1
|
Abu-Basha EA, Ismail ZB, Widemann L, Daradkeh Y, Al-Omari O, Fahmawi A, Lakaideh M, Sha'fout B, Mellhem H, Al-Bayari L, Talafha H, Hijazeen Z, Al-Omari B, DeMarco J, Karesh WB. Serological prevalence of Brucella spp. at the livestock-human interface in Jordan. One Health 2024; 19:100906. [PMID: 39434855 PMCID: PMC11492327 DOI: 10.1016/j.onehlt.2024.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
Despite its endemic status in the Middle East, key knowledge gaps persist regarding the prevalence, transmission rate, and geographical distribution of both human and livestock brucellosis in Jordan. This study aimed to investigate the seroprevalence of human and livestock brucellosis as well as the incidence of brucellosis in humans in Jordan. A total of 500 human participants (202 exposed and 296 unexposed to livestock) were enrolled in the study. Sampling was conducted at baseline and 1.5 years later. Additionally, a total of 700 livestock were sampled, comprising 20 animals per taxa (camels, cattle, sheep, goats) per site, at both baseline (N = 350) and the 1.5-year follow-up (N = 350). Human participants were longitudinally followed, whereas livestock sampling was conducted opportunistically. Blood samples obtained from both humans and livestock at baseline and follow-up were tested for Brucella spp. serum antibodies using the Rose Bengal test (RBT) and complement fixation test (CFT). The overall seroprevalence of brucellosis in humans at baseline was 3.4 % (95 % CI: 2.0-5.4). Positive test results in humans were detected from all five sites with no significant regional variation observed. Seroprevalence was higher in individuals regularly exposed to livestock (6.1 %; 95 % CI: 3.5-9.9) compared to those not regularly exposed (0.80 %; 95 % CI: 0.10-2.9). Incidence of human brucellosis was 924 seropositives per 100,000 person-years, with all incident seropositives occurring in the livestock-exposed cohort. In livestock, the overall seroprevalence of brucellosis was 5.4 % (95 % CI: 3.5-8.3) at baseline compared to 2.6 % (95 % CI: 1.4-4.8) at follow-up. Seropositive livestock were detected at all sites apart from Al-Zarqa, and in all species apart from camels. In conclusion: Brucellosis burden was higher among humans regularly exposed to livestock, re-emphasizing the need for disease control in livestock populations to prevent primary infection in humans.
Collapse
Affiliation(s)
| | | | - Lea Widemann
- EcoHealth Alliance, 520 Eighth Avenue, Ste. 1200, New York, NY 10018, USA
| | | | - Omar Al-Omari
- Jordan University of Science and Technology, Irbid, Jordan
| | - Alaa Fahmawi
- King Abdullah University Hospital, Irbid, Jordan
| | - Mais Lakaideh
- Jordan University of Science and Technology, Irbid, Jordan
| | | | - Haia Mellhem
- Jordan University of Science and Technology, Irbid, Jordan
| | - Leen Al-Bayari
- Jordan University of Science and Technology, Irbid, Jordan
| | - Hani Talafha
- Jordan University of Science and Technology, Irbid, Jordan
| | - Zaidoun Hijazeen
- Food and Agriculture Organization of the United Nations (FAO), Amman, Jordan
| | - Bilal Al-Omari
- Jordan University of Science and Technology, Irbid, Jordan
| | - Jean DeMarco
- EcoHealth Alliance, 520 Eighth Avenue, Ste. 1200, New York, NY 10018, USA
| | - William B. Karesh
- EcoHealth Alliance, 520 Eighth Avenue, Ste. 1200, New York, NY 10018, USA
| |
Collapse
|
2
|
Tian T, Zhu Y, Shi J, Shang K, Yin Z, Shi H, He Y, Ding J, Zhang F. The development of a human Brucella mucosal vaccine: What should be considered? Life Sci 2024; 355:122986. [PMID: 39151885 DOI: 10.1016/j.lfs.2024.122986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Brucellosis is a chronic infectious disease that is zoonotic in nature. Brucella can infect humans through interactions with livestock, primarily via the digestive tract, respiratory tract, and oral cavity. This bacterium has the potential to be utilized as a biological weapon and is classified as a Category B pathogen by the Centers for Disease Control and Prevention. Currently, there is no approved vaccine for humans against Brucella, highlighting an urgent need for the development of a vaccine to mitigate the risks posed by this pathogen. Brucella primarily infects its host by adhering to and penetrating mucosal surfaces. Mucosal immunity plays a vital role in preventing local infections, clearing microorganisms from mucosal surfaces, and inhibiting the spread of pathogens. As mucosal vaccine strategies continue to evolve, the development of a safe and effective mucosal vaccine against Brucella appears promising.This paper reviews the immune mechanism of mucosal vaccines, the infection mechanism of Brucella, successful Brucella mucosal vaccines in animals, and mucosal adjuvants. Additionally, it elucidates targeting and optimization strategies for mucosal vaccines to facilitate the development of human vaccines against Brucella.
Collapse
Affiliation(s)
- Tingting Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Yuejie Zhu
- Reproductive Fertility Assistance Center, First Afffliated Hospital of Xinjiang Medical University, China
| | - Juan Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Kaiyu Shang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Zhengwei Yin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Huidong Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Yueyue He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Jianbing Ding
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Fengbo Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China; Department of Clinical laboratory, The First Affiliated hospital of Xinjiang Medical University, China.
| |
Collapse
|
3
|
Guo N, Gui YJ, Chen Y. Vitrectomy Combined with Repeated Intravitreal Injection of Ceftazidime for the Treatment of Brucellosis Endophthalmitis: A Case Report and Literature Review. Semin Ophthalmol 2024:1-4. [PMID: 39360442 DOI: 10.1080/08820538.2024.2412050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE To present a treatment regimen for Brucellosis endophthalmitis that resulted in a good visual outcome. Additionally, we conducted a literature review on the treatment and visual prognosis of related cases. CASE PRESENTATION A 49-year-old woman with the chief complaint of decreased vision and redness in the right eye was initially diagnosed with noninfectious uveitis and prescribed high-dose steroids which led to transient improvement followed by a decline in vision. An infectious cause was suspected. Metagenomic next-generation sequencing of vitreous fluid and serological testing confirmed Brucella melitensis infection. The patient underwent vitrectomy combined with six intravitreal injections of ceftazidime in the right eye in addition to systemic antibiotic treatment. The intraocular inflammation was completely resolved, and the visual acuity recovered to 20/25, which is the best-documented recovery in Brucella endophthalmitis cases, as revealed by the literature review. CONCLUSION Vitrectomy combined with repeated intravitreal injections of ceftazidime can enhance the treatment for brucellosis endophthalmitis and achieve a better visual prognosis.
Collapse
Affiliation(s)
- Nan Guo
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Yu-Jia Gui
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Ying Chen
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| |
Collapse
|
4
|
Akmayan I, Oztav S, Coksu I, Abamor ES, Acar S, Ozbek T. Construction of recombinant Omp25 or EipB protein loaded PLGA nanovaccines for Brucellosis protection. NANOTECHNOLOGY 2024; 35:395707. [PMID: 38917779 DOI: 10.1088/1361-6528/ad5b66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Safe and effective vaccine candidates are needed to address the limitations of existing vaccines against Brucellosis, a disease responsible for substantial economic losses in livestock. The present study aimed to encapsulate recombinant Omp25 and EipB proteins, knowledged antigen properties, into PLGA nanoparticles, characterize synthesized nanoparticles with different methods, and assessed theirin vitro/in vivoimmunostimulatory activities to develop new vaccine candidates. The recombinant Omp25 and EipB proteins produced with recombinant DNA technology were encapsulated into PLGA nanoparticles by double emulsion solvent evaporation technique. The nanoparticles were characterized using FE-SEM, Zeta-sizer, and FT-IR instruments to determine size, morphology, zeta potentials, and polydispersity index values, as well as to analyze functional groups chemically. Additionally, the release profiles and encapsulation efficiencies were assessed using UV-Vis spectroscopy. After loading with recombinant proteins, O-NPs reached sizes of 221.2 ± 5.21 nm, while E-NPs reached sizes of 274.4 ± 9.51 nm. The cumulative release rates of the antigens, monitored until the end of day 14, were determined to be 90.39% for O-NPs and 56.1% for E-NPs. Following the assessment of thein vitrocytotoxicity and immunostimulatory effects of both proteins and nanoparticles on the J774 murine macrophage cells,in vivoimmunization experiments were conducted using concentrations of 16µg ml-1for each protein. Both free antigens and antigen-containing nanoparticles excessively induced humoral immunity by increasing producedBrucella-specific IgG antibody levels for 3 times in contrast to control. Furthermore, it was also demonstrated that vaccine candidates stimulated Th1-mediated cellular immunity as well since they significantly raised IFN-gamma and IL-12 cytokine levels in murine splenocytes rather than IL-4 following to immunization. Additionally, the vaccine candidates conferred higher than 90% protection from the infection according to challenge results. Our findings reveal that PLGA nanoparticles constructed with the encapsulation of recombinant Omp25 or EipB proteins possess great potential to triggerBrucella-specific humoral and cellular immune response.
Collapse
Affiliation(s)
- Ilkgul Akmayan
- Department of Molecular Biology and Genetics Faculty of Arts and Sciences, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Sedanur Oztav
- Department of Bioengineering, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Irem Coksu
- Department of Bioengineering, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Emrah Sefik Abamor
- Department of Bioengineering, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Serap Acar
- Department of Bioengineering, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Tulin Ozbek
- Department of Molecular Biology and Genetics Faculty of Arts and Sciences, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| |
Collapse
|
5
|
Khairullah AR, Kurniawan SC, Puspitasari Y, Aryaloka S, Silaen OSM, Yanestria SM, Widodo A, Moses IB, Effendi MH, Afnani DA, Ramandinianto SC, Hasib A, Riwu KHP. Brucellosis: Unveiling the complexities of a pervasive zoonotic disease and its global impacts. Open Vet J 2024; 14:1081-1097. [PMID: 38938422 PMCID: PMC11199761 DOI: 10.5455/ovj.2024.v14.i5.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/08/2024] [Indexed: 06/29/2024] Open
Abstract
One zoonotic infectious animal disease is brucellosis. The bacteria that cause brucellosis belong to the genus Brucella. Numerous animal and human species are affected by brucellosis, with an estimated 500,000 human cases recorded annually worldwide. The occurrence of new areas of infection and the resurgence of infection in already infected areas indicate how dynamically brucellosis is distributed throughout different geographic regions. Bacteria originate from the blood and are found in the reticuloendothelial system, the liver, the spleen, and numerous other locations, including the joints, kidneys, heart, and genital tract. Diagnosis of this disease can be done by bacterial isolation, molecular tests, modified acid-fast stain, rose bengal test (RBT), milk ring test, complement fixation test, enzyme-linked immunosorbent assay, and serum agglutination test. The primary sign of a Brucella abortus infection is infertility, which can result in abortion and the birth of a frail fetus that may go on to infect other animals. In humans, the main symptoms are acute febrile illness, with or without localization signs, and chronic infection. Female cattle have a greater risk of contracting Brucella disease. Human populations at high risk of contracting brucellosis include those who care for cattle, veterinarians, slaughterhouse employees, and butchers. Antibiotic treatment of brucellosis is often unsuccessful due to the intracellular survival of Brucella and its adaptability in macrophages. A "one health" strategy is necessary to control illnesses like brucellosis.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Shendy Canadya Kurniawan
- Master Program of Animal Sciences, Department of Animal Sciences, Specialisation in Molecule, Cell and Organ Functioning, Wageningen University and Research, Wageningen, The Netherlands
| | - Yulianna Puspitasari
- Division of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Suhita Aryaloka
- Master Program of Veterinary Agribusiness, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Agus Widodo
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Daniah Ashri Afnani
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| | | | - Abdullah Hasib
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Queensland
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| |
Collapse
|
6
|
Kazemi-Roudsari M, Doosti A, Jami MS. Design of an oral vaccine using Lactococcus lactis against brucellosis: an in vitro and in vivo study. AMB Express 2024; 14:2. [PMID: 38170414 PMCID: PMC10764709 DOI: 10.1186/s13568-023-01638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024] Open
Abstract
Brucellosis is regarded as one of the world's most severe zoonotic diseases. This study aimed to investigate the possibility of using recombinant Lactococcus lactis (L. lactis) as a live vector to produce recombinant Brucella abortus (B. abortus) Omp10. The gene sequences were obtained from GenBank. The proteins' immunogenicity was assessed using Vaxijen. After confirming the cloning of the Omp10 gene in the pNZ8148 vector by enzymatic digestion and PCR, transformation into L. lactis was done. SDS-PAGE and western blot methods evaluated omp10 protein expression. Mice received oral recombinant L. lactis vaccines. IgG antibodies against Omp10 were tested using ELISA. Real-time PCR and ELISA were used to analyze cytokine responses. Survival rate and histopathological changes were evaluated after the challenge. Omp10 was chosen for its 1.5524 antigenicity score. Enzymatic digestion and PCR identified a 381-bp gene fragment. A 10 kDa band indicated the success of L. lactis transformation. Mice administered the L. lactis-pNZ8148-Omp10-Usp45 vaccination 14 days after priming showed significantly higher Omp10-specific total IgG and IgG1 (P < 0.001) than the PBS control group. The mice who received the L. lactis-pNZ8148-Omp10-Usp45 and IRBA vaccines had significantly elevated levels of IFN-γ, TNFα, IL-4, and IL-10 in samples collected on days 14 and 28 (P < 0.001). Inflammatory response, morphological damage, alveolar edema, and lymphocyte infiltration were reduced in the target group. A recombinant L. lactis expressing the Omp10 protein was constructed as an oral Lactococcus-based vaccine and compared to live attenuated vaccines for future brucellosis investigations.
Collapse
Affiliation(s)
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohammad-Saeid Jami
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Research Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
7
|
Zheng M, Lin R, Zhu J, Dong Q, Chen J, Jiang P, Zhang H, Liu J, Chen Z. Effector Proteins of Type IV Secretion System: Weapons of Brucella Used to Fight Against Host Immunity. Curr Stem Cell Res Ther 2024; 19:145-153. [PMID: 36809969 DOI: 10.2174/1574888x18666230222124529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/15/2022] [Accepted: 12/29/2022] [Indexed: 02/24/2023]
Abstract
Brucella is an intracellular bacterial pathogen capable of long-term persistence in the host, resulting in chronic infections in livestock and wildlife. The type IV secretion system (T4SS) is an important virulence factor of Brucella and is composed of 12 protein complexes encoded by the VirB operon. T4SS exerts its function through its secreted 15 effector proteins. The effector proteins act on important signaling pathways in host cells, inducing host immune responses and promoting the survival and replication of Brucella in host cells to promote persistent infection. In this article, we describe the intracellular circulation of Brucella-infected cells and survey the role of Brucella VirB T4SS in regulating inflammatory responses and suppressing host immune responses during infection. In addition, the important mechanisms of these 15 effector proteins in resisting the host immune response during Brucella infection are elucidated. For example, VceC and VceA assist in achieving sustained survival of Brucella in host cells by affecting autophagy and apoptosis. BtpB, together with BtpA, controls the activation of dendritic cells during infection, induces inflammatory responses, and controls host immunity. This article reviews the effector proteins secreted by Brucella T4SS and their involvement in immune responses, which can provide a reliable theoretical basis for the subsequent mechanism of hijacking the host cell signaling pathway by bacteria and contribute to the development of better vaccines to effectively treat Brucella bacterial infection.
Collapse
Affiliation(s)
- Min Zheng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Ruiqi Lin
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Jinying Zhu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Qiao Dong
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Jingjing Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Pengfei Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Huan Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Jinling Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| |
Collapse
|
8
|
Kazemi D, Doosti A, Shakhsi-Niaei M. Immunization of BALB/c mice with BAB1-0278: An initial investigation of a novel potential vaccine for brucellosis based on Lactococcus Lactis vector. Microb Pathog 2023; 185:106417. [PMID: 37866552 DOI: 10.1016/j.micpath.2023.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
The gram-negative intracellular bacterium Brucella abortus causes bovine brucellosis, a zoonotic disease that costs a lot of money. This work developed a vector vaccine against brucellosis utilizing recombinant L. lactis expressing Brucella outer membrane protein BAB1-0278. Gene sequences were obtained from GenBank. The proteins' immunogenicity was tested with Vaxijen. The target vector was converted into L. lactis after enzymatic digestion and PCR validated the BAB1-0278 gene cloning in the pNZ8148 vector. The target protein was extracted using a Ni-NTA column and confirmed using SDS-PAGE and western blot. After vaccination with the target vaccine, the expression of IgG subclasses was evaluated by the ELISA method. Cytokine production was also measured by the qPCR method in the small intestine and spleen. Lymphocyte proliferation and innate immune response (NLR, CRP, and PLR) were also assessed. Finally, after the challenge test, the spleen tissue was examined by H&E staining. BAB1-0278 was chosen because of its antigenicity score of 0.5614. A 237-bp gene fragment was discovered using enzymatic digestion and PCR. The presence of a 13 kDa protein band was confirmed by SDS-PAGE and western blot. In comparison to the PBS group, mice given the L. lactis-pNZ8148-BAB1-0278-Usp45 vaccine 14 days after priming had substantially greater levels of total IgG, IgG1, and IgG2a (P < 0.001). Also, the production of cytokines (IFN-γ, TNFα, IL-4, and IL-10) indicating cellular immunity increased compared to the control group (P < 0.001). The target group had a lower inflammatory response, morphological impairment, alveolar edema, and lymphocyte infiltration. An efficient probiotic-based oral brucellosis vaccination was created. These studies have proven that the recommended immunization gives the best protection, which supports its promotion.
Collapse
Affiliation(s)
- Donya Kazemi
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mostafa Shakhsi-Niaei
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
9
|
Dawood AS, Elrashedy A, Nayel M, Salama A, Guo A, Zhao G, Algharib SA, Zaghawa A, Zubair M, Elsify A, Mousa W, Luo W. Brucellae as resilient intracellular pathogens: epidemiology, host-pathogen interaction, recent genomics and proteomics approaches, and future perspectives. Front Vet Sci 2023; 10:1255239. [PMID: 37876633 PMCID: PMC10591102 DOI: 10.3389/fvets.2023.1255239] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Brucellosis is considered one of the most hazardous zoonotic diseases all over the world. It causes formidable economic losses in developed and developing countries. Despite the significant attempts to get rid of Brucella pathogens in many parts of the world, the disease continues to spread widely. Recently, many attempts proved to be effective for the prevention and control of highly contagious bovine brucellosis, which could be followed by others to achieve a prosperous future without rampant Brucella pathogens. In this study, the updated view for worldwide Brucella distribution, possible predisposing factors for emerging Brucella pathogens, immune response and different types of Brucella vaccines, genomics and proteomics approaches incorporated recently in the field of brucellosis, and future perspectives for prevention and control of bovine brucellosis have been discussed comprehensively. So, the current study will be used as a guide for researchers in planning their future work, which will pave the way for a new world without these highly contagious pathogens that have been infecting and threatening the health of humans and terrestrial animals.
Collapse
Affiliation(s)
- Ali Sobhy Dawood
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Alyaa Elrashedy
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mohamed Nayel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Akram Salama
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Samah Attia Algharib
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues (HZAU), Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ahmed Zaghawa
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Muhammed Zubair
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ahmed Elsify
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Walid Mousa
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| |
Collapse
|
10
|
Han K, Dong H, Peng X, Sun J, Jiang H, Feng Y, Ding J, Xiao S. Transcriptome and the gut microbiome analysis of the impacts of Brucella abortus oral infection in BALB/c mice. Microb Pathog 2023; 183:106278. [PMID: 37532208 DOI: 10.1016/j.micpath.2023.106278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Brucellosis is a zoonotic infectious disease caused by Brucella spp, which could cause serious economic losses to animal husbandry and threaten human public health. Ingestion of contaminated animal products is a common way to acquire Brucella infection in humans, while research on effect of oral Brucella infection on host gut microbiota and the gene expression in intestinal tissues is limited. In the present study, 16S rRNA sequencing and RNA sequencing were conducted to explore gut microbiota and expression profiles of mRNAs in the colon of BALB/c mice, which were infected by Brucella abortus 2308. The fecal samples were collected at 7 and 28 days post infection to observe changes in the gut microbiota during Brucella infection. In the alpha diversity analysis, significantly increased Chao 1 index was observed at 28 days after Brucella infection. The Bray-Curtis distancebased principal coordinate analysis indicated that the WT group showed a separation from the Brucella infection groups. In addition, analysis of composition of microbes revealed that Prevotellaceae_NK3B31_group were more abundant in 1 week and 4 week infection groups, while Turicibacter was only more abundant in 4 week infection group. Based on the RNA-seq assay, a total of 45 differentially expressed genes were detected between Brucella abortus infection group and control group. Furthermore, KEGG pathway enrichment analysis showed that protein processing in endoplasmic reticulum, Legionellosis, Spliceosome, Hippo signaling pathway and Influenza A were significantly enriched in response to Brucella abortus infection. Our finding will help to improve the knowledge of the mechanisms underlying Brucella infection and may provide novel targets for future treatment of this pathogen infection.
Collapse
Affiliation(s)
- Kun Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Dong
- National Institutes for Food and Drug Control, Beijing, 102600, China
| | - Xiaowei Peng
- China Institute of Veterinary Drug Control, Beijing, 102600, China
| | - Jiali Sun
- China Institute of Veterinary Drug Control, Beijing, 102600, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Hui Jiang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yu Feng
- China Institute of Veterinary Drug Control, Beijing, 102600, China
| | - Jiabo Ding
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Lionello FCP, Rotundo S, Bruno G, Marino G, Morrone HL, Fusco P, Costa C, Russo A, Trecarichi EM, Beltrame A, Torti C. Touching Base with Some Mediterranean Diseases of Interest from Paradigmatic Cases at the "Magna Graecia" University Unit of Infectious Diseases: A Didascalic Review. Diagnostics (Basel) 2023; 13:2832. [PMID: 37685370 PMCID: PMC10486464 DOI: 10.3390/diagnostics13172832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Among infectious diseases, zoonoses are increasing in importance worldwide, especially in the Mediterranean region. We report herein some clinical cases from a third-level hospital in Calabria region (Southern Italy) and provide a narrative review of the most relevant features of these diseases from epidemiological and clinical perspectives. Further, the pathogenic mechanisms involved in zoonotic diseases are reviewed, focusing on the mechanisms used by pathogens to elude the immune system of the host. These topics are of particular concern for individuals with primary or acquired immunodeficiency (e.g., people living with HIV, transplant recipients, patients taking immunosuppressive drugs). From the present review, it appears that diagnostic innovations and the availability of more accurate methods, together with better monitoring of the incidence and prevalence of these infections, are urgently needed to improve interventions for better preparedness and response.
Collapse
Affiliation(s)
- Ferdinando Carmelo Pio Lionello
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
| | - Salvatore Rotundo
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
| | - Gabriele Bruno
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
| | - Gabriella Marino
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
| | - Helen Linda Morrone
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
| | - Paolo Fusco
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
- Unit of Infectious and Tropical Diseases, “Mater Domini” Teaching Hospital, 88100 Catanzaro, Italy;
| | - Chiara Costa
- Unit of Infectious and Tropical Diseases, “Mater Domini” Teaching Hospital, 88100 Catanzaro, Italy;
| | - Alessandro Russo
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
- Unit of Infectious and Tropical Diseases, “Mater Domini” Teaching Hospital, 88100 Catanzaro, Italy;
| | - Enrico Maria Trecarichi
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
- Unit of Infectious and Tropical Diseases, “Mater Domini” Teaching Hospital, 88100 Catanzaro, Italy;
| | - Anna Beltrame
- College of Public Health, University of South Florida, Gainesville, FL 33620, USA;
| | - Carlo Torti
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
- Unit of Infectious and Tropical Diseases, “Mater Domini” Teaching Hospital, 88100 Catanzaro, Italy;
| |
Collapse
|
12
|
Long GS, Hider J, Duggan AT, Klunk J, Eaton K, Karpinski E, Giuffra V, Ventura L, Prowse TL, Fornaciari A, Fornaciari G, Holmes EC, Golding GB, Poinar HN. A 14th century CE Brucella melitensis genome and the recent expansion of the Western Mediterranean clade. PLoS Pathog 2023; 19:e1011538. [PMID: 37523413 PMCID: PMC10414615 DOI: 10.1371/journal.ppat.1011538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/10/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023] Open
Abstract
Brucellosis is a disease caused by the bacterium Brucella and typically transmitted through contact with infected ruminants. It is one of the most common chronic zoonotic diseases and of particular interest to public health agencies. Despite its well-known transmission history and characteristic symptoms, we lack a more complete understanding of the evolutionary history of its best-known species-Brucella melitensis. To address this knowledge gap we fortuitously found, sequenced and assembled a high-quality ancient B. melitensis draft genome from the kidney stone of a 14th-century Italian friar. The ancient strain contained fewer core genes than modern B. melitensis isolates, carried a complete complement of virulence genes, and did not contain any indication of significant antimicrobial resistances. The ancient B. melitensis genome fell as a basal sister lineage to a subgroup of B. melitensis strains within the Western Mediterranean phylogenetic group, with a short branch length indicative of its earlier sampling time, along with a similar gene content. By calibrating the molecular clock we suggest that the speciation event between B. melitensis and B. abortus is contemporaneous with the estimated time frame for the domestication of both sheep and goats. These results confirm the existence of the Western Mediterranean clade as a separate group in the 14th CE and suggest that its divergence was due to human and ruminant co-migration.
Collapse
Affiliation(s)
- George S. Long
- Department of Biology, McMaster University, Hamilton, Canada
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
| | - Jessica Hider
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
- Department of Anthropology, McMaster University, Hamilton, Canada
| | - Ana T. Duggan
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
- Department of Anthropology, McMaster University, Hamilton, Canada
| | - Jennifer Klunk
- Department of Biology, McMaster University, Hamilton, Canada
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
- Daicel Arbor Biosciences, Ann Arbor, Michigan, United States of America
| | - Katherine Eaton
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
- Department of Anthropology, McMaster University, Hamilton, Canada
| | - Emil Karpinski
- Department of Biology, McMaster University, Hamilton, Canada
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
| | - Valentina Giuffra
- Division of Paleopathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Luca Ventura
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- Division of Pathology, San Salvatore Hospital, Coppito, Italy
| | - Tracy L. Prowse
- Department of Anthropology, McMaster University, Hamilton, Canada
| | - Antonio Fornaciari
- Division of Paleopathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, University of Sydney, Sydney, Australia
| | | | - Hendrik N. Poinar
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
- Department of Anthropology, McMaster University, Hamilton, Canada
- Department of Biochemistry, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- CIFAR Humans and the Microbiome Program, Toronto, Canada
| |
Collapse
|
13
|
Yang Y, Liu KL, Zhao R, Chang XY. Brucella pleuritis misdiagnosed as tuberculous pleuritis: a case report. J Int Med Res 2023; 51:3000605231187952. [PMID: 37523165 PMCID: PMC10392410 DOI: 10.1177/03000605231187952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Pleurisy and pleural effusion caused by Brucella infection are rare. However, clinicians lack an understanding of these possibilities, and the underlying disorder is easy to misdiagnose. We report a 52-year-old male farmer who was admitted to hospital with a fever, chest pain, and shortness of breath. Closed chest drainage was performed by thoracocentesis, and the concentration of adenosine deaminase (ADA) in the pleural fluid was >45 U/L. Mononuclear cells in the pleural fluid accounted for 90% of the cells, and pathology indicated a large number of lymphocytes. The clinical diagnosis was tuberculosis with tuberculous pleurisy. However, subsequent pleural fluid culture results did not support tuberculous pleurisy. The results of pleural fluid culture indicated Brucella, and the results of Brucella tiger red plate agglutination indicated a titer of 1:400 (+++). The final diagnosis was brucellosis with pneumonia and pleurisy. After 12 weeks of oral treatment, the patient underwent follow-up chest radiographs. Radiography indicated complete resolution of the hydrothorax and pneumonia, and the patient reported no discomfort. The short-term curative effect was excellent. Pleurisy associated with brucellosis should be considered a differential for pleurisy in regions where brucellosis is endemic, to minimize the risk of misdiagnosis.
Collapse
Affiliation(s)
- Yong Yang
- Baotou City Central Hospital, Pulmonary and Critical Care Medicine, 61 Ring Road, Donghe District, Baotou, Inner Mongolia, China
- Baotou Clinical Medical School of Inner Mongolia Medical University, 61 Ring Road, Donghe District, Baotou, Inner Mongolia, China
- Baotou Medical College, Inner Mongolia University of Science and Technology, 31 Jianshe Road, Donghe District, Baotou City, Inner Mongolia, China
| | - Ke-Liang Liu
- Baotou City Central Hospital, Pulmonary and Critical Care Medicine, 61 Ring Road, Donghe District, Baotou, Inner Mongolia, China
- Baotou Clinical Medical School of Inner Mongolia Medical University, 61 Ring Road, Donghe District, Baotou, Inner Mongolia, China
- Baotou Medical College, Inner Mongolia University of Science and Technology, 31 Jianshe Road, Donghe District, Baotou City, Inner Mongolia, China
| | - Rui Zhao
- Baotou City Central Hospital, Pulmonary and Critical Care Medicine, 61 Ring Road, Donghe District, Baotou, Inner Mongolia, China
- Baotou Clinical Medical School of Inner Mongolia Medical University, 61 Ring Road, Donghe District, Baotou, Inner Mongolia, China
- Baotou Medical College, Inner Mongolia University of Science and Technology, 31 Jianshe Road, Donghe District, Baotou City, Inner Mongolia, China
| | - Xiao-Yue Chang
- Baotou City Central Hospital, Pulmonary and Critical Care Medicine, 61 Ring Road, Donghe District, Baotou, Inner Mongolia, China
- Baotou Clinical Medical School of Inner Mongolia Medical University, 61 Ring Road, Donghe District, Baotou, Inner Mongolia, China
- Baotou Medical College, Inner Mongolia University of Science and Technology, 31 Jianshe Road, Donghe District, Baotou City, Inner Mongolia, China
| |
Collapse
|
14
|
Brucella abortus induces mast cell activation through TLR-2 and TLR-4. Microb Pathog 2023; 176:106005. [PMID: 36717005 DOI: 10.1016/j.micpath.2023.106005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
The Gram-negative bacteria Brucella abortus is a major cause of brucellosis in animals and humans. The host innate immune response to B. abortus is mainly associated with phagocytic cells such as dendritic cells, neutrophils, and macrophages. However, as mast cells naturally reside in the main bacterial entry sites they may be involved in bacterial recognition. At present, little is known about the role of mast cells during B. abortus infection. The role of the innate immune receptors TLR2 and TLR4 in activation of mast cells by B. abortus (strain RB51) infection was analyzed in this study. The results showed that B. abortus did not induce mast cell degranulation, but did induce the synthesis of the cytokines IL-1β, IL-6, TNF-α, CCL3, CCL4, and CCL5. Furthermore, B. abortus stimulated key cell signaling molecules involved in mast cell activation such as p38 and NF-κB. Blockade of the receptors TLR2 and TLR4 decreased TNF-α and IL-6 release by mast cells in response to B. abortus. Taken together, our results demonstrate that mast cells are activated by B. abortus and may play a role in inducing an inflammatory response during the initial phase of the infection.
Collapse
|
15
|
Abushahba MF, Dadelahi AS, Lemoine EL, Skyberg JA, Vyas S, Dhoble S, Ghodake V, Patravale VB, Adamovicz JJ. Safe Subunit Green Vaccines Confer Robust Immunity and Protection against Mucosal Brucella Infection in Mice. Vaccines (Basel) 2023; 11:vaccines11030546. [PMID: 36992130 DOI: 10.3390/vaccines11030546] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Brucellosis is a zoonotic disease that causes significant negative impacts on the animal industry and affects over half a million people worldwide every year. The limited safety and efficacy of current animal brucellosis vaccines, combined with the lack of a licensed human brucellosis vaccine, have led researchers to search for new vaccine strategies to combat the disease. To this end, the present research aimed to evaluate the safety and efficacy of a green vaccine candidate that combines Brucella abortus S19 smooth lipopolysaccharide (sLPS) with Quillaja saponin (QS) or QS-Xyloglucan mix (QS-X) against mucosal brucellosis in BALB/C mice. The results of the study indicate that administering two doses of either sLPS-QS or sLPS-QS-X was safe for the animals, triggered a robust immune response, and enhanced protection following intranasal challenge with S19. Specifically, the vaccine combinations led to the secretion of IgA and IgG1 in the BALF of the immunized mice. We also found a mixed IgG1/IgG2a systemic response indicating evidence of both Th1 and Th2 activation, with a predominance of the IgG1 over the IgG2a. These candidates resulted in significant reductions in the bioburden of lung, liver, and spleen tissue compared to the PBS control group. The sLPS-QS vaccination had conferred the greatest protection, with a 130-fold reduction in Brucella burdens in lung and a 55.74-fold reduction in the spleen compared to PBS controls. Vaccination with sLPS-QS-X resulted in the highest reduction in splenic Brucella loads, with a 364.6-fold decrease in bacterial titer compared to non-vaccinated animals. The study suggests that the tested vaccine candidates are safe and effective in increasing the animals’ ability to respond to brucellosis via mucosal challenge. It also supports the use of the S19 challenge strain as a safe and cost-effective method for testing Brucella vaccine candidates under BSL-2 containment conditions.
Collapse
Affiliation(s)
- Mostafa F Abushahba
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Alexis S Dadelahi
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Emily L Lemoine
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Jerod A Skyberg
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Swati Vyas
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Sagar Dhoble
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Vinod Ghodake
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Jeffrey J Adamovicz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
16
|
Guo X, Zeng H, Li M, Xiao Y, Gu G, Song Z, Shuai X, Guo J, Huang Q, Zhou B, Chu Y, Jiao H. The mechanism of chronic intracellular infection with Brucella spp. Front Cell Infect Microbiol 2023; 13:1129172. [PMID: 37143745 PMCID: PMC10151771 DOI: 10.3389/fcimb.2023.1129172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Globally, brucellosis is a widespread zoonotic disease. It is prevalent in more than 170 countries and regions. It mostly damages an animal's reproductive system and causes extreme economic losses to the animal husbandry industry. Once inside cells, Brucella resides in a vacuole, designated the BCV, which interacts with components of the endocytic and secretory pathways to ensure bacterial survival. Numerous studies conducted recently have revealed that Brucella's ability to cause a chronic infection depends on how it interacts with the host. This paper describes the immune system, apoptosis, and metabolic control of host cells as part of the mechanism of Brucella survival in host cells. Brucella contributes to both the body's non-specific and specific immunity during chronic infection, and it can aid in its survival by causing the body's immune system to become suppressed. In addition, Brucella regulates apoptosis to avoid being detected by the host immune system. The BvrR/BvrS, VjbR, BlxR, and BPE123 proteins enable Brucella to fine-tune its metabolism while also ensuring its survival and replication and improving its ability to adapt to the intracellular environment.
Collapse
Affiliation(s)
- Xiaoyi Guo
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Hui Zeng
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Mengjuan Li
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yu Xiao
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Guojing Gu
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zhenhui Song
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xuehong Shuai
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Jianhua Guo
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Qingzhou Huang
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Bo Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
- *Correspondence: Bo Zhou, ; Yuefeng Chu, ; Hanwei Jiao,
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- *Correspondence: Bo Zhou, ; Yuefeng Chu, ; Hanwei Jiao,
| | - Hanwei Jiao
- The College of Veterinary Medicine, Southwest University, Chongqing, China
- The Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Bo Zhou, ; Yuefeng Chu, ; Hanwei Jiao,
| |
Collapse
|
17
|
Pascual DW, Goodwin ZI, Bhagyaraj E, Hoffman C, Yang X. Activation of mucosal immunity as a novel therapeutic strategy for combating brucellosis. Front Microbiol 2022; 13:1018165. [PMID: 36620020 PMCID: PMC9814167 DOI: 10.3389/fmicb.2022.1018165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Brucellosis is a disease of livestock that is commonly asymptomatic until an abortion occurs. Disease in humans results from contact of infected livestock or consumption of contaminated milk or meat. Brucella zoonosis is primarily caused by one of three species that infect livestock, Bacillus abortus in cattle, B. melitensis in goats and sheep, and B. suis in pigs. To aid in disease prophylaxis, livestock vaccines are available, but are only 70% effective; hence, improved vaccines are needed to mitigate disease, particularly in countries where disease remains pervasive. The absence of knowing which proteins confer complete protection limits development of subunit vaccines. Instead, efforts are focused on developing new and improved live, attenuated Brucella vaccines, since these mimic attributes of wild-type Brucella, and stimulate host immune, particularly T helper 1-type responses, required for protection. In considering their development, the new mutants must address Brucella's defense mechanisms normally active to circumvent host immune detection. Vaccination approaches should also consider mode and route of delivery since disease transmission among livestock and humans is believed to occur via the naso-oropharyngeal tissues. By arming the host's mucosal immune defenses with resident memory T cells (TRMs) and by expanding the sources of IFN-γ, brucellae dissemination from the site of infection to systemic tissues can be prevented. In this review, points of discussion focus on understanding the various immune mechanisms involved in disease progression and which immune players are important in fighting disease.
Collapse
|
18
|
Selection of Brucella abortus mimetic epitopes for fast diagnostic purposes in cattle. Vet Res Commun 2022; 47:987-997. [DOI: 10.1007/s11259-022-10043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/20/2022] [Indexed: 11/30/2022]
|
19
|
Mu J, Li Q, Yan X, Mao X, Shi Y, Qin Y, Liu C, Wang W. Detection of Brucella S2 vaccine strain by a loop-mediated isothermal amplification (LAMP) method. Front Cell Infect Microbiol 2022; 12:1023243. [PMID: 36530431 PMCID: PMC9755167 DOI: 10.3389/fcimb.2022.1023243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Brucellosis is a highly prevalent zoonotic disease caused by Brucella spp. Brucella suis S2 vaccination is an effective strategy to prevent animal brucellosis. However, S2 induces antibodies against the smooth lipopolysaccharide,making it challenging to distinguish field infected from vaccinated livestock. Early and accurate diagnosis is essential for infection control and prevention. In this study, we aimed to develop a quick and accurate assay to distinguish the BrucellaS2 vaccine strain from closely related B. abortus and B. melitensis. Methods Whole-genome sequencing of B. suis S2 was performed, and the sequence was compared with that of the genomes of B. abortus and B. melitensis. One specific gene, GL_0002189, was selected as a marker to differentiate the BrucellaS2vaccine strain from B. abortus and B. melitensis. A loop-mediated isothermal amplification (LAMP) assay was developed, based on the GL_0002189 gene, and then assessed for target specificity, lower limit of detection, and repeatability. Results Our results revealed that there was no cross-reaction with other strains, and the LAMP assay displayed high sensitivity for detecting S2 with a minimum detection limit of 18.9×103 copies/µL DNA input, it is nearly 100 times higher than conventional PCR technology. Concordance between the LAMP assay and a conventional polymerase chain reaction method was assessed using 54 blood samples collected from sheep with suspected brucellosis. Total concordance between the two assays was 92.6%, without a significant difference (p > 0.05) in the test results. Conclusion This is the first report of a LAMP assay for the detection of the B. suis S2vaccine strain. Our approach can be helpful for the control and eradication of brucellosis, and its simplicity in requiring no specialized equipment or personnel makes it useful for implementation in resource-limited settings as well as for field use.
Collapse
Affiliation(s)
- Jiaming Mu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhehot, China
| | - Qi Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhehot, China
| | - Xu Yan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhehot, China
| | - Xiaowei Mao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhehot, China
| | - Yaqin Shi
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhehot, China
| | - Yun Qin
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhehot, China
| | - Chunxia Liu
- College of Life Science, Inner Mongolia Agricultural University, Huhehot, China,*Correspondence: Wenlong Wang, ; Chunxia Liu,
| | - Wenlong Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhehot, China,*Correspondence: Wenlong Wang, ; Chunxia Liu,
| |
Collapse
|
20
|
Du Z, Zhang M, Qin Y, Zhao L, Huang L, Xu X, Yan Q. The role and mechanisms of the two-component system EnvZ/OmpR on the intracellular survival of Aeromonas hydrophila. JOURNAL OF FISH DISEASES 2022; 45:1609-1621. [PMID: 35822274 DOI: 10.1111/jfd.13684] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Aeromonas hydrophila infections are common in aquaculture. Our previous studies found that the A. hydrophila B11 strain can survive in fish macrophages for at least 24 h and the two-component system EnvZ/OmpR may be involved in intracellular survival. To reveal the role and mechanism of the two-component system EnvZ/OmpR in intracellular survival of A. hydrophila, the genes of envZ/ompR were silenced by shRNAi. The results showed that the survival rates of the envZ-RNAi and ompR-RNAi strains were only 2.05% and 3.75%, respectively, which were decreased by 91% and 83.6% compared with that of the wild-type strain. The escape ability of envZ-RNAi and ompR-RNAi was also decreased by 51.4% and 19.7%, respectively. The comparative transcriptome analysis revealed that the functional genes directly related to bacterial intracellular survival mainly included the genes related to anti-stress capacity, and the genes related to Zn2+ and Mg2+ transport. Further research confirmed that two-component system EnvZ/OmpR can regulate the expression of the important molecular chaperones, such as groEL, htpG, dnaK, clpB and grpE. The expression of these molecular chaperones in wild-type strain was up-regulated with the increase in H2 O2 concentrations, while the expression of these molecular chaperones in silent strains did not change significantly. Cells that phagocytosed wild-type strain had higher ROS content than cells that phagocytosed silent strains. Two-component system EnvZ/OmpR could also regulate zinc transporter (znuA, znuB, znuC) and zinc efflux protein (zntA) to maintain zinc homeostasis in cells, thus affecting the ability of bacteria to survive in phagocytes. Moreover, two-component system EnvZ/OmpR could affect the growth and intracellular survival of A. hydrophila by regulating the expression of MgtA, MgtC and MgtE and participating in bacterial Mg2+ homeostasis in fish macrophages.
Collapse
Affiliation(s)
- Ziyan Du
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Mengmeng Zhang
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| |
Collapse
|
21
|
Al-Nemrawi NK, Darweesh RS, Al-shriem LA, Al-Qawasmi FS, Emran SO, Khafajah AS, Abu-Dalo MA. Polymeric Nanoparticles for Inhaled Vaccines. Polymers (Basel) 2022; 14:4450. [PMID: 36298030 PMCID: PMC9607145 DOI: 10.3390/polym14204450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022] Open
Abstract
Many recent studies focus on the pulmonary delivery of vaccines as it is needle-free, safe, and effective. Inhaled vaccines enhance systemic and mucosal immunization but still faces many limitations that can be resolved using polymeric nanoparticles (PNPs). This review focuses on the use of properties of PNPs, specifically chitosan and PLGA to be used in the delivery of vaccines by inhalation. It also aims to highlight that PNPs have adjuvant properties by themselves that induce cellular and humeral immunogenicity. Further, different factors influence the behavior of PNP in vivo such as size, morphology, and charge are discussed. Finally, some of the primary challenges facing PNPs are reviewed including formulation instability, reproducibility, device-related factors, patient-related factors, and industrial-level scale-up. Herein, the most important variables of PNPs that shall be defined in any PNPs to be used for pulmonary delivery are defined. Further, this study focuses on the most popular polymers used for this purpose.
Collapse
Affiliation(s)
- Nusaiba K. Al-Nemrawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Ruba S. Darweesh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Lubna A. Al-shriem
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Farah S. Al-Qawasmi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Sereen O. Emran
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Areej S. Khafajah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Muna A. Abu-Dalo
- Department of Chemistry, Faculty of Science and Art, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
22
|
Goodwin ZI, Yang X, Hoffman C, Pascual DW. Live mucosal vaccination stimulates potent protection via varied CD4+ and CD8+ T cell subsets against wild-type Brucella melitensis 16M challenge. Front Immunol 2022; 13:995327. [PMID: 36263034 PMCID: PMC9574439 DOI: 10.3389/fimmu.2022.995327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022] Open
Abstract
Re-emerging zoonotic pathogen Brucella spp. continues to impact developing countries and persists in expanding populations of wildlife species in the US, constantly threatening infection of our domestic herds. The development of improved animal and human vaccines remains a priority. In this study, immunity to a novel live attenuated B. melitensis strain, termed znBM-mC, was characterized. An oral prime, intranasal (IN) boost strategy conferred exquisite protection against pulmonary challenge, with wild-type (wt) B. melitensis providing nearly complete protection in the lungs and spleens from brucellae colonization. Vaccination with znBM-mC showed an IFN-γ+ CD8+ T-cell bias in the lungs as opposed to Rev 1-vaccinated mice showing IFN-γ+ CD4+ T-cell inclination. Lung CD4+ and CD8+ effector memory T cells (TEMs) increased over 200-fold; and lung CD4+ and CD8+ resident memory T cells (TRMs) increased more than 250- and 150-fold, respectively. These T cells served as the primary producers of IFN-γ in the lungs, which was essential for vaccine clearance and the predominant cytokine generated pre-and post-challenge with wt B. melitensis 16M; znBM-mC growth could not be arrested in IFN-γ−/− mice. Increases in lung TNF-α and IL-17 were also induced, with IL-17 being mostly derived from CD4+ T cells. Vaccination of CD4−/−, CD8−/−, and B6 mice with znBM-mC conferred full protection in the lungs and spleens post-pulmonary challenge with virulent B. melitensis; vaccination of IL-17−/− mice resulted in the protection of the lungs, but not the spleen. These data demonstrate the efficacy of mucosal vaccine administration for the generation of protective memory T cells against wt B. melitensis.
Collapse
|
23
|
Angulo C, Sanchez V, Delgado K, Monreal-Escalante E, Hernández-Adame L, Angulo M, Tello-Olea M, Reyes-Becerril M. Oral organic nanovaccines against bacterial and viral diseases. Microb Pathog 2022; 169:105648. [PMID: 35728750 DOI: 10.1016/j.micpath.2022.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/12/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
Vaccines have saved millions of humans and animals from deadly diseases. Many vaccines are still under development to fight against lethal diseases. Indeed, subunit vaccines are a versatile approach with several advantageous attributes, but they lack strong immunogenicity. Nanotechnology is an avenue to vaccine development because nanoparticles may serve as nanocarriers and adjuvants, which are critical aspects for oral vaccines. This review provides an update of oral organic nanovaccines, describing suitable nanomaterials for oral vaccine design and recent (last five-year view) oral nanovaccine developments to fight against those principal pathogens causing human and animal diseases.
Collapse
Affiliation(s)
- Carlos Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico.
| | - Veronica Sanchez
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| | - Karen Delgado
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico; Cátedras-CONACYT. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| | - Luis Hernández-Adame
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico; Cátedras-CONACYT. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| | - Miriam Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| | - Marlene Tello-Olea
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico
| |
Collapse
|
24
|
Gheitasi R, Keramat F, Khosravi S, Hajilooi M, Pletz MW, Makarewicz O. Evaluation of Th2 and Th17 Immunity-Related Factors as Indicators of Brucellosis. Front Cell Infect Microbiol 2022; 11:786994. [PMID: 35071039 PMCID: PMC8777051 DOI: 10.3389/fcimb.2021.786994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
Objective Brucellosis is a common bacterial zoonotic infection, and greater than half a million new cases are diagnosed annually. This study investigates the expression of Th2 and Th17 immunity-related factors (Th2-LCR lncRNA, IL-25, TRAF3IP2, and IL-17RB) in different stages of Brucella infections. Material and Methods In total, 99 brucellosis patients were divided into three groups (acute = first infection before treatment, relapse = before treatment, and treated = after treatment for 6–8 weeks with doxycycline and rifampin). Thirty-three healthy volunteers represented the control group. Gene expression levels were assessed by quantitative amplification in reference to the 18S rRNA gene and statistically evaluated. Results No significant differences in the expression of these genes were observed between the control group and patients after completion of antibiotic treatment. Compared to these two groups, only Th2-LCR lncRNA and TRAF3IP2 were significantly more highly expressed in the acute group. Th2-LCR lncRNA was also significantly elevated in the relapse group. TRAF3IP2 expression was additionally significantly increased in the acute group compared to the relapse group. Conclusion IL-25 and IL-17RB failed to differentiate between the infected and noninfected groups. TRAF3IP2 and Th2-LCR lncRNA might be good indicators of brucellosis during the acute phase, but the expression levels varied strongly among patients. To verify the suitability of these factors as an indicator for brucellosis, acute infection or relapse should be investigated in further studies on larger cohorts with well-defined inclusion criteria.
Collapse
Affiliation(s)
- Reza Gheitasi
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany.,Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fariba Keramat
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Khosravi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdad Hajilooi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Oliwia Makarewicz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| |
Collapse
|
25
|
Alhussain H, Zughaier SM, Gawish A, Mahmoud MH, Yassine HM, Al Thani A, Obied TE, Al-Zeyara AM, Eltai NO. Seroprevalence of camel brucellosis in Qatar. Trop Anim Health Prod 2022; 54:351. [PMID: 36261738 PMCID: PMC9581880 DOI: 10.1007/s11250-022-03335-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
Brucellosis is a significant zoonotic disease and one of the most common neglected diseases worldwide. It can infect a wide range of domestic and wild animal species. Infected animals are usually culled, causing substantial economic losses to animal owners and the country's economy in general. The disease is endemic among cattle, sheep, and goats in many countries around the Middle East and prevalent in most Gulf Cooperation Council countries, comprising a significant public health risk in the region. This study investigated the seroprevalence of brucellosis among camels in Qatar. Two hundred and forty-eight samples were collected from dromedary camels from 28 farms across the entire country. Each sample was tested for Brucella antibodies with both Rose Bengal and competitive enzyme-linked immunosorbent assay. Only samples that tested positive by both tests were considered seropositive for brucellosis. The overall prevalence was (20.6%, 95% CI, 15.7-26.1). The association between sex and seropositivity was slightly significant (Χ2 = 4.32, P = 0.04), with higher seroprevalence in females. Camels below breeding age (i.e., < 4 years old) showed decreased seropositivity (3.4%, 95% CI, 0.1-17.8), compared to (22.8%, 95% CI, 17.4-29.0) seropositivity in camels ≥ 4 years of age, with a significant association between age groups and seropositivity (P = 0.02). Our results indicate that the seroprevalence of brucellosis in Qatar's camels is alarming, mandating more efforts to control the disease. The findings of this study will aid in selecting better effective measures to control camel brucellosis in Qatar. Further studies need to be conducted on Brucella infection among camels to determine the predisposing risk factors and the steps that should be followed to control brucellosis.
Collapse
Affiliation(s)
- Hashim Alhussain
- Biomedical Research Center, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Susu M Zughaier
- College of Medicine, Qatar University, Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Ahmed Gawish
- Al Maha for Veterinary & Agriculture Services, Doha, Qatar
| | - Mahmoud H Mahmoud
- Department of Animal Resources, Ministry of Municipality & Environment, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Asmaa Al Thani
- Biomedical Research Center, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Tahra El- Obied
- Department of Human Nutrition, College of Health Sciences, Qatar University, Health, P. O. Box 2713, Doha, Qatar
| | | | - Nahla O Eltai
- Biomedical Research Center, Qatar University, P. O. Box 2713, Doha, Qatar.
| |
Collapse
|
26
|
Zeng W, Wu AG, Zhou XG, Khan I, Zhang RL, Lo HH, Qu LQ, Song LL, Yun XY, Wang HM, Chen J, Ng JPL, Ren F, Yuan SY, Yu L, Tang Y, Huang GX, Wong VKW, Chung SK, Mok SWF, Qin DL, Sun HL, Liu L, Hsiao WLW, Law BYK. Saponins isolated from Radix polygalae extent lifespan by modulating complement C3 and gut microbiota. Pharmacol Res 2021; 170:105697. [PMID: 34062240 DOI: 10.1016/j.phrs.2021.105697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
With the increase in human lifespan, population aging is one of the major problems worldwide. Aging is an irreversible progressive process that affects humans via multiple factors including genetic, immunity, cellular oxidation and inflammation. Progressive neuroinflammation contributes to aging, cognitive malfunction, and neurodegenerative diseases. However, precise mechanisms or drugs targeting age-related neuroinflammation and cognitive impairment remain un-elucidated. Traditional herbal plants have been prescribed in many Asian countries for anti-aging and the modulation of aging-related symptoms. In general, herbal plants' efficacy is attributed to their safety and polypharmacological potency via the systemic manipulation of the body system. Radix polygalae (RP) is a herbal plant prescribed for anti-aging and the relief of age-related symptoms; however, its active components and biological functions remained un-elucidated. In this study, an active methanol fraction of RP containing 17 RP saponins (RPS), was identified. RPS attenuates the elevated C3 complement protein in aged mice to a level comparable to the young control mice. The active RPS also restates the aging gut microbiota by enhancing beneficial bacteria and suppressing harmful bacteria. In addition, RPS treatment improve spatial reference memory in aged mice, with the attenuation of multiple molecular markers related to neuroinflammation and aging. Finally, the RPS improves the behavior and extends the lifespan of C. elegans, confirming the herbal plant's anti-aging ability. In conclusion, through the mouse and C. elegas models, we have identified the beneficial RPS that can modulate the aging process, gut microbiota diversity and rectify several aging-related phenotypes.
Collapse
Affiliation(s)
- Wu Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; Department of Center for Neuro-metabolism and Regeneration Research, Bioland Laboratory, Guangzhou, China
| | - An Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Rui Long Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Hang Hong Lo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Li Qun Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Lin Lin Song
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Xiao Yun Yun
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Hui Miao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jerome P L Ng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Fang Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Si Yu Yuan
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yong Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Guo Xin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Sookja Kim Chung
- Department of Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Simon Wing Fai Mok
- Department of Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Da Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hua Lin Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| |
Collapse
|
27
|
Mirzaei R, Sholeh M, Jalalifar S, Zafari E, Kazemi S, Rasouli-Saravani A, Karampoor S, Yousefimashouf R. Immunometabolism in human brucellosis: An emerging field of investigation. Microb Pathog 2021; 158:105115. [PMID: 34332069 DOI: 10.1016/j.micpath.2021.105115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 01/16/2023]
Abstract
In recent years, extreme attention has been focused on the role of immunometabolism in the regulation of immune cell responses in healthy individuals during infection, autoimmunity, and cancer. In the infection biology area, it has been shown that there is a close relationship between the immune system and the host metabolic changes. Brucella species is an intracellular coccobacillus that infects humans and mammals, which led to brucellosis. Brucella species with host-specific evolutionary mechanisms allow it to hide from or manipulate cellular immunity and achieve intracellular persistence. Intracellular bacterial pathogens such as Brucella species also employ host cell resources to replicate and persist inside the host. Targeting these host systems is one promising strategy for developing novel antimicrobials to tackle intracellular infections. This study will summarize the role of metabolic reprogramming in immune cells and their relationship to brucellosis.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Zafari
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
28
|
Mazlan M, Khairani-Bejo S, Hamzah H, Nasruddin NS, Salleh A, Zamri-Saad M. Pathological changes, distribution and detection of Brucella melitensis in foetuses of experimentally-infected does. Vet Q 2021; 41:36-49. [PMID: 33349157 PMCID: PMC7817172 DOI: 10.1080/01652176.2020.1867328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Brucellosis of goats is caused by Brucella melitensis. It is a re-emerging zoonotic disease in many countries due to transmission from domestic animals and wildlife such as ibex, deer and wild buffaloes. Objective To describe the pathological changes, identification and distribution of B. melitensis in foetuses of experimentally infected does. Methods Twelve female goats of approximately 90 days pregnant were divided into 4 groups. Group 1 was exposed intra-conjunctival to 100 µL of sterile PBS while goats of Groups 2, 3 and 4 were similarly exposed to 100 µL of an inoculum containing 109 CFU/mL of live B. melitensis. Goats of these groups were killed at 15, 30 and 60 days post-inoculation, respectively. Foetal fluid and tissues were collected for bacterial identification (using direct bacterial culture, PCR and immuno-peroxidase staining) and histopathological examination. Results Bilateral intra-conjunctival exposure of pregnant does resulted in in-utero infection of the foetuses. All full-term foetuses of group 4 were either aborted or stillborn, showing petechiations of the skin or absence of hair coat with subcutaneous oedema. The internal organs showed most severe lesions. Immune-peroxidase staining revealed antigen distribution in all organs that became most extensive in group 4. Brucella melitensis was successfully isolated from the stomach content, foetal fluid and various other organs. Conclusion Vertical transmission of caprine brucellosis was evident causing mild to moderate lesions in different organs. The samples of choice for isolation and identification of B. melitensis are stomach content as well as liver and spleen tissue.
Collapse
Affiliation(s)
- Mazlina Mazlan
- Department of Veterinary Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Khairani-Bejo
- Department of Veterinary Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hazilawati Hamzah
- Department of Veterinary Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Annas Salleh
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Zamri-Saad
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
29
|
Jiao H, Zhou Z, Li B, Xiao Y, Li M, Zeng H, Guo X, Gu G. The Mechanism of Facultative Intracellular Parasitism of Brucella. Int J Mol Sci 2021; 22:ijms22073673. [PMID: 33916050 PMCID: PMC8036852 DOI: 10.3390/ijms22073673] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a highly prevalent zoonotic disease characterized by abortion and reproductive dysfunction in pregnant animals. Although the mortality rate of Brucellosis is low, it is harmful to human health, and also seriously affects the development of animal husbandry, tourism and international trade. Brucellosis is caused by Brucella, which is a facultative intracellular parasitic bacteria. It mainly forms Brucella-containing vacuoles (BCV) in the host cell to avoid the combination with lysosome (Lys), so as to avoid the elimination of it by the host immune system. Brucella not only has the ability to resist the phagocytic bactericidal effect, but also can make the host cells form a microenvironment which is conducive to its survival, reproduction and replication, and survive in the host cells for a long time, which eventually leads to the formation of chronic persistent infection. Brucella can proliferate and replicate in cells, evade host immune response and induce persistent infection, which are difficult problems in the treatment and prevention of Brucellosis. Therefore, the paper provides a preliminary overview of the facultative intracellular parasitic and immune escape mechanisms of Brucella, which provides a theoretical basis for the later study on the pathogenesis of Brucella.
Collapse
Affiliation(s)
- Hanwei Jiao
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
- Veterinary Scientific Engineering Research Center, Chongqing 402460, China
- Correspondence:
| | - Zhixiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Bowen Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Yu Xiao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Mengjuan Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Hui Zeng
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Xiaoyi Guo
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Guojing Gu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| |
Collapse
|
30
|
Akya A, Bozorgomid A, Ghadiri K, Ahmadi M, Elahi A, Mozafari H, Almasi A, Namadi P, Chegenelorestani R. Usefulness of Blood Parameters for Preliminary Diagnosis of Brucellosis. J Blood Med 2020; 11:107-113. [PMID: 32280292 PMCID: PMC7125307 DOI: 10.2147/jbm.s245513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/17/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Human brucellosis is a multisystem disease with a wide range of clinical signs which often leads to misdiagnosis and treatment delay. Early diagnosis of this disease can prevent the serious complications and mismanagements. This study aimed to evaluate the hematological parameters with predictive value for the diagnosis of brucellosis. METHODS In this prospective case-control study which was done during 2015-2017 in Imam Reza Hospital, Kermanshah Province, west Iran, 100 patients with a confirmed diagnosis of brucellosis (brucellosis group) and 100 healthy individuals (control group) were studied. The hematological parameters, including hemoglobin (Hb), red blood cell (RBC), white blood cell (WBC) count, lymphocyte count, neutrophil count, platelet count (PLTs), mean platelet volume (MPV), platelet distribution width (PDW), erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) of both groups were recorded. The data were statistically compared between the brucellosis and the control groups. RESULTS The mean age of patients and healthy groups was 44.04 ± 23.11 and 37.92 ± 24.80, respectively (P = 0.062). The WBC, CRP and neutrophil counts were significantly higher in the brucellosis group (P < 0.05). Based on the receiver operating characteristic (ROC) analysis, the sensitivity and specificity were 54% and 66% for the WBC, 45% and 71% for the neutrophil and 65% and 72% for the CRP, respectively. There was no statistically significant difference between the two groups in terms of Hb, RBC, WBC, lymphocyte and platelet count, MPV, PDW and ESR (P > 0.05). CONCLUSION The results of this study indicate that WBC, CRP and neutrophil count can be used as valuable markers in the preliminary diagnosis of brucellosis. However, further researches are required to standardize these parameters for various forms of brucellosis.
Collapse
Affiliation(s)
- Alisha Akya
- Infectious Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezoo Bozorgomid
- Infectious Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kayghobad Ghadiri
- Infectious Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahnaz Ahmadi
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Elahi
- Infectious Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Mozafari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Afshin Almasi
- Cardiovascular Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parvin Namadi
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roya Chegenelorestani
- Infectious Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
31
|
Application of an O-Linked Glycosylation System in Yersinia enterocolitica Serotype O:9 to Generate a New Candidate Vaccine against Brucella abortus. Microorganisms 2020; 8:microorganisms8030436. [PMID: 32244903 PMCID: PMC7143757 DOI: 10.3390/microorganisms8030436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Brucellosis is a major zoonotic public health threat worldwide, causing veterinary morbidity and major economic losses in endemic regions. However, no efficacious brucellosis vaccine is yet available, and live attenuated vaccines commonly used in animals can cause human infection. N- and O-linked glycosylation systems have been successfully developed and exploited for the production of successful bioconjugate vaccines. Here, we applied an O-linked glycosylation system to a low-pathogenicity bacterium, Yersinia enterocolitica serotype O:9 (Y. enterocolitica O:9), which has repeating units of O-antigen polysaccharide (OPS) identical to that of Brucella abortus (B. abortus), to develop a bioconjugate vaccine against Brucella. The glycoprotein we produced was recognized by both anti-B. abortus and anti-Y. enterocolitica O:9 monoclonal antibodies. Three doses of bioconjugate vaccine-elicited B. abortus OPS-specific serum IgG in mice, significantly reducing bacterial loads in the spleen following infection with the B. abortus hypovirulent smooth strain A19. This candidate vaccine mitigated B. abortus infection and prevented severe tissue damage, thereby protecting against lethal challenge with A19. Overall, the results indicated that the bioconjugate vaccine elicited a strong immune response and provided significant protection against brucellosis. The described vaccine preparation strategy is safe and avoids large-scale culture of the highly pathogenic B. abortus.
Collapse
|