1
|
Maatz H, Lindberg EL, Adami E, López-Anguita N, Perdomo-Sabogal A, Cocera Ortega L, Patone G, Reichart D, Myronova A, Schmidt S, Elsanhoury A, Klein O, Kühl U, Wyler E, Landthaler M, Yousefian S, Haas S, Kurth F, Teichmann SA, Oudit GY, Milting H, Noseda M, Seidman JG, Seidman CE, Heidecker B, Sander LE, Sawitzki B, Klingel K, Doeblin P, Kelle S, Van Linthout S, Hubner N, Tschöpe C. The cellular and molecular cardiac tissue responses in human inflammatory cardiomyopathies after SARS-CoV-2 infection and COVID-19 vaccination. NATURE CARDIOVASCULAR RESEARCH 2025; 4:330-345. [PMID: 39994453 PMCID: PMC11913730 DOI: 10.1038/s44161-025-00612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/10/2025] [Indexed: 02/26/2025]
Abstract
Myocarditis, characterized by inflammatory cell infiltration, can have multiple etiologies, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or, rarely, mRNA-based coronavirus disease 2019 (COVID-19) vaccination. The underlying cellular and molecular mechanisms remain poorly understood. In this study, we performed single-nucleus RNA sequencing on left ventricular endomyocardial biopsies from patients with myocarditis unrelated to COVID-19 (Non-COVID-19), after SARS-CoV-2 infection (Post-COVID-19) and after COVID-19 vaccination (Post-Vaccination). We identified distinct cytokine expression patterns, with interferon-γ playing a key role in Post-COVID-19, and upregulated IL16 and IL18 expression serving as a hallmark of Post-Vaccination myocarditis. Although myeloid responses were similar across all groups, the Post-Vaccination group showed a higher proportion of CD4+ T cells, and the Post-COVID-19 group exhibited an expansion of cytotoxic CD8+ T and natural killer cells. Endothelial cells showed gene expression changes indicative of vascular barrier dysfunction in the Post-COVID-19 group and ongoing angiogenesis across all groups. These findings highlight shared and distinct mechanisms driving myocarditis in patients with and without a history of SARS-CoV-2 infection or vaccination.
Collapse
Affiliation(s)
- Henrike Maatz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| | - Eric L Lindberg
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Eleonora Adami
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Natalia López-Anguita
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alvaro Perdomo-Sabogal
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lucía Cocera Ortega
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Giannino Patone
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Daniel Reichart
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Cardiovascular Division, Brigham and Women's Hospital Boston, Boston, MA, USA
| | - Anna Myronova
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sabine Schmidt
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ahmed Elsanhoury
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Oliver Klein
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Uwe Kühl
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Schayan Yousefian
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Simon Haas
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Berlin, Germany
| | - Sarah A Teichmann
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, UK
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Cardiovascular Division, Brigham and Women's Hospital Boston, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Bettina Heidecker
- Department of Cardiology, Angiology and Intensive Medicine CBF, Deutsches Herzzentrum der Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leif E Sander
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Berlin, Germany
| | - Birgit Sawitzki
- Translational Immunology, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Patrick Doeblin
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care, Campus Virchow, Deutsches Herzzentrum der Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Kelle
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care, Campus Virchow, Deutsches Herzzentrum der Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sophie Van Linthout
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg, Germany.
| | - Carsten Tschöpe
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany.
- Department of Cardiology, Angiology and Intensive Care, Campus Virchow, Deutsches Herzzentrum der Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Zou Y, Ding M, Zheng Y, Dai G, Wang T, Zhu C, Yan Y, Xu J, Wang R, Chen Z. Peripheral blood cytokine expression levels and their clinical significance in children with influenza. Transl Pediatr 2025; 14:286-297. [PMID: 40115458 PMCID: PMC11921373 DOI: 10.21037/tp-2024-534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/10/2025] [Indexed: 03/23/2025] Open
Abstract
Background Cytokine levels in the peripheral blood of children infected with the influenza A virus are significantly associated with disease diagnosis and severity. This study aimed to investigate the correlation between the expression levels of six cytokines in the peripheral blood of pediatric patients with influenza and the diagnosis and severity of their condition. Methods The levels of six cytokines were measured using a flow cytometric microsphere array. Statistical analysis was performed using IBM SPSS Statistics 26.0 to compare differences between the groups, with a P value of less than 0.05 considered statistically significant. Results Univariate analysis showed that the levels of interferon alpha-2 (IFN-α2), monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), and interleukin-18 (IL-18) were significantly elevated in the influenza group (P≤0.001). IL-18 levels were higher in the H3N2 group than in the H1N1 group (P=0.03), and IFN-α2 levels were higher in the Mycoplasma coinfection group compared to the influenza-only group (P=0.04). Notably, significant differences in IFN-α2 and MCP-1 levels were observed between the mild-moderate and severe influenza A subgroups (P=0.008, P=0.01, respectively). Negative correlations were found between the severity of influenza A and the levels of IFN-α2 and MCP-1 (r=-0.357, P=0.006 and r=-0.329, P=0.01, respectively). Multifactorial logistic regression and receiver operating characteristic (ROC) curve analysis identified IFN-α2 and MCP-1 as independent risk factors for severe influenza A. Conclusions Inflammatory cytokine levels are critical in modulating the immune and inflammatory responses of the body. IFN-α2 and MCP-1 could serve as early indicators of severe influenza A. IL-18 levels were significantly higher in the H3N2 group compared to the H1N1 group, this finding may aid in differentiating between influenza subtypes, providing insights for tailored interventions.
Collapse
Affiliation(s)
- Yanxia Zou
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Mengwei Ding
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Yidan Zheng
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Ge Dai
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Ting Wang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Canhong Zhu
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Yongdong Yan
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Jufen Xu
- Department of Pediatrics, The Sixth People's Hospital of Kunshan, Suzhou, China
| | - Renzheng Wang
- Department of Pediatrics, Xiangcheng District People's Hospital, Suzhou, China
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
- Department of Pediatrics, The Sixth People's Hospital of Kunshan, Suzhou, China
| |
Collapse
|
3
|
Tsai YM, Lee YH, Chang CY, Tsai HP, Wu YY, Lee HC, Wu LY, Ong CT, Sun CH, Tsai MJ, Hsu YL. Characterizing the diabetes-induced pathological changes of the mouse lung by single-cell RNA sequencing. Life Sci 2025; 363:123408. [PMID: 39832739 DOI: 10.1016/j.lfs.2025.123408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Pulmonary disorders are exacerbated by high blood sugar, leading to a disordered immune defense and increased susceptibility to infection. Type 2 diabetes mellitus (T2D) is characterized by insulin resistance and inadequate insulin production. Mechanisms leading to pulmonary alternation due to T2D are not clear. The advancements in single-cell RNA sequencing aid in characterizing the effects of T2D on lungs and its altered mechanisms. Our results first revealed that in late-stage diabetic mice, the number of immune cells in the lungs significantly increased, with these immune cells predominantly being immature polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). At the early stages of diabetes, alveolar cell type I and type II (AT I & II) exhibited a mesenchymal phenotype and showed reduced expression of several key cytokines essential for maintaining lung immunity, including Cxcl15, Cxcl14, and Il34. Additionally, the antigen-presenting cell function of AT II, resulting from the downregulation of several MHC type II proteins, was markedly diminished in diabetic mice. Moreover, decreased expressions of interferon-related genes Ifnar1 and Ifnar2, along with impaired Sftpd expression, compromised lung immunity impairment in diabetic mice. These pathogenic changes contributed to the increased susceptibility and severity of respiratory syncytial virus and tuberculosis in the lung of diabetes. In addition to alveolar cells, pulmonary capillary endothelial cells also exhibited an immature transition phenotype, with a significant increase in angiogenic capacity. Our findings provided a comprehensive exploration of lung pathology under the influence of diabetes and explained the multiple factors impacting lung immunity in diabetic conditions.
Collapse
Affiliation(s)
- Ying-Ming Tsai
- School of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 807378, Taiwan; Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No.100, Tzyou 1st Road, Kaohsiung 807378, Taiwan
| | | | - Chao-Yuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung City 807378, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Road, Kaohsiung 807378, Taiwan
| | - Yu-Yuan Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 807378, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung City 807378, Taiwan
| | - Hsiao-Chen Lee
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No.100, Tzyou 1st Road, Kaohsiung 807378, Taiwan
| | - Ling-Yu Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung City 807378, Taiwan
| | - Chai-Tung Ong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung City 807378, Taiwan; Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 807378, Taiwan
| | - Chien-Hui Sun
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung City 807378, Taiwan
| | - Ming-Ju Tsai
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No.100, Tzyou 1st Road, Kaohsiung 807378, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung City 807378, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, No. 100, Shiquan 1(st) Rd., Sanmin Dist., Kaohsiung 807378, Taiwan; National Pingtung University of Science and Technology, Department of Biological Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 912301, Taiwan.
| |
Collapse
|
4
|
Truong AD, Tran HTT, Chu NT, Phan L, Phan HT, Dang TH, Dang HV, Nguyen LA. Identification of immune-associated genes with altered expression in the spleen of mice enriched with probiotic Lactobacillus species using RNA-seq profiling. Anim Biosci 2025; 38:336-349. [PMID: 39210803 PMCID: PMC11725755 DOI: 10.5713/ab.24.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Probiotics are living microorganisms that can provide health benefits when consumed. Here, we investigated the effects of probiotics on gene expression in the spleen of mice using RNA-sequencing analysis between negative control and probiotic groups (including 4 Lactobacillus strains: Lactobacillus fermentum, L. casei, L. plantarum, and L. brevis). METHODS Mice exposed with probiotic in 4 weeks by intragastric administration. Then, spleen tissues of the control and probiotics groups were collected on days 14 and 28 for RNA sequencing. RESULTS In total, 665, 186, and 81 differentially expressed genes (DEGs) were significantly expressed on day 14 vs control, day 28 vs control groups, and probiotics day 28 vs day 14 groups, respectively. On the other hand, 12 toll-like receptor genes underwent additional validation through quantitative real-time polymerase chain reaction (qRT-PCR), affirming the increased alignment between qRT-PCR and RNA-Seq findings. In addition, the Kyoto encyclopedia of genes and genomes and gene ontology analyses revealed that the DEGs were predominantly enriched in defense responses to pathogens, including inflammatory bowel diseases, malaria, leukaemia virus 1, and herpes virus, as well as immune processes related to immune response and signal transduction. This study represents the first investigation into mice's gene expression in the spleen exposed to probiotics using Lactobacillus spp. isolated from a field strain in Vietnam. CONCLUSION Our results provide valuable insights into the impacts and functions of probiotics on mammalian development, offering crucial information for the potential therapeutic use of probiotics in defending against pathogens in Vietnam. The findings from this study highlight the potential of probiotics in modulating gene expression in the spleen, which may have implications for immune function and overall health in mice.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, Dong Da, Hanoi 100000,
Vietnam
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, Dong Da, Hanoi 100000,
Vietnam
| | - Nhu Thi Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, Dong Da, Hanoi 100000,
Vietnam
| | - Lanh Phan
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, Dong Da, Hanoi 100000,
Vietnam
| | - Hoai Thi Phan
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, Dong Da, Hanoi 100000,
Vietnam
| | - Thu Huong Dang
- Department of Microbial Biotechnology, Food Industries Research Institute, Thanh Xuan Distr., Hanoi 100000,
Vietnam
| | - Hoang Vu Dang
- Department of Microbial Biotechnology, Food Industries Research Institute, Thanh Xuan Distr., Hanoi 100000,
Vietnam
| | - La Anh Nguyen
- Department of Microbial Biotechnology, Food Industries Research Institute, Thanh Xuan Distr., Hanoi 100000,
Vietnam
| |
Collapse
|
5
|
Schultz IC, Dos Santos Pereira Andrade AC, Dubuc I, Laroche A, Allaeys I, Doré E, Bertrand N, Vallières L, Fradette J, Flamand L, Wink MR, Boilard E. Targeting Cytokines: Evaluating the Potential of Mesenchymal Stem Cell Derived Extracellular Vesicles in the Management of COVID-19. Stem Cell Rev Rep 2025; 21:564-580. [PMID: 39340739 DOI: 10.1007/s12015-024-10794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
The Coronavirus Disease 2019 (COVID-19), caused by virus SARS-CoV-2, is characterized by massive inflammation and immune system imbalance. Despite the implementation of vaccination protocols, the accessibility of treatment remains uneven. Furthermore, the persistent threat of new variants underscores the urgent need for expanded research into therapeutic options for SARS-CoV-2. Mesenchymal stem cells (MSCs) are known for their immunomodulatory potential through the release of molecules into the extracellular space, either as soluble elements or carried by extracellular vesicles (EVs). The aim of this study was to evaluate the anti-inflammatory potential of EVs obtained from human adipose tissue (ASC-EVs) against SARS-CoV-2 infection. ASC-EVs were purified by size-exclusion chromatography, and co-culture assays confirmed that ASC-EVs were internalized by human lung cells and could colocalize with SARS-CoV-2 into early and late endosomes. To determine the functionality of ASC-EVs, lung cells were infected with SARS-CoV-2 in the presence of increasing concentrations of ASC-EVs, and the release of cytokines, chemokines and viruses were measured. While SARS-CoV-2 replication was significantly reduced only at the highest concentrations tested, multiplex analysis highlighted that lower concentrations of ASC-EV sufficed to prevent the production of immune modulators. Importantly, ASC-EVs did not contain detectable inflammatory cytokines, nor did they trigger inflammatory mediators, nor affect cellular viability. In conclusion, this work suggests that ASC-EVs have the potential to attenuate inflammation by decreasing the production of pro-inflammatory cytokines in lung cells following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Iago Carvalho Schultz
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ana Claudia Dos Santos Pereira Andrade
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Isabelle Dubuc
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Audrée Laroche
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Isabelle Allaeys
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Etienne Doré
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Nicolas Bertrand
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Luc Vallières
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Julie Fradette
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Département de Chirurgie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
- Division of Regenerative Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Louis Flamand
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Marcia Rosangela Wink
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Eric Boilard
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada.
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada.
| |
Collapse
|
6
|
Ramón-Luing LA, Martínez-Gómez LE, Martinez-Armenta C, Martínez-Nava GA, Medina-Quero K, Pérez-Rubio G, Falfán-Valencia R, Buendia-Roldan I, Flores-Gonzalez J, Ocaña-Guzmán R, Selman M, López-Reyes A, Chavez-Galan L. TNF/IFN-γ Co-Signaling Induces Differential Cellular Activation in COVID-19 Patients: Implications for Patient Outcomes. Int J Mol Sci 2025; 26:1139. [PMID: 39940907 PMCID: PMC11817726 DOI: 10.3390/ijms26031139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
TNF and IFN-γ are key proinflammatory cytokines implicated in the pathophysiology of COVID-19. Toll-like receptor (TLR)7 and TLR8 are known to recognize SARS-CoV-2 and induce TNF and IFN-γ production. However, it is unclear whether TNF and IFN-γ levels are altered through TLR-dependent pathways and whether these pathways mediate disease severity during COVID-19. This study aimed to investigate the association between TNF/IFN-γ levels and immune cell activation to understand their role in disease severity better. We enrolled 150 COVID-19 patients, who were classified by their systemic TNF and IFN-γ levels (high (H) or normal-low (N-L)) as TNFHIFNγH, TNFHIFNγN-L, TNFN-LIFNγH, and TNFN-LIFNγN-L. Compared to patients with TNFN-LIFNγN-L, patients with TNFHIFNγH had high systemic levels of pro- and anti-inflammatory cytokines and cytotoxic molecules, and their T cells and monocytes expressed TNF receptor 1 (TNFR1). Patients with TNFHIFNγH presented the SNP rs3853839 to TLR7 and increased levels of MYD88, NFκB, and IRF7 (TLR signaling), FADD, and TRADD (TNFR1 signaling). Moreover, critical patients were observed in the four COVID-19 groups, but patients with TNFHIFNγH or TNFHIFNγN-L most required invasive mechanical ventilation. We concluded that increased TNF/IFN-γ levels are associated with hyperactive immune cells, whereas normal/low levels are associated with hypoactivity, suggesting a model to explain that the pathophysiology of critical COVID-19 may be mediated through different pathways depending on TNF and IFN-γ levels. These findings highlight the potential for exploring the modulation of TNF and IFN-γ as a therapeutic strategy in severe COVID-19.
Collapse
Affiliation(s)
- Lucero A. Ramón-Luing
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Laura Edith Martínez-Gómez
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14080, Mexico; (L.E.M.-G.); (C.M.-A.); (G.A.M.-N.); (A.L.-R.)
| | - Carlos Martinez-Armenta
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14080, Mexico; (L.E.M.-G.); (C.M.-A.); (G.A.M.-N.); (A.L.-R.)
| | - Gabriela Angélica Martínez-Nava
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14080, Mexico; (L.E.M.-G.); (C.M.-A.); (G.A.M.-N.); (A.L.-R.)
| | - Karen Medina-Quero
- Immunology Laboratory, Escuela Militar de Graduados de Sanidad, Mexico City 11200, Mexico;
| | - Gloria Pérez-Rubio
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Ramcés Falfán-Valencia
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Ivette Buendia-Roldan
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Julio Flores-Gonzalez
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Ranferi Ocaña-Guzmán
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Alberto López-Reyes
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14080, Mexico; (L.E.M.-G.); (C.M.-A.); (G.A.M.-N.); (A.L.-R.)
| | - Leslie Chavez-Galan
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| |
Collapse
|
7
|
Hamed ER, Abdelhady SA, Al-Touny SA, Kishk RM, Mohamed MH, Rageh F, Othman AAA, Abdelfatah W, Azab H. Correlation between rs7041 and rs4588 polymorphisms in vitamin D binding protein gene and COVID-19-related severity and mortality. BMC Med Genomics 2024; 17:284. [PMID: 39623417 PMCID: PMC11613538 DOI: 10.1186/s12920-024-02018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/24/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND The vitamin D binding protein (DBP) plays a critical role in both innate and adaptive immune systems, participating in several clinical conditions, including coronavirus disease 2019 infection severity, and mortality rate. The study aimed to investigate the correlation between rs7041 and rs4588 polymorphisms in the DBP gene and Coronavirus Disease-2019 (COVID-19) severity and mortality, in patients of Suez Canal University Hospitals in Ismailia, Egypt. METHODS A case-control study enrolled 220 individuals; 140 COVID-19 patients and 80 healthy controls. Serum 25(OH) vitamin D levels were determined by the enzyme-linked immunosorbent assay (ELISA), and rs7041 and rs4588 polymorphisms of the DBP gene were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS The study found that both groups had vitamin D deficiency, which was considerably lower in the COVID-19 patients group compared to controls. Among COVID-19 patients, there was a significant difference in vitamin D levels according to the disease severity indicating that vitamin D levels can be used as predictors of COVID-19 severity. Negative significant correlations between genetic variants rs4588 CA genotype and genetic variants rs7041 TT genotype and COVID-19 prevalence (p = 0.006 and 0.009 respectively) were proved. No significant correlations between all the genetic variants of both rs4588 and rs7041 and COVID-19 severity (p > 0.05). Positive significant correlations between both genetic variants rs4588 CA genotype and genetic variants rs7041 TG genotype and COVID-19 mortality (p = 0.029 and 0.031 respectively). CONCLUSION vitamin D deficiency increased the severity of COVID-19. The DBP polymorphism correlated with vitamin COVID-19 prevalence and mortality.
Collapse
Affiliation(s)
- Eman Riad Hamed
- Internal Medicine Department, Faculty of Medicine, Suez-Canal University, Ismailia, Egypt
| | | | - Shimaa A Al-Touny
- Anesthesia and Intensive Care Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Rania M Kishk
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Marwa Hussein Mohamed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Fatma Rageh
- Infectious Diseases, Gastroenterology and Hepatology Department, Faculty of Medicine, Suez University, Suez, Egypt
| | | | - Wagdy Abdelfatah
- Chest Diseases Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hasnaa Azab
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
8
|
Heo YW, Jeon JJ, Ha MC, Kim YH, Lee S. Long-Term Risk of Autoimmune and Autoinflammatory Connective Tissue Disorders Following COVID-19. JAMA Dermatol 2024; 160:1278-1287. [PMID: 39504045 PMCID: PMC11541739 DOI: 10.1001/jamadermatol.2024.4233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 11/09/2024]
Abstract
Importance Few studies have investigated the association between COVID-19 and autoimmune and autoinflammatory connective tissue disorders; however, research with long-term observation remains insufficient. Objective To investigate the long-term risk of autoimmune and autoinflammatory diseases after COVID-19 over an extended observation period. Design, Setting, and Participants This retrospective nationwide population-based study investigated the Korea Disease Control and Prevention Agency-COVID-19-National Health Insurance Service (K-COV-N) cohort. Individuals with confirmed COVID-19 from October 8, 2020, to December 31, 2022, and controls identified among individuals who participated in the general health examination in 2018 were included in the analysis. Exposures Confirmed COVID-19. Main Outcomes and Measures Incidence and risk of autoimmune and autoinflammatory connective tissue disorders in patients after COVID-19. Various covariates, such as demographic characteristics, general health data, socioeconomic status, and comorbidity profiles, were balanced using inverse probability weighting. Results A total of 6 912 427 participants (53.6% male; mean [SD] age, 53.39 [20.13] years) consisting of 3 145 388 with COVID-19 and 3 767 039 controls with an observational period of more than 180 days were included. Alopecia areata (adjusted hazard ratio [AHR], 1.11 [95% CI, 1.07-1.15]), alopecia totalis (AHR, 1.24 [95% CI, 1.09-1.42]), vitiligo (AHR, 1.11 [95% CI, 1.04-1.19]), Behçet disease (AHR, 1.45 [95% CI, 1.20-1.74]), Crohn disease (AHR, 1.35 [95% CI, 1.14-1.60]), ulcerative colitis (AHR, 1.15 [95% CI, 1.04-1.28]), rheumatoid arthritis (AHR, 1.09 [95% CI, 1.06-1.12]), systemic lupus erythematosus (AHR, 1.14 [95% CI, 1.01-1.28]), Sjögren syndrome (AHR, 1.13 [95% CI, 1.03-1.25]), ankylosing spondylitis (AHR, 1.11 [95% CI, 1.02-1.20]), and bullous pemphigoid (AHR, 1.62 [95% CI, 1.07-2.45]) were associated with higher risk in the COVID-19 group. Subgroup analyses revealed that demographic factors, including male and female sex, age younger than 40 years, and age 40 years and older, exhibited diverse associations with the risk of autoimmune and autoinflammatory outcomes. In addition, severe COVID-19 infection requiring intensive care unit admission, the Delta period, and not being vaccinated were associated with higher risk. Conclusions and Relevance This retrospective cohort study with an extended follow-up period found associations between COVID-19 and the long-term risk of various autoimmune and autoinflammatory connective tissue disorders. Long-term monitoring and care of patients is crucial after COVID-19, considering demographic factors, disease severity, and vaccination status, to mitigate these risks.
Collapse
Affiliation(s)
- Yeon-Woo Heo
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jae Joon Jeon
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Min Chul Ha
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - You Hyun Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Solam Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
9
|
Zhukova JV, Lopatnikova JA, Alshevskaya AA, Sennikov SV. Molecular mechanisms of regulation of IL-1 and its receptors. Cytokine Growth Factor Rev 2024; 80:59-71. [PMID: 39414547 DOI: 10.1016/j.cytogfr.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
Interleukin 1 (IL-1) is a pro-inflammatory cytokine that plays a key role in the development and regulation of nonspecific defense and specific immunity. However, its regulatory influence extends beyond inflammation and impacts a range of immune and non-immune processes. The involvement of IL-1 in numerous biological processes, including modulation of inflammation, necessitates strict regulation at multiple levels. This review focuses on these regulatory processes and discusses their underlying mechanisms. IL-1 activity is controlled at various levels, including receptor binding, gene transcription, expression as inactive proforms, and regulated post-translational processing and secretion. Regulation at the level of the receptor expression - alternative splicing, tissue-specific isoforms, and gene polymorphism - is also crucial to IL-1 functional activity. Understanding these regulatory features of IL-1 will not only continue to shape future research directions but will also highlight promising therapeutic strategies to modulate the biological effects of IL-1.
Collapse
Affiliation(s)
- J V Zhukova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - J A Lopatnikova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - A A Alshevskaya
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - S V Sennikov
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia.
| |
Collapse
|
10
|
Bi Q, Zhu J, Zheng J, Xu Q, Chen J, Zhang L, Mu X. Blood Inflammatory Markers and Cytokines in COVID-19 Patients With Bacterial Coinfections. Immun Inflamm Dis 2024; 12:e70105. [PMID: 39692539 PMCID: PMC11653711 DOI: 10.1002/iid3.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 11/16/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Bacterial coinfection in patients with SARS-CoV-2 infection is an important risk factor for death. This study investigated whether there were differences in levels of serum inflammatory markers in COVID-19 patients with bacterial coinfections compared with those without bacterial infection. METHODS A total of 235 inpatients with SARS-CoV-2 infection admitted to Qingdao Central Hospital from December 7, 2022, to August 7, 2024, were included. Patients were divided into a bacteria-positive group (115 cases) and a bacteria-negative group (120 cases) according to whether they had bacterial coinfections. PCT, CRP, and 12 kinds of cytokines were compared between groups, and the distribution of bacterial species in the positive group was statistically analyzed. RESULTS The serum levels of CRP (Z = 8.94, p < 0.001), PCT (Z = 5.59, p < 0.001), IL-1β (t = 4.863, p < 0.001), IL-2 (t = 5.810, p < 0.001), IL-5 (t = 3.837, p < 0.001), IL-6 (t = 4.910, p < 0.001), IL-8 (t = 3.325, p < 0.001), ILIL-12p70 (t = 4.722, p < 0.001), IL-17 (t = 3.315, p = 0.001) and TNF-α (t = 4.251, p < 0.001) between the two groups were significantly different. IL-4, IL-10, IFN-α, and IFN-γ were not statistically significant (p > 0.05). Among the 115 bacteria-positive patients, 56 patients were positive for one species and 59 patients were multiple infections. Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Haemophilus influenzae were common species. CONCLUSIONS Serum PCT and CRP levels in COVID-19 patients with bacterial coinfection are higher than those without bacterial infection. Cytokines such as IL-1β, IL-2, IL-5, IL-6, IL-8, IL-12p70, IL-17, and TNF-α may be involved in the progression of COVID-19 combined with bacterial infection. They can be used as potential markers to evaluate the disease condition and prognosis.
Collapse
Affiliation(s)
- Qingqing Bi
- Department of Laboratory MedicineQingdao Central HospitalQingdaoChina
| | - Jie Zhu
- Department of Laboratory MedicineQingdao Central HospitalQingdaoChina
| | - Jinju Zheng
- Department of Laboratory MedicineQingdao Central HospitalQingdaoChina
| | - Qingyun Xu
- Department of Laboratory MedicineQingdao Central HospitalQingdaoChina
- Department of Clinical LaboratoryPeking University First HospitalBeijingChina
| | - Juan Chen
- Department of Laboratory MedicineQingdao Central HospitalQingdaoChina
| | - Lei Zhang
- Department of Laboratory MedicineQingdao Central HospitalQingdaoChina
| | - Xiaofeng Mu
- Department of Laboratory MedicineQingdao Central HospitalQingdaoChina
| |
Collapse
|
11
|
Gonzalez-Orozco M, Tseng HC, Hage A, Xia H, Behera P, Afreen K, Peñaflor-Tellez Y, Giraldo MI, Huante M, Puebla-Clark L, van Tol S, Odle A, Crown M, Teruel N, Shelite TR, Moreno-Contreras J, Terasaki K, Makino S, Menachery V, Endsley M, Endsley JJ, Najmanovich RJ, Bashton M, Stephens R, Shi PY, Xie X, Freiberg AN, Rajsbaum R. TRIM7 ubiquitinates SARS-CoV-2 membrane protein to limit apoptosis and viral replication. Nat Commun 2024; 15:10438. [PMID: 39616206 PMCID: PMC11608229 DOI: 10.1038/s41467-024-54762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024] Open
Abstract
SARS-CoV-2 is a highly transmissible virus that causes COVID-19 disease. Mechanisms of viral pathogenesis include excessive inflammation and viral-induced cell death, resulting in tissue damage. Here we show that the host E3-ubiquitin ligase TRIM7 acts as an inhibitor of apoptosis and SARS-CoV-2 replication via ubiquitination of the viral membrane (M) protein. Trim7-/- mice exhibit increased pathology and virus titers associated with epithelial apoptosis and dysregulated immune responses. Mechanistically, TRIM7 ubiquitinates M on K14, which protects cells from cell death. Longitudinal SARS-CoV-2 sequence analysis from infected patients reveal that mutations on M-K14 appeared in circulating variants during the pandemic. The relevance of these mutations was tested in a mouse model. A recombinant M-K14/K15R virus shows reduced viral replication, consistent with the role of K15 in virus assembly, and increased levels of apoptosis associated with the loss of ubiquitination on K14. TRIM7 antiviral activity requires caspase-6 inhibition, linking apoptosis with viral replication and pathology.
Collapse
Affiliation(s)
- Maria Gonzalez-Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hsiang-Chi Tseng
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Padmanava Behera
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Kazi Afreen
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Yoatzin Peñaflor-Tellez
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Maria I Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Matthew Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lucinda Puebla-Clark
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Abby Odle
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Matthew Crown
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, UK
| | - Natalia Teruel
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Thomas R Shelite
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Joaquin Moreno-Contreras
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Kaori Terasaki
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shinji Makino
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vineet Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mark Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rafael J Najmanovich
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Matthew Bashton
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, UK
| | - Robin Stephens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Center for Immunity and Inflammation and Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
12
|
Zhang J, Kim MH, Lee S, Park S. Integration of nanobiosensors into organ-on-chip systems for monitoring viral infections. NANO CONVERGENCE 2024; 11:47. [PMID: 39589620 PMCID: PMC11599699 DOI: 10.1186/s40580-024-00455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024]
Abstract
The integration of nanobiosensors into organ-on-chip (OoC) models offers a promising advancement in the study of viral infections and therapeutic development. Conventional research methods for studying viral infection, such as two-dimensional cell cultures and animal models, face challenges in replicating the complex and dynamic nature of human tissues. In contrast, OoC systems provide more accurate, physiologically relevant models for investigating viral infections, disease mechanisms, and host responses. Nanobiosensors, with their miniaturized designs and enhanced sensitivity, enable real-time, continuous, in situ monitoring of key biomarkers, such as cytokines and proteins within these systems. This review highlights the need for integrating nanobiosensors into OoC systems to advance virological research and improve therapeutic outcomes. Although there is extensive literature on biosensors for viral infection detection and OoC models for replicating infections, real integration of biosensors into OoCs for continuous monitoring remains unachieved. We discuss the advantages of nanobiosensor integration for real-time tracking of critical biomarkers within OoC models, key biosensor technologies, and current OoC systems relevant to viral infection studies. Additionally, we address the main technical challenges and propose solutions for successful integration. This review aims to guide the development of biosensor-integrated OoCs, paving the way for precise diagnostics and personalized treatments in virological research.
Collapse
Affiliation(s)
- Jiande Zhang
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Min-Hyeok Kim
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Seulgi Lee
- Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
- Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
| |
Collapse
|
13
|
Anzurez A, Runtuwene L, Dang TTT, Nakayama-Hosoya K, Koga M, Yoshimura Y, Sasaki H, Miyata N, Miyazaki K, Takahashi Y, Suzuki T, Yotsuyanagi H, Tachikawa N, Matano T, Kawana-Tachikawa A. Characterization of the Proinflammatory Cytokine Profile during Acute SARS-CoV-2 Infection in People with Human Immunodeficiency Virus. Jpn J Infect Dis 2024; 77:301-310. [PMID: 38945856 DOI: 10.7883/yoken.jjid.2024.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Persistent inflammation during chronic human immunodeficiency virus (HIV) infection may affect the immune response against severe acute respiratory syndrome-coronavirus 2 (SARS- CoV-2) infection. Plasma levels of multiple proinflammatory cytokines during acute SARS-CoV-2 infection were measured in people with HIV (PWH) with effective combination antiretroviral therapy. There were no significant differences in any of the measured cytokines between severity levels of coronavirus disease 2019 (COVID-19) in PWH, while most were significantly higher in HIV-uninfected individuals with severe COVID-19, suggesting that excess cytokines release by hyperinflammatory responses do not occur in individuals with severe COVID-19 with HIV infection. The strong associations between the cytokines observed in HIV-uninfected individuals, particularly between IFN-α/TNF-α and other cytokines, were lost in PWH. The steady-state plasma levels of IP-10, ICAM-1, and CD62E were significantly higher in PWH, indicating that they were in an enhanced inflammatory state. The absence of several inter-cytokine correlations was observed in in vitro lipopolysaccharide stimulus-driven cytokine production in PWH. These data suggest that inflammatory responses during SARS-CoV-2 infection in PWH are distinct from those in HIV-uninfected individuals, partially because of the underlying inflammatory state and/or impairment of innate immune cells.
Collapse
Affiliation(s)
- Alitzel Anzurez
- AIDS Research Center, National Institute of Infectious Diseases, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan
| | - Lucky Runtuwene
- AIDS Research Center, National Institute of Infectious Diseases, Japan
| | - Thi Thu Thao Dang
- AIDS Research Center, National Institute of Infectious Diseases, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan
| | | | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Japan
| | - Yukihiro Yoshimura
- Department of Infectious Diseases, Yokohama Municipal Citizens' Hospital, Japan
| | - Hiroaki Sasaki
- Department of Infectious Diseases, Yokohama Municipal Citizens' Hospital, Japan
| | - Nobuyuki Miyata
- Department of Infectious Diseases, Yokohama Municipal Citizens' Hospital, Japan
| | - Kazuhito Miyazaki
- Department of Infectious Diseases, Yokohama Municipal Citizens' Hospital, Japan
- Department of Respiratory Medicine, Yokohama Municipal Citizens' Hospital, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Japan
| | - Natsuo Tachikawa
- Department of Infectious Diseases, Yokohama Municipal Citizens' Hospital, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan
- Department of AIDS Vaccine Development, Institute of Medical Science, University of Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan
- Department of AIDS Vaccine Development, Institute of Medical Science, University of Tokyo, Japan
| |
Collapse
|
14
|
Suri C, Pande B, Sahithi LS, Sahu T, Verma HK. Interplay between Lung Diseases and Viral Infections: A Comprehensive Review. Microorganisms 2024; 12:2030. [PMID: 39458339 PMCID: PMC11510474 DOI: 10.3390/microorganisms12102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/16/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The intricate relationship between chronic lung diseases and viral infections is a significant concern in respiratory medicine. We explore how pre-existing lung conditions, including chronic obstructive pulmonary disease, asthma, and interstitial lung diseases, influence susceptibility, severity, and outcomes of viral infections. We also examine how viral infections exacerbate and accelerate the progression of lung disease by disrupting immune responses and triggering inflammatory pathways. By summarizing current evidence, this review highlights the bidirectional nature of these interactions, where underlying lung diseasesincrease vulnerability to viral infections, while these infections, in turn, worsen the clinical course. This review underscores the importance of preventive measures, such as vaccination, early detection, and targeted therapies, to mitigate adverse outcomes in patients with chronic lung conditions. The insights provided aim to inform clinical strategies that can improve patient management and reduce the burden of chronic lung diseases exacerbated by viral infections.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India; (B.P.); (T.S.)
| | | | - Tarun Sahu
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India; (B.P.); (T.S.)
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
15
|
Gunasekara S, Tamil Selvan M, Murphy CL, Shatnawi S, Cowan S, More S, Ritchey J, Miller CA, Rudd JM. Characterization of Neutrophil Functional Responses to SARS-CoV-2 Infection in a Translational Feline Model for COVID-19. Int J Mol Sci 2024; 25:10054. [PMID: 39337543 PMCID: PMC11432149 DOI: 10.3390/ijms251810054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
There is a complex interplay between viral infection and host innate immune response regarding disease severity and outcomes. Neutrophil hyperactivation, including excessive release of neutrophil extracellular traps (NETs), is linked to exacerbated disease in acute COVID-19, notably in hospitalized patients. Delineating protective versus detrimental neutrophil responses is essential to developing targeted COVID-19 therapies and relies on high-quality translational animal models. In this study, we utilize a previously established feline model for COVID-19 to investigate neutrophil dysfunction in which experimentally infected cats develop clinical disease that mimics acute COVID-19. Specific pathogen-free cats were inoculated with SARS-CoV-2 (B.1.617.2; Delta variant) (n = 24) or vehicle (n = 6). Plasma, bronchoalveolar lavage fluid, and lung tissues were collected at various time points over 12 days post-inoculation. Systematic and temporal evaluation of the kinetics of neutrophil activation was conducted by measuring markers of activation including myeloperoxidase (MPO), neutrophil elastase (NE), and citrullinated histone H3 (citH3) in SARS-CoV-2-infected cats at 4 and 12 days post-inoculation (dpi) and compared to vehicle-inoculated controls. Cytokine profiling supported elevated innate inflammatory responses with specific upregulation of neutrophil activation and NET formation-related markers, namely IL-8, IL-18, CXCL1, and SDF-1, in infected cats. An increase in MPO-DNA complexes and cell-free dsDNA in infected cats compared to vehicle-inoculated was noted and supported by histopathologic severity in respiratory tissues. Immunofluorescence analyses further supported correlation of NET markers with tissue damage, especially 4 dpi. Differential gene expression analyses indicated an upregulation of genes associated with innate immune and neutrophil activation pathways. Transcripts involved in activation and NETosis pathways were upregulated by 4 dpi and downregulated by 12 dpi, suggesting peak activation of neutrophils and NET-associated markers in the early acute stages of infection. Correlation analyses conducted between NET-specific markers and clinical scores as well as histopathologic scores support association between neutrophil activation and disease severity during SARS-CoV-2 infection in this model. Overall, this study emphasizes the effect of neutrophil activation and NET release in SARS-CoV-2 infection in a feline model, prompting further investigation into therapeutic strategies aimed at mitigating excessive innate inflammatory responses in COVID-19.
Collapse
Affiliation(s)
- Sachithra Gunasekara
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Miruthula Tamil Selvan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Chelsea L Murphy
- Department of Mathematical Sciences, College of Arts and Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Shoroq Shatnawi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Shannon Cowan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sunil More
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jerry Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Craig A Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jennifer M Rudd
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
16
|
Chakraborty A, Ghosh R, Soumya Mohapatra S, Barik S, Biswas A, Chowdhuri S. Repurposing of antimycobacterium drugs for COVID-19 treatment by targeting SARS CoV-2 main protease: An in-silico perspective. Gene 2024; 922:148553. [PMID: 38734190 DOI: 10.1016/j.gene.2024.148553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The global mortality rate has been significantly impacted by the COVID-19 pandemic, caused by the SARS CoV-2 virus. Although the pursuit for a potent antiviral is still in progress, experimental therapies based on repurposing of existing drugs is being attempted. One important therapeutic target for COVID-19 is the main protease (Mpro) that cleaves the viral polyprotein in its replication process. Recently minocycline, an antimycobacterium drug, has been successfully implemented for the treatment of COVID-19 patients. But it's mode of action is still far from clear. Furthermore, it remains unresolved whether alternative antimycobacterium drugs can effectively regulate SARS CoV-2 by inhibiting the enzymatic activity of Mpro. To comprehend these facets, eight well-established antimycobacterium drugs were put through molecular docking experiments. Four of the antimycobacterium drugs (minocycline, rifampicin, clofazimine and ofloxacin) were selected by comparing their binding affinities towards Mpro. All of the four drugs interacted with both the catalytic residues of Mpro (His41 and Cys145). Additionally, molecular dynamics experiments demonstrated that the Mpro-minocyline complex has enhanced stability, experiences reduced conformational fluctuations and greater compactness than other three Mpro-antimycobacterium and Mpro-N3/lopinavir complexes. This research furnishes evidences for implementation of minocycline against SARS CoV-2. In addition, our findings also indicate other three antimycobacterium/antituberculosis drugs (rifampicin, clofazimine and ofloxacin) could potentially be evaluated for COVID-19 therapy.
Collapse
Affiliation(s)
- Ayon Chakraborty
- University Institute of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, India
| | - Rajesh Ghosh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | | | - Subhashree Barik
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| | - Snehasis Chowdhuri
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| |
Collapse
|
17
|
Kori M, Kasavi C, Arga KY. Exploring COVID-19 Pandemic Disparities with Transcriptomic Meta-analysis from the Perspective of Personalized Medicine. J Microbiol 2024; 62:785-798. [PMID: 38980578 PMCID: PMC11436439 DOI: 10.1007/s12275-024-00154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
Infection with SARS-CoV2, which is responsible for COVID-19, can lead to differences in disease development, severity and mortality rates depending on gender, age or the presence of certain diseases. Considering that existing studies ignore these differences, this study aims to uncover potential differences attributable to gender, age and source of sampling as well as viral load using bioinformatics and multi-omics approaches. Differential gene expression analyses were used to analyse the phenotypic differences between SARS-CoV-2 patients and controls at the mRNA level. Pathway enrichment analyses were performed at the gene set level to identify the activated pathways corresponding to the differences in the samples. Drug repurposing analysis was performed at the protein level, focusing on host-mediated drug candidates to uncover potential therapeutic differences. Significant differences (i.e. the number of differentially expressed genes and their characteristics) were observed for COVID-19 at the mRNA level depending on the sample source, gender and age of the samples. The results of the pathway enrichment show that SARS-CoV-2 can be combated more effectively in the respiratory tract than in the blood samples. Taking into account the different sample sources and their characteristics, different drug candidates were identified. Evaluating disease prediction, prevention and/or treatment strategies from a personalised perspective is crucial. In this study, we not only evaluated the differences in COVID-19 from a personalised perspective, but also provided valuable data for further experimental and clinical efforts. Our findings could shed light on potential pandemics.
Collapse
Affiliation(s)
- Medi Kori
- Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752, Istanbul, Turkey.
- Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752, Istanbul, Turkey.
| | - Ceyda Kasavi
- Department of Bioengineering, Marmara University, 34722, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Marmara University, 34722, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34722, Istanbul, Turkey
| |
Collapse
|
18
|
Dos Santos Medeiros SMDFR, Sousa Lino BMN, Perez VP, Sousa ESS, Campana EH, Miyajima F, Carvalho-Silva WHV, Dejani NN, de Sousa Fernandes MS, Yagin FH, Al-Hashem F, Elkholi SM, Alyami H, Souto FO. Predictive biomarkers of mortality in patients with severe COVID-19 hospitalized in intensive care unit. Front Immunol 2024; 15:1416715. [PMID: 39281667 PMCID: PMC11401048 DOI: 10.3389/fimmu.2024.1416715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Objectives This study was performed to identify predictive markers of worse outcomes in patients with severe COVID-19 in an intensive care unit. Methods Sixty patients with severe COVID-19, hospitalized in the Intensive Care Unit (ICU) between March and July 2021, were stratified into two groups according to the outcome survivors and non-survivors. After admission to the ICU, blood samples were collected directly for biomarker analysis. Routine hematological and biochemical biomarkers, as well as serum levels of cytokines, chemokines, and immunoglobulins, were investigated. Results Lymphopenia, neutrophilia, and thrombocytopenia were more pronounced in non-surviving patients, while the levels of CRP, AST, creatinine, ferritin, AST, troponin I, urea, magnesium, and potassium were higher in the non-surviving group than the survival group. In addition, serum levels of IL-10, CCL2, CXCL9, and CXCL10 were significantly increased in patients who did not survive. These changes in the biomarkers evaluated were associated with increased mortality in patients with severe COVID-19. Conclusion The present study confirmed and expanded the validity of laboratory biomarkers as indicators of mortality in severe COVID-19.
Collapse
Affiliation(s)
- Sandrelli Meridiana de Fátima Ramos Dos Santos Medeiros
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
- Molecular Biology Laboratory (LABIMOL), Medical Sciences Center, Federal University of Paraíba (CCM/UFPB), João Pessoa, Paraíba, Brazil
| | | | - Vinícius Pietta Perez
- Molecular Biology Laboratory (LABIMOL), Medical Sciences Center, Federal University of Paraíba (CCM/UFPB), João Pessoa, Paraíba, Brazil
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba (CCS/UFPB), João Pessoa, Paraíba, Brazil
| | - Eduardo Sérgio Soares Sousa
- Molecular Biology Laboratory (LABIMOL), Medical Sciences Center, Federal University of Paraíba (CCM/UFPB), João Pessoa, Paraíba, Brazil
- Department of Obstetrics and Gynecology, Medical Sciences Center, Federal University of Paraíba (CCM/UFPB), João Pessoa, Paraíba, Brazil
| | - Eloiza Helena Campana
- Molecular Biology Laboratory (LABIMOL), Medical Sciences Center, Federal University of Paraíba (CCM/UFPB), João Pessoa, Paraíba, Brazil
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraíba (CCS/UFPB), João Pessoa, Paraíba, Brazil
| | | | | | - Naiara Naiana Dejani
- Molecular Biology Laboratory (LABIMOL), Medical Sciences Center, Federal University of Paraíba (CCM/UFPB), João Pessoa, Paraíba, Brazil
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba (CCS/UFPB), João Pessoa, Paraíba, Brazil
| | | | - Fatma Hilal Yagin
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya, Türkiye
| | - Fahaid Al-Hashem
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Safaa M Elkholi
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hanan Alyami
- Department of Medical and Surgical Nursing, College of Nursing, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fabrício Oliveira Souto
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| |
Collapse
|
19
|
Bourhis M, Idir A, Machraoui S, Hachimi A, Elouardi Y, Jamil O, Khallouki M, Zahlane K, Guennouni M, Hazime R, Essaadouni L, Lourhlam B, Ennaji MM, Mouse HA, Admou B, Zyad A. Cytokine and chemokine profiles in the sera of COVID-19 patients with different stages of severity. Cytokine 2024; 180:156653. [PMID: 38781873 DOI: 10.1016/j.cyto.2024.156653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION COVID-19 is a viral infection that disturbs the host's immune system and causes an overproduction of cytokines leading to a cytokine storm. The present study aimed to evaluate the serum levels of 27 protein biomarkers to determine their association with COVID-19 disease severity. METHODS The serum levels of 89 patients with different degrees of COVID-19 disease severity [asymptomatic (n = 14), moderate (n = 14), severe (n = 30), and critical (n = 31)] and 14 healthy individuals were tested for a panel of 27 cytokines and chemokines using Luminex assay (27 Bio‑Plex Pro Human Cytokine, Bio-rad™). RESULTS IL-12, IL-2 and IL-13, as well as IL-17 and GM-CSF were clearly undetectable in asymptomatic patients. IL-8 levels were higher in asymptomatic compared with other groups. Very high levels of IL-6, IL-10 and the chemokines MIP-1α, MCP-1 and IP10 were associated with disease progression, while IL-4 tends to decrease with disease severity. CONCLUSION Our study provides more evidence that excessive cytokine synthesis is linked to the disease progression.
Collapse
Affiliation(s)
- Maryam Bourhis
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immunopharmacology, Laboratory of Agro-industrial and Medical Biotechnology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, BeniMellal, Morocco
| | - Abderrazak Idir
- Science and Technology Team, Higher School of Education and Training, Chouaîb Doukkali University, El Jadida, Morocco
| | - Safa Machraoui
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Abdelhamid Hachimi
- Department of Intensive Care, Mohamed VI University Hospital, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Youssef Elouardi
- Department of Anesthesia and Intensive Care Medicine, Ibn Tofail Hospital, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Oumayma Jamil
- Department of Anesthesia and Intensive Care Medicine, Ibn Tofail Hospital, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Mohammed Khallouki
- Department of Anesthesia and Intensive Care Medicine, Ibn Tofail Hospital, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Kawtar Zahlane
- Laboratory of Medical Analysis, IbnTofail Hospital, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Morad Guennouni
- Science and Technology Team, Higher School of Education and Training, Chouaîb Doukkali University, El Jadida, Morocco
| | - Raja Hazime
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Lamiaa Essaadouni
- Internal Medicine Department, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Bouchra Lourhlam
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immunopharmacology, Laboratory of Agro-industrial and Medical Biotechnology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, BeniMellal, Morocco
| | - Moulay Mustapha Ennaji
- Team of Virology, Oncology and Biotechnology, Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences & Technologies Mohammedia, University Hassan II of Casablanca, Casablanca, Morocco
| | - Hassan Ait Mouse
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immunopharmacology, Laboratory of Agro-industrial and Medical Biotechnology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, BeniMellal, Morocco
| | - Brahim Admou
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Abdelmajid Zyad
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immunopharmacology, Laboratory of Agro-industrial and Medical Biotechnology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, BeniMellal, Morocco.
| |
Collapse
|
20
|
Bishani A, Meschaninova MI, Zenkova MA, Chernolovskaya EL. The Impact of Chemical Modifications on the Interferon-Inducing and Antiproliferative Activity of Short Double-Stranded Immunostimulating RNA. Molecules 2024; 29:3225. [PMID: 38999177 PMCID: PMC11243415 DOI: 10.3390/molecules29133225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
A short 19 bp dsRNA with 3'-trinucleotide overhangs acting as immunostimulating RNA (isRNA) demonstrated strong antiproliferative action against cancer cells, immunostimulatory activity through activation of cytokines and Type-I IFN secretion, as well as anti-tumor and anti-metastatic effects in vivo. The aim of this study was to determine the tolerance of chemical modifications (2'-F, 2'-OMe, PS, cholesterol, and amino acids) located at different positions within this isRNA to its ability to activate the innate immune system. The obtained duplexes were tested in vivo for their ability to activate the synthesis of interferon-α in mice, and in tumor cell cultures for their ability to inhibit their proliferation. The obtained data show that chemical modifications in the composition of isRNA have different effects on its individual functions, including interferon-inducing and antiproliferative effects. The effect of modifications depends not only on the type of modification but also on its location and the surrounding context of the modifications. This study made it possible to identify leader patterns of modifications that enhance the properties of isRNA: F2/F2 and F2_S/F2 for interferon-inducing activity, as well as F2_S5/F2_S5, F2-NH2/F2-NH2, and Ch-F2/Ch-F2 for antiproliferative action. These modifications can improve the pharmacokinetic and pharmacodynamic properties, as well as increase the specificity of isRNA action to obtain the desired effect.
Collapse
Affiliation(s)
| | | | | | - Elena L. Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (M.I.M.); (M.A.Z.)
| |
Collapse
|
21
|
Gonzalez-Orozco M, Tseng HC, Hage A, Xia H, Behera P, Afreen K, Peñaflor-Tellez Y, Giraldo MI, Huante M, Puebla-Clark L, van Tol S, Odle A, Crown M, Teruel N, Shelite TR, Menachery V, Endsley M, Endsley JJ, Najmanovich RJ, Bashton M, Stephens R, Shi PY, Xie X, Freiberg AN, Rajsbaum R. TRIM7 ubiquitinates SARS-CoV-2 membrane protein to limit apoptosis and viral replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599107. [PMID: 38948778 PMCID: PMC11212893 DOI: 10.1101/2024.06.17.599107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
SARS-CoV-2 is a highly transmissible virus that causes COVID-19 disease. Mechanisms of viral pathogenesis include excessive inflammation and viral-induced cell death, resulting in tissue damage. We identified the host E3-ubiquitin ligase TRIM7 as an inhibitor of apoptosis and SARS-CoV-2 replication via ubiquitination of the viral membrane (M) protein. Trim7 -/- mice exhibited increased pathology and virus titers associated with epithelial apoptosis and dysregulated immune responses. Mechanistically, TRIM7 ubiquitinates M on K14, which protects cells from cell death. Longitudinal SARS-CoV-2 sequence analysis from infected patients revealed that mutations on M-K14 appeared in circulating variants during the pandemic. The relevance of these mutations was tested in a mouse model. A recombinant M-K14/K15R virus showed reduced viral replication, consistent with the role of K15 in virus assembly, and increased levels of apoptosis associated with the loss of ubiquitination on K14. TRIM7 antiviral activity requires caspase-6 inhibition, linking apoptosis with viral replication and pathology.
Collapse
Affiliation(s)
- Maria Gonzalez-Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Hsiang-chi Tseng
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX
| | - Padmanava Behera
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Kazi Afreen
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Yoatzin Peñaflor-Tellez
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Maria I. Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Matthew Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Lucinda Puebla-Clark
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX
| | - Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Abby Odle
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Matthew Crown
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, UK
| | - Natalia Teruel
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Thomas R Shelite
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX
| | - Vineet Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Mark Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Janice J. Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Rafael J. Najmanovich
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Matthew Bashton
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, UK
| | - Robin Stephens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX
- Center for Immunity and Inflammation and Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX
| | | | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| |
Collapse
|
22
|
Cho HC, Kim Y, Cho YI, Park J, Choi KS. Evaluation of bovine coronavirus in Korean native calves challenged through different inoculation routes. Vet Res 2024; 55:74. [PMID: 38863015 PMCID: PMC11165853 DOI: 10.1186/s13567-024-01331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Bovine coronavirus (BCoV) is a pneumoenteric virus that can infect the digestive and respiratory tracts of cattle, resulting in economic losses. Despite its significance, information regarding BCoV pathogenesis is limited. Hence, we investigated clinical signs, patterns of viral shedding, changes in antibody abundance, and cytokine/chemokine production in calves inoculated with BCoV via intranasal and oral. Six clinically healthy Korean native calves (< 30 days old), initially negative for BCoV, were divided into intranasal and oral groups and monitored for 15 days post-infection (dpi). BCoV-infected calves exhibited clinical signs such as nasal discharge and diarrhea, starting at 3 dpi and recovering by 12 dpi, with nasal discharge being the most common symptoms. Viral RNA was detected in nasal and fecal samples from all infected calves. Nasal shedding occurred before fecal shedding regardless of the inoculation route; however, fecal shedding persisted longer. Although the number of partitions was very few, viral RNA was identified in the blood of two calves in the oral group at 7 dpi and 9 dpi using digital RT-PCR analysis. The effectiveness of maternal antibodies in preventing viral replication and shedding appeared limited. Our results showed interleukin (IL)-8 as the most common and highly induced chemokine. During BCoV infection, the levels of IL-8, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1β were significantly affected, suggesting that these emerge as potential and reliable biomarkers for predicting BCoV infection. This study underscores the importance of BCoV as a major pathogen causing diarrhea and respiratory disease.
Collapse
Affiliation(s)
- Hyung-Chul Cho
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Youngjun Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk University, Iksan, 54596, Republic of Korea
- Department of Animal Hospital, Hanwoo (Korean indigenous cattle) Genetic Improvement Center, National Agricultural Cooperative Federation, Seosan, 31948, Republic of Korea
| | - Yong-Il Cho
- Department of Animal Science and Technology, College of Bio-Industry Science, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Jinho Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk University, Iksan, 54596, Republic of Korea.
| | - Kyoung-Seong Choi
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
23
|
Jiménez-Cabello L, Utrilla-Trigo S, Benavides-Silván J, Anguita J, Calvo-Pinilla E, Ortego J. IFNAR(-/-) Mice Constitute a Suitable Animal Model for Epizootic Hemorrhagic Disease Virus Study and Vaccine Evaluation. Int J Biol Sci 2024; 20:3076-3093. [PMID: 38904031 PMCID: PMC11186350 DOI: 10.7150/ijbs.95275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/24/2024] [Indexed: 06/22/2024] Open
Abstract
Epizootic hemorrhagic disease (EHD), caused by Epizootic hemorrhagic disease virus (EHDV), is an emerging and severe livestock disease. Recent incursion and distribution of EHDV in Europe have outlined the emerging character of EHD. Despite its worldwide impact, numerous knowledge gaps exist. A range of inconveniences restricts utilization of natural hosts of EHDV. Here, we show that adult mice deficient in type I IFN receptor (IFNAR(-/-)) are highly susceptible to EHDV-6 and EHDV-8 infection when the virus is administered subcutaneously. Disease was characterized by ruffled hair, reluctance to move, dehydration and conjunctivitis, with viraemia detected from day 5 post-infection. A deeper characterization of EHDV-8 infection showed viral replication in the lung, liver, spleen, kidney, testis and ovaries. Importantly, increased expression levels of pro-inflammatory cytokines IL-1β, IL-6 and CXCL2 were observed in spleen after EHDV-8 infection. Furthermore, IFNAR(-/-) adult mice immunized with a EHDV-8 inactivated vaccine elicited neutralizing antibodies specific of EHDV-8 and full protection against challenge with a lethal dose of this virus. This study also explores the possibilities of this animal model for study of BTV and EHDV coinfection. In summary, the IFNAR(-/-) mouse model faithfully recapitulates EHD and can be applied for vaccine testing, which can facilitate progress in addressing the animal health challenge posed by this virus.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Julio Benavides-Silván
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), 24346 Grulleros, León, Spain
| | - Juan Anguita
- Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48012 Bilbao, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
24
|
Davies ML, Biryukov SS, Rill NO, Klimko CP, Hunter M, Dankmeyer JL, Miller JA, Shoe JL, Mlynek KD, Talyansky Y, Toothman RG, Qiu J, Bozue JA, Cote CK. Sex differences in immune protection in mice conferred by heterologous vaccines for pneumonic plague. Front Immunol 2024; 15:1397579. [PMID: 38835755 PMCID: PMC11148226 DOI: 10.3389/fimmu.2024.1397579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
Background Yersinia pestis is the etiological agent of plague, which can manifest as bubonic, septicemic, and/or pneumonic disease. Plague is a severe and rapidly progressing illness that can only be successfully treated with antibiotics initiated early after infection. There are no FDA-approved vaccines for plague, and some vaccine candidates may be less effective against pneumonic plague than bubonic plague. Y. pestis is not known to impact males and females differently in mechanisms of pathogenesis or severity of infection. However, one previous study reported sex-biased vaccine effectiveness after intranasal Y. pestis challenge. As part of developing a safe and effective vaccine, it is essential that potential sex differences are characterized. Methods In this study we evaluated novel vaccines in male and female BALB/c mice using a heterologous prime-boost approach and monitored survival, bacterial load in organs, and immunological correlates. Our vaccine strategy consisted of two subcutaneous immunizations, followed by challenge with aerosolized virulent nonencapsulated Y. pestis. Mice were immunized with a combination of live Y. pestis pgm- pPst-Δcaf1, live Y. pestis pgm- pPst-Δcaf1/ΔyopD, or recombinant F1-V (rF1-V) combined with adjuvants. Results The most effective vaccine regimen was initial priming with rF1-V, followed by boost with either of the live attenuated strains. However, this and other strategies were more protective in female mice. Males had higher bacterial burden and differing patterns of cytokine expression and serum antibody titers. Male mice did not demonstrate synergy between vaccination and antibiotic treatment as repeatedly observed in female mice. Conclusions This study provides new knowledge about heterologous vaccine strategies, sex differences in plague-vaccine efficacy, and the immunological factors that differ between male and female mice.
Collapse
Affiliation(s)
- Michael L Davies
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Sergei S Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Nathaniel O Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Christopher P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jeremy A Miller
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jennifer L Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Kevin D Mlynek
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Yuli Talyansky
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Ronald G Toothman
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Ju Qiu
- Regulated Research Administration: Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Joel A Bozue
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| |
Collapse
|
25
|
Shahbaz MA, Kuivanen S, Mussalo L, Afonin AM, Kumari K, Behzadpour D, Kalapudas J, Koivisto AM, Penttilä E, Löppönen H, Jalava P, Vapalahti O, Balistreri G, Lampinen R, Kanninen KM. Exposure to urban particulate matter alters responses of olfactory mucosal cells to SARS-CoV-2 infection. ENVIRONMENTAL RESEARCH 2024; 249:118451. [PMID: 38341073 DOI: 10.1016/j.envres.2024.118451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Respiratory viruses have a significant impact on health, as highlighted by the COVID-19 pandemic. Exposure to air pollution can contribute to viral susceptibility and be associated with severe outcomes, as suggested by recent epidemiological studies. Furthermore, exposure to particulate matter (PM), an important constituent of air pollution, is linked to adverse effects on the brain, including cognitive decline and Alzheimer's disease (AD). The olfactory mucosa (OM), a tissue located at the rooftop of the nasal cavity, is directly exposed to inhaled air and in direct contact with the brain. Increasing evidence of OM dysfunction related to neuropathogenesis and viral infection demonstrates the importance of elucidating the interplay between viruses and air pollutants at the OM. This study examined the effects of subacute exposure to urban PM 0.2 and PM 10-2.5 on SARS-CoV-2 infection using primary human OM cells obtained from cognitively healthy individuals and individuals diagnosed with AD. OM cells were exposed to PM and subsequently infected with the SARS-CoV-2 virus in the presence of pollutants. SARS-CoV-2 entry receptors and replication, toxicological endpoints, cytokine release, oxidative stress markers, and amyloid beta levels were measured. Exposure to PM did not enhance the expression of viral entry receptors or cellular viral load in human OM cells. However, PM-exposed and SARS-CoV-2-infected cells showed alterations in cellular and immune responses when compared to cells infected only with the virus or pollutants. These changes are highly pronounced in AD OM cells. These results suggest that exposure of human OM cells to PM does not increase susceptibility to SARS-CoV-2 infection in vitro, but it can alter cellular immune responses to the virus, particularly in AD. Understanding the interplay of air pollutants and COVID-19 can provide important insight for the development of public health policies and interventions to reduce the negative influences of air pollution exposure.
Collapse
Affiliation(s)
- Muhammad Ali Shahbaz
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Suvi Kuivanen
- University of Helsinki, Department of Virology, Faculty of Medicine, Helsinki, Finland; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Laura Mussalo
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Alexey M Afonin
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Kajal Kumari
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Donya Behzadpour
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Juho Kalapudas
- University of Eastern Finland, Brain Research Unit, Department of Neurology, School of Medicine, Kuopio, Finland
| | - Anne M Koivisto
- University of Eastern Finland, Brain Research Unit, Department of Neurology, School of Medicine, Kuopio, Finland; Kuopio University Hospital, Department of Neurology, Neuro Centre, Kuopio, Finland; University of Helsinki, Faculty of Medicine, Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Helsinki, Finland
| | - Elina Penttilä
- University of Eastern Finland and Kuopio University Hospital, Department of Otorhinolaryngology, Kuopio, Finland
| | - Heikki Löppönen
- University of Eastern Finland and Kuopio University Hospital, Department of Otorhinolaryngology, Kuopio, Finland
| | - Pasi Jalava
- University of Eastern Finland, Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, Kuopio, Finland
| | - Olli Vapalahti
- University of Helsinki, Department of Virology, Faculty of Medicine, Helsinki, Finland
| | - Giuseppe Balistreri
- University of Helsinki, Department of Virology, Faculty of Medicine, Helsinki, Finland
| | - Riikka Lampinen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Katja M Kanninen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland.
| |
Collapse
|
26
|
Gao J, Yu H, Pan Y, Wang X, Zhang H, Xu Y, Ma W, Zhang W, Fu L, Wang Y. Porcine cis-acting lnc-CAST positively regulates CXCL8 expression through histone H3K27ac. Vet Res 2024; 55:56. [PMID: 38715098 PMCID: PMC11077775 DOI: 10.1186/s13567-024-01296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/26/2024] [Indexed: 05/12/2024] Open
Abstract
The chemokine CXCL8, also known as the neutrophil chemotactic factor, plays a crucial role in mediating inflammatory responses and managing cellular immune reactions during viral infections. Porcine reproductive and respiratory syndrome virus (PRRSV) primarily infects pulmonary alveolar macrophages (PAMs), leading to acute pulmonary infections. In this study, we explored a novel long non-coding RNA (lncRNA), termed lnc-CAST, situated within the Cxcl8 gene locus. This lncRNA was found to be highly expressed in porcine macrophages. We observed that both lnc-CAST and CXCL8 were significantly upregulated in PAMs following PRRSV infection, and after treatments with lipopolysaccharide (LPS) or lipoteichoic acid (LTA). Furthermore, we noticed a concurrent upregulation of lnc-CAST and CXCL8 expression in lungs of PRRSV-infected pigs. We then determined that lnc-CAST positively influenced CXCL8 expression in PAMs. Overexpression of lnc-CAST led to an increase in CXCL8 production, which in turn enhanced the migration of epithelial cells and the recruitment of neutrophils. Conversely, inhibiting lnc-CAST expression resulted in reduced CXCL8 production in PAMs, leading to decreased migration levels of epithelial cells and neutrophils. From a mechanistic perspective, we found that lnc-CAST, localized in the nucleus, facilitated the enrichment of histone H3K27ac in CXCL8 promoter region, thereby stimulating CXCL8 transcription in a cis-regulatory manner. In conclusion, our study underscores the pivotal critical role of lnc-CAST in regulating CXCL8 production, offering valuable insights into chemokine regulation and lung damage during PRRSV infection.
Collapse
Affiliation(s)
- Junxin Gao
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Haidong Yu
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yu Pan
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xinrong Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - He Zhang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yunfei Xu
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
- Chongqing Academy of Animal Science, Chongqing, 408599, China
| | - Wenjie Ma
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Wenli Zhang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Lizhi Fu
- Chongqing Academy of Animal Science, Chongqing, 408599, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
| | - Yue Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
| |
Collapse
|
27
|
Gietl M, Burkert F, Hofer S, Gostner JM, Sonnweber T, Tancevski I, Pizzini A, Sahanic S, Schroll A, Brigo N, Egger A, Bellmann-Weiler R, Löffler-Ragg J, Weiss G, Kurz K. Laboratory parameters related to disease severity and physical performance after reconvalescence of acute COVID-19 infection. Sci Rep 2024; 14:10388. [PMID: 38710760 DOI: 10.1038/s41598-024-57448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/18/2024] [Indexed: 05/08/2024] Open
Abstract
Research into the molecular basis of disease trajectory and Long-COVID is important to get insights toward underlying pathophysiological processes. The objective of this study was to investigate inflammation-mediated changes of metabolism in patients with acute COVID-19 infection and throughout a one-year follow up period. The study enrolled 34 patients with moderate to severe COVID-19 infection admitted to the University Clinic of Innsbruck in early 2020. The dynamics of multiple laboratory parameters (including inflammatory markers [C-reactive protein (CRP), interleukin-6 (IL-6), neopterin] as well as amino acids [tryptophan (Trp), phenylalanine (Phe) and tyrosine (Tyr)], and parameters of iron and vitamin B metabolism) was related to disease severity and patients' physical performance. Also, symptom load during acute illness and at approximately 60 days (FU1), and one year after symptom onset (FU2) were monitored and related with changes of the investigated laboratory parameters: During acute infection many investigated laboratory parameters were elevated (e.g., inflammatory markers, ferritin, kynurenine, phenylalanine) and enhanced tryptophan catabolism and phenylalanine accumulation were found. At FU2 nearly all laboratory markers had declined back to reference ranges. However, kynurenine/tryptophan ratio (Kyn/Trp) and the phenylalanine/tyrosine ratio (Phe/Tyr) were still exceeding the 95th percentile of healthy controls in about two thirds of our cohort at FU2. Lower tryptophan concentrations were associated with B vitamin availability (during acute infection and at FU1), patients with lower vitamin B12 levels at FU1 had a prolonged and more severe impairment of their physical functioning ability. Patients who had fully recovered (ECOG 0) presented with higher concentrations of iron parameters (ferritin, hepcidin, transferrin) and amino acids (phenylalanine, tyrosine) at FU2 compared to patients with restricted ability to work. Persistent symptoms at FU2 were tendentially associated with IFN-γ related parameters. Women were affected by long-term symptoms more frequently. Conclusively, inflammation-mediated biochemical changes appear to be related to symptoms of patients with acute and Long Covid.
Collapse
Affiliation(s)
- Mario Gietl
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Francesco Burkert
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Stefanie Hofer
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Johanna M Gostner
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Thomas Sonnweber
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Alex Pizzini
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Sabina Sahanic
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Andrea Schroll
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Natascha Brigo
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Alexander Egger
- Central Institute for Medical and Chemical Laboratory Diagnostics (ZIMCL), Tirol Kliniken GmbH, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Judith Löffler-Ragg
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Katharina Kurz
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
28
|
Kumar A, Tripathi P, Kumar P, Shekhar R, Pathak R. From Detection to Protection: Antibodies and Their Crucial Role in Diagnosing and Combatting SARS-CoV-2. Vaccines (Basel) 2024; 12:459. [PMID: 38793710 PMCID: PMC11125746 DOI: 10.3390/vaccines12050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Understanding the antibody response to SARS-CoV-2, the virus responsible for COVID-19, is crucial to comprehending disease progression and the significance of vaccine and therapeutic development. The emergence of highly contagious variants poses a significant challenge to humoral immunity, underscoring the necessity of grasping the intricacies of specific antibodies. This review emphasizes the pivotal role of antibodies in shaping immune responses and their implications for diagnosing, preventing, and treating SARS-CoV-2 infection. It delves into the kinetics and characteristics of the antibody response to SARS-CoV-2 and explores current antibody-based diagnostics, discussing their strengths, clinical utility, and limitations. Furthermore, we underscore the therapeutic potential of SARS-CoV-2-specific antibodies, discussing various antibody-based therapies such as monoclonal antibodies, polyclonal antibodies, anti-cytokines, convalescent plasma, and hyperimmunoglobulin-based therapies. Moreover, we offer insights into antibody responses to SARS-CoV-2 vaccines, emphasizing the significance of neutralizing antibodies in order to confer immunity to SARS-CoV-2, along with emerging variants of concern (VOCs) and circulating Omicron subvariants. We also highlight challenges in the field, such as the risks of antibody-dependent enhancement (ADE) for SARS-CoV-2 antibodies, and shed light on the challenges associated with the original antigenic sin (OAS) effect and long COVID. Overall, this review intends to provide valuable insights, which are crucial to advancing sensitive diagnostic tools, identifying efficient antibody-based therapeutics, and developing effective vaccines to combat the evolving threat of SARS-CoV-2 variants on a global scale.
Collapse
Affiliation(s)
- Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, India
| | - Prajna Tripathi
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Prashant Kumar
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Ritu Shekhar
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
29
|
Jantan I, Norahmad NA, Yuandani, Haque MA, Mohamed-Hussein ZA, Mohd Abd Razak MR, Syed Mohamed AF, Lam KW, Ibrahim S. Inhibitory effect of food-functioned phytochemicals on dysregulated inflammatory pathways triggered by SARS-CoV-2: a mechanistic review. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 38619217 DOI: 10.1080/10408398.2024.2341266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Inflammatory cascades of the dysregulated inflammatory pathways in COVID-19 can cause excessive production of pro-inflammatory cytokines and chemokines leading to cytokine storm syndrome (CSS). The molecular cascades involved in the pathways may be targeted for discovery of new anti-inflammatory agents. Many plant extracts have been used clinically in the management of COVID-19, however, their immunosuppressive activities were mainly investigated based on in silico activity. Dietary flavonoids of the extracts such as quercetin, luteolin, kaempferol, naringenin, isorhamnetin, baicalein, wogonin, and rutin were commonly identified as responsible for their inhibitory effects. The present review critically analyzes the anti-inflammatory effects and mechanisms of phytochemicals, including dietary compounds against cytokine storm (CS) and hyperinflammation via inhibition of the altered inflammatory pathways triggered by SARS-CoV-2, published since the emergence of COVID-19 in December 2019. Only a few phytochemicals, mainly dietary compounds such as nanocurcumin, melatonin, quercetin, 6-shagoal, kaempferol, resveratrol, andrographolide, and colchicine have been investigated either in in silico or preliminary clinical studies to evaluate their anti-inflammatory effects against COVID-19. Sufficient pre-clinical studies on safety and efficacy of anti-inflammatory effects of the phytochemicals must be performed prior to proper clinical studies to develop them into therapeutic adjuvants in the prevention and treatmemt of COVID-19 symptoms.
Collapse
Affiliation(s)
- Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Nor Azrina Norahmad
- Herbal Medicine Research Centre, Institute for Medical Research, Shah Alam, Malaysia
| | - Yuandani
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Md Areeful Haque
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | | | | | - Kok Wai Lam
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sarah Ibrahim
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
30
|
Valleriani F, Di Pancrazio C, Spedicato M, Di Teodoro G, Malatesta D, Petrova T, Profeta F, Colaianni ML, Berjaoui S, Puglia I, Caporale M, Rossi E, Marcacci M, Luciani M, Sacchini F, Portanti O, Bencivenga F, Decaro N, Bonfante F, Lorusso A. A cell-adapted SARS-CoV-2 mutant, showing a deletion in the spike protein spanning the furin cleavage site, has reduced virulence at the lung level in K18-hACE2 mice. Virology 2024; 592:109997. [PMID: 38324940 DOI: 10.1016/j.virol.2024.109997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Here we investigated the virulence properties of a unique cell-adapted SARS-CoV-2 mutant showing a ten-amino acid deletion encompassing the furin cleavage site of the spike protein (Δ680SPRAARSVAS689; Δ680-689-B.1) in comparison to its parental strain (wt-B.1) and two Delta variants (AY.122 and AY.21) of concern. After intranasal inoculation, transgenic K18-hACE2 mice were monitored for 14 days for weight change, lethality, and clinical score; oral swabs were daily collected and tested for the presence of N protein subgenomic RNA. At 3 and 7 dpi mice were also sacrificed and organs collected for molecular, histopathological, and immune response profile investigations. The Δ680-689-B.1-infected mice exhibited reduced shedding, lower virulence at the lung level, and milder pulmonary lesions. In the lung, infection with Δ680-689-B.1 was associated with a significant lower expression of some cytokines at 3 dpi (IL-4, IL-27, and IL-28) and 7 dpi (IL-4, IL-27, IL-28, IFN-γ and IL-1α).
Collapse
Affiliation(s)
- Fabrizia Valleriani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Chiara Di Pancrazio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Massimo Spedicato
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Daniela Malatesta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Tetyana Petrova
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Francesca Profeta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | | | - Shadia Berjaoui
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Ilaria Puglia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Marialuigia Caporale
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Flavio Sacchini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | - Ottavio Portanti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy
| | | | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano-Italy
| | - Francesco Bonfante
- IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy; Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro-Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy; IZSVe-IZSAM Joint FAO Reference Centre for Zoonotic Coronaviruses, Italy.
| |
Collapse
|
31
|
Kaur J, Sharma A, Passi G, Dey P, Khajuria A, Alajangi HK, Jaiswal PK, Barnwal RP, Singh G. Nanomedicine at the Pulmonary Frontier: Immune-Centric Approaches for Respiratory Disease Treatment. Immunol Invest 2024; 53:295-347. [PMID: 38206610 DOI: 10.1080/08820139.2023.2298398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Respiratory diseases (RD) are a group of common ailments with a rapidly increasing global prevalence, posing a significant threat to humanity, especially the elderly population, and imposing a substantial burden on society and the economy. RD represents an unmet medical need that requires the development of viable pharmacotherapies. While various promising strategies have been devised to advance potential treatments for RD, their implementation has been hindered by difficulties in drug delivery, particularly in critically ill patients. Nanotechnology offers innovative solutions for delivering medications to the inflamed organ sites, such as the lungs. Although this approach is enticing, delivering nanomedicine to the lungs presents complex challenges that require sophisticated techniques. In this context, we review the potential of novel nanomedicine-based immunomodulatory strategies that could offer therapeutic benefits in managing this pressing health condition.
Collapse
Affiliation(s)
- Jatinder Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Gautam Passi
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Piyush Dey
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Akhil Khajuria
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Hema Kumari Alajangi
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas, USA
| | | | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
32
|
Singh K, Hussain T, Gupta B, Pati S. A Comparative Investigation on Cytokine Expression in Pulmonary Tuberculosis and Comorbidity with Type 2 Diabetes Mellitus. Int J Mycobacteriol 2024; 13:165-170. [PMID: 38916387 DOI: 10.4103/ijmy.ijmy_40_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/26/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), with a high global prevalence and mortality rate. To control the gruesome pathogen, a deep understanding of pathophysiology and host-pathogen interaction is essential for early diagnosis and novel drug development. Cytokines play a crucial role in infection and susceptibility, and their expressions could serve as potential biomarkers to enhance our understanding of Mtb pathophysiology for improved therapeutic approaches. This cross-sectional study investigates the levels of four important T-cell immune-mediated cytokines: interleukins (IL-6 and IL-10), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha in 80 cohort samples, with 20 people in each group. METHODS Following proper ethics and patient consent, we collected blood samples and isolated serum from all four groups: TB, type 2 diabetes mellitus (T2DM), type 2 diabetes-TB comorbidity (T2DM + TB), and a healthy individual as a control group (C). Furthermore, cytokine expression was measured in individual serum samples through the enzyme-linked immunosorbent assay method using commercial kits (Diaclone, French). Statistical significance was observed by analyzing triplicate data using t-tests and the one-way ANOVA method with GraphPad Prism 10. RESULTS The results showed that all four cytokine levels were higher (P ≤ 0.0001) than the control, especially IL-6, IL-10, and IFN-γ, which were found to be upregulated in T2DM + TB samples (P ≤ 0.0001) than individual TB or T2DM samples. CONCLUSION The high levels of cytokines in comorbidity cases raise the risk of insulin resistance and the severity of TB infection. These levels of expression could be used to keep track of the Mtb infection status or severity, aid in early diagnosis as a possible biomarker, and suggest possible treatment plans.
Collapse
Affiliation(s)
- Khusbu Singh
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, Odisha, India
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Deemed to be University, Bhubaneswar, Odisha, India
| | - Tahziba Hussain
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Bhawna Gupta
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Deemed to be University, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, Odisha, India
| |
Collapse
|
33
|
Tang W, Ye B, Zhou L, Zou L. Risk prediction for severe COVID-19 progressing to critical illness and death in the ICU and efficacy analysis of using traditional Chinese medicine. Medicine (Baltimore) 2024; 103:e37498. [PMID: 38518027 PMCID: PMC10957017 DOI: 10.1097/md.0000000000037498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 03/24/2024] Open
Abstract
To reveal the key factors influencing the progression of severe COVID-19 to critical illness and death in the intensive care unit (ICU) and to accurately predict the risk, as well as to validate the efficacy of treatment using traditional Chinese medicine (TCM), thus providing valuable recommendations for the clinical management of patients. A total of 189 patients with COVID-19 in 25 ICUs in Chongqing, China, were enrolled, and 16 eventually died. Statistical models shown that factors influencing the progression of COVID-19 to critical illness include the severity of illness at diagnosis, the mode of respiratory support, and the use of TCM. Risk factors for death include a history of metabolic disease, the use of antiviral drugs and TCM, and invasive endotracheal intubation. The area under curve of the noncollinearity model predicted the risk of progression to critical illness and the risk of death reached 0.847 and 0.876, respectively. The use of TCM is an independent protective factor for the prevention of the progression of severe COVID-19, while uncorrectable hypoxemia and invasive respiratory support are independent risk factors, and antiviral drugs can help reduce mortality. The multifactorial prediction model can assess the risk of critical illness and death in ICU COVID-19 patients, and inform clinicians in choosing the treatment options and medications.
Collapse
Affiliation(s)
- Wenyi Tang
- Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Bo Ye
- Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Lina Zhou
- Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Lingyun Zou
- Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
34
|
Recchia Luciani G, Barilli A, Visigalli R, Sala R, Dall’Asta V, Rotoli BM. IRF1 Mediates Growth Arrest and the Induction of a Secretory Phenotype in Alveolar Epithelial Cells in Response to Inflammatory Cytokines IFNγ/TNFα. Int J Mol Sci 2024; 25:3463. [PMID: 38542436 PMCID: PMC10970306 DOI: 10.3390/ijms25063463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
In COVID-19, cytokine release syndrome can cause severe lung tissue damage leading to acute respiratory distress syndrome (ARDS). Here, we address the effects of IFNγ, TNFα, IL-1β and IL-6 on the growth arrest of alveolar A549 cells, focusing on the role of the IFN regulatory factor 1 (IRF1) transcription factor. The efficacy of JAK1/2 inhibitor baricitinib has also been tested. A549 WT and IRF1 KO cells were exposed to cytokines for up to 72 h. Cell proliferation and death were evaluated with the resazurin assay, analysis of cell cycle and cycle-regulator proteins, LDH release and Annexin-V positivity; the induction of senescence and senescence-associated secretory phenotype (SASP) was evaluated through β-galactosidase staining and the quantitation of secreted inflammatory mediators. While IL-1 and IL-6 proved ineffective, IFNγ plus TNFα caused a proliferative arrest in A549 WT cells with alterations in cell morphology, along with the acquisition of a secretory phenotype. These effects were STAT and IRF1-dependent since they were prevented by baricitinib and much less evident in IRF1 KO than in WT cells. In alveolar cells, STATs/IRF1 axis is required for cytokine-induced proliferative arrest and the induction of a secretory phenotype. Hence, baricitininb is a promising therapeutic strategy for the attenuation of senescence-associated inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Valeria Dall’Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy (R.S.); (B.M.R.)
| | | |
Collapse
|
35
|
Mahmoodi M, Mohammadi Henjeroei F, Hassanshahi G, Nosratabadi R. Do chemokine/chemokine receptor axes play paramount parts in trafficking and oriented locomotion of monocytes/macrophages toward the lungs of COVID-19 infected patients? A systematic review. Cytokine 2024; 175:156497. [PMID: 38190792 DOI: 10.1016/j.cyto.2023.156497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
The COVID-19 (coronavirus disease 2019) is a well-defined viral infection, resulting from SARS-CoV-2 (severe acute respiratory syndrome- coronavirus-2). The innate immune system serves as the first line of defense to limit viral spreading and subsequently stimulate adaptive immune responses by the prominent aids of its cellular and molecular arms. Monocytes are defined as the most prominent innate immune cells (IICs) that are reactive against invading pathogens. These cells support host protection against the virus that is mediated by several non-specific mechanisms such as phagocytosis, producing antiviral enzymes, and recruitment of immune cells toward and into the infected tissues. They have the ability to egress from blood and migrate to the SARS-CoV-2 infected regions by the aid of some defense-related functions like chemotaxis, which is mediated by chemical compounds, e.g., chemokines. Chemokines, in addition to their related ligands are categorized within the most important and deserved agents involved in oriented trafficking of monocytes/macrophages towards and within the lung parenchyma in both steady state and pathological circumstances, including COVID-19-raised infection. However, the overexpression of chemokines could have deleterious effects on various organs through the induction of cytokine storm and may be the most important leading mechanisms in the pathogenesis of COVID-19. Authors have aimed the current review article to describe present knowledge about the interplay between monocytes/macrophages and SARS-CoV-2 with a focus on the ability of IICs to migrate and home into the lung of COVID-19 patients through various chemokine-chemokine receptor axes to promote our understanding regarding this disease.
Collapse
Affiliation(s)
- Merat Mahmoodi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Mohammadi Henjeroei
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, RafsanjanUniversity of Medical Sciences, Rafsanjan, Iran
| | - Reza Nosratabadi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
36
|
Hromić-Jahjefendić A, Lundstrom K, Adilović M, Aljabali AAA, Tambuwala MM, Serrano-Aroca Á, Uversky VN. Autoimmune response after SARS-CoV-2 infection and SARS-CoV-2 vaccines. Autoimmun Rev 2024; 23:103508. [PMID: 38160960 DOI: 10.1016/j.autrev.2023.103508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The complicated relationships between autoimmunity, COVID-19, and COVID-19 vaccinations are described, giving insight into their intricacies. Antinuclear antibodies (ANA), anti-Ro/SSA, rheumatoid factor, lupus anticoagulant, and antibodies against interferon (IFN)-I have all been consistently found in COVID-19 patients, indicating a high prevalence of autoimmune reactions following viral exposure. Furthermore, the discovery of human proteins with structural similarities to SARS-CoV-2 peptides as possible autoantigens highlights the complex interplay between the virus and the immune system in initiating autoimmunity. An updated summary of the current status of COVID-19 vaccines is presented. We present probable pathways underpinning the genesis of COVID-19 autoimmunity, such as bystander activation caused by hyperinflammatory conditions, viral persistence, and the creation of neutrophil extracellular traps. These pathways provide important insights into the development of autoimmune-related symptoms ranging from organ-specific to systemic autoimmune and inflammatory illnesses, demonstrating the wide influence of COVID-19 on the immune system.
Collapse
Affiliation(s)
- Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | | | - Muhamed Adilović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan.
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, UK.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001, Valencia, Spain.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
37
|
Kakavandi S, Hajikhani B, Azizi P, Aziziyan F, Nabi-Afjadi M, Farani MR, Zalpoor H, Azarian M, Saadi MI, Gharesi-Fard B, Terpos E, Zare I, Motamedifar M. COVID-19 in patients with anemia and haematological malignancies: risk factors, clinical guidelines, and emerging therapeutic approaches. Cell Commun Signal 2024; 22:126. [PMID: 38360719 PMCID: PMC10868124 DOI: 10.1186/s12964-023-01316-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/13/2023] [Indexed: 02/17/2024] Open
Abstract
Extensive research in countries with high sociodemographic indices (SDIs) to date has shown that coronavirus disease 2019 (COVID-19) may be directly associated with more severe outcomes among patients living with haematological disorders and malignancies (HDMs). Because individuals with moderate to severe immunodeficiency are likely to undergo persistent infections, shed virus particles for prolonged periods, and lack an inflammatory or abortive phase, this represents an overall risk of morbidity and mortality from COVID-19. In cases suffering from HDMs, further investigation is needed to achieve a better understanding of triviruses and a group of related variants in patients with anemia and HDMs, as well as their treatment through vaccines, drugs, and other methods. Against this background, the present study aimed to delineate the relationship between HDMs and the novel COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Besides, effective treatment options for HDM cases were further explored to address this epidemic and its variants. Therefore, learning about how COVID-19 manifests in these patients, along with exploiting the most appropriate treatments, may lead to the development of treatment and care strategies by clinicians and researchers to help patients recover faster. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paniz Azizi
- Psychological and Brain Science Departments, Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | | | | | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran.
| | - Mohammad Motamedifar
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
38
|
Xia LY, Wang ZF, Cui XM, Li YG, Ye RZ, Zhu DY, Li FX, Zhang J, Wang WH, Zhang MZ, Gao WY, Li LF, Que TC, Wang TC, Jia N, Jiang JF, Gao YW, Cao WC. Isolation and characterization of a pangolin-borne HKU4-related coronavirus that potentially infects human-DPP4-transgenic mice. Nat Commun 2024; 15:1048. [PMID: 38316817 PMCID: PMC10844334 DOI: 10.1038/s41467-024-45453-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
We recently detected a HKU4-related coronavirus in subgenus Merbecovirus (named pangolin-CoV-HKU4-P251T) from a Malayan pangolin1. Here we report isolation and characterization of pangolin-CoV-HKU4-P251T, the genome sequence of which is closest to that of a coronavirus from the greater bamboo bat (Tylonycteris robustula) in Yunnan Province, China, with a 94.3% nucleotide identity. Pangolin-CoV-HKU4-P251T is able to infect human cell lines, and replicates more efficiently in cells that express human-dipeptidyl-peptidase-4 (hDPP4)-expressing and pangolin-DPP4-expressing cells than in bat-DPP4-expressing cells. After intranasal inoculation with pangolin-CoV-HKU4-P251, hDPP4-transgenic female mice are likely infected, showing persistent viral RNA copy numbers in the lungs. Progressive interstitial pneumonia developed in the infected mice, characterized by the accumulation of macrophages, and increase of antiviral cytokines, proinflammatory cytokines, and chemokines in lung tissues. These findings suggest that the pangolin-borne HKU4-related coronavirus has a potential for emerging as a human pathogen by using hDPP4.
Collapse
Affiliation(s)
- Luo-Yuan Xia
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
| | - Zhen-Fei Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, P. R. China
| | - Yuan-Guo Li
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China
| | - Run-Ze Ye
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
| | - Fang-Xu Li
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China
| | - Jie Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
| | - Wen-Hao Wang
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
| | - Wan-Ying Gao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
| | - Lian-Feng Li
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
| | - Teng-Cheng Que
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Tie-Cheng Wang
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, P. R. China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, P. R. China.
| | - Yu-Wei Gao
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China.
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China.
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, P. R. China.
| |
Collapse
|
39
|
Kounis NG, Gogos C, de Gregorio C, Hung MY, Kounis SN, Tsounis EP, Assimakopoulos SF, Pourmasumi S, Mplani V, Servos G, Dousdampanis P, Plotas P, Michalaki MA, Tsigkas G, Grammatikopoulos G, Velissaris D, Koniar I. "When," "Where," and "How" of SARS-CoV-2 Infection Affects the Human Cardiovascular System: A Narrative Review. Balkan Med J 2024; 41:7-22. [PMID: 38173173 PMCID: PMC10767774 DOI: 10.4274/balkanmedj.galenos.2023.2023-10-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the novel severe acute respiratory coronavirus-2 (SARS-CoV-2). Several explanations for the development of cardiovascular complications during and after acute COVID-19 infection have been hypothesized. The COVID-19 pandemic, caused by SARS-CoV-2, has emerged as one of the deadliest pandemics in modern history. The myocardial injury in COVID-19 patients has been associated with coronary spasm, microthrombi formation, plaque rupture, hypoxic injury, or cytokine storm, which have the same pathophysiology as the three clinical variants of Kounis syndrome. The angiotensin-converting enzyme 2 (ACE2), reninaldosterone system (RAAS), and kinin-kallikrein system are the main proposed mechanisms contributing to cardiovascular complications with the COVID-19 infection. ACE receptors can be found in the heart, blood vessels, endothelium, lungs, intestines, testes, neurons, and other human body parts. SARS-CoV-2 directly invades the endothelial cells with ACE2 receptors and constitutes the main pathway through which the virus enters the endothelial cells. This causes angiotensin II accumulation downregulation of the ACE2 receptors, resulting in prothrombotic effects, such as hemostatic imbalance via activation of the coagulation cascade, impaired fibrinolysis, thrombin generation, vasoconstriction, endothelial and platelet activation, and pro-inflammatory cytokine release. The KKS system typically causes vasodilation and regulates tissue repair, inflammation, cell proliferation, and platelet aggregation, but SARS-CoV-2 infection impairs such counterbalancing effects. This cascade results in cardiac arrhythmias, cardiac arrest, cardiomyopathy, cytokine storm, heart failure, ischemic myocardial injuries, microvascular disease, Kounis syndrome, prolonged COVID, myocardial fibrosis, myocarditis, new-onset hypertension, pericarditis, postural orthostatic tachycardia syndrome, pulmonary hypertension, stroke, Takotsubo syndrome, venous thromboembolism, and thrombocytopenia. In this narrative review, we describe and elucidate when, where, and how COVID-19 affects the human cardiovascular system in various parts of the human body that are vulnerable in every patient category, including children and athletes.
Collapse
Affiliation(s)
- Nicholas G. Kounis
- Department of Cardiology, University of Patras Medical School, Rio, Greece
| | - Christos Gogos
- Clinic of Cardiology, COVID-19 Unit, Papageorgiou General Hospital, Pavlos Melas, Greece
| | - Cesare de Gregorio
- Department of Clinical and Experimental Medicine, University of Messina Medical School, Messina, Italy
| | - Ming-Yow Hung
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | | | - Efthymios P. Tsounis
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University Hospital of Patras, Rio, Greece
| | - Stelios F. Assimakopoulos
- Department of Internal Medicine, Division of Infectious Diseases, University of Patras Medical School, Rio, Greece
| | - Soheila Pourmasumi
- Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Virginia Mplani
- Intensive Care Unit, Patras University Hospital, Rio, Greece
| | - George Servos
- Pediatric Cardiology Unit, “P. & A. Kyriakou” Children’s Hospital, Athina, Greece
| | | | - Panagiotis Plotas
- Department of Cardiology, University of Patras Medical School, Rio, Greece
| | - Marina A. Michalaki
- Department of Internal Medicine, Division of Endocrinology, University of Patras, School of Health Sciences, Rio, Greece
| | - Grigorios Tsigkas
- Department of Cardiology, University of Patras Medical School, Rio, Greece
| | | | - Dimitrios Velissaris
- Department of Internal Medicine, University of Patras Medical School, Rio, Greece
| | - Ioanna Koniar
- Electrophysiology and Device Department, University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
40
|
Sasaki M, Sugi T, Iida S, Hirata Y, Kusakabe S, Konishi K, Itakura Y, Tabata K, Kishimoto M, Kobayashi H, Ariizumi T, Intaruck K, Nobori H, Toba S, Sato A, Matsuno K, Yamagishi J, Suzuki T, Hall WW, Orba Y, Sawa H. Combination therapy with oral antiviral and anti-inflammatory drugs improves the efficacy of delayed treatment in a COVID-19 hamster model. EBioMedicine 2024; 99:104950. [PMID: 38159532 PMCID: PMC10792455 DOI: 10.1016/j.ebiom.2023.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Pulmonary infection with SARS-CoV-2 stimulates host immune responses and can also result in the progression of dysregulated and critical inflammation. Throughout the pandemic, the management and treatment of COVID-19 has been continuously updated with a range of antiviral drugs and immunomodulators. Monotherapy with oral antivirals has proven to be effective in the treatment of COVID-19. However, treatment should be initiated in the early stages of infection to ensure beneficial therapeutic outcomes, and there is still room for further consideration on therapeutic strategies using antivirals. METHODS We studied the therapeutic effects of monotherapy with the oral antiviral ensitrelvir or the anti-inflammatory corticosteroid methylprednisolone and combination therapy with ensitrelvir and methylprednisolone in a delayed dosing model of hamsters infected with SARS-CoV-2. FINDINGS Combination therapy with ensitrelvir and methylprednisolone improved respiratory conditions and reduced the development of pneumonia in hamsters even when the treatment was started after 2 days post-infection. The combination therapy led to a differential histological and transcriptomic pattern in comparison to either of the monotherapies, with reduced lung damage and down-regulation of expression of genes involved in the inflammatory response. Furthermore, we found that the combination treatment is effective in case of infection with either the highly pathogenic delta or circulating omicron variants. INTERPRETATION Our results demonstrate the advantage of combination therapy with antiviral and corticosteroid drugs in COVID-19 treatment from the perspective of lung pathology and host inflammatory responses. FUNDING Funding bodies are described in the Acknowledgments section.
Collapse
Affiliation(s)
- Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| | - Tatsuki Sugi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shun Iida
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuichiro Hirata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinji Kusakabe
- Division of Anti-Virus Drug Research, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Kei Konishi
- Division of Anti-Virus Drug Research, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Yukari Itakura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Koshiro Tabata
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Mai Kishimoto
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hiroko Kobayashi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takuma Ariizumi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kittiya Intaruck
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Haruaki Nobori
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Shinsuke Toba
- Division of Anti-Virus Drug Research, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Akihiko Sato
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan; Division of Anti-Virus Drug Research, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Keita Matsuno
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Junya Yamagishi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - William W Hall
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; National Virus Reference Laboratory, School of Medicine, University College of Dublin, Ireland; Global Virus Network, Baltimore, Maryland, USA
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Division of Anti-Virus Drug Research, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Division of Anti-Virus Drug Research, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan; Global Virus Network, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Cianciosi D, Diaz YA, Gaddi AV, Capello F, Savo MT, Palí Casanova RDJ, Martínez Espinosa JC, Pascual Barrera AE, Navarro‐Hortal M, Tian L, Bai W, Giampieri F, Battino M. Can alpha‐linolenic acid be a modulator of “cytokine storm,” oxidative stress and immune response in SARS‐CoV‐2 infection? FOOD FRONTIERS 2024; 5:73-93. [DOI: 10.1002/fft2.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractAlpha‐linolenic acid (ALA) is a long‐chain polyunsaturated essential fatty acid of the Ω3 series found mainly in vegetables, especially in the fatty part of oilseeds, dried fruit, berries, and legumes. It is very popular for its preventive use in several diseases: It seems to reduce the risk of the onset or decrease some phenomena related to inflammation, oxidative stress, and conditions of dysregulation of the immune response. Recent studies have confirmed these unhealthy situations also in patients with severe coronavirus disease 2019 (COVID‐19). Different findings (in vitro, in vivo, and clinical ones), summarized and analyzed in this review, have showed an important role of ALA in other various non‐COVID physiological and pathological situations against “cytokines storm,” chemokines secretion, oxidative stress, and dysregulation of immune cells that are also involved in the infection of the 2019 novel coronavirus. According to the effects of ALA against all the aforementioned situations (also present in patients with a severe clinical picture of severe acute respiratory syndrome‐(CoV‐2) infection), there may be the biologic plausibility of a prophylactic effect of this compound against COVID‐19 symptoms and fatality.
Collapse
Affiliation(s)
- Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
| | - Yasmany Armas Diaz
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
| | | | - Fabio Capello
- International Study Center of Society of Telemedicine and Digital Health Bologna Italy
| | | | - Ramón del Jesús Palí Casanova
- Universidad Europea del Atlántico Santander Spain
- Universidad Internacional Iberoamericana Campeche México México
- Universidad Internacional Iberoamericana Arecibo Puerto Rico USA
| | - Julio César Martínez Espinosa
- Universidad Europea del Atlántico Santander Spain
- Universidad Internacional Iberoamericana Campeche México México
- Fundación Universitaria Internacional de Colombia Bogotá Colombia
| | - Alina Eugenia Pascual Barrera
- Universidad Europea del Atlántico Santander Spain
- Universidad Internacional Iberoamericana Campeche México México
- Fundación Universitaria Internacional de Colombia Bogotá Colombia
| | - Maria‐Dolores Navarro‐Hortal
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre University of Granada Armilla Spain
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection Jinan University Guangzhou China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection Jinan University Guangzhou China
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
- Research Group on Food, Nutritional Biochemistry and Health Universidad Europea del Atlántico Santander Spain
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
- Research Group on Food, Nutritional Biochemistry and Health Universidad Europea del Atlántico Santander Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri‐Products Processing Jiangsu University Zhenjiang China
| |
Collapse
|
42
|
Kervancioglu Demirci E, Onen EA, Sevic Yilmaz E, Karagoz Koroglu A, Akakin D. SARS-CoV-2 Causes Brain Damage: Therapeutic Intervention with AZD8797. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2161-2173. [PMID: 37967299 DOI: 10.1093/micmic/ozad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Elevated CX3CL1 is associated with severe COVID-19 and neurologic symptoms. We aimed to investigate the potential protective effects of selective CX3CR1 antagonist AZD8797 on SARS-CoV-2-induced neuronal damage, and to identify the underlying mechanisms. K18-hACE2 transgenic mice (n = 37) were randomly divided into control groups and SARS-CoV-2 groups, with and without intraperitoneal administration of vehicle or AZD8797 (2.5 mg/mL/day), following exposure to either a single dose of SARS-CoV-2 inhalation or no exposure. Object recognition and hole board tests were performed to assess memory function. Postinfection 8 days, brain tissues were analyzed for histopathological changes, viral, glial, apoptotic, and other immunohistochemical markers, along with measuring malondialdehyde, glutathione, and myeloperoxidase activities. Serum samples were analyzed for proinflammatory cytokines. The SARS-CoV-2 group showed significant weight loss, neuronal damage, oxidative stress, and impaired object recognition memory, while AZD8797 treatment mitigated some of these effects, especially in weight, apoptosis, glutathione, and MCP-1. Histopathological analyses supported the protective effects of AZD8797 against SARS-CoV-2-induced damage. The CX3CL1-CX3CR1 signaling pathway could offer a promising target for reducing SARS-CoV-2's neurological impact, but additional research is needed to confirm these findings in combination with other therapies and assess the clinical significance.
Collapse
Affiliation(s)
- Elif Kervancioglu Demirci
- Histology and Embryology Department, Istanbul Faculty of Medicine, Istanbul University, Turgut Ozal Cd. No:118m, Capa-Fatih, Istanbul 34093, Turkey
| | - Engin Alp Onen
- Vaccine and Biotechnology R&D, Kocak Pharmaceuticals, Karaagac O.S.B. 11.Sk No:5, Kapakli, Tekirdag 59520, Turkey
| | - Erva Sevic Yilmaz
- Histology and Embryology Department, Istanbul Faculty of Medicine, Istanbul University, Turgut Ozal Cd. No:118m, Capa-Fatih, Istanbul 34093, Turkey
| | - Ayca Karagoz Koroglu
- Histology and Embryology Department, School of Medicine, Istinye University, Azerbaycan Cd. No:3C, Sariyer, Istanbul 34010, Turkey
- Histology and Embryology Department, School of Medicine, Marmara University, Basibuyuk Mh. Maltepe Basibuyuk Yolu Sk. No:9/2, Basibuyuk-Maltepe, Istanbul 34854, Turkey
| | - Dilek Akakin
- Histology and Embryology Department, School of Medicine, Marmara University, Basibuyuk Mh. Maltepe Basibuyuk Yolu Sk. No:9/2, Basibuyuk-Maltepe, Istanbul 34854, Turkey
| |
Collapse
|
43
|
Karagöz IK, Kaya M, Rückert R, Bozman N, Kaya V, Bayram H, Yıldırım M. A bioinformatic analysis: Previous allergen exposure may support anti- SARS-CoV-2 immune response. Comput Biol Chem 2023; 107:107961. [PMID: 37788543 DOI: 10.1016/j.compbiolchem.2023.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
COVID-19, caused by infection with the SARS-CoV-2 has become a global health problem due to significant mortality rates; the exact pathophysiological mechanism remains uncertain. Articles reporting patient data are quite heterogeneous and have several limitations. Surviving patients develop a CD4 and CD8 T-cell response to the virus SARS-CoV-2 during COVID-19. Interestingly, pre-existing virus-reactive T-cells have been found in patients that were not infected before, suggesting some form of cross-reactivity or immunological mimicry. To better understand this phenomenon, we performed a bioinformatic study, which was aimed to identify antigenic structures that may explain the presence of such "reactive" T-cells, which may support or modulate the immune response to SARS-CoV-2 infections. Seven different common environmental allergen epitopes identical to the SARS-CoV-2 S-protein were identified that share affinity to 8 MHCI-specific epitope regions. Pollen showed the greatest similarity with the S protein epitope. In the epitope similarity analysis between the S protein and MHC-II / T helper epitopes, the highest similarity was determined for mites. When S-protein that stimulates B cells and identical epitope antigens are examined, the most common allergens were hornbeam and wheat. The high epitope similarity observed for the allergens examined and S protein epitopes suggest that these allergens may be a reason for pre-existing SARS-CoV-2 - reactive T-cells in previously non-infected subjects and such a previous exposure may affect the course of the disease in COVID-19 infection. It remains to be determined whether such a previous existence of SARS-CoV-2 reactive cells can support the clearance of the virus or if they, in contrast, may even aggravate the disease course. (Table 4, Ref 54).
Collapse
Affiliation(s)
- Isıl Kutluturk Karagöz
- Umraniye Trn. And Rch. Hospital, Division of Ophthalmology, Istanbul, Turkey; Yıldız Technical University, Bioengineering Department, Istanbul, Turkey.
| | | | | | - Nazli Bozman
- Gaziantep University Arts and Science Faculty Department of Biology, Gaziantep, Turkey
| | - Vildan Kaya
- Medstar Antalya Hospital, Division of Radiation Oncology, Antalya, Turkey
| | - Halim Bayram
- Dr. Ersin Arslan Trn. And Rch Hospital, Division of Infection Diseases, Gaziantep, Turkey
| | - Mustafa Yıldırım
- Sanko University, School of Medicine, Internal Diseases, Division of Oncology, Gaziantep, Turkey
| |
Collapse
|
44
|
Emmenegger M, Emmenegger V, Shambat SM, Scheier TC, Gomez-Mejia A, Chang CC, Wendel-Garcia PD, Buehler PK, Buettner T, Roggenbuck D, Brugger SD, Frauenknecht KBM. Antiphospholipid antibodies are enriched post-acute COVID-19 but do not modulate the thrombotic risk. Clin Immunol 2023; 257:109845. [PMID: 37995947 DOI: 10.1016/j.clim.2023.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/29/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND AND OBJECTIVES COVID-19-associated coagulopathy, shown to increase the risk for the occurrence of thromboses and microthromboses, displays phenotypic features of the antiphospholipid syndrome (APS), a prototype antibody-mediated autoimmune disease. Several groups have reported elevated levels of criteria and non-criteria antiphospholipid antibodies (aPL), assumed to cause APS, during acute or post-acute COVID-19. However, disease heterogeneity of COVID-19 is accompanied by heterogeneity in molecular signatures, including aberrant cytokine profiles and an increased occurrence of autoantibodies. Moreover, little is known about the association between autoantibodies and the clinical events. Here, we first aim to characterise the antiphospholipid antibody, anti-SARS-CoV-2 antibody, and the cytokine profiles in a diverse collective of COVID-19 patients (disease severity: asymptomatic to intensive care), using vaccinated individuals and influenza patients as comparisons. We then aim to assess whether the presence of aPL in COVID-19 is associated with an increased incidence of thrombotic events in COVID-19. METHODS AND RESULTS We conducted anti-SARS-CoV-2 IgG and IgA microELISA and IgG, IgA, and IgM antiphospholipid line immunoassay (LIA) against 10 criteria and non-criteria antigens in 155 plasma samples of 124 individuals, and we measured 16 cytokines and chemokines in 112 plasma samples. We additionally employed clinical and demographic parameters to conduct multivariable regression analyses within multiple paradigms. In line with recent results, we find that IgM autoantibodies against annexin V (AnV), β2-glycoprotein I (β2GPI), and prothrombin (PT) are enriched upon infection with SARS-CoV-2. There was no evidence for seroconversion from IgM to IgG or IgA. PT, β2GPI, and AnV IgM as well as cardiolipin (CL) IgG antiphospholipid levels were significantly elevated in the COVID-19 but not in the influenza or control groups. They were associated predominantly with the strength of the anti-SARS-CoV-2 antibody titres and the major correlate for thromboses was SARS-CoV-2 disease severity. CONCLUSION While we have recapitulated previous findings, we conclude that the presence of the aPL, most notably PT, β2GPI, AnV IgM, and CL IgG in COVID-19 are not associated with a higher incidence of thrombotic events.
Collapse
Affiliation(s)
- Marc Emmenegger
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland; Division of Medical Immunology, Department of Laboratory Medicine, University Hospital Basel, 4031 Basel, Switzerland.
| | - Vishalini Emmenegger
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas C Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alejandro Gomez-Mejia
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Chun-Chi Chang
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Pedro D Wendel-Garcia
- Institute of Intensive Care Medicine, University and University Hospital Zurich, Zurich, Switzerland
| | - Philipp K Buehler
- Institute of Intensive Care Medicine, University and University Hospital Zurich, Zurich, Switzerland
| | | | - Dirk Roggenbuck
- GA Generic Assays GmbH, Dahlewitz, Germany; Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; Faculty of Health Sciences Brandenburg, University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Silvio D Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Katrin B M Frauenknecht
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg
| |
Collapse
|
45
|
李 茂, 郑 国, 杨 佳, 陈 小, 许 剑, 赵 德. [Bone/cartilage immunomodulating hydrogels: construction strategies and applications]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2023; 37:1423-1430. [PMID: 37987055 PMCID: PMC10662399 DOI: 10.7507/1002-1892.202305081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
Objective To review the research progress in the construction strategy and application of bone/cartilage immunomodulating hydrogels. Methods The literature related to bone/cartilage immunomodulating hydrogels at home and abroad in recent years was reviewed and summarized from the immune response mechanism of different immune cells, the construction strategy of immunomodulating hydrogels, and their practical applications. Results According to the immune response mechanism of different immune cells, the biological materials with immunoregulatory effect is designed, which can regulate the immune response of the body and thus promote the regeneration of bone/cartilage tissue. Immunomodulating hydrogels have good biocompatibility, adjustability, and multifunctionality. By regulating the physical and chemical properties of hydrogel and loading factors or cells, the immune system of the body can be purposively regulated, thus forming an immune microenvironment conducive to osteochondral regeneration. Conclusion Immunomodulating hydrogels can promote osteochondral repair by affecting the immunomodulation process of host organs or cells. It has shown a wide application prospect in the repair of osteochondral defects. However, more data support from basic and clinical experiments is needed for this material to further advance its clinical translation process.
Collapse
Affiliation(s)
- 茂源 李
- 大连大学中山临床学院(辽宁大连 116001)Zhongshan Clinical College of Dalian University, Dalian Liaoning, 116001, P. R. China
- 大连大学附属中山医院骨科(辽宁大连 116001)Department of Orthopaedics, Zhongshan Hospital, Dalian University, Dalian Liaoning, 116001, P. R. China
| | - 国爽 郑
- 大连大学中山临床学院(辽宁大连 116001)Zhongshan Clinical College of Dalian University, Dalian Liaoning, 116001, P. R. China
| | - 佳慧 杨
- 大连大学中山临床学院(辽宁大连 116001)Zhongshan Clinical College of Dalian University, Dalian Liaoning, 116001, P. R. China
| | - 小芳 陈
- 大连大学中山临床学院(辽宁大连 116001)Zhongshan Clinical College of Dalian University, Dalian Liaoning, 116001, P. R. China
- 大连大学附属中山医院骨科(辽宁大连 116001)Department of Orthopaedics, Zhongshan Hospital, Dalian University, Dalian Liaoning, 116001, P. R. China
| | - 剑锋 许
- 大连大学中山临床学院(辽宁大连 116001)Zhongshan Clinical College of Dalian University, Dalian Liaoning, 116001, P. R. China
- 大连大学附属中山医院骨科(辽宁大连 116001)Department of Orthopaedics, Zhongshan Hospital, Dalian University, Dalian Liaoning, 116001, P. R. China
| | - 德伟 赵
- 大连大学中山临床学院(辽宁大连 116001)Zhongshan Clinical College of Dalian University, Dalian Liaoning, 116001, P. R. China
| |
Collapse
|
46
|
Feng CH, Kuo PC, Shih PC, Wei JCC. Illuminating the connection: Unearthing the mechanisms linking COVID-19 and rheumatoid arthritis. Int J Rheum Dis 2023; 26:2134-2136. [PMID: 37910027 DOI: 10.1111/1756-185x.14870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/02/2023] [Indexed: 11/03/2023]
Affiliation(s)
- Chi-Hsiang Feng
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Cheng Kuo
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Po-Cheng Shih
- Division of Allergy, Immunology, Rheumatology, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Nursing, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Immunology, Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
47
|
Scavone M, Ghali C, Calogiuri M, Sala M, Bossi E, Mencarini T, Bozzi S, Clerici B, Birocchi S, Fioretti A, Bono V, Maugeri N, Marchetti G, Cattaneo M, Podda GM. Impairment of platelet function in both mild and severe COVID-19 patients. Br J Haematol 2023; 203:656-667. [PMID: 37615207 DOI: 10.1111/bjh.19062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Abnormalities of platelet function were reported in patients with severe COVID-19 (severe-C), but few data are available in patients with mild COVID-19 (mild-C) and after COVID-19 recovery. The aim of this study was to investigate platelet parameters in mild-C patients (n = 51), with no evidence of pneumonia, and severe-C patients (n = 49), during the acute phase and after recovery, compared to 43 healthy controls. Both mild-C and severe-C patients displayed increased circulating activated platelets, low δ-granule content (ADP, serotonin), impaired platelet activation by collagen (light transmission aggregometry) and impaired platelet thrombus formation on collagen-coated surfaces under controlled flow conditions (300/s shear rate). The observed abnormalities were more marked in severe-C patients than in mild-C patients. Overall, 61% (30/49) of mild-C and 73% (33/45) of severe-C patients displayed at least one abnormal platelet parameter. In a subgroup of just 13 patients who showed no persisting signs/symptoms of COVID-19 and were re-evaluated at least 1 month after recovery, 11 of the 13 subjects exhibited normalization of platelet parameters. In conclusion, mild abnormalities of platelet parameters were present not only in severe-C but also, albeit to a lesser extent, in mild-C patients during the acute phase of COVID-19 and normalized in most tested patients after clinical recovery.
Collapse
Affiliation(s)
- Mariangela Scavone
- Divisione di Medicina Generale II, ASST Santi Paolo e Carlo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Claudia Ghali
- Divisione di Medicina Generale II, ASST Santi Paolo e Carlo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Mariagrazia Calogiuri
- Divisione di Medicina Generale II, ASST Santi Paolo e Carlo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Matteo Sala
- ASST Santi Paolo e Carlo, Department of Health Sciences, Clinic of Infectious Diseases, San Paolo Hospital, University of Milan, Italy
| | - Elena Bossi
- Divisione di Medicina Generale II, ASST Santi Paolo e Carlo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Tatiana Mencarini
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Silvia Bozzi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Bianca Clerici
- Divisione di Medicina Generale II, ASST Santi Paolo e Carlo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Simone Birocchi
- Divisione di Medicina Generale II, ASST Santi Paolo e Carlo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Antonella Fioretti
- Divisione di Medicina Generale II, ASST Santi Paolo e Carlo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Valeria Bono
- ASST Santi Paolo e Carlo, Department of Health Sciences, Clinic of Infectious Diseases, San Paolo Hospital, University of Milan, Italy
| | - Norma Maugeri
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Marchetti
- ASST Santi Paolo e Carlo, Department of Health Sciences, Clinic of Infectious Diseases, San Paolo Hospital, University of Milan, Italy
| | - Marco Cattaneo
- Divisione di Medicina Generale II, ASST Santi Paolo e Carlo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Gian Marco Podda
- Divisione di Medicina Generale II, ASST Santi Paolo e Carlo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
48
|
Liu Y, Si D, Bai P, Zhu L, Zhang L, Chen Q, Qi Y. CXCL10 May Be Responsible for Susceptibility to Pulmonary Embolism in COVID-19 Patients. J Inflamm Res 2023; 16:4913-4924. [PMID: 37927958 PMCID: PMC10625331 DOI: 10.2147/jir.s431212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
Background Although the potential of coronavirus disease 2019 (COVID-19) patients to develop pulmonary embolism (PE) is widely recognized, the underlying mechanism has not been completely elucidated. This study aimed to identify genes common to COVID-19 and PE to reveal the underlying pathogenesis of susceptibility to PE in COVID-19 patients. Methods COVID-19 genes were obtained from the GEO database and the OMIM, CTD, GeneCards, and DisGeNET databases; PE genes were obtained from the OMIM, CTD, GeneCards, and DisGeNET databases. We overlapped the genes of COVID-19 and PE to obtain common genes for additional analysis, including functional enrichment, protein-protein interaction, and immune infiltration analysis. Hub genes were identified using cytoHubba, a plugin of Cytoscape, and validated using the independent datasets GSE167000 and GSE13535. The genes validated by the above datasets were further validated in clinical samples. Results We obtained 36 genes shared by PE and COVID-19. Functional enrichment and immune infiltration analyses revealed the involvement of cytokines and immune activation. Five genes (CCL2, CXCL10, ALB, EGF, and MKI67) were identified as hub genes common to COVID-19 and PE. CXCL10 was validated in both independent datasets (GSE167000 and GSE13535). Serum levels of CXCL10 in the COVID-19 group and the COVID-19 combined with PE group were significantly higher than those in the healthy control group (P<0.001). In addition, there were significant differences between the COVID-19 group and the COVID-19 combined with PE group (P<0.01). Conclusion Our study reveals common genes shared by PE and COVID-19 and identifies CXCL10 as a possible cause of susceptibility to PE in COVID-19 patients.
Collapse
Affiliation(s)
- Yingli Liu
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, 450003, People’s Republic of China
| | - Dan Si
- Department of Pulmonary and Critical Care Medicine, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, People’s Republic of China
| | - Pingping Bai
- Department of Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, 450003, People’s Republic of China
| | - Li Zhu
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450003, People’s Republic of China
| | - Lili Zhang
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, 450003, People’s Republic of China
| | - Qi Chen
- Department of Pulmonary and Critical Care Medicine, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, 450003, People’s Republic of China
| | - Yong Qi
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, 450003, People’s Republic of China
| |
Collapse
|
49
|
Marchetti S, Gualtieri M, Pozzer A, Lelieveld J, Saliu F, Hansell AL, Colombo A, Mantecca P. On fine particulate matter and COVID-19 spread and severity: An in vitro toxicological plausible mechanism. ENVIRONMENT INTERNATIONAL 2023; 179:108131. [PMID: 37586275 DOI: 10.1016/j.envint.2023.108131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
COVID-19 pandemic had a significant impact on global public health. The spread of the disease was related to the high transmissibility of SARS-CoV-2 virus but incidence and mortality rate suggested a possible relationship with environmental factors. Air pollution has been hypothesized to play a role in the transmission of the virus and the resulting severity of the disease. Here we report a plausible in vitro toxicological mode of action by which fine particulate matter (PM2.5) could promote a higher infection rate of SARS-CoV-2 and severity of COVID-19 disease. PM2.5 promotes a 1.5 fold over-expression of the angiotensin 2 converting enzyme (ACE2) which is exploited by viral particles to enter human lung alveolar cells (1.5 fold increase in RAB5 protein) and increases their inflammatory state (IL-8 and NF-kB protein expression). Our results provide a basis for further exploring the possible synergy between biological threats and air pollutants and ask for a deeper understanding of how air quality could influence new pandemics in the future.
Collapse
Affiliation(s)
- S Marchetti
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Italy
| | - M Gualtieri
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Italy.
| | - A Pozzer
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - J Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - F Saliu
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Italy
| | - A L Hansell
- Centre for Environmental Health and Sustainability, University of Leicester, United Kingdom; National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Environmental Exposures and Health at the University of Leicester, United Kingdom; National Institute for Health Research NIHR Leicester Biomedical Research Centre, Leicester General Hospital, Leicester, United Kingdom
| | - A Colombo
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Italy
| | - P Mantecca
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Italy
| |
Collapse
|
50
|
Castaneda DC, Jangra S, Yurieva M, Martinek J, Callender M, Coxe M, Choi A, García-Bernalt Diego J, Lin J, Wu TC, Marches F, Chaussabel D, Yu P, Salner A, Aucello G, Koff J, Hudson B, Church SE, Gorman K, Anguiano E, García-Sastre A, Williams A, Schotsaert M, Palucka K. Spatiotemporally organized immunomodulatory response to SARS-CoV-2 virus in primary human broncho-alveolar epithelia. iScience 2023; 26:107374. [PMID: 37520727 PMCID: PMC10374611 DOI: 10.1016/j.isci.2023.107374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/04/2023] [Accepted: 07/08/2023] [Indexed: 08/01/2023] Open
Abstract
The COVID-19 pandemic continues to be a health crisis with major unmet medical needs. The early responses from airway epithelial cells, the first target of the virus regulating the progression toward severe disease, are not fully understood. Primary human air-liquid interface cultures representing the broncho-alveolar epithelia were used to study the kinetics and dynamics of SARS-CoV-2 variants infection. The infection measured by nucleoprotein expression, was a late event appearing between day 4-6 post infection for Wuhan-like virus. Other variants demonstrated increasingly accelerated timelines of infection. All variants triggered similar transcriptional signatures, an "early" inflammatory/immune signature preceding a "late" type I/III IFN, but differences in the quality and kinetics were found, consistent with the timing of nucleoprotein expression. Response to virus was spatially organized: CSF3 expression in basal cells and CCL20 in apical cells. Thus, SARS-CoV-2 virus triggers specific responses modulated over time to engage different arms of immune response.
Collapse
Affiliation(s)
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Jan Martinek
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Megan Callender
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Matthew Coxe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Angela Choi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan García-Bernalt Diego
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianan Lin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Te-Chia Wu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Damien Chaussabel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Peter Yu
- Hartford HealthCare Cancer Institute, Hartford, CT 06102, USA
| | - Andrew Salner
- Hartford HealthCare Cancer Institute, Hartford, CT 06102, USA
| | - Gabrielle Aucello
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Jonathan Koff
- Adult Cystic Fibrosis Program, Yale University, New Haven, CT 06519, USA
| | - Briana Hudson
- Nanostring Technologies, Translational Sciences, Seattle, WA 98109, USA
| | - Sarah E. Church
- Nanostring Technologies, Translational Sciences, Seattle, WA 98109, USA
| | - Kara Gorman
- Nanostring Technologies, Translational Sciences, Seattle, WA 98109, USA
| | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| |
Collapse
|