1
|
Al-Aqtash R, Collier DM. Ionotropic purinergic receptor 7 (P2X7) channel structure and pharmacology provides insight regarding non-nucleotide agonism. Channels (Austin) 2024; 18:2355150. [PMID: 38762911 PMCID: PMC11110710 DOI: 10.1080/19336950.2024.2355150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
P2X7 is a member of the Ionotropic Purinergic Receptor (P2X) family. The P2X family of receptors is composed of seven (P2X1-7), ligand-gated, nonselective cation channels. Changes in P2X expression have been reported in multiple disease models. P2Xs have large complex extracellular domains that function as receptors for a variety of ligands, including endogenous and synthetic agonists and antagonists. ATP is the canonical agonist. ATP affinity ranges from nanomolar to micromolar for most P2XRs, but P2X7 has uniquely poor ATP affinity. In many physiological settings, it may be difficult to achieve the millimolar extracellular ATP concentrations needed for P2X7 channel activation; however, channel function is implicated in pain sensation, immune cell function, cardiovascular disease, cancer, and osteoporosis. Multiple high-resolution P2X7 structures have been solved in apo-, ATP-, and antagonist-bound states. P2X7 structural data reveal distinct allosteric and orthosteric antagonist-binding sites. Both allosteric and orthosteric P2X7 antagonists are well documented to inhibit ATP-evoked channel current. However, a growing body of evidence supports P2X7 activation by non-nucleotide agonists, including extracellular histone proteins and human cathelicidin-derived peptides (LL-37). Interestingly, P2X7 non-nucleotide agonism is not inhibited by allosteric antagonists, but is inhibited by orthosteric antagonists. Herein, we review P2X7 function with a focus on the efficacy of available pharmacology on P2X7 channel current activation by non-nucleotide agonists in effort to understand agonist/antagonist efficacy, and consider the impact of these data on the current understanding of P2X7 in physiology and disease given these limitations of P2X7-selective antagonists and incomplete knockout mouse models.
Collapse
Affiliation(s)
- Rua’a Al-Aqtash
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Daniel M. Collier
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
2
|
Tektonidou MG, Verrou KM, Gakiopoulou H, Manoloukos M, Lembessis P, Hatzis P, Sfikakis PP. Kidney whole-transcriptome profiling in primary antiphospholipid syndrome reveals complement, interferons and NETs-related gene expression. Rheumatology (Oxford) 2024; 63:3184-3190. [PMID: 39107892 PMCID: PMC11534096 DOI: 10.1093/rheumatology/keae397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/13/2024] [Indexed: 11/06/2024] Open
Abstract
OBJECTIVE Pathogenesis of antiphospholipid syndrome (APS) remains poorly elucidated. We aimed to evaluate for the first time kidney transcriptome profiles in primary APS vs systemic lupus erythematosus (SLE) and control subjects. METHODS We performed RNA sequencing on archival formalin-fixed paraffin-embedded kidney biopsies from APS (n = 4), SLE (n = 5) and control (n = 3) individuals, differential gene expression analysis (DGEA) and enrichment analysis using gene ontology (GO) and CORUM, KEGG and Reactome pathway databases. RESULTS Two-dimensional projection showed a distinct gene profile in primary APS vs control kidneys samples, but similar to SLE. DGEA in APS vs controls returned 276 upregulated and 217 downregulated genes, while the comparison between APS and SLE identified 75 upregulated and 111 downregulated genes. In 276 upregulated genes, enriched GO terms were (innate) immune response, inflammatory response, leucocyte and lymphocyte activation, cytokine production and T cell activation. CORUM and KEGG revealed complement-related genes (C3, C4A, C4B). Expression levels showed logFC values of 2.25 (P = 1.58e-05) for C3, 2.17 (P = 2.69e-06) for C4A and 2.135 (P = 3.7e-06) for C4B in APS vs controls, without differences between APS and SLE. Interferon (IFN) alpha/beta signalling was revealed by Reactome. Expression levels of nine IFN-regulated genes found upregulated in APS vs control kidneys (P-values ≤ 0.001 for all). Examining neutrophil-extracellular traps (NETs)-related gene expression, 13 of 15 upregulated NETs-related genes exhibited higher expression in APS vs controls but not vs SLE. CONCLUSION Complement, interferon and NETs-related genes are highly expressed in APS kidney tissues, similarly to SLE, pointing out the role of innate immunity in APS nephropathy pathogenesis and potential treatment targets.
Collapse
Affiliation(s)
- Maria G Tektonidou
- First Department of Propaedeutic and Internal Medicine, Joint Academic Rheumatology Program, ‘Laiko’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kleio-Maria Verrou
- First Department of Propaedeutic and Internal Medicine, Joint Academic Rheumatology Program, ‘Laiko’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Harikleia Gakiopoulou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Menelaos Manoloukos
- Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Lembessis
- Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Pantelis Hatzis
- Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic and Internal Medicine, Joint Academic Rheumatology Program, ‘Laiko’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Medina MA, Fuentes-Villalobos F, Quevedo C, Aguilera F, Riquelme R, Rioseco ML, Barria S, Pinos Y, Calvo M, Burbulis I, Kossack C, Alvarez RA, Garrido JL, Barria MI. Longitudinal transcriptional changes reveal genes from the natural killer cell-mediated cytotoxicity pathway as critical players underlying COVID-19 progression. eLife 2024; 13:RP94242. [PMID: 39470726 PMCID: PMC11521369 DOI: 10.7554/elife.94242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Patients present a wide range of clinical severities in response severe acute respiratory syndrome coronavirus 2 infection, but the underlying molecular and cellular reasons why clinical outcomes vary so greatly within the population remains unknown. Here, we report that negative clinical outcomes in severely ill patients were associated with divergent RNA transcriptome profiles in peripheral immune cells compared with mild cases during the first weeks after disease onset. Protein-protein interaction analysis indicated that early-responding cytotoxic natural killer cells were associated with an effective clearance of the virus and a less severe outcome. This innate immune response was associated with the activation of select cytokine-cytokine receptor pathways and robust Th1/Th2 cell differentiation profiles. In contrast, severely ill patients exhibited a dysregulation between innate and adaptive responses affiliated with divergent Th1/Th2 profiles and negative outcomes. This knowledge forms the basis of clinical triage that may be used to preemptively detect high-risk patients before life-threatening outcomes ensue.
Collapse
Affiliation(s)
- Matias A Medina
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | | | - Claudio Quevedo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepciónChile
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepciónChile
| | - Raul Riquelme
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | - Maria Luisa Rioseco
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | - Sebastian Barria
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | | | - Mario Calvo
- Instituto de Medicina, Facultad de Medicina, Universidad AustralValdiviaChile
| | - Ian Burbulis
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Camila Kossack
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Raymond A Alvarez
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Jose Luis Garrido
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Maria Ines Barria
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| |
Collapse
|
4
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Dwivedi A, Ui Mhaonaigh A, Carroll M, Khosravi B, Batten I, Ballantine RS, Hendricken Phelan S, O’Doherty L, George AM, Sui J, Hawerkamp HC, Fallon PG, Noppe E, Mason S, Conlon N, Ni Cheallaigh C, Finlay CM, Little MA, Bioresource OBOTSJATTAR(STTAR. Emergence of dysfunctional neutrophils with a defect in arginase-1 release in severe COVID-19. JCI Insight 2024; 9:e171659. [PMID: 39253969 PMCID: PMC11385094 DOI: 10.1172/jci.insight.171659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Neutrophilia occurs in patients infected with SARS-CoV-2 (COVID-19) and is predictive of poor outcomes. Here, we link heterogenous neutrophil populations to disease severity in COVID-19. We identified neutrophils with features of cellular aging and immunosuppressive capacity in mild COVID-19 and features of neutrophil immaturity and activation in severe disease. The low-density neutrophil (LDN) number in circulating blood correlated with COVID-19 severity. Many of the divergent neutrophil phenotypes in COVID-19 were overrepresented in the LDN fraction and were less detectable in normal-density neutrophils. Functionally, neutrophils from patients with severe COVID-19 displayed defects in neutrophil extracellular trap formation and reactive oxygen species production. Soluble factors secreted by neutrophils from these patients inhibited T cell proliferation. Neutrophils from patients with severe COVID-19 had increased expression of arginase-1 protein, a feature that was retained in convalescent patients. Despite this increase in intracellular expression, there was a reduction in arginase-1 release by neutrophils into serum and culture supernatants. Furthermore, neutrophil-mediated T cell suppression was independent of arginase-1. Our results indicate the presence of dysfunctional, activated, and immature neutrophils in severe COVID-19.
Collapse
Affiliation(s)
| | | | | | | | - Isabella Batten
- Department of Medical Gerontology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | - Laura O’Doherty
- Wellcome Trust, Clinical Research Facility
- Department of Infectious Diseases; and
| | | | - Jacklyn Sui
- Department of Medical Gerontology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Department of Immunology, St James’s Hospital, Dublin, Ireland
| | | | - Padraic G. Fallon
- School of Medicine, Trinity Biomedical Sciences Institute
- Department of Immunology, Trinity Translational Medicine Institute; and
| | - Elnè Noppe
- Department of Critical Care, Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Sabina Mason
- Department of Critical Care, Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Niall Conlon
- Department of Infectious Diseases; and
- Department of Immunology, St James’s Hospital, Dublin, Ireland
| | | | | | | | | |
Collapse
|
6
|
Yasuda H, Takishita Y, Morita A, Tsutsumi T, Nakagawa N, Sato EF. Sodium Acetate Enhances Neutrophil Extracellular Trap Formation via Histone Acetylation Pathway in Neutrophil-like HL-60 Cells. Int J Mol Sci 2024; 25:8757. [PMID: 39201443 PMCID: PMC11354635 DOI: 10.3390/ijms25168757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Neutrophil extracellular trap formation has been identified as a new cell death mediator, termed NETosis, which is distinct from apoptosis and necrosis. NETs capture foreign substances, such as bacteria, by releasing DNA into the extracellular environment, and have been associated with inflammatory diseases and altered immune responses. Short-chain fatty acids, such as acetate, are produced by the gut microbiota and reportedly enhance innate immune responses; however, the underlying molecular mechanisms remain unclear. Here, we investigated the effects of sodium acetate, which has the highest SCFA concentration in the blood and gastrointestinal tract, on NETosis by focusing on the mechanisms associated with histone acetylation in neutrophil-like HL-60 cells. Sodium acetate enhanced NETosis, as shown by fluorescence staining with SYTOX green, and the effect was directly proportional to the treatment duration (16-24 h). Moreover, the addition of sodium acetate significantly enhanced the acetylation of Ace-H3, H3K9ace, and H3K14ace. Sodium acetate-induced histone acetylation rapidly decreased upon stimulation with the calcium ionophore A23187, whereas histone citrullination markedly increased. These results demonstrate that sodium acetate induces NETosis via histone acetylation in neutrophil-like HL-60 cells, providing new insights into the therapeutic effects based on the innate immunity-enhancing effect of dietary fiber.
Collapse
Affiliation(s)
- Hiroyuki Yasuda
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (H.Y.); (Y.T.); (A.M.); (T.T.); (N.N.)
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi 5, Yamashina, Kyoto 607-8414, Japan
| | - Yutaka Takishita
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (H.Y.); (Y.T.); (A.M.); (T.T.); (N.N.)
| | - Akihiro Morita
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (H.Y.); (Y.T.); (A.M.); (T.T.); (N.N.)
| | - Tomonari Tsutsumi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (H.Y.); (Y.T.); (A.M.); (T.T.); (N.N.)
| | - Naoya Nakagawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (H.Y.); (Y.T.); (A.M.); (T.T.); (N.N.)
| | - Eisuke F. Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (H.Y.); (Y.T.); (A.M.); (T.T.); (N.N.)
| |
Collapse
|
7
|
Singh V, Kumar Y, Bhatnagar S. Robustaflavone as a novel scaffold for inhibitors of native and auto-proteolysed human neutrophil elastase. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:729-756. [PMID: 39246138 DOI: 10.1080/1062936x.2024.2394498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Human neutrophil elastase (HNE) plays a key role in initiating inflammation in the cardiopulmonary and systemic contexts. Pathological auto-proteolysed two-chain (tc) HNE exhibits reduced binding affinity with inhibitors. Using AutoDock Vina v1.2.0, 66 flavonoid inhibitors, sivelestat and alvelestat were docked with single-chain (sc) HNE and tcHNE. Schrodinger PHASE v13.4.132 was used to generate a 3D-QSAR model. Molecular dynamics (MD) simulations were conducted with AMBER v18. The 3D-QSAR model for flavonoids with scHNE showed r2 = 0.95 and q2 = 0.91. High-activity compounds had hydrophobic A/A2 and C/C2 rings in the S1 subsite, with hydrogen bond donors at C5 and C7 positions of the A/A2 ring, and the C4' position of the B/B1 ring. All flavonoids except robustaflavone occupied the S1'-S2' subsites of tcHNE with decreased AutoDock binding affinities. During MD simulations, robustaflavone remained highly stable with both HNE forms. Principal Component Analysis suggested that robustaflavone binding induced structural stability in both HNE forms. Cluster analysis and free energy landscape plots showed that robustaflavone remained within the sc and tcHNE binding site throughout the 100 ns MD simulation. The robustaflavone scaffold likely inhibits both tcHNE and scHNE. It is potentially superior to sivelestat and alvelestat and can aid in developing therapeutics targeting both forms of HNE.
Collapse
Affiliation(s)
- V Singh
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| | - Y Kumar
- Mammalian Cell Culture Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| | - S Bhatnagar
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| |
Collapse
|
8
|
Pesini C, Artal L, Paúl Bernal J, Sánchez Martinez D, Pardo J, Ramírez-Labrada A. In-depth analysis of the interplay between oncogenic mutations and NK cell-mediated cancer surveillance in solid tumors. Oncoimmunology 2024; 13:2379062. [PMID: 39036370 PMCID: PMC11259085 DOI: 10.1080/2162402x.2024.2379062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in antitumoral and antiviral responses. Yet, cancer cells can alter themselves or the microenvironment through the secretion of cytokines or other factors, hindering NK cell activation and promoting a less cytotoxic phenotype. These resistance mechanisms, often referred to as the "hallmarks of cancer" are significantly influenced by the activation of oncogenes, impacting most, if not all, of the described hallmarks. Along with oncogenes, other types of genes, the tumor suppressor genes are frequently mutated or modified during cancer. Traditionally, these genes have been associated with uncontrollable tumor growth and apoptosis resistance. Recent evidence suggests oncogenic mutations extend beyond modulating cell death/proliferation programs, influencing cancer immunosurveillance. While T cells have been more studied, the results obtained highlight NK cells as emerging key protagonists for enhancing tumor cell elimination by modulating oncogenic activity. A few recent studies highlight the crucial role of oncogenic mutations in NK cell-mediated cancer recognition, impacting angiogenesis, stress ligands, and signaling balance within the tumor microenvironment. This review will critically examine recent discoveries correlating oncogenic mutations to NK cell-mediated cancer immunosurveillance, a relatively underexplored area, particularly in the era dominated by immune checkpoint inhibitors and CAR-T cells. Building on these insights, we will explore opportunities to improve NK cell-based immunotherapies, which are increasingly recognized as promising alternatives for treating low-antigenic tumors, offering significant advantages in terms of safety and manufacturing suitability.
Collapse
Affiliation(s)
- Cecilia Pesini
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Laura Artal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Institute of Carbochemistry (ICB-CSIC), Zaragoza, Spain
| | - Jorge Paúl Bernal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Diego Sánchez Martinez
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Aragón I + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ariel Ramírez-Labrada
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
| |
Collapse
|
9
|
Chien Y, Huang XY, Yarmishyn AA, Chien CS, Liu YH, Hsiao YJ, Lin YY, Lai WY, Huang SC, Lee MS, Chiou SH, Yang YP, Chiou GY. Paracrinal regulation of neutrophil functions by coronaviral infection in iPSC-derived alveolar type II epithelial cells. Virus Res 2024; 345:199391. [PMID: 38754785 PMCID: PMC11127603 DOI: 10.1016/j.virusres.2024.199391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Coronaviruses (CoVs) are enveloped single-stranded RNA viruses that predominantly attack the human respiratory system. In recent decades, several deadly human CoVs, including SARS-CoV, SARS-CoV-2, and MERS-CoV, have brought great impact on public health and economics. However, their high infectivity and the demand for high biosafety level facilities restrict the pathogenesis research of CoV infection. Exacerbated inflammatory cell infiltration is associated with poor prognosis in CoV-associated diseases. In this study, we used human CoV 229E (HCoV-229E), a CoV associated with relatively fewer biohazards, to investigate the pathogenesis of CoV infection and the regulation of neutrophil functions by CoV-infected lung cells. Induced pluripotent stem cell (iPSC)-derived alveolar epithelial type II cells (iAECIIs) exhibiting specific biomarkers and phenotypes were employed as an experimental model for CoV infection. After infection, the detection of dsRNA, S, and N proteins validated the infection of iAECIIs with HCoV-229E. The culture medium conditioned by the infected iAECIIs promoted the migration of neutrophils as well as their adhesion to the infected iAECIIs. Cytokine array revealed the elevated secretion of cytokines associated with chemotaxis and adhesion into the conditioned media from the infected iAECIIs. The importance of IL-8 secretion and ICAM-1 expression for neutrophil migration and adhesion, respectively, was demonstrated by using neutralizing antibodies. Moreover, next-generation sequencing analysis of the transcriptome revealed the upregulation of genes associated with cytokine signaling. To summarize, we established an in vitro model of CoV infection that can be applied for the study of the immune system perturbations during severe coronaviral disease.
Collapse
Affiliation(s)
- Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Xuan-Yang Huang
- Institute of Anatomy, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Chian-Shiu Chien
- Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Hao Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ssu-Cheng Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Meng-Shiue Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Pharmaceutical Sciences, Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Guang-Yuh Chiou
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
10
|
Jin Q, Ma W, Zhang W, Wang H, Geng Y, Geng Y, Zhang Y, Gao D, Zhou J, Li L, Gou Y, Zhong B, Li J, Hou W, Lu S. Clinical and hematological characteristics of children infected with the omicron variant of SARS-CoV-2: role of the combination of the neutrophil: lymphocyte ratio and eosinophil count in distinguishing severe COVID-19. Front Pediatr 2024; 12:1305639. [PMID: 38978839 PMCID: PMC11228319 DOI: 10.3389/fped.2024.1305639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/30/2024] [Indexed: 07/10/2024] Open
Abstract
Purpose Investigate the clinical/hematological characteristics of children infected with the Omicron variant of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and identify an effective indicator to distinguish coronavirus disease 2019 (COVID-19) severity in children. Methods A retrospective study was conducted through electronic medical records from pediatric patients. The demographic, clinical, and routine blood test (RBT) features of children diagnosed by real-time PCR for SARS-CoV-2 were collected. Results Data of 261 patients were analyzed. The most common abnormality shown by RBTs was increased monocyte count (68%). Children had "mild-moderate" or "severe" forms of COVID-19. Prevalence of abnormal neutrophil count (p = 0.048), eosinophil count (p = 0.006), mean corpuscular volume (p = 0.033), mean platelet volume (p = 0.006), platelet-large cell ratio (p = 0.043), and red blood cell distribution width-standard deviation (p = 0.031) were significantly different in the two types. A combination of the neutrophil: lymphocyte ratio (NLR) and eosinophil count for diagnosing severe COVID-19 presented the largest AUC (0.688, 95% CI = 0.599-0.777; p < 0.001), and the AUC increased with a decrease in age. Conclusions Combination of the NLR and eosinophil count might be a promising indicator for identifying severe COVID-19 in children at infection onset.
Collapse
Affiliation(s)
- Qiaoyan Jin
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Biochemistry and Molecular Biology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wenxian Ma
- Department of Biochemistry and Molecular Biology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wei Zhang
- Xijing 986 Hospital Department, Air Force Medical University, Xi’an, China
| | - Huiyuan Wang
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yiongxiang Geng
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yan Geng
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yang Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dan Gao
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jing Zhou
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lin Li
- Xijing 986 Hospital Department, Air Force Medical University, Xi’an, China
| | - Yaping Gou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xi’an, China
| | - Bo Zhong
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jing Li
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Hou
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| |
Collapse
|
11
|
Wu X, Yang Y. Neutrophil extracellular traps (NETs) and fibrotic diseases. Int Immunopharmacol 2024; 133:112085. [PMID: 38626550 DOI: 10.1016/j.intimp.2024.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Fibrosis, a common cause and serious outcome of organ failure that can affect any organ, is responsible for up to 45% of all deaths in various clinical settings. Both preclinical models and clinical trials investigating various organ systems have shown that fibrosis is a highly dynamic process. Although many studies have sought to gain understanding of the mechanism of fibrosis progression, their findings have been mixed. In recent years, increasing evidence indicates that neutrophil extracellular traps (NETs) are involved in many inflammatory and autoimmune disorders and participate in the regulation of fibrotic processes in various organs and systems. In this review, we summarize the current understanding of the role of NETs in fibrosis development and progression and their possibility as therapeutic targets.
Collapse
Affiliation(s)
- Xiaojiao Wu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Amri O, Madore AM, Boucher-Lafleur AM, Laprise C. Genomic analysis of severe COVID-19 considering or not asthma comorbidity: GWAS insights from the BQC19 cohort. BMC Genomics 2024; 25:482. [PMID: 38750426 PMCID: PMC11097529 DOI: 10.1186/s12864-024-10342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND The severity of COVID-19 is influenced by various factors including the presence of respiratory diseases. Studies have indicated a potential relationship between asthma and COVID-19 severity. OBJECTIVE This study aimed to conduct a genome-wide association study (GWAS) to identify genetic and clinical variants associated with the severity of COVID-19, both among patients with and without asthma. METHODS We analyzed data from 2131 samples sourced from the Biobanque québécoise de la COVID-19 (BQC19), with 1499 samples from patients who tested positive for COVID-19. Among these, 1110 exhibited mild-to-moderate symptoms, 389 had severe symptoms, and 58 had asthma. We conducted a comparative analysis of clinical data from individuals in these three groups and GWAS using a logistic regression model. Phenotypic data analysis resulted in the refined covariates integrated into logistic models for genetic studies. RESULTS Considering a significance threshold of 1 × 10-6, seven genetic variants were associated with severe COVID-19. These variants were located proximal to five genes: sodium voltage-gated channel alpha subunit 1 (SCN10A), desmoplakin (DSP), RP1 axonemal microtubule associated (RP1), IGF like family member 1 (IGFL1), and docking protein 5 (DOK5). The GWAS comparing individuals with severe COVID-19 with asthma to those without asthma revealed four genetic variants in transmembrane protein with EGF like and two follistatin like domains 2 (TMEFF2) and huntingtin interacting protein-1 (HIP1) genes. CONCLUSION This study provides significant insights into the genetic profiles of patients with severe forms of the disease, whether accompanied by asthma or not. These findings enhance our comprehension of the genetic factors that affect COVID-19 severity. KEY MESSAGES Seven genetic variants were associated with the severe form of COVID-19; Four genetic variants were associated with the severe form of COVID-19 in individuals with comorbid asthma; These findings help define the genetic component of the severe form of COVID-19 in relation to asthma as a comorbidity.
Collapse
Affiliation(s)
- Omayma Amri
- Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Saguenay, Québec, G7H 2B1, Canada
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec, G7H 2B1, Canada
| | - Anne-Marie Madore
- Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Saguenay, Québec, G7H 2B1, Canada
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec, G7H 2B1, Canada
| | - Anne-Marie Boucher-Lafleur
- Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Saguenay, Québec, G7H 2B1, Canada
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec, G7H 2B1, Canada
| | - Catherine Laprise
- Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Saguenay, Québec, G7H 2B1, Canada.
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec, G7H 2B1, Canada.
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Saguenay, Québec, G7H 7K9, Canada.
| |
Collapse
|
13
|
Zhu Y, Cao X, Ying R, Liu K, Chai Y, Luo M, Huang Q, Gao P, Zhang C. Mapping the vast landscape of multisystem complications of COVID-19: Bibliometric analysis. Heliyon 2024; 10:e30760. [PMID: 38765136 PMCID: PMC11098853 DOI: 10.1016/j.heliyon.2024.e30760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Background With the rapid global spread of COVID-19, it has become evident that the virus can lead to multisystem complications, leading to a significant increase in related publications. Bibliometrics serves as a valuable tool for identifying highly cited literature and research hotspots within specific areas. Objective The aim of this study is to identify current research hotspots and future trends in COVID-19 complications. Methods The dataset was obtained from the Web of Science Core Collection, covering COVID-19 complications from December 8, 2019, to October 31, 2022. Various aspects, including publication general information, authors, journals, co-cited authors, co-cited references, research hotspots, and future trends, were subjected to analysis. Visual analysis was conducted using VOSviewer, The Online Analysis Platform of Literature Metrology, and Charticulator. Results There were 4597 articles in the study. The top three countries with the most published articles are the USA (n = 1350, 29.4 %), China (n = 765, 16.6 %), and Italy (n = 623, 13.6 %). USA and China have the closest collaborative relationship. The institute with the largest number of publications is Huazhong University of Science and Technology, followed by Harvard Medical School. Nevertheless, half of the top 10 institutes belong to the USA. "Rezaei, Nima" published 13 articles and ranked first, followed by "Yaghi, Shadi" with 12 articles and "Frontera, Jennifer" with 12 articles. The journal with the largest number of publications is "Journal of Clinical Medicine". The top 3 co-cited authors are "Zhou, Fei", "Guan, Wei-Jie", "Huang, Chaolin". The top 3 co-cited references addressed COVID-19's clinical features in China and noticed that COVID-19 patients had a wide range of complications. We also list four research hotspots. Conclusions This study conducted a bibliometric visual analysis of the literature on COVID-19 complications and summarized the current research hotspots. This study may provide valuable insights into the complications of COVID-19.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyu Cao
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongtao Ying
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilu Chai
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maocai Luo
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Huang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Kaya F, Alsafdi T, Al-Suleh M. A Rare Post-Infectious Autoimmune Manifestation of COVID-19. Eur J Case Rep Intern Med 2024; 11:004542. [PMID: 38846672 PMCID: PMC11152236 DOI: 10.12890/2024_004542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
The incidence of post-infectious autoimmune diseases has been on the rise following the COVID-19 pandemic. Recently, an autistic patient was admitted to the hospital presenting with a mild upper respiratory system COVID-19 infection. Months after recovery and polymerase chain reaction negativity, the patient developed HEp-2 cell positivity and presented with relapsing polychondritis (RP), a rare autoimmune disease. The mechanism of this autoimmune invasion is ultimately caused by activating a myriad of immune reactions. Lymphocytopenia almost always accompanies various clinical forms of COVID-19; however, it may drive the lymphocytopenia-induced proliferation of autoreactive T cells via the activation of interleukin-6 (IL-6). Moreover, high levels of neutrophils during infection promote autoimmune disease by releasing cytokine and chemokine cascades that accompany inflammation, and neutrophil extracellular traps regulating immune responses through cell-cell interactions. Furthermore, autism spectrum disorder patients display an altered immune system that includes an augmented inflammatory cytokine milieu leading to an increased pro-inflammatory Th1/Th2 ratio. In addition, the pathophysiology of RP is majorly associated with a cell-mediated immune reaction; thus, the predisposing exaggerated immune system of such patients must also be considered as a predisposing factor to the development of post-infectious autoimmune diseases. LEARNING POINTS COVID-19 infection is a potential trigger for relapsing polychondritis, an autoimmune disease affecting cartilage, and must be considered as a rare post-COVID complication.The hyperactive immune system in autism spectrum disorder (ASD) is an important predisposing factor to the induction of more autoimmune diseases after the occurrence of post-infectious dysregulation.Lymphocytopenia-induced proliferation possibly initiates the post-infection immune dysregulation.
Collapse
Affiliation(s)
- Fatih Kaya
- Department of Internal Medicine, Faculty of Medicine, Maltepe University Hospital, Istanbul, Turkey
| | - Tarek Alsafdi
- Department of Internal Medicine, Faculty of Medicine, Maltepe University Hospital, Istanbul, Turkey
| | - Manar Al-Suleh
- Department of Internal Medicine, Faculty of Medicine, Maltepe University Hospital, Istanbul, Turkey
| |
Collapse
|
15
|
Jerah A. Retrospective Evaluation of Hematological Parameters in COVID-19 Patients: Insights From the Emergency Department. Cureus 2024; 16:e61258. [PMID: 38939249 PMCID: PMC11210955 DOI: 10.7759/cureus.61258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND This retrospective study evaluated hematological parameters in coronavirus disease 2019 (COVID-19) patients to gain clinical insights. METHODS Data from the Emergency Department of Samtah General Hospital, Samtah, Saudi Arabia, were analyzed, focusing on the parameters measured during hospital admission. This study was conducted between April 2020 and October 2021. Associations between hematological parameters and COVID-19 outcomes were examined in 153 participants, including 23 deceased individuals. RESULTS The chi-square test results indicated no significant associations (P >0.05) between sex, body mass index (BMI), age, and disease outcome in the study population. However, a significant association was observed between neutrophil percentage and disease outcome, whereas no significant associations were found for red blood cell count, hemoglobin level, monocyte percentage, eosinophil percentage, and basophil percentage. Cox regression analysis revealed a significant association between neutrophil count (considered a categorical covariate) and survival outcomes (P = 0.030). However, specific neutrophil categories (50-70 and >70) were not significantly associated with survival. CONCLUSIONS Integrating hematological parameters into COVID-19 clinical guidelines and decision-support tools holds promise for enhancing patient care and outcomes.
Collapse
Affiliation(s)
- Ahmed Jerah
- College of Applied Medical Sciences, Jazan University, Jazan, SAU
| |
Collapse
|
16
|
Visser N, Herreman LCM, Vandooren J, Pereira RVS, Opdenakker G, Spelbrink REJ, Wilbrink MH, Bremer E, Gosens R, Nawijn MC, van der Ende-Metselaar HH, Smit JM, Laus MC, Laman JD. Novel high-yield potato protease inhibitor panels block a wide array of proteases involved in viral infection and crucial tissue damage. J Mol Med (Berl) 2024; 102:521-536. [PMID: 38381158 PMCID: PMC10963447 DOI: 10.1007/s00109-024-02423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Viruses critically rely on various proteases to ensure host cell entry and replication. In response to viral infection, the host will induce acute tissue inflammation pulled by granulocytes. Upon hyperactivation, neutrophil granulocytes may cause undue tissue damage through proteolytic degradation of the extracellular matrix. Here, we assess the potential of protease inhibitors (PI) derived from potatoes in inhibiting viral infection and reducing tissue damage. The original full spectrum of potato PI was developed into five fractions by means of chromatography and hydrolysis. Individual fractions showed varying inhibitory efficacy towards a panel of proteases including trypsin, chymotrypsin, ACE2, elastase, and cathepsins B and L. The fractions did not interfere with SARS-CoV-2 infection of Vero E6 cells in vitro. Importantly, two of the fractions fully inhibited elastin-degrading activity of complete primary human neutrophil degranulate. These data warrant further development of potato PI fractions for biomedical purposes, including tissue damage crucial to SARS-CoV-2 pathogenesis. KEY MESSAGES: Protease inhibitor fractions from potato differentially inhibit a series of human proteases involved in viral replication and in tissue damage by overshoot inflammation. Protease inhibition of cell surface receptors such as ACE2 does not prevent virus infection of Vero cells in vitro. Protease inhibitors derived from potato can fully inhibit elastin-degrading primary human neutrophil proteases. Protease inhibitor fractions can be produced at high scale (hundreds of thousands of kilograms, i.e., tons) allowing economically feasible application in lower and higher income countries.
Collapse
Affiliation(s)
- Nienke Visser
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | | | - Jennifer Vandooren
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Louvain, Belgium
| | - Rafaela Vaz Sousa Pereira
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Louvain, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Louvain, Belgium
| | | | | | - Edwin Bremer
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC) Research Institute, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Martijn C Nawijn
- Groningen Research Institute for Asthma and COPD (GRIAC) Research Institute, University of Groningen, 9713 GZ, Groningen, The Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Heidi H van der Ende-Metselaar
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Jolanda M Smit
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Marc C Laus
- Avebe Innovation Center Groningen, 9747 AW, Groningen, The Netherlands
| | - Jon D Laman
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
17
|
Conedera FM, Kokona D, Zinkernagel MS, Stein JV, Lin CP, Alt C, Enzmann V. Macrophages coordinate immune response to laser-induced injury via extracellular traps. J Neuroinflammation 2024; 21:68. [PMID: 38500151 PMCID: PMC10949579 DOI: 10.1186/s12974-024-03064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Retinal degeneration results from disruptions in retinal homeostasis due to injury, disease, or aging and triggers peripheral leukocyte infiltration. Effective immune responses rely on coordinated actions of resident microglia and recruited macrophages, critical for tissue remodeling and repair. However, these phagocytes also contribute to chronic inflammation in degenerated retinas, yet the precise coordination of immune response to retinal damage remains elusive. Recent investigations have demonstrated that phagocytic cells can produce extracellular traps (ETs), which are a source of self-antigens that alter the immune response, which can potentially lead to tissue injury. METHODS Innovations in experimental systems facilitate real-time exploration of immune cell interactions and dynamic responses. We integrated in vivo imaging with ultrastructural analysis, transcriptomics, pharmacological treatments, and knockout mice to elucidate the role of phagocytes and their modulation of the local inflammatory response through extracellular traps (ETs). Deciphering these mechanisms is essential for developing novel and enhanced immunotherapeutic approaches that can redirect a specific maladaptive immune response towards favorable wound healing in the retina. RESULTS Our findings underscore the pivotal role of innate immune cells, especially macrophages/monocytes, in regulating retinal repair and inflammation. The absence of neutrophil and macrophage infiltration aids parenchymal integrity restoration, while their depletion, particularly macrophages/monocytes, impedes vascular recovery. We demonstrate that macrophages/monocytes, when recruited in the retina, release chromatin and granular proteins, forming ETs. Furthermore, the pharmacological inhibition of ETosis support retinal and vascular repair, surpassing the effects of blocking innate immune cell recruitment. Simultaneously, the absence of ETosis reshapes the inflammatory response, causing neutrophils, helper, and cytotoxic T-cells to be restricted primarily in the superficial capillary plexus instead of reaching the damaged photoreceptor layer. CONCLUSIONS Our data offer novel insights into innate immunity's role in responding to retinal damage and potentially help developing innovative immunotherapeutic approaches that can shift the immune response from maladaptive to beneficial for retinal regeneration.
Collapse
Affiliation(s)
- Federica M Conedera
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland.
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Despina Kokona
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Alt
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Singh MS, Pyati A, Rubi RD, Subramanian R, Muley VY, Ansari MA, Yellaboina S. Systems-wide view of host-pathogen interactions across COVID-19 severities using integrated omics analysis. iScience 2024; 27:109087. [PMID: 38384846 PMCID: PMC10879696 DOI: 10.1016/j.isci.2024.109087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
The mechanisms explaining the variability in COVID-19 clinical manifestations (mild, moderate, and severe) are not fully understood. To identify key gene expression markers linked to disease severity, we employed an integrated approach, combining host-pathogen protein-protein interaction data and viral-induced host gene expression data. We analyzed an RNA-seq dataset from peripheral blood mononuclear cells across 12 projects representing the spectrum of disease severity. We identified genes showing differential expression across mild, moderate, and severe conditions. Enrichment analysis of the pathways in host proteins targeted by each of the SARS-CoV-2 proteins revealed a strong association with processes related to ribosomal biogenesis, translation, and translocation. Interestingly, most of these pathways and associated cellular machinery, including ribosomal biogenesis, ribosomal proteins, and translation, were upregulated in mild conditions but downregulated in severe cases. This suggests that COVID-19 exhibits a paradoxical host response, boosting host/viral translation in mild cases but slowing it in severe cases.
Collapse
Affiliation(s)
- Mairembam Stelin Singh
- Department of Biochemistry, SCLS, Jamia Hamdard, New Delhi, India
- Department of Zoology, Rajiv Gandhi University, Itanagar, Arunachal Pradesh, India
| | - Anand Pyati
- All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana 508126, India
| | - R. Devika Rubi
- Department of Computer Science and Engineering, Keshav Memorial Institute of Technology, Hyderabad, Telangana State, India
| | - Rajasekaran Subramanian
- Department of Computer Science and Engineering, Keshav Memorial Institute of Technology, Hyderabad, Telangana State, India
| | | | - Mairaj Ahmed Ansari
- Department of Biotechnology, SCLS, Jamia Hamdard, New Delhi, India
- Centre for Virology, SIST, Jamia Hamdard, New Delhi, India
| | - Sailu Yellaboina
- All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana 508126, India
| |
Collapse
|
19
|
de Diego C, Lasierra AB, López-Vergara L, Torralba L, Ruiz de Gopegui P, Lahoz R, Abadía C, Godino J, Cebollada A, Jimeno B, Bello C, Tejada A, Bello S. What is the actual relationship between neutrophil extracellular traps and COVID-19 severity? A longitudinal study. Respir Res 2024; 25:48. [PMID: 38243237 PMCID: PMC10797938 DOI: 10.1186/s12931-023-02650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) have repeatedly been related to COVID-19 severity and mortality. However, there is no consensus on their quantification, and there are scarce data on their evolution during the disease. We studied circulating NET markers in patients with COVID-19 throughout their hospitalization. METHODS We prospectively included 93 patients (201 blood samples), evaluating the disease severity in 3 evolutionary phases (viral, early, and late inflammation). Of these, 72 had 180 samples in various phases. We also evaluated 55 controls with similar age, sex and comorbidities. We measured 4 NET markers in serum: cfDNA, CitH3, and MPO-DNA and NE-DNA complexes; as well as neutrophil-related cytokines IL-8 and G-CSF. RESULTS The COVID-19 group had higher CitH3 (28.29 vs 20.29 pg/mL, p = 0.022), and cfDNA, MPO-DNA, and NE-DNA (7.87 vs 2.56 ng/mL; 0.80 vs 0.52 and 1.04 vs 0.72, respectively, p < 0.001 for all) than the controls throughout hospitalisation. cfDNA was the only NET marker clearly related to severity, and it remained higher in non-survivors during the 3 phases. Only cfDNA was an independent risk factor for mortality and need for intensive care. Neutrophil count, IL-8, and G-CSF were significantly related to severity. MPO-DNA and NE-DNA showed significant correlations (r: 0.483, p < 0.001), including all 3 phases and across all severity grades, and they only remained significantly higher on days 10-16 of evolution in those who died. Correlations among the other NET markers were lower than expected. CONCLUSIONS The circulating biomarkers of NETs were present in patients with COVID-19 throughout hospitalization. cfDNA was associated with severity and mortality, but the three other markers showed little or no association with these outcomes. Neutrophil activity and neutrophil count were also associated with severity. MPO-DNA and NE-DNA better reflected NET formation. cfDNA appeared to be more associated with overall tissue damage; previous widespread use of this marker could have overestimated the relationship between NETs and severity. Currently, there are limitations to accurate NET markers measurement that make it difficult to assess its true role in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Cristina de Diego
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel la Católica 1-9, 50009, Zaragoza, Spain
| | | | - Lucía López-Vergara
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel la Católica 1-9, 50009, Zaragoza, Spain
| | - Laura Torralba
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel la Católica 1-9, 50009, Zaragoza, Spain
| | | | - Raquel Lahoz
- Department of Biochemistry. Miguel, Servet University Hospital, Zaragoza, Spain
| | - Claudia Abadía
- Department of Biochemistry. Miguel, Servet University Hospital, Zaragoza, Spain
| | - Javier Godino
- Department of Cytometry and Cell Separation, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Alberto Cebollada
- Biocomputing Technical Scientific Service, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Beatriz Jimeno
- Department of Cytometry and Cell Separation, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Carlota Bello
- Department of Radiology, Hospital Clínico Lozano Blesa, Zaragoza, Spain
| | - Antonio Tejada
- Intensive Care Unit, Miguel Servet University Hospital, Zaragoza, Spain
| | - Salvador Bello
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel la Católica 1-9, 50009, Zaragoza, Spain.
| |
Collapse
|
20
|
Pilchová V, Gerhauser I, Armando F, Wirz K, Schreiner T, de Buhr N, Gabriel G, Wernike K, Hoffmann D, Beer M, Baumgärtner W, von Köckritz-Blickwede M, Schulz C. Characterization of young and aged ferrets as animal models for SARS-CoV-2 infection with focus on neutrophil extracellular traps. Front Immunol 2023; 14:1283595. [PMID: 38169647 PMCID: PMC10758425 DOI: 10.3389/fimmu.2023.1283595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are net-like structures released by activated neutrophils upon infection [e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)] as part of the innate immune response that have protective effects by pathogen entrapment and immobilization or result in detrimental consequences for the host due to the massive release of NETs and their impaired degradation by nucleases like DNase-1. Higher amounts of NETs are associated with coronavirus disease 2019 (COVID-19) severity and are a risk factor for severe disease outcome. The objective of our study was to investigate NET formation in young versus aged ferrets to evaluate their value as translational model for SARS-CoV-2-infection and to correlate different NET markers and virological parameters. In each of the two groups (young and aged), nine female ferrets were intratracheally infected with 1 mL of 106 TCID50/mL SARS-CoV-2 (BavPat1/2020) and euthanized at 4, 7, or 21 days post-infection. Three animals per group served as negative controls. Significantly more infectious virus and viral RNA was found in the upper respiratory tract of aged ferrets. Interestingly, cell-free DNA and DNase-1 activity was generally higher in bronchoalveolar lavage fluid (BALF) but significantly lower in serum of aged compared to young ferrets. In accordance with these data, immunofluorescence microscopy revealed significantly more NETs in lungs of aged compared to young infected ferrets. The association of SARS-CoV-2-antigen in the respiratory mucosa and NET markers in the nasal conchae, but the absence of virus antigen in the lungs, confirms the nasal epithelium as the major location for virus replication as described for young ferrets. Furthermore, a strong positive correlation was found between virus shedding and cell-free DNA or the level of DNAse-1 activity in aged ferrets. Despite the increased NET formation in infected lungs of aged ferrets, the animals did not show a strong NET phenotype and correlation among tested NET markers. Therefore, ferrets are of limited use to study SARS-CoV-2 pathogenesis associated with NET formation. Nevertheless, the mild to moderate clinical signs, virus shedding pattern, and the lung pathology of aged ferrets confirm those animals as a relevant model to study age-dependent COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Veronika Pilchová
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover (ZSN), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Katrin Wirz
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Tom Schreiner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover (ZSN), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Nicole de Buhr
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Gülşah Gabriel
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, Hamburg, Germany
- Institute for Virology, University for Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover (ZSN), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Claudia Schulz
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
21
|
Elrod J, Heuer A, Knopf J, Schoen J, Schönfeld L, Trochimiuk M, Stiel C, Appl B, Raluy LP, Saygi C, Zlatar L, Hosari S, Royzman D, Winkler TH, Lochnit G, Leppkes M, Grützmann R, Schett G, Tomuschat C, Reinshagen K, Herrmann M, Fuchs TA, Boettcher M. Neutrophil extracellular traps and DNases orchestrate formation of peritoneal adhesions. iScience 2023; 26:108289. [PMID: 38034352 PMCID: PMC10682263 DOI: 10.1016/j.isci.2023.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/05/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
Peritoneal adhesions are poorly understood but highly prevalent conditions that can cause intestinal obstruction and pelvic pain requiring surgery. While there is consensus that stress-induced inflammation triggers peritoneal adhesions, the molecular processes of their formation still remain elusive. We performed murine models and analyzed human samples to monitor the formation of adhesions and the treatment with DNases. Various molecular analyses were used to evaluate the adhesions. The experimental peritoneal adhesions of the murine models and biopsy material from humans are largely based on neutrophil extracellular traps (NETs). Treatment with DNASE1 (Dornase alfa) and the human DNASE1L3 analog (NTR-10), significantly reduced peritoneal adhesions in experimental models. We conclude that NETs serve as essential scaffold for the formation of adhesions; DNases interfere with this process. Herein, we show that therapeutic application of DNases can be employed to prevent the formation of murine peritoneal adhesions. If this can be translated into the human situation requires clinical studies.
Collapse
Affiliation(s)
- Julia Elrod
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Annika Heuer
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Knopf
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lavinia Schönfeld
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Magdalena Trochimiuk
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carolin Stiel
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Appl
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laia Pagerols Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ceren Saygi
- Bioinformatics Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leticija Zlatar
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sami Hosari
- Department of Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Dmytro Royzman
- Division of Genetics, Department of Biology, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas H. Winkler
- Division of Genetics, Department of Biology, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, Friedrichstrasse 24, Giessen, Germany
| | - Moritz Leppkes
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 1 - Gastroenterologie, Pneumologie und Endokrinologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Tomuschat
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tobias A. Fuchs
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
22
|
Kozłowski P, Lulek M, Skwarek A, Śmiarowski M, Małecka-Giełdowska M, Ciepiela O. Mild-to-moderate COVID-19 does not predispose to the development of autoimmune rheumatic diseases or autoimmune-based thrombosis. Scand J Immunol 2023; 98:e13313. [PMID: 38441212 DOI: 10.1111/sji.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/16/2023] [Indexed: 03/07/2024]
Abstract
An infection with severe acute respiratory syndrome coronavirus (SARS-CoV-2) may have a significant impact on the human immune system. Interactions between the virus and defence mechanisms may promote the development of autoimmune processes which manifest as antinuclear antibody (ANA) synthesis. Since many different viruses are suspected to take part in the pathogenesis of different systemic autoimmune rheumatic diseases (SARDs), we examined whether coronavirus disease 2019 convalescents who suffer from mild to moderate disease have a higher risk of developing ANA and anti-β2-glicoprotein I IgG antibodies (β2 GPI). In a retrospective study, we examined 294 adults among volunteer blood donors divided into convalescents (N = 215) and healthy controls (N = 79). For ANA detection, we used line-blotting, a type of indirect immunofluorescence assay (IF), to determine antigenic specificity and ELISA for β2 GPI. We found a lower incidence of ANA in convalescents than in healthy controls, with the majority of these antibodies directed to antigens with no known clinical significance. Additionally, no participants were positive for β2 GPI in either group. Our results show that COVID-19 with mild to moderate symptoms in the generally healthy population does not induce the development of ANA or anti-β2 GPI antibodies for at least 6 months following the disease.
Collapse
Affiliation(s)
- Paweł Kozłowski
- Central Laboratory, University Clinical Centre of Medical University of Warsaw, Warsaw, Poland
| | - Michalina Lulek
- Students Scientific Group of Laboratory Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Agata Skwarek
- Students Scientific Group of Laboratory Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Śmiarowski
- Students Scientific Group of Laboratory Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Milena Małecka-Giełdowska
- Central Laboratory, University Clinical Centre of Medical University of Warsaw, Warsaw, Poland
- Department of Laboratory Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Olga Ciepiela
- Central Laboratory, University Clinical Centre of Medical University of Warsaw, Warsaw, Poland
- Department of Laboratory Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Zhang L, Nishi H, Kinoshita K. Single-cell RNA-seq public data reveal the gene regulatory network landscape of respiratory epithelial and peripheral immune cells in COVID-19 patients. Front Immunol 2023; 14:1194614. [PMID: 37936693 PMCID: PMC10627007 DOI: 10.3389/fimmu.2023.1194614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Infection with SARS-CoV-2 leads to coronavirus disease 2019 (COVID-19), which can result in acute respiratory distress syndrome and multiple organ failure. However, its comprehensive influence on pathological immune responses in the respiratory epithelium and peripheral immune cells is not yet fully understood. Methods In this study, we analyzed multiple public scRNA-seq datasets of nasopharyngeal swabs and peripheral blood to investigate the gene regulatory networks (GRNs) of healthy individuals and COVID-19 patients with mild/moderate and severe disease, respectively. Cell-cell communication networks among cell types were also inferred. Finally, validations were conducted using bulk RNA-seq and proteome data. Results Similar and dissimilar regulons were identified within or between epithelial and immune cells during COVID-19 severity progression. The relative transcription factors (TFs) and their targets were used to construct GRNs among different infection sites and conditions. Between respiratory epithelial and peripheral immune cells, different TFs tended to be used to regulate the activity of a cell between healthy individuals and COVID-19 patients, although they had some TFs in common. For example, XBP1, FOS, STAT1, and STAT2 were activated in both the epithelial and immune cells of virus-infected individuals. In contrast, severe COVID-19 cases exhibited activation of CEBPD in peripheral immune cells, while CEBPB was exclusively activated in respiratory epithelial cells. Moreover, in patients with severe COVID-19, although some inflammatory genes, such as S100A8/A9, were found to be upregulated in both respiratory epithelial and peripheral immune cells, their relative regulators can differ in terms of cell types. The cell-cell communication analysis suggested that epidermal growth factor receptor signaling among epithelia contributes to mild/moderate disease, and chemokine signaling among immune cells contributes to severe disease. Conclusion This study identified cell type- and condition-specific regulons in a wide range of cell types from the initial infection site to the peripheral blood, and clarified the diverse mechanisms of maladaptive responses to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lin Zhang
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Hafumi Nishi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Faculty of Core Research, Ochanomizu University, Tokyo, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Department of In Silico Analyses, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| |
Collapse
|
24
|
Wybranowski T, Ziomkowska B, Cyrankiewicz M, Pyskir J, Bosek M, Napiórkowska M, Pilaczyńska-Cemel M, Przybylski G, Kruszewski S. Time-Resolved Fluorescence Spectroscopy of Blood, Plasma and Albumin as a Potential Diagnostic Tool for Acute Inflammation in COVID-19 Pneumonia Patients. Int J Mol Sci 2023; 24:14703. [PMID: 37834149 PMCID: PMC10572581 DOI: 10.3390/ijms241914703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Fluorescence lifetime measurements of blood or plasma offer valuable insights into the microenvironment and molecular interactions of fluorophores, particularly concerning albumin. Neutrophil- and hypoxia-induced oxidative stress in COVID-19 pneumonia patients leads to hyperinflammation, various oxidative modifications of blood proteins, and potential alterations in the fluorescence lifetime of tryptophan-containing proteins, especially albumin. The objective of this study was to investigate the efficacy of time-resolved fluorescence spectroscopy of blood and plasma as a prompt diagnostic tool for the early diagnosis and severity assessment of COVID-19-associated pneumonia. This study examined a cohort of sixty COVID-19 patients with respiratory symptoms. To investigate whether oxidative stress is the underlying cause of the change in fluorescence lifetime, human serum albumin was treated with chloramine T. The time-resolved spectrometer Life Spec II (Edinburgh Instruments Ltd., Livingston, UK), equipped with a sub-nanosecond pulsed 280 nm diode, was used to measure the fluorescence lifetime of blood and plasma. The findings revealed a significant reduction in the fluorescence lifetime of blood (diluted 200 times) and plasma (diluted 20 times) at 360 nm in COVID-19 pneumonia patients compared with their respective values recorded six months post-infection and those of healthy individuals. Significant negative correlations were observed between the mean fluorescence lifetime of blood and plasma at 360 nm and several severity biomarkers and advanced oxidation protein products, while a positive correlation was found with albumin and the albumin-globulin ratio. The time-resolved fluorescence spectroscopy method demonstrates the potential to be used as a preliminary screening technique for identifying patients who are at risk of developing severe complications. Furthermore, the small amount of blood required for the measurements has the potential to enable a rapid fingerstick blood test.
Collapse
Affiliation(s)
- Tomasz Wybranowski
- Department of Biophysics, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (T.W.); (B.Z.); (M.B.); (M.N.); (S.K.)
| | - Blanka Ziomkowska
- Department of Biophysics, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (T.W.); (B.Z.); (M.B.); (M.N.); (S.K.)
| | - Michał Cyrankiewicz
- Department of Biophysics, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (T.W.); (B.Z.); (M.B.); (M.N.); (S.K.)
| | - Jerzy Pyskir
- Department of Biophysics, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (T.W.); (B.Z.); (M.B.); (M.N.); (S.K.)
| | - Maciej Bosek
- Department of Biophysics, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (T.W.); (B.Z.); (M.B.); (M.N.); (S.K.)
| | - Marta Napiórkowska
- Department of Biophysics, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (T.W.); (B.Z.); (M.B.); (M.N.); (S.K.)
| | - Marta Pilaczyńska-Cemel
- Department of Lung Diseases, Neoplasms and Tuberculosis, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (M.P.-C.); (G.P.)
| | - Grzegorz Przybylski
- Department of Lung Diseases, Neoplasms and Tuberculosis, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (M.P.-C.); (G.P.)
| | - Stefan Kruszewski
- Department of Biophysics, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (T.W.); (B.Z.); (M.B.); (M.N.); (S.K.)
| |
Collapse
|
25
|
Ofori K, Chen D, Sepulveda J, Bhagat G, Alobeid B. Normoblastemia in COVID-19 patients is associated with more severe disease and adverse outcome. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2023; 16:235-242. [PMID: 37818385 PMCID: PMC10560885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/07/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVES The clinical, pathological, and laboratory correlates of normoblastemia in COVID-19 patients have not been adequately explored. We sought to assess the frequency of normoblastemia in COVID-19, its association with other markers of disease, as well as other clinical outcomes. METHODS All COVID-19 patients seen at our institution with at least one automated complete blood count (aCBC) evaluation from March to May 2020 were included in this retrospective cohort analysis. Results of aCBC and tests for markers of the acute phase response performed within 5 days before the first COVID-19 positive test and 14 days after the last positive test were reviewed. We also evaluated histologic features of the reticuloendothelial system of COVID-19 decedents. RESULTS Among a total of 2501 COVID-19 patients, 715 (28.6%) were found to have normoblastemia. Patients with this abnormality had significantly higher (median, (1st quartile, 3rd quartile) WBC (15.7 (11.2, 23.1) u/L vs. 8.3 (6.2, 11.5) u/L), absolute neutrophil count (7.0 (5.1, 10.1) u/L vs. 5.1 (3.7, 7.3) u/L), immature granulocyte percentage (0.8 (0.5, 1.3)% vs. 0.5 (0.3, 0.8)%), ESR (76.0 (60.5, 100.0) mm/hr vs. 66.0 (45.0, 87.0) mm/hr), ferritin (1404.5 (645.0, 2871.0) ng/mL vs. 672.7 (313.4, 1348.0) ng/mL), INR (1.4 (1.2, 1.7) vs. 1.2 (1.1, 1.3)), D-dimer (8.2 (2.8, 20.0) ug/mL FEU vs. 1.5 (0.8, 3.7) µg/mL FEU), and IL-6 (216.6 (77.7, 315.0) pg/mL vs. 54.3 (23.2, 127.8) pg/mL) levels, and lower hemoglobin (12.5 (10.7, 14.2) g/dL vs. 13.2 (11.8, 14.6) g/dL) and absolute lymphocyte count (1.0 (0.7, 1.3) u/L vs. 1.1 (0.8, 1.5) u/L). The incidence of intubation and ventilation support (61.3% (65/106) vs. 10.5% (31/263)) and mortality rates (37.9%, 271/715 vs. 11.8%, 210/1786), were higher in normoblastemic patients. Multivariable logistic regression revealed normoblastemia to be an independent predictive biomarker of short-term mortality in COVID-19. CONCLUSION Normoblastemia in COVID-19 is associated with markers of severe disease, extramedullary erythropoiesis, and adverse clinical outcome.
Collapse
Affiliation(s)
- Kenneth Ofori
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew York, NY, USA
| | - Diane Chen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew York, NY, USA
| | - Jorge Sepulveda
- Department of Pathology, George Washington UniversityWashington, DC, USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew York, NY, USA
| | - Bachir Alobeid
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew York, NY, USA
| |
Collapse
|
26
|
Akbasheva OE, Mitrofanova DK, Spirina LV, Samoilova YG, Matveeva MV, Podchinenova DV, Oleynik OA. Alpha-2 macroglobulin activity in SARS-CoV-2 induced infection and in the post-COVID-19 period. BIOMEDITSINSKAIA KHIMIIA 2023; 69:240-247. [PMID: 37705485 DOI: 10.18097/pbmc20236904240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The universal proteinase inhibitor α2-macroglobulin (α₂-MG) exhibiting antiviral and immunomodulatory activities, is considered as an important participant in the infectious process. The activity of α₂-MG in the new coronavirus infection and post-covid syndrome (long COVID) has not been studied yet. We examined 85 patients diagnosed with community-acquired bilateral polysegmental pneumonia developed under conditions of a new coronavirus infection SARS-CoV-2. For assessment of the post-COVID period, 60 patients were examined 5.0±3.6 months after the coronavirus infection. Among these patients, 40 people had complications, manifested in the form of neurological, cardiological, gastroenterological, dermatological, bronchopulmonary symptoms. The control group included 30 conditionally healthy individuals with a negative PCR result for SARS-CoV-2 RNA and lack of antibodies to the SARS-CoV-2 virus. The α₂-MG activity in serum samples of patients with coronavirus infection dramatically decreased, up to 2.5% of the physiological level. This was accompanied by an increase in the activity of the α₁-proteinase inhibitor, elastase- and trypsin-like proteinases by 2.0-, 4.4- and 2.6-fold respectively as compared with these parameters in conditionally healthy individuals of the control. In the post-COVID period, despite the trend towards normalization of the activity of inhibitors, the activity of elastase-like and especially trypsin-like proteinases in serum remained elevated. In overweight individuals, the increase in the activity of trypsin-like proteinases was most pronounced and correlated with an increase in the antibody titer to the SARS-CoV-2 virus. In the post-COVID period, the α₂-MG activity not only normalized, but also exceeded the control level, especially in patients with dermatological and neurological symptoms. In patients with neurological symptoms or with dermatological symptoms, the α₂-MG activity was 1.3 times and 2.1 times higher than in asymptomatic persons. Low α₂-MG activity in the post-COVID period persisted in overweight individuals. The results obtained can be used to monitor the course of the post-COVID period and identify risk groups for complications.
Collapse
Affiliation(s)
| | | | - L V Spirina
- Siberian State Medical University, Tomsk, Russia; Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | | | - M V Matveeva
- Siberian State Medical University, Tomsk, Russia
| | | | - O A Oleynik
- Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
27
|
Al-Aqtash R, Ross MS, Collier DM. Extracellular histone proteins activate P2XR7 channel current. J Gen Physiol 2023; 155:e202213317. [PMID: 37199689 PMCID: PMC10200710 DOI: 10.1085/jgp.202213317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/30/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
Extracellular histone proteins are elevated in circulation after injury or activation of the innate immune response. In resistance-size arteries, extracellular histone proteins increased endothelial cell (EC) Ca2+ influx and propidium iodide (PI) labeling, but paradoxically decreased vasodilation. These observations could be explained by the activation of an EC resident non-selective cation channel. We tested the hypothesis that the ionotropic purinergic receptor 7 (P2XR7), a non-selective cation channel associated with cationic dye uptake, is activated by histone proteins. We expressed mouse P2XR7 (C57BL/6J variant 451L) in heterologous cells and measured inward cation current using two-electrode voltage clamp (TEVC). Cells expressing mouse P2XR7 had robust ATP- and histone-evoked inward cation currents. ATP- and histone-evoked currents reversed approximately at the same potential. Current decay with agonist removal was slower for histone-evoked than ATP- or BzATP-evoked currents. As with ATP-evoked P2XR7 currents, histone-evoked currents were inhibited by non-selective P2XR7 antagonists (Suramin, PPADS, and TNP-ATP). Selective P2XR7 antagonists, AZ10606120, A438079, GW791343, and AZ11645373, inhibited ATP-evoked P2XR7 currents but did not inhibit histone-evoked P2XR7 currents. As previously reported with ATP-evoked currents, histone-evoked P2XR7 currents were also increased in conditions of low extracellular Ca2+. These data demonstrate that P2XR7 is necessary and sufficient for histone-evoked inward cation currents in a heterologous expression system. These results provide insight into a new allosteric mechanism of P2XR7 activation by histone proteins.
Collapse
Affiliation(s)
- Rua’a Al-Aqtash
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center College of Pharmacy, Memphis, TN, USA
| | - Maxwell S. Ross
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center College of Pharmacy, Memphis, TN, USA
| | - Daniel M. Collier
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center College of Pharmacy, Memphis, TN, USA
| |
Collapse
|
28
|
Gullotta GS, De Feo D, Friebel E, Semerano A, Scotti GM, Bergamaschi A, Butti E, Brambilla E, Genchi A, Capotondo A, Gallizioli M, Coviello S, Piccoli M, Vigo T, Della Valle P, Ronchi P, Comi G, D'Angelo A, Maugeri N, Roveri L, Uccelli A, Becher B, Martino G, Bacigaluppi M. Age-induced alterations of granulopoiesis generate atypical neutrophils that aggravate stroke pathology. Nat Immunol 2023; 24:925-940. [PMID: 37188941 DOI: 10.1038/s41590-023-01505-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023]
Abstract
Aging accounts for increased risk and dismal outcome of ischemic stroke. Here, we investigated the impact of age-related changes in the immune system on stroke. Upon experimental stroke, compared with young mice, aged mice had increased neutrophil clogging of the ischemic brain microcirculation, leading to worse no-reflow and outcomes. Aged mice showed an enhanced granulopoietic response to stroke that led to the accumulation of CD101+CD62Llo mature and CD177hiCD101loCD62Llo and CD177loCD101loCD62Lhi immature atypical neutrophils in the blood, endowed with increased oxidative stress, phagocytosis and procoagulant features. Production of CXCL3 by CD62Llo neutrophils of the aged had a key role in the development and pathogenicity of aging-associated neutrophils. Hematopoietic stem cell rejuvenation reverted aging-associated neutropoiesis and improved stroke outcome. In elderly patients with ischemic stroke, single-cell proteome profile of blood leukocytes identified CD62Llo neutrophil subsets associated with worse reperfusion and outcome. Our results unveil how stroke in aging leads to a dysregulated emergency granulopoiesis impacting neurological outcome.
Collapse
Affiliation(s)
- Giorgia Serena Gullotta
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ekaterina Friebel
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Aurora Semerano
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Andrea Bergamaschi
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Erica Butti
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Brambilla
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Angela Genchi
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - Alessia Capotondo
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Gallizioli
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | | | - Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS, Policlinico San Donato, Milan, Italy
| | - Tiziana Vigo
- IRCCS, Ospedale Policlinico San Martino, Genova, Italy
| | - Patrizia Della Valle
- Coagulation Service and Thrombosis Research Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Paola Ronchi
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, Telethon Institute for Gene Therapy (HSR-TIGET), IRCCS San Raffaele Hospital, Milan, Italy
| | - Giancarlo Comi
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - Armando D'Angelo
- Coagulation Service and Thrombosis Research Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Norma Maugeri
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Luisa Roveri
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - Antonio Uccelli
- IRCCS, Ospedale Policlinico San Martino, Genova, Italy
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genoa, Italy
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - Marco Bacigaluppi
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy.
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy.
| |
Collapse
|
29
|
Vijakumaran U, Goh NY, Razali RA, Abdullah NAH, Yazid MD, Sulaiman N. Role of Olive Bioactive Compounds in Respiratory Diseases. Antioxidants (Basel) 2023; 12:1140. [PMID: 37371870 DOI: 10.3390/antiox12061140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Respiratory diseases recently became the leading cause of death worldwide, due to the emergence of COVID-19. The pathogenesis of respiratory diseases is centred around inflammation and oxidative stress. Plant-based alongside synthetic drugs were considered as therapeutics due to their proven nutraceutical value. One such example is the olive, which is a traditional symbol of the MedDiet. Olive bioactive compounds are enriched with antioxidant, anti-inflammatory, anticancer and antiviral properties. However, there are few studies relating to the beneficial effect of olive bioactive compounds on respiratory diseases. A vague understanding of its molecular action, dosage and bioavailability limits its usefulness for clinical trials about respiratory infections. Hence, our review aims to explore olive bioactive compound's antioxidant, anti-inflammatory and antiviral properties in respiratory disease defence and treatment. Molecular insight into olive compounds' potential for respiratory system protection against inflammation and ensuing infection is also presented. Olive bioactive compounds mainly protect the respiratory system by subsiding proinflammatory cytokines and oxidative stress.
Collapse
Affiliation(s)
- Ubashini Vijakumaran
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Neng-Yao Goh
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Rabiatul Adawiyah Razali
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Atiqah Haizum Abdullah
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nadiah Sulaiman
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
30
|
Votto M, Castagnoli R, Marseglia GL, Licari A, Brambilla I. COVID-19 and autoimmune diseases: is there a connection? Curr Opin Allergy Clin Immunol 2023; 23:185-192. [PMID: 36728317 DOI: 10.1097/aci.0000000000000888] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW This review summarizes current evidence on the potential link between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and autoimmunity. RECENT FINDINGS Several viral infections are potential triggers of reactive and autoimmune diseases by inducing type II and type IV hypersensitivity reactions. Recent evidence demonstrated that SARS-CoV-2 infection is not an exception, triggering the production of tissue-specific autoantibodies during the acute phase of coronavirus disease 2019 (COVID-19) and leading to autoimmune diseases development as long-term complication. The significant immune dysregulation with cytokine storm and organ damage observed in patients with severe to critical COVID-19 is considered the main mechanism explaining the high levels of autoantibodies, which are also implicated in disease severity and the need for an intensive care assessment. Multisystem inflammatory syndrome in children (MIS-C) is an immune-mediated disease where the recent viral infection leads to systemic inflammation, as already observed in other reactive and autoimmune diseases. SUMMARY Autoimmunity may be a complication of SAR-CoV-2 infection. Understanding the pathogenesis of autoimmune manifestations in COVID-19 might help prevent the incidence or exacerbation of autoimmune disorders and design better and more efficient treatment strategies in children and adult populations.
Collapse
Affiliation(s)
- Martina Votto
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia
| | - Riccardo Castagnoli
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Amelia Licari
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ilaria Brambilla
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
31
|
Yan M, Gu Y, Sun H, Ge Q. Neutrophil extracellular traps in tumor progression and immunotherapy. Front Immunol 2023; 14:1135086. [PMID: 36993957 PMCID: PMC10040667 DOI: 10.3389/fimmu.2023.1135086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Tumor immunity is a growing field of research that involves immune cells within the tumor microenvironment. Neutrophil extracellular traps (NETs) are neutrophil-derived extracellular web-like chromatin structures that are composed of histones and granule proteins. Initially discovered as the predominant host defense against pathogens, NETs have attracted increasing attention due to they have also been tightly associated with tumor. Excessive NET formation has been linked to increased tumor growth, metastasis, and drug resistance. Moreover, through direct and/or indirect effects on immune cells, an abnormal increase in NETs benefits immune exclusion and inhibits T-cell mediated antitumor immune responses. In this review, we summarize the recent but rapid progress in understanding the pivotal roles of NETs in tumor and anti-tumor immunity, highlighting the most relevant challenges in the field. We believe that NETs may be a promising therapeutic target for tumor immunotherapy.
Collapse
Affiliation(s)
- Meina Yan
- Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- *Correspondence: Meina Yan, ;
| | - Yifeng Gu
- Department of Laboratory Medicine, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu, China
| | - Hongxia Sun
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Qinghong Ge
- Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
32
|
Nesterova IV, Atazhakhova MG, Teterin YV, Matushkina VA, Chudilova GA, Mitropanova MN. THE ROLE OF NEUTROPHIL EXTRACELLULAR TRAPS (NETS)
IN THE IMMUNOPATHOGENESIS OF SEVERE COVID-19: POTENTIAL IMMUNOTHERAPEUTIC STRATEGIES REGULATING NET FORMATION AND ACTIVITY. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023. [DOI: 10.15789/2220-7619-tro-2058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The role of neutrophil granulocytes (NG) in the pathogenesis of COVID-19 is associated with the recruitment of NG into inflammatory foci, activation of their functions and enhanced formation of neutrophil extracellular networks (NETs). In this review, we analyzed a fairly large volume of scientific literature devoted to the peculiarities of the formation of NETs, their role in the pathogenesis of COVID-19, participation in the occurrence of immunothrombosis, vasculitis, acute respiratory distress syndrome, cytokine storm syndrome, multi-organ lesions. Convincing data are presented that clearly indicate the significant involvement of NETs in the immunopathogenesis of COVID-19 and the associated severe complications resulting from the intensification of the inflammation process, which is key for the course of infection caused by the SARS-CoV-2 virus. The presented role of NG and NETs, along with the role of other immune system cells and pro-inflammatory cytokines, is extremely important in understanding the development of an overactive immune response in severe COVID-19. The obtained scientific results, available today, allow identifying the possibilities of regulatory effects on hyperactivated NG, on the formation of NETs at various stages and on limiting the negative impact of already formed NETs on various tissues and organs. All of the above should help in the creation of new, specialized immunotherapy strategies designed to increase the chances of survival, reduce the severity of clinical manifestations in patients with COVID-19, as well as significantly reduce mortality rates. Currently, it is possible to use existing drugs and a number of new drugs are being developed, the action of which can regulate the amount of NG, positively affect the functions of NG and limit the intensity of NETs formation. Continuing research on the role of hyperactive NG and netosis, as well as understanding the mechanisms of regulation of the phenomenon of formation and restriction of NETs activity in severe COVID-19, apparently, are a priority, since in the future the new data obtained could become the basis for the development of targeted approaches not only to immunotherapy aimed at limiting education and blocking negative effects already formed NETs in severe COVID-19, but also to immunotherapy, which could be used in the complex treatment of other netopathies, first of all, autoimmune diseases, auto-inflammatory syndromes, severe purulent-inflammatory processes, including bacterial sepsis and hematogenous osteomyelitis.
Collapse
|
33
|
Plasma N-Cleaved Galectin-9 Is a Surrogate Marker for Determining the Severity of COVID-19 and Monitoring the Therapeutic Effects of Tocilizumab. Int J Mol Sci 2023; 24:ijms24043591. [PMID: 36835000 PMCID: PMC9964849 DOI: 10.3390/ijms24043591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Galectin-9 (Gal-9) is known to contribute to antiviral responses in coronavirus disease 2019 (COVID-19). Increased circulating Gal-9 in COVID-19 is associated with COVID-19 severity. In a while, the linker-peptide of Gal-9 is susceptible to proteolysis that can cause the change or loss of Gal-9 activity. Here, we measured plasma levels of N-cleaved-Gal9, which is Gal9 carbohydrate-recognition domain at the N-terminus (NCRD) with attached truncated linker peptide that differs in length depending on the type of proteases, in COVID-19. We also investigated the time course of plasma N-cleaved-Gal9 levels in severe COVID-19 treated with tocilizumab (TCZ). As a result, we observed an increase in plasma N-cleaved-Gal9 levels in COVID-19 and its higher levels in COVID-19 with pneumonia compared to the mild cases (healthy: 326.1 pg/mL, mild: 698.0 pg/mL, and with pneumonia: 1570 pg/mL). N-cleaved-Gal9 levels were associated with lymphocyte counts, C-reactive protein (CRP), soluble interleukin-2 receptor (sIL-2R), D-dimer, and ferritin levels, and ratio of percutaneous oxygen saturation to fraction of inspiratory oxygen (S/F ratio) in COVID-19 with pneumonia and discriminated different severity groups with high accuracy (area under the curve (AUC): 0.9076). Both N-cleaved-Gal9 and sIL-2R levels were associated with plasma matrix metalloprotease (MMP)-9 levels in COVID-19 with pneumonia. Furthermore, a decrease in N-cleaved-Gal9 levels was associated with a decrease of sIL-2R levels during TCZ treatment. N-cleaved-Gal9 levels showed a moderate accuracy (AUC: 0.8438) for discriminating the period before TCZ from the recovery phase. These data illustrate that plasma N-cleaved-Gal9 is a potential surrogate marker for assessing COVID-19 severity and the therapeutic effects of TCZ.
Collapse
|
34
|
Bauer A, Pachl E, Hellmuth JC, Kneidinger N, Heydarian M, Frankenberger M, Stubbe HC, Ryffel B, Petrera A, Hauck SM, Behr J, Kaiser R, Scherer C, Deng L, Teupser D, Ahmidi N, Muenchhoff M, Schubert B, Hilgendorff A. Proteomics reveals antiviral host response and NETosis during acute COVID-19 in high-risk patients. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166592. [PMID: 36328146 PMCID: PMC9622026 DOI: 10.1016/j.bbadis.2022.166592] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
SARS-CoV-2 remains an acute threat to human health, endangering hospital capacities worldwide. Previous studies have aimed at informing pathophysiologic understanding and identification of disease indicators for risk assessment, monitoring, and therapeutic guidance. While findings start to emerge in the general population, observations in high-risk patients with complex pre-existing conditions are limited. We addressed the gap of existing knowledge with regard to a differentiated understanding of disease dynamics in SARS-CoV-2 infection while specifically considering disease stage and severity. We biomedically characterized quantitative proteomics in a hospitalized cohort of COVID-19 patients with mild to severe symptoms suffering from different (co)-morbidities in comparison to both healthy individuals and patients with non-COVID related inflammation. Deep clinical phenotyping enabled the identification of individual disease trajectories in COVID-19 patients. By the use of the individualized disease phase assignment, proteome analysis revealed a severity dependent general type-2-centered host response side-by-side with a disease specific antiviral immune reaction in early disease. The identification of phenomena such as neutrophil extracellular trap (NET) formation and a pro-coagulatory response characterizing severe disease was successfully validated in a second cohort. Together with the regulation of proteins related to SARS-CoV-2-specific symptoms identified by proteome screening, we not only confirmed results from previous studies but provide novel information for biomarker and therapy development.
Collapse
Affiliation(s)
- Alina Bauer
- Helmholtz Zentrum München, Computational Health Department, Member of the German Center for Lung Research (DZL), 85764 Munich, Germany
| | - Elisabeth Pachl
- Helmholtz Zentrum München, Computational Health Department, Member of the German Center for Lung Research (DZL), 85764 Munich, Germany,Fraunhofer IKS, Fraunhofer Institute for Cognitive Systems IKS, 80686 Munich, Germany
| | - Johannes C. Hellmuth
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany,German Cancer Consortium (DKTK), Munich, Germany,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
| | - Nikolaus Kneidinger
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany,Department of Medicine V, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | | | - Marion Frankenberger
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
| | - Hans C. Stubbe
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany,Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans and Artimmune, Orléans, France
| | - Agnese Petrera
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Jürgen Behr
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany,Department of Medicine V, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Rainer Kaiser
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany,Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Clemens Scherer
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany,Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Li Deng
- Helmholtz Zentrum München, Computational Health Department, Member of the German Center for Lung Research (DZL), 85764 Munich, Germany,Institute of Virology, Technical University of Munich, 81675 Munich, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Narges Ahmidi
- Fraunhofer IKS, Fraunhofer Institute for Cognitive Systems IKS, 80686 Munich, Germany
| | - Maximilian Muenchhoff
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany,Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Benjamin Schubert
- Helmholtz Zentrum München, Computational Health Department, Member of the German Center for Lung Research (DZL), 85764 Munich, Germany,Department of Mathematics, Technical University of Munich, 85748 Garching bei München, Germany
| | - Anne Hilgendorff
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany; Center for Comprehensive Developmental Care (CDeC(LMU)) at the Interdisciplinary Social Pediatric Center (iSPZ), LMU Hospital, Munich, Germany.
| |
Collapse
|
35
|
Rice CM, Lewis P, Ponce-Garcia FM, Gibbs W, Groves S, Cela D, Hamilton F, Arnold D, Hyams C, Oliver E, Barr R, Goenka A, Davidson A, Wooldridge L, Finn A, Rivino L, Amulic B. Hyperactive immature state and differential CXCR2 expression of neutrophils in severe COVID-19. Life Sci Alliance 2023; 6:6/2/e202201658. [PMID: 36622345 PMCID: PMC9748722 DOI: 10.26508/lsa.202201658] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are vital in defence against pathogens, but excessive neutrophil activity can lead to tissue damage and promote acute respiratory distress syndrome. COVID-19 is associated with systemic expansion of immature neutrophils, but the functional consequences of this shift to immaturity are not understood. We used flow cytometry to investigate activity and phenotypic diversity of circulating neutrophils in acute and convalescent COVID-19 patients. First, we demonstrate hyperactivation of immature CD10- subpopulations in severe disease, with elevated markers of secondary granule release. Partially activated immature neutrophils were detectable 12 wk post-hospitalisation, indicating long term myeloid dysregulation in convalescent COVID-19 patients. Second, we demonstrate that neutrophils from moderately ill patients down-regulate the chemokine receptor CXCR2, whereas neutrophils from severely ill individuals fail to do so, suggesting an altered ability for organ trafficking and a potential mechanism for induction of disease tolerance. CD10- and CXCR2hi neutrophil subpopulations were enriched in severe disease and may represent prognostic biomarkers for the identification of individuals at high risk of progressing to severe COVID-19.
Collapse
Affiliation(s)
- Christopher M Rice
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Philip Lewis
- University of Bristol Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Fernando M Ponce-Garcia
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Willem Gibbs
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Sarah Groves
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Drinalda Cela
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Fergus Hamilton
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - David Arnold
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| | - Catherine Hyams
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| | - Elizabeth Oliver
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Rachael Barr
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Anu Goenka
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Andrew Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Linda Wooldridge
- Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Adam Finn
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Laura Rivino
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Borko Amulic
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
36
|
Ismailova A, Salehi-Tabar R, Dimitrov V, Memari B, Barbier C, White JH. Identification of a forkhead box protein transcriptional network induced in human neutrophils in response to inflammatory stimuli. Front Immunol 2023; 14:1123344. [PMID: 36756115 PMCID: PMC9900176 DOI: 10.3389/fimmu.2023.1123344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023] Open
Abstract
Introduction Neutrophils represent the largest proportion of circulating leukocytes and, in response to inflammatory stimuli, are rapidly recruited to sites of infection where they neutralize pathogens. Methods and results We have identified a novel neutrophil transcription network induced in response to inflammatory stimuli. We performed the first RNAseq analysis of human neutrophils exposed to lipopolysaccharide (LPS), followed by a meta-analysis of our dataset and previously published studies of LPS-challenged neutrophils. This revealed a robustly enhanced transcriptional network driven by forkhead box (FOX) transcription factors. The network is enriched in genes encoding proinflammatory cytokines and transcription factors, including MAFF and ATF3, which are implicated in responses to stress, survival and inflammation. Expression of transcription factors FOXP1 and FOXP4 is induced in neutrophils exposed to inflammatory stimuli, and potential FOXP1/FOXP4 binding sites were identified in several genes in the network, all located in chromatin regions consistent with neutrophil enhancer function. Chromatin immunoprecipitation (ChIP) assays in neutrophils confirmed enhanced binding of FOXP4, but not FOXP1, to multiple sites in response to LPS. Binding to numerous motifs and transactivation of network genes were also observed when FOXP proteins were transiently expressed in HEK293 cells. In addition to LPS, the transcriptional network is induced by other inflammatory stimuli, indicating it represents a general neutrophil response to inflammation. Discussion Collectively, these findings reveal a role for the FOXP4 transcription network as a regulator of responses to inflammatory stimuli in neutrophils.
Collapse
Affiliation(s)
- Aiten Ismailova
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | | - Vassil Dimitrov
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Babak Memari
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Camille Barbier
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - John H. White
- Department of Physiology, McGill University, Montreal, QC, Canada,Department of Medicine, McGill University, Montreal, QC, Canada,*Correspondence: John H. White,
| |
Collapse
|
37
|
Bahrini K, Stambouli N, Ben Azaiez M, Rebai A, Abid F, Romdhani C, Labben I, Gharsallah H, Ferjani M. Immune Cell Response during COVID-19 Infection and following SARS-CoV-2 Vaccination in Patients Admitted to Intensive Care Unit. J Immunol Res 2023; 2023:4059484. [PMID: 37144176 PMCID: PMC10151725 DOI: 10.1155/2023/4059484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Background Immune response plays a crucial role in virus clearance during COVID-19 infection and underpins vaccine efficacy. Herein, we aimed to assess the immune response during COVID-19 infection and following SARS-CoV-2 vaccination. Methods In this retrospective study, 94 confirmed COVID-19 patients admitted to the intensive care unit were categorized into unvaccinated patients (n = 50), including 33 deceased and 17 discharged patients, and vaccinated group (n = 44) with 26 deceased and 18 discharged patients. Records of patients with severe COVID-19 admitted to the ICU between March, 2021 and March, 2022 were gathered and analyzed. Result The assessment of immune cell counts revealed a large rise of neutrophils associated to decrease number of lymphocytes in patients with COVID-19 infection. In dead patients, we detected a significant correlation between neutrophils and inflammatory parameters such as IL-6 and CRP. Moreover, analysis of immune cell count following vaccination did not reveal any significant difference. However, the most substantial result, herein, detected is the decrease level of IL-6 in vaccinated patients as compared to unvaccinated. The reduce level of IL-6 following vaccination is observed in discharged patients as compared to deceased. Regarding the level of mortality after vaccination, we showed that all patients who received the first dose were died (46.1%, n = 12) as compared to those who have received two doses (34.6%, n = 9) and the third dose of vaccine (19.23%, n = 3) (p=0.0018). Strikingly, studying the inflammatory parameters after each vaccine dose, we revealed a significant decrease of IL-6 level after the booster dose (third dose), especially in vaccinated discharged patients. Conclusions Neutrophils combined with IL-6 and CRP can be very useful markers to predict disease severity in patients admitted to ICU. The decrease level of IL-6 in vaccinated group pointed out the impact of vaccination to prevent inflammatory cytokine release.
Collapse
Affiliation(s)
- Khadija Bahrini
- Research Unit UR17DN05, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
- University Tunis El Manar, Tunis, Tunisia
| | - Nejla Stambouli
- Research Unit UR17DN05, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Mouna Ben Azaiez
- Department of Immunology, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Aicha Rebai
- University Tunis El Manar, Tunis, Tunisia
- Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Ferid Abid
- Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Chihebeddine Romdhani
- Research Unit UR17DN05, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
- University Tunis El Manar, Tunis, Tunisia
- Department of Anesthesiology and Intensive Care, Military Hospital of Gabes, Tunisia
| | - Iheb Labben
- University Tunis El Manar, Tunis, Tunisia
- Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Hédi Gharsallah
- Research Unit UR17DN05, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
- University Tunis El Manar, Tunis, Tunisia
- Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Mustapha Ferjani
- University Tunis El Manar, Tunis, Tunisia
- Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| |
Collapse
|
38
|
Punzalan FER, Aherrera JAM, de Paz-Silava SLM, Mondragon AV, Malundo AFG, Tan JJE, Tantengco OAG, Quebral EPB, Uy MNAR, Lintao RCV, Dela Rosa JGL, Mercado MEP, Avenilla KC, Poblete JB, Albay AB, David-Wang AS, Alejandria MM. Utility of laboratory and immune biomarkers in predicting disease progression and mortality among patients with moderate to severe COVID-19 disease at a Philippine tertiary hospital. Front Immunol 2023; 14:1123497. [PMID: 36926338 PMCID: PMC10011458 DOI: 10.3389/fimmu.2023.1123497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Purpose This study was performed to determine the clinical biomarkers and cytokines that may be associated with disease progression and in-hospital mortality in a cohort of hospitalized patients with RT-PCR confirmed moderate to severe COVID-19 infection from October 2020 to September 2021, during the first wave of COVID-19 pandemic before the advent of vaccination. Patients and methods Clinical profile was obtained from the medical records. Laboratory parameters (complete blood count [CBC], albumin, LDH, CRP, ferritin, D-dimer, and procalcitonin) and serum concentrations of cytokines (IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-18, IFN-γ, IP-10, TNF-α) were measured on Days 0-3, 4-10, 11-14 and beyond Day 14 from the onset of illness. Regression analysis was done to determine the association of the clinical laboratory biomarkers and cytokines with the primary outcomes of disease progression and mortality. ROC curves were generated to determine the predictive performance of the cytokines. Results We included 400 hospitalized patients with COVID-19 infection, 69% had severe to critical COVID-19 on admission. Disease progression occurred in 139 (35%) patients, while 18% of the total cohort died (73 out of 400). High D-dimer >1 µg/mL (RR 3.5 95%CI 1.83-6.69), elevated LDH >359.5 U/L (RR 1.85 95%CI 1.05-3.25), lymphopenia (RR 1.91 95%CI 1.14-3.19), and hypoalbuminemia (RR 2.67, 95%CI 1.05-6.78) were significantly associated with disease progression. High D-dimer (RR 3.95, 95%CI 1.62-9.61) and high LDH (RR 5.43, 95%CI 2.39-12.37) were also significantly associated with increased risk of in-hospital mortality. Nonsurvivors had significantly higher IP-10 levels at 0 to 3, 4 to 10, and 11 to 14 days from illness onset (p<0.01), IL-6 levels at 0 to 3 days of illness (p=0.03) and IL-18 levels at days 11-14 of illness (p<0.001) compared to survivors. IP-10 had the best predictive performance for disease progression at days 0-3 (AUC 0.81, 95%CI: 0.68-0.95), followed by IL-6 at 11-14 days of illness (AUC 0.67, 95%CI: 0.61-0.73). IP-10 predicted mortality at 11-14 days of illness (AUC 0.77, 95%CI: 0.70-0.84), and IL-6 beyond 14 days of illness (AUC 0.75, 95%CI: 0.68-0.82). Conclusion Elevated D-dimer, elevated LDH, lymphopenia and hypoalbuminemia are prognostic markers of disease progression. High IP-10 and IL-6 within the 14 days of illness herald disease progression. Additionally, elevated D-dimer and LDH, high IP-10, IL-6 and IL-18 were also associated with mortality. Timely utilization of these biomarkers can guide clinical monitoring and management decisions for COVID-19 patients in the Philippines.
Collapse
Affiliation(s)
- Felix Eduardo R Punzalan
- Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Jaime Alfonso M Aherrera
- Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,College of Medicine, University of the Philippines Manila, Manila, Philippines
| | | | - Alric V Mondragon
- Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Anna Flor G Malundo
- Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Joanne Jennifer E Tan
- Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ourlad Alzeus G Tantengco
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines.,Department of Biology, College of Science, De La Salle University, Manila, Philippines
| | | | - Mary Nadine Alessandra R Uy
- Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ryan C V Lintao
- College of Medicine, University of the Philippines Manila, Manila, Philippines
| | | | - Maria Elizabeth P Mercado
- Department of Clinical Epidemiology, Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | | | - Jonnel B Poblete
- Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Albert B Albay
- Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Aileen S David-Wang
- Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Marissa M Alejandria
- Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,College of Medicine, University of the Philippines Manila, Manila, Philippines.,Institute of Clinical Epidemiology, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
39
|
Influence of SARS-COV-2 Infection on Cytokine Production by Mitogen-Stimulated Peripheral Blood Mononuclear Cells and Neutrophils in COVID-19 Intensive Care Unit Patients. Microorganisms 2022; 10:microorganisms10112194. [PMID: 36363785 PMCID: PMC9695671 DOI: 10.3390/microorganisms10112194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
We sought to investigate the influence of SARS-CoV-2 infection on the cytokine profiles of peripheral blood mononuclear cells (PBMCs) and neutrophils from coronavirus disease 2019 (COVID-19) intensive care unit (ICU) patients. Neutrophils and PBMCs were separated and stimulated with the mitogen phytohemagglutinin. Culture supernatants of mitogen-stimulated PBMCs and neutrophils from 88 COVID-19 ICU patients and 88 healthy controls were evaluated for levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon (IFN)-α, IFN-γ, interleukin (IL)-2, -4, -5, -6, -9, -10, -12, -17A, and tumor necrosis factor (TNF)-α using anti-cytokine antibody MACSPlex capture beads. Cytokine profiles of PBMCs showed significantly lower levels of GM-CSF, IFN-γ, IL-6, IL-9, IL-10, IL-17A, and TNF-α (p < 0.0001) in COVID-19 ICU patients. In contrast, COVID-19 ICU patients showed higher median levels of IL-2 (p < 0.001) and IL-5 (p < 0.01) by PBMCs. As for neutrophils, COVID-19 ICU patients showed significantly lower levels of GM-CSF, IFN-γ, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-17A, IL-12, TNF-α (p < 0.0001), and IFN-α (p < 0.01). T-helper (Th)1:Th2 cytokine ratios revealed lower inflammatory cytokine for PBMCs and neutrophils in COVID-19 ICU patients. Cytokine production profiles and Th1:Th2 cytokine ratios suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has an immunomodulatory effect on PBMCs and neutrophils. This study also suggests that the increased levels of several cytokines in the serum are not sourced from PBMCs and neutrophils.
Collapse
|
40
|
Lyons PG, Bhavani SV, Mody A, Bewley A, Dittman K, Doyle A, Windham SL, Patel TM, Raju BN, Keller M, Churpek MM, Calfee CS, Michelson AP, Kannampallil T, Geng EH, Sinha P. Hospital trajectories and early predictors of clinical outcomes differ between SARS-CoV-2 and influenza pneumonia. EBioMedicine 2022; 85:104295. [PMID: 36202054 PMCID: PMC9527494 DOI: 10.1016/j.ebiom.2022.104295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND A comparison of pneumonias due to SARS-CoV-2 and influenza, in terms of clinical course and predictors of outcomes, might inform prognosis and resource management. We aimed to compare clinical course and outcome predictors in SARS-CoV-2 and influenza pneumonia using multi-state modelling and supervised machine learning on clinical data among hospitalised patients. METHODS This multicenter retrospective cohort study of patients hospitalised with SARS-CoV-2 (March-December 2020) or influenza (Jan 2015-March 2020) pneumonia had the composite of hospital mortality and hospice discharge as the primary outcome. Multi-state models compared differences in oxygenation/ventilatory utilisation between pneumonias longitudinally throughout hospitalisation. Differences in predictors of outcome were modelled using supervised machine learning classifiers. FINDINGS Among 2,529 hospitalisations with SARS-CoV-2 and 2,256 with influenza pneumonia, the primary outcome occurred in 21% and 9%, respectively. Multi-state models differentiated oxygen requirement progression between viruses, with SARS-CoV-2 manifesting rapidly-escalating early hypoxemia. Highly contributory classifier variables for the primary outcome differed substantially between viruses. INTERPRETATION SARS-CoV-2 and influenza pneumonia differ in presentation, hospital course, and outcome predictors. These pathogen-specific differential responses in viral pneumonias suggest distinct management approaches should be investigated. FUNDING This project was supported by NIH/NCATS UL1 TR002345, NIH/NCATS KL2 TR002346 (PGL), the Doris Duke Charitable Foundation grant 2015215 (PGL), NIH/NHLBI R35 HL140026 (CSC), and a Big Ideas Award from the BJC HealthCare and Washington University School of Medicine Healthcare Innovation Lab and NIH/NIGMS R35 GM142992 (PS).
Collapse
Affiliation(s)
- Patrick G Lyons
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States; Healthcare Innovation Lab, BJC HealthCare, St. Louis, MO, United States.
| | | | - Aaloke Mody
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Alice Bewley
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Katherine Dittman
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Aisling Doyle
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Samuel L Windham
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Tej M Patel
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Bharat Neelam Raju
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Matthew Keller
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Matthew M Churpek
- Department of Medicine, University of Wisconsin School of Medicine, Madison, WI, United States
| | - Carolyn S Calfee
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco, CA, United States
| | - Andrew P Michelson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States; Institute for Informatics, Washington University School of Medicine, St. Louis, MO, United States
| | - Thomas Kannampallil
- Institute for Informatics, Washington University School of Medicine, St. Louis, MO, United States; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Elvin H Geng
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Pratik Sinha
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
41
|
Rossi E, Mutti L, Morrione A, Giordano A. Neuro-Immune Interactions in Severe COVID-19 Infection. Pathogens 2022; 11:1256. [PMID: 36365007 PMCID: PMC9699641 DOI: 10.3390/pathogens11111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 is a new coronavirus that has affected the world since 2019. Interstitial pneumonia is the most common clinical presentation, but additional symptoms have been reported, including neurological manifestations. Severe forms of infection, especially in elderly patients, present as an excessive inflammatory response called "cytokine storm", which can lead to acute respiratory distress syndrome (ARDS), multiorgan failure and death. Little is known about the relationship between symptoms and clinical outcomes or the characteristics of virus-host interactions. The aim of this narrative review is to highlight possible links between neurological involvement and respiratory damage mediated by pathological inflammatory pathways in SARS-CoV-2 infection. We will focus on neuro-immune interactions and age-related immunity decline and discuss some pathological mechanisms that contribute to negative outcomes in COVID-19 patients. Furthermore, we will describe available therapeutic strategies and their effects on COVID-19 neurological symptoms.
Collapse
Affiliation(s)
- Elena Rossi
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Italian Group for Research and Therapy for Mesothelioma (GIMe), 27058 Voghera, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
42
|
Pérez-Guerrero P, Illanes-Álvarez F, Márquez-Ruiz D, Campaña-Gómez I, Cuesta-Sancho S, Márquez-Coello M, Girón-González JA. Implication of Neutrophils Extracellular Traps in the Pathogenesis of SARS-CoV-2 pneumonia. Biomedicines 2022; 10:biomedicines10102638. [PMID: 36289900 PMCID: PMC9599188 DOI: 10.3390/biomedicines10102638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 12/15/2022] Open
Abstract
Peripheral blood polymorphonuclear neutrophils (PMNs) forming extracellular traps (NETs), as well as endothelial- and platelet-derived parameters, have been analyzed in patients with SARS-CoV-2 pneumonia, and their prognostic role has been evaluated. Eighty-seven consecutive patients hospitalized with SARS-CoV-2 pneumonia were prospectively selected. A sample of 30 healthy individuals served as the control group. Clinical and oxygenation (oxygen saturation to fraction of inspired oxygen ratio—SpO2/FiO2) characteristics and PMNs forming NETs, serum levels of myeloperoxidase, E-selectin, vascular cell adhesion molecule 1—VCAM1—vascular endothelial growth factor, P-selectin, platelet factor 4 and plasma concentrations of D-dimer were evaluated at hospital admission, at discharge and 14 days after discharge. Intensive care unit admission or death was the primary composite endpoint. Patients showed a higher number of PMNs forming NETs than healthy controls. The absolute number of PMNs forming NETs was inversely correlated with oxygen status (SpO2/FiO2) and positively with inflammatory (C-reactive protein, ferritin) markers and VCAM1. A decrease in, but not a normalization of NETs and endothelial-derived parameters was observed in patients who survived. In conclusion, the formation of NETs runs parallel to that of other inflammatory and endothelial activation markers, and is inverse to the oxygenation parameters, supporting a pathogenic role for PMNs in this entity.
Collapse
Affiliation(s)
- Patricia Pérez-Guerrero
- Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Francisco Illanes-Álvarez
- Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Denisse Márquez-Ruiz
- Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Irene Campaña-Gómez
- Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Sara Cuesta-Sancho
- Departamento de Inmunología, Facultad de Medicina, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Mercedes Márquez-Coello
- Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - José-Antonio Girón-González
- Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Correspondence:
| |
Collapse
|
43
|
Lu LW, Gao Y, Quek SY, Foster M, Eason CT, Liu M, Wang M, Chen JH, Chen F. The landscape of potential health benefits of carotenoids as natural supportive therapeutics in protecting against Coronavirus infection. Biomed Pharmacother 2022; 154:113625. [PMID: 36058151 PMCID: PMC9428603 DOI: 10.1016/j.biopha.2022.113625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 01/08/2023] Open
Abstract
The Coronavirus Disease-2019 (COVID-19) pandemic urges researching possibilities for prevention and management of the effects of the virus. Carotenoids are natural phytochemicals of anti-oxidant, anti-inflammatory and immunomodulatory properties and may exert potential in aiding in combatting the pandemic. This review presents the direct and indirect evidence of the health benefits of carotenoids and derivatives based on in vitro and in vivo studies, human clinical trials and epidemiological studies and proposes possible mechanisms of action via which carotenoids may have the capacity to protect against COVID-19 effects. The current evidence provides a rationale for considering carotenoids as natural supportive nutrients via antioxidant activities, including scavenging lipid-soluble radicals, reducing hypoxia-associated superoxide by activating antioxidant enzymes, or suppressing enzymes that produce reactive oxygen species (ROS). Carotenoids may regulate COVID-19 induced over-production of pro-inflammatory cytokines, chemokines, pro-inflammatory enzymes and adhesion molecules by nuclear factor kappa B (NF-κB), renin-angiotensin-aldosterone system (RAS) and interleukins-6- Janus kinase-signal transducer and activator of transcription (IL-6-JAK/STAT) pathways and suppress the polarization of pro-inflammatory M1 macrophage. Moreover, carotenoids may modulate the peroxisome proliferator-activated receptors γ by acting as agonists to alleviate COVID-19 symptoms. They also may potentially block the cellular receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human angiotensin-converting enzyme 2 (ACE2). These activities may reduce the severity of COVID-19 and flu-like diseases. Thus, carotenoid supplementation may aid in combatting the pandemic, as well as seasonal flu. However, further in vitro, in vivo and in particular long-term clinical trials in COVID-19 patients are needed to evaluate this hypothesis.
Collapse
|
44
|
Wang M, Chang W, Zhang L, Zhang Y. Pyroptotic cell death in SARS-CoV-2 infection: revealing its roles during the immunopathogenesis of COVID-19. Int J Biol Sci 2022; 18:5827-5848. [PMID: 36263178 PMCID: PMC9576507 DOI: 10.7150/ijbs.77561] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/10/2022] [Indexed: 01/12/2023] Open
Abstract
The rapid dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), remains a global public health emergency. The host immune response to SARS-CoV-2 plays a key role in COVID-19 pathogenesis. SARS-CoV-2 can induce aberrant and excessive immune responses, leading to cytokine storm syndrome, autoimmunity, lymphopenia, neutrophilia and dysfunction of monocytes and macrophages. Pyroptosis, a proinflammatory form of programmed cell death, acts as a host defense mechanism against infections. Pyroptosis deprives the replicative niche of SARS-CoV-2 by inducing the lysis of infected cells and exposing the virus to extracellular immune attack. Notably, SARS-CoV-2 has evolved sophisticated mechanisms to hijack this cell death mode for its own survival, propagation and shedding. SARS-CoV-2-encoded viral products act to modulate various key components in the pyroptosis pathways, including inflammasomes, caspases and gasdermins. SARS-CoV-2-induced pyroptosis contriubtes to the development of COVID-19-associated immunopathologies through leakage of intracellular contents, disruption of immune system homeostasis or exacerbation of inflammation. Therefore, pyroptosis has emerged as an important mechanism involved in COVID-19 immunopathogenesis. However, the entangled links between pyroptosis and SARS-CoV-2 pathogenesis lack systematic clarification. In this review, we briefly summarize the characteristics of SARS-CoV-2 and COVID-19-related immunopathologies. Moreover, we present an overview of the interplay between SARS-CoV-2 infection and pyroptosis and highlight recent research advances in the understanding of the mechanisms responsible for the implication of the pyroptosis pathways in COVID-19 pathogenesis, which will provide informative inspirations and new directions for further investigation and clinical practice. Finally, we discuss the potential value of pyroptosis as a therapeutic target in COVID-19. An in-depth discussion of the underlying mechanisms of COVID-19 pathogenesis will be conducive to the identification of potential therapeutic targets and the exploration of effective treatment measures aimed at conquering SARS-CoV-2-induced COVID-19.
Collapse
Affiliation(s)
- Man Wang
- ✉ Corresponding author: Man Wang, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China. Tel.: +86-532-82991791; E-mail address:
| | | | | | | |
Collapse
|
45
|
Lin Y, Ma B, Yang Y, Chen Y, Huang J, Li W, Yu X, Liang L. Impaired kidney function biomarkers and risk of severe COVID-19: Analysis of population-based cohort data. Mol Genet Genomic Med 2022; 10:e2047. [PMID: 36124564 PMCID: PMC9538291 DOI: 10.1002/mgg3.2047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patients with impaired kidney function were found at a high risk of COVID-19 hospitalization and mortality in many observational, cross-sectional, and hospital-based studies, but evidence from large-scale prospective cohorts has been lacking. We aimed to examine the association of kidney function-related biomarkers and their genetic predisposition with the risk of developing severe COVID-19 in population-based data. METHODS We analyzed data from UK Biobank to examine the prospective association of abnormal kidney function biomarkers with severe COVID-19, defined by laboratory-confirmed COVID-19 hospitalizations. Using genotype data, we constructed polygenic risk scores (PRS) to represent an individual's overall genetic risk for these biomarkers. We also identified tipping points where the risk of severe COVID-19 began to increase significantly for each biomarker. RESULTS Of the 502,506 adults, 1650 (0.32%) were identified as severe COVID-19, before August 12, 2020. High levels of cystatin C (OR: 1.3; 95% CI: 1.2-1.5; FDR = 1.5 × 10-5 ), serum creatinine (OR: 1.7; 95% CI: 1.3-2.1; p = 3.5 × 10-4 ; FDR = 3.5 × 10-4 ), microalbuminuria (OR: 1.4; 95% CI: 1.2-1.6; FDR = 4 × 10-4 ), and UACR (urinary albumin creatinine ratio; OR: 1.4; 95% CI: 1.2-1.6; p = 3.5 × 10-4 ; FDR = 3.5 × 10-4 ) were found significantly associated with severe COVID-19. Individuals with top 10% of PRS for elevated cystatin C, urate, and microalbuminuria had 28% to 43% higher risks of severe COVID-19 than individuals with bottom 30% PRS (p < 0.05). Tipping-point analyses further supported that severe COVID-19 could occur even when the values of cystatin C, urate (male), and microalbuminuria were within their normal value ranges (OR >1.1, p < 0.05). CONCLUSIONS Findings from this study might point to new directions for clinicians and policymakers in optimizing risk-stratification among patients based on polygenic risk estimation and tipping points of kidney function markers. Our results call for further investigation to develop a better strategy to prevent severe COVID-19 outcomes among patients with genetic predisposition to impaired kidney function. These findings could provide a new tool for clinicians and policymakers in the future especially if we need to live with COVID-19 for a long time.
Collapse
Affiliation(s)
- Yifei Lin
- West China HospitalSichuan UniversityChengduChina,Program in Genetic Epidemiology and Statistical Genetics, Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Baoshan Ma
- College of Information Science and TechnologyDalian Maritime UniversityDalianChina
| | - Yingxi Yang
- Department of StatisticsSun Yat‐sen UniversityGuangzhouChina
| | - Yuxiang Chen
- Program in Genetic Epidemiology and Statistical Genetics, Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Jin Huang
- West China HospitalSichuan UniversityChengduChina
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine/Institute of Respiratory Health, Frontiers Science Center for Disease‐related Molecular Network/Precision Medicine Research Center/The Research Units of West China, Chinese Academy of Medical Sciences, West China HospitalSichuan UniversityChengduChina
| | - Xueqing Yu
- Department of NephrologyGuangdong Provincial People's HospitalGuangzhouChina
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA,Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| |
Collapse
|
46
|
Belchamber KBR, Thein OS, Hazeldine J, Grudzinska FS, Faniyi AA, Hughes MJ, Jasper AE, Yip KP, Crowley LE, Lugg ST, Sapey E, Parekh D, Thickett DR, Scott A. Dysregulated Neutrophil Phenotype and Function in Hospitalised Non-ICU COVID-19 Pneumonia. Cells 2022; 11:2901. [PMID: 36139476 PMCID: PMC9496854 DOI: 10.3390/cells11182901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Infection with the SARS-CoV2 virus is associated with elevated neutrophil counts. Evidence of neutrophil dysfunction in COVID-19 is based on transcriptomics or single functional assays. Cell functions are interwoven pathways, and understanding the effect across the spectrum of neutrophil function may identify therapeutic targets. Objectives: Examine neutrophil phenotype and function in 41 hospitalised, non-ICU COVID-19 patients versus 23 age-matched controls (AMC) and 26 community acquired pneumonia patients (CAP). Methods: Isolated neutrophils underwent ex vivo analyses for migration, bacterial phagocytosis, ROS generation, NETosis and receptor expression. Circulating DNAse 1 activity, levels of cfDNA, MPO, VEGF, IL-6 and sTNFRI were measured and correlated to clinical outcome. Serial sampling on day three to five post hospitalization were also measured. The effect of ex vivo PI3K inhibition was measured in a further cohort of 18 COVID-19 patients. Results: Compared to AMC and CAP, COVID-19 neutrophils demonstrated elevated transmigration (p = 0.0397) and NETosis (p = 0.0332), and impaired phagocytosis (p = 0.0036) associated with impaired ROS generation (p < 0.0001). The percentage of CD54+ neutrophils (p < 0.001) was significantly increased, while surface expression of CD11b (p = 0.0014) and PD-L1 (p = 0.006) were significantly decreased in COVID-19. COVID-19 and CAP patients showed increased systemic markers of NETosis including increased cfDNA (p = 0.0396) and impaired DNAse activity (p < 0.0001). The ex vivo inhibition of PI3K γ and δ reduced NET release by COVID-19 neutrophils (p = 0.0129). Conclusions: COVID-19 is associated with neutrophil dysfunction across all main effector functions, with altered phenotype, elevated migration and NETosis, and impaired antimicrobial responses. These changes highlight that targeting neutrophil function may help modulate COVID-19 severity.
Collapse
Affiliation(s)
- Kylie B. R. Belchamber
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Onn S. Thein
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Jon Hazeldine
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TH, UK
| | - Frances S. Grudzinska
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Aduragbemi A. Faniyi
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Michael J. Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Alice E. Jasper
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Kay Por Yip
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Louise E. Crowley
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Sebastian T. Lugg
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
- PIONEER HDR-UK Hub in Acute Care, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B12 2GW, UK
| | - David R. Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
47
|
da Silva SJR, do Nascimento JCF, Germano Mendes RP, Guarines KM, Targino Alves da Silva C, da Silva PG, de Magalhães JJF, Vigar JRJ, Silva-Júnior A, Kohl A, Pardee K, Pena L. Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infect Dis 2022; 8:1758-1814. [PMID: 35940589 PMCID: PMC9380879 DOI: 10.1021/acsinfecdis.2c00204] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and virulent human-infecting coronavirus that emerged in late December 2019 in Wuhan, China, causing a respiratory disease called coronavirus disease 2019 (COVID-19), which has massively impacted global public health and caused widespread disruption to daily life. The crisis caused by COVID-19 has mobilized scientists and public health authorities across the world to rapidly improve our knowledge about this devastating disease, shedding light on its management and control, and spawned the development of new countermeasures. Here we provide an overview of the state of the art of knowledge gained in the last 2 years about the virus and COVID-19, including its origin and natural reservoir hosts, viral etiology, epidemiology, modes of transmission, clinical manifestations, pathophysiology, diagnosis, treatment, prevention, emerging variants, and vaccines, highlighting important differences from previously known highly pathogenic coronaviruses. We also discuss selected key discoveries from each topic and underline the gaps of knowledge for future investigations.
Collapse
Affiliation(s)
- Severino Jefferson Ribeiro da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jessica Catarine Frutuoso do Nascimento
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Renata Pessôa Germano Mendes
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Klarissa Miranda Guarines
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Caroline Targino Alves da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Poliana Gomes da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Jurandy Júnior Ferraz de Magalhães
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Virology, Pernambuco State Central Laboratory (LACEN/PE), 52171-011 Recife, Pernambuco, Brazil.,University of Pernambuco (UPE), Serra Talhada Campus, 56909-335 Serra Talhada, Pernambuco, Brazil.,Public Health Laboratory of the XI Regional Health, 56912-160 Serra Talhada, Pernambuco, Brazil
| | - Justin R J Vigar
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Abelardo Silva-Júnior
- Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), 57072-900 Maceió, Alagoas, Brazil
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Lindomar Pena
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| |
Collapse
|
48
|
Wang J, Li Q, Qiu Y, Lu H. COVID-19: imbalanced cell-mediated immune response drives to immunopathology. Emerg Microbes Infect 2022; 11:2393-2404. [PMID: 36069182 PMCID: PMC9553190 DOI: 10.1080/22221751.2022.2122579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses an imminent threat to humanity. SARS-CoV-2 invades host cells, causing a failure of host immune recognition. Instead of an effective antiviral immunological response after SARS-CoV-2 invasion, the cascading pathological syndrome of COVID-19, especially in severe disease, is exacerbated by an overt inflammatory response and the suppression of SARS-CoV-2–specific immune responses. As is known, excessive inflammation leads to pathophysiological changes in virus-infected tissues or organs, manifested by imbalanced immune responses, cytokine storm, and aggressive neutrophil activation, ultimately leading to lung damage, such as alveolar damage, endotheliitis, and fluid overload. However, the triggers and consequences of a disruption to immune system homeostasis and the underlying mechanisms of uncontrolled immunopathology following viral infection remain unclear. Here, we review the dynamic and systemic immune progression from an imbalance in cell-mediated immune responses to COVID-19 lung injury. Our understanding of key mechanisms involved in pathogenesis is critical for the development of therapeutic agents and to optimize therapeutic strategies.
Collapse
Affiliation(s)
- Jun Wang
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen 518112, Guangdong Province, China.,Clinical Laboratory, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, China
| | - Qian Li
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen 518112, Guangdong Province, China
| | - YuanWang Qiu
- Department of hepatology, The Fifth People's Hospital of Wuxi, Jiangnan University, No. 1314 Guangrui Road, Wuxi 215006, Jiangsu, China
| | - Hongzhou Lu
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen 518112, Guangdong Province, China
| |
Collapse
|
49
|
Role of Innate and Adaptive Cytokines in the Survival of COVID-19 Patients. Int J Mol Sci 2022; 23:ijms231810344. [PMID: 36142255 PMCID: PMC9499609 DOI: 10.3390/ijms231810344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 is a new coronavirus characterized by a high infection and transmission capacity. A significant number of patients develop inadequate immune responses that produce massive releases of cytokines that compromise their survival. Soluble factors are clinically and pathologically relevant in COVID-19 survival but remain only partially characterized. The objective of this work was to simultaneously study 62 circulating soluble factors, including innate and adaptive cytokines and their soluble receptors, chemokines and growth and wound-healing/repair factors, in severe COVID-19 patients who survived compared to those with fatal outcomes. Serum samples were obtained from 286 COVID-19 patients and 40 healthy controls. The 62 circulating soluble factors were quantified using a Luminex Milliplex assay. Results. The patients who survived had decreased levels of the following 30 soluble factors of the 62 studied compared to those with fatal outcomes, therefore, these decreases were observed for cytokines and receptors predominantly produced by the innate immune system—IL-1α, IL-1α, IL-18, IL-15, IL-12p40, IL-6, IL-27, IL-1Ra, IL-1RI, IL-1RII, TNFα, TGFα, IL-10, sRAGE, sTNF-RI and sTNF-RII—for the chemokines IL-8, IP-10, MCP-1, MCP-3, MIG and fractalkine; for the growth factors M-CSF and the soluble receptor sIL2Ra; for the cytokines involved in the adaptive immune system IFNγ, IL-17 and sIL-4R; and for the wound-repair factor FGF2. On the other hand, the patients who survived had elevated levels of the soluble factors TNFβ, sCD40L, MDC, RANTES, G-CSF, GM-CSF, EGF, PDGFAA and PDGFABBB compared to those who died. Conclusions. Increases in the circulating levels of the sCD40L cytokine; MDC and RANTES chemokines; the G-CSF and GM-CSF growth factors, EGF, PDGFAA and PDGFABBB; and tissue-repair factors are strongly associated with survival. By contrast, large increases in IL-15, IL-6, IL-18, IL-27 and IL-10; the sIL-1RI, sIL1RII and sTNF-RII receptors; the MCP3, IL-8, MIG and IP-10 chemokines; the M-CSF and sIL-2Ra growth factors; and the wound-healing factor FGF2 favor fatal outcomes of the disease.
Collapse
|
50
|
Zinellu A, Mangoni AA. A systematic review and meta-analysis of the association between the neutrophil, lymphocyte, and platelet count, neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio and COVID-19 progression and mortality. Expert Rev Clin Immunol 2022; 18:1187-1202. [PMID: 36047369 DOI: 10.1080/1744666x.2022.2120472] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Severe manifestations of coronavirus disease 2019 (COVID-19) are associated with alterations in blood cells that regulate immunity, inflammation, and hemostasis. We conducted an updated systematic review and meta-analysis of the association between the neutrophil, lymphocyte, and platelet count, neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR), and COVID-19 progression and mortality. METHODS A systematic literature search was conducted in PubMed, Web of Science, and Scopus for studies published between January 2020 and June 2022. RESULTS In 71 studies reporting the investigated parameters within 48 hours of admission, higher NLR (HR 1.21, 95% CI 1.16 to 1.27, p < 0.0001), relative neutrophilia (HR 1.62, 95% CI 1.46 to 1.80, p < 0.0001), relative lymphopenia (HR 1.62, 95% CI 1.27 to 2.08, p < 0.001), and relative thrombocytopenia (HR 1.74, 95% CI 1.36 to 2.22, p < 0.001), but not PLR (p = 0.11), were significantly associated with disease progression and mortality. Between-study heterogeneity was large-to-extreme. The magnitude and direction of the effect size were not modified in sensitivity analysis. CONCLUSIONS NLR and neutrophil, lymphocyte, and platelet count significantly discriminate COVID-19 patients with different progression and survival outcomes. (PROSPERO registration number: CRD42021267875).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.,Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|