1
|
Correia MR, Han SW, Escalante T, Moreira V. The role of the cyclooxygenase-2 pathway in tissue ischemia and revascularization following skeletal muscle injury induced by bothropic snake venom. Microvasc Res 2025; 157:104760. [PMID: 39510245 DOI: 10.1016/j.mvr.2024.104760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/14/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
Bothrops asper venom (Bav) contains metalloproteinases that disrupt the microvascular system, impairing muscle tissue regeneration after injury. This study investigated the impact of the cyclooxygenase-2 (COX-2) pathway on vascular injury and revascularization in muscle injuries induced by Bav. Mice were injected with Bav into the gastrocnemius muscle and treated with lumiracoxib, a selective COX-2 inhibitor, 30 min, 2 days, and 6 days post-Bav injection. Muscle tissue was analyzed at 24 h, 7 days, and 21 days post-injection. A decrease in COX-2 expression at 24 h post-Bav injection indicated significant necrosis and tissue loss. Both Bav injection and lumiracoxib treatment influenced the decrease of prostaglandin (PG)D2 and PGE2 production. Seven and 21 days post-Bav injections, COX-2 expression increased, along with PGDs levels unaffected by lumiracoxib, indicating that the other isoform COX-1 pathway could contribute to the release of PGs. Bav/lumiracoxib treated animals presented exacerbated limb ischemia, implying that COX-2-derived prostaglandins preserve vessel integrity. CD31, an angiogenesis marker, initially (24 h) decreased post-Bav injection but increased at 7 and 21 days in Bav/lumiracoxib mice, suggesting a down-modulatory role for COX-2-derived prostaglandins in early angiogenesis and tissue regeneration. Vascular endothelial growth factor (VEGF) production rose 7 days post-Bav injection, supporting its role in angiogenesis. Previous treatment with lumiracoxib promoted release of VEGF levels 21 days post-Bav injury showing that the inhibition of COX-2 pathway in the early stage of revascularization stimulates the neovascularization regulated by elevated release of VEGF. Similarly, metalloproteinases (MMPs), such as MMP-9, MMP-10, and MMP-13, crucial for vascular remodeling, were elevated 21 days after Bav/lumiracoxib treatment. In conclusion, the COX-2 pathway is essential to decrease the high grade of ischemia caused by acute injury induced by Bav. However, the decrease of activity in the COX-2 pathway in the first stages of revascularization contributes to the elevated production of key pro-angiogenic mediators that up-regulate the restoration of microvasculature and blood flow in muscle tissue injured by botropic venoms.
Collapse
Affiliation(s)
- Melissa Rodrigues Correia
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - Sang Won Han
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo SP, Brazil
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Vanessa Moreira
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Wang S, Wang M, Jiang L. Different trend of muscle wasting extracted from computed tomography in patients with severe acute pancreatitis. Abdom Radiol (NY) 2024:10.1007/s00261-024-04741-7. [PMID: 39681655 DOI: 10.1007/s00261-024-04741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
PURPOSE The trend of muscle wasting in patients with acute severe and moderately severe pancreatitis (AP) remains unclear. This retrospective study aimed to investigate the trend of skeletal muscle area (SMA) changes and its impact on patients with severe and moderately severe AP. METHODS Patients diagnosed with AP who had repeated CT scans after intensive care unit (ICU) admission were included. The patients were categorized into moderately severe AP or severe AP groups. The generalized additive mixed model (GAMM) was used to analyze the SMA trajectories. RESULTS A total of 126 patients were included. The patients in the severe AP group had more rapid muscle wasting during the first 3 weeks following ICU admission. The SMA decreased by 1.1 cm2 (95% CI: 1.3 to 0.8) per day in the severe AP group, while the SMA decreased by 0.5 cm2 (95% CI: 0.6 to 0.4) in the moderately severe AP group in the GAMM model. A larger change in the SMA during the first 10 days after admission was significantly associated with prolonged length of hospital stay (LOS) (β = - 0.205, P = 0.036). CONCLUSIONS Patients with severe AP experienced more muscle wasting during the first 3 weeks after ICU admission. A larger reduction in the SMA was associated with prolonged LOS. CLINICAL IMPLICATIONS Different patterns of muscle wasting were present during the first 3 weeks after ICU admission in moderately severe and severe AP patients. Accordingly, different nutrition and rehabilitation strategies might be employed depending upon the severity of AP.
Collapse
Affiliation(s)
- Shengqi Wang
- Department of Emergency Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Meiping Wang
- Department of Critical Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Jiang
- Department of Critical Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Sarmento T, Ferreira RS, Franco OL. Plant-Based Diet and Sports Performance. ACS OMEGA 2024; 9:47939-47950. [PMID: 39676988 PMCID: PMC11635497 DOI: 10.1021/acsomega.4c07560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 12/17/2024]
Abstract
Recently, interest in plant-based diets has grown significantly, driven by health and environmental concerns. Plant-based diets offer potential health benefits, including decreased risk of cardiovascular disease, weight management, and blood glucose regulation. This diet profile is rich in complex carbohydrates, antioxidants, dietary fiber, and phytochemicals. However, antinutrients in some plant foods can make nutrient absorption difficult, necessitating careful dietary planning. Plant-based diets can also improve sports performance; in addition, they can positively influence the intestinal microbial community, which can promote health and performance. The present study covered a review from 1986 to 2024 and involved an experimental design with human participants. The main objective was to evaluate the impact of plant-based diets on sports performance. Recent research suggests that plant-based diets do not harm athletic performance and may positively impact sports performance by improving blood flow and reducing oxidative stress. These findings have potential clinical significance, particularly for athletes seeking to optimize their physical capabilities through dietary interventions.
Collapse
Affiliation(s)
- Tatiana
Cantarella Sarmento
- S-Inova
Biotech Postgraduate in Biotechnology, Catholic
University Dom Bosco (UCDB), Campo
Grande 79117-900, Brazil
| | | | - Octávio Luiz Franco
- S-Inova
Biotech Postgraduate in Biotechnology, Catholic
University Dom Bosco (UCDB), Campo
Grande 79117-900, Brazil
- Center
for Proteomic and Biochemical Analysis, Postgraduate Program in Genomic
Sciences and Biotechnology, Catholic University
of Brasilia (UCB), Brasilia 70990-160, Brazil
| |
Collapse
|
4
|
Elimam H, Gauvin J, Huynh DN, Ménard L, Al-Hawat ML, Harb D, Lubell WD, Carpentier AC, Ong H, Marleau S. Targeting CD36 With EP 80317 Reduces Remote Inflammatory Response to Hind Limb Ischemia-Reperfusion in Mice. J Biochem Mol Toxicol 2024; 38:e70057. [PMID: 39552437 PMCID: PMC11582942 DOI: 10.1002/jbt.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Reperfusion of ischemic skeletal muscle triggers oxidative stress and an immediate inflammatory reaction, leading to damage of distant organs such as the lungs. The inflammatory process implicates numerous mediators, including cytokines, chemokines, and arachidonic acid metabolites. In the orchestration of the inflammatory cascade, a critical role is played by the cluster of differentiation-36 receptor (CD36), a scavenger receptor class B protein (SR-B2) which is expressed on macrophages and functions as a Toll-like receptor coreceptor. A mouse model of hind limb ischemia-reperfusion has been used to investigate the interplay between CD36 signaling and remote inflammation: leukocyte recruitment, regulation of the nucleotide-binding domain leucin-rich repeat and pyrin-containing receptor 3 (NLRP3) inflammasome, and release of nuclear factor-kappa B (NF-ĸB) and arachidonic acid metabolites. Levels of reactive oxygen species, inflammatory mediators, and gene expression were measured in blood and lung tissue samples collected from anesthetized mice on which unilateral hind limb ischemia was induced by rubber band constriction for 30 min followed by reperfusion for 3 h. The CD36 modulator EP 80317, a member of the growth hormone releasing peptide 6 family, was employed as a pharmacological agent to mitigate distant lung injury following skeletal limb ischemia-reperfusion. Targeting CD36 on monocytes/macrophages, EP 80317 abated pro-inflammatory signaling and transcriptional activity encompassing lipid and cytokine mediators. Targeting CD36 was shown to offer promise for curtailing tissue injury following hind limb ischemia-reperfusion.
Collapse
Affiliation(s)
- Hanan Elimam
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Jade Gauvin
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - David N Huynh
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Liliane Ménard
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | | | - Diala Harb
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - William D Lubell
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
| | - André C Carpentier
- Department of Medicine, Division of Endocrinology, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Huy Ong
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Sylvie Marleau
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
5
|
Ruggieri E, Di Domenico E, Locatelli AG, Isopo F, Damanti S, De Lorenzo R, Milan E, Musco G, Rovere-Querini P, Cenci S, Vénéreau E. HMGB1, an evolving pleiotropic protein critical for cellular and tissue homeostasis: Role in aging and age-related diseases. Ageing Res Rev 2024; 102:102550. [PMID: 39427887 DOI: 10.1016/j.arr.2024.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Aging is a universal biological process characterized by a progressive, cumulative decline in homeostatic capabilities and physiological functions, which inevitably increases vulnerability to diseases. A number of molecular pathomechanisms and hallmarks of aging have been recognized, yet we miss a thorough understanding of their complex interconnectedness. This review explores the molecular and cellular mechanisms underlying human aging, with a focus on the multiple roles of high mobility group Box 1 protein (HMGB1), the archetypal damage-associated molecular pattern (DAMP) molecule. In the nucleus, this non-histone chromatin-associated protein functions as a DNA chaperone and regulator of gene transcription, influencing DNA structure and gene expression. Moreover, this versatile protein can translocate to the cytoplasm to orchestrate other processes, such as autophagy, or be unconventionally secreted into the extracellular environment, where it acts as a DAMP, combining inflammatory and regenerative properties. Notably, lower expression of HMGB1 within the cell and its heightened extracellular release have been associated with diverse age-associated traits, making it a suitable candidate as a universal biomarker of aging. In this review, we outline the evidence implicating HMGB1 in aging, also in light of an evolutionary perspective on its functional pleiotropy, and propose critical issues that need to be addressed to gauge the value of HMGB1 as a potential biomarker across age-related diseases and therapeutic target to promote healthy longevity.
Collapse
Affiliation(s)
- Elena Ruggieri
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Erika Di Domenico
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | - Flavio Isopo
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Sarah Damanti
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Rebecca De Lorenzo
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Enrico Milan
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | - Patrizia Rovere-Querini
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Simone Cenci
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy.
| | - Emilie Vénéreau
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy.
| |
Collapse
|
6
|
Wu J, Tang J, Huang D, Wang Y, Zhou E, Ru Q, Xu G, Chen L, Wu Y. Effects and mechanisms of APP and its cleavage product Aβ in the comorbidity of sarcopenia and Alzheimer's disease. Front Aging Neurosci 2024; 16:1482947. [PMID: 39654807 PMCID: PMC11625754 DOI: 10.3389/fnagi.2024.1482947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Sarcopenia and AD are both classic degenerative diseases, and there is growing epidemiological evidence of their comorbidity with aging; however, the mechanisms underlying the biology of their commonality have not yet been thoroughly investigated. APP is a membrane protein that is expressed in tissues and is expressed not only in the nervous system but also in the NMJ and muscle. Deposition of its proteolytic cleavage product, Aβ, has been described as a central component of AD pathogenesis. Recent studies have shown that excessive accumulation and aberrant expression of APP in muscle lead to pathological muscle lesions, but the pathogenic mechanism by which APP and its proteolytic cleavage products act in skeletal muscle is less well understood. By summarizing and analyzing the literature concerning the role, pathogenicity and pathological mechanisms of APP and its cleavage products in the nervous system and muscles, we aimed to explore the intrinsic pathological mechanisms of myocerebral comorbidities and to provide new perspectives and theoretical foundations for the prevention and treatment of AD and sarcopenia comorbidities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| |
Collapse
|
7
|
Xu M, Zhang Q, Liu X, Lu L, Li Z. Impact of Alpha-Ketoglutarate on Skeletal Muscle Health and Exercise Performance: A Narrative Review. Nutrients 2024; 16:3968. [PMID: 39599754 PMCID: PMC11597751 DOI: 10.3390/nu16223968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
AKG, a central metabolite in the Krebs cycle, plays a vital role in cellular energy production and nitrogen metabolism. This review explores AKG's potential therapeutic applications in skeletal muscle health and exercise performance, focusing on its mechanisms for promoting muscle regeneration and counteracting muscle atrophy. A literature search was conducted using the PubMed, Web of Science, and Scopus databases, yielding 945 articles published up to 31 October 2024. Of these, 112 peer-reviewed articles met the inclusion criteria and formed the basis of this review. AKG supports muscle recovery by stimulating muscle satellite cells (MuSCs) and macrophage polarization, aiding muscle repair and reducing fibrosis. Additionally, AKG shows promise in preventing muscle atrophy by enhancing protein synthesis, inhibiting degradation pathways, and modulating inflammatory responses, making it relevant in conditions like sarcopenia, cachexia, and injury recovery. For athletes and active individuals, AKG supplementation has enhanced endurance, reduced fatigue, and supported faster post-exercise recovery. Despite promising preliminary findings, research gaps remain in understanding AKG's long-term effects, optimal dosage, and specific pathways, particularly across diverse populations. Further research, including large-scale clinical trials, is essential to clarify AKG's role in muscle health and to optimize its application as a therapeutic agent for skeletal muscle diseases and an enhancer of physical performance. This review aims to provide a comprehensive overview of AKG's benefits and identify future directions for research in both clinical and sports settings.
Collapse
Affiliation(s)
- Miaomiao Xu
- School of Physical Education and Health, Guangzhou University of Chinese Medicine, Guangzhou 510405, China;
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qiao Zhang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaoguang Liu
- College of Sports and Health, Guangzhou Sport University, Guangzhou 510500, China
| | - Liming Lu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhaowei Li
- School of Physical Education and Health, Guangzhou University of Chinese Medicine, Guangzhou 510405, China;
| |
Collapse
|
8
|
Wojciuk B, Frulenko I, Brodkiewicz A, Kita D, Baluta M, Jędrzejczyk F, Budkowska M, Turkiewicz K, Proia P, Ciechanowicz A, Kostrzewa-Nowak D, Nowak R. The Complement System as a Part of Immunometabolic Post-Exercise Response in Adipose and Muscle Tissue. Int J Mol Sci 2024; 25:11608. [PMID: 39519159 PMCID: PMC11545998 DOI: 10.3390/ijms252111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The precise molecular processes underlying the complement's activation, which follows exposure to physical stress still remain to be fully elucidated. However, some possible mechanisms could play a role in initiating changes in the complement's activity, which are observed post-exposure to physical stress stimuli. These are mainly based on metabolic shifts that occur in the microenvironment of muscle tissue while performing its function with increased intensity, as well as the adipose tissue's role in sterile inflammation and adipokine secretion. This review aims to discuss the current opinions on the possible link between the complement activation and diet, age, sex, and health disorders with a particular emphasis on endocrinopathies and, furthermore, the type of physical activity and overall physical fitness. It has been indicated that regular physical activity incorporated into therapeutic strategies potentially improves the management of particular diseases, such as, e.g., autoimmune conditions. Moreover, it represents a favorable influence on immunoaging processes. A better understanding of the complement system's interaction with physical activity will support established clinical therapies targeting complement components.
Collapse
Affiliation(s)
- Bartosz Wojciuk
- Department of Diagnostic Immunology, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| | - Ignacy Frulenko
- Pomeranian Medical University in Szczecin, 1 Rybacka St., 70-204 Szczecin, Poland;
- Department of Pathology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej St., 71-242 Szczecin, Poland
| | - Andrzej Brodkiewicz
- Department of Pediatrics, Pediatric Nephrology, Dialysis and Acute Intoxications, Pomeranian Medical University, 4 Mączna St., 70-204 Szczecin, Poland; (A.B.); (D.K.); (M.B.); (F.J.)
| | - Dagmara Kita
- Department of Pediatrics, Pediatric Nephrology, Dialysis and Acute Intoxications, Pomeranian Medical University, 4 Mączna St., 70-204 Szczecin, Poland; (A.B.); (D.K.); (M.B.); (F.J.)
| | - Monica Baluta
- Department of Pediatrics, Pediatric Nephrology, Dialysis and Acute Intoxications, Pomeranian Medical University, 4 Mączna St., 70-204 Szczecin, Poland; (A.B.); (D.K.); (M.B.); (F.J.)
| | - Filip Jędrzejczyk
- Department of Pediatrics, Pediatric Nephrology, Dialysis and Acute Intoxications, Pomeranian Medical University, 4 Mączna St., 70-204 Szczecin, Poland; (A.B.); (D.K.); (M.B.); (F.J.)
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| | - Karolina Turkiewicz
- Department of Laboratory Diagnostics, University Clinical Hospital No. 2, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
| | - Andrzej Ciechanowicz
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| | - Dorota Kostrzewa-Nowak
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdańsk, 107 Hallera St., 80-416 Gdańsk, Poland
| | - Robert Nowak
- Department of Pathology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej St., 71-242 Szczecin, Poland
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland
| |
Collapse
|
9
|
Qin J, Cai Y, Wang Y, Sun N, An N, Yang J, Li Y, Qin S, Du R. Mitigative Effect and Mechanism of Caffeic Acid Combined with Umbilical Cord-Mesenchymal Stem Cells on LPS-Induced Mastitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23271-23285. [PMID: 39388597 DOI: 10.1021/acs.jafc.4c05444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Mastitis is an inflammation of the mammary gland tissue that can lead to decreased milk production and altered milk composition, carrying serious implications for the safety of dairy products. Although both caffeic acid (CA) and umbilical cord-mesenchymal stem cells (UC-MSCs) showed potential anti-inflammatory and immunomodulatory properties, little is known about their combined roles in treating mastitis. Here, we report the combined effects and mechanisms of CA and UC-MSCs on lipopolysaccharide (LPS)-induced mastitis. Based on the network pharmacological analysis, the potential relevant genes involved in the alleviating effects of CA on LPS-induced mastitis were inferred. In LPS-treated mammary epithelial cells, CA or/and UC-MSC conditioned medium (UC-MSC-CM) inhibited the phosphorylation of p65, p50, p38, IκB, and MKK3/6 proteins and the expression of downstream inflammatory factors TNF-α, IL-1β, IL-6, IL-8, and COX-2. Additionally, CA or/and hydrogel-loaded UC-MSCs also suppressed the activation of the above inflammatory pathway, leading to the alleviation of pathological damages in the LPS-induced mouse mastitis model. UC-MSCs exhibited more significant effects than CA, and the combined treatment of both was more effective. Our study sheds light on the synergistic and complementary effects of CA and UC-MSCs in alleviating mastitis, offering clues for understanding the regulation of the p38-MAPK/NF-κB↔TNF-α signal transduction loop in the tumor necrosis factor (TNF) pathway as a potential mechanism. This study provides a theoretical basis for developing a novel antibiotic alternative treatment of mastitis that may contribute to reducing economic losses in animal husbandry and protecting public health safety.
Collapse
Affiliation(s)
- Jian Qin
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
- College of Life Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China
- Center of Experiment Teaching, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yang Cai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yitong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Nannan Sun
- College of Life Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Nan An
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Jie Yang
- College of Life Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yingliang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Sen Qin
- School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Rong Du
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| |
Collapse
|
10
|
Martins RA, Costa FR, Pires L, Santos M, Santos GS, Lana JV, Costa BR, Santos N, de Macedo AP, Kruel A, Lana JF. Regenerative Inflammation: The Mechanism Explained from the Perspective of Buffy-Coat Protagonism and Macrophage Polarization. Int J Mol Sci 2024; 25:11329. [PMID: 39457111 PMCID: PMC11508762 DOI: 10.3390/ijms252011329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The buffy-coat, a layer of leukocytes and platelets obtained from peripheral blood centrifugation, plays a crucial role in tissue regeneration and the modulation of inflammatory responses. This article explores the mechanisms of regenerative inflammation, highlighting the critical role of the buffy-coat in influencing macrophage polarization and its therapeutic potential. Macrophage polarization into M1 and M2 subtypes is pivotal in balancing inflammation and tissue repair, with M1 macrophages driving pro-inflammatory responses and M2 macrophages promoting tissue healing and regeneration. The buffy-coat's rich composition of progenitor cells, cytokines, and growth factors-such as interleukin-10, transforming growth factor-β, and monocyte colony-stimulating factor-supports the transition from M1 to M2 macrophages, enhancing tissue repair and the resolution of inflammation. This dynamic interaction between buffy-coat components and macrophages opens new avenues for therapeutic strategies aimed at improving tissue regeneration and managing inflammatory conditions, particularly in musculoskeletal diseases such as osteoarthritis. Furthermore, the use of buffy-coat-derived therapies in conjunction with other regenerative modalities, such as platelet-rich plasma, holds promise for more effective clinical outcomes.
Collapse
Affiliation(s)
| | - Fábio Ramos Costa
- Department of Orthopedics, FC Sports Traumatology, Salvador 40296-210, Brazil;
| | - Luyddy Pires
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil; (L.P.); (N.S.); (A.P.d.M.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, Brazil;
| | - Márcia Santos
- Nutritional Sciences, Metropolitan Union of Education and Culture, Salvador 42700-000, Brazil;
| | - Gabriel Silva Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil; (L.P.); (N.S.); (A.P.d.M.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, Brazil;
| | - João Vitor Lana
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, Brazil;
| | | | - Napoliane Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil; (L.P.); (N.S.); (A.P.d.M.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, Brazil;
| | - Alex Pontes de Macedo
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil; (L.P.); (N.S.); (A.P.d.M.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, Brazil;
| | - André Kruel
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, Brazil;
| | - José Fábio Lana
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil; (L.P.); (N.S.); (A.P.d.M.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, Brazil;
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, Brazil;
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, Brazil
- Medical School, Jaguariúna University Center (UniFAJ), Jaguariúna 13911-094, Brazil
| |
Collapse
|
11
|
Zaid NSN, Muhamad AS, Jawis MN, Ooi FK, Mohamed M, Mohamud R, Hamdan NF, Jusoh N. The Effect of Exercise on Immune Response in Population with Increased Risk Factors for Cardiovascular Disease: A Systematic Review. Malays J Med Sci 2024; 31:83-108. [PMID: 39416746 PMCID: PMC11477469 DOI: 10.21315/mjms2024.31.5.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/04/2024] [Indexed: 10/19/2024] Open
Abstract
This systematic review aimed to provide information on existing interventional studies that evaluate the efficacy of exercise in populations with increased cardiovascular disease (CVD) risk factors through immune functional perspectives. A literature search was conducted in four databases: PubMed, Scopus, Taylor & Francis and ScienceDirect from January 2012 to February 2023. The articles were screened and evaluated for quality before data were extracted. The review protocol was registered at PROSPERO (CRD42022321704). In total, 18 studies were included for quality appraisal and synthesised evidence indicated that exercise contributes to enhancing the functioning of both innate and adaptive immune responses, potentially serving as an anti-immunosenescent response to exercise in individuals with elevated CVD risk factors. Furthermore, the review emphasised that exercise, irrespective of its type, intensity or mode, was well tolerated by individuals at increased risk for CVD and may have significant implications in generating anti-inflammatory effects.
Collapse
Affiliation(s)
- Nik Siti Nik Zaid
- Exercise and Sports Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Ayu Suzailiana Muhamad
- Exercise and Sports Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Mohd Nidzam Jawis
- Exercise and Sports Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Foong Kiew Ooi
- Exercise and Sports Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nor Faeiza Hamdan
- Exercise and Sports Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Normah Jusoh
- Faculty of Sports Science and Coaching, Universiti Pendidikan Sultan Idris, Perak, Malaysia
| |
Collapse
|
12
|
Cacciatore S, Calvani R, Esposito I, Massaro C, Gava G, Picca A, Tosato M, Marzetti E, Landi F. Emerging Targets and Treatments for Sarcopenia: A Narrative Review. Nutrients 2024; 16:3271. [PMID: 39408239 PMCID: PMC11478655 DOI: 10.3390/nu16193271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Sarcopenia is characterized by the progressive loss of skeletal muscle mass, strength, and function, significantly impacting overall health and quality of life in older adults. This narrative review explores emerging targets and potential treatments for sarcopenia, aiming to provide a comprehensive overview of current and prospective interventions. METHODS The review synthesizes current literature on sarcopenia treatment, focusing on recent advancements in muscle regeneration, mitochondrial function, nutritional strategies, and the muscle-microbiome axis. Additionally, pharmacological and lifestyle interventions targeting anabolic resistance and neuromuscular junction integrity are discussed. RESULTS Resistance training and adequate protein intake remain the cornerstone of sarcopenia management. Emerging strategies include targeting muscle regeneration through myosatellite cell activation, signaling pathways, and chronic inflammation control. Gene editing, stem cell therapy, and microRNA modulation show promise in enhancing muscle repair. Addressing mitochondrial dysfunction through interventions aimed at improving biogenesis, ATP production, and reducing oxidative stress is also highlighted. Nutritional strategies such as leucine supplementation and anti-inflammatory nutrients, along with dietary modifications and probiotics targeting the muscle-microbiome interplay, are discussed as potential treatment options. Hydration and muscle-water balance are emphasized as critical in maintaining muscle health in older adults. CONCLUSIONS A combination of resistance training, nutrition, and emerging therapeutic interventions holds potential to significantly improve muscle function and overall health in the aging population. This review provides a detailed exploration of both established and novel approaches for the prevention and management of sarcopenia, highlighting the need for further research to optimize these strategies.
Collapse
Affiliation(s)
- Stefano Cacciatore
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Ilaria Esposito
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
| | - Claudia Massaro
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Giordana Gava
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
- Department of Medicine and Surgery, LUM University, Strada Statale 100 Km 18, 70100 Casamassima, Italy
| | - Matteo Tosato
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| |
Collapse
|
13
|
Obuchowicz R, Obuchowicz B, Nurzynska K, Urbanik A, Pihut M. Population Analysis of Masseter Muscle Tension Using Shear Wave Ultrasonography across Different Disease States. J Clin Med 2024; 13:5259. [PMID: 39274477 PMCID: PMC11396082 DOI: 10.3390/jcm13175259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Objective: This study aimed to evaluate the distribution and trends of masseter muscle tension in patients with temporomandibular joint (TMJ) pain, examining gender-specific differences and the impact of various TMJ disorders. Methods: From January 2020 to June 2024, a total of 734 patients presenting with facial pain radiating to the head and neck, localized around and extending from the TMJ, were referred for ultrasonographic examination. After applying exclusion criteria, 535 patients (72.9%) were included in the study. The patient cohort consisted of 343 females (64.1%) and 192 males (35.9%), with muscle tension measured using the Aixplorer ultrasound system equipped with a shear wave device. Data were collected and analyzed across different age groups and TMJ conditions, including "no changes", "exudate", "arthrosis", and "disc displacement". Results: The study found that males exhibited higher muscle tension across all conditions, particularly in the "no changes" (40.4 kPa vs. 32.1 kPa, 25.9% higher) and "exudate" (38.5 kPa vs. 29.7 kPa, 29.6% higher) categories, indicating increased muscle strain and inflammation during middle age. In females, a trend of decreasing muscle tension with age was observed, with a significant reduction from 36.2 kPa in the 20-30 age group to 24.3 kPa in the 60-70 age group (32.9% reduction), suggesting a reduction in muscle mass or strength due to aging. Both genders showed high muscle tension in the presence of exudate, with females peaking in the 40-50 age group at 37.1 kPa and males peaking earlier in the 20-30 age group at 41.2 kPa (10.9% higher in males), highlighting potential gender differences in inflammatory response. In the arthrosis group, males displayed a consistent increase in muscle tension with age, peaking at 37.5 kPa in the 50-60 age group (50.7% increase from the 20-30 age group), while females showed high tension, particularly in the 40-50 age group at 31.0 kPa (82.4% higher compared to the 20-30 age group), indicating the need for targeted joint health interventions in middle-aged women. Conclusions: This study reveals significant gender-specific differences in masseter muscle tension among patients with TMJ pain. Males were found to be more affected by muscle strain and inflammation during middle age, whereas females showed a significant decrease in muscle tension with age. The presence of exudate significantly impacted muscle tension across all age groups for both genders. These findings underscore the importance of tailored clinical interventions and preventive strategies to manage TMJ disorders effectively.
Collapse
Affiliation(s)
- Rafal Obuchowicz
- Department of Diagnostic Imaging, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Barbara Obuchowicz
- Department of Conservative Dentistry with Endodontics, Jagiellonian University Collegium Medicum, Montelupich 4, 31-155 Cracow, Poland
| | - Karolina Nurzynska
- Institute of Informatics, Faculty of Automata Control, Electronics, and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Andrzej Urbanik
- Department of Diagnostic Imaging, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Malgorzata Pihut
- Prosthodontic and Orthodontic Department, Dental Institute, Jagiellonian University Medical College, 31-155 Krakow, Poland
| |
Collapse
|
14
|
Liu H, Yuan S, Zheng K, Liu G, Li J, Ye B, Yin L, Li Y. IL-17 signaling pathway: A potential therapeutic target for reducing skeletal muscle inflammation. Cytokine 2024; 181:156691. [PMID: 38986253 DOI: 10.1016/j.cyto.2024.156691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The interleukin-17 (IL-17) signaling pathway is intricately linked with immunity and inflammation; however, the association between the IL-17 signaling pathway and skeletal muscle inflammation remains poorly understood. The study aims to investigate the role of the IL-17 signaling pathway in skeletal muscle inflammation and to evaluate the therapeutic potential of anti-IL-17 antibodies in reducing muscle inflammation. METHODS A skeletal muscle inflammation model was induced by cardiotoxin (CTX) injection in C57BL6/J mice. Following treatment with an anti-IL-17 antibody, we conducted a comprehensive analysis integrating single-cell RNA sequencing (scRNA-seq), bioinformatics, enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and Western blot techniques to elucidate underlying mechanisms. RESULTS scRNA-seq analysis revealed a significant increase in neutrophil numbers and activity in inflamed skeletal muscle compared to other cell types, including macrophages, T cells, B cells, endothelial cells, fast muscle cells, fibroblasts, and skeletal muscle satellite cells. The top 30 differentially expressed genes within neutrophils, along with 55 chemokines, were predominantly enriched in the IL-17 signaling pathway. Moreover, the IL-17 signaling pathway exhibited heightened expression in inflamed skeletal muscle, particularly within neutrophils. Treatment with anti-IL-17 antibody resulted in the suppression of IL-17 signaling pathway expression, accompanied by reduced levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, as well as decreased numbers and activity of Ly6g+/Mpo+ neutrophils compared to CTX-induced skeletal muscle inflammation. CONCLUSION Our findings suggest that the IL-17 signaling pathway plays a crucial role in promoting inflammation within skeletal muscle. Targeting this pathway may hold promise as a therapeutic strategy for ameliorating the inflammatory micro-environment and reducing cytokine production.
Collapse
Affiliation(s)
- Hongwen Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China; Department of Discipline Construction Office, Panzhihua Central Hospital, Panzhihua, Sichuan Province, China
| | - Shiguo Yuan
- Department of Orthopaedic, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, Hainan Province, China; Department of Orthopaedic, Affiliated Hospital of Chinese Medicine, Hainan Medical University, Haikou, Hainan Province, China
| | - Kai Zheng
- Department of Orthopaedic, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, Hainan Province, China; Department of Orthopaedic, Affiliated Hospital of Chinese Medicine, Hainan Medical University, Haikou, Hainan Province, China
| | - Gaofeng Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Junhua Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Baofei Ye
- Department of Orthopaedic, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, Hainan Province, China; Department of Orthopaedic, Affiliated Hospital of Chinese Medicine, Hainan Medical University, Haikou, Hainan Province, China
| | - Li Yin
- Department of Discipline Construction Office, Panzhihua Central Hospital, Panzhihua, Sichuan Province, China.
| | - Yikai Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China; The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
15
|
Miyauchi H, Okubo K, Iida K, Kawakami H, Takayama K, Hayashi Y, Haruta J, Sasaki J, Hayashi K, Hirahashi J. Multiple site inflammation and acute kidney injury in crush syndrome. Front Pharmacol 2024; 15:1458997. [PMID: 39281284 PMCID: PMC11392879 DOI: 10.3389/fphar.2024.1458997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Crush syndrome, which frequently occurs in earthquake disasters, often leads to rhabdomyolysis induced acute kidney injury (RIAKI). Recent findings indicate that systemic inflammatory response syndrome (SIRS) exacerbates muscle collapse, contributing to RIAKI. The purpose of this study is to investigate the involvement of multiple site inflammation, including intraperitoneal, in crush syndrome. In a mouse model of RIAKI, elevated levels of inflammatory mediators such as TNFα, IL-6, myoglobin, and dsDNA were observed in serum and the peritoneal cavity, peaking earlier in the intraperitoneal cavity than in serum or urine. Our previously developed novel peptide inhibiting leukocyte extracellular traps was administered intraperitoneally and blocked all of these mediators in the intraperitoneal cavity and serum, ameliorating muscle damage and consequent RIAKI. Although further studies are needed to determine whether intraperitoneal inflammation associated with muscle collapse can lead to systemic inflammation, resulting in more severe and prolonged muscle damage and renal injury, early suppression of multiple site inflammation, including intraperitoneal, might be an effective therapeutic target.
Collapse
Affiliation(s)
- Hiroaki Miyauchi
- Department of General Medicine Education, School of Medicine, Keio University, Tokyo, Japan
- Department of Endocrinology, Metabolism and Nephrology, School of Medicine, Keio University, Tokyo, Japan
| | - Koshu Okubo
- Department of General Medicine Education, School of Medicine, Keio University, Tokyo, Japan
| | - Kiriko Iida
- Division of Food and Nutrition, Graduate School of Human Sciences, Kyoritsu Women's University, Tokyo, Japan
| | - Hiroshi Kawakami
- Division of Food and Nutrition, Graduate School of Human Sciences, Kyoritsu Women's University, Tokyo, Japan
| | - Kentaro Takayama
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
- Laboratory of Environmental Biochemistry Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Junji Haruta
- Department of General Medicine Education, School of Medicine, Keio University, Tokyo, Japan
- Medical Education Center, School of Medicine, Keio University, Tokyo, Japan
| | - Junichi Sasaki
- Department of General Medicine Education, School of Medicine, Keio University, Tokyo, Japan
- Department of Emergency and Critical Care Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Kaori Hayashi
- Department of Endocrinology, Metabolism and Nephrology, School of Medicine, Keio University, Tokyo, Japan
| | - Junichi Hirahashi
- Department of General Medicine Education, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
16
|
da Silva MOL, Figueiredo CM, Neris RLS, Guimarães-Andrade IP, Gavino-Leopoldino D, Miler-da-Silva LL, Valença HDM, Ladislau L, de Lima CVF, Coccarelli FM, Benjamim CF, Assunção-Miranda I. Chikungunya and Mayaro Viruses Induce Chronic Skeletal Muscle Atrophy Triggered by Pro-Inflammatory and Oxidative Response. Int J Mol Sci 2024; 25:8909. [PMID: 39201595 PMCID: PMC11354814 DOI: 10.3390/ijms25168909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 09/02/2024] Open
Abstract
Chikungunya (CHIKV) and Mayaro (MAYV) viruses are arthritogenic alphaviruses that promote an incapacitating and long-lasting inflammatory muscle-articular disease. Despite studies pointing out the importance of skeletal muscle (SkM) in viral pathogenesis, the long-term consequences on its physiology and the mechanism of persistence of symptoms are still poorly understood. Combining molecular, morphological, nuclear magnetic resonance imaging, and histological analysis, we conduct a temporal investigation of CHIKV and MAYV replication in a wild-type mice model, focusing on the impact on SkM composition, structure, and repair in the acute and late phases of infection. We found that viral replication and induced inflammation promote a rapid loss of muscle mass and reduction in fiber cross-sectional area by upregulation of muscle-specific E3 ubiquitin ligases MuRF1 and Atrogin-1 expression, both key regulators of SkM fibers atrophy. Despite a reduction in inflammation and clearance of infectious viral particles, SkM atrophy persists until 30 days post-infection. The genomic CHIKV and MAYV RNAs were still detected in SkM in the late phase, along with the upregulation of chemokines and anti-inflammatory cytokine expression. In agreement with the involvement of inflammatory mediators on induced atrophy, the neutralization of TNF and a reduction in oxidative stress using monomethyl fumarate, an agonist of Nrf2, decreases atrogen expression and atrophic fibers while increasing weight gain in treated mice. These data indicate that arthritogenic alphavirus infection could chronically impact body SkM composition and also harm repair machinery, contributing to a better understanding of mechanisms of arthritogenic alphavirus pathogenesis and with a description of potentially new targets of therapeutic intervention.
Collapse
Affiliation(s)
- Mariana Oliveira Lopes da Silva
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Camila Menezes Figueiredo
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Rômulo Leão Silva Neris
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Iris Paula Guimarães-Andrade
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Daniel Gavino-Leopoldino
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Leonardo Linhares Miler-da-Silva
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Helber da Maia Valença
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (H.d.M.V.)
| | - Leandro Ladislau
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (H.d.M.V.)
| | - Caroline Victorino Felix de Lima
- National Center for Structural Biology and Bioimaging (CENABio), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (C.V.F.d.L.); (F.M.C.)
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro 22281-100, Brazil
| | - Fernanda Meireles Coccarelli
- National Center for Structural Biology and Bioimaging (CENABio), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (C.V.F.d.L.); (F.M.C.)
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro 22281-100, Brazil
| | - Claudia Farias Benjamim
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil;
| | - Iranaia Assunção-Miranda
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| |
Collapse
|
17
|
Tang D, Wu S, Kong M, Liu Z, Li Z, Han Y, Gong Y, Hu J. A Fluorescent Lateral Flow Immunoassay for the Detection of Skeletal Muscle Troponin I in Serum for Muscle Injury Monitoring at the Point of Care. BIOSENSORS 2024; 14:381. [PMID: 39194610 DOI: 10.3390/bios14080381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/29/2024]
Abstract
Exercise-induced muscle injury is one of the most common types of sports injuries. Skeletal muscle troponin I (skTnI) serves as an ideal biomarker in assessing such injuries, facilitating timely detection and evaluation. In this study, we develop a fluorescent sandwich lateral flow immunoassay (LFIA) combined with a desktop analyzer for rapid detection of skTnI. Through optimizing the reaction system, the assay achieves a satisfying detection performance, reaching a limit of detection (LOD) of 0.5 ng/mL with a turnaround time of 15 min. The proposed detection platform offers portability, ease of use, and high sensitivity, which facilitates the monitoring of exercise-induced muscle injuries at the point of care. This feature is particularly advantageous for end users, enabling timely detection of sports-related injuries and ultimately enhancing prognosis and sports life.
Collapse
Affiliation(s)
- Deding Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
- Public Teaching Department, Maanshan Teacher's College, Maanshan 243041, China
| | - Shuang Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Mengqi Kong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
- Suzhou Diyinan Biotech Company, Suzhou 215129, China
| | - Zhaonan Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
- Suzhou Diyinan Biotech Company, Suzhou 215129, China
| | - Zonghao Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
- Suzhou Diyinan Biotech Company, Suzhou 215129, China
| | - Ying Han
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yan Gong
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jie Hu
- Suzhou Diyinan Biotech Company, Suzhou 215129, China
| |
Collapse
|
18
|
Sun XH, Jiang HJ, Liu Q, Xiao C, Xu JY, Wu Y, Mei JY, Wu ST, Lin ZY. Low concentrations of TNF-α in vitro transform the phenotype of vascular smooth muscle cells and enhance their survival in a three-dimensional culture system. Artif Organs 2024; 48:839-848. [PMID: 38660762 DOI: 10.1111/aor.14762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/29/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Vascular smooth muscle cells (VSMCs) are commonly used as seed cells in tissue-engineered vascular constructions. However, their variable phenotypes and difficult to control functions pose challenges. This study aimed to overcome these obstacles using a three-dimensional culture system. METHODS Calf VSMCs were administered tumor necrosis factor-alpha (TNF-α) before culturing in two- and three-dimensional well plates and polyglycolic acid (PGA) scaffolds, respectively. The phenotypic markers of VSMCs were detected by immunofluorescence staining and western blotting, and the proliferation and migration abilities of VSMCs were detected by CCK-8, EDU, cell counting, scratch, and Transwell assays. RESULTS TNF-α rapidly decreased the contractile phenotypic markers and elevated the synthetic phenotypic markers of VSMCs, as well as markedly increasing the proliferation and migration ability of VSMCs under two- and three-dimensional culture conditions. CONCLUSIONS TNF-α can rapidly induce a phenotypic shift in VSMCs and change their viability on PGA scaffolds.
Collapse
Affiliation(s)
- Xu-Heng Sun
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Hong-Jing Jiang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Qing Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Cong Xiao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Jian-Yi Xu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Yindi Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Jing-Yi Mei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P.R. China
| | - Shu-Ting Wu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, P.R. China
| | - Zhan-Yi Lin
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| |
Collapse
|
19
|
Yang Y, Zheng B, Lin X, Zhang M, Ye Y, Chen H, Zhou X. Low skeletal muscle mass is associated with inferior preoperative and postoperative shoulder function in elderly rotator cuff tear patients. BMC Geriatr 2024; 24:620. [PMID: 39033299 PMCID: PMC11265009 DOI: 10.1186/s12877-024-05209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND The age-related loss of skeletal muscle mass is an important characteristic of sarcopenia, an increasingly recognized condition with systemic implications. However, its association with shoulder function in elderly patients with rotator cuff tears (RCT) remains unknown. This study aimed to investigate the relationship between low skeletal muscle mass and shoulder function in elderly RCT patients. METHODS A retrospective analysis was conducted on RCT patients who underwent chest computed tomography (CT) scans for clinical evaluation. Preoperative CT scan images of the chest were used to calculate the cross-sectional area (CSA) of thoracic muscle at the T4 level. The medical records were reviewed. Shoulder function was assessed using the ASES score and CMS score both preoperatively and at the final follow-up. Data on the preoperative range of motion (ROM) for the affected shoulder, were collected for analysis. Subgroup analyses by sex were also performed. RESULTS A total of 283 RCT patients, consisting of 95 males and 188 females, with a mean age of 66.22 ± 4.89(range, 60-95 years) years were included in this retrospective study. The low muscle mass group showed significantly higher level of c-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) compared to the normal group(3.75 ± 6.64 mg/L vs. 2.17 ± 2.30 mg/L, p = 0.021; 19.08 ± 12.86 mm/H vs.15.95 ± 10.76 mm/H, p = 0.038; respectively). In the normal group, pre-operative passive ROM, including forward elevation, abduction, lateral rotation, and abductive external rotation, was significantly better than that in the low muscle mass group (127.18 ± 34.87° vs. 89.76 ± 50.61°; 119.83 ± 45.76° vs. 87.16 ± 53.32°; 37.96 ± 28.33° vs. 25.82 ± 27.82°; 47.71 ± 23.56° vs. 30.87 ± 27.76°, all p < 0.01, respectively). Similar results were found in the active ROM of the shoulder. The female low muscle mass group exhibited significantly poorer passive and active ROM (p < 0.05). The post-operative ASES scores and CMS scores of the female low muscle mass group were also statistically worse than those of the female normal group (p < 0.05). CONCLUSIONS The results of present study revealed that the low skeletal muscle mass is associated with inferior ROM of the shoulder and per- and post-operative shoulder function, especially for elderly female patients.
Collapse
Affiliation(s)
- Yang Yang
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Affiliated to Wenzhou Medical University, No. 150 Ximen Street, Linhai City, 317000, Zhejiang Province, China
| | - Binbin Zheng
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Affiliated to Wenzhou Medical University, No. 150 Ximen Street, Linhai City, 317000, Zhejiang Province, China
| | - Xiaofang Lin
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Affiliated to Wenzhou Medical University, No. 150 Ximen Street, Linhai City, 317000, Zhejiang Province, China
| | - Mengqin Zhang
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province, Affiliated to Wenzhou Medical University, No. 150 Ximen Street, Linhai City, 317000, Zhejiang Province, China
| | - Yongzhi Ye
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Affiliated to Wenzhou Medical University, No. 150 Ximen Street, Linhai City, 317000, Zhejiang Province, China
| | - Haixiao Chen
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Affiliated to Wenzhou Medical University, No. 150 Ximen Street, Linhai City, 317000, Zhejiang Province, China.
| | - Xiaobo Zhou
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Affiliated to Wenzhou Medical University, No. 150 Ximen Street, Linhai City, 317000, Zhejiang Province, China.
| |
Collapse
|
20
|
Russo C, Valle MS, D’Angeli F, Surdo S, Malaguarnera L. Resveratrol and Vitamin D: Eclectic Molecules Promoting Mitochondrial Health in Sarcopenia. Int J Mol Sci 2024; 25:7503. [PMID: 39062745 PMCID: PMC11277153 DOI: 10.3390/ijms25147503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Sarcopenia refers to the progressive loss and atrophy of skeletal muscle function, often associated with aging or secondary to conditions involving systemic inflammation, oxidative stress, and mitochondrial dysfunction. Recent evidence indicates that skeletal muscle function is not only influenced by physical, environmental, and genetic factors but is also significantly impacted by nutritional deficiencies. Natural compounds with antioxidant properties, such as resveratrol and vitamin D, have shown promise in preventing mitochondrial dysfunction in skeletal muscle cells. These antioxidants can slow down muscle atrophy by regulating mitochondrial functions and neuromuscular junctions. This review provides an overview of the molecular mechanisms leading to skeletal muscle atrophy and summarizes recent advances in using resveratrol and vitamin D supplementation for its prevention and treatment. Understanding these molecular mechanisms and implementing combined interventions can optimize treatment outcomes, ensure muscle function recovery, and improve the quality of life for patients.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
21
|
Chycki J, Krzysztofik M, Sadowska-Krępa E, Baron-Kaczmarek D, Zając A, Poprzęcki S, Petr M. Acute Hormonal and Inflammatory Responses following Lower and Upper Body Resistance Exercises Performed to Volitional Failure. Int J Mol Sci 2024; 25:7455. [PMID: 39000562 PMCID: PMC11242161 DOI: 10.3390/ijms25137455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
This study aimed to investigate the effects of a single bench press (BP) vs. leg press (LP) resistance training sessions on testosterone, cortisol, C-reactive protein (CRP) interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) concentrations, and creatine kinase (CK) activity in strength-trained males. Eleven strength-trained males participated in a cross-over randomized trial, undergoing two experimental sessions each consisting of five sets of the BP or the LP exercise to volitional failure with a load corresponding to 50% of one-repetition maximum. Blood samples were taken at baseline (BA), immediately post (POST), and 1 h after the cessation of exercise (POST-1). A significant increase in IL-6 concentration from BA to POST-1 was observed during the LP condition (p = 0.004; effect size [ES] = 0.64). Additionally, a significant main effect of time was found for increasing testosterone concentrations from BA to POST exercise (p = 0.014; ES = 0.25). A significantly lower cortisol concentration at POST-1 compared to POST (p = 0.001; ES = 1.02) was noted in the BP condition. Furthermore, a significantly lower cortisol concentration was found at POST-1 in the BP compared to the LP condition (p = 0.022; ES = 1.3). A significant increase in CK activity was reported from BA to POST (p = 0.024; ES = 0.69) and POST-1 (p = 0.045; ES = 0.55) during the LP condition, and from BA to POST-1 (p = 0.014; ES = 0.96) during the BP condition. No significant differences were found in the CRP (p = 0.659) and TNF-α concentrations (p = 0.487). These results suggest that the amount of muscle mass engaged during the resistance exercise may influence the changes in IL-6 and cortisol concentrations. Larger muscle groups, as engaged in the LP, more likely lead to elevated concentrations of IL-6 myokine.
Collapse
Affiliation(s)
- Jakub Chycki
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland; (M.K.); (E.S.-K.); (D.B.-K.); (A.Z.); (S.P.)
| | - Michał Krzysztofik
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland; (M.K.); (E.S.-K.); (D.B.-K.); (A.Z.); (S.P.)
- Faculty of Physical Education and Sport, Charles University, 162 52 Prague, Czech Republic;
| | - Ewa Sadowska-Krępa
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland; (M.K.); (E.S.-K.); (D.B.-K.); (A.Z.); (S.P.)
| | - Daria Baron-Kaczmarek
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland; (M.K.); (E.S.-K.); (D.B.-K.); (A.Z.); (S.P.)
| | - Adam Zając
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland; (M.K.); (E.S.-K.); (D.B.-K.); (A.Z.); (S.P.)
| | - Stanisław Poprzęcki
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland; (M.K.); (E.S.-K.); (D.B.-K.); (A.Z.); (S.P.)
| | - Miroslav Petr
- Faculty of Physical Education and Sport, Charles University, 162 52 Prague, Czech Republic;
| |
Collapse
|
22
|
Gu HJ, Kim DY, Shin SH, Rahman MS, Lee HS, Pang MG, Kim JM, Ryu BY. Genome-wide transcriptome analysis reveals that Bisphenol A activates immune responses in skeletal muscle. ENVIRONMENTAL RESEARCH 2024; 252:119034. [PMID: 38701888 DOI: 10.1016/j.envres.2024.119034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Cumulative human exposure to the environmental toxin, bisphenol A (BPA), has raised important health concerns in recent decades. However, the direct genomic regulation of BPA in skeletal muscles and its clinical significance are poorly understood. Therefore, we conducted a genome-wide transcriptome analysis after daily oral administration of BPA at the lowest observed adverse-effect level (LOAEL, 50 mg/kg) in male mice for six weeks to explore the gene-expression regulations in skeletal muscle induced by BPA. The primary Gene Ontology terms linked to BPA-dependent, differentially expressed genes at LOAEL comprised adaptive-immune response, positive regulation of T cell activation, and immune system process. The gene-set enrichment analysis disclosed increased complement-associated genes [complement components 3 (C3) and 4B, complement factor D, complement receptor 2, and immunoglobulin lambda constant 2] in the group administered with BPA, with a false-discovery rate of <0.05. Subsequent validation analysis conducted in BPA-fed animal skeletal muscle tissue and in vitro experiments confirmed that BPA induced immune activation, as evidenced by increased levels of C3 and C4α proteins in mice, C2C12 myoblasts, and mouse skeletal muscle cells. In addition, BPA markedly upregulated the transcription of tumor necrosis factor-α (Tnfα) in C2C12 myoblasts and mouse skeletal muscle cells, which was substantially inhibited by 5z-7-oxozeanol and parthenolide, providing further evidence of BPA-induced inflammation in muscle cells. Our bioinformatics and subsequent animal and in vitro validations demonstrate that BPA can activate inflammation in skeletal muscle, which could be a risk factor underlying chronic muscle weakness and wastage.
Collapse
Affiliation(s)
- Hyo Jin Gu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Do-Young Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Seung Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea; Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
23
|
Zhu L, Gu Y, Li J, Yu S, Wang J, Wu H, Meng G, Wang X, Zhang Q, Liu L, Sun S, Wang X, Zhou M, Jia Q, Song K, Liu Q, Niu K. Association of added sugar intake and its forms and sources with handgrip strength decline among middle-aged and older adults: A prospective cohort study. Clin Nutr 2024; 43:1609-1617. [PMID: 38781671 DOI: 10.1016/j.clnu.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/01/2024] [Accepted: 04/01/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE The consumption of added sugar has increased rapidly in recent years. Limited knowledge exists regarding the association between added sugar intake and muscle strength, although the latter is a predictor of physical disability in older adults. This study aimed to investigate the association between added sugar intake and longitudinal changes in handgrip strength among middle-aged and elderly Chinese adults. METHODS This prospective cohort study included 5298 adults aged 40 years and older (62.6% men) from the TCLSIH (Tianjin Chronic Low-grade Systemic Inflammation and Health) cohort study. Added sugar intake was obtained through a frequency questionnaire containing 100 items of food. Handgrip strength is measured annually using a handheld digital dynamometer. Multivariate linear regression models were used to examine the association between added sugars intake and the annual changes in handgrip strength and weight-adjusted handgrip strength. RESULTS In the fully adjusted model, the annual change in handgrip strength for one unit increase in total added sugar, solid added sugar, and liquid added sugar intake was -0.0353 kg, (95% confidence intervals (CI) -0.000148, -0.0000164; P = 0.01), -0.0348 kg (95% CI: -0.000227, -0.0000269; P = 0.01) and -0.0189 kg (95% CI -0.000187, 0.0000338; P = 0.17), respectively. Added sugar from bread and biscuits sources were remarkably associated with a decline in handgrip strength (β = -0.0498; 95%CI -0.00281, -0.000787) and (β = -0.0459; 95%CI 0.00158, 0.00733) (P < 0.01). CONCLUSIONS Our data suggest that the higher the intake of solid added sugars, but not liquid sugars, were associated with the declined handgrip strength in the Chinese middle-aged and elderly population. In addition, the consumption of added sugars from bread and biscuits sources was also associated with a decline in grip strength.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Anatomy, Shandong Second Medical University, Weifang, China; Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Jianguo Li
- Department of Anatomy, Shandong Second Medical University, Weifang, China
| | - Shuna Yu
- Department of Anatomy, Shandong Second Medical University, Weifang, China
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hongmei Wu
- School of Public Health of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ge Meng
- Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xuena Wang
- School of Public Health of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Zhou
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Department of Anatomy, Shandong Second Medical University, Weifang, China; Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Kaijun Niu
- School of Public Health of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China; Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
24
|
Zhang Y, Yang Q, Peng Q, Tian Z, Lv F, Zeng X, Jiang Z, Cheng Q, Yang L, Zhong B, Lu X, Zhu Y. Impaired arginine/ornithine metabolism drives severe HFMD by promoting cytokine storm. Front Immunol 2024; 15:1407035. [PMID: 38979420 PMCID: PMC11228176 DOI: 10.3389/fimmu.2024.1407035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction The Hand, Foot and Mouth Disease (HFMD), caused by enterovirus 71 infection, is a global public health emergency. Severe HFMD poses a significant threat to the life and well-being of children. Numerous studies have indicated that the occurrence of severe HFMD is associated with cytokine storm. However, the precise molecular mechanism underlying cytokine storm development remains elusive, and there are currently no safe and effective treatments available for severe HFMD in children. Methods In this study, we established a mouse model of severe HFMD to investigate the molecular mechanisms driving cytokine storm. We specifically analyzed metabolic disturbances, focusing on arginine/ornithine metabolism, and assessed the potential therapeutic effects of spermine, an ornithine metabolite. Results Our results identified disturbances in arginine/ornithine metabolism as a pivotal factor driving cytokine storm onset in severe HFMD cases. Additionally, we discovered that spermine effectively mitigated the inflammatory injury phenotype observed in mice with severe HFMD. Discussion In conclusion, our findings provide novel insights into the molecular mechanisms underlying severe HFMD from a metabolic perspective while offering a promising new strategy for its safe and effective treatment.
Collapse
Affiliation(s)
- Yaozhong Zhang
- Department of Genetic Medicine, Dongguan Children’s Hospital Affiliated to Guangdong Medical University, Dongguan, China
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China
- Department of Genetics, Key Laboratory for Children’s Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Qingqing Yang
- Department of Genetic Medicine, Dongguan Children’s Hospital Affiliated to Guangdong Medical University, Dongguan, China
| | - Qi Peng
- Department of Genetic Medicine, Dongguan Children’s Hospital Affiliated to Guangdong Medical University, Dongguan, China
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China
- Department of Genetics, Key Laboratory for Children’s Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Zhihua Tian
- Department of Genetic Medicine, Dongguan Children’s Hospital Affiliated to Guangdong Medical University, Dongguan, China
| | - Fen Lv
- Department of Genetic Medicine, Dongguan Children’s Hospital Affiliated to Guangdong Medical University, Dongguan, China
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China
- Department of Genetics, Key Laboratory for Children’s Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Xiaomei Zeng
- Department of Genetic Medicine, Dongguan Children’s Hospital Affiliated to Guangdong Medical University, Dongguan, China
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China
- Department of Genetics, Key Laboratory for Children’s Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Zaixue Jiang
- Department of Genetic Medicine, Dongguan Children’s Hospital Affiliated to Guangdong Medical University, Dongguan, China
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China
- Department of Genetics, Key Laboratory for Children’s Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Qingqiu Cheng
- Department of Genetic Medicine, Dongguan Children’s Hospital Affiliated to Guangdong Medical University, Dongguan, China
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China
- Department of Genetics, Key Laboratory for Children’s Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Lijun Yang
- Department of Genetic Medicine, Dongguan Children’s Hospital Affiliated to Guangdong Medical University, Dongguan, China
| | - Baimao Zhong
- Department of Genetic Medicine, Dongguan Children’s Hospital Affiliated to Guangdong Medical University, Dongguan, China
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China
- Department of Genetics, Key Laboratory for Children’s Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Xiaomei Lu
- Department of Genetic Medicine, Dongguan Children’s Hospital Affiliated to Guangdong Medical University, Dongguan, China
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China
- Department of Genetics, Key Laboratory for Children’s Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Yinghua Zhu
- Department of Genetic Medicine, Dongguan Children’s Hospital Affiliated to Guangdong Medical University, Dongguan, China
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China
- Department of Genetics, Key Laboratory for Children’s Genetics and Infectious Diseases of Dongguan, Dongguan, China
| |
Collapse
|
25
|
Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, Treebak JT. Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metab 2024; 36:1204-1236. [PMID: 38490209 DOI: 10.1016/j.cmet.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
26
|
Yao H, Qian J, Bian XT, Guo L, Tang KL, Tao X. miR-27b-3p reduces muscle fibrosis during chronic skeletal muscle injury by targeting TGF-βR1/Smad pathway. J Orthop Surg Res 2024; 19:329. [PMID: 38825706 PMCID: PMC11145862 DOI: 10.1186/s13018-024-04733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/13/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Fibrosis is a significant pathological feature of chronic skeletal muscle injury, profoundly affecting muscle regeneration. Fibro-adipogenic progenitors (FAPs) have the ability to differentiate into myofibroblasts, acting as a primary source of extracellular matrix (ECM). the process by which FAPs differentiate into myofibroblasts during chronic skeletal muscle injury remains inadequately explored. METHOD mouse model with sciatic nerve denervated was constructed and miRNA expression profiles between the mouse model and uninjured mouse were analyzed. qRT/PCR and immunofluorescence elucidated the effect of miR-27b-3p on fibrosis in vivo and in vitro. Dual-luciferase reporter identified the target gene of miR-27b-3p, and finally knocked down or overexpressed the target gene and phosphorylation inhibition of Smad verified the influence of downstream molecules on the abundance of miR-27b-3p and fibrogenic differentiation of FAPs. RESULT FAPs derived from a mouse model with sciatic nerves denervated exhibited a progressively worsening fibrotic phenotype over time. Introducing agomiR-27b-3p effectively suppressed fibrosis both in vitro and in vivo. MiR-27b-3p targeted Transforming Growth Factor Beta Receptor 1 (TGF-βR1) and the abundance of miR-27b-3p was negatively regulated by TGF-βR1/Smad. CONCLUSION miR-27b-3p targeting the TGF-βR1/Smad pathway is a novel mechanism for regulating fibrogenic differentiation of FAPs. Increasing abundance of miR-27b-3p, suppressing expression of TGF-βR1 and inhibiting phosphorylation of smad3 presented potential strategies for treating fibrosis in chronic skeletal muscle injury.
Collapse
Affiliation(s)
- Hang Yao
- Center of sports, Southwest Hospital, Army Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China
| | - Jin Qian
- Center of sports, Southwest Hospital, Army Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China
| | - Xu-Ting Bian
- Center of sports, Southwest Hospital, Army Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China
| | - Lin Guo
- Center of sports, Southwest Hospital, Army Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China.
| | - Kang-Lai Tang
- Center of sports, Southwest Hospital, Army Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China.
| | - Xu Tao
- Center of sports, Southwest Hospital, Army Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China.
| |
Collapse
|
27
|
Xie S, Wu Q. Association between the systemic immune-inflammation index and sarcopenia: a systematic review and meta-analysis. J Orthop Surg Res 2024; 19:314. [PMID: 38802828 PMCID: PMC11131329 DOI: 10.1186/s13018-024-04808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Sarcopenia is associated with increased morbidity and mortality. The systemic immune-inflammation index (SII) has been correlated to a variety of disorders. The present study conducted a systematic review and meta-analysis to investigate the relationship between SII and sarcopenia. METHODS A literature search was performed in Web of Science, PubMed, Embase, Cochrane Library, CINAHL, China National Knowledge Infrastructure, Chinese Biomedical Literature Database, Wanfang Database, and VIP Chinese Science and Technology Database, from inception to March 2024. Then, the literature quality was assessed. After the heterogeneity test, a random effects or fixed effects model was applied to establish the forest plot, and investigate the relationship between SII and sarcopenia. Then, the sensitivity analysis and publication bias were examined. RESULTS Nine articles, which included 18,634 adults, were analyzed. Sarcopenic adults had higher SII levels, when compared to non-sarcopenic adults (standardized mean difference [SMD] = 0.66, 95% confidence interval [CI] = 0.22 - 0.19, p = 0.003). The high SII level was associated to the increased risk of sarcopenia (odds ratio = 1.52, 95% CI = 1.09-2.13, p = 0.01). In addition, the subgroup analysis revealed that the SII levels were higher in the sarcopenic group, when compared to the non-sarcopenic group, in elderly adults, as well as in adults with or without gastrointestinal disorders. The analysis was robust with a low risk of publication bias. CONCLUSIONS SII is closely associated to sarcopenia. Sarcopenic adults had elevated SII levels. The high SII level increased the risk of sarcopenia. Large scale multi-center prospective studies are required to validate these study findings.
Collapse
Affiliation(s)
- Siye Xie
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Qi Wu
- Department of Nursing, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
28
|
Krokidas A, Gakis AG, Aktypi O, Antonopoulou S, Nomikos T. Effect of Spirulina Nigrita® Supplementation on Indices of Exercise-Induced Muscle Damage after Eccentric Protocol of Upper Limbs in Apparently Healthy Volunteers. Nutrients 2024; 16:1651. [PMID: 38892584 PMCID: PMC11174877 DOI: 10.3390/nu16111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Spirulina is a supplement with antioxidant and anti-inflammatory properties that may enhance performance and recovery after intense exercise. The present study aimed to investigate the effects of Spirulina Nigrita® on physical performance, and recovery markers after intense eccentric exercise in healthy moderately physically active volunteers. In a double-blind crossover design, participants were supplemented either with spirulina (42 mg Kg-1 BW per day) or a placebo for 15 days before conducting an eccentric exercise protocol using the non-dominant arm. A six-week washout period was required between conditions. Performance and mobility markers such as isometric peak torque (PTQ), ligament range of motion (ROM), and perceived muscle discomfort (VAS) were assessed and blood samples (CK, LDH) were obtained at 1, 24, 48, and 72 h post-exercise. No significant differences were noticed between the two conditions on any of the investigated markers, indicating that spirulina supplementation has no positive effect on isometric muscle performance or alleviation of exercise-induced muscle damage (EIMD) symptoms in the specific population.
Collapse
Affiliation(s)
| | | | | | | | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 176 76 Athens, Greece; (A.K.); (A.G.G.); (O.A.); (S.A.)
| |
Collapse
|
29
|
Yadav A, Dabur R. Skeletal muscle atrophy after sciatic nerve damage: Mechanistic insights. Eur J Pharmacol 2024; 970:176506. [PMID: 38492879 DOI: 10.1016/j.ejphar.2024.176506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
Sciatic nerve injury leads to molecular events that cause muscular dysfunction advancement in atrophic conditions. Nerve damage renders muscles permanently relaxed which elevates intracellular resting Ca2+ levels. Increased Ca2+ levels are associated with several cellular signaling pathways including AMPK, cGMP, PLC-β, CERB, and calcineurin. Also, multiple enzymes involved in the tricarboxylic acid cycle and oxidative phosphorylation are activated by Ca2+ influx into mitochondria during muscle contraction, to meet increased ATP demand. Nerve damage induces mitophagy and skeletal muscle atrophy through increased sensitivity to Ca2+-induced opening of the permeability transition pore (PTP) in mitochondria attributed to Ca2+, ROS, and AMPK overload in muscle. Activated AMPK interacts negatively with Akt/mTOR is a highly prevalent and well-described central pathway for anabolic processes. Over the decade several reports indicate abnormal behavior of signaling machinery involved in denervation-induced muscle loss but end up with some controversial outcomes. Therefore, understanding how the synthesis and inhibitory stimuli interact with cellular signaling to control muscle mass and morphology may lead to new pharmacological insights toward understanding the underlying mechanism of muscle loss after sciatic nerve damage. Hence, the present review summarizes the existing literature on denervation-induced muscle atrophy to evaluate the regulation and expression of differential regulators during sciatic damage.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
30
|
Faghy MA, Tatler A, Chidley C, Fryer S, Stoner L, Laddu D, Arena R, Ashton RE. The physiologic benefits of optimizing cardiorespiratory fitness and physical activity - From the cell to systems level in a post-pandemic world. Prog Cardiovasc Dis 2024; 83:49-54. [PMID: 38417766 DOI: 10.1016/j.pcad.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Cardiovascular (CV) disease (CVD) is a leading cause of premature death and hospitalization which places a significant strain on health services and economies around the World. Evidence from decades of empirical and observational research demonstrates clear associations between physical activity (PA) and cardiorespiratory fitness (CRF) which can offset the risk of mortality and increase life expectancy and the quality of life in patients. Whilst well documented, the narrative of increased CRF remained pertinent during the coronavirus disease 2019 (COVID-19) pandemic, where individuals with lower levels of CRF had more than double the risk of dying from COVID-19 compared to those with a moderate or high CRF. The need to better understand the mechanisms associated with COVID-19 and those that continue to be affected with persistent symptoms following infection (Long COVID), and CV health is key if we are to be able to effectively target the use of CRF and PA to improve the lives of those suffering its afflictions. Whilst there is a long way to go to optimise PA and CRF for improved health at a population level, particularly in a post-pandemic world, increasing the understanding using a cellular-to-systems approach, we hope to provide further insight into the benefits of engaging in PA.
Collapse
Affiliation(s)
- Mark A Faghy
- Biomedical and Clinical Exercise Science Research Theme, University of Derby, Derby, UK; Healthy Living for Pandemic Event Protection Network (HL-Pivot), Illinois, Chicago, USA.
| | - Amanda Tatler
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, UK
| | - Corinna Chidley
- Biomedical and Clinical Exercise Science Research Theme, University of Derby, Derby, UK
| | - Simon Fryer
- Department of Sport and Exercise Science, University of Gloucestershire, Gloucester, UK
| | - Lee Stoner
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Deepika Laddu
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois Chicago, Chicago, USA
| | - Ross Arena
- Healthy Living for Pandemic Event Protection Network (HL-Pivot), Illinois, Chicago, USA; Department of Physical Therapy, College of Applied Health Sciences, University of Illinois Chicago, Chicago, USA
| | - Ruth E Ashton
- Biomedical and Clinical Exercise Science Research Theme, University of Derby, Derby, UK; Healthy Living for Pandemic Event Protection Network (HL-Pivot), Illinois, Chicago, USA
| |
Collapse
|
31
|
Han Q, Bai L, Qian Y, Zhang X, Wang J, Zhou J, Cui W, Hao Y, Yang X. Antioxidant and anti-inflammatory injectable hydrogel microspheres for in situ treatment of tendinopathy. Regen Biomater 2024; 11:rbae007. [PMID: 38414798 PMCID: PMC10898336 DOI: 10.1093/rb/rbae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 02/29/2024] Open
Abstract
Tendinopathy is a common disorder that causes local dysfunction and reduces quality of life. Recent research has indicated that alterations in the inflammatory microenvironment play a vital role in the pathogenesis of tendinopathy. Herein, injectable methacrylate gelatin (GelMA) microspheres (GM) were fabricated and loaded with heparin-dopamine conjugate (HDC) and hepatocyte growth factor (HGF). GM@HDC@HGF were designed to balance the inflammatory microenvironment by inhibiting oxidative stress and inflammation, thereby regulating extracellular matrix (ECM) metabolism and halting tendon degeneration. Combining growth factors with heparin was expected to improve the encapsulation rate and maintain the long-term efficacy of HGF. In addition, the catechol groups on dopamine have adhesion and antioxidant properties, allowing potential attachment at the injured site, and better function synergized with HGF. GM@HDC@HGF injected in situ in rat Achilles tendinopathy (AT) models significantly down-regulated oxidative stress and inflammation, and ameliorated ECM degradation. In conclusion, the multifunctional platform developed presents a promising alternative for the treatment of tendinopathy.
Collapse
Affiliation(s)
- Qibin Han
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, P.R. China
| | - Lang Bai
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, P.R. China
| | - Yinhua Qian
- Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Suzhou 215300, P.R. China
| | - Xiaoyu Zhang
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, P.R. China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jing Zhou
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, P.R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yuefeng Hao
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, P.R. China
| | - Xing Yang
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, P.R. China
| |
Collapse
|
32
|
Krok M, Wróblewska-Czajka E, Łach-Wojnarowicz O, Bronikowska J, Czuba ZP, Wylęgała E, Dobrowolski D. Analysis of Cytokine and Chemokine Level in Tear Film in Keratoconus Patients before and after Corneal Cross-Linking (CXL) Treatment. Int J Mol Sci 2024; 25:1052. [PMID: 38256126 PMCID: PMC10816198 DOI: 10.3390/ijms25021052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Keratoconus (KC) is a degenerative corneal disorder whose aetiology remains unknown. The aim of our study was to analyse the expressions of cytokines and chemokines in KC patients before and after specified time intervals after corneal cross-linking (CXL) treatment to better understand the molecular mechanisms occurring before and after CXL in KC patients process of corneal regeneration.; Tear samples were gathered from 52 participants immediately after the CXL procedure and during the 12-month follow-up period. All patients underwent a detailed ophthalmological examination and tear samples were collected before and after CXL at regular intervals: 1 day before and after the surgery, at the day 7 visit, and at 1, 3, 6, 9, and 12 months after CXL. The control group consisted of 20 healthy people. 10 patients were women (50%) and 10 were men (50%). The mean age was 30 ± 3 years of age. Tear analysis was performed using the Bio-Plex 3D Suspension Array System. Corneal topography parameters measured by Scheimpflug Camera included: keratometry values (Ks, Kf), PI-Apex, PI-Thinnest, Cylinder.; All the 12 months post-op values of the KC patients' topographic measurements were significantly lower than the pre-op. As for the tear cytokine levels comparison between the patient and control groups, cytokine levels of TNF-α, IL-6, and CXCL-10, among others, were detected in lower amounts in the KC group. The pre-op level of IL-6 exhibited a significant increase the day after CXL, whereas comparing the day after the procedure to 12 months after CXL, this showed a significant decrease. Both TNF-α and IL-1 showed a significant decrease compared to the day before and after CXL. We observed significantly higher levels of IL-1β, IL-10, IFN-γ and TNF-α in moderate and severe keratoconus than in mild keratoconus (p < 0.05). We also demonstrated a statistically significant positive correlation between both pre-op and 12 months after CXL TNF-α, IFN-γ, IL-6 and Ks and Kf values (p < 0.05, r > 0); Alterations of inflammatory mediators in tear fluid after CXL link with topographic changes and may contribute to the development and progression of KC.
Collapse
Affiliation(s)
- Magdalena Krok
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Panewnicka 65 Street, 40-760 Katowice, Poland (E.W.-C.); (E.W.); (D.D.)
- Ophthalmology of Department, District Railway Hospital, 65 Panewnicka Street, 40-760 Katowice, Poland
| | - Ewa Wróblewska-Czajka
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Panewnicka 65 Street, 40-760 Katowice, Poland (E.W.-C.); (E.W.); (D.D.)
- Ophthalmology of Department, District Railway Hospital, 65 Panewnicka Street, 40-760 Katowice, Poland
| | - Olga Łach-Wojnarowicz
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Panewnicka 65 Street, 40-760 Katowice, Poland (E.W.-C.); (E.W.); (D.D.)
| | - Joanna Bronikowska
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (J.B.); (Z.P.C.)
| | - Zenon P. Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (J.B.); (Z.P.C.)
| | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Panewnicka 65 Street, 40-760 Katowice, Poland (E.W.-C.); (E.W.); (D.D.)
- Ophthalmology of Department, District Railway Hospital, 65 Panewnicka Street, 40-760 Katowice, Poland
| | - Dariusz Dobrowolski
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Panewnicka 65 Street, 40-760 Katowice, Poland (E.W.-C.); (E.W.); (D.D.)
- Ophthalmology of Department, District Railway Hospital, 65 Panewnicka Street, 40-760 Katowice, Poland
| |
Collapse
|
33
|
Careccia G, Mangiavini L, Cirillo F. Regulation of Satellite Cells Functions during Skeletal Muscle Regeneration: A Critical Step in Physiological and Pathological Conditions. Int J Mol Sci 2023; 25:512. [PMID: 38203683 PMCID: PMC10778731 DOI: 10.3390/ijms25010512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal muscle regeneration is a complex process involving the generation of new myofibers after trauma, competitive physical activity, or disease. In this context, adult skeletal muscle stem cells, also known as satellite cells (SCs), play a crucial role in regulating muscle tissue homeostasis and activating regeneration. Alterations in their number or function have been associated with various pathological conditions. The main factors involved in the dysregulation of SCs' activity are inflammation, oxidative stress, and fibrosis. This review critically summarizes the current knowledge on the role of SCs in skeletal muscle regeneration. It examines the changes in the activity of SCs in three of the most common and severe muscle disorders: sarcopenia, muscular dystrophy, and cancer cachexia. Understanding the molecular mechanisms involved in their dysregulations is essential for improving current treatments, such as exercise, and developing personalized approaches to reactivate SCs.
Collapse
Affiliation(s)
- Giorgia Careccia
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Laura Mangiavini
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Federica Cirillo
- IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy
| |
Collapse
|
34
|
Wang Y, Sun Y, Yang C, Han B, Wang S. Sodium salicylate ameliorates exercise-induced muscle damage in mice by inhibiting NF-kB signaling. J Orthop Surg Res 2023; 18:967. [PMID: 38098039 PMCID: PMC10722820 DOI: 10.1186/s13018-023-04433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Eccentric muscle contraction can cause muscle damage, which reduces the efficiency of exercise. Previous evidence suggested that Sodium salicylate (SS) could improve the repair of aged muscle. This study intends to investigate whether SS can impact skeletal muscle damage caused by eccentric exercise. METHODS Eccentric treadmill exercise was performed to induce muscle damage in mice. Plasma levels of muscle damage markers were estimated. RT-qPCR was employed for detecting mRNA levels of proinflammatory mediators in murine gastrocnemius muscle. Immunofluorescence staining of laminin/DAPI was utilized for quantifying centrally nucleated myofibers in the gastrocnemius muscle. Western blotting was implemented to examine protein levels of mitsugumin 53 (MG53), matrix metalloproteinase (MMP)-2/9, and NF-κB signaling-related markers. RESULTS SS administration reduced muscle damage marker production in the plasma and decreased the levels of proinflammatory mediators, MG53 and MMP-2/9 in mice after exercise. SS alleviated the severity of muscle damage in the gastrocnemius of mice after eccentric exercise. SS blocked NF-κB signaling pathway in the gastrocnemius muscle. CONCLUSION SS administration ameliorates skeletal muscle damage caused by eccentric exercise in the mouse model.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang City, 110819, China.
| | - Yuning Sun
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang City, 110819, China
| | - Chunhui Yang
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang City, 110819, China
| | - Bing Han
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang City, 110819, China
| | - Sining Wang
- Department of General, Huanggu District People's Government Office, Shenyang City, 110032, China
| |
Collapse
|
35
|
Lindquist KA, Shein SA, Hovhannisyan AH, Mecklenburg J, Zou Y, Lai Z, Tumanov AV, Akopian AN. Associations of tissue damage induced inflammatory plasticity in masseter muscle with the resolution of chronic myalgia. Sci Rep 2023; 13:22057. [PMID: 38086903 PMCID: PMC10716154 DOI: 10.1038/s41598-023-49280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Gene plasticity during myogenous temporomandibular disorder (TMDM) development is largely unknown. TMDM could be modeled by intramuscular inflammation or tissue damage. To model inflammation induced TMDM we injected complete Freund's adjuvant (CFA) into masseter muscle (MM). To model tissue damage induced TMDM we injected extracellular matrix degrading collagenase type 2 (Col). CFA and Col produced distinct myalgia development trajectories. We performed bulk RNA-seq of MM to generate gene plasticity time course. CFA initiated TMDM (1d post-injection) was mainly linked to chemo-tacticity of monocytes and neutrophils. At CFA-induced hypersensitivity post-resolution (5d post-injection), tissue repair processes were pronounced, while inflammation was absent. Col (0.2U) produced acute hypersensitivity linked to tissue repair without inflammatory processes. Col (10U) generated prolonged hypersensitivity with inflammatory processes dominating initiation phase (1d). Pre-resolution phase (6d) was accompanied with acceleration of expressions for tissue repair and pro-inflammatory genes. Flow cytometry showed that immune processes in MM was associated with accumulations of macrophages, natural killer, dendritic and T-cells, further confirming our RNA-seq findings. Altogether, CFA and Col treatments induced different immune processes in MM. Importantly, TMDM resolution was preceded with muscle cell and extracellular matrix repairs, an elevation in immune system gene expressions and distinct immune cell accumulations in MM.
Collapse
Affiliation(s)
- Karen A Lindquist
- Integrated Biomedical Sciences (IBMS) Program, The School of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Sergey A Shein
- Departments of Microbiology, Immunology & Molecular Genetics, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Anahit H Hovhannisyan
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jennifer Mecklenburg
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Yi Zou
- Departments of Molecular Medicine, The School of Medicine, UTHSCSA, San Antonio, TX, USA
| | - Zhao Lai
- Departments of Molecular Medicine, The School of Medicine, UTHSCSA, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Alexei V Tumanov
- Integrated Biomedical Sciences (IBMS) Program, The School of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
- Departments of Microbiology, Immunology & Molecular Genetics, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA.
| | - Armen N Akopian
- Integrated Biomedical Sciences (IBMS) Program, The School of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
36
|
Soares CLR, Wilairatana P, Silva LR, Moreira PS, Vilar Barbosa NMM, da Silva PR, Coutinho HDM, de Menezes IRA, Felipe CFB. Biochemical aspects of the inflammatory process: A narrative review. Biomed Pharmacother 2023; 168:115764. [PMID: 37897973 DOI: 10.1016/j.biopha.2023.115764] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Inflammation is a protective response of the body potentially caused by microbial, viral, or fungal infections, tissue damage, or even autoimmune reactions. The cardinal signs of inflammation are consequences of immunological, biochemical, and physiological changes that trigger the release of pro-inflammatory chemical mediators at the local of the injured site thus, increasing blood flow, vascular permeability, and leukocyte recruitment. The aim of this study is to give an overview of the inflammatory process, focusing on chemical mediators. The literature review was based on a search of journals published between the years 2009 and 2023, regarding the role of major chemical mediators in the inflammatory process and current studies in pathogenesis, diagnosis, and therapy. Some of the recent contributions in the study of inflammatory pathologies and their mediators, including cytokines and chemokines, the kinin system, free radicals, nitric oxide, histamine, cell adhesion molecules, leukotrienes, prostaglandins and the complement system and their role in human health and chronic diseases.
Collapse
Affiliation(s)
- Caroline Leal Rodrigues Soares
- Departamento de Biologia Molecular - DBM. Universidade Federal da Paraíba - UFPB, Campus I - Jardim Cidade Universitária, CEP 58059-900 João Pessoa, Brazil
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Larissa Rodrigues Silva
- Departamento de Biologia Molecular - DBM. Universidade Federal da Paraíba - UFPB, Campus I - Jardim Cidade Universitária, CEP 58059-900 João Pessoa, Brazil
| | - Polyanna Silva Moreira
- Departamento de Biologia Molecular - DBM. Universidade Federal da Paraíba - UFPB, Campus I - Jardim Cidade Universitária, CEP 58059-900 João Pessoa, Brazil
| | - Nayana Maria Medeiros Vilar Barbosa
- Departamento de Biologia Molecular - DBM. Universidade Federal da Paraíba - UFPB, Campus I - Jardim Cidade Universitária, CEP 58059-900 João Pessoa, Brazil
| | - Pablo Rayff da Silva
- Departamento de Biologia Molecular - DBM. Universidade Federal da Paraíba - UFPB, Campus I - Jardim Cidade Universitária, CEP 58059-900 João Pessoa, Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratório de Microbiologia e Biologia Molecular - LMBM. Universidade Regional do Cariri - URCA, Rua Cel Antônio Luiz, 1161, Oimenta, CEP 63105-000 Crato, Brazil.
| | - Irwin Rose Alencar de Menezes
- Laboratório de Farmacologia e Química Molecular - LFQM. Universidade Regional do Cariri - URCA, Rua Cel Antônio Luiz, 1161, Pimenta, CEP 63105-000 Crato, Brazil
| | - Cícero Francisco Bezerra Felipe
- Departamento de Biologia Molecular - DBM. Universidade Federal da Paraíba - UFPB, Campus I - Jardim Cidade Universitária, CEP 58059-900 João Pessoa, Brazil.
| |
Collapse
|
37
|
Tarban N, Papp AB, Deák D, Szentesi P, Halász H, Patsalos A, Csernoch L, Sarang Z, Szondy Z. Loss of adenosine A3 receptors accelerates skeletal muscle regeneration in mice following cardiotoxin-induced injury. Cell Death Dis 2023; 14:706. [PMID: 37898628 PMCID: PMC10613231 DOI: 10.1038/s41419-023-06228-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Skeletal muscle regeneration is a complex process orchestrated by multiple interacting steps. An increasing number of reports indicate that inflammatory responses play a central role in linking initial muscle injury responses to timely muscle regeneration following injury. The nucleoside adenosine has been known for a long time as an endogenously produced anti-inflammatory molecule that is generated in high amounts during tissue injury. It mediates its physiological effects via four types of adenosine receptors. From these, adenosine A3 receptors (A3Rs) are not expressed by the skeletal muscle but are present on the surface of various inflammatory cells. In the present paper, the effect of the loss of A3Rs was investigated on the regeneration of the tibialis anterior (TA) muscle in mice following cardiotoxin-induced injury. Here we report that regeneration of the skeletal muscle from A3R-/- mice is characterized by a stronger initial inflammatory response resulting in a larger number of transmigrating inflammatory cells to the injury site, faster clearance of cell debris, enhanced proliferation and faster differentiation of the satellite cells (the muscle stem cells), and increased fusion of the generated myoblasts. This leads to accelerated skeletal muscle tissue repair and the formation of larger myofibers. Though the infiltrating immune cells expressed A3Rs and showed an increased inflammatory profile in the injured A3R-/- muscles, bone marrow transplantation experiments revealed that the increased response of the tissue-resident cells to tissue injury is responsible for the observed phenomenon. Altogether our data indicate that A3Rs are negative regulators of injury-related regenerative inflammation and consequently also that of the muscle fiber growth in the TA muscle. Thus, inhibiting A3Rs might have a therapeutic value during skeletal muscle regeneration following injury.
Collapse
Affiliation(s)
- Nastaran Tarban
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Albert Bálint Papp
- Doctoral School of Dental Sciences, University of Debrecen, Debrecen, Hungary
| | - Dávid Deák
- Laboratory Animal Facility, Life Science Building, University of Debrecen, Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Hajnalka Halász
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Andreas Patsalos
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St, Petersburg, FL, USA
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsa Szondy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
- Division of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
38
|
Bonanni R, Abbondante L, Cariati I, Gasbarra E, Tarantino U. Metallosis after Hip Arthroplasty Damages Skeletal Muscle: A Case Report. Geriatrics (Basel) 2023; 8:92. [PMID: 37736892 PMCID: PMC10514854 DOI: 10.3390/geriatrics8050092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Good musculoskeletal quality dramatically influences the outcome of an arthroplasty operation in geriatric patients, as well as is a key element for optimal osseointegration. In this context, metallosis is a complication associated with the type of prosthesis used, as implants with a chromium-cobalt interface are known to alter the bone microarchitecture and reduce the ratio of muscle to fat, resulting in lipid accumulation. Therefore, the aim of our study was to investigate possible muscle changes by histological, morphometric, and immunohistochemical analyses in a patient undergoing hip replacement revision with elevated blood and urinary concentrations of chromium and cobalt. Interestingly, the muscle tissue showed significant structural changes and a massive infiltration of adipose tissue between muscle fibers in association with an altered expression pattern of important biomarkers of musculoskeletal health and oxidative stress, such as myostatin and NADPH Oxidase 4. Overall, our results confirm the very serious impact of metallosis on musculoskeletal health, suggesting the need for further studies to adopt a diagnostic approach to identify the cause of metallosis early and eliminate it as part of the prosthesis revision surgery.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Biomedicine and Prevention, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Lorenzo Abbondante
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (L.A.); (E.G.); (U.T.)
| | - Ida Cariati
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (L.A.); (E.G.); (U.T.)
| | - Umberto Tarantino
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (L.A.); (E.G.); (U.T.)
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
39
|
Lindquist KA, Shein SA, Hovhannisyan AH, Mecklenburg J, Zou Y, Lai Z, Tumanov AV, Akopian AN. Association of inflammation and tissue damage induced biological processes in masseter muscle with the resolution of chronic myalgia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537828. [PMID: 37131723 PMCID: PMC10153356 DOI: 10.1101/2023.04.21.537828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Biological processes linked to intramuscular inflammation during myogenous temporomandibular disorder (TMDM) are largely unknown. We mimicked this inflammation by intra-masseteric muscle (MM) injections of complete Freund’s adjuvant (CFA) or collagenase type 2 (Col), which emulates tissue damage. CFA triggered mechanical hypersensitivity at 1d post-injection was mainly linked to processes controlling chemotactic activity of monocytes and neutrophils. At 5d post-CFA, when hypersensitivity was resolved, there was minimal inflammation whereas tissue repair processes were pronounced. Low dose Col (0.2U) also produced acute orofacial hypersensitivity that was linked to tissue repair, but not inflammatory processes. High dose Col (10U) triggered prolonged orofacial hypersensitivity with inflammatory processes dominating at 1d post-injection. At pre-resolution time point (6d), tissue repair processes were underway and a significant increase in pro-inflammatory gene expressions compared to 1d post-injection were detected. RNA-seq and flow cytometry showed that immune processes in MM were linked to accumulation of macrophages, natural killer and natural killer T cells, dendritic cells and T-cells. Altogether, CFA and Col treatments induced different immune processes in MM. Importantly, orofacial hypersensitivity resolution was preceded with repairs of muscle cell and extracellular matrix, an elevation in immune system gene expression and accumulation of distinct immune cells in MM.
Collapse
|