1
|
Rivaldi M, Frediansyah A, Aziz SAA, Nugroho AP. Active biomonitoring of stream ecosystems: untargeted metabolomic and proteomic responses and free radical scavenging activities in mussels. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-024-02846-9. [PMID: 39789405 DOI: 10.1007/s10646-024-02846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2024] [Indexed: 01/12/2025]
Abstract
Many contaminants from scattered sources constantly endanger streams that flow through heavily inhabited areas, commercial districts, and industrial hubs. The responses of transplanted mussels in streams in active biomonitoring programs will reflect the dynamics of environmental stream conditions. This study evaluated the untargeted metabolomic and proteomic responses and free radical scavenging activities of transplanted mussels Sinanodonta woodiana in the Winongo Stream at three stations (S1, S2, S3) representing different pollution levels: low (S1), high (S2), and moderate (S3). The investigation examined untargeted metabolomic and proteomic responses in the gills and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) activities in the gills, mantle, and digestive glands. Metabolomic analysis revealed a clear separation between mussel responses from the three stations after 28 days of exposure, with specific metabolites responding to different pollution levels. Proteomic analysis identified β-Actin protein in all stations. The β-Actin protein sequence of unexposed mussels had coverage of 17%, and increased to 23% at S1 on day 28 and 34% at S2 and S3 on day 28. All tissues showed increased DPPH and ABTS activities from day 3 to day 28, mainly in stations S2 and S3. These findings underscore the impact of pollution levels on the metabolomic and proteomic responses of S. woodiana and the importance of these discoveries as early indicators (biomarkers) of long-term aquatic environmental problems. In the face of current environmental challenges, this research raises concerns about the health of water bodies. It underscores the importance of developing robust, standardized, and dependable analytical techniques for monitoring the health of aquatic environments.
Collapse
Affiliation(s)
- Muhammad Rivaldi
- Laboratory of Ecology and Conservation, Faculty of Biology, Universitas Gadjah Mada, Sleman, Yogyakarta, Indonesia
| | - Andri Frediansyah
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul, Yogyakarta, Indonesia
| | - Solihatun Amidan Amatul Aziz
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul, Yogyakarta, Indonesia
| | - Andhika Puspito Nugroho
- Laboratory of Ecology and Conservation, Faculty of Biology, Universitas Gadjah Mada, Sleman, Yogyakarta, Indonesia.
| |
Collapse
|
2
|
Wu CH, Kaneyasu Y, Yano K, Shigeishi H, Kitasaki H, Maehara T, Niitani Y, Takemoto T, Mine Y, Le MNT, Kawada-Matsuo M, Komatsuzawa H, Ohta K. Anti-fungal effects of slightly acidic electrolyzed water on Candida species. J Oral Biosci 2024:S1349-0079(24)00207-X. [PMID: 39515466 DOI: 10.1016/j.job.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Slightly acidic electrolyzed water (SAEW) is produced by electrolyzing 2-6% diluted hydrochloric acid in a membrane-less chamber, resulting in 5.0-6.5 pH, and can be applied to various foods as a disinfectant. Although SAEW has shown to have bactericidal activity, the details of its anti-fungal effects towards Candida species remain unknown. Therefore, we examined the fungicidal effects of SAEW on Candida spp. and biofilms on acrylic resins. METHODS The fungicidal effects of SAEW on Candida spp. at different reaction times and total numbers of colonies in culture plates were examined. Subsequently, SAEW was added to Candida spp. biofilms formed on polystyrene plates, and adenosine triphosphate (ATP) in SAEW was measured to examine its fungicidal effects towards Candida spp. biofilms. The fungicidal effect of SAEW on Candida spp. biofilms was determined by counting the number of colonies on the acrylic resin after adding SAEW. RESULTS SAEW completely killing activity within 1 min with the tested Candida spp.. C. albicans and C. glabrata ATP were increased 5 min after adding SAEW compared with the controls, suggesting the removal of biofilm. Of the C. albicans on acrylic resin, > 99.9%were killed by SAEW compared to their levels in deionized distilled water (DW) (76.2x102/mL and 43.3x102/mL, respectively). Similarly, 93.1% of C. glabrata were killed by SAEW compared to DW (159.3x102/mL). CONCLUSIONS SAEW may be useful in preventing oral candidiasis as part of oral care.
Collapse
Affiliation(s)
- Chia-Hsin Wu
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Yoshino Kaneyasu
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Kanako Yano
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Hideo Shigeishi
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Honami Kitasaki
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Tomoko Maehara
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Yoshie Niitani
- Department of Oral Health Management, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Toshinobu Takemoto
- Department of Oral Health Management, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Yuichi Mine
- Department of Medical Systems Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan
| | - Mi Nguyen-Tra Le
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan.
| |
Collapse
|
3
|
Melo-Ferraz A, Miller P, Criado MB, Monteiro MC, Coelho C. Exploring the antimicrobial potential of Leukocyte- and Platelet-Rich Fibrin - an in vitro study. APMIS 2024; 132:859-868. [PMID: 39295296 DOI: 10.1111/apm.13468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/04/2024] [Indexed: 09/21/2024]
Abstract
This study investigates the antimicrobial properties of leukocyte- and platelet-rich fibrin (L-PRF) against Enterococcus faecalis (ATCC 29212), Pseudomonas aeruginosa (ATCC 27853), and Candida albicans (ATCC 90028). Infections can hinder wound healing posing challenges. L-PRF's potential for regeneration and antimicrobial action has been studied. Considering the increasing concern about antibiotic resistance, assessing the antimicrobial properties of L-PRF provides valuable insights into its potential as a therapeutic agent in postoperative infections. Twenty volunteers were enrolled in the study, following ethical guidelines, and obtaining informed consent. Blood samples were collected and L-PRF was prepared. Microbial suspensions were prepared, and susceptibility testing was performed using the Kirby-Bauer agar diffusion method. The study revealed significant heterogeneity in the susceptibility to L-PRF. All L-PRF membrane samples exhibited antimicrobial activity against P. aeruginosa, with inhibition zones of 13 mm ± 3.85 SD. Enterococcus faecalis displayed inhibition diameter of 7.25 mm ± 5.15 SD. Candida albicans susceptibility to L-PRF varied among samples, with both inhibitory and non-inhibitory results. Results showed varying degrees of antimicrobial activity, particularly against P. aeruginosa, and highlight the complexity of the L-PRF-microorganism interaction. Further investigations are needed to elucidate the clinical implications and optimize the use of L-PRF.
Collapse
Affiliation(s)
- António Melo-Ferraz
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| | - Paulo Miller
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| | - Maria Begoña Criado
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| | - Maria Céu Monteiro
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| | - Cristina Coelho
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| |
Collapse
|
4
|
Kashyap B, Padala SR, Kaur G, Kullaa A. Candida albicans Induces Oral Microbial Dysbiosis and Promotes Oral Diseases. Microorganisms 2024; 12:2138. [PMID: 39597528 PMCID: PMC11596246 DOI: 10.3390/microorganisms12112138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Candida albicans are ubiquitous fungal organisms that colonize the oral cavity of healthy individuals without causing disease. C. albicans is an opportunistic microorganism with several virulent factors that influence the inflammatory process and allow it to invade tissues, evade host defense mechanisms, and release toxins, facilitating proliferation and degradation. At present, increasing emphasis is placed on polymicrobial interactions between C. albicans and various bacterial pathogens. Such interaction is mutually beneficial for both parties: it is competitive and antagonistic. Their complex interaction and colonization in the oral cavity serve as the basis for several oral diseases. The dispersion of C. albicans in saliva and the systemic circulation is noted in association with other bacterial populations, suggesting their virulence in causing disease. Hence, it is necessary to understand fungal-bacterial interactions for early detection and the development of novel therapeutic strategies to treat oral diseases. In this paper, we review the mutualistic interaction of C. albicans in oral biofilm formation and polymicrobial interactions in oral diseases. In addition, C. albicans virulence in causing biofilm-related oral diseases and its presence in saliva are discussed.
Collapse
Affiliation(s)
- Bina Kashyap
- Institute of Dentistry, University of Eastern Finland, 70211 Kuopio, Finland;
| | | | - Gaganjot Kaur
- Shaheed Kartar Singh Sarabha Dental College & Hospital, Ludhiana 141105, India;
| | - Arja Kullaa
- Institute of Dentistry, University of Eastern Finland, 70211 Kuopio, Finland;
| |
Collapse
|
5
|
Alzahrani AAH, Bhat N, Kukreja P, Alhassan EM, Mudawi AIA, Alzahrani FA, Albanghali MA. Oral candidiasis and potential risk factors among disabled and non-disabled in Al-Baha region, Saudi Arabia. World J Clin Cases 2024; 12:6077-6086. [PMID: 39328858 PMCID: PMC11326101 DOI: 10.12998/wjcc.v12.i27.6077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/23/2024] [Accepted: 07/15/2024] [Indexed: 07/29/2024] Open
Abstract
BACKGROUND Oral candidiasis (OC) is an oral health disease that could influence patients' oral health quality of life. AIM To estimate prevalence of OC among disabled and non-disabled individuals and its potential risk factors in the Al-Baha region, Saudi Arabia. METHODS An observational cross-sectional study was carried out among 148 disabled and non-disabled participants. The technique of concentrated oral rinse employing the Sabouraud Dextrose Agar medium accompanied with 0.05% chloramphenicol was conducted to assess and isolate candida. Oral examination using the World Health Organization guidelines was conducted to examine participants' oral health status. A pre-designed questionnaire was also used to evaluate sociodemographic, medical history, and oral hygiene habits of the studied population. RESULTS Out of 148 participants (n = 57, 38%) had colonized candida. None of the studied population had visible Candida lesions. However, Candida was found in the oral rinses without the subject presenting any lesions or issues caused by Candida (asymptomatic colonization). The most common prevalent OC among participants were Candida albicans, Candida glabrata, Candida dubliniensis, Candida krusei, Candida tropicalis, and Candida parapsilosis (n = 35, 61%; n = 8, 14%; n = 6, 10%; n = 5, 9%; n = 2, 4%; and n = 1, 2%) respectively. Diabetes, smoking, poor plaque, and gingival status were key potential risk factors that significantly associated with candida's density and presence (P = 0.001, P = 0.001, P = 0.01, and P = 0.01) respectively. Disability status had no statistically significant effect on presence and density of Candida. CONCLUSION The prevalence of OC is almost third of the studied population; thus, may provoke a need to develop preventive strategies to reduce the OC rate and establish solid treatment plans.
Collapse
Affiliation(s)
- Abdullah Ali H Alzahrani
- Department of Dental Health, Faculty of Applied Medical Sciences, Al-Baha University, Al Bahah 65731, Saudi Arabia
| | - Nagesh Bhat
- Department of Preventive Dental Sciences, School of Dentistry, AlBaha University, Al Bahah 65731, Saudi Arabia
| | - Pankaj Kukreja
- Department of Biomedical Dental Sciences, School of Dentistry, AlBaha University, Al Bahah 65731, Saudi Arabia
| | - Eltayeb Mohammed Alhassan
- Department of Dental Health, Faculty of Applied Medical Sciences, Al-Baha University, Al Bahah 65731, Saudi Arabia
| | - Abdallah Ibrahim A Mudawi
- Department of Dental Health, Faculty of Applied Medical Sciences, Al-Baha University, Al Bahah 65731, Saudi Arabia
| | - Faisal A Alzahrani
- Department of Medical Services General Administration, Public Security, The Saudi Ministry of Interior, Riyadh 11235, Saudi Arabia
| | - Mohammad A Albanghali
- Department of Public Health, Faculty of Applied Medical Sciences, Al-Baha University, Al Bahah 65731, Saudi Arabia
| |
Collapse
|
6
|
Millet N, Sekar J, Solis NV, Millet A, Aggor FE, Wildeman A, Lionakis MS, Gaffen SL, Jendzjowsky N, Filler SG, Swidergall M. Non-canonical IL-22 receptor signaling remodels the mucosal barrier during fungal immunosurveillance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.08.611873. [PMID: 39314368 PMCID: PMC11419061 DOI: 10.1101/2024.09.08.611873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mucosal barrier integrity is vital for homeostasis with commensal organisms while preventing pathogen invasion. We unexpectedly found that fungal-induced immunosurveillance enhances resistance to fungal outgrowth and tissue invasion by remodeling the oral mucosal epithelial barrier in mouse models of adult and neonatal Candida albicans colonization. Epithelial subset expansion and tissue remodeling were dependent on interleukin-22 (IL-22) and signal transducer and activator of transcription 3 (STAT3) signaling, through a non-canonical receptor complex composed of glycoprotein 130 (gp130) coupled with IL-22RA1 and IL-10RB. Immunosurveillance-induced epithelial remodeling was restricted to the oral mucosa, whereas barrier architecture was reset once fungal-specific immunity developed. Collectively, these findings identify fungal-induced transient mucosal remodeling as a critical determinant of resistance to mucosal fungal infection during early stages of microbial colonization.
Collapse
Affiliation(s)
- Nicolas Millet
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jinendiran Sekar
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Norma V. Solis
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Antoine Millet
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Felix E.Y. Aggor
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA, USA
| | - Asia Wildeman
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Sarah L. Gaffen
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA, USA
| | - Nicholas Jendzjowsky
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Marc Swidergall
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
7
|
Koren V, Ben-Zeev E, Voronov I, Fridman M. Chiral Fluorescent Antifungal Azole Probes Detect Resistance, Uptake Dynamics, and Subcellular Distribution in Candida Species. JACS AU 2024; 4:3157-3169. [PMID: 39211628 PMCID: PMC11350599 DOI: 10.1021/jacsau.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Azoles are essential for fungal infection treatment, yet the increasing resistance highlights the need for innovative diagnostic tools and strategies to revitalize this class of antifungals. We developed two enantiomers of a fluorescent antifungal azole probe (1 S and 1 R ), analyzing 60 Candida strains via live-cell microscopy. A database of azole distribution images in strains of Candida albicans, Candida glabrata, and Candida parapsilosis, among the most important pathogenic Candida species, was established and analyzed. This analysis revealed distinct populations of yeast cells based on the correlation between fluorescent probe uptake and cell diameter. Varied uptake levels and subcellular distribution patterns were observed in C. albicans, C. glabrata, and C. parapsilosis, with the latter displaying increased localization to lipid droplets. Comparison of the more potent fluorescent antifungal azole probe enantiomer 1 S with the moderately potent enantiomer 1 R highlighted time-dependent differences in the uptake profiles. The former displayed a marked elevation in uptake after approximately 150 min, indicating the time required for significant cell permeabilization to occur and its association with the azole's antifungal activity potency. Divergent uptake levels between susceptible and high efflux-based azole-resistant strains were detected, offering a rapid diagnostic approach for identifying azole resistance. This study highlights unique insights achievable through fluorescent antifungal azole probes, unraveling the complexities of azole resistance, subcellular dynamics, and uptake within fungal pathogens.
Collapse
Affiliation(s)
- Vlad Koren
- School
of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Efrat Ben-Zeev
- Ilana
and Pascal Mantoux Institute for Bioinformatics and Nancy and Stephen
Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ivan Voronov
- School
of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School
of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
8
|
Pasman R, Zhang J, Zaat SAJ, Brul S, Krom BP. A customizable and defined medium supporting culturing of Candida albicans, Staphylococcus aureus, and human oral epithelial cells. Appl Environ Microbiol 2024; 90:e0036024. [PMID: 39072650 PMCID: PMC11337806 DOI: 10.1128/aem.00360-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Candida albicans, an opportunistic oral pathogen, synergizes with Staphylococcus aureus, allowing bacteria to co-invade and systemically disseminate within the host. Studying human-microbe interactions creates the need for a universal culture medium that supports fungal, bacterial, and human cell culturing, while allowing sensitive analytical approaches such as OMICs and chromatography techniques. In this study, we established a fully defined, customizable adaptation of Dulbecco's modified Eagle medium (DMEM), allowing multi-kingdom culturing of S. aureus, C. albicans, and human oral cell lines, whereas minimal version of DMEM (mDMEM) did not support growth of S. aureus, and neither did supplementation with dextrose, MEM non-essential amino acids, pyruvate, and Glutamax. This new medium composition, designated as "mDMEM-DMP," promoted growth of all tested S. aureus strains. Addition of 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) further improved growth, while higher concentrations did not improve growth any further. Higher concentrations of HEPES did result in prolonged stabilization of medium pH. mDMEM-DMP promoted (hyphal) C. albicans monoculturing and co-culturing on both solid and semi-solid surfaces. In contrast to S. aureus, addition of HEPES reduced C. albicans maximum culture optical density (OD). Finally, only buffered mDMEM-DMP (100 mM HEPES) was successful in maintaining the metabolic activity of human oral Ca9-22 and HO1N1 cell lines for 24 hours. Altogether, our findings show that mDMEM-DMP is a versatile and potent culture medium for both microbial and human cell culturing, providing a customizable platform to study human as well as microbial molecular physiology and putative interactions. IMPORTANCE Interaction between microbes and the host are in the center of interest both in disease and in health. In order to study the interactions between microbes of different kingdoms and the host, alternative media are required. Synthetic media are useful as they allow addition of specific components. In addition, well-defined media are required if high-resolution analyses such as metabolomics and proteomics are desired. We describe the development of a synthetic medium to study the interactions between C. albicans, S. aureus, and human oral epithelial cells. Our findings show that mDMEM-DMP is a versatile and potent culture medium for both microbial and human cell culturing, providing a customizable platform to study human as well as microbial molecular physiology and putative interactions.
Collapse
Affiliation(s)
- Raymond Pasman
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Jianbo Zhang
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Razmi M, Kim J, Chinnici J, Busarajan S, Vuppalapaty H, Lankipalli D, Li R, Maddi A. Candida albicans Mannosidases, Dfg5 and Dcw1, Are Required for Cell Wall Integrity and Pathogenesis. J Fungi (Basel) 2024; 10:525. [PMID: 39194851 DOI: 10.3390/jof10080525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Candida albicans is an oral mucosal commensal fungus that transforms into an opportunistic pathogen under specific conditions, including immunosuppression. It causes oral and systemic candidiasis, which results in a significant health burden. Furthermore, an alarming rise in antifungal drug resistance in Candida species raises the urgent need for novel drugs and drug targets. C. albicans Dfg5 and Dcw1 are homologous cell wall alpha-1,6-mannosidases with critical functions and represent potential new drug targets. Our past studies have shown that Dfg5 and Dcw1 function in cell wall biogenesis through the cross-linking of glycoproteins into the cell wall, thus playing a key role in cell wall integrity. Additionally, Dfg5 and Dcw1 are required for hyphal morphogenesis. However, the exact functions of Dfg5 and Dcw1 in cell wall integrity, hyphal morphogenesis, and pathogenesis are not known. In this study, we determined the relation of Dfg5 and Dcw1 with Hog1 MAPK, which plays a key role in cell wall integrity via the regulation of chitin synthesis in C. albicans. Additionally, we also determined the effects of dfg5 and dcw1 mutations on the gene expression of transcriptional regulators of hyphal morphogenesis. Furthermore, we determined the effects of dfg5 and dcw1 mutations on pathogenesis in a mouse model of oral candidiasis. Our results demonstrate that dfg5 and dcw1 mutations, as well as a hog1 knockout mutation, result in the dysregulation of chitin synthesis, resulting in a cell separation defect. Heterozygous and conditional mutations in dfg5 and dcw1 resulted in decreased transcriptional levels of cst20, a positive regulator of hyphal morphogenesis. However, dfg5 and dcw1 mutations resulted in increased levels of all the five negative regulators of hyphal morphogenesis-Tup1, Nrg1, Mig1, Rbf1, and Rfg1. Additionally, Tup1 levels were significantly higher than other negative regulators, indicating that Dfg5 and Dcw1 function in hyphal morphogenesis by repressing Tup1. Finally, dfg5 and dcw1 mutations affected the ability of C. albicans to cause oral candidiasis in mice. Thus, the cell wall glycosidases Dfg5 and Dcw1 are required for virulence and pathogenesis and represent novel drug targets.
Collapse
Affiliation(s)
- Maryam Razmi
- Department of Periodontics & Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Jaewon Kim
- Department of Periodontics & Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Jennifer Chinnici
- Department of Periodontics & Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
- Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Sujay Busarajan
- Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Hema Vuppalapaty
- Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Deepika Lankipalli
- Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Rui Li
- Department of Restorative Dentistry, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Abhiram Maddi
- Department of Periodontics & Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
- Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
- Division of Regenerative Sciences & Periodontics, Department of Advanced Specialty Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
10
|
Elfadil A, Ibrahem K. Antifungal Activity of 3-Hydrazinoquinoxaline-2-Thiol, a Novel Quinoxaline Derivative against Candida Species. MYCOBIOLOGY 2024; 52:191-200. [PMID: 38948451 PMCID: PMC11210417 DOI: 10.1080/12298093.2024.2362497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024]
Abstract
Candida ranks as among the most frequently encountered fungal infections that associated with high morbidity and mortality. Quinoxaline derivatives are a group of small molecules that showed a promising antimicrobial activity. This study aimed to investigate the fungicidal effects of 3-hydrazinoquinoxaline-2-thiol against Candida in comparison with Amphotericin B in vitro as a reference. Also, we aim to assess the efficacy of 3-hydrazinoquinoxaline-2-thiol in vivo using mice oral candidiasis model. Fifty-six Candida isolates were subjected to susceptibility testing by broth microdilution method for 3-hydrazinoquinoxaline-2-thiol and Amphotericin B. Therefore, Minimal inhibitory concentrations (MIC) were assessed and compared. The oral candidiasis mice model was used to evaluate the activity of 3-hydrazinoquinoxaline-2-thiol in vivo. Microbiological evaluation of progression and ELISA were used in this study. 3-hydrazinoquinoxaline-2-thiol was more effective than Amphotericin B against most clinical isolates of Candida albicans. Higher effectiveness was seen against Candida glabrata and Candida parapsilosis isolates. However, the efficiency against Candida tropicalis isolates varies. 3-hydrazinoquinoxaline-2-thiol was also effective against Pichia kudriavzevii and Clavispora lusitaniae. 3-hydrazinoquinoxaline-2-thiol showed a good efficacy in mice model against C. albicans cells ATCC 10231. 3-hydrazinoquinoxaline-2-thiol has shown promising antifungal and anti-inflammatory activity against different Candida species. More tests and experiments are needed.
Collapse
Affiliation(s)
- Abdelbagi Elfadil
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Karem Ibrahem
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Fakhruddin KS, Matsubara VH, Warnakulasuriya S, Tilakaratne WM, Ngo HC, Samaranayake LP. Mucormycosis of the Mandible and Tongue: A Systematic Scoping Review. Int Dent J 2024; 74:454-472. [PMID: 38143163 PMCID: PMC11123561 DOI: 10.1016/j.identj.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
AIM Mucormycosis is a rare human infection associated with Mucorales, a group of filamentous moulds found in different environmental niches. Its oral manifestations may occur in the mandible and tongue despite being rare. We aimed to systematically review the data on clinical manifestations, risk factors, diagnostic approaches, treatment options, and outcomes of mandibular and tongue mucormycosis. METHODS An electronic search of articles published between January 1975 and November 2022 in PubMed, Web of Science, and EMBASE databases was performed. A total of 22 articles met the inclusion criteria and reported 27 cases of oral mucormycosis in total. RESULTS Fourteen patients had mandibular mucormycosis signs unrelated to COVID-19 infection, 6 had SARS-CoV-2-related mandibular mucormycosis, and 6 had manifestations in the tongue. All published case reports during the COVID-19 pandemic were from India. Patient ages ranged from 4 months old to 82 years, and most patients had important comorbidities, such as blood dyscrasias related to immune deficiency and uncontrolled type 2 diabetes mellitus. The signs and symptoms of mandibular and tongue mucormycosis varied from dental pain, loose teeth, and nonhealing sockets to dysphagia and paraesthesia of the lip. Some patients also reported trismus, draining sinus tract, and facial pain. The diagnosis of oral mucormycosis was based on a combination of clinical, radiographic, and histopathologic findings by demonstrating fungal hyphae in tissue specimens. In most cases, mucormycosis was managed with systemic amphotericin B, strict glycaemic control, and aggressive surgical debridement of infected tissue, minimising the progression of the fungal infection and thus improving the survival rate. In some cases, combined antifungal therapy, antibiotic therapy, and chlorhexidine mouthwashes were used successfully. CONCLUSIONS Recognition of the signs and symptoms by oral care providers is pertinent for the early diagnosis and treatment of tongue and mandibular mucormycosis, and providers should be aware of the possibility of this opportunistic fungal infection in patients with COVID-19. A multidisciplinary approach is recommended for the management of this lethal infection.
Collapse
Affiliation(s)
- Kausar Sadia Fakhruddin
- Department of Preventive and Restorative Dentistry, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | | | - Hien Chi Ngo
- Dental School, University of Western Australia, Perth, Western Australia, Australia
| | - Lakshman P Samaranayake
- Faculty of Dentistry, The University of Hong Kong, Hong Kong. Special Administrative Region, China.
| |
Collapse
|
12
|
Shahabudin S, Azmi NS, Lani MN, Mukhtar M, Hossain MS. Candida albicans skin infection in diabetic patients: An updated review of pathogenesis and management. Mycoses 2024; 67:e13753. [PMID: 38877612 DOI: 10.1111/myc.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
Candida species, commensal residents of human skin, are recognized as the cause of cutaneous candidiasis across various body surfaces. Individuals with weakened immune systems, particularly those with immunosuppressive conditions, are significantly more susceptible to this infection. Diabetes mellitus, a major metabolic disorder, has emerged as a critical factor inducing immunosuppression, thereby facilitating Candida colonization and subsequent skin infections. This comprehensive review examines the prevalence of different types of Candida albicans-induced cutaneous candidiasis in diabetic patients. It explores the underlying mechanisms of pathogenicity and offers insights into recommended preventive measures and treatment strategies. Diabetes notably increases vulnerability to oral and oesophageal candidiasis. Additionally, it can precipitate vulvovaginal candidiasis in females, Candida balanitis in males, and diaper candidiasis in young children with diabetes. Diabetic individuals may also experience candidal infections on their nails, hands and feet. Notably, diabetes appears to be a risk factor for intertrigo syndrome in obese individuals and periodontal disorders in denture wearers. In conclusion, the intricate relationship between diabetes and cutaneous candidiasis necessitates a comprehensive understanding to strategize effective management planning. Further investigation and interdisciplinary collaborative efforts are crucial to address this multifaceted challenge and uncover novel approaches for the treatment, management and prevention of both health conditions, including the development of safer and more effective antifungal agents.
Collapse
Affiliation(s)
- Sakina Shahabudin
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| | - Nina Suhaity Azmi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| | - Mohd Nizam Lani
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | | | - Md Sanower Hossain
- Centre for Sustainability of Mineral and Resource Recovery Technology (Pusat SMaRRT), Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| |
Collapse
|
13
|
Keyvanfar A, Najafiarab H, Talebian N, Tafti MF, Adeli G, Ghasemi Z, Tehrani S. Drug-resistant oral candidiasis in patients with HIV infection: a systematic review and meta-analysis. BMC Infect Dis 2024; 24:546. [PMID: 38822256 PMCID: PMC11143751 DOI: 10.1186/s12879-024-09442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Oral candidiasis (OC) is a prevalent opportunistic infection in patients with human immunodeficiency virus (HIV) infection. The increasing resistance to antifungal agents in HIV-positive individuals suffering from OC raised concerns. Thus, this study aimed to investigate the prevalence of drug-resistant OC in HIV-positive patients. METHODS Pubmed, Web of Science, Scopus, and Embase databases were systematically searched for eligible articles up to November 30, 2023. Studies reporting resistance to antifungal agents in Candida species isolated from HIV-positive patients with OC were included. Baseline characteristics, clinical features, isolated Candida species, and antifungal resistance were independently extracted by two reviewers. The pooled prevalence with a 95% confidence interval (CI) was calculated using the random effect model or fixed effect model. RESULTS Out of the 1942 records, 25 studies consisting of 2564 Candida species entered the meta-analysis. The pooled prevalence of resistance to the antifungal agents was as follows: ketoconazole (25.5%, 95% CI: 15.1-35.8%), fluconazole (24.8%, 95% CI: 17.4-32.1%), 5-Flucytosine (22.9%, 95% CI: -13.7-59.6%), itraconazole (20.0%, 95% CI: 10.0-26.0%), voriconazole (20.0%, 95% CI: 1.9-38.0%), miconazole (15.0%, 95% CI: 5.1-26.0%), clotrimazole (13.4%, 95% CI: 2.3-24.5%), nystatin (4.9%, 95% CI: -0.05-10.3%), amphotericin B (2.9%, 95% CI: 0.5-5.3%), and caspofungin (0.1%, 95% CI: -0.3-0.6%). Furthermore, there were high heterogeneities among almost all included studies regarding the resistance to different antifungal agents (I2 > 50.00%, P < 0.01), except for caspofungin (I2 = 0.00%, P = 0.65). CONCLUSIONS Our research revealed that a significant number of Candida species found in HIV-positive patients with OC were resistant to azoles and 5-fluocytosine. However, most of the isolates were susceptible to nystatin, amphotericin B, and caspofungin. This suggests that initial treatments for OC, such as azoles, may not be effective. In such cases, healthcare providers may need to consider prescribing alternative treatments like polyenes and caspofungin. REGISTRATION The study protocol was registered in the International Prospective Register of Systematic Reviews as PROSPERO (Number: CRD42024497963).
Collapse
Affiliation(s)
- Amirreza Keyvanfar
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Najafiarab
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niki Talebian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Falah Tafti
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gelareh Adeli
- Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Ghasemi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Tehrani
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Perić M, Miličić B, Kuzmanović Pfićer J, Živković R, Arsić Arsenijević V. A Systematic Review of Denture Stomatitis: Predisposing Factors, Clinical Features, Etiology, and Global Candida spp. Distribution. J Fungi (Basel) 2024; 10:328. [PMID: 38786683 PMCID: PMC11122031 DOI: 10.3390/jof10050328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Denture stomatitis (DS) is a very common disease in wearers of removable complete and partial dentures with a worldwide prevalence in the range of 20-67%. Both industrially developed and impoverished nations are affected by the illness. DS is often associated with ill-fitting dentures or a fungal infection with Candida spp. Candida is normally found in the oral cavity microbiota, but it can be harmful to the health of elderly people with underlying diseases. Therefore, the purpose of the present study is to offer the most recent information about the epidemiology, etiology, and global distribution of Candida species associated with DS through a systematic review. Several databases, including Medline, Web of Science, and Scopus, were used to conduct an extensive search of the literature published in the previous 20 years. The selection of studies was performed by two authors. The extracted data were as follows: author, year of publication, country, sample, frequency of DS, method of diagnosing stomatitis, species of Candida, risk factors, and etiology of the disease. The JBI Critical appraisal tools were used to assess the quality of the studies. Eventually, twenty-eight studies were included in the systematic review. Twenty-one studies investigated DS, while seven studies examined Candida colonization in patients using removable dentures. The results show that the main causes of DS include the type of dentures, continuous wearing of dentures, and the formation of a Candida biofilm, which is facilitated by poor dental hygiene. Additionally, previous studies have pinpointed the significance of the salivary flow, saliva composition, and salivary pH. The findings of the current review indicate that it is crucial to monitor denture wearers for the appearance of DS, especially the patients whose immunity has been impaired due to a systemic condition. Finally, frequent follow-ups should include a clinical examination and microbial swabs of the palatal mucosa and the mucosal surface of the denture.
Collapse
Affiliation(s)
- Mirjana Perić
- Department of Prosthodontics, School of Dental Medicine, University of Belgrade, Rankeova 4, 11000 Belgrade, Serbia; (M.P.); (R.Ž.)
| | - Biljana Miličić
- Department of Medical Statistics and Informatics, School of Dental Medicine, University of Belgrade, Dr. Subotića 1, 11000 Belgrade, Serbia; (B.M.); (J.K.P.)
| | - Jovana Kuzmanović Pfićer
- Department of Medical Statistics and Informatics, School of Dental Medicine, University of Belgrade, Dr. Subotića 1, 11000 Belgrade, Serbia; (B.M.); (J.K.P.)
| | - Rade Živković
- Department of Prosthodontics, School of Dental Medicine, University of Belgrade, Rankeova 4, 11000 Belgrade, Serbia; (M.P.); (R.Ž.)
| | - Valentina Arsić Arsenijević
- Medical Mycology Reference Laboratory, Department of Microbiology, Faculty of Medicine, University of Belgrade, Dr. Subotića 4, 11000 Belgrade, Serbia
| |
Collapse
|
15
|
Le PH, Linklater DP, Medina AA, MacLaughlin S, Crawford RJ, Ivanova EP. Impact of multiscale surface topography characteristics on Candida albicans biofilm formation: From cell repellence to fungicidal activity. Acta Biomater 2024; 177:20-36. [PMID: 38342192 DOI: 10.1016/j.actbio.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
While there has been significant research conducted on bacterial colonization on implant materials, with a focus on developing surface modifications to prevent the formation of bacterial biofilms, the study of Candida albicans biofilms on implantable materials is still in its infancy, despite its growing relevance in implant-associated infections. C. albicans fungal infections represent a significant clinical concern due to their severity and associated high fatality rate. Pathogenic yeasts account for an increasing proportion of implant-associated infections, since Candida spp. readily form biofilms on medical and dental device surfaces. In addition, these biofilms are highly antifungal-resistant, making it crucial to explore alternative solutions for the prevention of Candida implant-associated infections. One promising approach is to modify the surface properties of the implant, such as the wettability and topography of these substrata, to prevent the initial Candida attachment to the surface. This review summarizes recent research on the effects of surface wettability, roughness, and architecture on Candida spp. attachment to implantable materials. The nanofabrication of material surfaces are highlighted as a potential method for the prevention of Candida spp. attachment and biofilm formation on medical implant materials. Understanding the mechanisms by which Candida spp. attach to surfaces will allow such surfaces to be designed such that the incidence and severity of Candida infections in patients can be significantly reduced. Most importantly, this approach could also substantially reduce the need to use antifungals for the prevention and treatment of these infections, thereby playing a crucial role in minimizing the possibility contributing to instances of antimicrobial resistance. STATEMENT OF SIGNIFICANCE: In this review we provide a systematic analysis of the role that surface characteristics, such as wettability, roughness, topography and architecture, play on the extent of C. albicans cells attachment that will occur on biomaterial surfaces. We show that exploiting bioinspired surfaces could significantly contribute to the prevention of antimicrobial resistance to antifungal and chemical-based preventive measures. By reducing the attachment and growth of C. albicans cells using surface structure approaches, we can decrease the need for antifungals, which are conventionally used to treat such infections.
Collapse
Affiliation(s)
- Phuc H Le
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia; ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia
| | - Denver P Linklater
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia; ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia; Department of Biomedical Engineering, The Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Arturo Aburto Medina
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Shane MacLaughlin
- ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia; BlueScope Steel Research, Port Kembla, NSW 2505, Australia
| | - Russell J Crawford
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia; ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia.
| |
Collapse
|
16
|
Stoltz P, Bavousett T. Infant Oral Candidiasis and Bottle Cleaning Methods: A Descriptive Study. Gastroenterol Nurs 2024; 47:129-137. [PMID: 38567856 DOI: 10.1097/sga.0000000000000790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/01/2023] [Indexed: 04/05/2024] Open
Abstract
As manufacturers produce bottles with additional parts, such as an anticolic straw, cleaning time increases. Increased cleaning time potentially decreases cleaning effectiveness and, thus, increases the chance for thrush. This study explored the relationship between the number of bottle parts and cleaning methods for bottle-fed-only infants (<13 months) presenting with oral candidiasis. After obtaining demographic information on eligible infants (via parental consent) from the chart, caregivers of 60 infants verbally completed a questionnaire. The questionnaire elicited information about the preferred bottle for feeding, number of parts, washing frequency, washing method, drying method, sterilization frequency, and sterilization method. The χ2 test, and Fisher's exact test when necessary, was performed to examine the relationship between each reported cleaning method (washing, drying, and sterilization) compared with the number of bottle parts (≤3 or ≥4). The number of bottle parts showed no association with bottle cleaning methods (p > .05). Although there were no statistically significant relationships, trends did present that warrant investigation. Future studies to confirm recommended practices for cleaning methods and identify those at risk from demographic data could positively affect the health of bottle-fed infants by reducing the occurrence of thrush.
Collapse
Affiliation(s)
- Patricia Stoltz
- Patricia Stoltz, DNP, RN, PCNS-BC, is Adjunct Faculty, Texas Christian University, Fort Worth
- Tamara Bavousett, DNP, RN, C-PNP, is Owner/Provider, Compass Pediatrics, Odessa, Texas
| | - Tamara Bavousett
- Patricia Stoltz, DNP, RN, PCNS-BC, is Adjunct Faculty, Texas Christian University, Fort Worth
- Tamara Bavousett, DNP, RN, C-PNP, is Owner/Provider, Compass Pediatrics, Odessa, Texas
| |
Collapse
|
17
|
Alkhars N, Al Jallad N, Wu TT, Xiao J. Multilocus sequence typing of Candida albicans oral isolates reveals high genetic relatedness of mother-child dyads in early life. PLoS One 2024; 19:e0290938. [PMID: 38232064 PMCID: PMC10793898 DOI: 10.1371/journal.pone.0290938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
Candida albicans is a pathogenic fungus recently recognized for its role in severe early childhood caries development (S-ECC). C. albicans oral colonization begins at birth, but the extent of the mother's involvement in yeast transmission to their children is unclear, therefore, this study used a prospective mother-infant cohort to investigate the maternal contribution of C. albicans oral colonization in early life. Oral samples were collected from 160 mother-child dyads during pregnancy and from birth to two years of life. We used whole-genome sequencing to obtain the genetic information of C. albicans isolates and examined the genetic relatedness of C. albicans between mothers and their children using Multilocus Sequence Typing. Multivariate statistical methods were used to identify factors associated with C. albicans' acquisition (horizontal and vertical transmissions). Overall, 227 C. albicans oral isolates were obtained from 93 (58.1%) of mother-child pairs. eBURST analysis revealed 16 clonal complexes, and UPGMA analysis identified 6 clades, with clade 1 being the most populated 124 isolates (54.6%). Significantly, 94% of mothers and children with oral C. albicans had highly genetically related strains, highlighting a strong maternal influence on children's C. albicans acquisition. Although factors such as race, ethnicity, delivery method, and feeding behaviors did not show a significant association with C. albicans vertical transmission, the mother's oral hygiene status reflected by plaque index (PI) emerged as a significant factor; Mothers with higher dental plaque accumulation (PI >=2) had a significantly increased risk of vertically transmitting C. albicans to their infants [odds ratio (95% confidence interval) of 8.02 (1.21, 53.24), p=0.03]. Furthermore, Black infants and those who attended daycare had an elevated risk of acquiring C. albicans through horizontal transmission (p <0.01). These findings highlight the substantial role of maternal transmission in the oral acquisition of C. albicans during early life. Incorporating screening for maternal fungal oral carriage and implementing oral health education programs during the perinatal stage may prove valuable in preventing fungal transmission in early infancy.
Collapse
Affiliation(s)
- Naemah Alkhars
- Department of General Dental Practice, College of Dentistry, Health Science Center, Kuwait University, Safat, Kuwait
- Translational Biomedical Science Program, Clinical and Translational Science Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Nisreen Al Jallad
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
18
|
Lenka S, Dubey D, Swain SK, Rath G, Mishra A, Bishoyi AK, Purohit GK. Implementation of Silver Nanoparticles Green Synthesized with Leaf Extract of Coccinia grandis as Antimicrobial Agents Against Head and Neck Infection MDR Pathogens. Curr Pharm Biotechnol 2024; 25:2312-2325. [PMID: 38347796 DOI: 10.2174/0113892010290653240109053852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 09/26/2024]
Abstract
BACKGROUND Head and neck infections (HNI) associated with multidrug resistance (MDR) offer several health issues on a global scale due to inaccurate diagnosis. OBJECTIVES This study aimed to identify the bacteria and Candidal isolates and implement the silver nanoparticles green synthesized with leaf extract of Coccinia grandis (Cg-AgNPs) as a therapeutic approach against HNI pathogens. METHODS The Cg-AgNPs were characterized by the UV-visible spectrophotometer, FT-IR analysis, Zeta particle size, Zeta potential, and field emission scanning electron microscope (FESEM) analysis to validate the synthesis of nanoparticles. Additionally, the antimicrobial activity of Cg-AgNPs was presented by the zone of inhibition (ZOI), minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and antibiofilm assay. Moreover, the cell wall rupture assay was visualized on SEM for the morphological study of antimicrobial activities, and the in-vivo toxicity was performed in a swiss mice model to evaluate the impact of Cg-AgNPs on various biological parameters. RESULTS Different bacterial strains (Staphylococcus aureus, Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa) and Candida sp. (Candida albicans, Candida tropicalis, Candida orthopsilosis, and Candida glabrata) were identified. The MIC, MBC, and antibiofilm potential of Cg-AgNPs were found to be highest against A. baumannii: 1.25 μg/ml, 5 μg/ml, and 85.01±5.19% respectively. However, C. albicans and C. orthopsilosis revealed 23 mm and 21 mm of ZOI. Subsequently, the micromorphology of the cell wall rupture assay confirmed the efficacy of Cg-AgNPs, and no significant alterations were seen in biochemical and hematological parameters on the swiss mice model in both acute and subacute toxicity studies. CONCLUSION The green synthesized Cg-AgNPs have multifunctional activities like antibacterial, anticandidal, and antibiofilm activity with no toxicity and can be introduced against the HNI pathogens.
Collapse
Affiliation(s)
- Smarita Lenka
- Department of Medical Research, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, K8, Kalinga Nagar, Bhubaneswar, 751003, Odisha, India
| | - Debasmita Dubey
- Department of Medical Research, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, K8, Kalinga Nagar, Bhubaneswar, 751003, Odisha, India
| | - Santosh Kumar Swain
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Sijua, Patrapada, Bhubaneswar, 751019, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Ajit Mishra
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Ajit Kumar Bishoyi
- Clinical Hematology, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | | |
Collapse
|
19
|
Al Mousa AA, Abouelela ME, Al Ghamidi NS, Abo-Dahab Y, Mohamed H, Abo-Dahab NF, Hassane AMA. Anti-Staphylococcal, Anti-Candida, and Free-Radical Scavenging Potential of Soil Fungal Metabolites: A Study Supported by Phenolic Characterization and Molecular Docking Analysis. Curr Issues Mol Biol 2023; 46:221-243. [PMID: 38248318 PMCID: PMC10814734 DOI: 10.3390/cimb46010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Staphylococcus and Candida are recognized as causative agents in numerous diseases, and the rise of multidrug-resistant strains emphasizes the need to explore natural sources, such as fungi, for effective antimicrobial agents. This study aims to assess the in vitro anti-staphylococcal and anti-candidal potential of ethyl acetate extracts from various soil-derived fungal isolates. The investigation includes isolating and identifying fungal strains as well as determining their antioxidative activities, characterizing their phenolic substances through HPLC analysis, and conducting in silico molecular docking assessments of the phenolics' binding affinities to the target proteins, Staphylococcus aureus tyrosyl-tRNA synthetase and Candida albicans secreted aspartic protease 2. Out of nine fungal species tested, two highly potent isolates were identified through ITS ribosomal gene sequencing: Aspergillus terreus AUMC 15447 and A. nidulans AUMC 15444. Results indicated that A. terreus AUMC 15447 and A. nidulans AUMC 15444 extracts effectively inhibited S. aureus (concentration range: 25-0.39 mg/mL), with the A. nidulans AUMC 15444 extract demonstrating significant suppression of Candida spp. (concentration range: 3.125-0.39 mg/mL). The A. terreus AUMC 15447 extract exhibited an IC50 of 0.47 mg/mL toward DPPH radical-scavenging activity. HPLC analysis of the fungal extracts, employing 18 standards, revealed varying degrees of detected phenolics in terms of their presence and quantities. Docking investigations highlighted rutin as a potent inhibitor, showing high affinity (-16.43 kcal/mol and -12.35 kcal/mol) for S. aureus tyrosyl-tRNA synthetase and C. albicans secreted aspartic protease 2, respectively. The findings suggest that fungal metabolites, particularly phenolics, hold significant promise for the development of safe medications to combat pathogenic infections.
Collapse
Affiliation(s)
- Amal A. Al Mousa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia;
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo P.O. Box 11884, Egypt;
| | - Nadaa S. Al Ghamidi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia;
| | | | - Hassan Mohamed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (H.M.); (N.F.A.-D.)
| | - Nageh F. Abo-Dahab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (H.M.); (N.F.A.-D.)
| | - Abdallah M. A. Hassane
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (H.M.); (N.F.A.-D.)
| |
Collapse
|
20
|
Le Bars P, Kouadio AA, Amouriq Y, Bodic F, Blery P, Bandiaky ON. Different Polymers for the Base of Removable Dentures? Part II: A Narrative Review of the Dynamics of Microbial Plaque Formation on Dentures. Polymers (Basel) 2023; 16:40. [PMID: 38201705 PMCID: PMC10780608 DOI: 10.3390/polym16010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
This review focuses on the current disparities and gaps in research on the characteristics of the oral ecosystem of denture wearers, making a unique contribution to the literature on this topic. We aimed to synthesize the literature on the state of current knowledge concerning the biological behavior of the different polymers used in prosthetics. Whichever polymer is used in the composition of the prosthetic base (poly methyl methacrylate acrylic (PMMA), polyamide (PA), or polyether ether ketone (PEEK)), the simple presence of a removable prosthesis in the oral cavity can disturb the balance of the oral microbiota. This phenomenon is aggravated by poor oral hygiene, resulting in an increased microbial load coupled with the reduced salivation that is associated with older patients. In 15-70% of patients, this imbalance leads to the appearance of inflammation under the prosthesis (denture stomatitis, DS). DS is dependent on the equilibrium-as well as on the reciprocal, fragile, and constantly dynamic conditions-between the host and the microbiome in the oral cavity. Several local and general parameters contribute to this balance. Locally, the formation of microbial plaque on dentures (DMP) depends on the phenomena of adhesion, aggregation, and accumulation of microorganisms. To limit DMP, apart from oral and lifestyle hygiene, the prosthesis must be polished and regularly immersed in a disinfectant bath. It can also be covered with an insulating coating. In the long term, relining and maintenance of the prosthesis must also be established to control microbial proliferation. On the other hand, several general conditions specific to the host (aging; heredity; allergies; diseases such as diabetes mellitus or cardiovascular, respiratory, or digestive diseases; and immunodeficiencies) can make the management of DS difficult. Thus, the second part of this review addresses the complexity of the management of DMP depending on the polymer used. The methodology followed in this review comprised the formulation of a search strategy, definition of the inclusion and exclusion criteria, and selection of studies for analysis. The PubMed database was searched independently for pertinent studies. A total of 213 titles were retrieved from the electronic databases, and after applying the exclusion criteria, we selected 84 articles on the possible microbial interactions between the prosthesis and the oral environment, with a particular emphasis on Candida albicans.
Collapse
Affiliation(s)
- Pierre Le Bars
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| | - Alain Ayepa Kouadio
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Department of Prosthetic Dentistry, Faculty of Dentistry, CHU, Abidjan P.O. Box 612, Côte d’Ivoire
| | - Yves Amouriq
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| | - François Bodic
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| | - Pauline Blery
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| | - Octave Nadile Bandiaky
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| |
Collapse
|
21
|
Itagaki T, Sakata KI, Hasebe A, Kitagawa Y. Exploratory Study of the Relationship between an Oral Fungal Swab Test and Patient Blood Test Data. Microorganisms 2023; 11:2887. [PMID: 38138030 PMCID: PMC10745972 DOI: 10.3390/microorganisms11122887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Our understanding of the relationship between oral Candida and systemic conditions has significantly increased recently, which this study aims to extend further by investigating the risks of oral candidiasis. A total of 314 patients were involved in this study and underwent an oral swab test at the Department of Oral Medicine, Hokkaido University Hospital, between January and December 2021. Data were collected on age, sex, white and red blood cell counts, Hb, total protein, vitamin B12, as well as serum albumin, iron, copper, and zinc levels. The clinical fungus samples were swabbed to identify those with Candida species using a MALDI Biotyper, then applied analysis of covariance and multivariant logistic regression analysis. It was possible to assess the oral swab test results without considering the difference between sex (p = 0.946). The oral swab test results were associated with aging (odds ratio: 1.03) and serum albumin levels (odds ratio: 0.32). In summary, the results of our study suggest a relationship between aging and oral candidiasis and offer in-depth insights into how to prevent or treat oral candidiasis onset.
Collapse
Affiliation(s)
- Tatsuki Itagaki
- Oral Diagnosis and Medicine, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Kita-13 Nishi-7, Kita-ku, Sapporo 060-8586, Japan; (T.I.); (K.-i.S.); (Y.K.)
- Oral Molecular Microbiology, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Kita-13 Nishi-7, Kita-ku, Sapporo 060-8586, Japan
| | - Ken-ichiro Sakata
- Oral Diagnosis and Medicine, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Kita-13 Nishi-7, Kita-ku, Sapporo 060-8586, Japan; (T.I.); (K.-i.S.); (Y.K.)
| | - Akira Hasebe
- Oral Molecular Microbiology, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Kita-13 Nishi-7, Kita-ku, Sapporo 060-8586, Japan
| | - Yoshimasa Kitagawa
- Oral Diagnosis and Medicine, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Kita-13 Nishi-7, Kita-ku, Sapporo 060-8586, Japan; (T.I.); (K.-i.S.); (Y.K.)
| |
Collapse
|
22
|
Lyons KM, Cannon RD, Beumer J, Bakr MM, Love RM. Microbial Analysis of Obturators During Maxillofacial Prosthodontic Treatment Over an 8-Year Period. Cleft Palate Craniofac J 2023; 60:1426-1441. [PMID: 35642284 DOI: 10.1177/10556656221104940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to investigate the microbial colonization (by Candida species, anaerobic and facultative anaerobic bacteria) of maxillary obturators used for the restoration of maxillary defects, including during radiotherapy. Retrospective cohort study. Fifteen patients requiring a maxillary obturator prosthesis had swabs of their obturators and adjacent tissues taken at different stages of their treatment over a period of 8 years. Identification of microbial species from the swabs was carried out using randomly amplified polymorphic DNA polymerase chain reaction (RAPD PCR) analysis, checkerboard DNA-DNA hybridization, CHROMagar Candida chromogenic agar, and DNA sequencing. Candida species were detected in all patients and all patients developed mucositis and candidiasis during radiotherapy which was associated with an increase in colonization of surfaces with Candida spp., particularly C albicans. Microbial colonization increased during radiotherapy and as an obturator aged, and decreased following a reline, delivery of a new prosthesis, or antifungal treatment during radiotherapy. Microbial colonization of maxillary obturators was related to the stage of treatment, age of the obturator material, radiotherapy and antifungal medications, and antifungal treatment may be recommended if C albicans colonization of palatal tissues is greater than 105 colony-forming units per cm2 following the first week of radiotherapy.
Collapse
Affiliation(s)
- Karl M Lyons
- Department of Oral Rehabilitation and Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Richard D Cannon
- Department of Oral Sciences and Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - John Beumer
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Mahmoud M Bakr
- School of Medicine and Dentistry, Griffith University, Queensland, Australia
| | - Robert M Love
- School of Medicine and Dentistry, Griffith University, Queensland, Australia
| |
Collapse
|
23
|
Cutajar J, Gkrania-Klotsas E, Sander C, Floto A, Chandra A, Manson A, Kumararatne D. Respiratory infectious burden in a cohort of antibody deficiency patients treated with immunoglobulin replacement therapy: The impact of lung pathology and gastroesophageal reflux disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100133. [PMID: 37781665 PMCID: PMC10509975 DOI: 10.1016/j.jacig.2023.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 10/03/2023]
Abstract
Background Antibody deficiencies result from reduced immunoglobulin levels and function, increasing susceptibility to, primarily, bacterial infection. Primary antibody deficiencies comprise intrinsic defects in B-cell physiology, often due to inherited errors. Hematological malignancies or B-cell suppressive therapy are major causes of secondary antibody deficiency. Although immunoglobulin replacement therapy (IGRT) reduces infectious burden in antibody deficiency patients, respiratory tract infections remain a significant health burden. We hypothesize that lung pathology and gastroesophageal reflux disease (GORD) increase the risk of pneumonia in antibody deficiency patients, as in the general population. Objective For our cohort of patients with primary antibody deficiency and secondary antibody deficiency, we reviewed their respiratory infectious burden and the impact of lung pathologies and GORD. Methods The medical records of 231 patients on IGRT at a tertiary referral center, from October 26, 2014, to February 19, 2021, were reviewed to determine microbial isolates from sputum samples and prevalence of common lung pathologies and GORD. Results Haemophilus and Pseudomonas species represent a large infectious burden, being identified in 30.2% and 21.4% of sputum samples demonstrating growth, respectively; filamentous fungal and mycobacterial infections were rare. Diagnosed lung pathology increased the proportion of patients with Pseudomonas, Klebsiella, Stenotrophomonas, and Candida species isolated in their sputum, and diagnosed GORD increased the proportion with Enterobacter and Candida species isolated. Conclusions Bacterial respiratory infectious burden remains in primary antibody deficiency and secondary antibody deficiency despite IGRT. Lung pathologies encourage growth of species less susceptible to IGRT, so specialist respiratory medicine input and additional treatments such as inhaled antibiotics are indicated to optimize respiratory outcomes.
Collapse
Affiliation(s)
- Jonathan Cutajar
- John Radcliffe Hospital, Department of Medicine, Oxford, United Kingdom
| | | | - Clare Sander
- Addenbrooke’s Hospital, Respiratory Medicine, Cambridge, United Kingdom
| | - Andres Floto
- Royal Papworth Hospital, Cambridge Centre for Lung Infection, Cambridge, United Kingdom
| | - Anita Chandra
- Addenbrooke’s Hospital, Clinical Immunology, Cambridge, United Kingdom
| | - Ania Manson
- Addenbrooke’s Hospital, Clinical Immunology, Cambridge, United Kingdom
| | | |
Collapse
|
24
|
Ramírez-Carmona W, Fernandes GLP, Díaz-Fabregat B, Oliveira EC, do Prado RL, Pessan JP, Monteiro DR. Effectiveness of fluconazole as antifungal prophylaxis in cancer patients undergoing chemotherapy, radiotherapy, or immunotherapy: systematic review and meta-analysis. APMIS 2023; 131:668-684. [PMID: 37199283 DOI: 10.1111/apm.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/19/2023]
Abstract
This review assessed the effectiveness of fluconazole as antifungal prophylaxis on the incidence of oral fungal diseases in patients undergoing cancer treatment. The secondary outcomes evaluated were the adverse effects, discontinuation of cancer therapy due to oral fungal infection, mortality by a fungal infection, and the mean duration of antifungal prophylaxis. Twelve databases and records were searched. The RoB 2 and ROBINS I tools were used to assess the risk of bias. The relative risk (RR), risk difference, and standard mean difference (SMD) were applied with 95% confidence intervals (CI). The certainty of the evidence was determined by GRADE. Twenty-four studies were included in this systematic review. In randomized controlled trials pooling, fluconazole was a protective factor for the primary outcome (RR = 0.30; CI: 0.16, 0.55; p < 0.01, vs placebo). Compared to other antifungals, fluconazole was only more effective than the subgroup of amphotericin B and nystatin (alone or in combination) (RR = 0.19; CI: 0.09, 0.43; p < 0.01). Fluconazole was also a protective factor in non-randomized trials pooling (RR = 0.19; CI: 0.05, 0.78; p = 0.02, vs untreated). The results showed no significant differences for the secondary outcomes. The certainty of the evidence was low and very low. In conclusion, prophylactic antifungals are necessary during cancer treatment, and fluconazole was shown to be more effective in reducing oral fungal diseases only compared with the subgroup assessing amphotericin B and nystatin, administered alone or in combination.
Collapse
Affiliation(s)
- Wilmer Ramírez-Carmona
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (Unesp), Araçatuba/São Paulo, Brazil
| | - Gabriela Leal Peres Fernandes
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (Unesp), Araçatuba/São Paulo, Brazil
| | - Beatriz Díaz-Fabregat
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (Unesp), Araçatuba/São Paulo, Brazil
| | - Evelyn Carmo Oliveira
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (Unesp), Araçatuba/São Paulo, Brazil
| | - Rosana Leal do Prado
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), Presidente Prudente/São Paulo, Brazil
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (Unesp), Araçatuba/São Paulo, Brazil
| | - Douglas Roberto Monteiro
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (Unesp), Araçatuba/São Paulo, Brazil
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), Presidente Prudente/São Paulo, Brazil
- Postgraduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente/São Paulo, Brazil
| |
Collapse
|
25
|
Nour EM, El-Habashy SE, Shehat MG, Essawy MM, El-Moslemany RM, Khalafallah NM. Atorvastatin liposomes in a 3D-printed polymer film: a repurposing approach for local treatment of oral candidiasis. Drug Deliv Transl Res 2023; 13:2847-2868. [PMID: 37184748 PMCID: PMC10545585 DOI: 10.1007/s13346-023-01353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2023] [Indexed: 05/16/2023]
Abstract
Oral candidiasis (OC) is an opportunistic fungal infection, common amongst the elderly and the immunocompromised. Unfortunately, the therapeutic efficacy of common antifungals is imperiled by the rise of antifungal drug resistance. An alternative promising therapeutic option possibly contributing to antifungal therapy is drug repurposing. Herein, we aimed to employ novel pharmaceutical drug delivery for enhancing the emerging antifungal potential of the hypocholesterolemic drug atorvastatin (ATV). ATV-propylene-glycol-liposomes (ATV/PG-Lip) were prepared then integrated in 3D-printed (3DP) mucoadhesive films comprising chitosan, polyvinyl-alcohol and hydroxypropyl methylcellulose, as an innovative blend, for the management of OC. ATV/PG-Lip demonstrated good colloidal properties of particle size (223.3 ± 2.1 nm), PDI (0.12 ± 0.001) and zeta potential (-18.2 ± 0.3 mV) with high entrapment efficiency (81.15 ± 1.88%) and sustained drug release. Also, ATV/PG-Lip showed acceptable three-month colloidal stability and in vitro cytocompatibility on human gingival fibroblasts. The developed 3DP-films exhibited controlled ATV release (79.4 ± 1.4% over 24 h), reasonable swelling and mucoadhesion (2388.4 ± 18.4 dyne/cm2). In vitro antifungal activity of ATV/PG-Lip was confirmed against fluconazole-resistant Candida albicans via minimum inhibitory concentration determination, time-dependent antifungal activity, agar diffusion and scanning electron microscopy. Further, ATV/PG-Lip@3DP-film exceeded ATV@3DP-film in amelioration of infection and associated inflammation in an in vivo oral candidiasis rabbit model. Accordingly, the results confirm the superiority of the fabricated ATV/PG-Lip@3DP-film for the management of oral candidiasis and tackling antifungal resistance.
Collapse
Affiliation(s)
- Eman M Nour
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, P.O. Box 21521, Azarita, Alexandria, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, P.O. Box 21521, Azarita, Alexandria, Egypt.
| | - Michael G Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, P.O. Box 21521, Azarita, Alexandria, Egypt
| | - Nawal M Khalafallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, P.O. Box 21521, Azarita, Alexandria, Egypt
| |
Collapse
|
26
|
Kabir AR, Chaudhary AA, Aladwani MO, Podder S. Decoding the host-pathogen interspecies molecular crosstalk during oral candidiasis in humans: an in silico analysis. Front Genet 2023; 14:1245445. [PMID: 37900175 PMCID: PMC10603195 DOI: 10.3389/fgene.2023.1245445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: The objective of this study is to investigate the interaction between Candida albicans and human proteins during oral candidiasis, with the aim of identifying pathways through which the pathogen subverts host cells. Methods: A comprehensive list of interactions between human proteins and C. albicans was obtained from the Human Protein Interaction Database using specific screening criteria. Then, the genes that exhibit differential expression during oral candidiasis in C. albicans were mapped with the list of human-Candida interactions to identify the corresponding host proteins. The identified host proteins were further compared with proteins specific to the tongue, resulting in a final list of 99 host proteins implicated in oral candidiasis. The interactions between host proteins and C. albicans proteins were analyzed using the STRING database, enabling the construction of protein-protein interaction networks. Similarly, the gene regulatory network of Candida proteins was reconstructed using data from the PathoYeastract and STRING databases. Core module proteins within the targeted host protein-protein interaction network were identified using ModuLand, a Cytoscape plugin. The expression levels of the core module proteins under diseased conditions were assessed using data from the GSE169278 dataset. To gain insights into the functional characteristics of both host and pathogen proteins, ontology analysis was conducted using Enrichr and YeastEnrichr, respectively. Result: The analysis revealed that three Candida proteins, HHT21, CYP5, and KAR2, interact with three core host proteins, namely, ING4 (in the DNMT1 module), SGTA, and TOR1A. These interactions potentially impair the immediate immune response of the host against the pathogen. Additionally, differential expression analysis of fungal proteins and their transcription factors in Candida-infected oral cell lines indicated that Rob1p, Tye7p, and Ume6p could be considered candidate transcription factors involved in instigating the pathogenesis of oral candidiasis during host infection. Conclusion: Our study provides a molecular map of the host-pathogen interaction during oral candidiasis, along with potential targets for designing regimens to overcome oral candidiasis, particularly in immunocompromised individuals.
Collapse
Affiliation(s)
- Ali Rejwan Kabir
- Computational and System Biology Lab, Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Malak O Aladwani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Soumita Podder
- Computational and System Biology Lab, Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
| |
Collapse
|
27
|
Jiang Y, Yin C, Mo J, Wang X, Wang T, Li G, Zhou Q. Recent progress in carbon dots for anti-pathogen applications in oral cavity. Front Cell Infect Microbiol 2023; 13:1251309. [PMID: 37780847 PMCID: PMC10540312 DOI: 10.3389/fcimb.2023.1251309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Background Oral microbial infections are one of the most common diseases. Their progress not only results in the irreversible destruction of teeth and other oral tissues but also closely links to oral cancers and systemic diseases. However, traditional treatment against oral infections by antibiotics is not effective enough due to microbial resistance and drug blocking by oral biofilms, along with the passive dilution of the drug on the infection site in the oral environment. Aim of review Besides the traditional antibiotic treatment, carbon dots (CDs) recently became an emerging antimicrobial and microbial imaging agent because of their excellent (bio)physicochemical performance. Their application in treating oral infections has received widespread attention, as witnessed by increasing publication in this field. However, to date, there is no comprehensive review available yet to analyze their effectiveness and mechanism. Herein, as a step toward addressing the present gap, this review aims to discuss the recent advances in CDs against diverse oral pathogens and thus propose novel strategies in the treatment of oral microbial infections. Key scientific concepts of review In this manuscript, the recent progress of CDs against oral pathogens is summarized for the first time. We highlighted the antimicrobial abilities of CDs in terms of oral planktonic bacteria, intracellular bacteria, oral pathogenic biofilms, and fungi. Next, we introduced their microbial imaging and detection capabilities and proposed the prospects of CDs in early diagnosis of oral infection and pathogen microbiological examination. Lastly, we discussed the perspectives on clinical transformation and the current limitations of CDs in the treatment of oral microbial infections.
Collapse
Affiliation(s)
- Yuying Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Chuqiang Yin
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jianning Mo
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xiaoyu Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Ting Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Guotai Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
28
|
Arafa SH, Elbanna K, Osman GEH, Abulreesh HH. Candida diagnostic techniques: a review. JOURNAL OF UMM AL-QURA UNIVERSITY FOR APPLIED SCIENCES 2023; 9:360-377. [DOI: 10.1007/s43994-023-00049-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/27/2023] [Indexed: 01/03/2025]
Abstract
AbstractFungal infections (mycoses) represent a major health issue in humans. They have emerged as a global concern for medical professionals by causing high morbidity and mortality. Fungal infections approximately impact one billion individuals per annum and account for 1.6 million deaths. The diagnosis of Candida infections is a challenging task. Laboratory-based Candida species identification techniques (molecular, commercial, and conventional) have been reviewed and summarized. This review aims to discuss the mycoses history, taxonomy, pathogenicity, and virulence characteristics.
Collapse
|
29
|
Yang L, Cheng T, Shao J. Perspective on receptor-associated immune response to Candida albicans single and mixed infections: Implications for therapeutics in oropharyngeal candidiasis. Med Mycol 2023; 61:myad077. [PMID: 37533203 DOI: 10.1093/mmy/myad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Oropharyngeal candidiasis (OPC), commonly known as 'thrush', is an oral infection that usually dismantles oral mucosal integrity and malfunctions local innate and adaptive immunities in compromised individuals. The major pathogen responsible for the occurrence and progression of OPC is the dimorphic opportunistic commensal Candida albicans. However, the incidence induced by non-albicans Candida species including C. glabrata, C. tropicalis, C. dubliniensis, C. parapsilosis, and C. krusei are increasing in company with several oral bacteria, such as Streptococcus mutans, S. gordonii, S. epidermidis, and S. aureus. In this review, the microbiological and infection features of C. albicans and its co-contributors in the pathogenesis of OPC are outlined. Since the invasion and concomitant immune response lie firstly on the recognition of oral pathogens through diverse cellular surface receptors, we subsequently emphasize the roles of epidermal growth factor receptor, ephrin-type receptor 2, human epidermal growth factor receptor 2, and aryl hydrocarbon receptor located on oral epithelial cells to delineate the underlying mechanism by which host immune recognition to oral pathogens is mediated. Based on these observations, the therapeutic approaches to OPC comprising conventional and non-conventional antifungal agents, fungal vaccines, cytokine and antibody therapies, and antimicrobial peptide therapy are finally overviewed. In the face of newly emerging life-threatening microbes (C. auris and SARS-CoV-2), risks (biofilm formation and interconnected translocation among diverse organs), and complicated clinical settings (HIV and oropharyngeal cancer), the research on OPC is still a challenging task.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| | - Ting Cheng
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| |
Collapse
|
30
|
Rapala-Kozik M, Surowiec M, Juszczak M, Wronowska E, Kulig K, Bednarek A, Gonzalez-Gonzalez M, Karkowska-Kuleta J, Zawrotniak M, Satała D, Kozik A. Living together: The role of Candida albicans in the formation of polymicrobial biofilms in the oral cavity. Yeast 2023; 40:303-317. [PMID: 37190878 DOI: 10.1002/yea.3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
The oral cavity of humans is colonized by diversity of microbial community, although dominated by bacteria, it is also constituted by a low number of fungi, often represented by Candida albicans. Although in the vast minority, this usually commensal fungus under certain conditions of the host (e.g., immunosuppression or antibiotic therapy), can transform into an invasive pathogen that adheres to mucous membranes and also to medical or dental devices, causing mucosal infections. This transformation is correlated with changes in cell morphology from yeast-like cells to hyphae and is supported by numerous virulence factors exposed by C. albicans cells at the site of infection, such as multifunctional adhesins, degradative enzymes, or toxin. All of them affect the surrounding host cells or proteins, leading to their destruction. However, at the site of infection, C. albicans can interact with different bacterial species and in its filamentous form may produce biofilms-the elaborated consortia of microorganisms, that present increased ability to host colonization and resistance to antimicrobial agents. In this review, we highlight the modification of the infectious potential of C. albicans in contact with different bacterial species, and also consider the mutual bacterial-fungal relationships, involving cooperation, competition, or antagonism, that lead to an increase in the propagation of oral infection. The mycofilm of C. albicans is an excellent hiding place for bacteria, especially those that prefer low oxygen availability, where microbial cells during mutual co-existence can avoid host recognition or elimination by antimicrobial action. However, these microbial relationships, identified mainly in in vitro studies, are modified depending on the complexity of host conditions and microbial dominance in vivo.
Collapse
Affiliation(s)
- Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Aneta Bednarek
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Miriam Gonzalez-Gonzalez
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Dorota Satała
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
31
|
Salvi GE, Roccuzzo A, Imber JC, Stähli A, Klinge B, Lang NP. Clinical periodontal diagnosis. Periodontol 2000 2023. [PMID: 37452444 DOI: 10.1111/prd.12487] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 03/14/2023] [Indexed: 07/18/2023]
Abstract
Periodontal diseases include pathological conditions elicited by the presence of bacterial biofilms leading to a host response. In the diagnostic process, clinical signs such as bleeding on probing, development of periodontal pockets and gingival recessions, furcation involvement and presence of radiographic bone loss should be assessed prior to periodontal therapy, following active therapy, and during long-term supportive care. In addition, patient-reported outcomes such as increased tooth mobility, migration, and tilting should also be considered. More important to the patient, however, is the fact that assessment of signs of periodontal diseases must be followed by an appropriate treatment plan. Furthermore, it should be realized that clinical and radiographic periodontal diagnosis is based on signs which may not reflect the presence of active disease but rather represent the sequelae of a previous bacterial challenge. Hence, the aim of the present review is to provide a summary of clinical and radiographic diagnostic criteria required to classify patients with periodontal health or disease.
Collapse
Affiliation(s)
- Giovanni E Salvi
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Andrea Roccuzzo
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jean-Claude Imber
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Björn Klinge
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Niklaus P Lang
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Trinh K, Wiener L, Philipone E. Nodule of the Midline Dorsal Tongue. JAMA Otolaryngol Head Neck Surg 2023; 149:647-648. [PMID: 37289465 DOI: 10.1001/jamaoto.2023.1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A 46-year-old man presented for an evaluation of a lesion on the dorsal tongue; he was asymptomatic and unaware of the lesion prior to it being discovered by his dentist. What is your diagnosis?
Collapse
Affiliation(s)
- Khanh Trinh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Leib Wiener
- Columbia University College of Dental Medicine, New York, New York
| | - Elizabeth Philipone
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
33
|
Joncic Savic K, Djokic L, Stankovic N, Moric I, Pavlovic B, Senerovic L, Aydogan C, Pavic A. Maqui berry extract inhibits filamentation of Candidaalbicans and improves the antifungal efficacy of nystatin. J Funct Foods 2023; 106:105617. [DOI: 10.1016/j.jff.2023.105617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
34
|
Sadanandan B, Vijayalakshmi V, Ashrit P, Babu UV, Sharath Kumar LM, Sampath V, Shetty K, Joglekar AP, Awaknavar R. Aqueous spice extracts as alternative antimycotics to control highly drug resistant extensive biofilm forming clinical isolates of Candida albicans. PLoS One 2023; 18:e0281035. [PMID: 37315001 PMCID: PMC10266687 DOI: 10.1371/journal.pone.0281035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
Candida albicans form biofilm by associating with biotic and abiotic surfaces. Biofilm formation by C. albicans is relevant and significant as the organisms residing within, gain resistance to conventional antimycotics and are therefore difficult to treat. This study targeted the potential of spice-based antimycotics to control C. albicans biofilms. Ten clinical isolates of C. albicans along with a standard culture MTCC-3017 (ATCC-90028) were screened for their biofilm-forming ability. C. albicans M-207 and C. albicans S-470 were identified as high biofilm formers by point inoculation on Trypticase Soy Agar (TSA) medium as they formed a lawn within 16 h and exhibited resistance to fluconazole and caspofungin at 25 mcg and 8 mcg respectively. Aqueous and organic spice extracts were screened for their antimycotic activity against C. albicans M-207 and S-470 by agar and disc diffusion and a Zone of Inhibition was observed. Minimal Inhibitory Concentration was determined based on growth absorbance and cell viability measurements. The whole aqueous extract of garlic inhibited biofilms of C. albicans M-207, whereas whole aqueous extracts of garlic, clove, and Indian gooseberry were effective in controlling C. albicans S-470 biofilm within 12 h of incubation. The presence of allicin, ellagic acid, and gallic acid as dominant compounds in the aqueous extracts of garlic, clove, and Indian gooseberry respectively was determined by High-Performance Thin Layer Chromatography and Liquid Chromatography-Mass Spectrometry. The morphology of C. albicans biofilm at different growth periods was also determined through bright field microscopy, phase contrast microscopy, and fluorescence microscopy. The results of this study indicated that the alternate approach in controlling high biofilm-forming, multi-drug resistant clinical isolates of C. albicans M-207 and S-470 using whole aqueous extracts of garlic, clove, and Indian gooseberry is a safe, potential, and cost-effective one that can benefit the health care needs with additional effective therapeutics to treat biofilm infections.
Collapse
Affiliation(s)
- Bindu Sadanandan
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | | | - Priya Ashrit
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Uddagiri Venkanna Babu
- Department of Phytochemistry, Research and Development, The Himalaya Drug Company, Bengaluru, Karnataka, India
| | | | - Vasulingam Sampath
- Department of Phytochemistry, Research and Development, The Himalaya Drug Company, Bengaluru, Karnataka, India
| | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | | | - Rashmi Awaknavar
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| |
Collapse
|
35
|
Raposo BL, Souza SO, Santana GS, Lima MTA, Sarmento-Neto JF, Reboucas JS, Pereira G, Santos BS, Cabral Filho PE, Ribeiro MS, Fontes A. A Novel Strategy Based on Zn(II) Porphyrins and Silver Nanoparticles to Photoinactivate Candida albicans. Int J Nanomedicine 2023; 18:3007-3020. [PMID: 37312931 PMCID: PMC10258042 DOI: 10.2147/ijn.s404422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/06/2023] [Indexed: 06/15/2023] Open
Abstract
Background Photodynamic inactivation (PDI) is an attractive alternative to treat Candida albicans infections, especially considering the spread of resistant strains. The combination of the photophysical advantages of Zn(II) porphyrins (ZnPs) and the plasmonic effect of silver nanoparticles (AgNPs) has the potential to further improve PDI. Here, we propose the novel association of polyvinylpyrrolidone (PVP) coated AgNPs with the cationic ZnPs Zn(II) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin or Zn(II) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin to photoinactivate C. albicans. Methods AgNPs stabilized with PVP were chosen to allow for (i) overlap between the NP extinction and absorption spectra of ZnPs and (ii) favor AgNPs-ZnPs interaction; prerequisites for exploring the plasmonic effect. Optical and zeta potential (ζ) characterizations were performed, and reactive oxygen species (ROS) generation was also evaluated. Yeasts were incubated with individual ZnPs or their respective AgNPs-ZnPs systems, at various ZnP concentrations and two proportions of AgNPs, then irradiated with a blue LED. Interactions between yeasts and the systems (ZnP alone or AgNPs-ZnPs) were evaluated by fluorescence microscopy. Results Subtle spectroscopic changes were observed for ZnPs after association with AgNPs, and the ζ analyses confirmed AgNPs-ZnPs interaction. PDI using ZnP-hexyl (0.8 µM) and ZnP-ethyl (5.0 µM) promoted a 3 and 2 log10 reduction of yeasts, respectively. On the other hand, AgNPs-ZnP-hexyl (0.2 µM) and AgNPs-ZnP-ethyl (0.6 µM) systems led to complete fungal eradication under the same PDI parameters and lower porphyrin concentrations. Increased ROS levels and enhanced interaction of yeasts with AgNPs-ZnPs were observed, when compared with ZnPs alone. Conclusion We applied a facile synthesis of AgNPs which boosted ZnP efficiency. We hypothesize that the plasmonic effect combined with the greater interaction between cells and AgNPs-ZnPs systems resulted in an efficient and improved fungal inactivation. This study provides insight into the application of AgNPs in PDI and helps diversify our antifungal arsenal, encouraging further developments toward inactivation of resistant Candida spp.
Collapse
Affiliation(s)
- Bruno L Raposo
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Sueden O Souza
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Gleyciane S Santana
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Max T A Lima
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - José F Sarmento-Neto
- Departamento de Química, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Júlio S Reboucas
- Departamento de Química, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Goreti Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Química & CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Beate S Santos
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Paulo E Cabral Filho
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Martha S Ribeiro
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), São Paulo, SP, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
36
|
Chrószcz-Porębska MW, Barszczewska-Rybarek IM, Kazek-Kęsik A, Ślęzak-Prochazka I. Cytotoxicity and Microbiological Properties of Copolymers Comprising Quaternary Ammonium Urethane-Dimethacrylates with Bisphenol A Glycerolate Dimethacrylate and Triethylene Glycol Dimethacrylate. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103855. [PMID: 37241482 DOI: 10.3390/ma16103855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Using dental composite restorative materials with a copolymeric matrix chemically modified towards bioactive properties can help fight secondary caries. In this study, copolymers of 40 wt.% bisphenol A glycerolate dimethacrylate, 40 wt.% quaternary ammonium urethane-dimethacrylates (QAUDMA-m, where m represents 8, 10, 12, 14, 16 and 18 carbon atoms in the N-alkyl substituent), and 20 wt.% triethylene glycol dimethacrylate (BG:QAm:TEGs) were tested for (i) cytotoxicity on the L929 mouse fibroblast cell line; (ii) fungal adhesion, fungal growth inhibition zone, and fungicidal activity against C. albicans; and (iii) bactericidal activity against S. aureus and E. coli. BG:QAm:TEGs had no cytotoxic effects on L929 mouse fibroblasts because the reduction of cell viability was less than 30% compared to the control. BG:QAm:TEGs also showed antifungal activity. The number of fungal colonies on their surfaces depended on the water contact angle (WCA). The higher the WCA, the greater the scale of fungal adhesion. The fungal growth inhibition zone depended on the concentration of QA groups (xQA). The lower the xQA, the lower the inhibition zone. In addition, 25 mg/mL BG:QAm:TEGs suspensions in culture media showed fungicidal and bactericidal effects. In conclusion, BG:QAm:TEGs can be recognized as antimicrobial biomaterials with negligible biological patient risk.
Collapse
Affiliation(s)
- Marta W Chrószcz-Porębska
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland
| | - Izabela M Barszczewska-Rybarek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland
| | - Alicja Kazek-Kęsik
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6 Str., 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland
| | - Izabella Ślęzak-Prochazka
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16 Str., 44-100 Gliwice, Poland
| |
Collapse
|
37
|
Alkhars N, Gaca A, Zeng Y, Al-Jallad N, Rustchenko E, Wu TT, Eliav E, Xiao J. Antifungal Susceptibility of Oral Candida Isolates from Mother-Infant Dyads to Nystatin, Fluconazole, and Caspofungin. J Fungi (Basel) 2023; 9:580. [PMID: 37233291 PMCID: PMC10219145 DOI: 10.3390/jof9050580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
The carriage of Candida albicans in children's oral cavities is associated with a higher risk for early childhood caries, so controlling this fungus in early life is essential for preventing caries. In a prospective cohort of 41 mothers and their children from 0 to 2 years of age, this study addressed four main objectives: (1) Evaluate in vitro the antifungal agent susceptibility of oral Candida isolates from the mother-child cohort; (2) compare Candida susceptibility between isolates from the mothers and children; (3) assess longitudinal changes in the susceptibility of the isolates collected between 0 and 2 years; and (4) detect mutations in C. albicans antifungal resistance genes. Susceptibility to antifungal medications was tested by in vitro broth microdilution and expressed as the minimal inhibitory concentration (MIC). C. albicans clinical isolates were sequenced by whole genome sequencing, and the genes related to antifungal resistance, ERG3, ERG11, CDR1, CDR2, MDR1, and FKS1, were assessed. Four Candida spp. (n = 126) were isolated: C. albicans, C. parapsilosis, C. dubliniensis, and C. lusitaniae. Caspofungin was the most active drug for oral Candida, followed by fluconazole and nystatin. Two missense mutations in the CDR2 gene were shared among C. albicans isolates resistant to nystatin. Most of the children's C. albicans isolates had MIC values similar to those from their mothers, and 70% remained stable on antifungal medications from 0 to 2 years. For caspofungin, 29% of the children's isolates showed an increase in MIC values from 0 to 2 years. Results of the longitudinal cohort indicated that clinically used oral nystatin was ineffective in reducing the carriage of C. albicans in children; novel antifungal regimens in infants are needed for better oral yeast control.
Collapse
Affiliation(s)
- Naemah Alkhars
- Department of General Dental Practice, College of Dentistry, Health Science Center, Kuwait University, Safat 13110, Kuwait;
- Translational Biomedical Science Program, Clinical and Translational Science Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Anthony Gaca
- Genomic Research Center, University of Rochester, Rochester, NY 14642, USA;
| | - Yan Zeng
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14620, USA (N.A.-J.)
| | - Nisreen Al-Jallad
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14620, USA (N.A.-J.)
| | - Elena Rustchenko
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Eli Eliav
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14620, USA (N.A.-J.)
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14620, USA (N.A.-J.)
| |
Collapse
|
38
|
Silva ARP, Bodanezi AV, Chrun ES, Lisboa ML, de Camargo AR, Munhoz EA. Palliative oral care in terminal cancer patients: Integrated review. World J Clin Cases 2023; 11:2966-2980. [PMID: 37215429 PMCID: PMC10198072 DOI: 10.12998/wjcc.v11.i13.2966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Palliative care (PC) aims to improve quality of life in patients and its families against life threatening diseases, through suffering’s prevention and relief. It is the duty of the dental surgeon to possess the knowledge needed to treat a patient with little life span, in order to establish an adequate treatment plan for each situation.
AIM To synthesize the published evidence on oral conditions, impact, management and challenges in managing oral conditions among palliative patients.
METHODS Articles were selected from PubMed and Scopus electronic platforms, using a research strategy with diverse descriptors related to “palliative care”, “cancer” and “oral health”. The article’s selection was done in two phases. The first one was performed by the main researcher through the reading of the abstracts. In the second phase two researchers selected eligible articles after reading in full those previous selected. Data was tabulated and analyzed, obtaining information about what is found in literature related to this subject and what is necessary to be approached in future researches about PC.
RESULTS As results, the total of 15 articles were eligible, being one a qualitative analysis, 13 (92.8%) clinical trials and one observational study. Of the 15 articles, 8 (53.4%) involved questionnaires, while the rest involved: one systematic review about oral care in a hospital environment, 2 oral exams and oral sample collection, one investigation of terminal patient’s (TP) oral assessment records, 2 collection of oral samples and their respective analysis and one treatment of the observed oral complications.
CONCLUSION It can be concluded that the oral manifestations in oncologic patients in terminal stage are, oral candidiasis, dry mouth, dysphagia, dysgeusia, oral mucositis and orofacial pain. Determining a protocol for the care of these and other complications of cancer – or cancer therapy – based on scientific evidence with the latest cutting-edge research results is of fundamental importance for the multidisciplinary team that works in the care of patients in PC. To prevent complications and its needed to initial the dentist as early as possible as a multidisciplinary member. It has been suggested palliative care protocol based on the up to date literature available for some frequent oral complications in TP with cancer. Other complications in terminal patients and their treatments still need to have further studying.
Collapse
Affiliation(s)
- Ana Rute Preis Silva
- Department of Dentistry, Federal University of Santa Catarina, Florianopolis 88040-379, Brazil
| | - Augusto Vanni Bodanezi
- Department of Dentistry, Federal University of Santa Catarina, Florianopolis 88040-379, Brazil
| | - Emanuely Silva Chrun
- Department of Pathology, Federal University of Santa Catarina, Florianopolis 88040900, Brazil
| | - Mariah Luz Lisboa
- Professor Polydoro São Thiago Ernani Hospital, Federal University of Santa Catarina, Florianopolis 88040900, Brazil
| | - Alessandra R de Camargo
- Department of Dentistry, Federal University of Santa Catarina, Florianopolis 88040-379, Brazil
| | - Etiene Andrade Munhoz
- Department of Dentistry, Health Science Centre, Federal University of Santa Catarina, Florianopolis 88040-379, Brazil
| |
Collapse
|
39
|
Lara VS, Silva RAD, Ferrari TP, Santos CFD, Oliveira SHPD. Losartan Plays a Fungistatic and Fungicidal Activity Against Candida albicans Biofilms: Drug Repurposing for Localized Candidosis. Assay Drug Dev Technol 2023; 21:157-165. [PMID: 37229625 DOI: 10.1089/adt.2023.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Candidosis is one of the most frequent opportunistic infections and exhibits variable clinical presentations, including oral localized forms. Drugs affecting the renin-angiotensin system targets inhibit secreted aspartic proteases from Candida albicans. The objective of the study was to evaluate whether losartan has antimicrobial action against C. albicans biofilms. Biofilms were treated with losartan or aliskiren (for comparison) for 24 h. Metabolic activity of viable cells and growth inhibition of C. albicans biofilms were assessed using XTT [2,3-Bis(2-Methoxy-4-Nitro-5-Sulfophenyl)-5-[(Phenyl-Amino)Carbonyl]-2H-Tetrazolium Hydroxide] and colony-forming unit assays, respectively. In addition, the cytotoxicity of the drugs on human cells was evaluated using the AlamarBlue assay. Both drugs decreased fungal viability at all concentrations. In addition, all concentrations of losartan inhibited the growth of C. albicans biofilm, ranging from 47% to 88.5%, whereas aliskiren showed inhibition from 1 to 10 mg/mL, which ranged from 16% to 97.6%. Furthermore, at certain concentrations, these drugs maintained the viability of human cells. Losartan and aliskiren have fungistatic and fungicidal action against C. albicans biofilms and are compatible with human cells. Therefore, these antihypertensive drugs can be repurposed to interfere with the metabolism and development of Candida biofilms, which are widely associated with clinical forms of candidosis, including oral localized forms such as denture stomatitis.
Collapse
Affiliation(s)
- Vanessa Soares Lara
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| | - Rafaela Alves da Silva
- Integrated Research Center, Bauru School of Dentistry, University of São Paulo (USP). Bauru, Brazil
| | - Tatiane Ponteado Ferrari
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| | - Carlos Ferreira Dos Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of Sa˜o Paulo (USP). Bauru, Brazil
| | - Sandra Helena Penha de Oliveira
- Immunopharmacology Laboratory, Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry. Araçatuba, Brazil
| |
Collapse
|
40
|
Monsen RE, Kristoffersen AK, Gay CL, Herlofson BB, Fjeld KG, Hove LH, Nordgarden H, Tollisen A, Lerdal A, Enersen M. Identification and susceptibility testing of oral candidiasis in advanced cancer patients. BMC Oral Health 2023; 23:223. [PMID: 37072843 PMCID: PMC10111683 DOI: 10.1186/s12903-023-02950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/06/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Patients with advanced cancer are prone to develop different opportunistic oral infection due to anti-cancer treatment or the malignancies themselves. Studies of oral fungal samples show an increased prevalence of non-Candida albicans species in mixed oral infections with Candida albicans. Non-C. albicans and C. albicans are associated with varying degrees of resistance to azoles, which may have implications for treatment. This study aimed to assess the diversity and antifungal susceptibility of Candida species detected in the oral cavity. METHODS An observational study with microbiological analysis was conducted. Clinical fungal isolates were collected from patients in a hospice unit in 2014-2016. Isolates were re-grown on chromID® Candida plates in 2020. Single colony of each species was re-cultivated and prepared for biochemical identification with a VITEK2® system and verified by gene sequencing. Etest was performed on RPMI agar, and the antifungals fluconazole, amphotericin B, anidulafungin and nystatin were applied. RESULTS Fifty-six isolates from 45 patients were identified. Seven different Candida species and one Saccharomyces species were detected. The results of biochemical identification were confirmed with sequencing analysis. Thirty-six patients had mono infection, and nine out of 45 patients had 2-3 different species detected. Of C. albicans strains, 39 out of 40 were susceptible to fluconazole. Two non-C. albicans species were resistant to fluconazole, one to amphotericin B and three to anidulafungin. CONCLUSION C. albicans was the predominant species, with a high susceptibility to antifungal agents. Different Candida species occur in both mono and mixed infections. Identification and susceptibility testing may therefore lead to more effective treatment and may prevent the development of resistance among patients with advanced cancer. TRAIL REGISTRATION The study Oral Health in Advanced Cancer was registered at ClinicalTrials.gov (#NCT02067572) in 20/02/2014.
Collapse
Affiliation(s)
- Ragnhild Elisabeth Monsen
- Department for Interdisciplinary Health Sciences, Institute of Health and Society, Faculty of Medicine, University of Oslo, Postboks 1089 Blindern, 0317, Oslo, Norway.
- Department of Medicine, Lovisenberg Diaconal Hospital, Oslo, Norway.
| | | | - Caryl L Gay
- Department of Research, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Family Health Care Nursing, University of California, San Francisco, USA
| | - Bente Brokstad Herlofson
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Unit of Oral and Maxillofacial Surgery, Department of Otorhinolaryngology - Head and Neck Surgery Division for Head, Neck and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Katrine Gahre Fjeld
- Department of Cariology and Gerodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Lene Hystad Hove
- Department of Cariology and Gerodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Hilde Nordgarden
- National Resource Centre for Oral Health in Rare Disorders, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Anita Tollisen
- Unger-Vetlesens Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Anners Lerdal
- Department for Interdisciplinary Health Sciences, Institute of Health and Society, Faculty of Medicine, University of Oslo, Postboks 1089 Blindern, 0317, Oslo, Norway
- Department of Research, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Morten Enersen
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
41
|
Khelaifia S, Virginie P, Belkacemi S, Tassery H, Terrer E, Aboudharam G. Culturing the Human Oral Microbiota, Updating Methodologies and Cultivation Techniques. Microorganisms 2023; 11:microorganisms11040836. [PMID: 37110259 PMCID: PMC10143722 DOI: 10.3390/microorganisms11040836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Recent years have been marked by a paradigm shift in the study of the human microbiota, with a re-emergence of culture-dependent approaches. Numerous studies have been devoted to the human microbiota, while studies on the oral microbiota still remain limited. Indeed, various techniques described in the literature may enable an exhaustive study of the microbial composition of a complex ecosystem. In this article, we report different methodologies and culture media described in the literature that can be applied to study the oral microbiota by culture. We report on specific methodologies for targeted culture and specific culture techniques and selection methodologies for cultivating members of the three kingdoms of life commonly found in the human oral cavity, namely, eukaryota, bacteria and archaea. This bibliographic review aims to bring together the various techniques described in the literature, enabling a comprehensive study of the oral microbiota in order to demonstrate its involvement in oral health and diseases.
Collapse
Affiliation(s)
- Saber Khelaifia
- Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
- Ecole de Médecine Dentaire, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Pilliol Virginie
- Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
- Ecole de Médecine Dentaire, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Souad Belkacemi
- Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Herve Tassery
- Ecole de Médecine Dentaire, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Elodie Terrer
- Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
- Ecole de Médecine Dentaire, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Gérard Aboudharam
- Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
- Ecole de Médecine Dentaire, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| |
Collapse
|
42
|
Freitas VAQ, Santos AS, Zara ALSA, Costa CR, Godoy CSDM, Soares RDBA, Ataídes FS, Silva MDRR. Distribution and antifungal susceptibility profiles of Candida species isolated from people living with HIV/AIDS in a public hospital in Goiânia, GO, Brazil. Braz J Microbiol 2023; 54:125-133. [PMID: 36371517 PMCID: PMC9943819 DOI: 10.1007/s42770-022-00851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Oropharyngeal candidiasis (OPC) is the most common opportunistic fungal infection of the oral cavity and is a significant clinical problem, particularly in immunocompromised individuals, such as people living with HIV/AIDS (PLWHA). Although Candida albicans is the most frequent pathogen, at least 30 species capable of causing infection have been described. Identifying the infecting organism is necessary because the species respond differently to therapy, and antifungal susceptibility testing is important to determine the appropriate treatment. This study aimed to determine the epidemiological, clinical, and mycological profiles of OPC in hospitalized PLWHA. Clinical samples were collected from 103 PLWHA with suspected candidiasis admitted to the Hospital Estadual of Doenças Tropicais/Hospital Anuar Auad of Goiania, Goias, Brazil, for 14 months. Candida species were identified using phenotypic microbiological techniques and molecular analysis performed by PCR using species-specific primers. The antifungal susceptibility pattern of the isolates against the six antifungal agents was determined using the broth microdilution method. Here, female individuals were the most affected by OPC, presenting a higher risk of oral colonization by Candida spp. The main clinical manifestation was pseudomembranous candidiasis. The number of cases of candidiasis was 87.3% (90/103), with C. albicans being the most common species, followed by C. tropicalis and C. glabrata. In the susceptibility pattern, non-albicans Candida showed higher resistance to than C. albicans. The fast and accurate identification of Candida spp. is very important to identify therapeutic agents for the treatment of oral candidiasis in PLWHA.
Collapse
Affiliation(s)
| | - Andressa Santana Santos
- Instituto de Patologia Tropical E Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Carolina Rodrigues Costa
- Instituto de Patologia Tropical E Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Cassia Silva de Miranda Godoy
- Pontifícia Universidade Católica, Goiânia, Goiás, Brazil
- Hospital Estadual de Doenças Tropicais Dr. Anuar Auad, Goiânia, Goiás, Brazil
| | - Renata de Bastos Ascenço Soares
- Pontifícia Universidade Católica, Goiânia, Goiás, Brazil
- Hospital Estadual de Doenças Tropicais Dr. Anuar Auad, Goiânia, Goiás, Brazil
| | | | | |
Collapse
|
43
|
An Unconventional Oral Candidiasis in an Immunocompetent Patient. J Fungi (Basel) 2023; 9:jof9030295. [PMID: 36983463 PMCID: PMC10059796 DOI: 10.3390/jof9030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 03/02/2023] Open
Abstract
Oral candidiasis (OC) is an opportunistic fungal infection of the oral mucosae, sustained by Candida albicans or other non-albican Candida species (NAC), usually eradicated by conventional antifungals of the classes of azoles, polyenes, or derivative from echinocandins. OC usually occurs under predisposing local or systemic factors. C. lusitaniae is an opportunistic strain that is rarely responsible for human infection and occurs mainly in severe immunocompromised states. The present work reported an unconventional case of OC in an otherwise healthy immunocompetent woman sustained by C. lusitaniae and a multi-resistant strain of C. albicans.
Collapse
|
44
|
Oral Manifestations in Children Diagnosed with COVID-19: A Narrative Review. Healthcare (Basel) 2023; 11:healthcare11030288. [PMID: 36766863 PMCID: PMC9914393 DOI: 10.3390/healthcare11030288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
The COVID-19 disease has many symptoms, including fever, dry cough, tachypnea, and shortness of breath, but other symptoms can accompany the disease. The disease can also have oral manifestations. The aim of this narrative review is to describe the oral manifestations of COVID-19 in children and adolescents by summarizing the current knowledge as it was described in various case reports and original articles. A review of the literature was carried out by searching the online databases PubMed, Web of Science and Scopus, between October 2022 and 12 November 2022. For this narrative review, 890 articles from three databases and manual search were screened. Saliva was discovered to be a potential screening tool for the infection with the SARS-CoV-2, although it is most reliable in the first few days of infection. Different alteration of the oral mucosa, such as ulcers, erosions and gingivitis were reported. Oral manifestations accompanied children with COVID-19-related multisystem inflammatory syndrome, Kawasaki disease, thrombocytopenic purpura and erythema multiforme. COVID-19 had an indirect effect on oral harmful habits by decreasing their frequency during the lockdown. Although they occur more rarely, oral manifestations can accompany COVID-19 disease in children and adolescents, and they can be an early sign of the disease.
Collapse
|
45
|
Alqahtani SS, Alabeedi FM. Association of oral candidiasis with oral lichen planus in patients using corticosteroid therapy - Meta-analysis. JOURNAL OF POPULATION THERAPEUTICS AND CLINICAL PHARMACOLOGY = JOURNAL DE LA THERAPEUTIQUE DES POPULATIONS ET DE LA PHARMACOLOGIE CLINIQUE 2023; 30:e1-e13. [PMID: 36631413 DOI: 10.47750/jptcp.2023.1020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 01/13/2023]
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disease that commonly affects the skin and mucous membranes. There is a difference of opinion among clinicians about whether OLP has been associated with oral candidiasis. Nonetheless, in OLP patients, the oral candidiasis prevalence rate ranges from 7.7 to 16.6%, as established through biopsy findings, whereas 37-50% of the prevalence rate has been noticed in culture findings. Oral candidiasis has been linked to several local and systemic factors, including salivary gland dysfunction, dental prostheses, topical or inhaled corticosteroids, smoking, and the use of systemic medications. The aim was to highlight the association of Candida in patients diagnosed with OLP, correlate the use of steroid therapy, and enumerate the factors of using steroid therapy as implicated causes for oral candidiasis. A search was made using search engines such as PubMed, Scopus, Cochrane Database of Systematic Reviews, Science Citation Index, NIH Public Access, and Clarivate Analytics (Figure 1). The keywords using the research option for this field were "Oral Candidiasis" AND "Oral Lichen planus" or "Candidiasis" AND "Corticosteroids" or "Topical Corticosteroids" AND Oral Lichen planus or "Inhalation Corticosteroids" AND "Candidiasis" or "Oral Lichen planus" AND "Corticosteroids." The database search was made for the duration of 1991 to -2021 (Table 1). Additional articles were obtained regarding the literature on OLP and oral candidiasis and were considered background material. The incidence of oral candidiasis and associated lichen planus following steroid therapy enlisted by various authors has been addressed. According to the results of this study, there is a positive correlation between the presence of oral candidiasis in the OLP's patients treated with corticosteroids. Finally, this meta-analysis concluded that there is a positive correlation between the presence of Candida species in OLP and steroid medication.
Collapse
Affiliation(s)
- Sulaiman S Alqahtani
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Najran University, Najran, Saudi Araxbia.;
| | - Faris M Alabeedi
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Najran University, Najran, Saudi Araxbia
| |
Collapse
|
46
|
Alomeir N, Zeng Y, Fadaak A, Wu TT, Malmstrom H, Xiao J. Effect of Nystatin on Candida albicans - Streptococcus mutans duo-species biofilms. Arch Oral Biol 2023; 145:105582. [PMID: 36395564 PMCID: PMC9729470 DOI: 10.1016/j.archoralbio.2022.105582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/23/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To assess the effect of Nystatin on Candida albicans and Streptococcus mutans duo-species biofilms using an in vitro cariogenic biofilm model. DESIGN Biofilms were formed on saliva-coated hydroxyapatite discs under high sugar challenge (1 % sucrose and 1 % glucose), with inoculation of 105CFU/ml S. mutans and 103CFU/ml C. albicans. Between 20 and 68 h, biofilms were treated with 28,000 IU Nystatin solution, 5 min/application, 4 times/day, to mimic the clinical application. Biofilm's three-dimensional structure was assessed using multi-photon confocal microscopy. The expression of C. albicans and S. mutans virulence genes was assessed via real-time PCR. Duplicate discs were used in 3 independent repeats. t-test and Mann-Whitney U test were used to compare outcomes between treatment and control group. RESULTS Nystatin treatment eliminated C. albicans in biofilms at 44 h. Nystatin-treated group had a significant reduction of biofilm dry-weight and reduced S. mutans abundance by 0.5 log CFU/ml at 44 and 68 h (p < 0.05). Worth noting that biomass distribution across the vertical layout was altered by Nystatin treatment, resulting in less volume on the substrate layers in Nystatin-treated biofilms compared to the control. Reduction of microcolonies size and volume was also observed in Nystatin-treated biofilms (p < 0.05). Nystatin-treated biofilms formed unique halo-shaped microcolonies with reduced core EPS coverage. Furthermore, Nystatin-treated biofilms had significant down-regulations of S. mutans gtfD and atpD genes (p < 0.05). CONCLUSIONS Nystatin application altered the formation and characteristics of C. albicans and S. mutans duo-species biofilms. Therefore, developing clinical regimens for preventing or treating dental caries from an antifungal perspective is warranted.
Collapse
Affiliation(s)
- Nora Alomeir
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, USA
| | - Yan Zeng
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, USA
| | - Ahmed Fadaak
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, USA
| | - Tong Tong Wu
- Department of Biostatistics and computational biology, University of Rochester Medical Center, Rochester, USA
| | - Hans Malmstrom
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, USA
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, USA.
| |
Collapse
|
47
|
Domfeh SA, Kyeremeh G, Belifini M. Evaluation of Anti- Candida albicans Activities of Herbal Preparations Sold at the Kumasi Central Market in the Ashanti Region of Ghana. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:6162532. [PMID: 37082250 PMCID: PMC10113043 DOI: 10.1155/2023/6162532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 04/22/2023]
Abstract
Candida albicans (C. albicans) is predominantly the leading cause of candidiasis among women with urogenital candidiasis. Since most people in resource-limited countries depend on herbal medicine for their primary care needs, many herbal drugs are sold to manage various infectious diseases. This study, therefore, evaluated the anti-C. albicans activities of five selected herbal preparations indicated for treating candidiasis sold at the Kumasi Central Market in the Ashanti Region of Ghana. The market was divided into five clusters, and one herbal preparation was randomly selected from each cluster. Using the Kirby Bauer disc diffusion antimicrobial susceptibility test, the herbal preparations were tested against clinically isolated C. albicans. Fluconazole, a standard antifungal drug, was included in the evaluation as a positive control. The experiments were performed on three different days and each in triplicates. Among the five selected herbal preparations, only one was effective against C. albicans with a mean inhibition zone of 19.1 mm. This effective herbal drug was prepared from Centella asiatica sap, Turnera microphylla leaves, and Vitex agnus-castus leaves. The results suggest that not all the herbal preparations selected were effective against C. albicans. Hence, we recommend that the authorities continually check the effectiveness of the herbal preparations on the market.
Collapse
Affiliation(s)
- Seth A. Domfeh
- Department of Biochemistry and Biotechnology, Faculty of Biosciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Garden City University College, Kenyasi-Kumasi, Ghana
| | - Godfred Kyeremeh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Garden City University College, Kenyasi-Kumasi, Ghana
| | - Mark Belifini
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Garden City University College, Kenyasi-Kumasi, Ghana
| |
Collapse
|
48
|
Chudzik-Rząd B, Zalewski D, Kasela M, Sawicki R, Szymańska J, Bogucka-Kocka A, Malm A. The Landscape of Gene Expression during Hyperfilamentous Biofilm Development in Oral Candida albicans Isolated from a Lung Cancer Patient. Int J Mol Sci 2022; 24:ijms24010368. [PMID: 36613809 PMCID: PMC9820384 DOI: 10.3390/ijms24010368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The filamentation ability of Candida albicans represents one of the main virulence factors allowing for host tissue penetration and biofilm formation. The aim of this paper was to study the genetic background of the hyperfilamentous biofilm development in vitro in C. albicans isolated from the oral cavity of a lung cancer patient. Analyzed C. albicans isolates (CA1, CA2, CA3) were chosen based on their different structures of mature biofilm. The CA3 isolate possessing hyperfilamentation properties and forming high biofilm was compared with CA1 and CA2 isolates exhibiting low or average biofilm-forming ability, respectively. The detailed biofilm organization was studied with the use of confocal scanning laser microscopy. The whole transcriptome analysis was conducted during three stages of biofilm development (24 h, 48 h, 72 h). In contrast to CA1 and/or CA2 isolate, the CA3 isolate was characterized by a significant upregulation of genes encoding for cell wall proteins (HWP1, PGA13, PGA44, ALS3) and candidalysin (ECE1), as well as being involved in iron metabolism (FRE1, ALS3), sulfur metabolism (HAL21), the degradation of aromatic compounds (HQD2), and membrane transport (DIP5, PHO89, TNA1). In contrast, some genes (SCW11, FGR41, RBE1) in the CA3 were downregulated. We also observed the overexpression of a few genes over time-mainly FRE1, ATX1, CSA2 involved in iron metabolism. This is the first insight into the potential function of multiple genes in the hyperfilamentous biofilm formation in C. albicans, primarily isolated from host tissue, which may have an important clinical impact on cancer patients. Moreover, the presented data can lay the foundation for further research on novel pathogen-specific targets for antifungal drugs.
Collapse
Affiliation(s)
- Beata Chudzik-Rząd
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland
| | - Daniel Zalewski
- Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Martyna Kasela
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland
- Correspondence: (M.K.); (A.M.); Tel.: +48-81448-7100 (M.K. & A.M.)
| | - Rafał Sawicki
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland
| | - Jolanta Szymańska
- Department of Comprehensive Paediatric and Adult Dentistry, Medical University of Lublin, 6 Chodźki St., 20-093 Lublin, Poland
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland
- Correspondence: (M.K.); (A.M.); Tel.: +48-81448-7100 (M.K. & A.M.)
| |
Collapse
|
49
|
Kováč J, Slobodníková L, Trajčíková E, Rendeková K, Mučaji P, Sychrová A, Bittner Fialová S. Therapeutic Potential of Flavonoids and Tannins in Management of Oral Infectious Diseases-A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010158. [PMID: 36615352 PMCID: PMC9821998 DOI: 10.3390/molecules28010158] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Medicinal plants are rich sources of valuable molecules with various profitable biological effects, including antimicrobial activity. The advantages of herbal products are their effectiveness, relative safety based on research or extended traditional use, and accessibility without prescription. Extensive and irrational usage of antibiotics since their discovery in 1928 has led to the increasing expiration of their effectiveness due to antibacterial resistance. Now, medical research is facing a big and challenging mission to find effective and safe antimicrobial therapies to replace inactive drugs. Over the years, one of the research fields that remained the most available is the area of natural products: medicinal plants and their metabolites, which could serve as active substances to fight against microbes or be considered as models in drug design. This review presents selected flavonoids (such as apigenin, quercetin, kaempferol, kurarinone, and morin) and tannins (including oligomeric proanthocyanidins, gallotannins, ellagitannins, catechins, and epigallocatechin gallate), but also medicinal plants rich in these compounds as potential therapeutic agents in oral infectious diseases based on traditional usages such as Agrimonia eupatoria L., Hamamelis virginiana L., Matricaria chamomilla L., Vaccinium myrtillus L., Quercus robur L., Rosa gallica L., Rubus idaeus L., or Potentilla erecta (L.). Some of the presented compounds and extracts are already successfully used to maintain oral health, as the main or additive ingredient of toothpastes or mouthwashes. Others are promising for further research or future applications.
Collapse
Affiliation(s)
- Ján Kováč
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava, Heydukova 10, 812 50 Bratislava, Slovakia
- Department of Stomatology and Maxillofacial Surgery, St. Elizabeth’s Hospital, Heydukova 10, 812 50 Bratislava, Slovakia
| | - Lívia Slobodníková
- Institute of Microbiology, Faculty of Medicine and the University Hospital in Bratislava, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Eva Trajčíková
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Katarína Rendeková
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Pavel Mučaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Alice Sychrová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 612 00 Brno, Czech Republic
| | - Silvia Bittner Fialová
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-250-117-206
| |
Collapse
|
50
|
Williams S, Cleary I, Thomas D. Anaerobic conditions are a major influence on Candida albicans chlamydospore formation. Folia Microbiol (Praha) 2022; 68:321-324. [PMID: 36418845 DOI: 10.1007/s12223-022-01018-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/13/2022] [Indexed: 11/25/2022]
Abstract
Candidiasis now represents the fourth most frequent nosocomial infection both in the USA and worldwide. Candida albicans is an increasingly common threat to human health as a consequence of AIDS, steroid therapy, organ and tissue transplantation, cancer therapy, broad-spectrum antibiotics, and other immune defects. Unfortunately, these infections carry unacceptably high morbidity, mortality rates and important economic repercussions (estimated total direct cost of approximately 2 billion dollars in 1998 in US hospitals alone). This pathogen can grow both in yeast and filamentous forms and the pathogenic potential of C. albicans is intimately related to certain key processes including filamentation. Chlamydospores are considered to be a dormant form of C. albicans that remain understudied. Chlamydospores have been widely used as a diagnostic tool to separate C. albicans and C. dubliniensis from other Candida species. More recently, media have been developed that use chlamydopsore formation to separate C. albicans and C. dubliniensis from each other. Chlamydospore formation can be stimulated by hypoxic conditions but only on limited specific media types. Here, we show that anaerobic conditions are enough to drive chlamydospore formation in C. albicans on the surface of nutrient-rich agar.
Collapse
Affiliation(s)
- Shannon Williams
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Drive, Allendale, MI, 49401-9401, USA
| | - Ian Cleary
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Drive, Allendale, MI, 49401-9401, USA
| | - Derek Thomas
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Drive, Allendale, MI, 49401-9401, USA.
| |
Collapse
|