/02/2023] [Indexed: 02/01/2024] Open
Abstract
Influenza B viruses (IBV) cocirculate with influenza A viruses (IAV) and cause periodic epidemics of disease, yet antibody and cellular responses following IBV infection are less well understood. Using the ferret model for antisera generation for influenza surveillance purposes, IAV resulted in robust antibody responses following infection, whereas IBV required an additional booster dose, over 85% of the time, to generate equivalent antibody titers. In this study, we utilized primary differentiated ferret nasal epithelial cells (FNECs) which were inoculated with IAV and IBV to study differences in innate immune responses which may result in differences in adaptive immune responses in the host. FNECs were inoculated with IAV (H1N1pdm09 and H3N2 subtypes) or IBV (B/Victoria and B/Yamagata lineages) and assessed for 72 h. Cells were analyzed for gene expression by quantitative real-time PCR, and apical and basolateral supernatants were assessed for virus kinetics and interferon (IFN), respectively. Similar virus kinetics were observed with IAV and IBV in FNECs. A comparison of gene expression and protein secretion profiles demonstrated that IBV-inoculated FNEC expressed delayed type-I/II IFN responses and reduced type-III IFN secretion compared to IAV-inoculated cells. Concurrently, gene expression of Thymic Stromal Lymphopoietin (TSLP), a type-III IFN-induced gene that enhances adaptive immune responses, was significantly downregulated in IBV-inoculated FNECs. Significant differences in other proinflammatory and adaptive genes were suppressed and delayed following IBV inoculation. Following IBV infection, ex vivo cell cultures derived from the ferret upper respiratory tract exhibited reduced and delayed innate responses which may contribute to reduced antibody responses in vivo.IMPORTANCEInfluenza B viruses (IBV) represent nearly one-quarter of all human influenza cases and are responsible for significant clinical and socioeconomic impacts but do not pose the same pandemic risks as influenza A viruses (IAV) and have thus received much less attention. IBV accounts for greater severity and deaths in children, and vaccine efficacy remains low. The ferret can be readily infected with human clinical isolates and demonstrates a similar course of disease and immune responses. IBV, however, generates lower antibodies in ferrets than IAV following the challenge. To determine whether differences in initial innate responses following infection may affect the development of robust adaptive immune responses, ferret respiratory tract cells were isolated, infected with IAV/IBV, and compared. Understanding the differences in the initial innate immune responses to IAV and IBV may be important in the development of more effective vaccines and interventions to generate more robust protective immune responses.
Collapse
Affiliation(s)
- Thomas Rowe
- Centers for Disease Control and Prevention, Influenza Division, Atlanta, Georgia, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - William Davis
- Centers for Disease Control and Prevention, Influenza Division, Atlanta, Georgia, USA
| | - David E. Wentworth
- Centers for Disease Control and Prevention, Influenza Division, Atlanta, Georgia, USA
| | - Ted Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
18
|
Soni J, Chattopadhyay P, Mehta P, Mohite R, Tardalkar K, Joshi M, Pandey R. Dynamics of Whole Transcriptome Analysis (WTA) and Surface markers expression (AbSeq) in Immune Cells of COVID-19 Patients and Recovered captured through Single Cell Genomics. Front Med (Lausanne) 2024; 11:1297001. [PMID: 38357647 PMCID: PMC10864604 DOI: 10.3389/fmed.2024.1297001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Single-cell multi-omics studies, such as multidimensional transcriptomics (whole transcriptomic analysis, WTA), and surface marker analysis (antibody sequencing, AbSeq), have turned out to be valuable techniques that offer inaccessible possibilities for single-cell profiling of mRNA, lncRNA, and proteins. Methods We used this technique to understand the dynamics of mRNA and protein-level differences in healthy, COVID-19-infected and recovered individuals using peripheral blood mononuclear cells (PBMCs). Our results demonstrate that compared to mRNA expression, protein abundance is a better indicator of the disease state. Results We demonstrate that compared to mRNA expression, protein abundance is a better indicator of the disease state. We observed high levels of cell identity and regulatory markers, CD3E, CD4, CD8A, CD5, CD7, GITR, and KLRB1 in healthy individuals, whereas markers related to cell activation, CD38, CD28, CD69, CD62L, CD14, and CD16 elevated in the SARS-CoV-2 infected patients at both WTA and AbSeq levels. Curiously, in recovered individuals, there was a high expression of cytokine and chemokine receptors (CCR5, CCR7, CCR4, CXCR3, and PTGRD2). We also observed variations in the expression of markers within cell populations under different states. Discussion Furthermore, our study emphasizes the significance of employing an oligo-based method (AbSeq) that can help in diagnosis, prognosis, and protection from disease/s by identifying cell surface markers that are unique to different cell types or states. It also allows simultaneous study of a vast array of markers, surpassing the constraints of techniques like FACS to query the vast repertoire of proteins.
Collapse
Affiliation(s)
- Jyoti Soni
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ramakant Mohite
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Kishore Tardalkar
- Department of Stem Cells & Regenerative Medicine, D. Y. Patil Education Society, Kolhapur, India
| | - Meghnad Joshi
- Department of Stem Cells & Regenerative Medicine, D. Y. Patil Education Society, Kolhapur, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
19
|
Letafati A, Ardekani OS, Naderisemiromi M, Norouzi M, Shafiei M, Nik S, Mozhgani SH. Unraveling the dynamic mechanisms of natural killer cells in viral infections: insights and implications. Virol J 2024; 21:18. [PMID: 38216935 PMCID: PMC10785350 DOI: 10.1186/s12985-024-02287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
Viruses pose a constant threat to human well-being, necessitating the immune system to develop robust defenses. Natural killer (NK) cells, which play a crucial role in the immune system, have become recognized as vital participants in protecting the body against viral infections. These remarkable innate immune cells possess the unique ability to directly recognize and eliminate infected cells, thereby contributing to the early control and containment of viral pathogens. However, recent research has uncovered an intriguing phenomenon: the alteration of NK cells during viral infections. In addition to their well-established role in antiviral defense, NK cells undergo dynamic changes in their phenotype, function, and regulatory mechanisms upon encountering viral pathogens. These alterations can significantly impact the effectiveness of NK cell responses during viral infections. This review explores the multifaceted role of NK cells in antiviral immunity, highlighting their conventional effector functions as well as the emerging concept of NK cell alteration in the context of viral infections. Understanding the intricate interplay between NK cells and viral infections is crucial for advancing our knowledge of antiviral immune responses and could offer valuable information for the creation of innovative therapeutic approaches to combat viral diseases.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mina Naderisemiromi
- Department of Immunology, Faculty of Medicine and Health, The University of Manchester, Manchester, UK
| | - Mehdi Norouzi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Soheil Nik
- School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | - Sayed-Hamidreza Mozhgani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
20
|
Hoyer A, Chakraborty S, Lilienthal I, Konradsen JR, Katayama S, Söderhäll C. The functional role of CST1 and CCL26 in asthma development. Immun Inflamm Dis 2024; 12:e1162. [PMID: 38270326 PMCID: PMC10797655 DOI: 10.1002/iid3.1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Asthma is the most common chronic disease in children with an increasing prevalence. Its development is caused by genetic and environmental factors and allergic sensitization is a known trigger. Dog allergens affect up to 30% of all children and dog dander-sensitized children show increased expression of cystatin-1 (CST1) and eotaxin-3 (CCL26) in nasal epithelium. The aim of our study was to investigate the functional mechanism of CST1 and CCL26 in the alveolar basal epithelial cell line A549. METHODS A549 cells were transfected with individual overexpression vectors for CST1 and CCL26 and RNA sequencing was performed to examine the transcriptomics. edgeR was used to identify differentially expressed genes (= DEG, |log2 FC | ≥ 2, FDR < 0.01). The protein expression levels of A549 cells overexpressing CST1 and CCL26 were analyzed using the Target 96 inflammation panel from OLINK (antibody-mediated proximity extension-based assay; OLINK Proteomics). Differentially expressed proteins were considered with a |log2 FC| ≥ 1, p < .05. RESULTS The overexpression of CST1 resulted in a total of 27 DEG (1 upregulated and 26 downregulated) and the overexpression of CCL26 in a total of 137 DEG (0 upregulated and 137 downregulated). The gene ontology enrichment analysis showed a significant downregulation of type I and III interferon signaling pathway genes as well as interferon-stimulated genes. At the protein level, overexpression of CST1 induced a significantly increased expression of CCL3, whereas CCL26 overexpression led to increased expression of HGF, and a decrease of CXCL11, CCL20, CCL3 and CXCL10. CONCLUSION Our results indicate that an overexpression of CST1 and CCL26 cause a downregulation of interferon related genes and inflammatory proteins. It might cause a higher disease susceptibility, mainly for allergic asthma, as CCL26 is an agonist for CCR-3-carrying cells, such as eosinophils and Th2 lymphocytes, mostly active in allergic asthma.
Collapse
Affiliation(s)
- Angela Hoyer
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Sandip Chakraborty
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Ingrid Lilienthal
- Childhood Cancer Research Unit, Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
| | - Jon R. Konradsen
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Shintaro Katayama
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Stem Cells and Metabolism Research ProgramUniversity of HelsinkiHelsinkiFinland
- Folkhälsan Research CenterHelsinkiFinland
| | - Cilla Söderhäll
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| |
Collapse
|
21
|
Ware BC, Parks MG, Morrison TE. Chikungunya virus infection disrupts MHC-I antigen presentation via nonstructural protein 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565436. [PMID: 37961400 PMCID: PMC10635105 DOI: 10.1101/2023.11.03.565436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Infection by chikungunya virus (CHIKV), a mosquito-borne alphavirus, causes severe polyarthralgia and polymyalgia, which can last in some people for months to years. Chronic CHIKV disease signs and symptoms are associated with the persistence of viral nucleic acid and antigen in tissues. Like humans and nonhuman primates, CHIKV infection in mice results in the development of robust adaptive antiviral immune responses. Despite this, joint tissue fibroblasts survive CHIKV infection and can support persistent viral replication, suggesting that they escape immune surveillance. Here, using a recombinant CHIKV strain encoding a chimeric protein of VENUS fused to a CD8+ T cell epitope, SIINFEKL, we observed a marked loss of both MHC class I (MHC-I) surface expression and antigen presentation by CHIKV-infected joint tissue fibroblasts. Both in vivo and ex vivo infected joint tissue fibroblasts displayed reduced cell surface levels of H2-Kb and H2-Db MHC proteins while maintaining similar levels of other cell surface proteins. Mutations within the methyl transferase-like domain of the CHIKV nonstructural protein 2 (nsP2) increased MHC-I cell surface expression and antigen presentation efficiency by CHIKV-infected cells. Moreover, expression of WT nsP2 alone, but not nsP2 with mutations in the methyltransferase-like domain, resulted in decreased MHC-I antigen presentation efficiency. MHC-I surface expression and antigen presentation could be rescued by replacing VENUS-SIINFEKL with SIINFEKL tethered to β2-microglobulin in the CHIKV genome, which bypasses the need for peptide processing and TAP-mediated peptide transport into the endoplasmic reticulum. Collectively, this work suggests that CHIKV escapes the surveillance of antiviral CD8+ T cells, in part, by nsP2-mediated disruption of MHC-I antigen presentation.
Collapse
Affiliation(s)
- Brian C. Ware
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - M. Guston Parks
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
22
|
Lee MJ, Blish CA. Defining the role of natural killer cells in COVID-19. Nat Immunol 2023; 24:1628-1638. [PMID: 37460639 PMCID: PMC10538371 DOI: 10.1038/s41590-023-01560-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/08/2023] [Indexed: 09/20/2023]
Abstract
Natural killer (NK) cells are critical effectors of antiviral immunity. Researchers have therefore sought to characterize the NK cell response to coronavirus disease 2019 (COVID-19) and the virus that causes it, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The NK cells of patients with severe COVID-19 undergo extensive phenotypic and functional changes. For example, the NK cells from critically ill patients with COVID-19 are highly activated and exhausted, with poor cytotoxic function and cytokine production upon stimulation. The NK cell response to SARS-CoV-2 is also modulated by changes induced in virally infected cells, including the ability of a viral peptide to bind HLA-E, preventing NK cells from receiving inhibitory signals, and the downregulation of major histocompatibility complex class I and ligands for the activating receptor NKG2D. These changes have important implications for the ability of infected cells to escape NK cell killing. The implications of these findings for antibody-dependent NK cell activity in COVID-19 are also reviewed. Despite these advances in the understanding of the NK cell response to SARS-CoV-2, there remain critical gaps in our current understanding and a wealth of avenues for future research on this topic.
Collapse
Affiliation(s)
- Madeline J Lee
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
23
|
Pekarek MJ, Weaver EA. Existing Evidence for Influenza B Virus Adaptations to Drive Replication in Humans as the Primary Host. Viruses 2023; 15:2032. [PMID: 37896807 PMCID: PMC10612074 DOI: 10.3390/v15102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza B virus (IBV) is one of the two major types of influenza viruses that circulate each year. Unlike influenza A viruses, IBV does not harbor pandemic potential due to its lack of historical circulation in non-human hosts. Many studies and reviews have highlighted important factors for host determination of influenza A viruses. However, much less is known about the factors driving IBV replication in humans. We hypothesize that similar factors influence the host restriction of IBV. Here, we compile and review the current understanding of host factors crucial for the various stages of the IBV viral replication cycle. While we discovered the research in this area of IBV is limited, we review known host factors that may indicate possible host restriction of IBV to humans. These factors include the IBV hemagglutinin (HA) protein, host nuclear factors, and viral immune evasion proteins. Our review frames the current understanding of IBV adaptations to replication in humans. However, this review is limited by the amount of research previously completed on IBV host determinants and would benefit from additional future research in this area.
Collapse
Affiliation(s)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
24
|
Smatti MK, Al-Sarraj YA, Albagha O, Yassine HM. Genome-wide association study identifies several loci for HEV seropositivity. iScience 2023; 26:107586. [PMID: 37664632 PMCID: PMC10470371 DOI: 10.1016/j.isci.2023.107586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/22/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Hepatitis E viral (HEV) infection imposes a heavy global health burden. The variability in the prevalence of serological markers of HEV infection between different ethnic groups proposes a host genetic influence. Here, we report genetic polymorphisms associated with anti-HEV antibody positivity and level using binary- and quantitative-trait genome-wide association studies (GWAS) on a population from Qatar (n = 5829). We identified a region in 12p11.1 (lead SNP: rs559856097, allele: A, p = 2.3 × 10-10) significantly associated with anti-HEV antibodies level. This intergenic variant is located near SNORD112, a small nucleolar RNA (snoRNA). Additional gene-set and pathway enrichment analyses highlighted a strong correlation with anti-viral response-related pathways, including IFNs (alpha/beta) and interleukin-21 (IL-21) signaling. This is the first GWAS on the response to HEV infection. Further replication and functional experimentation are warranted to validate these findings.
Collapse
Affiliation(s)
- Maria K. Smatti
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Yasser A. Al-Sarraj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Omar Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
25
|
Li H, Wang A, Zhang Y, Wei F. Diverse roles of lung macrophages in the immune response to influenza A virus. Front Microbiol 2023; 14:1260543. [PMID: 37779697 PMCID: PMC10534047 DOI: 10.3389/fmicb.2023.1260543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Influenza viruses are one of the major causes of human respiratory infections and the newly emerging and re-emerging strains of influenza virus are the cause of seasonal epidemics and occasional pandemics, resulting in a huge threat to global public health systems. As one of the early immune cells can rapidly recognize and respond to influenza viruses in the respiratory, lung macrophages play an important role in controlling the severity of influenza disease by limiting viral replication, modulating the local inflammatory response, and initiating subsequent adaptive immune responses. However, influenza virus reproduction in macrophages is both strain- and macrophage type-dependent, and ineffective replication of some viral strains in mouse macrophages has been observed. This review discusses the function of lung macrophages in influenza virus infection in order to better understand the pathogenesis of the influenza virus.
Collapse
Affiliation(s)
- Haoning Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Aoxue Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yuying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fanhua Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
26
|
Yeung-Luk BH, Narayanan GA, Ghosh B, Wally A, Lee E, Mokaya M, Wankhade E, Zhang R, Lee B, Park B, Resnick J, Jedlicka A, Dziedzic A, Ramanathan M, Biswal S, Pekosz A, Sidhaye VK. SARS-CoV-2 infection alters mitochondrial and cytoskeletal function in human respiratory epithelial cells mediated by expression of spike protein. mBio 2023; 14:e0082023. [PMID: 37504520 PMCID: PMC10470579 DOI: 10.1128/mbio.00820-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/10/2023] [Indexed: 07/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, SCV2), which has resulted in higher morbidity and mortality rate than other respiratory viral infections, such as Influenza A virus (IAV) infection. Investigating the molecular mechanisms of SCV2-host infection vs IAV is vital in exploring antiviral drug targets against SCV2. We assessed differential gene expression in human nasal cells upon SCV2 or IAV infection using RNA sequencing. Compared to IAV, we observed alterations in both metabolic and cytoskeletal pathways suggestive of epithelial remodeling in the SCV2-infected cells, reminiscent of pathways activated as a response to chronic injury. We found that spike protein interaction with the epithelium was sufficient to instigate these epithelial responses using a SCV2 spike pseudovirus. Specifically, we found downregulation of the mitochondrial markers SIRT3 and TOMM22. Moreover, SCV2 spike infection increased extracellular acidification and decreased oxygen consumption rate in the epithelium. In addition, we observed cytoskeletal rearrangements with a reduction in the actin-severing protein cofilin-1 and an increase in polymerized actin, indicating epithelial cytoskeletal rearrangements. This study revealed distinct epithelial responses to SCV2 infection, with early mitochondrial dysfunction in the host cells and evidence of cytoskeletal remodeling that could contribute to the worsened outcome in COVID-19 patients compared to IAV patients. These changes in cell structure and energetics could contribute to cellular resilience early during infection, allowing for prolonged cell survival and potentially paving the way for more chronic symptoms. IMPORTANCE COVID-19 has caused a global pandemic affecting millions of people worldwide, resulting in a higher mortality rate and concerns of more persistent symptoms compared to influenza A. To study this, we compare lung epithelial responses to both viruses. Interestingly, we found that in response to SARS-CoV-2 infection, the cellular energetics changed and there were cell structural rearrangements. These changes in cell structure could lead to prolonged epithelial cell survival, even in the face of not working well, potentially contributing to the development of chronic symptoms. In summary, these findings represent strategies utilized by the cell to survive the infection but result in a fundamental shift in the epithelial phenotype, with potential long-term consequences, which could set the stage for the development of chronic lung disease or long COVID-19.
Collapse
Affiliation(s)
- Bonnie H. Yeung-Luk
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ara Wally
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Esther Lee
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Michelle Mokaya
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Esha Wankhade
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rachel Zhang
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Brianna Lee
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Bongsoo Park
- Epigenetics and Stem Cell Aging, National Institute of Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jessica Resnick
- W. Harry Feinstone Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anne Jedlicka
- W. Harry Feinstone Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amanda Dziedzic
- W. Harry Feinstone Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Outpatient Center, Baltimore, Maryland, USA
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Venkataramana K. Sidhaye
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Wang Q, Fang Z, Xiao Y, Wang H, Zhang P, Lu W, Zhang H, Zhou X. Lactiplantibacillus pentoses CCFM1227 Produces Desaminotyrosine to Protect against Influenza Virus H1N1 Infection through the Type I Interferon in Mice. Nutrients 2023; 15:3659. [PMID: 37630849 PMCID: PMC10458433 DOI: 10.3390/nu15163659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Microbiota-derived desaminotyrosine (DAT) protects the host from influenza by modulating the type I interferon (IFN) response. The aim of this study was to investigate the antivirus effects of a DAT-producing bacteria strain. A comparative genomics analysis and UHPLC Q-Exactive MS were used to search for potential strains and confirm their ability to produce DAT, respectively. The anti-influenza functions of the DAT producer were evaluated using an antibiotic-treated mouse model by orally administering the specific strain before viral infection. The results showed the Lactiplantibacillus pentosus CCFM1227 contained the phy gene and produced DAT by degrading phloretin. In vivo, L. pentosus CCFM1227 re-inoculation increased the DAT level in feces, and protected from influenza through inhibiting viral replication and alleviating lung immunopathology. Furthermore, CCFM1227-derived DAT was positively correlated with the IFN-β level in the lung. The transcriptome results showed that CCFM1227 activated gene expression in the context of the defense response to the virus, and the response to interferon-beta. Moreover, CCFM1227 treatment upregulated the expression of MHC-I family genes, which regulate the adaptive immune response. In conclusion, L. pentosus CCFM1227 exerted antiviral effects by producing DAT in the gut, and this may provide a potential solution for creating effective antiviral probiotics.
Collapse
Affiliation(s)
- Qianwen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.W.); (Z.F.); (Y.X.); (W.L.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhifeng Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.W.); (Z.F.); (Y.X.); (W.L.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.W.); (Z.F.); (Y.X.); (W.L.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.W.); (Z.F.); (Y.X.); (W.L.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Pinghu Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225009, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.W.); (Z.F.); (Y.X.); (W.L.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.W.); (Z.F.); (Y.X.); (W.L.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Xiuwen Zhou
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215021, China
| |
Collapse
|
28
|
Moura RR, Brandão L, Moltrasio C, Agrelli A, Tricarico PM, Maronese CA, Crovella S, Marzano AV. Different molecular pathways are disrupted in Pyoderma gangrenosum patients and are associated with the severity of the disease. Sci Rep 2023; 13:4919. [PMID: 36966241 PMCID: PMC10039684 DOI: 10.1038/s41598-023-31914-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/20/2023] [Indexed: 03/27/2023] Open
Abstract
Pyoderma gangrenosum (PG) is a rare inflammatory skin disease classified within the spectrum of neutrophilic dermatoses. The pathophysiology of PG is yet incompletely understood but a prominent role of genetics facilitating immune dysregulation has been proposed. This study investigated the potential contribution of disrupted molecular pathways in determining the susceptibility and clinical severity of PG. Variant Enrichment Analysis, a bioinformatic pipeline applicable for Whole Exome Sequencing data was performed in unrelated PG patients. Eleven patients were enrolled, including 5 with unilesional and 6 with multilesional PG. Fourteen pathways were exclusively enriched in the "multilesional" group, mainly related to immune system (i.e., type I interferon signaling pathway), cell metabolism and structural functions. In the "unilesional" group, nine pathways were found to be exclusively enriched, mostly related to cell signaling and cell metabolism. Genetically altered pathways involved in immune system biology and wound repair appear to be nodal pathogenic drivers in PG pathogenesis.
Collapse
Affiliation(s)
- Ronald Rodrigues Moura
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137, Trieste, Italy
| | - Lucas Brandão
- Department of Pathology, Federal University of Pernambuco, Recife, 50670-901, Brazil
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Almerinda Agrelli
- Laboratory of Nanostructured Materials (LMNANO), Center for Strategic Technologies Northeastern (CETENE), Av. Prof. Luís Freire, 1-Cidade Universitária, Recife, 50740-545, Brazil
| | - Paola Maura Tricarico
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137, Trieste, Italy
| | - Carlo Alberto Maronese
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Università Degli Studi Di Milano, Via Pace 9, 20122, Milan, Italy
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, State of Qatar
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Physiopathology and Transplantation, Università Degli Studi Di Milano, Via Pace 9, 20122, Milan, Italy.
| |
Collapse
|
29
|
Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther 2023; 8:104. [PMID: 36882399 PMCID: PMC9990587 DOI: 10.1038/s41392-023-01365-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer immunotherapy, mainly including immune checkpoints-targeted therapy and the adoptive transfer of engineered immune cells, has revolutionized the oncology landscape as it utilizes patients' own immune systems in combating the cancer cells. Cancer cells escape immune surveillance by hijacking the corresponding inhibitory pathways via overexpressing checkpoint genes. Phagocytosis checkpoints, such as CD47, CD24, MHC-I, PD-L1, STC-1 and GD2, have emerged as essential checkpoints for cancer immunotherapy by functioning as "don't eat me" signals or interacting with "eat me" signals to suppress immune responses. Phagocytosis checkpoints link innate immunity and adaptive immunity in cancer immunotherapy. Genetic ablation of these phagocytosis checkpoints, as well as blockade of their signaling pathways, robustly augments phagocytosis and reduces tumor size. Among all phagocytosis checkpoints, CD47 is the most thoroughly studied and has emerged as a rising star among targets for cancer treatment. CD47-targeting antibodies and inhibitors have been investigated in various preclinical and clinical trials. However, anemia and thrombocytopenia appear to be formidable challenges since CD47 is ubiquitously expressed on erythrocytes. Here, we review the reported phagocytosis checkpoints by discussing their mechanisms and functions in cancer immunotherapy, highlight clinical progress in targeting these checkpoints and discuss challenges and potential solutions to smooth the way for combination immunotherapeutic strategies that involve both innate and adaptive immune responses.
Collapse
|
30
|
Boulay A, Trabanelli S, Boireau S, Boyer-Clavel M, Nisole S, Romero P, Jandus C, Beignon AS, Arhel NJ. Assessing the Impact of Persistent HIV Infection on Innate Lymphoid Cells Using In Vitro Models. Immunohorizons 2023; 7:243-255. [PMID: 37000496 PMCID: PMC10563434 DOI: 10.4049/immunohorizons.2300007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 04/01/2023] Open
Abstract
Pathogens that persist in their host induce immune dysfunctions even in the absence of detectable replication. To better understand the phenotypic and functional changes that persistent infections induce in sentinel innate immune cells, we developed human PBMC-based HIV models of persistent infection. Autologous nonactivated PBMCs were cocultured with chronically infected, acutely infected, or uninfected cells and were then analyzed by unsupervised high-dimensional flow cytometry. Using this approach, we identified prevalent patterns of innate immune dysfunctions associated with persistent HIV infections that at least in part mirror immune dysfunctions observed in patients. In one or more models of chronic infection, bystander CD16+ NK cells expressing markers of activation, such as CD94, CD45RO, CD62L, CD69, CD25, and immune checkpoints PD1, Tim3, TIGIT, NKG2A and Lag3, were significantly reduced. Conversely, helper ILC subsets expressing PDL1/PDL2 were significantly enriched in chronic infection compared with either uninfected or acute infection, suggesting that chronic HIV-1 infection was associated with an inhibitory environment for bystander ILC and NK subsets. The cell-based models of persistent infection that we describe here provide versatile tools to explore the molecular mechanisms of these immune dysfunctions and unveil the contribution of innate immunity in sustaining pathogen persistence.
Collapse
Affiliation(s)
- Aude Boulay
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Sara Trabanelli
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Stéphanie Boireau
- Montpellier Ressources Imagerie, Biocampus, Université de Montpellier, CNRS, Montpellier, France
| | - Myriam Boyer-Clavel
- Montpellier Ressources Imagerie, Biocampus, Université de Montpellier, CNRS, Montpellier, France
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Pedro Romero
- Department of Oncology, University of Lausanne, Épalinges, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Anne-Sophie Beignon
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Nathalie J. Arhel
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
31
|
Ibañez LI, Martinez VP, Iglesias AA, Bellomo CM, Alonso DO, Coelho RM, Martinez Peralta L, Periolo N. Decreased expression of surfactant Protein-C and CD74 in alveolar epithelial cells during influenza virus A(H1N1)pdm09 and H3N2 infection. Microb Pathog 2023; 176:106017. [PMID: 36736545 DOI: 10.1016/j.micpath.2023.106017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
The primary replication site of Influenza A virus (IAV) is type II alveolar epithelial cells (AECII), which are central to normal lung function and present important immune functions. Surfactant components are synthesized primarily by AECII, which play a crucial role in host defense against infection. The aim of this study was to analyze if the impact of influenza infection is differential between A(H1N1)pdm09 and A/Victoria/3/75 (H3N2) on costimulatory molecules and ProSP-C expression in AECII from BALB/c mice infected and A549 cell line infected with both strains. Pandemic A(H1N1)pdm09 and A/Victoria/3/75 (H3N2) were used to infect BALB/c mice and the A549 cell line. We evaluated the surface expression of co-stimulatory molecules (CD45/CD31/CD74/ProSP-C) in AECII and A549 cell lines. Our results showed a significant decrease in ProSP-C+ CD31- CD45- and CD74+ CD31- CD45- expression in AECII and A549 cell line with the virus strain A(H1N1)pdm09 versus A/Victoria/3/75 (H3N2) and controls (non-infection conditions). Our findings indicate that changes in the expression of ProSP-C in AECII and A549 cell lines in infection conditions could result in dysfunction leading to decreased lung compliance, increased work of breathing and increased susceptibility to injury.
Collapse
Affiliation(s)
- L I Ibañez
- Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina; Instituto de Quimica Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET). Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2160, Buenos Aires, Argentina
| | - V P Martinez
- Instituto Nacional de Enfermedades Infecciosas ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina
| | - A A Iglesias
- Instituto Nacional de Enfermedades Infecciosas ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina
| | - C M Bellomo
- Instituto Nacional de Enfermedades Infecciosas ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina
| | - D O Alonso
- Instituto Nacional de Enfermedades Infecciosas ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina
| | - R M Coelho
- Instituto Nacional de Enfermedades Infecciosas ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina
| | - L Martinez Peralta
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Argentina
| | - N Periolo
- Instituto Nacional de Enfermedades Infecciosas ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas. (CONICET), Argentina.
| |
Collapse
|
32
|
Cooper A, Sidaway A, Chandrashekar A, Latta E, Chakraborty K, Yu J, McMahan K, Giffin V, Manickam C, Kroll K, Mosher M, Reeves RK, Gam R, Arthofer E, Choudhry M, Henley T, Barouch DH. A genetically engineered, stem-cell-derived cellular vaccine. Cell Rep Med 2022; 3:100843. [PMID: 36480934 PMCID: PMC9727836 DOI: 10.1016/j.xcrm.2022.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/19/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022]
Abstract
Despite rapid clinical translation of COVID-19 vaccines in response to the global pandemic, an opportunity remains for vaccine technology innovation to address current limitations and meet challenges of inevitable future pandemics. We describe a universal vaccine cell (UVC) genetically engineered to mimic natural physiological immunity induced upon viral infection of host cells. Cells engineered to express the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike as a representative viral antigen induce robust neutralizing antibodies in immunized non-human primates. Similar titers generated in this established non-human primate (NHP) model have translated into protective human neutralizing antibody levels in SARS-CoV-2-vaccinated individuals. Animals vaccinated with ancestral spike antigens and subsequently challenged with SARS-CoV-2 Delta variant in a heterologous challenge have an approximately 3 log decrease in viral subgenomic RNA in the lungs. This cellular vaccine is designed as a scalable cell line with a modular poly-antigenic payload, allowing for rapid, large-scale clinical manufacturing and use in an evolving viral variant environment.
Collapse
Affiliation(s)
| | | | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Katherine McMahan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Victoria Giffin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kyle Kroll
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew Mosher
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rihab Gam
- Intima Bioscience, Inc., New York, NY, USA
| | | | - Modassir Choudhry
- Praesidium Bioscience, Inc., New York, NY, USA; Intima Bioscience, Inc., New York, NY, USA
| | - Tom Henley
- Praesidium Bioscience, Inc., New York, NY, USA; Intima Bioscience, Inc., New York, NY, USA.
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
33
|
Sterling KG, Dodd GK, Alhamdi S, Asimenios PG, Dagda RK, De Meirleir KL, Hudig D, Lombardi VC. Mucosal Immunity and the Gut-Microbiota-Brain-Axis in Neuroimmune Disease. Int J Mol Sci 2022; 23:13328. [PMID: 36362150 PMCID: PMC9655506 DOI: 10.3390/ijms232113328] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Recent advances in next-generation sequencing (NGS) technologies have opened the door to a wellspring of information regarding the composition of the gut microbiota. Leveraging NGS technology, early metagenomic studies revealed that several diseases, such as Alzheimer's disease, Parkinson's disease, autism, and myalgic encephalomyelitis, are characterized by alterations in the diversity of gut-associated microbes. More recently, interest has shifted toward understanding how these microbes impact their host, with a special emphasis on their interactions with the brain. Such interactions typically occur either systemically, through the production of small molecules in the gut that are released into circulation, or through signaling via the vagus nerves which directly connect the enteric nervous system to the central nervous system. Collectively, this system of communication is now commonly referred to as the gut-microbiota-brain axis. While equally important, little attention has focused on the causes of the alterations in the composition of gut microbiota. Although several factors can contribute, mucosal immunity plays a significant role in shaping the microbiota in both healthy individuals and in association with several diseases. The purpose of this review is to provide a brief overview of the components of mucosal immunity that impact the gut microbiota and then discuss how altered immunological conditions may shape the gut microbiota and consequently affect neuroimmune diseases, using a select group of common neuroimmune diseases as examples.
Collapse
Affiliation(s)
| | - Griffin Kutler Dodd
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shatha Alhamdi
- Clinical Immunology and Allergy Division, Department of Pediatrics, King Abdullah Specialist Children’s Hospital, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | | | - Ruben K. Dagda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | | | - Dorothy Hudig
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
34
|
Tang WW, Bauer KM, Barba C, Ekiz HA, O’Connell RM. miR-aculous new avenues for cancer immunotherapy. Front Immunol 2022; 13:929677. [PMID: 36248881 PMCID: PMC9554277 DOI: 10.3389/fimmu.2022.929677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
The rising toll of cancer globally necessitates ingenuity in early detection and therapy. In the last decade, the utilization of immune signatures and immune-based therapies has made significant progress in the clinic; however, clinical standards leave many current and future patients without options. Non-coding RNAs, specifically microRNAs, have been explored in pre-clinical contexts with tremendous success. MicroRNAs play indispensable roles in programming the interactions between immune and cancer cells, many of which are current or potential immunotherapy targets. MicroRNAs mechanistically control a network of target genes that can alter immune and cancer cell biology. These insights provide us with opportunities and tools that may complement and improve immunotherapies. In this review, we discuss immune and cancer cell-derived miRNAs that regulate cancer immunity and examine miRNAs as an integral part of cancer diagnosis, classification, and therapy.
Collapse
Affiliation(s)
- William W. Tang
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Kaylyn M. Bauer
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Cindy Barba
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Huseyin Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, İzmir, Turkey
| | - Ryan M. O’Connell
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
35
|
Papak I, Chruściel E, Dziubek K, Kurkowiak M, Urban-Wójciuk Z, Marjański T, Rzyman W, Marek-Trzonkowska N. What Inhibits Natural Killers’ Performance in Tumour. Int J Mol Sci 2022; 23:ijms23137030. [PMID: 35806034 PMCID: PMC9266640 DOI: 10.3390/ijms23137030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 12/21/2022] Open
Abstract
Natural killer cells are innate lymphocytes with the ability to lyse tumour cells depending on the balance of their activating and inhibiting receptors. Growing numbers of clinical trials show promising results of NK cell-based immunotherapies. Unlike T cells, NK cells can lyse tumour cells independent of antigen presentation, based simply on their activation and inhibition receptors. Various strategies to improve NK cell-based therapies are being developed, all with one goal: to shift the balance to activation. In this review, we discuss the current understanding of ways NK cells can lyse tumour cells and all the inhibitory signals stopping their cytotoxic potential.
Collapse
Affiliation(s)
- Ines Papak
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Elżbieta Chruściel
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Zuzanna Urban-Wójciuk
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Tomasz Marjański
- Department of Thoracic Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland; (T.M.); (W.R.)
| | - Witold Rzyman
- Department of Thoracic Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland; (T.M.); (W.R.)
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence:
| |
Collapse
|
36
|
Lockhart A, Mucida D, Parsa R. Immunity to enteric viruses. Immunity 2022; 55:800-818. [PMID: 35545029 PMCID: PMC9257994 DOI: 10.1016/j.immuni.2022.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
Pathogenic enteric viruses are a major cause of morbidity and mortality, particularly among children in developing countries. The host response to enteric viruses occurs primarily within the mucosa, where the intestinal immune system must balance protection against pathogens with tissue protection and tolerance to harmless commensal bacteria and food. Here, we summarize current knowledge in natural immunity to enteric viruses, highlighting specialized features of the intestinal immune system. We further discuss how knowledge of intestinal anti-viral mechanisms can be translated into vaccine development with particular focus on immunization in the oral route. Research reveals that the intestine is a complex interface between enteric viruses and the host where environmental factors influence susceptibility and immunity to infection, while viral infections can have lasting implications for host health. A deeper mechanistic understanding of enteric anti-viral immunity with this broader context can ultimately lead to better vaccines for existing and emerging viruses.
Collapse
Affiliation(s)
- Ainsley Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Roham Parsa
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
37
|
Hensen L, Illing PT, Rowntree LC, Davies J, Miller A, Tong SYC, Habel JR, van de Sandt CE, Flanagan K, Purcell AW, Kedzierska K, Clemens EB. T Cell Epitope Discovery in the Context of Distinct and Unique Indigenous HLA Profiles. Front Immunol 2022; 13:812393. [PMID: 35603215 PMCID: PMC9121770 DOI: 10.3389/fimmu.2022.812393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
CD8+ T cells are a pivotal part of the immune response to viruses, playing a key role in disease outcome and providing long-lasting immunity to conserved pathogen epitopes. Understanding CD8+ T cell immunity in humans is complex due to CD8+ T cell restriction by highly polymorphic Human Leukocyte Antigen (HLA) proteins, requiring T cell epitopes to be defined for different HLA allotypes across different ethnicities. Here we evaluate strategies that have been developed to facilitate epitope identification and study immunogenic T cell responses. We describe an immunopeptidomics approach to sequence HLA-bound peptides presented on virus-infected cells by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Using antigen presenting cell lines that stably express the HLA alleles characteristic of Indigenous Australians, this approach has been successfully used to comprehensively identify influenza-specific CD8+ T cell epitopes restricted by HLA allotypes predominant in Indigenous Australians, including HLA-A*24:02 and HLA-A*11:01. This is an essential step in ensuring high vaccine coverage and efficacy in Indigenous populations globally, known to be at high risk from influenza disease and other respiratory infections.
Collapse
Affiliation(s)
- Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Patricia T. Illing
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jane Davies
- Menzies School of Health Research, Darwin, NT, Australia
| | - Adrian Miller
- Indigenous Engagement, CQUniversity, Townsville, QLD, Australia
| | - Steven Y. C. Tong
- Menzies School of Health Research, Darwin, NT, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer R. Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Katie L. Flanagan
- Department of Infectious Diseases and Tasmanian Vaccine Trial Centre, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - E. Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| |
Collapse
|
38
|
Poletti M, Treveil A, Csabai L, Gul L, Modos D, Madgwick M, Olbei M, Bohar B, Valdeolivas A, Turei D, Verstockt B, Triana S, Alexandrov T, Saez-Rodriguez J, Stanifer ML, Boulant S, Korcsmaros T. Mapping the epithelial-immune cell interactome upon infection in the gut and the upper airways. NPJ Syst Biol Appl 2022; 8:15. [PMID: 35501398 PMCID: PMC9061772 DOI: 10.1038/s41540-022-00224-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence points towards the key role of the epithelium in the systemic and over-activated immune response to viral infection, including SARS-CoV-2 infection. Yet, how viral infection alters epithelial-immune cell interactions regulating inflammatory responses, is not well known. Available experimental approaches are insufficient to properly analyse this complex system, and computational predictions and targeted data integration are needed as an alternative approach. In this work, we propose an integrated computational biology framework that models how infection alters intracellular signalling of epithelial cells and how this change impacts the systemic immune response through modified interactions between epithelial cells and local immune cell populations. As a proof-of-concept, we focused on the role of intestinal and upper-airway epithelial infection. To characterise the modified epithelial-immune interactome, we integrated intra- and intercellular networks with single-cell RNA-seq data from SARS-CoV-2 infected human ileal and colonic organoids as well as from infected airway ciliated epithelial cells. This integrated methodology has proven useful to point out specific epithelial-immune interactions driving inflammation during disease response, and propose relevant molecular targets to guide focused experimental analysis.
Collapse
Grants
- BB/CSP17270/1 Biotechnology and Biological Sciences Research Council
- BB/P016774/1 Biotechnology and Biological Sciences Research Council
- BB/R012490/1 Biotechnology and Biological Sciences Research Council
- BBS/E/T/000PR9817 Biotechnology and Biological Sciences Research Council
- BBS/E/F/000PR10355 Biotechnology and Biological Sciences Research Council
- BB/S50743X/1 Biotechnology and Biological Sciences Research Council
- BB/M011216/1 Biotechnology and Biological Sciences Research Council
- BBS/E/F/000PR10353 Biotechnology and Biological Sciences Research Council
- BB/J004529/1 Biotechnology and Biological Sciences Research Council
- The work of T.K. was supported by the Earlham Institute (Norwich, UK) in partnership with the Quadram Institute (Norwich, UK) and strategically supported by the UKRI BBSRC UK grants (BB/J004529/1, BB/P016774/1, and BB/CSP17270/1). T.K. was also funded by a BBSRC ISP grant for Gut Microbes and Health BB/R012490/1 and its constituent projects, BBS/E/F/000PR10353 and BBS/E/F/000PR10355.
- M.P. is supported by the UKRI Biotechnological and Biosciences Research Council (BBSRC) funded Norwich Research Park Biosciences Doctoral Training Partnership (grant numbers BB/M011216/1 and BB/S50743X/1).
- A.T. is supported by the UKRI Biotechnological and Biosciences Research Council (BBSRC) funded Norwich Research Park Biosciences Doctoral Training Partnership (grant numbers BB/M011216/1 and BB/S50743X/1).
- L.G. is supported by the UKRI Biotechnological and Biosciences Research Council (BBSRC) funded Norwich Research Park Biosciences Doctoral Training Partnership (grant numbers BB/M011216/1 and BB/S50743X/1).
- The work of D.M. was supported by the Earlham Institute (Norwich, UK) in partnership with the Quadram Institute (Norwich, UK) and strategically supported by the UKRI BBSRC UK grants (BB/J004529/1, BB/P016774/1, and BB/CSP17270/1). D.M. was also funded by a BBSRC ISP grant for Gut Microbes and Health BB/R012490/1 and its constituent projects, BBS/E/F/000PR10353 and BBS/E/F/000PR10355.
- M.O. is supported by the UKRI Biotechnological and Biosciences Research Council (BBSRC) funded Norwich Research Park Biosciences Doctoral Training Partnership (grant numbers BB/M011216/1 and BB/S50743X/1).
- B.V. is supported by the Clinical Research Fund (KOOR) University Hospitals Leuven.
- S.T. acknowledges the funding from the Darwin Trust of Edinburgh and from the ERC Consolidator grant METACELL from European Union’s Horizon 2020 program. S.T. acknowledges support from the EMBL Genomics Core Facility and particularly help from Vladimir Benes.
- T.A. acknowledges the funding from the Darwin Trust of Edinburgh and from the ERC Consolidator grant METACELL from European Union’s Horizon 2020 program. T.A. acknowledges support from the EMBL Genomics Core Facility and particularly help from Vladimir Benes.
- M.L.S. was supported by the DFG (416072091) and the BMBF (01KI20239B). D.T. was supported by the Federal Ministry of Education and Research (BMBF, Computational Life Sciences grant no. 031L0181B) to J.S.R.
- S.B. was supported by research grants from the Deutsche Forschungsgemeinschaft (DFG): project numbers 415089553 (Heisenberg program), 240245660 (SFB1129), 278001972 (TRR186), and 272983813 (TRR179), the state of Baden Wuerttemberg (AZ: 33.7533.-6-21/5/1) and the Bundesministerium Bildung und Forschung (BMBF) (01KI20198A).
Collapse
Affiliation(s)
- Martina Poletti
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Agatha Treveil
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Luca Csabai
- Earlham Institute, Norwich Research Park, Norwich, UK
- Department of Genetics, Eotvos Lorand University, Budapest, Hungary
| | - Leila Gul
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Dezso Modos
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Matthew Madgwick
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Marton Olbei
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Balazs Bohar
- Earlham Institute, Norwich Research Park, Norwich, UK
- Department of Genetics, Eotvos Lorand University, Budapest, Hungary
| | - Alberto Valdeolivas
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Denes Turei
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Bram Verstockt
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, Translational Research in GI disorders, KU Leuven, Leuven, Belgium
| | - Sergio Triana
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Theodore Alexandrov
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, Heidelberg, Germany
| | - Megan L Stanifer
- Department of Infectious Diseases, Heidelberg University Hospital Heidelberg, Heidelberg, Germany
| | - Steeve Boulant
- Department of Infectious Diseases, Heidelberg University Hospital Heidelberg, Heidelberg, Germany
| | - Tamas Korcsmaros
- Earlham Institute, Norwich Research Park, Norwich, UK.
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
39
|
Hernández-Doño S, Sánchez-González RA, Trujillo-Vizuet MG, Zamudio-Castellanos FY, García-Silva R, Bulos-Rodríguez P, Vazquez-Guzmán CA, Cárdenas-Ramos X, de León Rodríguez D, Elías F, Domínguez-Arevillaga S, Pérez-Tirado JM, Vera-Lastra OL, Granados J, Sepúlveda-Delgado J. Protective HLA alleles against severe COVID-19: HLA-A*68 as an ancestral protection allele in Tapachula-Chiapas, Mexico. Clin Immunol 2022; 238:108990. [PMID: 35395388 PMCID: PMC8982524 DOI: 10.1016/j.clim.2022.108990] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/13/2022] [Accepted: 03/25/2022] [Indexed: 11/03/2022]
Abstract
HLA is a polymorphic antigen presenter which has provided valuable information on the susceptibility of populations to viruses. Therefore, the study of HLA can reveal specific susceptibility or resistance alleles to severe COVID-19 in an ethnically dependent manner. This pilot study investigated HLA alleles associated with COVID-19 severity in Tapachula, Chiapas, Mexico. A total of 146 Mexican Mestizos were typed for HLA class I and II using PCR-SSP. The patients were classified according to the outcome (death or improvement) and the infection's severity (mild or severe). In addition, a group of exposed uninfected individuals was included. HLA-A*68 was found to be a protective allele against the severe infection and fatal outcome; pC = 0.03, OR = 0.4, 95% CI =0.20-0.86, and pC =0.009, OR = 0.3, 95% CI =0.13-0.71 respectively. HLA-DRB1*03 also appears to be a protective factor against fatal outcome pC = 0.009, OR = 0.1, 95%IC = 0.01-0.66; however, the low frequency of this allele in the studied population limits the statistical power. The severity and fatal outcome of COVID-19 patients in Tapachula, Chiapas depend more on the lack of resistance than susceptibility HLA alleles.
Collapse
Affiliation(s)
- Susana Hernández-Doño
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | | - Rafael García-Silva
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Pedro Bulos-Rodríguez
- Department of Internal Medicine, Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Chiapas, Mexico
| | - Carlos A Vazquez-Guzmán
- Department of Internal Medicine, Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Chiapas, Mexico
| | | | - Diana de León Rodríguez
- Facultad de Medicina Humana Campus IV, Universidad Autónoma de Chiapas, Mexico; Becario de la Dirección General de Calidad y Educación en Salud, Secretaría de Salud, Mexico
| | - Fabiola Elías
- Facultad de Medicina Humana Campus IV, Universidad Autónoma de Chiapas, Mexico
| | | | | | - Olga Lidia Vera-Lastra
- Department of Internal Medicine, Hospital de Especialidades, Centro Médico la Raza, Chile
| | - Julio Granados
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jesús Sepúlveda-Delgado
- Research Division, Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Chiapas, Mexico.
| |
Collapse
|
40
|
Martins de Camargo M, Caetano AR, Ferreira de Miranda Santos IK. Evolutionary pressures rendered by animal husbandry practices for avian influenza viruses to adapt to humans. iScience 2022; 25:104005. [PMID: 35313691 PMCID: PMC8933668 DOI: 10.1016/j.isci.2022.104005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Commercial poultry operations produce and crowd billions of birds every year, which is a source of inexpensive animal protein. Commercial poultry is intensely bred for desirable production traits, and currently presents very low variability at the major histocompatibility complex. This situation dampens the advantages conferred by the MHC’s high genetic variability, and crowding generates immunosuppressive stress. We address the proteins of influenza A viruses directly and indirectly involved in host specificities. We discuss how mutants with increased virulence and/or altered host specificity may arise if few class I alleles are the sole selective pressure on avian viruses circulating in immunocompromised poultry. This hypothesis is testable with peptidomics of MHC ligands. Breeding strategies for commercial poultry can easily and inexpensively include high variability of MHC as a trait of interest, to help save billions of dollars as a disease burden caused by influenza and decrease the risk of selecting highly virulent strains.
Collapse
|
41
|
Schirrmacher V. Molecular Mechanisms of Anti-Neoplastic and Immune Stimulatory Properties of Oncolytic Newcastle Disease Virus. Biomedicines 2022; 10:562. [PMID: 35327364 PMCID: PMC8945571 DOI: 10.3390/biomedicines10030562] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 12/25/2022] Open
Abstract
Oncolytic viruses represent interesting anti-cancer agents with high tumor selectivity and immune stimulatory potential. The present review provides an update of the molecular mechanisms of the anti-neoplastic and immune stimulatory properties of the avian paramyxovirus, Newcastle Disease Virus (NDV). The anti-neoplastic activities of NDV include (i) the endocytic targeting of the GTPase Rac1 in Ras-transformed human tumorigenic cells; (ii) the switch from cellular protein to viral protein synthesis and the induction of autophagy mediated by viral nucleoprotein NP; (iii) the virus replication mediated by viral RNA polymerase (large protein (L), associated with phosphoprotein (P)); (iv) the facilitation of NDV spread in tumors via the membrane budding of the virus progeny with the help of matrix protein (M) and fusion protein (F); and (v) the oncolysis via apoptosis, necroptosis, pyroptosis, or ferroptosis associated with immunogenic cell death. A special property of this oncolytic virus consists of its potential for breaking therapy resistance in human cancer cells. Eight examples of this important property are presented and explained. In healthy human cells, NDV infection activates the RIG-MAVs immune signaling pathway and establishes an anti-viral state based on a strong and uninhibited interferon α,ß response. The review also describes the molecular determinants and mechanisms of the NDV-mediated immune stimulatory effects, in which the viral hemagglutinin-neuraminidase (HN) protein plays a prominent role. The six viral proteins provide oncolytic NDV with a special profile in the treatment of cancer.
Collapse
|
42
|
Christodoulou I, Rahnama R, Ravich JW, Seo J, Zolov SN, Marple AN, Markovitz DM, Bonifant CL. Glycoprotein Targeted CAR-NK Cells for the Treatment of SARS-CoV-2 Infection. Front Immunol 2022; 12:763460. [PMID: 35003077 PMCID: PMC8732772 DOI: 10.3389/fimmu.2021.763460] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
H84T-Banana Lectin (BanLec) CAR-NK cells bind high mannose glycosites that decorate the SARS-CoV-2 envelope, thereby decreasing cellular infection in a model of SARS-CoV-2. H84T-BanLec CAR-NK cells are innate effector cells, activated by virus. This novel cellular agent is a promising therapeutic, capable of clearing circulating SARS-CoV-2 virus and infected cells. Banana Lectin (BanLec) binds high mannose glycans on viral envelopes, exerting an anti-viral effect. A point mutation (H84T) divorces BanLec mitogenicity from antiviral activity. SARS-CoV-2 contains high mannose glycosites in proximity to the receptor binding domain of the envelope Spike (S) protein. We designed a chimeric antigen receptor (CAR) that incorporates H84T-BanLec as the extracellular moiety. Our H84T-BanLec CAR was devised to specifically direct NK cell binding of SARS-CoV-2 envelope glycosites to promote viral clearance. The H84T-BanLec CAR was stably expressed at high density on primary human NK cells during two weeks of ex vivo expansion. H84T-BanLec CAR-NK cells reduced S-protein pseudotyped lentiviral infection of 293T cells expressing ACE2, the receptor for SARS-CoV-2. NK cells were activated to secrete inflammatory cytokines when in culture with virally infected cells. H84T-BanLec CAR-NK cells are a promising cell therapy for further testing against wild-type SARS-CoV-2 virus in models of SARS-CoV-2 infection. They may represent a viable off-the-shelf immunotherapy for patients suffering from COVID-19.
Collapse
Affiliation(s)
- Ilias Christodoulou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ruyan Rahnama
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonas W Ravich
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jaesung Seo
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sergey N Zolov
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Andrew N Marple
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David M Markovitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.,Division of Infectious Diseases, Department of Internal Medicine, and the Programs in Immunology, Cellular and Molecular Biology, and Cancer Biology, University of Michigan, Ann Arbor, MI, United States
| | - Challice L Bonifant
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
43
|
Faber E, Tshilwane SI, Van Kleef M, Pretorius A. Apoptosis versus survival of African horse sickness virus serotype 4-infected horse peripheral blood mononuclear cells. Virus Res 2022; 307:198609. [PMID: 34688785 DOI: 10.1016/j.virusres.2021.198609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Expanding on our previous work, this study used transcriptome analysis of RNA sequences to investigate the various factors that contributed to either inducing apoptosis that resulted in cell death or promoting the survival of African horse sickness virus serotype 4 (AHSV4)-infected horse peripheral blood mononuclear cells (PBMC) after 24 h. Apoptosis is a host defense mechanism that prevents virus replication, accumulation and spread of progeny viruses. AHSV4-infected PBMC were killed via the intrinsic and the perforin/granzyme pathways of apoptosis during the attenuated AHSV4 (attAHSV4) in vivo primary and secondary immune responses. Trained innate immunity played an important role in circumventing viral interference that resulted in the elimination of AHSV4-infected PBMC through the intrinsic and the extrinsic pathways of apoptosis during the virulent AHSV4 (virAHSV4) in vitro secondary immune response. Oxidative stress in conjunction with IRE1α pro-apoptotic signaling played a major role in the induction of the intrinsic pathway of apoptosis and cytotoxic lymphocytes induced the perforin/granzyme or extrinsic pathways of apoptosis. In contrast, AHSV4-infected PBMC survived during the virAHSV4 in vitro primary immune response, which allows unrestrained viral replication. The virAHSV4 interference with the innate immune response resulted in impaired NK cell responses and delayed immune responses, which together with the antioxidant defense system promoted AHSV4-infected PBMC survival.
Collapse
Affiliation(s)
- Erika Faber
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort, 0110, South Africa; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| | - Selaelo Ivy Tshilwane
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Mirinda Van Kleef
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort, 0110, South Africa; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Alri Pretorius
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort, 0110, South Africa; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| |
Collapse
|
44
|
James LM, Georgopoulos AP. At the Root of 3 “Long” Diseases: Persistent Antigens Inflicting Chronic Damage on the Brain and Other Organs in Gulf War Illness, Long-COVID-19, and Chronic Fatigue Syndrome. Neurosci Insights 2022; 17:26331055221114817. [PMID: 35910083 PMCID: PMC9335483 DOI: 10.1177/26331055221114817] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/28/2022] [Indexed: 12/16/2022] Open
Abstract
Several foreign antigens such as those derived from viruses and bacteria have been linked to long-term deleterious effects on the brain and other organs; yet, health outcomes subsequent to foreign antigen exposure vary depending in large part on the host’s immune system, in general, and on human leukocyte antigen (HLA) composition, in particular. Here we first provide a brief description of 3 conditions characterized by persistent long-term symptoms, namely long-COVID-19, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and Gulf War Illness (GWI), followed by a brief overview of the role of HLA in the immune response to foreign antigens. We then discuss our Persistent Antigen (PA) hypothesis and highlight associations between antigen persistence due to HLA-antigen incongruence and chronic health conditions in general and the 3 “long” diseases above in particular. This review is not intended to cover the breadth and depth of symptomatology of those diseases but is specifically focused on the hypothesis that the presence of persistent antigens underlies their pathogenesis.
Collapse
Affiliation(s)
- Lisa M James
- Department of Veterans Affairs Health Care System, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Apostolos P Georgopoulos
- Department of Veterans Affairs Health Care System, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
45
|
Brener MI, Hulke ML, Fukuma N, Golob S, Zilinyi RS, Zhou Z, Tzimas C, Russo I, McGroder C, Pfeiffer RD, Chong A, Zhang G, Burkhoff D, Leon MB, Maurer MS, Moses JW, Uhlemann AC, Hibshoosh H, Uriel N, Szabolcs MJ, Redfors B, Marboe CC, Baldwin MR, Tucker NR, Tsai EJ. Clinico-histopathologic and single nuclei RNA sequencing insights into cardiac injury and microthrombi in critical COVID-19. JCI Insight 2021; 7:154633. [PMID: 34905515 PMCID: PMC8855793 DOI: 10.1172/jci.insight.154633] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Acute cardiac injury is prevalent in critical COVID-19 and associated with increased mortality. Its etiology remains debated, as initially presumed causes--- myocarditis and cardiac necrosis--- have proven uncommon. To elucidate the pathophysiology of COVID-19-associated cardiac injury, we conducted a prospective study of the first 69 consecutive COVID-19 decedents at Columbia University Irving Medical Center in New York City. Of six acute cardiac histopathologic features, microthrombi was the most commonly detected amongst our cohort (n=48, 70%). We tested associations of cardiac microthrombi with biomarkers of inflammation, cardiac injury, and fibrinolysis and with in-hospital antiplatelet therapy, therapeutic anticoagulation, and corticosteroid treatment, while adjusting for multiple clinical factors, including COVID-19 therapies. Higher peak erythrocyte sedimentation rate and c-reactive protein were independently associated with increased odds of microthrombi, supporting an immunothrombotic etiology. Using single nuclei RNA-sequencing analysis on 3 patients with and 4 patients without cardiac microthrombi, we discovered an enrichment of pro-thrombotic/anti-fibrinolytic, extracellular matrix remodeling, and immune-potentiating signaling amongst cardiac fibroblasts in microthrombi-positive, relative to microthrombi-negative, COVID-19 hearts. Non-COVID-19 non-failing hearts were used as reference controls. Our study identifies a specific transcriptomic signature in cardiac fibroblasts as a salient feature of microthrombi-positive COVID-19 hearts. Our findings warrant further mechanistic study as cardiac fibroblasts may represent a potential therapeutic target for COVID-19-associated cardiac microthrombi.
Collapse
Affiliation(s)
- Michael I Brener
- Division of Cardiology, Columbia University Irving Medical Center, New York, United States of America
| | - Michelle L Hulke
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, United States of America
| | - Nobuaki Fukuma
- Division of Cardiology, Columbia University Irving Medical Center, New York, United States of America
| | - Stephanie Golob
- Department of Medicine, Columbia University Irving Medical Center, New York, United States of America
| | - Robert S Zilinyi
- Department of Medicine, Columbia University Irving Medical Center, New York, United States of America
| | - Zhipeng Zhou
- Department of Biostatistics, Cardiovascular Research Foundation, New York, United States of America
| | - Christos Tzimas
- Division of Cardiology, Columbia University Irving Medical Center, New York, United States of America
| | - Ilaria Russo
- Division of Cardiology, Columbia University Irving Medical Center, New York, United States of America
| | - Claire McGroder
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Irving Medical Center, New York, United States of America
| | - Ryan D Pfeiffer
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, United States of America
| | - Alexander Chong
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, United States of America
| | - Geping Zhang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, United States of America
| | - Daniel Burkhoff
- Department of Heart Failure, Hemodynamics and MCS Research, Cardiovascular Research Foundation, New York, United States of America
| | - Martin B Leon
- Division of Cardiology, Columbia University Irving Medical Center, New York, United States of America
| | - Mathew S Maurer
- Division of Cardiology, Columbia University Irving Medical Center, New York, United States of America
| | - Jeffrey W Moses
- Division of Cardiology, Columbia University Irving Medical Center, New York, United States of America
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, United States of America
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, United States of America
| | - Nir Uriel
- Division of Cardiology, Columbia University Irving Medical Center, New York, United States of America
| | - Matthias J Szabolcs
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, United States of America
| | - Björn Redfors
- Department of Biostatistics, Cardiovascular Research Foundation, New York, United States of America
| | - Charles C Marboe
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, United States of America
| | - Matthew R Baldwin
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Irving Medical Center, New York, United States of America
| | - Nathan R Tucker
- Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, United States of America
| | - Emily J Tsai
- Division of Cardiology, Columbia University Irving Medical Center, New York, United States of America
| |
Collapse
|
46
|
Vollmers S, Lobermeyer A, Körner C. The New Kid on the Block: HLA-C, a Key Regulator of Natural Killer Cells in Viral Immunity. Cells 2021; 10:cells10113108. [PMID: 34831331 PMCID: PMC8620871 DOI: 10.3390/cells10113108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/01/2022] Open
Abstract
The human leukocyte antigen system (HLA) is a cluster of highly polymorphic genes essential for the proper function of the immune system, and it has been associated with a wide range of diseases. HLA class I molecules present intracellular host- and pathogen-derived peptides to effector cells of the immune system, inducing immune tolerance in healthy conditions or triggering effective immune responses in pathological situations. HLA-C is the most recently evolved HLA class I molecule, only present in humans and great apes. Differentiating from its older siblings, HLA-A and HLA-B, HLA-C exhibits distinctive features in its expression and interaction partners. HLA-C serves as a natural ligand for multiple members of the killer-cell immunoglobulin-like receptor (KIR) family, which are predominately expressed by natural killer (NK) cells. NK cells are crucial for the early control of viral infections and accumulating evidence indicates that interactions between HLA-C and its respective KIR receptors determine the outcome and progression of viral infections. In this review, we focus on the unique role of HLA-C in regulating NK cell functions and its consequences in the setting of viral infections.
Collapse
|
47
|
Altered ISGylation drives aberrant macrophage-dependent immune responses during SARS-CoV-2 infection. Nat Immunol 2021; 22:1416-1427. [PMID: 34663977 DOI: 10.1038/s41590-021-01035-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 08/25/2021] [Indexed: 01/20/2023]
Abstract
Ubiquitin-like protein ISG15 (interferon-stimulated gene 15) (ISG15) is a ubiquitin-like modifier induced during infections and involved in host defense mechanisms. Not surprisingly, many viruses encode deISGylating activities to antagonize its effect. Here we show that infection by Zika, SARS-CoV-2 and influenza viruses induce ISG15-modifying enzymes. While influenza and Zika viruses induce ISGylation, SARS-CoV-2 triggers deISGylation instead to generate free ISG15. The ratio of free versus conjugated ISG15 driven by the papain-like protease (PLpro) enzyme of SARS-CoV-2 correlates with macrophage polarization toward a pro-inflammatory phenotype and attenuated antigen presentation. In vitro characterization of purified wild-type and mutant PLpro revealed its strong deISGylating over deubiquitylating activity. Quantitative proteomic analyses of PLpro substrates and secretome from SARS-CoV-2-infected macrophages revealed several glycolytic enzymes previously implicated in the expression of inflammatory genes and pro-inflammatory cytokines, respectively. Collectively, our results indicate that altered free versus conjugated ISG15 dysregulates macrophage responses and probably contributes to the cytokine storms triggered by SARS-CoV-2.
Collapse
|
48
|
Zhao S, Cui X, Pang Y, Zhang X, You X, Yang Y, Lei Y. Cloning, genome structure and expression analysis of MHC class I gene in Korean quail. Br Poult Sci 2021; 63:291-297. [PMID: 34649479 DOI: 10.1080/00071668.2021.1991885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. The major histocompatibility complex (MHC) is a highly polymorphic region of the genome essential to immune responses and animal health. However, avian MHC genetic structure is different from that of mammals. In this study, the structure and expression of Korean quail MHC class I gene was analysed.2. The quail MHC gene consisted of eight exons and seven introns. The open reading frame of the cDNA was 353 amino acids, and the molecular weight was about 38.91 kDa. Exons 1 and 2 coded for leading peptides and alpha 1 regions, respectively. Exons 3 and 4 encoded alpha 2 and alpha 3 regions. Exons 5 to 8 coded for connecting peptides and transmembrane regions/cytoplasmic regions (TM/CY). The Korean quail MHC class I amino acid sequence shared 87% to 99% homology with Japanese quail and 71% to 75% with chicken. The amino acid shared 40% and 43% homology with humans and mice, respectively.3. Real-time quantitative PCR showed that MHC-I was highly expressed in immune tissues such as the bursa of Fabricius. Moreover, the constructed evolutionary tree was consistent with accepted evolutionary pathways.4. MHC-I is closely related to the host's immune system, and these findings may help to better understand the role of Korean quail MHC-I in the immune system.
Collapse
Affiliation(s)
- S Zhao
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| | - X Cui
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| | - Y Pang
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| | - X Zhang
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| | - X You
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| | - Y Yang
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| | - Y Lei
- Luoyang Key Laboratory of Animal Genetics and Breeding, College of Animal Science, Henan University of Science and Technology, Luoyang, P. R. China
| |
Collapse
|
49
|
Effect of Age on Innate and Adaptive Immunity in Hospitalized COVID-19 Patients. J Clin Med 2021; 10:jcm10204798. [PMID: 34682920 PMCID: PMC8538457 DOI: 10.3390/jcm10204798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022] Open
Abstract
An effective but balanced cellular and inflammatory immune response may limit the severity of coronavirus disease (COVID-19), whereas uncontrolled inflammation leads to disease progression. Older age is associated with higher risk of COVID-19 and a worse outcome, but the underlying immunological mechanisms for this age-related difference are not clear. We investigated the impact of age on viral replication, inflammation, and innate and adaptive cellular immune responses in 205 hospitalized COVID-19 patients. During the early symptomatic phase of COVID-19, we found that patients above 65 years had significantly higher viral load, higher levels of proinflammatory markers, and inadequate mobilization and activation of monocytes, dendritic cells, natural killer cells, and CD8 T cells compared to those below 65 years. Our study points toward age-related deficiencies in the innate immune cellular response to SARS-CoV-2 as a potential cause of poorly controlled viral replication and inflammation during the early symptom phase and subsequent disease progression.
Collapse
|
50
|
Fukuma N, Hulke ML, Brener MI, Golob S, Zilinyi R, Zhou Z, Tzimas C, Russo I, McGroder C, Pfeiffer R, Chong A, Zhang G, Burkhoff D, Leon MB, Maurer M, Moses JW, Uhlemann AC, Hibshoosh H, Uriel N, Szabolcs MJ, Redfors B, Marboe CC, Baldwin MR, Tucker NR, Tsai EJ. Molecular Pathophysiology of Cardiac Injury and Cardiac Microthrombi in Fatal COVID-19: Insights from Clinico-histopathologic and Single Nuclei RNA Sequencing Analyses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34341789 DOI: 10.1101/2021.07.27.453843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cardiac injury is associated with critical COVID-19, yet its etiology remains debated. To elucidate the pathogenic mechanisms of COVID-19-associated cardiac injury, we conducted a single-center prospective cohort study of 69 COVID-19 decedents. Of six cardiac histopathologic features, microthrombi was the most commonly detected (n=48, 70%). We tested associations of cardiac microthrombi with biomarkers of inflammation, cardiac injury, and fibrinolysis and with in-hospital antiplatelet therapy, therapeutic anticoagulation, and corticosteroid treatment, while adjusting for multiple clinical factors, including COVID-19 therapies. Higher peak ESR and CRP during hospitalization were independently associated with higher odds of microthrombi. Using single nuclei RNA-sequence analysis, we discovered an enrichment of pro-thrombotic/anti-fibrinolytic, extracellular matrix remodeling, and immune-potentiating signaling amongst cardiac fibroblasts in microthrombi-positive COVID-19 hearts relative to microthrombi-negative COVID-19. Non-COVID-19 non-failing hearts were used as reference controls. Our cumulative findings identify the specific transcriptomic changes in cardiac fibroblasts as salient features of COVID-19-associated cardiac microthrombi.
Collapse
|