1
|
Malay S, Madabhavi IV, Tripathi A. SARS-CoV-2 JN.1 variant: a short review. Monaldi Arch Chest Dis 2024. [PMID: 39221683 DOI: 10.4081/monaldi.2024.2981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded, positive-sense RNA virus. The SARS-CoV-2 virus is evolving continuously, and many variants have been detected over the last few years. SARS-CoV-2, as an RNA virus, is more prone to mutating. The continuous evolution of the SARS-CoV-2 virus is due to genetic mutation and recombination during the genomic replication process. Recombination is a naturally occurring phenomenon in which two distinct viral lineages simultaneously infect the same cellular entity in an individual. The evolution rate depends on the rate of mutation. The rate of mutation is variable among the RNA viruses, with the SARS-CoV-2 virus exhibiting a lower rate of mutation than other RNA viruses. The novel 3'-to-5' exoribonuclease proofreading machinery is responsible for a lower rate of mutation. Infection due to the SARS-CoV-2, influenza, and respiratory syncytial virus has been reported from around the world during the same period of fall and winter, resulting in a "tripledemic." The JN.1 variant, which evolved from the predecessor, the omicron variant BA.2.86, is currently the most dominant globally. The impact of the JN.1 variant on transmissibility, disease severity, immune evasion, and diagnostic and therapeutic escape will be discussed.
Collapse
Affiliation(s)
- Sarkar Malay
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh.
| | - Irappa V Madabhavi
- Department of Medical and Pediatric Oncology, J N Medical College; KLE Academy of Higher Education and Research (KAHER), Belagavi; Kerudi Cancer Hospital, Bagalkot, Karnataka.
| | - Anurag Tripathi
- Department of Pulmonary and Critical Care Medicine, King George's Medical University, Lucknow.
| |
Collapse
|
2
|
Eliadis P, Mais A, Papazisis A, Loxa EK, Dimitriadis A, Sarrigeorgiou I, Backovic M, Agallou M, Zouridakis M, Karagouni E, Lazaridis K, Mamalaki A, Lymberi P. Novel Competitive ELISA Utilizing Trimeric Spike Protein of SARS-CoV-2, Could Identify More Than RBD-RBM Specific Neutralizing Antibodies in Hybrid Sera. Vaccines (Basel) 2024; 12:914. [PMID: 39204038 PMCID: PMC11359269 DOI: 10.3390/vaccines12080914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Since the initiation of the COVID-19 pandemic, there has been a need for the development of diagnostic methods to determine the factors implicated in mounting an immune response against the virus. The most promising indicator has been suggested to be neutralizing antibodies (nAbs), which mainly block the interaction between the Spike protein (S) of SARS-CoV-2 and the host entry receptor ACE2. In this study, we aimed to develop and optimize conditions of a competitive ELISA to measure serum neutralizing titer, using a recombinant trimeric Spike protein modified to have six additional proline residues (S(6P)-HexaPro) and h-ACE2. The results of our surrogate Virus Neutralizing Assay (sVNA) were compared against the commercial sVNT (cPass, Nanjing GenScript Biotech Co., Nanjing City, China), using serially diluted sera from vaccinees, and a high correlation of ID50-90 titer values was observed between the two assays. Interestingly, when we tested and compared the neutralizing activity of sera from eleven fully vaccinated individuals who subsequently contracted COVID-19 (hybrid sera), we recorded a moderate correlation between the two assays, while higher sera neutralizing titers were measured with sVNA. Our data indicated that the sVNA, as a more biologically relevant model assay that paired the trimeric S(6P) with ACE2, instead of the isolated RBD-ACE2 pairing cPass test, could identify nAbs other than the RBD-RBM specific ones.
Collapse
Affiliation(s)
- Petros Eliadis
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.P.); (E.K.L.); (I.S.); (K.L.)
- Biotechnology Unit, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.D.); (A.M.)
| | - Annie Mais
- Laboratory of Molecular Biology and Immunobiotechnology, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Alexandros Papazisis
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.P.); (E.K.L.); (I.S.); (K.L.)
| | - Eleni K. Loxa
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.P.); (E.K.L.); (I.S.); (K.L.)
| | - Alexios Dimitriadis
- Biotechnology Unit, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.D.); (A.M.)
| | - Ioannis Sarrigeorgiou
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.P.); (E.K.L.); (I.S.); (K.L.)
| | - Marija Backovic
- Institut Pasteur, Unité de Virologie Structurale, Université Paris Cité, CNRS-UMR3569, 75724 Paris, France;
| | - Maria Agallou
- Immunology of Infection Laboratory, Microbiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.A.); (E.K.)
| | - Marios Zouridakis
- Structural Neurobiology Research Group, Laboratory of Molecular Neurobiology and Immunology, Department of Neurobiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Evdokia Karagouni
- Immunology of Infection Laboratory, Microbiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.A.); (E.K.)
| | - Konstantinos Lazaridis
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.P.); (E.K.L.); (I.S.); (K.L.)
- Biotechnology Unit, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.D.); (A.M.)
| | - Avgi Mamalaki
- Biotechnology Unit, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.D.); (A.M.)
- Laboratory of Molecular Biology and Immunobiotechnology, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Peggy Lymberi
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.P.); (E.K.L.); (I.S.); (K.L.)
| |
Collapse
|
3
|
Focosi D. Monoclonal Antibody Therapies Against SARS-CoV-2: Promises and Realities. Curr Top Microbiol Immunol 2024. [PMID: 39126484 DOI: 10.1007/82_2024_268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Monoclonal antibodies targeting the Spike protein of SARS-CoV-2 have been widely deployed in the ongoing COVID-19 pandemic. I review here the impact of those therapeutics in the early pandemic, ranging from structural classification to outcomes in clinical trials to in vitro and in vivo evidence of basal and treatment-emergent immune escape. Unfortunately, the Omicron variant of concern has completely reset all achievements so far in mAb therapy for COVID-19. Despite the intrinsic limitations of this strategy, future developments such as respiratory delivery of further engineered mAb cocktails could lead to improved outcomes.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy.
| |
Collapse
|
4
|
Lechuga GC, Temerozo JR, Napoleão-Pêgo P, Carvalho JPRS, Gomes LR, Bou-Habib DC, Morel CM, Provance DW, Souza TML, De-Simone SG. Enhanced Assessment of Cross-Reactive Antigenic Determinants within the Spike Protein. Int J Mol Sci 2024; 25:8180. [PMID: 39125749 PMCID: PMC11311977 DOI: 10.3390/ijms25158180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Despite successful vaccination efforts, the emergence of new SARS-CoV-2 variants poses ongoing challenges to control COVID-19. Understanding humoral responses regarding SARS-CoV-2 infections and their impact is crucial for developing future vaccines that are effective worldwide. Here, we identified 41 immunodominant linear B-cell epitopes in its spike glycoprotein with an SPOT synthesis peptide array probed with a pool of serum from hospitalized COVID-19 patients. The bioinformatics showed a restricted set of epitopes unique to SARS-CoV-2 compared to other coronavirus family members. Potential crosstalk was also detected with Dengue virus (DENV), which was confirmed by screening individuals infected with DENV before the COVID-19 pandemic in a commercial ELISA for anti-SARS-CoV-2 antibodies. A high-resolution evaluation of antibody reactivity against peptides representing epitopes in the spike protein identified ten sequences in the NTD, RBD, and S2 domains. Functionally, antibody-dependent enhancement (ADE) in SARS-CoV-2 infections of monocytes was observed in vitro with pre-pandemic Dengue-positive sera. A significant increase in viral load was measured compared to that of the controls, with no detectable neutralization or considerable cell death, suggesting its role in viral entry. Cross-reactivity against peptides from spike proteins was observed for the pre-pandemic sera. This study highlights the importance of identifying specific epitopes generated during the humoral response to a pathogenic infection to understand the potential interplay of previous and future infections on diseases and their impact on vaccinations and immunodiagnostics.
Collapse
Affiliation(s)
- Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
- Cellular Ultrastructure Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Jairo R. Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (J.R.T.); (D.C.B.-H.)
- National Institute for Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
| | - João P. R. S. Carvalho
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
- Graduate Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Fluminense Federal University, Niterói 24220-900, Brazil
| | - Larissa R. Gomes
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (J.R.T.); (D.C.B.-H.)
- National Institute for Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
| | - David W. Provance
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
| | - Thiago M. L. Souza
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
- Graduate Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Fluminense Federal University, Niterói 24220-900, Brazil
- Epidemiology and Molecular Systematics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
5
|
Kumar A, Tripathi P, Kumar P, Shekhar R, Pathak R. From Detection to Protection: Antibodies and Their Crucial Role in Diagnosing and Combatting SARS-CoV-2. Vaccines (Basel) 2024; 12:459. [PMID: 38793710 PMCID: PMC11125746 DOI: 10.3390/vaccines12050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Understanding the antibody response to SARS-CoV-2, the virus responsible for COVID-19, is crucial to comprehending disease progression and the significance of vaccine and therapeutic development. The emergence of highly contagious variants poses a significant challenge to humoral immunity, underscoring the necessity of grasping the intricacies of specific antibodies. This review emphasizes the pivotal role of antibodies in shaping immune responses and their implications for diagnosing, preventing, and treating SARS-CoV-2 infection. It delves into the kinetics and characteristics of the antibody response to SARS-CoV-2 and explores current antibody-based diagnostics, discussing their strengths, clinical utility, and limitations. Furthermore, we underscore the therapeutic potential of SARS-CoV-2-specific antibodies, discussing various antibody-based therapies such as monoclonal antibodies, polyclonal antibodies, anti-cytokines, convalescent plasma, and hyperimmunoglobulin-based therapies. Moreover, we offer insights into antibody responses to SARS-CoV-2 vaccines, emphasizing the significance of neutralizing antibodies in order to confer immunity to SARS-CoV-2, along with emerging variants of concern (VOCs) and circulating Omicron subvariants. We also highlight challenges in the field, such as the risks of antibody-dependent enhancement (ADE) for SARS-CoV-2 antibodies, and shed light on the challenges associated with the original antigenic sin (OAS) effect and long COVID. Overall, this review intends to provide valuable insights, which are crucial to advancing sensitive diagnostic tools, identifying efficient antibody-based therapeutics, and developing effective vaccines to combat the evolving threat of SARS-CoV-2 variants on a global scale.
Collapse
Affiliation(s)
- Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, India
| | - Prajna Tripathi
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Prashant Kumar
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Ritu Shekhar
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
6
|
Mader K, Dustin LB. Beyond bNAbs: Uses, Risks, and Opportunities for Therapeutic Application of Non-Neutralising Antibodies in Viral Infection. Antibodies (Basel) 2024; 13:28. [PMID: 38651408 PMCID: PMC11036282 DOI: 10.3390/antib13020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024] Open
Abstract
The vast majority of antibodies generated against a virus will be non-neutralising. However, this does not denote an absence of protective capacity. Yet, within the field, there is typically a large focus on antibodies capable of directly blocking infection (neutralising antibodies, NAbs) of either specific viral strains or multiple viral strains (broadly-neutralising antibodies, bNAbs). More recently, a focus on non-neutralising antibodies (nNAbs), or neutralisation-independent effects of NAbs, has emerged. These can have additive effects on protection or, in some cases, be a major correlate of protection. As their name suggests, nNAbs do not directly neutralise infection but instead, through their Fc domains, may mediate interaction with other immune effectors to induce clearance of viral particles or virally infected cells. nNAbs may also interrupt viral replication within infected cells. Developing technologies of antibody modification and functionalisation may lead to innovative biologics that harness the activities of nNAbs for antiviral prophylaxis and therapeutics. In this review, we discuss specific examples of nNAb actions in viral infections where they have known importance. We also discuss the potential detrimental effects of such responses. Finally, we explore new technologies for nNAb functionalisation to increase efficacy or introduce favourable characteristics for their therapeutic applications.
Collapse
Affiliation(s)
| | - Lynn B. Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK;
| |
Collapse
|
7
|
Sharma D, Rawat P, Greiff V, Janakiraman V, Gromiha MM. Predicting the immune escape of SARS-CoV-2 neutralizing antibodies upon mutation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166959. [PMID: 37967796 DOI: 10.1016/j.bbadis.2023.166959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
COVID-19 has resulted in millions of deaths and severe impact on economies worldwide. Moreover, the emergence of SARS-CoV-2 variants presented significant challenges in controlling the pandemic, particularly their potential to avoid the immune system and evade vaccine immunity. This has led to a growing need for research to predict how mutations in SARS-CoV-2 reduces the ability of antibodies to neutralize the virus. In this study, we assembled a set of 1813 mutations from the interface of SARS-CoV-2 spike protein's receptor binding domain (RBD) and neutralizing antibody complexes and developed a machine learning model to classify high or low escape mutations using interaction energy, inter-residue contacts and predicted binding free energy change. Our approach achieved an Area under the Receiver Operating Characteristics (ROC) Curve (AUC) of 0.91 using the Random Forest classifier on the test dataset with 217 mutations. The model was further utilized to predict the escape mutations on a dataset of 29,165 mutations located at the interface of 83 RBD-neutralizing antibody complexes. A small subset of this dataset was also validated based on available experimental data. We found that top 10 % high escape mutations were dominated by charged to nonpolar mutations whereas low escape mutations were dominated by polar to nonpolar mutations. We believe that the present method will allow prioritization of high/low escape mutations in the context of neutralizing antibodies targeting SARS-CoV-2 RBD region and assist antibody design for current and emerging variants.
Collapse
Affiliation(s)
- Divya Sharma
- Protein Bioinformatics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Puneet Rawat
- University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Victor Greiff
- University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Vani Janakiraman
- Infection Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - M Michael Gromiha
- Protein Bioinformatics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India; International Research Frontiers Initiative, School of Computing, Tokyo Institute of Technology, Yokohama 226-8501, Japan; Department of Computer Science, National University of Singapore, Singapore.
| |
Collapse
|
8
|
Moullan N, Asiago J, Stecco K, Hadi S, Albizem M, Tieu H, Hock B, Fenwick C, Lin K, Lengsfeld T, Poffenbarger L, Liu D, Trono D, Pantaleo G, Venkayya R, Bhuyan P. A First-in-Human Randomized Study to Assess the Safety, Tolerability, Pharmacokinetics, and Neutralization Profile of Two Investigational Long-Acting Anti-SARS-CoV-2 Monoclonal Antibodies. Infect Dis Ther 2024; 13:173-187. [PMID: 38221576 PMCID: PMC10828317 DOI: 10.1007/s40121-023-00908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024] Open
Abstract
INTRODUCTION COVID-19 remains a significant risk for the immunocompromised given their lower responsiveness to vaccination or infection. Therefore, passive immunity through long-acting monoclonal antibodies (mAbs) offers a needed approach for pre-exposure prophylaxis (PrEP). Our study evaluated safety, anti-SARS-CoV-2 neutralizing activity, nasal penetration, and pharmacokinetics (PK) of two half-life-extended investigational mAbs, AER001 and AER002, providing the first demonstration of upper airway penetration of mAbs with the LS-modification. METHODS This randomized, double-blind, placebo-controlled phase I study enrolled healthy adults (n = 80) who received two long-acting COVID mAbs (AER001 and AER002), AER002 alone, or placebo. The dose ranged from 100 mg (mg) to 1200 mg per mAb component. The primary objective was to describe the safety and tolerability following intravenous (IV) administration. Secondary objectives were to describe PK, anti-drug antibodies (ADA), neutralization activity levels, and safety evaluation through 6 months of follow-up. RESULTS The majority (97.6%) of the reported adverse events (AE) post administration were of grade 1 severity. There were no serious adverse events (SAE) or ADAs. AER001 and AER002 successfully achieved an extended half-life of 105 days and 97.5 days, respectively. Participants receiving AER001 and AER002 (300 mg each) or AER002 (300 mg) alone showed 15- and 26-fold higher neutralization levels against D614G and omicron BA.1 than the placebo group 24 h post-administration. Single 300 or 1200 mg IV dose of AER001 and AER002 resulted in nasal mucosa transudation of approximately 2.5% and 2.7%, respectively. CONCLUSION AER001 and AER002 showed an acceptable safety profile and extended half-life. High serum neutralization activity was observed against D614G and Omicron BA.1 compared to the placebo group. These data support that LS-modified mAbs can achieve durability, safety, potency, and upper airway tissue penetration and will guide the development of the next generation of mAbs for COVID-19 prevention and treatment. TRIAL REGISTRATION EudraCT Number 2022-001709-35 (COV-2022-001).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Björn Hock
- Lavaux Biotech Consulting, Yens, Switzerland
| | | | - Kai Lin
- Aerium Therapeutics, Boston, MA, USA
| | | | | | - David Liu
- Aerium Therapeutics, Boston, MA, USA
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
9
|
Abrha FH, Wondimu TH, Kahsay MH, Fufa Bakare F, Andoshe DM, Kim JY. Graphene-based biosensors for detecting coronavirus: a brief review. NANOSCALE 2023; 15:18184-18197. [PMID: 37927083 DOI: 10.1039/d3nr04583h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The coronavirus (SARS-CoV-2) disease has affected the globe with 770 437 327 confirmed cases, including about 6 956 900 deaths, according to the World Health Organization (WHO) as of September 2023. Hence, it is imperative to develop diagnostic technologies, such as a rapid cost-effective SARS-CoV-2 detection method. A typical biosensor enables biomolecule detection with an appropriate transducer by generating a measurable signal from the sample. Graphene can be employed as a component for ultrasensitive and selective biosensors based on its physical, optical, and electrochemical properties. Herein, we briefly review graphene-based electrochemical, field-effect transistor (FET), and surface plasmon biosensors for detecting the SARS-CoV-2 target. In addition, details on the surface modification, immobilization, sensitivity and limit of detection (LOD) of all three sensors with regard to SARS-CoV-2 were reported. Finally, the point-of-care (POC) detection of SARS-CoV-2 using a portable smartphone and a wearable watch is a current topic of interest.
Collapse
Affiliation(s)
- Filimon Hadish Abrha
- Department of Chemistry, College of Natural and Computational Sciences, Aksum University, Aksum 1010, Ethiopia
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
| | - Tadele Hunde Wondimu
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
- Center of Advanced Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Mebrahtu Hagos Kahsay
- Department of Applied Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle 231, Ethiopia
- Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Fetene Fufa Bakare
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
- Center of Advanced Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Dinsefa Mensur Andoshe
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
| | - Jung Yong Kim
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
- Center of Advanced Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| |
Collapse
|
10
|
Le K, Kannappan S, Kim T, Lee JH, Lee HR, Kim KK. Structural understanding of SARS-CoV-2 virus entry to host cells. Front Mol Biosci 2023; 10:1288686. [PMID: 38033388 PMCID: PMC10683510 DOI: 10.3389/fmolb.2023.1288686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major global health concern associated with millions of fatalities worldwide. Mutant variants of the virus have further exacerbated COVID-19 mortality and infection rates, emphasizing the urgent need for effective preventive strategies. Understanding the viral infection mechanism is crucial for developing therapeutics and vaccines. The entry of SARS-CoV-2 into host cells is a key step in the infection pathway and has been targeted for drug development. Despite numerous reviews of COVID-19 and the virus, there is a lack of comprehensive reviews focusing on the structural aspects of viral entry. In this review, we analyze structural changes in Spike proteins during the entry process, dividing the entry process into prebinding, receptor binding, proteolytic cleavage, and membrane fusion steps. By understanding the atomic-scale details of viral entry, we can better target the entry step for intervention strategies. We also examine the impacts of mutations in Spike proteins, including the Omicron variant, on viral entry. Structural information provides insights into the effects of mutations and can guide the development of therapeutics and vaccines. Finally, we discuss available structure-based approaches for the development of therapeutics and vaccines. Overall, this review provides a detailed analysis of the structural aspects of SARS-CoV-2 viral entry, highlighting its significance in the development of therapeutics and vaccines against COVID-19. Therefore, our review emphasizes the importance of structural information in combating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kim Le
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Shrute Kannappan
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
| | - Truc Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
- School of Advanced Materials and Science Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
11
|
Bhattacharya M, Chatterjee S, Lee SS, Dhama K, Chakraborty C. Antibody evasion associated with the RBD significant mutations in several emerging SARS-CoV-2 variants and its subvariants. Drug Resist Updat 2023; 71:101008. [PMID: 37757651 DOI: 10.1016/j.drup.2023.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Since the origin of the wild strain of SARS-CoV-2, several variants have emerged, which were designated as VOC, VOI, and VUM from time to time. The Omicron variant is noted as the recent VOC. After the origin of the Omicron variant on November 2021, several subvariants of Omicron have originated subsequently, like BA.1/2, BA.2.75/2.75.2, BA.4/5, BF.7, BQ.1/1.1, XBB.1/1.5, etc. which are circulated throughout the globe. Scientists reported that antibody escape is a common phenomenon observed in all the previous VOCs, VOIs, including Omicron and its subvariants. The mutations in the NTD (N-terminal domain) and RBD (Receptor-binding domain) of the spike of these variants and subvariants are responsible for antibody escape. At the same time, it has been noted that spike RBD mutations have been increasing in the last few months. This review illustrates significant RBD mutations namely R346T, K417N/T, L452R, N460K E484A/K/Q, and N501Y found in the previous emerging SARS-CoV-2 variants, including Omicron and its subvariants in high frequency and their role in antibody evasion and immune evasion. The review also describes the different classes of nAb responsible for antibody escape in SARS-CoV-2 variants and the molecular perspective of the mutation in nAb escape. It will help the future researchers to develop efficient vaccines which can finally prevent the pandemic.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Srijan Chatterjee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India.
| |
Collapse
|
12
|
Sobhani K, Cheng S, Binder RA, Mantis NJ, Crawford JM, Okoye N, Braun JG, Joung S, Wang M, Lozanski G, King CL, Roback JD, Granger DA, Boppana SB, Karger AB. Clinical Utility of SARS-CoV-2 Serological Testing and Defining a Correlate of Protection. Vaccines (Basel) 2023; 11:1644. [PMID: 38005976 PMCID: PMC10674881 DOI: 10.3390/vaccines11111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
Herein, we review established clinical use cases for SARS-CoV-2 antibody measures, which include diagnosis of recent prior infection, isolating high titer convalescent plasma, diagnosing multisystem inflammatory syndrome in children (MIS-C), and booster dosing in the immunosuppressed and other populations. We then address whether an antibody correlate of protection (CoP) for SARS-CoV-2 has been successfully defined with the following considerations: Antibody responses in the immunocompetent, vaccine type, variants, use of binding antibody tests vs. neutralization tests, and endpoint measures. In the transition from the COVID-19 pandemic to endemic, there has been much interest in defining an antibody CoP. Due to the high mutability of respiratory viruses and our current knowledge of SARS-CoV-2 variants defining a CoP for prevention of infection is unrealistic. However, a CoP may be defined for prevention of severe disease requiring hospitalization and/or death. Most SARS-CoV-2 CoP research has focused on neutralization measurements. However, there can be significant differences in neutralization test methods, and disparate responses to new variants depending on format. Furthermore, neutralization assays are often impractical for high throughput applications (e.g., assessing humoral immune response in populations or large cohorts). Nevertheless, CoP studies using neutralization measures are reviewed to determine where there is consensus. Alternatively, binding antibody tests could be used to define a CoP. Binding antibody assays tend to be highly automatable, high throughput, and therefore practical for large population applications. Again, we review studies for consensus on binding antibody responses to vaccines, focusing on standardized results. Binding antibodies directed against the S1 receptor binding domain (S1-RBD) of the viral spike protein can provide a practical, indirect measure of neutralization. Initially, a response for S1-RBD antibodies may be selected that reflects the peak response in immunocompetent populations and may serve as a target for booster dosing in the immunocompromised. From existing studies reporting peak S1-RBD responses in standardized units, an approximate range of 1372-2744 BAU/mL for mRNA and recombinant protein vaccines was extracted that could serve as an initial CoP target. This target would need to be confirmed and potentially adjusted for updated vaccines, and almost certainly for other vaccine formats (i.e., viral vector). Alternatively, a threshold or response could be defined based on outcomes over time (i.e., prevention of severe disease). We also discuss the precedent for clinical measurement of antibodies for vaccine-preventable diseases (e.g., hepatitis B). Lastly, cellular immunity is briefly addressed for its importance in the nature and durability of protection.
Collapse
Affiliation(s)
- Kimia Sobhani
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.C.)
| | - Raquel A. Binder
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Nicholas J. Mantis
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12222, USA
| | - James M. Crawford
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Nkemakonam Okoye
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Jonathan G. Braun
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sandy Joung
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.C.)
| | - Minhao Wang
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.C.)
| | - Gerard Lozanski
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Christopher L. King
- Department of Pathology, Case Western Reserve University and Veterans Affairs Research Service, Cleveland, OH 44106, USA
| | - John D. Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Douglas A. Granger
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA 92697, USA
| | - Suresh B. Boppana
- Department of Pediatrics and Department of Microbiology, Heersink School of Medicine, UAB, Birmingham, AL 35233, USA
| | - Amy B. Karger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
13
|
Ghoula M, Deyawe Kongmeneck A, Eid R, Camproux AC, Moroy G. Comparative Study of the Mutations Observed in the SARS-CoV-2 RBD Variants of Concern and Their Impact on the Interaction with the ACE2 Protein. J Phys Chem B 2023; 127:8586-8602. [PMID: 37775095 PMCID: PMC10578311 DOI: 10.1021/acs.jpcb.3c01467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Indexed: 10/01/2023]
Abstract
SARS-CoV-2 strains have made an appearance across the globe, causing over 757 million cases and over 6.85 million deaths at the time of writing. The emergence of these variants shows the amplitude of genetic variation to which the wild-type strains have been subjected. The rise of the different SARS-CoV-2 variants resulting from such genetic modification has significantly affected COVD-19's major impact on proliferation, virulence, and clinics. With the emergence of the variants of concern, the spike protein has been identified as a possible therapeutic target due to its critical role in binding to human cells and pathogenesis. These mutations could be linked to functional heterogeneity and use a different infection strategy. For example, the Omicron variant's multiple mutations should be carefully examined, as they represent one of the most widely spread strains and hint to us that there may be more genetic changes in the virus. As a result, we applied a common protocol where we reconstructed SARS-CoV-2 variants of concern and performed molecular dynamics simulations to study the stability of the ACE2-RBD complex in each variant. We also carried out free energy calculations to compare the binding and biophysical properties of the different SARS-CoV-2 variants when they interact with ACE2. Therefore, we were able to obtain consistent results and uncover new crucial residues that were essential for preserving a balance between maintaining a high affinity for ACE2 and the capacity to evade RBD-targeted antibodies. Our detailed structural analysis showed that SARS-CoV-2 variants of concern show a higher affinity for ACE2 compared to the Wuhan strain. Additionally, residues K417N and E484K/A might play a crucial role in antibody evasion, whereas Q498R and N501Y are specifically mutated to strengthen RBD affinity to ACE2 and, thereby, increase the viral effect of the COVID-19 virus.
Collapse
Affiliation(s)
- Mariem Ghoula
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Audrey Deyawe Kongmeneck
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Rita Eid
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Anne-Claude Camproux
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Gautier Moroy
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| |
Collapse
|
14
|
Haars J, Palanisamy N, Wallin F, Mölling P, Lindh J, Sundqvist M, Ellström P, Kaden R, Lennerstrand J. Prevalence of SARS-CoV-2 Omicron Sublineages and Spike Protein Mutations Conferring Resistance against Monoclonal Antibodies in a Swedish Cohort during 2022-2023. Microorganisms 2023; 11:2417. [PMID: 37894075 PMCID: PMC10609123 DOI: 10.3390/microorganisms11102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Monoclonal antibodies (mAbs) are an important treatment option for COVID-19 caused by SARS-CoV-2, especially in immunosuppressed patients. However, this treatment option can become ineffective due to mutations in the SARS-CoV-2 genome, mainly in the receptor binding domain (RBD) of the spike (S) protein. In the present study, 7950 SARS-CoV-2 positive samples from the Uppsala and Örebro regions of central Sweden, collected between March 2022 and May 2023, were whole-genome sequenced using amplicon-based sequencing methods on Oxford Nanopore GridION, Illumina MiSeq, Illumina HiSeq, or MGI DNBSEQ-G400 instruments. Pango lineages were determined and all single nucleotide polymorphism (SNP) mutations that occurred in these samples were identified. We found that the dominant sublineages changed over time, and mutations conferring resistance to currently available mAbs became common. Notable ones are R346T and K444T mutations in the RBD that confer significant resistance against tixagevimab and cilgavimab mAbs. Further, mutations conferring a high-fold resistance to bebtelovimab, such as the K444T and V445P mutations, were also observed in the samples. This study highlights that resistance mutations have over time rendered currently available mAbs ineffective against SARS-CoV-2 in most patients. Therefore, there is a need for continued surveillance of resistance mutations and the development of new mAbs that target more conserved regions of the RBD.
Collapse
Affiliation(s)
- Jonathan Haars
- Department of Medical Sciences, Section for Clinical Microbiology and Hospital Hygiene Uppsala University, Akademiska Sjukhuset Entrance 40 Floor 5, 751 85 Uppsala, Sweden; (J.H.); (J.L.); (P.E.); (R.K.)
| | | | - Frans Wallin
- Department of Laboratory Medicine, Clinical Microbiology, Örebro University Hospital, Södra Grev Rosengatan, 701 85 Örebro, Sweden;
| | - Paula Mölling
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden; (P.M.); (M.S.)
| | - Johan Lindh
- Department of Medical Sciences, Section for Clinical Microbiology and Hospital Hygiene Uppsala University, Akademiska Sjukhuset Entrance 40 Floor 5, 751 85 Uppsala, Sweden; (J.H.); (J.L.); (P.E.); (R.K.)
| | - Martin Sundqvist
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden; (P.M.); (M.S.)
| | - Patrik Ellström
- Department of Medical Sciences, Section for Clinical Microbiology and Hospital Hygiene Uppsala University, Akademiska Sjukhuset Entrance 40 Floor 5, 751 85 Uppsala, Sweden; (J.H.); (J.L.); (P.E.); (R.K.)
| | - René Kaden
- Department of Medical Sciences, Section for Clinical Microbiology and Hospital Hygiene Uppsala University, Akademiska Sjukhuset Entrance 40 Floor 5, 751 85 Uppsala, Sweden; (J.H.); (J.L.); (P.E.); (R.K.)
- SciLifeLab, Clinical Genomics Uppsala, Husargatan 3, 752 37 Uppsala, Sweden
| | - Johan Lennerstrand
- Department of Medical Sciences, Section for Clinical Microbiology and Hospital Hygiene Uppsala University, Akademiska Sjukhuset Entrance 40 Floor 5, 751 85 Uppsala, Sweden; (J.H.); (J.L.); (P.E.); (R.K.)
| |
Collapse
|
15
|
Guo M, Xiong M, Peng J, Guan T, Su H, Huang Y, Yang CG, Li Y, Boraschi D, Pillaiyar T, Wang G, Yi C, Xu Y, Chen C. Multi-omics for COVID-19: driving development of therapeutics and vaccines. Natl Sci Rev 2023; 10:nwad161. [PMID: 37936830 PMCID: PMC10627145 DOI: 10.1093/nsr/nwad161] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 11/09/2023] Open
Abstract
The ongoing COVID-19 pandemic caused by SARS-CoV-2 has raised global concern for public health and economy. The development of therapeutics and vaccines to combat this virus is continuously progressing. Multi-omics approaches, including genomics, transcriptomics, proteomics, metabolomics, epigenomics and metallomics, have helped understand the structural and molecular features of the virus, thereby assisting in the design of potential therapeutics and accelerating vaccine development for COVID-19. Here, we provide an up-to-date overview of the latest applications of multi-omics technologies in strategies addressing COVID-19, in order to provide suggestions towards the development of highly effective knowledge-based therapeutics and vaccines.
Collapse
Affiliation(s)
- Mengyu Guo
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Muya Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Tong Guan
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 528107, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Diana Boraschi
- Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Biochemistry and Cell Biology, National Research Council, Napoli 80131, Italy
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Guanbo Wang
- Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 528107, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
16
|
Viriyakitkosol R, Wanitchang A, Srisutthisamphan K, Saenboonreung J, Boonkrai C, Pisitkun T, Jongkaewwattana A. Impact of mAb-induced A475V substitution on viral fitness and antibody neutralization of SARS-CoV-2 omicron variants in the presence of monoclonal antibodies and human convalescent sera. Front Immunol 2023; 14:1219546. [PMID: 37593745 PMCID: PMC10427911 DOI: 10.3389/fimmu.2023.1219546] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/30/2023] [Indexed: 08/19/2023] Open
Abstract
The emergence and rapid evolution of SARS-CoV-2 variants have posed a major challenge to the global efforts to control the COVID -19 pandemic. In this study, we investigated the potential of two SARS-CoV-2 variants, BA.2 and BA.5, to evade neutralization by a human monoclonal antibody targeting the virus's spike RBD (mAb 1D1). By subjecting the viruses to serial propagation in the presence of the antibody, we found that BA.2 exhibited poor growth, whereas BA.5 regained robust growth with significantly higher kinetics than the parental virus. Genetic analysis identified a single mutation, A475V, in the spike protein of BA.5 that substantially reduced the neutralizing activities of monoclonal antibodies and convalescent sera. In addition, the A475V mutation alone in BA.2 moderately reduced the neutralizing activity but completely abolished the neutralizing effect of mAb 1D1 when F486V or L452R were also present. Our results shed light on the possible evolutionary development of SARS-CoV-2 variants under selection pressure by monoclonal antibodies and have implications for the development of effective antibody therapies and vaccines against the virus.
Collapse
Affiliation(s)
- Ratchanont Viriyakitkosol
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Asawin Wanitchang
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Kanjana Srisutthisamphan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Janya Saenboonreung
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Chatikorn Boonkrai
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| |
Collapse
|
17
|
Modhiran N, Lauer SM, Amarilla AA, Hewins P, Lopes van den Broek SI, Low YS, Thakur N, Liang B, Nieto GV, Jung J, Paramitha D, Isaacs A, Sng JD, Song D, Jørgensen JT, Cheuquemilla Y, Bürger J, Andersen IV, Himelreichs J, Jara R, MacLoughlin R, Miranda-Chacon Z, Chana-Cuevas P, Kramer V, Spahn C, Mielke T, Khromykh AA, Munro T, Jones ML, Young PR, Chappell K, Bailey D, Kjaer A, Herth MM, Jurado KA, Schwefel D, Rojas-Fernandez A, Watterson D. A nanobody recognizes a unique conserved epitope and potently neutralizes SARS-CoV-2 omicron variants. iScience 2023; 26:107085. [PMID: 37361875 PMCID: PMC10251734 DOI: 10.1016/j.isci.2023.107085] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/12/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) Omicron variant sub-lineages spread rapidly worldwide, mostly due to their immune-evasive properties. This has put a significant part of the population at risk for severe disease and underscores the need for effective anti-SARS-CoV-2 agents against emergent strains in vulnerable patients. Camelid nanobodies are attractive therapeutic candidates due to their high stability, ease of large-scale production, and potential for delivery via inhalation. Here, we characterize the receptor binding domain (RBD)-specific nanobody W25 and show superior neutralization activity toward Omicron sub-lineages in comparison to all other SARS-CoV2 variants. Structure analysis of W25 in complex with the SARS-CoV2 spike glycoprotein shows that W25 engages an RBD epitope not covered by any of the antibodies previously approved for emergency use. In vivo evaluation of W25 prophylactic and therapeutic treatments across multiple SARS-CoV-2 variant infection models, together with W25 biodistribution analysis in mice, demonstrates favorable pre-clinical properties. Together, these data endorse W25 for further clinical development.
Collapse
Affiliation(s)
- Naphak Modhiran
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
| | - Simon Malte Lauer
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Peter Hewins
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Irene Lopes van den Broek
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Yu Shang Low
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Nazia Thakur
- The Pirbright Institute, Ash Road, Guildford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benjamin Liang
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Guillermo Valenzuela Nieto
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - James Jung
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Devina Paramitha
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Ariel Isaacs
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - Julian D.J. Sng
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
| | - David Song
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesper Tranekjær Jørgensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Yorka Cheuquemilla
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Jörg Bürger
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Microscopy and Cryo-Electron Microscopy Service Group, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Ida Vang Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Johanna Himelreichs
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Ronald Jara
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland
| | | | - Pedro Chana-Cuevas
- CETRAM & Faculty of Medical Science Universidad de Santiago de Chile, Chile
| | - Vasko Kramer
- PositronPharma SA, Rancagua 878, 7500921 Providencia, Santiago, Chile
| | - Christian Spahn
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Service Group, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Trent Munro
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
| | - Martina L. Jones
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
| | - Paul R. Young
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Keith Chappell
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Dalan Bailey
- The Pirbright Institute, Ash Road, Guildford, UK
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Kellie Ann Jurado
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David Schwefel
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Alejandro Rojas-Fernandez
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Berking Biotechnology, Valdivia, Chile
| | - Daniel Watterson
- School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| |
Collapse
|
18
|
Bormann M, Brochhagen L, Alt M, Otte M, Thümmler L, van de Sand L, Kraiselburd I, Thomas A, Gosch J, Braß P, Ciesek S, Widera M, Dolff S, Dittmer U, Witzke O, Meyer F, Lindemann M, Schönfeld A, Rohn H, Krawczyk A. Immune responses in COVID-19 patients during breakthrough infection with SARS-CoV-2 variants Delta, Omicron-BA.1 and Omicron-BA.5. Front Immunol 2023; 14:1150667. [PMID: 37520539 PMCID: PMC10372796 DOI: 10.3389/fimmu.2023.1150667] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Background Breakthrough infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are increasingly observed in vaccinated individuals. Immune responses towards SARS-CoV-2 variants, particularly Omicron-BA.5, are poorly understood. We investigated the humoral and cellular immune responses of hospitalized COVID-19 patients during Delta and Omicron infection waves. Methods The corresponding SARS-CoV-2 variant of the respective patients were identified by whole genome sequencing. Humoral immune responses were analyzed by ELISA and a cell culture-based neutralization assay against SARS-CoV-2 D614G isolate (wildtype), Alpha, Delta (AY.43) and Omicron (BA.1 and BA.5). Cellular immunity was evaluated with an IFN-γ ELISpot assay. Results On a cellular level, patients showed a minor IFN-γ response after stimulating PBMCs with mutated regions of SARS-CoV-2 variants. Neutralizing antibody titers against Omicron-BA.1 and especially BA.5 were strongly reduced. Double-vaccinated patients with Delta breakthrough infection showed a significantly increased neutralizing antibody response against Delta compared to double-vaccinated uninfected controls (median complete neutralization titer (NT100) 640 versus 80, p<0.05). Omicron-BA.1 infection increased neutralization titers against BA.1 in double-vaccinated patients (median NT100 of 160 in patients versus 20 in controls, p=0.07) and patients that received booster vaccination (median NT100 of 50 in patients versus 20 in controls, p=0.68). For boosted patients with BA.5 breakthrough infection, we found no enhancing effect on humoral immunity against SARS-CoV-2 variants. Conclusion Neutralizing antibody titers against Omicron-BA.1 and especially BA.5 were strongly reduced in SARS-CoV-2 breakthrough infections. Delta and Omicron-BA.1 but not Omicron-BA.5 infections boosted the humoral immunity in double-vaccinated patients and patients with booster vaccination. Despite BA.5 breakthrough infection, those patients may still be vulnerable for reinfections with BA.5 or other newly emerging variants of concern.
Collapse
Affiliation(s)
- Maren Bormann
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Leonie Brochhagen
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mira Alt
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mona Otte
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Laura Thümmler
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lukas van de Sand
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ivana Kraiselburd
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Alexander Thomas
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Jule Gosch
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Peer Braß
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Folker Meyer
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Monika Lindemann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Schönfeld
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hana Rohn
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
19
|
Lubin JH, Markosian C, Balamurugan D, Ma MT, Chen CH, Liu D, Pasqualini R, Arap W, Burley SK, Khare SD. Modeling of ACE2 and antibodies bound to SARS-CoV-2 provides insights into infectivity and immune evasion. JCI Insight 2023; 8:e168296. [PMID: 37261904 PMCID: PMC10371346 DOI: 10.1172/jci.insight.168296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
Given the COVID-19 pandemic, there is interest in understanding ligand-receptor features and targeted antibody-binding attributes against emerging SARS-CoV-2 variants. Here, we developed a large-scale structure-based pipeline for analysis of protein-protein interactions regulating SARS-CoV-2 immune evasion. First, we generated computed structural models of the Spike protein of 3 SARS-CoV-2 variants (B.1.1.529, BA.2.12.1, and BA.5) bound either to a native receptor (ACE2) or to a large panel of targeted ligands (n = 282), which included neutralizing or therapeutic monoclonal antibodies. Moreover, by using the Barnes classification, we noted an overall loss of interfacial interactions (with gain of new interactions in certain cases) at the receptor-binding domain (RBD) mediated by substituted residues for neutralizing complexes in classes 1 and 2, whereas less destabilization was observed for classes 3 and 4. Finally, an experimental validation of predicted weakened therapeutic antibody binding was performed in a cell-based assay. Compared with the original Omicron variant (B.1.1.529), derivative variants featured progressive destabilization of antibody-RBD interfaces mediated by a larger set of substituted residues, thereby providing a molecular basis for immune evasion. This approach and findings provide a framework for rapidly and efficiently generating structural models for SARS-CoV-2 variants bound to ligands of mechanistic and therapeutic value.
Collapse
Affiliation(s)
- Joseph H. Lubin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Christopher Markosian
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - D. Balamurugan
- Office of Advanced Research Computing, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Department of Radiology
| | - Minh T. Ma
- Department of Pathology, Immunology, and Laboratory Medicine
- Center for Immunity and Inflammation, and
| | - Chih-Hsiung Chen
- Department of Pathology, Immunology, and Laboratory Medicine
- Center for Immunity and Inflammation, and
| | - Dongfang Liu
- Department of Pathology, Immunology, and Laboratory Medicine
- Center for Immunity and Inflammation, and
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Stephen K. Burley
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- RCSB Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- RCSB Protein Data Bank, San Diego Supercomputer Center, UCSD, La Jolla, California, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Sagar D. Khare
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
20
|
Hu S, Wang N, Chen S, Zhang H, Wang C, Ma W, Zhang X, Wu Y, Lv Y, Xue Z, Bai H, Ge S, He H, Lu W, Zhang T, Ding Y, Liu R, Han S, Zhan Y, Zhan G, Guo Z, Zhang Y, Lu J, Gao J, Jia Q, Wang Y, Wang H, Lu S, Jin T, Chiu S, He L. Harringtonine: A more effective antagonist for Omicron variant. Biochem Pharmacol 2023; 213:115617. [PMID: 37211174 PMCID: PMC10195862 DOI: 10.1016/j.bcp.2023.115617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Fusion with host cell membrane is the main mechanism of infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we propose that a new strategy to screen small-molecule antagonists blocking SARS-CoV-2 membrane fusion. Using cell membrane chromatography (CMC), we found that harringtonine (HT) simultaneously targeted SARS-CoV-2 S protein and host cell surface TMPRSS2 expressed by the host cell, and subsequently confirmed that HT can inhibit membrane fusion. HT effectively blocked SARS-CoV-2 original strain entry with the IC50 of 0.217 μM, while the IC50 in delta variant decreased to 0.101 μM, the IC50 in Omicron BA.1 variant was 0.042 μM. Due to high transmissibility and immune escape, Omicron subvariant BA.5 has become the dominant strain of the SARS-CoV-2 virus and led to escalating COVID-19 cases, however, against BA.5, HT showed a surprising effectiveness. The IC50 in Omicron BA.5 was even lower than 0.0019 μM. The above results revealed the effect of HT on Omicron is very significant. In summary, we characterize HT as a small-molecule antagonist by direct targeting on the Spike protein and TMPRSS2.
Collapse
Affiliation(s)
- Shiling Hu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Shaohong Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huajun Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Cheng Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Weina Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Xinghai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Zhuoyin Xue
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Haoyun Bai
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Shuai Ge
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Huaizhen He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Wen Lu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Tao Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yuanyuan Ding
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Rui Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yingzhuan Zhan
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Guanqun Zhan
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Zengjun Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yongjing Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Jiayu Lu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Jiapan Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Qianqian Jia
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yuejin Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Hongliang Wang
- Department of pathogen biology and immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shemin Lu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Tengchuan Jin
- Division of Life Sciences and Medicine, University of Sciences and Technology of China, Hefei, China
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Sciences and Technology of China, Hefei, China.
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
21
|
Weidenbacher PAB, Friedland N, Sanyal M, Morris MK, Do J, Hanson C, Kim PS. Decreased efficacy of a COVID-19 vaccine due to mutations present in early SARS-CoV-2 variants of concern. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546764. [PMID: 37425802 PMCID: PMC10326996 DOI: 10.1101/2023.06.27.546764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
With the SARS-CoV-2 virus still circulating and evolving, there remains an outstanding question if variant-specific vaccines represent the optimal path forward, or if other strategies might be more efficacious towards providing broad protection against emerging variants. Here, we examine the efficacy of strain-specific variants of our previously reported, pan-sarbecovirus vaccine candidate, DCFHP-alum, a ferritin nanoparticle functionalized with an engineered form of the SARS-CoV-2 spike protein. In non-human primates, DCFHP-alum elicits neutralizing antibodies against all known VOCs that have emerged to date and SARS-CoV-1. During development of the DCFHP antigen, we investigated the incorporation of strain-specific mutations from the major VOCs that had emerged to date: D614G, Epsilon, Alpha, Beta, and Gamma. Here, we report the biochemical and immunological characterizations that led us to choose the ancestral Wuhan-1 sequence as the basis for the final DCFHP antigen design. Specifically, we show by size exclusion chromatography and differential scanning fluorimetry that mutations in the VOCs adversely alter the antigen's structure and stability. More importantly, we determined that DCFHP without strain-specific mutations elicits the most robust, cross-reactive response in both pseudovirus and live virus neutralization assays. Our data suggest potential limitations to the variant-chasing approach in the development of protein nanoparticle vaccines, but also have implications for other approaches including mRNA-based vaccines.
Collapse
Affiliation(s)
- Payton A.-B. Weidenbacher
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Natalia Friedland
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Mrinmoy Sanyal
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jonathan Do
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Carl Hanson
- California Department of Public Health, Richmond, CA, USA
| | - Peter S. Kim
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
22
|
Rouzine IM, Rozhnova G. Evolutionary implications of SARS-CoV-2 vaccination for the future design of vaccination strategies. COMMUNICATIONS MEDICINE 2023; 3:86. [PMID: 37336956 PMCID: PMC10279745 DOI: 10.1038/s43856-023-00320-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Once the first SARS-CoV-2 vaccine became available, mass vaccination was the main pillar of the public health response to the COVID-19 pandemic. It was very effective in reducing hospitalizations and deaths. Here, we discuss the possibility that mass vaccination might accelerate SARS-CoV-2 evolution in antibody-binding regions compared to natural infection at the population level. Using the evidence of strong genetic variation in antibody-binding regions and taking advantage of the similarity between the envelope proteins of SARS-CoV-2 and influenza, we assume that immune selection pressure acting on these regions of the two viruses is similar. We discuss the consequences of this assumption for SARS-CoV-2 evolution in light of mathematical models developed previously for influenza. We further outline the implications of this phenomenon, if our assumptions are confirmed, for the future design of SARS-CoV-2 vaccination strategies.
Collapse
Affiliation(s)
- Igor M Rouzine
- Immunogenetics, Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, Saint-Petersburg, Russia.
| | - Ganna Rozhnova
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
- Center for Complex Systems Studies (CCSS), Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Takeshita M, Fukuyama H, Kamada K, Matsumoto T, Makino-Okamura C, Lin Q, Sakuma M, Kawahara E, Yamazaki I, Uchikubo-Kamo T, Tomabechi Y, Hanada K, Hisano T, Moriyama S, Takahashi Y, Ito M, Imai M, Maemura T, Furusawa Y, Yamayoshi S, Kawaoka Y, Shirouzu M, Ishii M, Saya H, Kondo Y, Kaneko Y, Suzuki K, Fukunaga K, Takeuchi T. Potent neutralizing broad-spectrum antibody against SARS-CoV-2 generated from dual-antigen-specific B cells from convalescents. iScience 2023; 26:106955. [PMID: 37288342 PMCID: PMC10208659 DOI: 10.1016/j.isci.2023.106955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Several antibody therapeutics have been developed against SARS-CoV-2; however, they have attenuated neutralizing ability against variants. In this study, we generated multiple broadly neutralizing antibodies from B cells of convalescents, by using two types of receptor-binding domains, Wuhan strain and the Gamma variant as bait. From 172 antibodies generated, six antibodies neutralized all strains prior to the Omicron variant, and the five antibodies were able to neutralize some of the Omicron sub-strains. Structural analysis showed that these antibodies have a variety of characteristic binding modes, such as ACE2 mimicry. We subjected a representative antibody to the hamster infection model after introduction of the N297A modification, and observed a dose-dependent reduction of the lung viral titer, even at a dose of 2 mg/kg. These results demonstrated that our antibodies have certain antiviral activity as therapeutics, and highlighted the importance of initial cell-screening strategy for the efficient development of therapeutic antibodies.
Collapse
Affiliation(s)
- Masaru Takeshita
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hidehiro Fukuyama
- Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
- RIKEN Center for Integrative Medical Sciences, Infectious Diseases Research Unit, Kanagawa 230-0045, Japan
- Cell Integrative Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan
- INSERM EST, Strasbourg Cedex 2, 67037, France
| | - Katsuhiko Kamada
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | | | - Chieko Makino-Okamura
- Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
- RIKEN Center for Integrative Medical Sciences, Infectious Diseases Research Unit, Kanagawa 230-0045, Japan
| | - Qingshun Lin
- RIKEN Center for Integrative Medical Sciences, Infectious Diseases Research Unit, Kanagawa 230-0045, Japan
| | - Machie Sakuma
- RIKEN Center for Integrative Medical Sciences, Infectious Diseases Research Unit, Kanagawa 230-0045, Japan
| | - Eiki Kawahara
- Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
- RIKEN Center for Integrative Medical Sciences, Infectious Diseases Research Unit, Kanagawa 230-0045, Japan
- Cell Integrative Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan
| | - Isato Yamazaki
- Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
- RIKEN Center for Integrative Medical Sciences, Infectious Diseases Research Unit, Kanagawa 230-0045, Japan
- Cell Integrative Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan
| | | | - Yuri Tomabechi
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Kazuharu Hanada
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Tamao Hisano
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Mutsumi Ito
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Tadashi Maemura
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yuri Furusawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine; Tokyo 162-8640, Japan
| | - Yasushi Kondo
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Saitama Medical University, Saitama 350-0495, Japan
| |
Collapse
|
24
|
Han W, Chen N, Xu X, Sahil A, Zhou J, Li Z, Zhong H, Gao E, Zhang R, Wang Y, Sun S, Cheung PPH, Gao X. Predicting the antigenic evolution of SARS-COV-2 with deep learning. Nat Commun 2023; 14:3478. [PMID: 37311849 PMCID: PMC10261845 DOI: 10.1038/s41467-023-39199-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
The relentless evolution of SARS-CoV-2 poses a significant threat to public health, as it adapts to immune pressure from vaccines and natural infections. Gaining insights into potential antigenic changes is critical but challenging due to the vast sequence space. Here, we introduce the Machine Learning-guided Antigenic Evolution Prediction (MLAEP), which combines structure modeling, multi-task learning, and genetic algorithms to predict the viral fitness landscape and explore antigenic evolution via in silico directed evolution. By analyzing existing SARS-CoV-2 variants, MLAEP accurately infers variant order along antigenic evolutionary trajectories, correlating with corresponding sampling time. Our approach identified novel mutations in immunocompromised COVID-19 patients and emerging variants like XBB1.5. Additionally, MLAEP predictions were validated through in vitro neutralizing antibody binding assays, demonstrating that the predicted variants exhibited enhanced immune evasion. By profiling existing variants and predicting potential antigenic changes, MLAEP aids in vaccine development and enhances preparedness against future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Wenkai Han
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ningning Chen
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Xinzhou Xu
- Department of Chemical Pathology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Adil Sahil
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Juexiao Zhou
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Zhongxiao Li
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Huawen Zhong
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Elva Gao
- The KAUST School, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | | | - Yu Wang
- Syneron Technology, Guangzhou, 510000, China
| | - Shiwei Sun
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Peter Pak-Hang Cheung
- Department of Chemical Pathology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China.
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
25
|
Liu KJ, Zelazowska MA, McBride KM. The Longitudinal Analysis of Convergent Antibody VDJ Regions in SARS-CoV-2-Positive Patients Using RNA-Seq. Viruses 2023; 15:1253. [PMID: 37376553 DOI: 10.3390/v15061253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) is an ongoing pandemic that continues to evolve and reinfect individuals. To understand the convergent antibody responses that evolved over the course of the pandemic, we evaluated the immunoglobulin repertoire of individuals infected by different SARS-CoV-2 variants for similarity between patients. We utilized four public RNA-seq data sets collected between March 2020 and March 2022 from the Gene Expression Omnibus (GEO) in our longitudinal analysis. This covered individuals infected with Alpha and Omicron variants. In total, from 269 SARS-CoV-2-positive patients and 26 negative patients, 629,133 immunoglobulin heavy-chain variable region V(D)J sequences were reconstructed from sequencing data. We grouped samples based on the SARS-CoV-2 variant type and/or the time they were collected from patients. Our comparison of patients within each SARS-CoV-2-positive group found 1011 common V(D)Js (same V gene, J gene and CDR3 amino acid sequence) shared by more than one patient and no common V(D)Js in the noninfected group. Taking convergence into account, we clustered based on similar CDR3 sequence and identified 129 convergent clusters from the SARS-CoV-2-positive groups. Within the top 15 clusters, 4 contain known anti-SARS-CoV-2 immunoglobulin sequences with 1 cluster confirmed to cross-neutralize variants from Alpha to Omicron. In our analysis of longitudinal groups that include Alpha and Omicron variants, we find that 2.7% of the common CDR3s found within groups were also present in more than one group. Our analysis reveals common and convergent antibodies, which include anti-SARS-CoV-2 antibodies, in patient groups over various stages of the pandemic.
Collapse
Affiliation(s)
- Kate J Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Monika A Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin M McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
26
|
Changrob S, Halfmann PJ, Liu H, Torres JL, McGrath JJ, Ozorowski G, Li L, Wilbanks GD, Kuroda M, Maemura T, Huang M, Zheng NY, Turner HL, Erickson SA, Fu Y, Yasuhara A, Singh G, Monahan B, Mauldin J, Srivastava K, Simon V, Krammer F, Sather DN, Ward AB, Wilson IA, Kawaoka Y, Wilson PC. Site of vulnerability on SARS-CoV-2 spike induces broadly protective antibody against antigenically distinct Omicron subvariants. J Clin Invest 2023; 133:e166844. [PMID: 36862518 PMCID: PMC10104900 DOI: 10.1172/jci166844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/28/2023] [Indexed: 03/03/2023] Open
Abstract
The rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants has emphasized the need to identify antibodies with broad neutralizing capabilities to inform future monoclonal therapies and vaccination strategies. Herein, we identified S728-1157, a broadly neutralizing antibody (bnAb) targeting the receptor-binding site (RBS) that was derived from an individual previously infected with WT SARS-CoV-2 prior to the spread of variants of concern (VOCs). S728-1157 demonstrated broad cross-neutralization of all dominant variants, including D614G, Beta, Delta, Kappa, Mu, and Omicron (BA.1/BA.2/BA.2.75/BA.4/BA.5/BL.1/XBB). Furthermore, S728-1157 protected hamsters against in vivo challenges with WT, Delta, and BA.1 viruses. Structural analysis showed that this antibody targets a class 1/RBS-A epitope in the receptor binding domain via multiple hydrophobic and polar interactions with its heavy chain complementarity determining region 3 (CDR-H3), in addition to common motifs in CDR-H1/CDR-H2 of class 1/RBS-A antibodies. Importantly, this epitope was more readily accessible in the open and prefusion state, or in the hexaproline (6P)-stabilized spike constructs, as compared with diproline (2P) constructs. Overall, S728-1157 demonstrates broad therapeutic potential and may inform target-driven vaccine designs against future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Siriruk Changrob
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Peter J. Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Joshua J.C. McGrath
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Lei Li
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - G. Dewey Wilbanks
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Makoto Kuroda
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Tadashi Maemura
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Min Huang
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Nai-Ying Zheng
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Hannah L. Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Steven A. Erickson
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, Illinois, USA
| | - Yanbin Fu
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Atsuhiro Yasuhara
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Gagandeep Singh
- Department of Pathology, Molecular and Cell Based Medicine
- Department of Microbiology
| | - Brian Monahan
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
| | - Jacob Mauldin
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
| | - Komal Srivastava
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
| | - Viviana Simon
- Department of Pathology, Molecular and Cell Based Medicine
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
- The Global Health and Emerging Pathogens Institute, and
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Florian Krammer
- Department of Pathology, Molecular and Cell Based Medicine
- Department of Microbiology
- Center for Vaccine Research and Pandemic Preparedness
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics and
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
| | - Patrick C. Wilson
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
27
|
Widyasari K, Kim J. A Review of the Currently Available Antibody Therapy for the Treatment of Coronavirus Disease 2019 (COVID-19). Antibodies (Basel) 2023; 12:5. [PMID: 36648889 PMCID: PMC9887598 DOI: 10.3390/antib12010005] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Monoclonal antibodies are a promising treatment for COVID-19. However, the emergence of SARS-CoV-2 variants raised concerns about these therapies' efficacy and long-term viability. Studies reported several antibodies, that received authorization for COVID-19 treatment, are not effective against new variants or subvariants of SARS-CoV-2, hence their distribution has to be paused. Here, the authors reviewed the status of the currently available monoclonal antibodies for COVID-19 treatment, their potential as a therapeutic agent, and the challenges ahead. To address these issues, the authors presented general information on SARS-CoV-2 and how monoclonal antibodies work against SARS-CoV-2. The authors then focus on the antibodies that have been deployed for COVID-19 treatment and their current status, as well as the evidence supporting their potential as an early intervention against COVID-19. Lastly, the authors discussed some leading obstacles that hinder the development and administration of monoclonal antibodies for the treatment of COVID-19.
Collapse
Affiliation(s)
- Kristin Widyasari
- Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jinnam Kim
- Major of Food Science & Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
28
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently emerged pathogenic human coronavirus that belongs to the sarbecovirus lineage of the genus Betacoronavirus. The ancestor strain has evolved into a number of variants of concern, with the Omicron variant of concern now having many distinct sublineages. The ongoing COVID-19 pandemic caused by SARS-CoV-2 has caused serious damage to public health and the global economy, and one strategy to combat COVID-19 has been the development of broadly neutralizing antibodies for prophylactic and therapeutic use. Many are in preclinical and clinical development, and a few have been approved for emergency use. Here we summarize neutralizing antibodies that target four key regions within the SARS-CoV-2 spike (S) protein, namely the N-terminal domain and the receptor-binding domain in the S1 subunit, and the stem helix region and the fusion peptide region in the S2 subunit. Understanding the characteristics of these broadly neutralizing antibodies will accelerate the development of new antibody therapeutics and provide guidance for the rational design of next-generation vaccines.
Collapse
|
29
|
Gupta D, Kumar M, Sharma P, Mohan T, Prakash A, Kumari R, Kaur P. Effect of Double Mutation (L452R and E484Q) on the Binding Affinity of Monoclonal Antibodies (mAbs) against the RBD-A Target for Vaccine Development. Vaccines (Basel) 2022; 11:23. [PMID: 36679867 PMCID: PMC9860914 DOI: 10.3390/vaccines11010023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, emerges as a global health problem, as the viral genome is evolving rapidly to form several variants. Advancement and progress in the development of effective vaccines and neutralizing monoclonal antibodies are promising to combat viral infections. In the current scenario, several lineages containing "co-mutations" in the receptor-binding domain (RBD) region of the spike (S) protein are imposing new challenges. Co-occurrence of some co-mutations includes delta (L452R/T478K), kappa (L452R/E484Q), and a common mutation in both beta and gamma variants (E484K/N501Y). The effect of co-mutants (L452R/E484Q) on human angiotensin-converting enzyme 2 (hACE2) binding has already been elucidated. Here, for the first time, we investigated the role of these RBD co-mutations (L452R/E484Q) on the binding affinity of mAbs by adopting molecular dynamics (MD) simulation and free-energy binding estimation. The results obtained from our study suggest that the structural and dynamic changes introduced by these co-mutations reduce the binding affinity of the viral S protein to monoclonal antibodies (mAbs). The structural changes imposed by L452R create a charged patch near the interfacial surface that alters the affinity towards mAbs. In E484Q mutation, polar negatively charged E484 helps in the formation of electrostatic interaction, while the neutrally charged Q residue affects the interaction by forming repulsive forces. MD simulations along with molecular mechanics-generalized Born surface area (MMGBSA) studies revealed that the REGN 10933, BD-368-2, and S2M11 complexes have reduced binding affinity towards the double-mutant RBD. This indicates that their mutant (MT) structures have a stronger ability to escape from most antibodies than the wild type (WT). However, EY6A Ab showed higher affinity towards the double MT-RBD complex as compared to the WT. However, no significant effect of the per-residue contribution of double-mutated residues was observed, as this mAb does not interact with the region harboring L452 and E484 residues.
Collapse
Affiliation(s)
- Deepali Gupta
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110026, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110026, India
| | - Priyanka Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110026, India
- Division of Bio-Medical Informatics, Indian Council of Medical Research, New Delhi 110029, India
| | - Trishala Mohan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110026, India
| | - Amresh Prakash
- Data Science Division, Amity Institute of Integrative Sciences and Health, Gurgaon 122412, India
| | - Renu Kumari
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110026, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110026, India
| |
Collapse
|
30
|
Fredericks AM, East KW, Shi Y, Liu J, Maschietto F, Ayala A, Cioffi WG, Cohen M, Fairbrother WG, Lefort CT, Nau GJ, Levy MM, Wang J, Batista VS, Lisi GP, Monaghan SF. Identification and mechanistic basis of non-ACE2 blocking neutralizing antibodies from COVID-19 patients with deep RNA sequencing and molecular dynamics simulations. Front Mol Biosci 2022; 9:1080964. [PMID: 36589229 PMCID: PMC9800910 DOI: 10.3389/fmolb.2022.1080964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continue to cause disease and impair the effectiveness of treatments. The therapeutic potential of convergent neutralizing antibodies (NAbs) from fully recovered patients has been explored in several early stages of novel drugs. Here, we identified initially elicited NAbs (Ig Heavy, Ig lambda, Ig kappa) in response to COVID-19 infection in patients admitted to the intensive care unit at a single center with deep RNA sequencing (>100 million reads) of peripheral blood as a diagnostic tool for predicting the severity of the disease and as a means to pinpoint specific compensatory NAb treatments. Clinical data were prospectively collected at multiple time points during ICU admission, and amino acid sequences for the NAb CDR3 segments were identified. Patients who survived severe COVID-19 had significantly more of a Class 3 antibody (C135) to SARS-CoV-2 compared to non-survivors (15059.4 vs. 1412.7, p = 0.016). In addition to highlighting the utility of RNA sequencing in revealing unique NAb profiles in COVID-19 patients with different outcomes, we provided a physical basis for our findings via atomistic modeling combined with molecular dynamics simulations. We established the interactions of the Class 3 NAb C135 with the SARS-CoV-2 spike protein, proposing a mechanistic basis for inhibition via multiple conformations that can effectively prevent ACE2 from binding to the spike protein, despite C135 not directly blocking the ACE2 binding motif. Overall, we demonstrate that deep RNA sequencing combined with structural modeling offers the new potential to identify and understand novel therapeutic(s) NAbs in individuals lacking certain immune responses due to their poor endogenous production. Our results suggest a possible window of opportunity for administration of such NAbs when their full sequence becomes available. A method involving rapid deep RNA sequencing of patients infected with SARS-CoV-2 or its variants at the earliest infection time could help to develop personalized treatments using the identified specific NAbs.
Collapse
Affiliation(s)
- Alger M. Fredericks
- Department of Surgery, Division of Surgical Research, The Miriam Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Kyle W. East
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Yuanjun Shi
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | | | - Alfred Ayala
- Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| | - William G. Cioffi
- Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| | - Maya Cohen
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| | - William G. Fairbrother
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Craig T. Lefort
- Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| | - Gerard J. Nau
- Department of Medicine, Division of Infectious Disease, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| | - Mitchell M. Levy
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - George P. Lisi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Sean F. Monaghan
- Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
31
|
Khan MZI, Nazli A, Al-furas H, Asad MI, Ajmal I, Khan D, Shah J, Farooq MA, Jiang W. An overview of viral mutagenesis and the impact on pathogenesis of SARS-CoV-2 variants. Front Immunol 2022; 13:1034444. [PMID: 36518757 PMCID: PMC9742215 DOI: 10.3389/fimmu.2022.1034444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022] Open
Abstract
Viruses are submicroscopic, obligate intracellular parasites that carry either DNA or RNA as their genome, protected by a capsid. Viruses are genetic entities that propagate by using the metabolic and biosynthetic machinery of their hosts and many of them cause sickness in the host. The ability of viruses to adapt to different hosts and settings mainly relies on their ability to create de novo variety in a short interval of time. The size and chemical composition of the viral genome have been recognized as important factors affecting the rate of mutations. Coronavirus disease 2019 (Covid-19) is a novel viral disease that has quickly become one of the world's leading causes of mortality, making it one of the most serious public health problems in recent decades. The discovery of new medications to cope with Covid-19 is a difficult and time-consuming procedure, as new mutations represent a serious threat to the efficacy of recently developed vaccines. The current article discusses viral mutations and their impact on the pathogenicity of newly developed variants with a special emphasis on Covid-19. The biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), its mutations, pathogenesis, and treatment strategies are discussed in detail along with the statistical data.
Collapse
Affiliation(s)
| | - Adila Nazli
- Faculty of Biological Sciences, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hawaa Al-furas
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Muhammad Imran Asad
- Faculty of Biological Sciences, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iqra Ajmal
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Dildar Khan
- Faculty of Biological Sciences, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jaffer Shah
- Department of Health, New York, NY, United States,*Correspondence: Jaffer Shah, ; Muhammad Asad Farooq, ; Wenzheng Jiang,
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, China,*Correspondence: Jaffer Shah, ; Muhammad Asad Farooq, ; Wenzheng Jiang,
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, China,*Correspondence: Jaffer Shah, ; Muhammad Asad Farooq, ; Wenzheng Jiang,
| |
Collapse
|
32
|
Structural characterization of protective non-neutralizing antibodies targeting Crimean-Congo hemorrhagic fever virus. Nat Commun 2022; 13:7298. [PMID: 36435827 PMCID: PMC9701186 DOI: 10.1038/s41467-022-34923-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022] Open
Abstract
Crimean-Congo Hemorrhagic Fever Virus (CCHFV) causes a life-threatening disease with up to a 40% mortality rate. With no approved medical countermeasures, CCHFV is considered a public health priority agent. The non-neutralizing mouse monoclonal antibody (mAb) 13G8 targets CCHFV glycoprotein GP38 and protects mice from lethal CCHFV challenge when administered prophylactically or therapeutically. Here, we reveal the structures of GP38 bound with a human chimeric 13G8 mAb and a newly isolated CC5-17 mAb from a human survivor. These mAbs bind overlapping epitopes with a shifted angle. The broad-spectrum potential of c13G8 and CC5-17 and the practicality of using them against Aigai virus, a closely related nairovirus were examined. Binding studies demonstrate that the presence of non-conserved amino acids in Aigai virus corresponding region prevent CCHFV mAbs from binding Aigai virus GP38. This information, coupled with in vivo efficacy, paves the way for future mAb therapeutics effective against a wide swath of CCHFV strains.
Collapse
|
33
|
Shafqat A, Omer MH, Ahmad O, Niaz M, Abdulkader HS, Shafqat S, Mushtaq AH, Shaik A, Elshaer AN, Kashir J, Alkattan K, Yaqinuddin A. SARS-CoV-2 epitopes inform future vaccination strategies. Front Immunol 2022; 13:1041185. [PMID: 36505475 PMCID: PMC9732895 DOI: 10.3389/fimmu.2022.1041185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
All currently approved COVID-19 vaccines utilize the spike protein as their immunogen. SARS-CoV-2 variants of concern (VOCs) contain mutations in the spike protein, enabling them to escape infection- and vaccination-induced immune responses to cause reinfection. New vaccines are hence being researched intensively. Studying SARS-CoV-2 epitopes is essential for vaccine design, as identifying targets of broadly neutralizing antibody responses and immunodominant T-cell epitopes reveal candidates for inclusion in next-generation COVID-19 vaccines. We summarize the major studies which have reported on SARS-CoV-2 antibody and T-cell epitopes thus far. These results suggest that a future of pan-coronavirus vaccines, which not only protect against SARS-CoV-2 but numerous other coronaviruses, may be possible. The T-cell epitopes of SARS-CoV-2 have gotten less attention than neutralizing antibody epitopes but may provide new strategies to control SARS-CoV-2 infection. T-cells target many SARS-CoV-2 antigens other than spike, recognizing numerous epitopes within these antigens, thereby limiting the chance of immune escape by VOCs that mainly possess spike protein mutations. Therefore, augmenting vaccination-induced T-cell responses against SARS-CoV-2 may provide adequate protection despite broad antibody escape by VOCs.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,*Correspondence: Areez Shafqat,
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Omar Ahmad
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mahnoor Niaz
- Medical College, Aga Khan University, Karachi, Pakistan
| | | | | | | | - Abdullah Shaik
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,Department of Comparative Medicine, King Faisal Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
34
|
Ling Z, Yi C, Sun X, Yang Z, Sun B. Broad strategies for neutralizing SARS-CoV-2 and other human coronaviruses with monoclonal antibodies. SCIENCE CHINA. LIFE SCIENCES 2022; 66:658-678. [PMID: 36443513 PMCID: PMC9707277 DOI: 10.1007/s11427-022-2215-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022]
Abstract
Antibody therapeutics and vaccines for coronavirus disease 2019 (COVID-19) have been approved in many countries, with most being developed based on the original strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 has an exceptional ability to mutate under the pressure of host immunity, especially the immune-dominant spike protein of the virus, which is the target of both antibody drugs and vaccines. Given the continuous evolution of the virus and the identification of critical mutation sites, the World Health Organization (WHO) has named 5 variants of concern (VOCs): 4 are previously circulating VOCs, and 1 is currently circulating (Omicron). Due to multiple mutations in the spike protein, the recently emerged Omicron and descendent lineages have been shown to have the strongest ability to evade the neutralizing antibody (NAb) effects of current antibody drugs and vaccines. The development and characterization of broadly neutralizing antibodies (bNAbs) will provide broad strategies for the control of the sophisticated virus SARS-CoV-2. In this review, we describe how the virus evolves to escape NAbs and the potential neutralization mechanisms that associated with bNAbs. We also summarize progress in the development of bNAbs against SARS-CoV-2, human coronaviruses (CoVs) and other emerging pathogens and highlight their scientific and clinical significance.
Collapse
Affiliation(s)
- Zhiyang Ling
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Yi
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuo Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
35
|
Jeong BS, Jeon JY, Lai CJ, Yun HY, Jung JU, Oh BH. Structural basis for the broad and potent cross-reactivity of an N501Y-centric antibody against sarbecoviruses. Front Immunol 2022; 13:1049867. [PMID: 36466915 PMCID: PMC9714666 DOI: 10.3389/fimmu.2022.1049867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
More than 80% of SARS-CoV-2 variants, including Alpha and Omicron, contain an N501Y mutation in the receptor-binding domain (RBD) of the spike protein. The N501Y change is an adaptive mutation enabling tighter interaction with the human ACE2 receptor. We have developed a broadly neutralizing antibody (nAb), D27LEY, whose binding affinity was intentionally optimized for Y501. This N501Y-centric antibody not only interacts with the Y501-containing RBDs of SARS-CoV-2 variants, including Omicron, with pico- or subnanomolar binding affinity, but also binds tightly to the RBDs with a different amino acid at residue 501. The crystal structure of the Fab fragment of D27LEY bound to the RBD of the Alpha variant reveals that the Y501-containing loop adopts a ribbon-like topology and serves as a small but major epitope in which Y501 is a part of extensive intermolecular interactions. A hydrophobic cleft on the most conserved surface of the RBD core serves as another major binding epitope. These data explain the broad and potent cross-reactivity of this N501Y-centric antibody, and suggest that a vaccine antigenic component composed of the RBD core and a part of receptor-binding motif (RBM) containing tyrosine at residue 501 might elicit broad and potent humoral responses across sarbecoviruses.
Collapse
Affiliation(s)
- Bo-Seong Jeong
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Joon Young Jeon
- Department of Protein Design, Therazyne, lnc., Daejeon, South Korea
| | - Chih-Jen Lai
- Cancer Biology Department, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | | | - Jae U. Jung
- Cancer Biology Department, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Department of Protein Design, Therazyne, lnc., Daejeon, South Korea
| |
Collapse
|
36
|
Liao SH, Chang WJ, Hsu CY, Ming-Fang Yen A, Lin TY, Li-Sheng Chen S, Hsiu-Hsi Chen T. Evaluating correlates of protection for mix-match vaccine against COVID-19 VOCs with potential of evading immunity. Vaccine 2022; 40:6864-6872. [PMID: 36270891 PMCID: PMC9576222 DOI: 10.1016/j.vaccine.2022.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND In the face of rapid emerging variants of concern (VOCs) with potential of evading immunity from Beta to Omicron and uneven distribution of different vaccine brands, a mix-match strategy has been considered to enhance immunity. However, whether increasing immunogenicity using such a mix-match can lead to high clinical efficacy, particularly when facing Omicron pandemic, still remains elusive without using the traditional phase 3 trial. The aim of this study is to demonstrate how to evaluate correlates of protection (CoP) of the mix-match vaccination. METHODS Data on neutralizing antibody (NtAb) titers and clinical efficacy against Wuhan or D614G strains of homologous ChAdOx1 nCov-19 or mRNA-1273 and heterologous vaccination were extracted from previous studies for demonstration. The reductions in NtAb titers of homologous vaccination against Beta, Delta, and Omicron variants were obtained from literatures. A Bayesian inversion method was used to derive CoP from homologous to mix-match vaccine. Findings The predicted efficacy of ChAdOx1 nCov-19 and mRNA-1273 for Wuhan or D614G strains was 93 % (89 %-97 %). Given 8 ∼ 11-fold, 2 ∼ 5.5-fold, and 32.5 ∼ 36-fold reduction of NtAb for Beta, Delta, and Omicron variants compared with D614G, the corresponding predictive efficacy of the mix-match ranged from 75.63 % to 73.87 %, 84.87 % to 81.25 %, and 0.067 % to 0.059 %, respectively. Interpretations While ChAdOx1 nCov-19 and mRNA-1273 used for demonstrating how to timely evaluate CoP for the mix-match vaccine still provides clinical efficacy against Beta and Delta VOCs but it appears ineffective for Omicron variants, which highlights the urgent need for next generation vaccine against Omicron variant.
Collapse
Affiliation(s)
- Sih-Han Liao
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wei-Jung Chang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chen-Yang Hsu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Daichung Hospital, Miaoli, Taiwan
| | - Amy Ming-Fang Yen
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Sam Li-Sheng Chen
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tony Hsiu-Hsi Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
37
|
Focosi D, McConnell S, Casadevall A, Cappello E, Valdiserra G, Tuccori M. Monoclonal antibody therapies against SARS-CoV-2. THE LANCET. INFECTIOUS DISEASES 2022; 22:e311-e326. [PMID: 35803289 PMCID: PMC9255948 DOI: 10.1016/s1473-3099(22)00311-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022]
Abstract
Monoclonal antibodies (mAbs) targeting the spike protein of SARS-CoV-2 have been widely used in the ongoing COVID-19 pandemic. In this paper, we review the properties of mAbs and their effect as therapeutics in the pandemic, including structural classification, outcomes in clinical trials that led to the authorisation of mAbs, and baseline and treatment-emergent immune escape. We show how the omicron (B.1.1.529) variant of concern has reset treatment strategies so far, discuss future developments that could lead to improved outcomes, and report the intrinsic limitations of using mAbs as therapeutic agents.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Scott McConnell
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Emiliano Cappello
- Unit of Adverse Drug Reactions Monitoring, Pisa University Hospital, Pisa, Italy; Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Valdiserra
- Unit of Adverse Drug Reactions Monitoring, Pisa University Hospital, Pisa, Italy; Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Tuccori
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
38
|
Bedada FB, Gorfu G, Teng S, Neita ME. Insight into genomic organization of pathogenic coronaviruses, SARS-CoV-2: Implication for emergence of new variants, laboratory diagnosis and treatment options. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:917201. [PMID: 39157715 PMCID: PMC11328875 DOI: 10.3389/fmmed.2022.917201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/13/2022] [Indexed: 08/20/2024]
Abstract
SARS-CoV-2 is a novel zoonotic positive-sense RNA virus (ssRNA+) belonging to the genus beta coronaviruses (CoVs) in the Coronaviridae family. It is the causative agent for the outbreak of the disease, COVID-19. It is the third CoV causing pneumonia around the world in the past 2 decades. To date, it has caused significant deaths worldwide. Notably, the emergence of new genetic variants conferring efficient transmission and immune evasion remained a challenge, despite the reduction in the number of death cases, owing to effective vaccination regimen (boosting) and safety protocols. Thus, information harnessed from SARS-CoV-2 genomic organization is indispensable for seeking laboratory diagnosis and treatment options. Here in, we review previously circulating variants of SARS-CoV-2 designated variant of concern (VOC) including the Alpha (United Kingdom), Beta (South Africa), Gamma (Brazil), Delta (India), and recently circulating VOC, Omicron (South Africa) and its divergent subvariants (BA.1, BA.2, BA.3, BA.2.12.1, BA.4 and BA.5) with BA.5 currently becoming dominant and prolonging the COVID pandemic. In addition, we address the role of computational models for mutagenesis analysis which can predict important residues that contribute to transmissibility, virulence, immune evasion, and molecular detections of SARS-CoV-2. Concomitantly, the importance of harnessing the immunobiology of SARS-CoV-2 and host interaction for therapeutic purpose; and use of an in slilico based biocomputational approaches to achieve this purpose via predicting novel therapeutic agents targeting PRR such as toll like receptor, design of universal vaccine and chimeric antibodies tailored to the emergent variant have been highlighted.
Collapse
Affiliation(s)
- Fikru B. Bedada
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
| | - Gezahegn Gorfu
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
- Department of Pathology, College of Medicine, Howard University, Washington, DC, United States
| | - Shaolei Teng
- Department of Biology, College of Arts and Sciences, Howard University, Washington, DC, United States
| | - Marguerite E. Neita
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
| |
Collapse
|
39
|
Local monitoring of SARS-CoV-2 variants in two large California counties in 2021. Sci Rep 2022; 12:17046. [PMID: 36221029 PMCID: PMC9553084 DOI: 10.1038/s41598-022-21481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/27/2022] [Indexed: 12/30/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to persist due to mutations resulting in newer, more infectious variants of concern. We aimed to leverage an ongoing private SARS-CoV-2 testing laboratory's infrastructure to monitor SARS-CoV-2 variants in two large California counties. Study enrollment was offered to adults aged 18 years or older in Los Angeles County and Riverside County who recently tested positive for SARS-CoV-2 with a polymerase chain reaction (PCR) assay. A cycle threshold value less than or equal to 30 cycles was considered a positive test for sequencing purposes. Within 5 days of study enrollment, clinician-monitored, self-collected oral fluid and anterior nares swab specimens were obtained from participants. Specimens were transported and stored at 8 °C or cooler. Samples underwent ribonucleic acid extraction, library preparation, and sequencing. SARS-CoV-2 lineages were identified using sequencing data. Participant and genomic data were analyzed using statistical tools and visualized with toolkits. The study was approved by Advarra Institutional Review Board (Pro00053729). From May 27, 2021 to September 9, 2021, 503 individuals were enrolled and underwent specimen collection. Of the 503 participants, 238 (47.3%) participants were women, 329 (63.6%) participants were vaccinated, and 221 (43.9%) participants were of Hispanic or Spanish origin. Of the cohort, 496 (98.6%) participants had symptoms at the time of collection. Among the 503 samples, 443 (88.1%) nasal specimens and 353 (70.2%) oral specimens yielded positive sequencing results. Over our study period, the prevalence of the Alpha variant of SARS-CoV-2 decreased (initially 23.1% [95% confidence interval (95% CI): 0-0.49%] to 0% [95% CI 0.0-0.0%]) as the prevalence of the Delta variant of SARS-CoV-2 increased (initially 33.3% [95% CI 0.0-100.0%] to 100.0% [95% CI 100.0-100.0%]). A strain that carried mutations of both Delta and Mu was identified. We found that outpatient SARS-CoV-2 variant surveillance could be conducted in a timely and accurate manner. The prevalence of different variants changed over time. A higher proportion of nasal specimens yielded results versus oral specimens. Timely and regional outpatient SARS-CoV-2 variant surveillance could be used for public health efforts to identify changes in SARS-CoV-2 strain epidemiology.
Collapse
|
40
|
Gupta SL, Jaiswal RK. Relevant of neutralizing antibody during SARS-CoV-2 infection and their therapeutic usage. Mol Biol Rep 2022; 49:10137-10140. [PMID: 35596816 PMCID: PMC9123622 DOI: 10.1007/s11033-022-07493-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
Affiliation(s)
| | - Rishi K Jaiswal
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA.
| |
Collapse
|
41
|
Chen YL, Lin JJ, Ma H, Zhong N, Xie XX, Yang Y, Zheng P, Zhang LJ, Jin T, Cao MJ. Screening and Characterization of Shark-Derived VNARs against SARS-CoV-2 Spike RBD Protein. Int J Mol Sci 2022; 23:ijms231810904. [PMID: 36142819 PMCID: PMC9502636 DOI: 10.3390/ijms231810904] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is the major target for antibody therapeutics. Shark-derived variable domains of new antigen receptors (VNARs) are the smallest antibody fragments with flexible paratopes that can recognize protein motifs inaccessible to classical antibodies. This study reported four VNARs binders (JM-2, JM-5, JM-17, and JM-18) isolated from Chiloscyllium plagiosum immunized with SARS-CoV-2 RBD. Biolayer interferometry showed that the VNARs bound to the RBD with an affinity KD ranging from 38.5 to 2720 nM, and their Fc fusions had over ten times improved affinity. Gel filtration chromatography revealed that JM-2-Fc, JM-5-Fc, and JM-18-Fc could form stable complexes with RBD in solution. In addition, five bi-paratopic VNARs, named JM-2-5, JM-2-17, JM-2-18, JM-5-18, and JM-17-18, were constructed by fusing two VNARs targeting distinct RBD epitopes based on epitope grouping results. All these bi-paratopic VNARs except for JM-5-18 showed higher RBD binding affinities than its component VNARs, and their Fc fusions exhibited further enhanced binding affinities, with JM-2-5-Fc, JM-2-17-Fc, JM-2-18-Fc, and JM-5-18-Fc having KD values lower than 1 pM. Among these Fc fusions of bi-paratopic VNARs, JM-2-5-Fc, JM-2-17-Fc, and JM-2-18-Fc could block the angiotensin-converting enzyme 2 (ACE2) binding to the RBD of SARS-CoV-2 wildtype, Delta, Omicron, and SARS-CoV, with inhibition rates of 48.9~84.3%. Therefore, these high-affinity VNAR binders showed promise as detectors and therapeutics of COVID-19.
Collapse
Affiliation(s)
- Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jin-Jin Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Huan Ma
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Ning Zhong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xin-Xin Xie
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yunru Yang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Peiyi Zheng
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Ling-Jing Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tengchuan Jin
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
- Correspondence: (T.J.); (M.-J.C.); Tel.: +86-551-6360-0720 (T.J.); +86-592-618-3955 (M.-J.C.)
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Correspondence: (T.J.); (M.-J.C.); Tel.: +86-551-6360-0720 (T.J.); +86-592-618-3955 (M.-J.C.)
| |
Collapse
|
42
|
Shrestha LB, Foster C, Rawlinson W, Tedla N, Bull RA. Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: Implications for immune escape and transmission. Rev Med Virol 2022; 32:e2381. [PMID: 35856385 PMCID: PMC9349777 DOI: 10.1002/rmv.2381] [Citation(s) in RCA: 264] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022]
Abstract
The first dominant SARS-CoV-2 Omicron variant BA.1 harbours 35 mutations in its Spike protein from the original SARS-CoV-2 variant that emerged late 2019. Soon after its discovery, BA.1 rapidly emerged to become the dominant variant worldwide and has since evolved into several variants. Omicron is of major public health concern owing to its high infectivity and antibody evasion. This review article examines the theories that have been proposed on the evolution of Omicron including zoonotic spillage, infection in immunocompromised individuals and cryptic spread in the community without being diagnosed. Added to the complexity of Omicron's evolution are the multiple reports of recombination events occurring between co-circulating variants of Omicron with Delta and other variants such as XE. Current literature suggests that the combination of the novel mutations in Omicron has resulted in the variant having higher infectivity than the original Wuhan-Hu-1 and Delta variant. However, severity is believed to be less owing to the reduced syncytia formation and lower multiplication in the human lung tissue. Perhaps most challenging is that several studies indicate that the efficacy of the available vaccines have been reduced against Omicron variant (8-127 times reduction) as compared to the Wuhan-Hu-1 variant. The administration of booster vaccine, however, compensates with the reduction and improves the efficacy by 12-35 fold. Concerningly though, the broadly neutralising monoclonal antibodies, including those approved by FDA for therapeutic use against previous SARS-CoV-2 variants, are mostly ineffective against Omicron with the exception of Sotrovimab and recent reports suggest that the Omicron BA.2 is also resistant to Sotrovimab. Currently two new Omicron variants BA.4 and BA.5 are emerging and are reported to be more transmissible and resistant to immunity generated by previous variants including Omicron BA.1 and most monoclonal antibodies. As new variants of SARS-CoV-2 will likely continue to emerge it is important that the evolution, and biological consequences of new mutations, in existing variants be well understood.
Collapse
Affiliation(s)
- Lok Bahadur Shrestha
- School of Medical SciencesFaculty of MedicineUNSWSydneyNew South WalesAustralia
- The Kirby InstituteUNSWSydneyNew South WalesAustralia
| | - Charles Foster
- School of Medical SciencesFaculty of MedicineUNSWSydneyNew South WalesAustralia
- Serology and Virology DivisionDepartment of MicrobiologyNew South Wales Health PathologySydneyNew South WalesAustralia
| | - William Rawlinson
- School of Medical SciencesFaculty of MedicineUNSWSydneyNew South WalesAustralia
- Serology and Virology DivisionDepartment of MicrobiologyNew South Wales Health PathologySydneyNew South WalesAustralia
| | - Nicodemus Tedla
- School of Medical SciencesFaculty of MedicineUNSWSydneyNew South WalesAustralia
| | - Rowena A. Bull
- School of Medical SciencesFaculty of MedicineUNSWSydneyNew South WalesAustralia
- The Kirby InstituteUNSWSydneyNew South WalesAustralia
| |
Collapse
|
43
|
Markarian NM, Galli G, Patel D, Hemmings M, Nagpal P, Berghuis AM, Abrahamyan L, Vidal SM. Identifying Markers of Emerging SARS-CoV-2 Variants in Patients With Secondary Immunodeficiency. Front Microbiol 2022; 13:933983. [PMID: 35847101 PMCID: PMC9283111 DOI: 10.3389/fmicb.2022.933983] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 12/03/2022] Open
Abstract
Since the end of 2019, the world has been challenged by the coronavirus disease 2019 (COVID-19) pandemic. With COVID-19 cases rising globally, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, resulting in the emergence of variants of interest (VOI) and of concern (VOC). Of the hundreds of millions infected, immunodeficient patients are one of the vulnerable cohorts that are most susceptible to this virus. These individuals include those with preexisting health conditions and/or those undergoing immunosuppressive treatment (secondary immunodeficiency). In these cases, several researchers have reported chronic infections in the presence of anti-COVID-19 treatments that may potentially lead to the evolution of the virus within the host. Such variations occurred in a variety of viral proteins, including key structural ones involved in pathogenesis such as spike proteins. Tracking and comparing such mutations with those arisen in the general population may provide information about functional sites within the SARS-CoV-2 genome. In this study, we reviewed the current literature regarding the specific features of SARS-CoV-2 evolution in immunocompromised patients and identified recurrent de novo amino acid changes in virus isolates of these patients that can potentially play an important role in SARS-CoV-2 pathogenesis and evolution.
Collapse
Affiliation(s)
- Nathan M. Markarian
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
- Swine and Poultry Infectious Diseases Research Center and Research Group on Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Gaël Galli
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- CNRS, ImmunoConcEpT, UMR 5164, Université de Bordeaux, Bordeaux, France
- CHU de Bordeaux, FHU ACRONIM, Centre National de Référence des Maladies Auto-Immunes et Systémiques Rares Est/Sud-Ouest, Bordeaux, France
| | - Dhanesh Patel
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
| | - Mark Hemmings
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Priya Nagpal
- Department of Pharmacology, McGill University, Montréal, QC, Canada
| | | | - Levon Abrahamyan
- Swine and Poultry Infectious Diseases Research Center and Research Group on Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Silvia M. Vidal
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
| |
Collapse
|
44
|
Rajendran M, Ferran MC, Babbitt GA. Identifying vaccine escape sites via statistical comparisons of short-term molecular dynamics. BIOPHYSICAL REPORTS 2022; 2:100056. [PMID: 35403093 PMCID: PMC8978532 DOI: 10.1016/j.bpr.2022.100056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/31/2022] [Indexed: 01/08/2023]
Abstract
The identification of viral mutations that confer escape from antibodies is crucial for understanding the interplay between immunity and viral evolution. We describe a molecular dynamics (MD)-based approach that goes beyond contact mapping, scales well to a desktop computer with a modern graphics processor, and enables the user to identify functional protein sites that are prone to vaccine escape in a viral antigen. We first implement our MD pipeline to employ site-wise calculation of Kullback-Leibler divergence in atom fluctuation over replicate sets of short-term MD production runs thus enabling a statistical comparison of the rapid motion of influenza hemagglutinin (HA) in both the presence and absence of three well-known neutralizing antibodies. Using this simple comparative method applied to motions of viral proteins, we successfully identified in silico all previously empirically confirmed sites of escape in influenza HA, predetermined via selection experiments and neutralization assays. Upon the validation of our computational approach, we then surveyed potential hotspot residues in the receptor binding domain of the SARS-CoV-2 virus in the presence of COVOX-222 and S2H97 antibodies. We identified many single sites in the antigen-antibody interface that are similarly prone to potential antibody escape and that match many of the known sites of mutations arising in the SARS-CoV-2 variants of concern. In the Omicron variant, we find only minimal adaptive evolutionary shifts in the functional binding profiles of both antibodies. In summary, we provide an inexpensive and accurate computational method to monitor hotspots of functional evolution in antibody binding footprints.
Collapse
|
45
|
Tsai MS, Shih WT, Yang YH, Lin YS, Chang GH, Hsu CM, Yeh RA, Shu LH, Cheng YC, Liu HT, Wu YH, Wu YH, Shen RC, Wu CY. Potential inhibitor for blocking binding between ACE2 and SARS-CoV-2 spike protein with mutations. Biomed Pharmacother 2022; 149:112802. [PMID: 35279013 PMCID: PMC8906167 DOI: 10.1016/j.biopha.2022.112802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/02/2022] Open
Abstract
At the time of writing, more than 440 million confirmed coronavirus disease 2019 (COVID-19) cases and more than 5.97 million COVID-19 deaths worldwide have been reported by the World Health Organization since the start of the outbreak of the pandemic in Wuhan, China. During the COVID-19 pandemic, many variants of SARS-CoV-2 have arisen because of high mutation rates. N501Y, E484K, K417N, K417T, L452R and T478K in the receptor binding domain (RBD) region may increase the infectivity in several variants of SARS-CoV-2. In this study, we discovered that GB-1, developed from Chiehyuan herbal formula which obtained from Tian Shang Sheng Mu of Chiayi Puzi Peitian Temple, can inhibit the binding between ACE2 and RBD with Wuhan type, K417N-E484K-N501Y and L452R-T478K mutation. In addition, GB-1 inhibited the binding between ACE2 and RBD with a single mutation (E484K or N501Y), except the K417N mutation. In the compositions of GB-1, glycyrrhizic acid can inhibit the binding between ACE2 and RBD with Wuhan type, except K417N-E484K-N501Y mutation. Our results suggest that GB-1 could be a potential candidate for the prophylaxis of different variants of SARS-CoV-2 infection because of its inhibition of binding between ACE2 and RBD with different mutations (L452R-T478K, K417N-E484K-N501Y, N501Y or E484K).
Collapse
Affiliation(s)
- Ming-Shao Tsai
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Faculty of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Wei-Tai Shih
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yao-Hsu Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan; School of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Geng-He Chang
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Faculty of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Cheng-Ming Hsu
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Faculty of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Reming-Albert Yeh
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Li-Hsin Shu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Ching Cheng
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hung-Te Liu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Huei Wu
- Department of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan
| | - Yu-Heng Wu
- Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Rou-Chen Shen
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan; School of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
46
|
Chen Y, Wang X, Shi H, Zou P. Montelukast Inhibits HCoV-OC43 Infection as a Viral Inactivator. Viruses 2022; 14:v14050861. [PMID: 35632604 PMCID: PMC9143845 DOI: 10.3390/v14050861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses (CoVs) consist of a large group of RNA viruses causing various diseases in humans and in lots of animals. Human coronavirus (HCoV) OC43, the prototype of beta-coronavirus discovered in the 1960s, has been circulating in humans for long time, and infection with other emerging strains of beta-coronavirus (SARS-CoV, SARS-CoV-2, and MERS-CoV) can lead to severe illness and death. In this study, we found that montelukast, a leukotriene receptor antagonist, potently inhibited the infection of HCoV-OC43 in distinct cells in a dose- and time- dependent manner. Additionally, the results showed that montelukast induced release of HCoV-OC43 genomic RNA by disrupting the integrity of the viral lipid membrane, and irreversibly inhibited viral infection. Considering the similarity among HCoV-OC43, MERS-CoV, and SARS-CoV-2, it suggests that montelukast may be a potential candidate for the treatment of human beta-coronavirus infection.
Collapse
Affiliation(s)
| | | | | | - Peng Zou
- Correspondence: ; Tel.: +86-21-3799-0333 (ext. 5273)
| |
Collapse
|
47
|
Chen C, Saville JW, Marti MM, Schäfer A, Cheng MH, Mannar D, Zhu X, Berezuk AM, Banerjee A, Sobolewski MD, Kim A, Treat BR, Da Silva Castanha PM, Enick N, McCormick KD, Liu X, Adams C, Hines MG, Sun Z, Chen W, Jacobs JL, Barratt-Boyes SM, Mellors JW, Baric RS, Bahar I, Dimitrov DS, Subramaniam S, Martinez DR, Li W. Potent Neutralization of Omicron and other SARS-CoV-2 Variants of Concern by Biparatopic Human VH Domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.18.481058. [PMID: 35194603 PMCID: PMC8863138 DOI: 10.1101/2022.02.18.481058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The emergence of SARS-CoV-2 variants of concern (VOCs) requires the development of next-generation biologics that are effective against a variety of strains of the virus. Herein, we characterize a human V H domain, F6, which we generated by sequentially panning large phage displayed V H libraries against receptor binding domains (RBDs) containing VOC mutations. Cryo-EM analyses reveal that F6 has a unique binding mode that spans a broad surface of the RBD and involves the antibody framework region. Attachment of an Fc region to a fusion of F6 and ab8, a previously characterized V H domain, resulted in a construct (F6-ab8-Fc) that neutralized Omicron pseudoviruses with a half-maximal neutralizing concentration (IC 50 ) of 4.8 nM in vitro . Additionally, prophylactic treatment using F6-ab8-Fc reduced live Beta (B.1.351) variant viral titers in the lungs of a mouse model. Our results provide a new potential therapeutic against SARS-CoV-2 VOCs - including the recently emerged Omicron variant - and highlight a vulnerable epitope within the spike protein RBD that may be exploited to achieve broad protection against circulating variants.
Collapse
Affiliation(s)
- Chuan Chen
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - James W. Saville
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver BC, V6T 1Z3
| | - Michelle M. Marti
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3109 Michael Hooker Research Center, Chapel Hill, NC 27599, USA
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dhiraj Mannar
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver BC, V6T 1Z3
| | - Xing Zhu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver BC, V6T 1Z3
| | - Alison M. Berezuk
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver BC, V6T 1Z3
| | - Anupam Banerjee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michele D. Sobolewski
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Andrew Kim
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Benjamin R. Treat
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Priscila Mayrelle Da Silva Castanha
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nathan Enick
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kevin D McCormick
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Xianglei Liu
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Cynthia Adams
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Margaret Grace Hines
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Zehua Sun
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | | | - Jana L. Jacobs
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Simon M. Barratt-Boyes
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John W. Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Abound Bio, Pittsburgh, PA, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3109 Michael Hooker Research Center, Chapel Hill, NC 27599, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dimiter S. Dimitrov
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
- Abound Bio, Pittsburgh, PA, USA
| | - Sriram Subramaniam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver BC, V6T 1Z3
| | - David R. Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3109 Michael Hooker Research Center, Chapel Hill, NC 27599, USA
| | - Wei Li
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Laroche A, Orsini Delgado ML, Chalopin B, Cuniasse P, Dubois S, Sierocki R, Gallais F, Debroas S, Bellanger L, Simon S, Maillère B, Nozach H. Deep mutational engineering of broadly-neutralizing nanobodies accommodating SARS-CoV-1 and 2 antigenic drift. MAbs 2022; 14:2076775. [PMID: 35593235 PMCID: PMC9132424 DOI: 10.1080/19420862.2022.2076775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we report the molecular engineering of nanobodies that bind with picomolar affinity to both SARS-CoV-1 and SARS-CoV-2 receptor-binding domains (RBD) and are highly neutralizing. We applied deep mutational engineering to VHH72, a nanobody initially specific for SARS-CoV-1 RBD with little cross-reactivity to SARS-CoV-2 antigen. We first identified all the individual VHH substitutions that increase binding to SARS-CoV-2 RBD and then screened highly focused combinatorial libraries to isolate engineered nanobodies with improved properties. The corresponding VHH-Fc molecules show high affinities for SARS-CoV-2 antigens from various emerging variants and SARS-CoV-1, block the interaction between ACE2 and RBD, and neutralize the virus with high efficiency. Its rare specificity across sarbecovirus relies on its peculiar epitope outside the immunodominant regions. The engineered nanobodies share a common motif of three amino acids, which contribute to the broad specificity of recognition. Our results show that deep mutational engineering is a very powerful method, especially to rapidly adapt existing antibodies to new variants of pathogens.
Collapse
Affiliation(s)
- Adrien Laroche
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Maria Lucia Orsini Delgado
- CEA, INRAE, Medicines and Healthcare Technologies Department, SPI, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Benjamin Chalopin
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Cuniasse
- CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Steven Dubois
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Raphaël Sierocki
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France.,Deeptope SAS, Massy, France
| | - Fabrice Gallais
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze, France
| | - Stéphanie Debroas
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze, France
| | - Laurent Bellanger
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze, France
| | - Stéphanie Simon
- CEA, INRAE, Medicines and Healthcare Technologies Department, SPI, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Bernard Maillère
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hervé Nozach
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
49
|
Sariol CA, Serrano-Collazo C, Ortiz EJ, Pantoja P, Cruz L, Arana T, Atehortua D, Pabon-Carrero C, Espino AM. Limited Impact of Delta Variant's Mutations on the Effectiveness of Neutralization Conferred by Natural Infection or COVID-19 Vaccines in a Latino Population. Viruses 2021; 13:2405. [PMID: 34960674 PMCID: PMC8707683 DOI: 10.3390/v13122405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 pandemic has impacted public health systems all over the world. The Delta variant seems to possess enhanced transmissibility, but no clear evidence suggests it has increased virulence. Our data show that pre-exposed individuals had similar neutralizing activity against the authentic COVID-19 strain and the Delta and Epsilon variants. After only one vaccine dose, the neutralization capacity expanded to all tested variants in pre-exposed individuals. Healthy vaccinated individuals showed a limited breadth of neutralization. One vaccine dose did induce similar neutralizing antibodies against the Delta as against the authentic strain. However, even after two doses, this capacity only expanded to the Epsilon variant.
Collapse
Affiliation(s)
- Carlos A. Sariol
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (L.C.); (T.A.); (A.M.E.)
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (C.S.-C.); (E.J.O.); (P.P.)
- Department of Internal Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA
| | - Crisanta Serrano-Collazo
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (C.S.-C.); (E.J.O.); (P.P.)
| | - Edwin J. Ortiz
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (C.S.-C.); (E.J.O.); (P.P.)
- Puerto Rico Science, Technology and Research Trust, San Juan, PR 00927, USA; (D.A.); (C.P.-C.)
| | - Petraleigh Pantoja
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (C.S.-C.); (E.J.O.); (P.P.)
| | - Lorna Cruz
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (L.C.); (T.A.); (A.M.E.)
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (C.S.-C.); (E.J.O.); (P.P.)
| | - Teresa Arana
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (L.C.); (T.A.); (A.M.E.)
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (C.S.-C.); (E.J.O.); (P.P.)
| | - Dianne Atehortua
- Puerto Rico Science, Technology and Research Trust, San Juan, PR 00927, USA; (D.A.); (C.P.-C.)
| | - Christina Pabon-Carrero
- Puerto Rico Science, Technology and Research Trust, San Juan, PR 00927, USA; (D.A.); (C.P.-C.)
| | - Ana M. Espino
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (L.C.); (T.A.); (A.M.E.)
| |
Collapse
|
50
|
Sariol CA, Serrano-Collazo C, Ortiz EJ, Pantoja P, Cruz L, Arana T, Atehortua D, Pabon-Carrero C, Espino AM. Limited impact of Delta variant’s mutations in the effectiveness of neutralization conferred by natural infection or COVID-19 vaccines in a Latino population. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.10.25.21265422. [PMID: 34729566 PMCID: PMC8562550 DOI: 10.1101/2021.10.25.21265422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The SARS-CoV-2 pandemic has impacted public health systems all over the world. The Delta variant seems to possess enhanced transmissibility, but no clear evidence suggests it has increased virulence. Our data shows that pre-exposed individuals had similar neutralizing activity against the authentic COVID-19 strain and the Delta and Epsilon variants. After one vaccine dose, the neutralization capacity expands to all tested variants. Healthy vaccinated individuals showed a limited breadth of neutralization. One vaccine dose induced similar neutralizing antibodies against the Delta compared to the authentic strain. However, even after two doses, this capacity only expanded to the Epsilon variant.
Collapse
Affiliation(s)
- Carlos A. Sariol
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
- Department of Internal medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Crisanta Serrano-Collazo
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Edwin J. Ortiz
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
- Puerto Rico Science, Technology and Research Trust, PR, USA
| | - Petraleigh Pantoja
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Lorna Cruz
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Teresa Arana
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | | | | | - Ana M. Espino
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| |
Collapse
|