1
|
Akram M, Fujimura NA, Tahir S, Abbas R, Khan MA, Malik K, Ahmed N. Synergistic anticancer effects of interleukin-21 combined with therapeutic peptides in multiple cancer cells. Biotechnol Lett 2024; 47:7. [PMID: 39609311 DOI: 10.1007/s10529-024-03544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Interleukin-21 (IL-21) is a cytokine produced by various cell types, including T cells, natural killer cells, myeloid cells, and B cells, and has a broad range of potential applications in cancer therapy. To improve the therapeutic index, we explored the use of fusion technologies that involved linking other anticancer peptides to the IL-21 gene using specific linkers. OBJECTIVES This study aimed to compare the anticancer potential of IL-21 and IL-21 fusion proteins. METHODS Antimicrobial peptides possessing anticancer properties were fused with IL-21 gene using a flexible linker (-GGGGS-), and the resulting construct was inserted into the pSecTag2a mammalian expression vector. The cassette was transfected into several cancer cell lines including H1 HeLa, HepG2, MCF-7, MDA-MB-231, HCT-116, HCC-1954, HEK-293, and SF-767. The cytotoxic effects of IL-21 and fusion proteins were evaluated using MTT, Caspase-3, LDH, and scratch assays. RESULTS The IL-21-Tachyplesin I fusion protein had the strongest antiproliferative activity against all tested cancer cells, followed by IL21-LPSBD2 and IL-21. In contrast, IL21-Cop A3, IL21-CSP I-Plus, and IL21-RGD Temporin-Las did not inhibit the viability of cancer cells. CONCLUSION Fusion technology is a promising therapeutic technique that can be used to enhance the cytotoxicity and antiproliferative activity of anticancer proteins such as IL-21.
Collapse
Affiliation(s)
- Muhammad Akram
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nao Akusa Fujimura
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Saad Tahir
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Rabia Abbas
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mohsin Ahmad Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Kausar Malik
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nadeem Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
2
|
Deng W, Xue RY, Xiao SX, Wang JT, Liao XW, Yu RJ, Xiong YS. Discovery of quaternized pyridine-thiazole-ruthenium complexes as potent anti-Staphylococcus aureus agents. Eur J Med Chem 2024; 277:116712. [PMID: 39106657 DOI: 10.1016/j.ejmech.2024.116712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 08/09/2024]
Abstract
Quaternization of ruthenium complexes may be a promising strategy for the development of new antibiotics. In response to the increasing bacterial resistance, we integrated the quaternary amine structure into the design of ruthenium complexes and evaluated their antibacterial activity. All the ruthenium complexes showed good antibacterial activity against the tested Staphylococcus aureus (S. aureus). Ru-8 was the most effective antibacterial agent that displayed excellent antibacterial activity against S. aureus (MIC = 0.78-1.56 μg/mL). In vitro experiments showed that all nine ruthenium complexes had low hemolytic toxicity to rabbit erythrocytes. Notably, Ru-8 was found to disrupt bacterial cell membranes, alter their permeability, and induce ROS production in bacteria, all the above leading to the death of bacteria without inducing drug resistance. To further explore the antibacterial activity of Ru-8in vivo, we established a mouse skin wound infection model and a G. mellonella larvae infection model. Ru-8 exhibited significant antibacterial efficacy against S. aureus in vivo and low toxicity to mouse tissues. The Ru-8 showed low toxicity to Raw264.7 cells (mouse monocyte macrophage leukemia cells). This study indicates that the ruthenium complex ruthenium quaternary was a promising strategy for the development of new antibacterial agents.
Collapse
Affiliation(s)
- Wei Deng
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Run-Yu Xue
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Su-Xin Xiao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Jin-Tao Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Xiang-Wen Liao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Ru-Jian Yu
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Yan-Shi Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
3
|
Anandhan Sujatha V, Gopalakrishnan C, Anbarasu A, Ponnusamy CS, Choudhary R, Saravanan Geetha SA, Ramalingam R. Beyond the venom: Exploring the antimicrobial peptides from Androctonus species of scorpion. J Pept Sci 2024; 30:e3613. [PMID: 38749486 DOI: 10.1002/psc.3613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 10/08/2024]
Abstract
Prevalent worldwide, the Androctonus scorpion genus contributes a vital role in scorpion envenoming. While diverse scorpionisms are observed because of several different species, their secretions to protect themselves have been identified as a potent source of antimicrobial peptide (AMP)-like compounds. Distinctly, the venom of these species contains around 24 different AMPs, with definite molecules studied for their therapeutic potential as antimicrobial, antifungal, antiproliferative and antiangiogenic agents. Our review focuses on the therapeutic potential of native and synthetic AMPs identified so far in the Androctonus scorpion genus, identifying research gaps in peptide therapeutics and guiding further investigations. Certain AMPs have demonstrated remarkable compatibility to be prescribed as anticancer drug to reduce cancer cell proliferation and serve as a potent antibiotic alternative. Besides, analyses were performed to explore the characteristics and affinities of peptides for membranes. Overall, the study of AMPs derived from the Androctonus scorpion genus provides valuable insights into their potential applications in medicine and drug development.
Collapse
Affiliation(s)
- Vinutha Anandhan Sujatha
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - Chandrasekhar Gopalakrishnan
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - Amarnath Anbarasu
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - Chandra Sekar Ponnusamy
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - Rajkumar Choudhary
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - Sree Agash Saravanan Geetha
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - Rajasekaran Ramalingam
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
Nielsen SDH, Liang N, Rathish H, Kim BJ, Lueangsakulthai J, Koh J, Qu Y, Schulz HJ, Dallas DC. Bioactive milk peptides: an updated comprehensive overview and database. Crit Rev Food Sci Nutr 2024; 64:11510-11529. [PMID: 37504497 PMCID: PMC10822030 DOI: 10.1080/10408398.2023.2240396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Partial digestion of milk proteins leads to the formation of numerous bioactive peptides. Previously, our research team thoroughly examined the decades of existing literature on milk bioactive peptides across species to construct the milk bioactive peptide database (MBPDB). Herein, we provide a comprehensive update to the data within the MBPDB and a review of the current state of research for each functional category from in vitro to animal and clinical studies, including angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, antioxidant, dipeptidyl peptidase (DPP)-IV inhibitory, opioid, anti-inflammatory, immunomodulatory, calcium absorption and bone health and anticancer activity. This information will help drive future research on the bioactivities of milk peptides.
Collapse
Affiliation(s)
| | - Ningjian Liang
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Harith Rathish
- Department of Computer Science, Aarhus University, Aarhus, Denmark
| | - Bum Jin Kim
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | | | - Jeewon Koh
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Yunyao Qu
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Hans-Jörg Schulz
- Department of Computer Science, Aarhus University, Aarhus, Denmark
| | - David C. Dallas
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
5
|
Vladkova TG, Smani Y, Martinov BL, Gospodinova DN. Recent Progress in Terrestrial Biota Derived Antibacterial Agents for Medical Applications. Molecules 2024; 29:4889. [PMID: 39459256 PMCID: PMC11510244 DOI: 10.3390/molecules29204889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Conventional antibiotic and multidrug treatments are becoming less and less effective and the discovery of new effective and safe antibacterial agents is becoming a global priority. Returning to a natural antibacterial product is a relatively new current trend. Terrestrial biota is a rich source of biologically active substances whose antibacterial potential has not been fully utilized. The aim of this review is to present the current state-of-the-art terrestrial biota-derived antibacterial agents inspired by natural treatments. It summarizes the most important sources and newly identified or modified antibacterial agents and treatments from the last five years. It focuses on the significance of plant- animal- and bacteria-derived biologically active agents as powerful alternatives to antibiotics, as well as the advantages of utilizing natural antibacterial molecules alone or in combination with antibiotics. The main conclusion is that terrestrial biota-derived antibacterial products and substances open a variety of new ways for modern improved therapeutic strategies. New terrestrial sources of known antibacterial agents and new antibacterial agents from terrestrial biota were discovered during the last 5 years, which are under investigation together with some long-ago known but now experiencing their renaissance for the development of new medical treatments. The use of natural antibacterial peptides as well as combinational therapy by commercial antibiotics and natural products is outlined as the most promising method for treating bacterial infections. In vivo testing and clinical trials are necessary to reach clinical application.
Collapse
Affiliation(s)
- Todorka G. Vladkova
- Department of Polymer Engineering, University of Chemical Technology and Metallurgy, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria
| | - Younes Smani
- Andalusian Center of Developmental Biology, CSIC, Junta de Andalusia, University of Pablo de Olavide, 41013 Seville, Spain;
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, Junta de Andalusia, University of Pablo de Olavide, 41013 Seville, Spain
| | - Boris L. Martinov
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| | - Dilyana N. Gospodinova
- Faculty of Electrical Engineering, Technical University of Sofia, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| |
Collapse
|
6
|
Pal S, Chatterjee N, Sinha Roy S, Chattopadhyay B, Acharya K, Datta S, Dhar P. Valorization of oil refinery by-products: production of sophorolipids utilizing fatty acid distillates and their potential antibacterial, anti-biofilm, and antifungal activities. World J Microbiol Biotechnol 2024; 40:344. [PMID: 39384621 DOI: 10.1007/s11274-024-04144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/14/2024] [Indexed: 10/11/2024]
Abstract
Starmerella bombicola is a native yeast strain producing sophorolipids as secondary metabolites. This study explores the production, characterization, and biological activities of sophorolipids and investigates the antimicrobial, anti-biofilm, and antifungal properties of sophorolipids produced from oil refinery wastes by the yeast Starmerella bombicola. The present work demonstrated that S. bombicola MTCC 1910 when grown in oil refinery wastes namely palm fatty acid distillates and soy fatty acid distillates enhanced the rate of sophorolipids production drastically in comparison to vegetable oil, sunflower oil used as hydrophobic feedstock. Sophorolipid yields were 18.14, 37.21, and 46.1 g/L with sunflower oil, palm, and soy fatty acid distillates respectively. The crude biosurfactants were characterized using TLC, FTIR, and HPLC revealing to be acetylated sophorolipids containing both the acidic and lactonic isomeric forms. The surface lowering and emulsifying properties of the sophorolipids from refinery wastes were significantly higher than the sunflower oil-derived sophorolipids. Also, all the sophorolipids exhibited strong antibacterial properties (minimum inhibitory concentrations were between 50 and 200 µg mL-1) against Salmonella typhimurium, Bacillus cereus, and Staphylococcus epidermidis and were validated with morphological analysis by Scanning electron microscopy. All the sophorolipids were potent biofilm inhibitors and eradicators (minimum biofilm inhibitory and eradication concentrations were between 12.5 to 1000 µg mL-1) for all the tested organisms. Furthermore, antifungal activities were also found to exhibit about 16-56% inhibition at 1 mg mL-1 for fungal mycelial growth. Therefore, this endeavour of sophorolipids production using palm and soy fatty acid distillates not only opens up a window for the bioconversion of industrial wastes into productive biosurfactants but also concludes that sophorolipids from oil refinery wastes are potent antimicrobial, anti-biofilm, and antifungal agents, highlighting their potential in biotechnological and medical applications.
Collapse
Affiliation(s)
- Srija Pal
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, 700027, West Bengal, India
- Department of Chemical Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Rajabazar, Machuabazar, Kolkata, 700009, West Bengal, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, 700027, West Bengal, India
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata, 700 098, West Bengal, India
| | - Sagnik Sinha Roy
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata, 700032, West Bengal, India
| | - Brajadulal Chattopadhyay
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata, 700032, West Bengal, India
| | - Krishnendu Acharya
- Department of Botany, University of Calcutta, 35, Ballygunge Circular Rd, Ballygunge, Kolkata, 700019, West Bengal, India
| | - Sriparna Datta
- Department of Chemical Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Rajabazar, Machuabazar, Kolkata, 700009, West Bengal, India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, 700027, West Bengal, India.
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata, 700 098, West Bengal, India.
| |
Collapse
|
7
|
Yoon G, Puentes R, Tran J, Multani A, Cobo ER. The role of cathelicidins in neutrophil biology. J Leukoc Biol 2024; 116:689-705. [PMID: 38758953 DOI: 10.1093/jleuko/qiae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
Despite their relatively short lifespan, neutrophils are tasked with counteracting pathogens through various functions, including phagocytosis, production of reactive oxygen species, neutrophil extracellular traps (NETs), and host defense peptides. Regarding the latter, small cationic cathelicidins present a conundrum in neutrophil function. Although primarily recognized as microbicides with an ability to provoke pores in microbial cell walls, the ability of cathelicidin to modulate key neutrophil functions is also of great importance, including the release of chemoattractants, cytokines, and reactive oxygen species, plus prolonging neutrophil lifespan. Cumulative evidence indicates a less recognized role of cathelicidin as an "immunomodulator"; however, this term is not always explicit, and its relevance in neutrophil responses during infection and inflammation is seldom discussed. This review compiles and discusses studies of how neutrophils use cathelicidin to respond to infections, while also acknowledging immunomodulatory aspects of cathelicidin through potential crosstalk between sources of the peptide.
Collapse
Affiliation(s)
- Grace Yoon
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Rodrigo Puentes
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Jacquelyn Tran
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Anmol Multani
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Eduardo R Cobo
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
8
|
Summer K, Liu L, Guo Q, Barkla B, Benkendorff K. Semi-purified Antimicrobial Proteins from Oyster Hemolymph Inhibit Pneumococcal Infection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:862-875. [PMID: 38430292 PMCID: PMC11480171 DOI: 10.1007/s10126-024-10297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Pneumococcal infections caused by Streptococcus pneumoniae are a leading cause of morbidity and mortality globally, particularly among children. The ability of S. pneumoniae to form enduring biofilms makes treatment inherently difficult, and options are further limited by emerging antibiotic resistance. The discovery of new antibiotics, particularly those with antibiofilm activity, is therefore increasingly important. Antimicrobial proteins and peptides (AMPs) from marine invertebrates are recognised as promising pharmacological leads. This study determined the in vitro antibacterial activity of hemolymph and unique protein fractions from an Australian oyster (Saccostrea glomerata) against multi-drug-resistant S. pneumoniae. We developed a successful method for hemolymph extraction and separation into 16 fractions by preparative HPLC. The strongest activity was observed in fraction 7: at 42 µg/mL protein, this fraction was bactericidal to S. pneumoniae and inhibited biofilm formation. Proteomic analysis showed that fraction 7 contained relatively high abundance of carbonic anhydrase, cofilin, cystatin B-like, and gelsolin-like proteins, while surrounding fractions, which showed lower or no antibacterial activity, contained these proteins in lower abundance or not at all. This work supports traditional medicinal uses of oysters and contributes to further research and development of novel hemolymph/AMP-based treatments for pneumococcal infections.
Collapse
Affiliation(s)
- Kate Summer
- Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia.
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia
| | - Bronwyn Barkla
- Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia
| | - Kirsten Benkendorff
- National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour, NSW, 2450, Australia
| |
Collapse
|
9
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Bucataru C, Ciobanasu C. Antimicrobial peptides: Opportunities and challenges in overcoming resistance. Microbiol Res 2024; 286:127822. [PMID: 38986182 DOI: 10.1016/j.micres.2024.127822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Antibiotic resistance represents a global health threat, challenging the efficacy of traditional antimicrobial agents and necessitating innovative approaches to combat infectious diseases. Among these alternatives, antimicrobial peptides have emerged as promising candidates against resistant pathogens. Unlike traditional antibiotics with only one target, these peptides can use different mechanisms to destroy bacteria, with low toxicity to mammalian cells compared to many conventional antibiotics. Antimicrobial peptides (AMPs) have encouraging antibacterial properties and are currently employed in the clinical treatment of pathogen infection, cancer, wound healing, cosmetics, or biotechnology. This review summarizes the mechanisms of antimicrobial peptides against bacteria, discusses the mechanisms of drug resistance, the limitations and challenges of AMPs in peptide drug applications for combating drug-resistant bacterial infections, and strategies to enhance their capabilities.
Collapse
Affiliation(s)
- Cezara Bucataru
- Alexandru I. Cuza University, Institute of Interdisciplinary Research, Department of Exact and Natural Sciences, Bulevardul Carol I, Nr.11, Iasi 700506, Romania
| | - Corina Ciobanasu
- Alexandru I. Cuza University, Institute of Interdisciplinary Research, Department of Exact and Natural Sciences, Bulevardul Carol I, Nr.11, Iasi 700506, Romania.
| |
Collapse
|
11
|
Rathinam S, Sørensen KK, Hjálmarsdóttir MÁ, Thygesen MB, Másson M. Conjugation of CRAMP 18-35 Peptide to Chitosan and Hydroxypropyl Chitosan via Copper-Catalyzed Azide-Alkyne Cycloaddition and Investigation of Antibacterial Activity. Int J Mol Sci 2024; 25:9440. [PMID: 39273387 PMCID: PMC11394780 DOI: 10.3390/ijms25179440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
We developed a synthesis strategy involving a diazo transfer reaction and subsequent click reaction to conjugate a murine cathelicidin-related antimicrobial peptide (CRAMP18-35) to chitosan and hydroxypropyl chitosan (HPC), confirmed the structure, and investigated the antimicrobial activity. Chitosan azide and HPC-azide were prepared with a low degree of azidation by reacting the parent chitosan and HPC with imidazole sulfonyl azide hydrochloride. CRAMP18-35 carrying an N-terminal pentynoyl group was successfully grafted onto chitosan and HPC via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The chitosan-peptide conjugates were characterized by IR spectroscopy and proton NMR to confirm the conversion of the azide to 1,2,3-triazole and to determine the degree of substitution (DS). The DS of the chitosan and HPC CRAMP18-35 conjugates was 0.20 and 0.13, respectively. The antibacterial activity of chitosan-peptide conjugates was evaluated for activity against two species of Gram-positive bacteria, Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis), and two species of Gram-negative bacteria, Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa). The antimicrobial peptide conjugates were selectively active against the Gram-negative bacteria and lacking activity against Gram-positive bacteria.
Collapse
Affiliation(s)
- Sankar Rathinam
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland
| | - Kasper K Sørensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Martha Á Hjálmarsdóttir
- Department of Biomedical Science, Faculty of Medicine, School of Health Sciences, University of Iceland, Hringbraut 31, IS-101 Reykjavík, Iceland
| | - Mikkel B Thygesen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Már Másson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland
| |
Collapse
|
12
|
Hu Z, Ren H, Min Y, Li Y, Zhang Y, Mao M, Leng W, Xia L. The effects of antimicrobial peptides buCaTHL4B and Im-4 on infectious root canal biofilms. Front Bioeng Biotechnol 2024; 12:1409487. [PMID: 39219619 PMCID: PMC11361941 DOI: 10.3389/fbioe.2024.1409487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose The primary cause of pulp and periapical diseases is the invasion of bacteria into the root canal, which results from the continuous destruction of dental hard tissues. Effective management of infections during root canal therapy necessitates effectively irrigation. This study aims to investigate the effects of two antimicrobial peptides (AMPs), buCaTHL4B and Im-4, on root canal biofilms in vitro. Methods Two-species biofilms (Enterococcus faecalis and Fusobacterium nucleatum) were selected and anaerobically cultivated. The following treatments were applied: 10 μg/mL buCaTHL4B, 10 μg/mL Im-4, 5 μg/mL buCaTHL4B, 5 μg/mL Im-4, 1 μg/mL buCaTHL4B, 1 μg/mL Im-4, 1% NaOCl, and sterile water. Each group was treated for 3 min. Subsequently, the two strains were co-cultured with 10 μg/mL buCaTHL4B, 10 μg/mL Im-4, 1% NaOCl, and sterile water for 24, 48, and 72 h. The biofilms were examined using confocal laser scanning microscopy (CLSM) with fluorescent staining, and the percentages of dead bacteria were calculated. Quantitative real-time PCR (qRT-PCR) was employed to assess the variations in bacterial proportions during biofilm formation. Results Compared to 1% NaOCl, 10 μg/mL buCaTHL4B or Im-4 exhibited significantly greater bactericidal effects on the two-species biofilms (p < 0.05), leading to their selection for subsequent experiments. Over a 48-hour period, 10 μg/mL Im-4 demonstrated a stronger antibiofilm effect than buCaTHL4B (p < 0.05). Following a 24-hour biofilm formation period, the proportion of F. nucleatum decreased while the proportion of E. faecalis increased in the sterile water group. In the buCaTHL4B and 1% NaOCl groups, the proportion of F. nucleatum was lower than that of E. faecalis (p < 0.05), whereas in the Im-4 group, the proportion of F. nucleatum was higher than that of E. faecalis (p < 0.05). The proportions of bacteria in the two AMPs groups gradually stabilized after 24 h of treatment. Conclusion buCaTHL4B and Im-4 exhibited remarkable antibacterial and anti-biofilm capabilities against pathogenic root canal biofilms in vitro, indicating their potential as promising additives to optimize the effectiveness of root canal treatment as alternative irrigants.
Collapse
Affiliation(s)
- Ziqiu Hu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Haixia Ren
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Yifan Min
- Department of Stomatology, Zhushan County People’s Hospital, Shiyan, China
| | - Yixin Li
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Yuyuan Zhang
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Min Mao
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
13
|
Wu H, Wang Y, Ren Z, Liu X, Yu M, Cao Y, Cong H, Yu B, Shen Y. Screening of Short-Chain Antimicrobial Peptide LKARI with Broad-Spectrum Bactericidal Properties and Its Application in Promoting Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32087-32103. [PMID: 38866723 DOI: 10.1021/acsami.4c05949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Due to the extensive use of antibiotics, many highly resistant bacteria and extensively resistant bacteria have been produced. In recent years, the increase of drug-resistant bacteria and the resulting proliferation of drug-resistant bacteria have increased the incidence of hospital-acquired infections and caused great harm to human health. Antimicrobial peptides (AMPs) are considered to be an innovative antibiotic and belong to the latest advances in this field. We designed a polypeptide and verified its low minimum inhibitory concentration and broad-spectrum activity against Gram-positive bacteria, Gram-negative bacteria, and fungi in microbiology and pharmacology. Several experiments have confirmed that the screened antimicrobial peptides have significant antidrug resistance and also show significant therapeutic properties in the treatment of systemic bacterial infections. In addition, through our experimental research, it was proved that the antibacterial hydrogel composed of poly(vinyl alcohol), sodium alginate, and antimicrobial peptides had excellent antibacterial properties and showed good wound healing ability.
Collapse
Affiliation(s)
- Han Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yumei Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Zekai Ren
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Xin Liu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Mingtao Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yang Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Zhejiang, Hangzhou 310027, China
| |
Collapse
|
14
|
Guerra MES, Vieira B, Calazans APCT, Destro GV, Melo K, Rodrigues E, Waz NT, Girardello R, Darrieux M, Converso TR. Recent advances in the therapeutic potential of cathelicidins. Front Microbiol 2024; 15:1405760. [PMID: 38989014 PMCID: PMC11233757 DOI: 10.3389/fmicb.2024.1405760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
The alarming increase in antimicrobial resistance in the last decades has prompted the search for alternatives to control infectious diseases. Antimicrobial peptides (AMPs) represent a heterogeneous class of molecules with ample antibacterial, antiviral, and antifungal effects. They can be found in many organisms, including all classes of vertebrates, providing a valuable source of new antimicrobial agents. The unique properties of AMPs make it harder for microbes develop resistance, while their immunomodulatory properties and target diversity reinforce their translational use in multiple diseases, from autoimmune disorders to different types of cancer. The latest years have witnessed a vast number of studies evaluating the use of AMPs in therapy, with many progressing to clinical trials. The present review explores the recent developments in the medicinal properties of cathelicidins, a vast family of AMPs with potent antimicrobial and immunomodulatory effects. Cathelicidins from several organisms have been tested in disease models of viral and bacterial infections, inflammatory diseases, and tumors, with encouraging results. Combining nanomaterials with active, natural antimicrobial peptides, including LL-37 and synthetic analogs like ceragenins, leads to the creation of innovative nanoagents with significant clinical promise. However, there are still important limitations, such as the toxicity of many cathelicidins to healthy host cells and low stability in vivo. The recent advances in nanomaterials and synthetic biology may help overcome the current limitations, enabling the use of cathelicidins in future therapeutics. Furthermore, a better understanding of the mechanisms of cathelicidin action in vivo and their synergy with other host molecules will contribute to the development of safer, highly effective therapies.
Collapse
|
15
|
Okella H, Odongo S, Vertommen D, Okello E. Identification, Synthesis, and In Vitro Activities of Antimicrobial Peptide from African Catfish against the Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli. Pharmaceutics 2024; 16:850. [PMID: 39065546 PMCID: PMC11279594 DOI: 10.3390/pharmaceutics16070850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
The global surge in multi-drug resistant bacteria, including extended-spectrum β-lactamase (ESBL)-producing Escherichia coli has led to a growing need for new antibacterial compounds. Despite being promising, the potential of fish-derived antimicrobial peptides (AMPs) in combating ESBL-producing E. coli is largely unexplored. In this study, native African catfish antimicrobial peptides (NACAPs) were extracted from the skin mucus of farmed African catfish, Clarias gariepinus, using a combination of 10% acetic acid solvent hydrolysis, 5 kDa ultrafiltration, and C18 hydrophobic interaction chromatography. Peptides were then sequenced using Orbitrap Fusion Lumos Tribrid Mass Spectrometry. The identified peptides were screened for potential antibacterial activity using Random Forest and AdaBoost machine learning algorithms. The most promising peptide was chemically synthesized and evaluated in vitro for safety on rabbit red blood cells and activity against ESBL-producing E. coli (ATCC 35218) utilizing spot-on-lawn and broth dilution methods. Eight peptides ranging from 13 to 22 amino acids with molecular weights between 968.42 and 2434.11 Da were identified. Peptide NACAP-II was non-hemolytic to rabbit erythrocytes (p > 0.05) with a zone of inhibition (ZOI) of 22.7 ± 0.9 mm and a minimum inhibitory concentration (MIC) of 91.3 ± 1.2 μg/mL. The peptide is thus a candidate antibacterial compound with enormous potential applications in the pharmaceutical industry. However, further studies are still required to establish an upscale production strategy and optimize its activity and safety in vivo.
Collapse
Affiliation(s)
- Hedmon Okella
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, CA 93274, USA;
| | - Steven Odongo
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Didier Vertommen
- de Duve Institute and MASSPROT Platform, UCLouvain, 1200 Brussels, Belgium
| | - Emmanuel Okello
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, CA 93274, USA;
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
16
|
Marunganathan V, Guru A, Panda SP, Arockiaraj J. Exploring Therapeutic Potential: A Comprehensive Review of Antimicrobial Peptides in Oral Cancer Management. Int J Pept Res Ther 2024; 30:43. [DOI: 10.1007/s10989-024-10621-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 01/03/2025]
|
17
|
Velkova L, Dolashki A, Petrova V, Pisareva E, Kaynarov D, Kermedchiev M, Todorova M, Dolashka P. Antibacterial Properties of Peptide and Protein Fractions from Cornu aspersum Mucus. Molecules 2024; 29:2886. [PMID: 38930951 PMCID: PMC11206429 DOI: 10.3390/molecules29122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The discovery and investigation of new natural compounds with antimicrobial activity are new potential strategies to reduce the spread of antimicrobial resistance. The presented study reveals, for the first time, the promising antibacterial potential of two fractions from Cornu aspersum mucus with an MW < 20 kDa and an MW > 20 kDa against five bacterial pathogens-Bacillus cereus 1085, Propionibacterium acnes 1897, Salmonella enterica 8691, Enterococcus faecalis 3915, and Enterococcus faecium 8754. Using de novo sequencing, 16 novel peptides with potential antibacterial activity were identified in a fraction with an MW < 20 kDa. Some bioactive compounds in a mucus fraction with an MW > 20 kDa were determined via a proteomic analysis on 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and bioinformatics. High homology with proteins and glycoproteins was found, with potential antibacterial activity in mucus proteins named aspernin, hemocyanins, H-lectins, and L-amino acid oxidase-like protein, as well as mucins (mucin-5AC, mucin-5B, mucin-2, and mucin-17). We hypothesize that the synergy between the bioactive components determined in the composition of the fraction > 20 kDa are responsible for the high antibacterial activity against the tested pathogens in concentrations between 32 and 128 µg/mL, which is comparable to vancomycin, but without cytotoxic effects on model eukaryotic cells of Saccharomyces cerevisiae. Additionally, a positive effect, by reducing the levels of intracellular oxidative damage and increasing antioxidant capacity, on S. cerevisiae cells was found for both mucus extract fractions of C. aspersum. These findings may serve as a basis for further studies to develop a new antibacterial agent preventing the development of antibiotic resistance.
Collapse
Affiliation(s)
- Lyudmila Velkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Aleksandar Dolashki
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Ventsislava Petrova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (V.P.); (E.P.)
| | - Emiliya Pisareva
- Faculty of Biology, Sofia University, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (V.P.); (E.P.)
| | - Dimitar Kaynarov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Momchil Kermedchiev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Maria Todorova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
- Businesslab Ltd., Acad. G. Bonchev Str., bl. 4A, 1113 Sofia, Bulgaria
| | - Pavlina Dolashka
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| |
Collapse
|
18
|
Akinwale AD, Parang K, Tiwari RK, Yamaki J. Mechanistic Study of Antimicrobial Effectiveness of Cyclic Amphipathic Peptide [R 4W 4] against Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Antibiotics (Basel) 2024; 13:555. [PMID: 38927221 PMCID: PMC11201061 DOI: 10.3390/antibiotics13060555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Antimicrobial peptides (AMPs) are being explored as a potential strategy to combat antibiotic resistance due to their ability to reduce susceptibility to antibiotics. This study explored whether the [R4W4] peptide mode of action is bacteriostatic or bactericidal using modified two-fold serial dilution and evaluating the synergism between gentamicin and [R4W4] against Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) by a checkered board assay. [R4W4] exhibited bactericidal activity against bacterial isolates (MBC/MIC ≤ 4), with a synergistic effect with gentamicin against E. coli (FICI = 0.3) but not against MRSA (FICI = 0.75). Moreover, we investigated the mechanism of action of [R4W4] against MRSA by applying biophysical assays to evaluate zeta potential, cytoplasmic membrane depolarization, and lipoteichoic acid (LTA) binding affinity. [R4W4] at a 16 mg/mL concentration stabilized the zeta potential of MRSA -31 ± 0.88 mV to -8.37 mV. Also, [R4W4] at 2 × MIC and 16 × MIC revealed a membrane perturbation process associated with concentration-dependent effects. Lastly, in the presence of BODIPY-TR-cadaverine (BC) fluorescence dyes, [R4W4] exhibited binding affinity to LTA comparable with melittin, the positive control. In addition, the antibacterial activity of [R4W4] against MRSA remained unchanged in the absence and presence of LTA, with an MIC of 8 µg/mL. Therefore, the [R4W4] mechanism of action is deemed bactericidal, involving interaction with bacterial cell membranes, causing concentration-dependent membrane perturbation. Additionally, after 30 serial passages, there was a modest increment of MRSA strains resistant to [R4W4] and a change in antibacterial effectiveness MIC [R4W4] and vancomycin by 8 and 4 folds with a slight change in Levofloxacin MIC 1 to 2 µg/mL. These data suggest that [R4W4] warrants further consideration as a potential AMP.
Collapse
Affiliation(s)
- Ajayi David Akinwale
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA (K.P.)
- Department of Pharmacy Practice, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA (K.P.)
| | - Rakesh Kumar Tiwari
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific–Northwest, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - Jason Yamaki
- Department of Pharmacy Practice, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
19
|
Ozdal OG. Green synthesis of Ag, Se, and Ag 2Se nanoparticles by Pseudomonas aeruginosa: characterization and their biological and photocatalytic applications. Folia Microbiol (Praha) 2024; 69:625-638. [PMID: 37917276 DOI: 10.1007/s12223-023-01100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Nanoparticles have drawn significant interest in a range of applications, ranging from biomedical to environmental sciences, due to their distinctive physicochemical characteristics. In this study, it was reported that simple biological production of Ag, Se, and bimetallic Ag2Se nanoparticles (NPs) with Pseudomonas aeruginosa is a promising, low-cost, and environmentally friendly method. For the first time in the scientific literature, Ag2Se nanoparticles have been generated via green bacterial biosynthesis. UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and EDX were used to characterize the produced NPs. Biosynthesized NPs were examined for antibacterial, antibiofilm, and photocatalytic properties, and it was determined that the effects of NPs were dose dependent. The biosynthesized AgNPs, SeNPs, and Ag2Se NPs showed anti-microbial activity against Escherichia coli and Staphylococcus aureus. Minimal inhibitory concentrations (MICs) of E. coli and S. aureus were between 150 and 250 µg/mL. The NPs showed antibiofilm activity against E. coli and S. aureus at sub-MIC levels and reduced biofilm formation by at least 80% at a concentration of 200 µg/mL of each NPs. To photocatalyze the breakdown of Congo red, Ag, Se, and Ag2Se NPs were utilized, and their photocatalytic activity was tested at various concentrations and intervals. A minor decrease of photocatalytic degradation was detected throughout the NPs reuse operation (five cycles). Based on the encouraging findings, the synthesized NPs demonstrated antibacterial, antibiofilm, and photocatalytic properties, suggesting that they might be used in pharmaceutical, medical, environmental, and other applications.
Collapse
Affiliation(s)
- Ozlem Gur Ozdal
- Department of Biology, Science Faculty, Ataturk University, 25240, Erzurum, Turkey.
- Koprukoy Anatolian High School, Erzurum, Turkey.
| |
Collapse
|
20
|
Cashman-Kadri S, Lagüe P, Subirade M, Fliss I, Beaulieu L. Insights into Molecular Interactions between a GAPDH-Related Fish Antimicrobial Peptide, Analogs Thereof, and Bacterial Membranes. Biochemistry 2024; 63:1257-1269. [PMID: 38683758 PMCID: PMC11112741 DOI: 10.1021/acs.biochem.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Interactions between SJGAP (skipjack tuna GAPDH-related antimicrobial peptide) and four analogs thereof with model bacterial membranes were studied using Fourier-transform infrared spectroscopy (FTIR) and molecular dynamics (MD) simulations. MD trajectory analyses showed that the N-terminal segment of the peptide analogs has many contacts with the polar heads of membrane phospholipids, while the central α helix interacts strongly with the hydrophobic core of the membranes. The peptides also had a marked influence on the wave numbers associated with the phase transition of phospholipids organized as liposomes in both the interface and aliphatic chain regions of the infrared spectra, supporting the interactions observed in the MD trajectories. In addition, interesting links were found between peptide interactions with the aliphatic chains of membrane phospholipids, as determined by FTIR and from the MD trajectories, and the membrane permeabilization capacity of these peptide analogs, as previously demonstrated. To summarize, the combined experimental and computational efforts have provided insights into crucial aspects of the interactions between the investigated peptides and bacterial membranes. This work thus makes an original contribution to our understanding of the molecular interactions underlying the antimicrobial activity of these GAPDH-related antimicrobial peptides from Scombridae.
Collapse
Affiliation(s)
- Samuel Cashman-Kadri
- Institute
of Nutrition and Functional Foods (INAF), Université Laval, Québec, Québec G1V 0A6, Canada
- Department
of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, Québec G1V 0A6, Canada
- Québec-Océan, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Patrick Lagüe
- Department
of Biochemistry, Microbiology and Bioinformatics, Faculty of Sciences
and Engineering, Université Laval, Quebec, Québec G1V 0A6, Canada
- Institute
for Integrative Systems Biology, Pavillon Charles-Eugene-Marchand, Université Laval, 1030 Avenue de la Medecine, Québec, Québec G1V 0A6, Canada
- The
Quebec Network for Research on Protein Function, Engineering, and
Applications (PROTEO), Québec, Québec G1V 0A6, Canada
| | - Muriel Subirade
- Institute
of Nutrition and Functional Foods (INAF), Université Laval, Québec, Québec G1V 0A6, Canada
- Department
of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Ismail Fliss
- Institute
of Nutrition and Functional Foods (INAF), Université Laval, Québec, Québec G1V 0A6, Canada
- Department
of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Lucie Beaulieu
- Institute
of Nutrition and Functional Foods (INAF), Université Laval, Québec, Québec G1V 0A6, Canada
- Department
of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, Québec G1V 0A6, Canada
- Québec-Océan, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
21
|
Li S, Wang Z, Song S, Tang Y, Zhou J, Liu X, Zhang X, Chang M, Wang K, Peng Y. Membrane-Active All-Hydrocarbon-Stapled α-Helical Amphiphilic Tat Peptides: Broad-Spectrum Antibacterial Activity and Low Incidence of Drug Resistance. ACS Infect Dis 2024; 10:1839-1855. [PMID: 38725407 DOI: 10.1021/acsinfecdis.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Multidrug resistance against conventional antibiotics has dramatically increased the difficulty of treatment and accelerated the need for novel antibacterial agents. The peptide Tat (47-57) is derived from the transactivating transcriptional activator of human immunodeficiency virus 1, which is well-known as a cell-penetrating peptide in mammalian cells. However, it is also reported that the Tat peptide (47-57) has antifungal activity. In this study, a series of membrane-active hydrocarbon-stapled α-helical amphiphilic peptides were synthesized and evaluated as antibacterial agents against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. The impact of hydrocarbon staple, the position of aromatic amino acid residue in the hydrophobic face, the various types of aromatic amino acids, and the hydrophobicity on bioactivity were also investigated and discussed in this study. Among those synthesized peptides, analogues P3 and P10 bearing a l-2-naphthylalanine (Φ) residue at the first position and a Tyr residue at the eighth position demonstrated the highest antimicrobial activity and negligible hemolytic toxicity. Notably, P3 and P10 showed obviously enhanced antimicrobial activity against multidrug-resistant bacteria, low drug resistance, high cell selectivity, extended half-life in plasma, and excellent performance against biofilm. The antibacterial mechanisms of P3 and P10 were also preliminarily investigated in this effort. In conclusion, P3 and P10 are promising antimicrobial alternatives for the treatment of the antimicrobial-resistance crisis.
Collapse
Affiliation(s)
- Shu Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, P. R. China
| | - Zhaopeng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shibo Song
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuanyuan Tang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingjing Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaojing Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xingjiao Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yali Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
22
|
Naseef Pathoor N, Viswanathan A, Wadhwa G, Ganesh PS. Understanding the biofilm development of Acinetobacter baumannii and novel strategies to combat infection. APMIS 2024; 132:317-335. [PMID: 38444124 DOI: 10.1111/apm.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
Acinetobacter baumannii (A. baumannii) is a Gram-negative, nonmotile, and aerobic bacillus emerged as a superbug, due to increasing the possibility of infection and accelerating rates of antimicrobial agents. It is recognized as a nosocomial pathogen due to its ability to form biofilms. These biofilms serve as a defensive barrier, increase antibiotic resistance, and make treatment more difficult. As a result, the current situation necessitates the rapid emergence of novel therapeutic approaches to ensure successful treatment outcomes. This review explores the intricate relationship between biofilm formation and antibiotic resistance in A. baumannii, emphasizing the role of key virulence factors and quorum sensing (QS) mechanisms that will lead to infections and facilitate insight into developing innovative method to control A. baumannii infections. Furthermore, the review article looks into promising approaches for preventing biofilm formation on medically important surfaces and potential therapeutic methods for eliminating preformed biofilms, which can address biofilm-associated A. baumannii infections. Modern advances in emerging therapeutic options such as antimicrobial peptide (AMPs), nanoparticles (NPs), bacteriophage therapy, photodynamic therapy (PDT), and other biofilm inhibitors can assist readers understand the current landscape and future prospects for effectively treating A. baumannii biofilm infections.
Collapse
Affiliation(s)
- Naji Naseef Pathoor
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, India
| | - Akshaya Viswanathan
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, India
| | - Gulshan Wadhwa
- Department of Biotechnology, Ministry of Science and Technology, New Delhi, India
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, India
| |
Collapse
|
23
|
Fontanot A, Ellinger I, Unger WWJ, Hays JP. A Comprehensive Review of Recent Research into the Effects of Antimicrobial Peptides on Biofilms-January 2020 to September 2023. Antibiotics (Basel) 2024; 13:343. [PMID: 38667019 PMCID: PMC11047476 DOI: 10.3390/antibiotics13040343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Microbial biofilm formation creates a persistent and resistant environment in which microorganisms can survive, contributing to antibiotic resistance and chronic inflammatory diseases. Increasingly, biofilms are caused by multi-drug resistant microorganisms, which, coupled with a diminishing supply of effective antibiotics, is driving the search for new antibiotic therapies. In this respect, antimicrobial peptides (AMPs) are short, hydrophobic, and amphipathic peptides that show activity against multidrug-resistant bacteria and biofilm formation. They also possess broad-spectrum activity and diverse mechanisms of action. In this comprehensive review, 150 publications (from January 2020 to September 2023) were collected and categorized using the search terms 'polypeptide antibiotic agent', 'antimicrobial peptide', and 'biofilm'. During this period, a wide range of natural and synthetic AMPs were studied, of which LL-37, polymyxin B, GH12, and Nisin were the most frequently cited. Furthermore, although many microbes were studied, Staphylococcus aureus and Pseudomonas aeruginosa were the most popular. Publications also considered AMP combinations and the potential role of AMP delivery systems in increasing the efficacy of AMPs, including nanoparticle delivery. Relatively few publications focused on AMP resistance. This comprehensive review informs and guides researchers about the latest developments in AMP research, presenting promising evidence of the role of AMPs as effective antimicrobial agents.
Collapse
Affiliation(s)
- Alessio Fontanot
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (A.F.); (W.W.J.U.)
- Department of Pediatrics, Laboratory of Pediatrics, Erasmus University Medical Center Rotterdam, Sophia Children’s Hospital, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Isabella Ellinger
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Wendy W. J. Unger
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (A.F.); (W.W.J.U.)
- Department of Pediatrics, Laboratory of Pediatrics, Erasmus University Medical Center Rotterdam, Sophia Children’s Hospital, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - John P. Hays
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (A.F.); (W.W.J.U.)
| |
Collapse
|
24
|
Peng Z, Wei C, Cai J, Zou Z, Chen J. Characterization of an antimicrobial peptide family from the venom gland of Heteropoda venatoria. Toxicon 2024; 241:107657. [PMID: 38428753 DOI: 10.1016/j.toxicon.2024.107657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Spider venom boasts extensive peptide diversity, constituting a natural biochemical arsenal for defense and predation. The new family HvAMPs, including 9 homologous members, were identified from the unnormalized cDNA library of Heteropoda venatoria venom gland by Sanger sequencing. The putative mature peptide is composed of 22 aliphatic amino acid residues. The mature peptides of HvAMP1 and HvAMP5, with 3 different amino acids, were synthesized and both were shown to adopt an amphipathic α-helical structure and amphipathicity in SDS buffer by CD spectroscopy. In comparison to HvAMP1, HvAMP5 exhibits higher antibacterial activity, particularly against Gram-positive bacteria, coupled with reduced hemolytic activity and cytotoxicity. Results from SYTO 9/PI staining indicate that HvAMP5 acts by disrupting bacterial cell membranes. Analysis of the relationships between structures and functions suggests that HvAMP5 enhances antibacterial activity and reduces mammalian cell toxicity by increasing positive charge and proline substitution. The three residues variation can augment the electrostatic attraction of antibacterial peptides to the bacterial phospholipid bilayer. The present study suggests that the HvAMPs may exert lytic action against cells of different origins to increase cellular and tissue barrier permeability to facilitate spider's defense or predation. Moreover, HvAMP5 holds promise as a novel antibacterial agent for treating Gram-positive bacterial infections. Simultaneously, the numerous diverse amino acid residue substitutions within the HvAMP family offer a template for future study.
Collapse
Affiliation(s)
- Zhihao Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Chao Wei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Jisen Cai
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Zhaoxia Zou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China; School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, 418000, China.
| | - Jinjun Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China; Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha, 418000, China.
| |
Collapse
|
25
|
Thakre N, Carver M, Paredes-Montero JR, Mondal M, Hu J, Saberi E, Ponvert N, Qureshi JA, Brown JK. UV-LASER adjuvant-surfactant-facilitated delivery of mobile dsRNA to tomato plant vasculature and evidence of biological activity by gene knockdown in the potato psyllid. PEST MANAGEMENT SCIENCE 2024; 80:2141-2153. [PMID: 38146104 DOI: 10.1002/ps.7952] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Double-stranded RNA (dsRNA) biopesticides are of interest for the abatement of insect vectors of pathogenic bacteria such as 'Candidatus Liberibacter', which infects both its psyllid and plant hosts. Silencing of genes essential for psyllids, or for Liberibacter, is anticipated to lead to mortality or impeded bacterial multiplication. Foliar delivery is preferred for biopesticide application; however, the cuticle impedes dsRNA penetration into the vasculature. Here, conditions were established for wounding tomato leaves using ultraviolet light amplification by stimulated emissions of radiation (UV-LASER) to promote dsRNA penetration into leaves and vasculature. RESULTS UV-LASER treatment with application of select adjuvants/surfactants resulted in vascular delivery of 100-, 300- and 600-bp dsRNAs that, in general, were correlated with size. The 100-bp dsRNA required no pretreatment, whereas 300- and 600-bp dsRNAs entered the vasculature after UV-LASER treatment only and UV-LASER adjuvant/surfactant treatment, respectively. Of six adjuvant/surfactants evaluated, plant-derived oil combined with an anionic organosilicon compound performed most optimally. Localization of dsRNAs in the tomato vasculature was documented using fluorometry and fluorescence confocal microscopy. The biological activity of in planta-delivered dsRNA (200-250 bp) was determined by feeding third-instar psyllids on tomato leaves post UV-LASER adjuvant/surfactant treatment, with or without psyllid cdc42- and gelsolin dsRNAs. Gene knockdown was quantified by quantitative, real-time polymerase chain reaction with reverse transcription (RT-qPCR) amplification. At 10 days post the ingestion-access period, knockdown of cdc42 and gelsolin expression was 61% and 56%, respectively, indicating that the dsRNAs delivered to the tomato vasculature were mobile and biologically active. CONCLUSION Results indicated that UV-LASER adjuvant/surfactant treatments facilitated the delivery of mobile, biologically active dsRNA molecules to the plant vasculature. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Neha Thakre
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Megan Carver
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| | - Jorge R Paredes-Montero
- Biology Department, Saginaw Valley State University, University Center, USA
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Guayaquil, Ecuador
| | - Mosharrof Mondal
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| | - Jiahuai Hu
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| | - Esmaeil Saberi
- Department of Entomology and Nematology, IFAS, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, USA
| | - Nathaniel Ponvert
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| | - Jawwad A Qureshi
- Department of Entomology and Nematology, IFAS, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, USA
| | - Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
26
|
Chang J, Chang X, Yue X, Cao S, Zhao W, Li J. Beta-defensin1 derived from Ctenopharyngodon idella exerts anti-Vibrio mimics effects in vitro and in vivo via a multi-target mechanism of action. AQUACULTURE INTERNATIONAL 2024; 32:2019-2038. [DOI: 10.1007/s10499-023-01256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/15/2023] [Indexed: 01/03/2025]
|
27
|
Yang R, Cheng W, Huang M, Xu T, Zhang M, Liu J, Qin S, Guo Y. Novel membrane-targeting isoxanthohumol-amine conjugates for combating methicillin-resistant Staphylococcus aureus (MRSA) infections. Eur J Med Chem 2024; 268:116274. [PMID: 38408389 DOI: 10.1016/j.ejmech.2024.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen causing clinical infections and is multi-resistant to many antibiotics, making it urgent need to develop novel antibacterials to combat MRSA. Here, a series of novel isoxanthohumol-amine conjugates were synthesized as antibacterials. After bioactivity evaluation, a compound E2 was obtained, which showed excellent antibacterial activity against S. aureus and clinical MRSA isolates (MICs = 0.25-1 μg/mL), superior to vancomycin, and with negligible hemolysis and good membrane selectivity. Additionally, E2 exhibited fast bacterial killing, less susceptible to resistance, relatively low cytotoxicity, and good plasma stability. Mechanism investigation revealed that E2 can disrupt bacterial membranes by specifically binding to phosphatidylglycerol on the bacterial membrane, thus causing elevated intracellular ROS and leakage of DNA and proteins, and ultimately killing bacteria. Noticeably, E2 displayed a good in vivo safety profile and better in vivo therapeutic efficacy than the same dose of vancomycin, allowing it to be a potential antibacterial to conquer MRSA infections.
Collapse
Affiliation(s)
- Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Wanqing Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Meijuan Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China
| | - Miaomiao Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China.
| |
Collapse
|
28
|
Jalil AT, Alrawe RTA, Al-Saffar MA, Shaghnab ML, Merza MS, Abosaooda M, Latef R. The use of combination therapy for the improvement of colistin activity against bacterial biofilm. Braz J Microbiol 2024; 55:411-427. [PMID: 38030866 PMCID: PMC10920569 DOI: 10.1007/s42770-023-01189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Colistin is used as a last resort for the management of infections caused by multi-drug resistant (MDR) bacteria. However, the use of this antibiotic could lead to different side effects, such as nephrotoxicity, in most patients, and the high prevalence of colistin-resistant strains restricts the use of colistin in the clinical setting. Additionally, colistin could induce resistance through the increased formation of biofilm; biofilm-embedded cells are highly resistant to antibiotics, and as with other antibiotics, colistin is impaired by bacteria in the biofilm community. In this regard, the researchers used combination therapy for the enhancement of colistin activity against bacterial biofilm, especially MDR bacteria. Different antibacterial agents, such as antimicrobial peptides, bacteriophages, natural compounds, antibiotics from different families, N-acetylcysteine, and quorum-sensing inhibitors, showed promising results when combined with colistin. Additionally, the use of different drug platforms could also boost the efficacy of this antibiotic against biofilm. The mentioned colistin-based combination therapy not only could suppress the formation of biofilm but also could destroy the established biofilm. These kinds of treatments also avoided the emergence of colistin-resistant subpopulations, reduced the required dosage of colistin for inhibition of biofilm, and finally enhanced the dosage of this antibiotic at the site of infection. However, the exact interaction of colistin with other antibacterial agents has not been elucidated yet; therefore, further studies are required to identify the precise mechanism underlying the efficient removal of biofilms by colistin-based combination therapy.
Collapse
Affiliation(s)
| | | | - Montaha A Al-Saffar
- Community Health Department, Institute of Medical Technology/Baghdad, Middle Technical University, Baghdad, Iraq
| | | | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Munther Abosaooda
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Rahim Latef
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
29
|
Straus SK. Tryptophan- and arginine-rich antimicrobial peptides: Anti-infectives with great potential. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184260. [PMID: 38113954 DOI: 10.1016/j.bbamem.2023.184260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
With the increasing prevalence of multidrug resistant (MDR) bacteria, there is a need to design synthetic antimicrobial peptides (AMPs) that are effective and selective for bacteria, i.e. non-toxic to mammalian cells. One design strategy, namely the use of tryptophan- and arginine-rich AMPs, is rooted in the study of natural AMPs that are composed mainly of these amino acids, such as lactoferricin, tritrpticin, and puroindoline. A number of important studies on these AMPs by the Vogel group are reviewed here. More recent work on W-/R-rich peptides is also presented. The examples show that these peptides represent anti-infectives with great potential.
Collapse
Affiliation(s)
- Suzana K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
30
|
Saeed SI, Kamaruzzaman NF, Gahamanyi N, Nguyen TTH, Hossain D, Kahwa I. Confronting the complexities of antimicrobial management for Staphyloccous aureus causing bovine mastitis: an innovative paradigm. Ir Vet J 2024; 77:4. [PMID: 38418988 PMCID: PMC10900600 DOI: 10.1186/s13620-024-00264-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Globally, Mastitis is a disease commonly affecting dairy cattle which leads to the use of antimicrobials. The majority of mastitis etiological agents are bacterial pathogens and Staphylococcus aureus is the predominant causative agent. Antimicrobial treatment is administered mainly via intramammary and intramuscular routes. Due to increasing antimicrobial resistance (AMR) often associated with antimicrobial misuse, the treatment of mastitis is becoming challenging with less alternative treatment options. Besides, biofilms formation and ability of mastitis-causing bacteria to enter and adhere within the cells of the mammary epithelium complicate the treatment of bovine mastitis. In this review article, we address the challenges in treating mastitis through conventional antibiotic treatment because of the rising AMR, biofilms formation, and the intracellular survival of bacteria. This review article describes different alternative treatments including phytochemical compounds, antimicrobial peptides (AMPs), phage therapy, and Graphene Nanomaterial-Based Therapy that can potentially be further developed to complement existing antimicrobial therapy and overcome the growing threat of AMR in etiologies of mastitis.
Collapse
Affiliation(s)
- Shamsaldeen Ibrahim Saeed
- Nanotechnology in Veterinary Medicine Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, Kelantan, 16100, Malaysia.
- Microbiology Department, Faculty of Veterinary Science, University of Nyala, PO Box 155, Nyala, Sudan.
| | - Nor Fadhilah Kamaruzzaman
- Nanotechnology in Veterinary Medicine Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, Kelantan, 16100, Malaysia
| | - Noel Gahamanyi
- Biology Department, School of Science, College of Science and Technology, University of Rwanda, P.O. Box 3900, Kigali, Rwanda
- Microbiology Unit, National Reference Laboratory, Rwanda Biomedical, P.O. Box 7162, Kigali, Rwanda
| | - Thi Thu Hoai Nguyen
- Research Center for Infectious Diseases, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Delower Hossain
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Lodi, 26900, Italy
- Department of Medicine and Public Health, Faculty of Animal Science and Veterinary Medicine, Sher-e -Bangla Agricultural University (SAU), Dhaka, 1207, Bangladesh
- Udder Health Bangladesh (UHB), Chattogram, 4225, Bangladesh
| | - Ivan Kahwa
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
| |
Collapse
|
31
|
Ma F, Ma R, Zhao L. Effects of Antimicrobial Peptides on Antioxidant Properties, Non-specific Immune Response and Gut Microbes of Tsinling Lenok Trout (Brachymystax lenok tsinlingensis). Biochem Genet 2024:10.1007/s10528-024-10708-6. [PMID: 38411941 DOI: 10.1007/s10528-024-10708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Antimicrobial peptides (AMPs) are an important part of non-specific immunity and play a key role in the cellular host defense against pathogens and tissue injury infections. We investigated the effects of AMP supplementation on the antioxidant capacity, non-specific immunity, and gut microbiota of tsinling lenok trout. 240 fish were fed diets (CT, A120, A240 and A480) containing different amounts of AMP peptides (0, 120 mg kg-1, 240 mg kg-1, 480 mg kg-1) for 8 weeks. Our results showed that the activity of total antioxidant capacity (T-SOD) and glutathione peroxidase (GSH-Px), lysozyme (LZM), catalase (CAT) and acid phosphatase (ACP) in the A240 and A480 group were higher than that in the CT group (P < 0.05). The content of malondialdehyde (MDA) in AMP group was significantly lower than that in CT group (P < 0.05). Furthermore, we harvested the mid-gut and applied next-generation sequencing of 16S rDNA. The results showed that the abundance of Halomonas in AMP group was significantly lower than that in CT group. Functional analysis showed that the abundance of chloroalkane and chloroalkene degradation pathway increased significantly in AMP group. In conclusion, AMP enhanced the antioxidant capacity, non-specific immunity, and intestinal health of tsinling lenok trout.
Collapse
Affiliation(s)
- Fang Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu, People's Republic of China.
| | - Ruilin Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu, People's Republic of China
| | - Lei Zhao
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu, People's Republic of China
| |
Collapse
|
32
|
Zhang X, Ma P, Ismail BB, Yang Z, Zou Z, Suo Y, Ye X, Liu D, Guo M. Chickpea-Derived Modified Antimicrobial Peptides KTA and KTR Inactivate Staphylococcus aureus via Disrupting Cell Membrane and Interfering with Peptidoglycan Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2727-2740. [PMID: 38289163 DOI: 10.1021/acs.jafc.3c08241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The widespread bacterial contamination caused by foodborne pathogens has continuously driven the development of advanced and potent food antimicrobial agents. In this study, two novel antimicrobial peptides (AMPs) named KTA and KTR were obtained by modifying a natural AMP, Leg2, from chickpea storage protein legumin hydrolysates. They were further predicted to be stable hydrophobic cationic AMPs of α-helical structure with no hemolytic toxicity by several online servers. Moreover, the AMPs exerted superior antibacterial activity against two representative Staphylococcus aureus strains thanks to the increased hydrophobicity and positive charge, with minimum inhibition concentration value (4.74-7.41 μM) significantly lower than that of Leg2 (>1158.70 μM). Further, this study sought to elucidate the specific antimicrobial mechanism against Gram-positive bacteria. It was found that the electrostatic interactions of the AMPs with peptidoglycan were vital for peptide activity in combating Gram-positive bacteria. Subsequently, the cell membrane of S. aureus cells was irreversibly disrupted by increasing permeability and impairing membrane components, which led to the massive release of intracellular substances and eventual cell death. Overall, this work demonstrated that KTA and KTR were active against Gram-positive bacteria via peptidoglycan targeting and membrane-disruptive mechanisms and paved the way for expanding their application potential to alleviate food contamination.
Collapse
Affiliation(s)
- Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Peipei Ma
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Zhipeng Zou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Yujuan Suo
- Laboratory of Quality and Safety Risk Assessment for Agro-products of Ministry of Agriculture and Rural Affairs, Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Sun Y, Li H, Duan X, Ma X, Liu C, Shang D. Chensinin-1b Alleviates DSS-Induced Inflammatory Bowel Disease by Inducing Macrophage Switching from the M1 to the M2 Phenotype. Biomedicines 2024; 12:345. [PMID: 38397947 PMCID: PMC10886634 DOI: 10.3390/biomedicines12020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disorder with an increasing prevalence worldwide. Macrophage polarization is involved in the pathogenesis of IBD. Repolarization of macrophage has thus emerged as a novel therapeutic approach for managing IBD. Chensinin-1b, derived from the skin of Rana chensinensis, is a derivative of a native antimicrobial peptide (AMP). It shows anti-inflammatory effects in sepsis models and can potentially modulate macrophage polarization. The objective of this research was to study the role of chensinin-1b in macrophage polarization and dextran sulfate sodium (DSS)-induced colitis. RAW264.7 macrophages were polarized to the M1 phenotype using lipopolysaccharide (LPS) and simultaneously administered chensinin-1b at various concentrations. The ability of chenisnin-1b to reorient macrophage polarization was assessed by ELISA, qRT-PCR, and flow cytometry analysis. The addition of chensinin-1b significantly restrained the expression of M1-associated proinflammatory cytokines and surface markers, including TNF-α, IL-6, NO, and CD86, and exaggerated the expression of M2-associated anti-inflammatory cytokines and surface markers, including IL-10, TGF-β1, Arg-1, Fizz1, Chil3, and CD206. Mechanistically, via Western Blotting, we revealed that chensinin-1b induces macrophage polarization from the M1 to the M2 phenotype by inhibiting the phosphorylation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK). In mouse models of colitis, intraperitoneal administration of chensinin-1b alleviated symptoms induced by DSS, including weight loss, elevated disease activity index (DAI) scores, colon shortening, colonic tissue damage, and splenomegaly. Consistent with our in vitro data, chensinin-1b induced significant decreases in the expression of M1 phenotype biomarkers and increases in the expression of M2 phenotype biomarkers in the mouse colitis model. Furthermore, chensinin-1b treatment repressesed NF-κB phosphorylation in vivo. Overall, our data showed that chensinin-1b attenuates IBD by repolarizing macrophages from the M1 to the M2 phenotype, suggesting its potential as a therapeutic candidate for IBD.
Collapse
Affiliation(s)
- Yue Sun
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Huiyu Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
| | - Xingpeng Duan
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Xiaoxiao Ma
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
| | - Chenxi Liu
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
34
|
Chakrapani S, Panigrahi A, Palanichamy E, Thangaraj SK, Radhakrishnan N, Panigrahi P, Nagarathnam R. Evaluation of Therapeutic Efficiency of Stylicin against Vibrio parahaemolyticus Infection in Shrimp Penaeus vannamei through Comparative Proteomic Approach. Probiotics Antimicrob Proteins 2024; 16:76-92. [PMID: 36459385 DOI: 10.1007/s12602-022-10006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/04/2022]
Abstract
The shrimp immune system defends and protects against infection by its naturally expressing antimicrobial peptides. Stylicin is a proline-rich anionic antimicrobial peptide (AMP) that exhibits potent antimicrobial activity. In this study, stylicin gene was isolated from Penaeus vannamei, cloned into vector pET-28a ( +), and overexpressed in Escherichia coli SHuffle T7 cells. The protein was purified and tested for its antibiofilm activity against shrimp pathogen Vibrio parahaemolyticus. It was resulted that the recombinant stylicin significantly reduced the biofilm formation of V. parahaemolyticus at a minimum inhibitory concentration (MIC) of 200 µg. Cell aggregation was observed by using scanning electron microscopy and confocal laser scanning microscopy, and it was resulted that stylicin administration significantly affects the cell structure and biofilm density of V. parahaemolyticus. In addition, real-time PCR confirmed the downregulation (p < 0.05) of genes responsible for growth and colonization. The efficacy of stylicin was tested by injecting it into shrimp challenged with V. parahaemolyticus and 7 days after infection, stylicin-treated animals recovered and survived better in both treatments (T2-100 µg stylicin, - 68.8%; T1-50 µg stylicin, 60%) than in control (7%) (p < 0.01). Comparative proteomic and mass spectrometry analysis of shrimp hemolymph resulted that the expressed proteins were involved in cell cycle, signal transduction, immune pathways, and stress-related proteins representing infection and recovery, and were significantly different in the stylicin-treated groups. The result of this study suggests that the stylicin can naturally boost immunity and can be used as a choice for treating V. parahaemolyticus infections in shrimp.
Collapse
Affiliation(s)
- Saranya Chakrapani
- Crustacean Culture Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600028, India
| | - Akshaya Panigrahi
- Crustacean Culture Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600028, India.
| | - Esakkiraj Palanichamy
- Crustacean Culture Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600028, India
| | - Sathish Kumar Thangaraj
- Aquatic Animal Health & Environment Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600028, India
| | - Naveenkumar Radhakrishnan
- Crustacean Culture Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600028, India
| | - Puspamitra Panigrahi
- Centre for Clean Energy and Nano Convergence (CENCON), Hindustan Institute of Technology & Science, Rajiv Gandhi Salai (OMR), Padur, Kelambakkam, Chennai, 603103, Tamil Nadu, India
| | | |
Collapse
|
35
|
Liu GY, Yu D, Fan MM, Zhang X, Jin ZY, Tang C, Liu XF. Antimicrobial resistance crisis: could artificial intelligence be the solution? Mil Med Res 2024; 11:7. [PMID: 38254241 PMCID: PMC10804841 DOI: 10.1186/s40779-024-00510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance is a global public health threat, and the World Health Organization (WHO) has announced a priority list of the most threatening pathogens against which novel antibiotics need to be developed. The discovery and introduction of novel antibiotics are time-consuming and expensive. According to WHO's report of antibacterial agents in clinical development, only 18 novel antibiotics have been approved since 2014. Therefore, novel antibiotics are critically needed. Artificial intelligence (AI) has been rapidly applied to drug development since its recent technical breakthrough and has dramatically improved the efficiency of the discovery of novel antibiotics. Here, we first summarized recently marketed novel antibiotics, and antibiotic candidates in clinical development. In addition, we systematically reviewed the involvement of AI in antibacterial drug development and utilization, including small molecules, antimicrobial peptides, phage therapy, essential oils, as well as resistance mechanism prediction, and antibiotic stewardship.
Collapse
Affiliation(s)
- Guang-Yu Liu
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, Hangzhou, 311121, China
| | - Dan Yu
- National Key Discipline of Pediatrics Key Laboratory of Major Diseases in Children Ministry of Education, Laboratory of Dermatology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Mei-Mei Fan
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xu Zhang
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ze-Yu Jin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christoph Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| | - Xiao-Fen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
36
|
Lin H, Song L, Zhou S, Fan C, Zhang M, Huang R, Zhou R, Qiu J, Ma S, He J. A Hybrid Antimicrobial Peptide Targeting Staphylococcus aureus with a Dual Function of Inhibiting Quorum Sensing Signaling and an Antibacterial Effect. J Med Chem 2023; 66:17105-17117. [PMID: 38099725 DOI: 10.1021/acs.jmedchem.3c02027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (MRSA) is now a major cause of bacterial infection. Antivirulence therapy does not stimulate evolution of a pathogen toward a resistant phenotype, providing a novel method to treat infectious diseases. Here, we used a cyclic peptide of CP7, an AIP-III variant that specifically inhibited the virulence and biofilm formation of Staphylococcus aureus (S. aureus) in a nonbiocidal manner, to conjugate with a broad-spectrum antimicrobial peptide (AMP) via two N-termini to obtain a hybrid AMP called CP7-FP13-2. This peptide not only specifically inhibited the production of virulence of S. aureus at low micromolar concentrations but also killed S. aureus, including MRSA, by disrupting the integrity of the bacterial cell membrane. In addition, CP7-FP13-2 inhibited the formation of the S. aureus biofilm and showed good antimicrobial efficacy against the S. aureus-infected Kunming mice model. Therefore, this study provides a promising strategy against the resistance and virulence of S. aureus.
Collapse
Affiliation(s)
- Haixing Lin
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
- Department of Urology, Tongren Municipal People's Hospital, 120 Taoyuan Avenue, Tongren, Guizhou 554300, P. R. China
| | - Li Song
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Shaofen Zhou
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Cuiqiong Fan
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Minna Zhang
- Department of Nephrology, Tongren Municipal People's Hospital, 120 Taoyuan Avenue, Tongren, Guizhou 554300, P. R. China
| | - Ruifeng Huang
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Runhong Zhou
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Jingnan Qiu
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Shuaiqi Ma
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Jian He
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| |
Collapse
|
37
|
Klubthawee N, Wongchai M, Aunpad R. The bactericidal and antibiofilm effects of a lysine-substituted hybrid peptide, CM-10K14K, on biofilm-forming Staphylococcus epidermidis. Sci Rep 2023; 13:22262. [PMID: 38097636 PMCID: PMC10721899 DOI: 10.1038/s41598-023-49302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Staphylococci, notably biofilm-forming Staphylococcus epidermidis, have been recognized as global nosocomial pathogens in medical device-related infections. Their potential to attach to and form biofilm on indwelling catheters are significant factors impeding conventional treatment. Due to their extensive antimicrobial and antibiofilm actions, antimicrobial peptides (AMPs) have attracted interest as promising alternative compounds for curing difficult-to-treat, biofilm-forming bacterial infections. Cecropin A-melittin or CM, a well-known hybrid peptide, exhibits broad-spectrum antimicrobial activity, however it also possesses high toxicity. In the current study, a series of hybrid CM derivatives was designed using an amino acid substitution strategy to explore potential antibacterial and antibiofilm peptides with low toxicity. Among the derivatives, CM-10K14K showed the least hemolysis along with potent antibacterial activity against biofilm-forming S. epidermidis (MICs = 3.91 μg/mL) and rapid killing after 15 min exposure (MBCs = 7.81 μg/mL). It can prevent the formation of S. epidermidis biofilm and also exhibited a dose-dependent eradication activity on mature or established S. epidermidis biofilm. In addition, it decreased the development of biofilm by surviving bacteria, and formation of biofilm on the surface of CM-10K14K-impregnated catheters. Released CM-10K14K decreased planktonic bacterial growth and inhibited biofilm formation by S. epidermidis in a dose-dependent manner for 6 and 24 h post-exposure. Impregnation of CM-10K14K prevented bacterial attachment on catheters and thus decreased formation of extensive biofilms. SEM images supported the antibiofilm activity of CM-10K14K. Flow cytometry analysis and TEM images demonstrated a membrane-active mechanism of CM-10K14K, inducing depolarization and permeabilization, and subsequent membrane rupture leading to cell death. The presence of an interaction with bacterial DNA was verified by gel retardation assay. These antibacterial and antibiofilm activities of CM-10K14K suggest its potential application to urinary catheters for prevention of biofilm-forming colonization or for treatment of medical devices infected with S. epidermidis.
Collapse
Affiliation(s)
- Natthaporn Klubthawee
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Mathira Wongchai
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Ratchaneewan Aunpad
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, 12120, Pathum Thani, Thailand.
| |
Collapse
|
38
|
Cebrián R, Lucas R, Fernández-Cantos MV, Slot K, Peñalver P, Martínez-García M, Párraga-Leo A, de Paz MV, García F, Kuipers OP, Morales JC. Synthesis and antimicrobial activity of aminoalkyl resveratrol derivatives inspired by cationic peptides. J Enzyme Inhib Med Chem 2023; 38:267-281. [PMID: 36600674 PMCID: PMC9828810 DOI: 10.1080/14756366.2022.2146685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial resistance is a global concern, far from being resolved. The need of new drugs against new targets is imminent. In this work, we present a family of aminoalkyl resveratrol derivatives with antibacterial activity inspired by the properties of cationic amphipathic antimicrobial peptides. Surprisingly, the newly designed molecules display modest activity against aerobically growing bacteria but show surprisingly good antimicrobial activity against anaerobic bacteria (Gram-negative and Gram-positive) suggesting specificity towards this bacterial group. Preliminary studies into the action mechanism suggest that activity takes place at the membrane level, while no cross-resistance with traditional antibiotics is observed. Actually, some good synergistic relations with existing antibiotics were found against Gram-negative pathogens. However, some cytotoxicity was observed, despite their low haemolytic activity. Our results show the importance of the balance between positively charged moieties and hydrophobicity to improve antimicrobial activity, setting the stage for the design of new drugs based on these molecules.
Collapse
Affiliation(s)
- Rubén Cebrián
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands,Department of Clinical Microbiology, Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospital Clínico San Cecilio, Granada, Spain,CONTACT Rubén Cebrián University Hospital San Cecilio,Clinical Microbiology Department, Av. de la Innovación s/n, 18061, Granada, Spain
| | - Ricardo Lucas
- Department of Organic and Pharmaceutical Chemistry, School of Pharmacy, University of Seville, Seville, Spain
| | - María Victoria Fernández-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Koen Slot
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Pablo Peñalver
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Armilla, Granada, Spain
| | - Marta Martínez-García
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Antonio Párraga-Leo
- Department of Organic and Pharmaceutical Chemistry, School of Pharmacy, University of Seville, Seville, Spain
| | - María Violante de Paz
- Department of Organic and Pharmaceutical Chemistry, School of Pharmacy, University of Seville, Seville, Spain
| | - Federico García
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospital Clínico San Cecilio, Granada, Spain
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands,Oscar P. Kuipers University of Groningen, Faculty of Science and Engineering, Department of Genetics, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Juan Carlos Morales
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Armilla, Granada, Spain,Juan Carlos Morales Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento 17, Armilla, 18016Granada, Spain
| |
Collapse
|
39
|
Liu Q, Wang L, He D, Wu Y, Liu X, Yang Y, Chen Z, Dong Z, Luo Y, Song Y. Application Value of Antimicrobial Peptides in Gastrointestinal Tumors. Int J Mol Sci 2023; 24:16718. [PMID: 38069041 PMCID: PMC10706433 DOI: 10.3390/ijms242316718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal cancer is a common clinical malignant tumor disease that seriously endangers human health and lacks effective treatment methods. As part of the innate immune defense of many organisms, antimicrobial peptides not only have broad-spectrum antibacterial activity but also can specifically kill tumor cells. The positive charge of antimicrobial peptides under neutral conditions determines their high selectivity to tumor cells. In addition, antimicrobial peptides also have unique anticancer mechanisms, such as inducing apoptosis, autophagy, cell cycle arrest, membrane destruction, and inhibition of metastasis, which highlights the low drug resistance and high specificity of antimicrobial peptides. In this review, we summarize the related studies on antimicrobial peptides in the treatment of digestive tract tumors, mainly oral cancer, esophageal cancer, gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer. This paper describes the therapeutic advantages of antimicrobial peptides due to their unique anticancer mechanisms. The length, net charge, and secondary structure of antimicrobial peptides can be modified by design or modification to further enhance their anticancer effects. In summary, as an emerging cancer treatment drug, antimicrobial peptides need to be further studied to realize their application in gastrointestinal cancer diseases.
Collapse
Affiliation(s)
- Qi Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lei Wang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dongxia He
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuewei Wu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xian Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yahan Yang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhizhi Chen
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhan Dong
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Luo
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuzhu Song
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Medical College, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
40
|
Klaiss-Luna MC, Giraldo-Lorza JM, Jemioła-Rzemińska M, Strzałka K, Manrique-Moreno M. Biophysical Insights into the Antitumoral Activity of Crotalicidin against Breast Cancer Model Membranes. Int J Mol Sci 2023; 24:16226. [PMID: 38003414 PMCID: PMC10671781 DOI: 10.3390/ijms242216226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Bioactive peptides have emerged as promising therapeutic agents with antimicrobial, antifungal, antiparasitic, and, recently, antitumoral properties with a mechanism of action based on membrane destabilization and cell death, often involving a conformational change in the peptide. This biophysical study aims to provide preliminary insights into the membrane-level antitumoral mode of action of crotalicidin, a cationic host defense peptide from rattlesnake venom, toward breast cancer cell lines. The lipid composition of breast cancer cell lines was obtained after lipid extraction and quantification to prepare representative cell membrane models. Membrane-peptide interaction studies were performed using differential scanning calorimetry and Fourier-transform infrared spectroscopy. The outcome evidences the potential antitumoral activity and selectivity of crotalicidin toward breast cancer cell lines and suggests a mechanism initiated by the electrostatic interaction of the peptide with the lipid bilayer surface and posterior conformation change with membrane intercalation between the acyl chains in negatively charged lipid systems. This research provides valuable information that clears up the antitumoral mode of action of crotalicidin.
Collapse
Affiliation(s)
- Maria C. Klaiss-Luna
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A 1226, Medellin 050010, Colombia
| | - Juan M. Giraldo-Lorza
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A 1226, Medellin 050010, Colombia
| | - Małgorzata Jemioła-Rzemińska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Kazimierz Strzałka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A 1226, Medellin 050010, Colombia
| |
Collapse
|
41
|
Savitskaya A, Masso-Silva J, Haddaoui I, Enany S. Exploring the arsenal of antimicrobial peptides: Mechanisms, diversity, and applications. Biochimie 2023; 214:216-227. [PMID: 37499896 DOI: 10.1016/j.biochi.2023.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Antimicrobial peptides (AMPs) are essential for defence against pathogens in all living organisms and possessed activities against bacteria, fungi, viruses, parasites and even cancer cells. AMPs are short peptides containing 12-100 amino acids conferring a net positive charge and an amphiphilic property in most cases. Although, anionic AMPs also exist. AMPs can be classified based on the types of secondary structures, charge, hydrophobicity, amino acid composition, length, etc. Their mechanism of action usually includes a membrane disruption process through pore formation (three different models have been described, barrel-stave, toroidal or carpet model) but AMPs can also penetrate and impair intracellular functions. Besides their activity against pathogens, they have also shown immunomodulatory properties in complex scenarios through many different interactions. The aim of this review to summarize knowledge about AMP's and discuss the potential application of AMPs as therapeutics, the challenges due to their limitations, including their susceptibility to degradation, the potential generation of AMP resistance, cost, etc. We also discuss the current FDA-approved drugs based on AMPs and strategies to circumvent natural AMPs' limitations.
Collapse
Affiliation(s)
- Anna Savitskaya
- Institute of Bioorganic Chemistry of Russian Academy of Science, Moscow, Russian Federation
| | - Jorge Masso-Silva
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, University of California San Diego, La Jolla, CA, USA
| | - Imen Haddaoui
- National Research Institute of Rural Engineering, Water and Forestry, University of Carthage, LR Valorization of Unconventional Waters, Ariana, Tunisia
| | - Shymaa Enany
- Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt; Biomedical Research Department, Armed Force College of Medicine, Cairo, Egypt.
| |
Collapse
|
42
|
Sevim Akan H, Şahal G, Karaca TD, Gürpınar ÖA, Maraş M, Doğan A. Evaluation of glycyl-arginine and lysyl-aspartic acid dipeptides for their antimicrobial, antibiofilm, and anticancer potentials. Arch Microbiol 2023; 205:365. [PMID: 37906313 DOI: 10.1007/s00203-023-03724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Antibacterial resistance and cancer are worldwide challenges and have been defined as major threats by international health organizations. Peptides are produced naturally by all organisms and have a variety of immunomodulatory, physiological, and wound-healing properties. They can also provide protection against microorganisms and tumor cells. Therefore, we aimed to determine the antimicrobial, antibiofilm, and anticancer potentials of Glycyl-Arginine and Lysyl-Aspartic acid dipeptides. The Broth Dilution and Crystal Violet Binding assays assessed the antimicrobial tests and biofilm inhibitory effects. The MTT assay was used to measure the cytotoxic effects of dipeptides on HeLa cell viability. According to our results, Candida tropicalis T26 and Proteus mirabilis U15 strains were determined as more resistant to Staphylococcus epidermidis W17 against Glycyl-Arginine and Lysyl-Aspartic acid dipeptides with MICs higher than 2 mM (1 mg/mL). Sub-MICs of Glycyl-Arginine caused inhibitions against biofilm formation of all the tested clinical isolates, with the highest inhibition observed against S. epidermidisW17. Lysyl-Aspartic acid exhibited zero to no effect against biofilm formation of P. mirabilisU15, and S. epidermidisW17, whereas it exhibited 52% inhibition of biofilm formation of C. tropicalisT26. Cell viability results revealed that HeLa cell viability decreases with increasing concentration of both dipeptides. Also, parallel to antimicrobial tests, Glycyl-Arginine has a greater cytotoxic effect compared to Lysyl-Aspartic acid. The findings from this study will contribute to the advancement of novel strategies involving dipeptide-based synthesizable molecules and drug development studies. However, it is essential to note that there are still challenges, including the need for extensive experimental and clinical trials.
Collapse
Affiliation(s)
- Handan Sevim Akan
- Department Biology, Faculty of Science, Hacettepe University, Beytepe, Cankaya, 06800, Ankara, Turkey.
| | - Gülcan Şahal
- Department Biology, Faculty of Science, Hacettepe University, Beytepe, Cankaya, 06800, Ankara, Turkey
| | - Tuğçe Deniz Karaca
- Department of Medical Services and Techniques, Gazi University Health Service Vocational School, Ankara, Turkey
| | - Özer Aylin Gürpınar
- Department Biology, Faculty of Science, Hacettepe University, Beytepe, Cankaya, 06800, Ankara, Turkey
| | - Meltem Maraş
- Department of Mathematics and Science Education, Faculty of Education Ereğli, Bülent Ecevit University, Zonguldak, Turkey
| | - Alev Doğan
- Department of Science Education, Faculty of Gazi Education, Gazi University, Teknikokullar, Ankara, Turkey
| |
Collapse
|
43
|
Mahmoudi-Qashqay S, Zamani-Meymian MR, Sadati SJ. Improving antibacterial ability of Ti-Cu thin films with co-sputtering method. Sci Rep 2023; 13:16593. [PMID: 37789153 PMCID: PMC10547835 DOI: 10.1038/s41598-023-43875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023] Open
Abstract
Due to the resistance of some bacteria to antibiotics, research in the field of dealing with bacterial infections is necessary. A practical approach utilized in this study involves the preparation of an antibacterial thin film on the surfaces, which can effectively inhibit and reduce biofilm formation and bacterial adherence. In this study, we report the fabrication of bactericidal titanium (Ti) and copper (Cu) surfaces which involves a powerful co-sputtering method. This method provides a situation in which constituent elements are deposited simultaneously to control the composition of the thin film. Prepared samples were examined by energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and contact angle measurements. To evaluate antibacterial behavior, we used two bacterial strains Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). Antibacterial activity of the prepared sample was assessed by determining the number of colony-forming units per milliliter (CFU/ml) using a standard viable cell count assay. Results indicated that as the Cu concentration increased, the nanoscale surfaces became rougher, with roughness values rising from 11.85 to 49.65 nm, and the contact angle increased from 40 to 80 degrees, indicating a hydrophilic character. These factors play a significant role in the antibacterial properties of the surface. The Ti-Cu films displayed superior antibacterial ability, with a 99.9% reduction (equivalent to a 5-log reduction) in bacterial viability after 2 h compared to Ti alone against both bacterial strains. Field emission scanning electron microscopy (FE-SEM) images verified that both E. coli and S. aureus cells were physically deformed and damaged the bacterial cell ultrastructure was observed. These findings highlight that adding Cu to Ti can improve the antibacterial ability of the surface while inhibiting bacterial adherence. Therefore, the Ti14-Cu86 sample with the highest percentage of Cu had the best bactericidal rate. Investigation of toxicity of Cu-Ti thin films was conducted the using the MTT assay, which revealed their biocompatibility and absence of cytotoxicity, further confirming their potential as promising biomaterials for various applications.
Collapse
Affiliation(s)
- Samaneh Mahmoudi-Qashqay
- Department of Physics, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | | | - Seyed Javad Sadati
- Department of Physics, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| |
Collapse
|
44
|
Skrzyniarz K, Kuc-Ciepluch D, Lasak M, Arabski M, Sanchez-Nieves J, Ciepluch K. Dendritic systems for bacterial outer membrane disruption as a method of overcoming bacterial multidrug resistance. Biomater Sci 2023; 11:6421-6435. [PMID: 37605901 DOI: 10.1039/d3bm01255g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The alarming rise of multi-drug resistant microorganisms has increased the need for new approaches through the development of innovative agents that are capable of attaching to the outer layers of bacteria and causing permanent damage by penetrating the bacterial outer membrane. The permeability (disruption) of the outer membrane of Gram-negative bacteria is now considered to be one of the main ways to overcome multidrug resistance in bacteria. Natural and synthetic permeabilizers such as AMPs and dendritic systems seem promising. However, due to their advantages in terms of biocompatibility, antimicrobial capacity, and wide possibilities for modification and synthesis, highly branched polymers and dendritic systems have gained much more interest in recent years. Various forms of arrangement, and structure of the skeleton, give dendritic systems versatile applications, especially the possibility of attaching other ligands to their surface. This review will focus on the mechanisms used by different types of dendritic polymers, and their complexes with macromolecules to enhance their antimicrobial effect, and to permeabilize the bacterial outer membrane. In addition, future challenges and potential prospects are illustrated in the hope of accelerating the advancement of nanomedicine in the fight against resistant pathogens.
Collapse
Affiliation(s)
- Kinga Skrzyniarz
- Division of Medical Biology, Jan Kochanowski University, Kielce, Poland.
| | | | - Magdalena Lasak
- Division of Medical Biology, Jan Kochanowski University, Kielce, Poland.
| | - Michał Arabski
- Division of Medical Biology, Jan Kochanowski University, Kielce, Poland.
| | - Javier Sanchez-Nieves
- Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá (UAH), Campus Universitario, E-28871 Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química "Andrés M. del Río" (IQAR, UAH), Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
- Institute for Health Research Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Karol Ciepluch
- Division of Medical Biology, Jan Kochanowski University, Kielce, Poland.
| |
Collapse
|
45
|
Zhang OL, Niu JY, Yu OY, Yin IX, Mei ML, Chu CH. The Anti-Caries Effects of a Novel Peptide on Dentine Caries: An In Vitro Study. Int J Mol Sci 2023; 24:14076. [PMID: 37762381 PMCID: PMC10531674 DOI: 10.3390/ijms241814076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
This study aimed to investigate the antibiofilm and remineralising effects of peptide GAPI on artificial dentin caries. After creating artificial carious lesions, eighty dentine blocks were randomly assigned for treatment twice daily with GAPI (GAPI group) or deionised water (control group). Both groups underwent a 7-day biochemical cycle. Scanning electron microscopy (SEM) showed S. mutans with damaged structures that partially covered the dentine in the GAPI group. The dead-live ratios for the GAPI and control groups were 0.77 ± 0.13 and 0.37 ± 0.09 (p < 0.001). The log colony-forming units for the GAPI and control groups were 7.45 ± 0.32 and 8.74 ± 0.50 (p < 0.001), respectively. The lesion depths for the GAPI and control groups were 151 ± 18 µm and 214 ± 15 µm (p < 0.001), respectively. The mineral losses for the GAPI and control groups were 0.91 ± 0.07 gHAcm-3 and 1.01 ± 0.07 gHAcm-3 (p = 0.01), respectively. The hydrogen-to-amide I ratios for the GAPI and control groups were 2.92 ± 0.82 and 1.83 ± 0.73 (p = 0.014), respectively. SEM micrographs revealed fewer exposed dentine collagen fibres in the GAPI group compared to those in the control group. Furthermore, X-ray diffraction (XRD) patterns indicated that the hydroxyapatite in the GAPI group was more crystallised than that in the control group. This study demonstrated GAPI's antibiofilm and remineralising effects on artificial dentin caries.
Collapse
Affiliation(s)
- Olivia Lili Zhang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (I.X.Y.); (M.L.M.)
| | - John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (I.X.Y.); (M.L.M.)
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (I.X.Y.); (M.L.M.)
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (I.X.Y.); (M.L.M.)
| | - May Lei Mei
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (I.X.Y.); (M.L.M.)
- Faculty of Dentistry, The University of Otago, Dunedin 9054, New Zealand
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (I.X.Y.); (M.L.M.)
| |
Collapse
|
46
|
Abd El-Aal AAA, Jayakumar FA, Lahiri C, Tan KO, Reginald K. Novel cationic cryptides in Penaeus vannamei demonstrate antimicrobial and anti-cancer activities. Sci Rep 2023; 13:14673. [PMID: 37673929 PMCID: PMC10482825 DOI: 10.1038/s41598-023-41581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
Cryptides are a subfamily of bioactive peptides that exist in all living organisms. They are latently encrypted in their parent sequences and exhibit a wide range of biological activities when decrypted via in vivo or in vitro proteases. Cationic cryptides tend to be drawn to the negatively charged membranes of microbial and cancer cells, causing cell death through various mechanisms. This makes them promising candidates for alternative antimicrobial and anti-cancer therapies, as their mechanism of action is independent of gene mutations. In the current study, we employed an in silico approach to identify novel cationic cryptides with potential antimicrobial and anti-cancer activities in atypical and systematic strategy by reanalysis of a publicly available RNA-seq dataset of Pacific white shrimp (Penaus vannamei) in response to bacterial infection. Out of 12 cryptides identified, five were selected based on their net charges and potential for cell penetration. Following chemical synthesis, the cryptides were assayed in vitro to test for their biological activities. All five cryptides demonstrated a wide range of selective activity against the tested microbial and cancer cells, their anti-biofilm activities against mature biofilms, and their ability to interact with Gram-positive and negative bacterial membranes. Our research provides a framework for a comprehensive analysis of transcriptomes in various organisms to uncover novel bioactive cationic cryptides. This represents a significant step forward in combating the crisis of multi-drug-resistant microbial and cancer cells, as these cryptides neither induce mutations nor are influenced by mutations in the cells they target.
Collapse
Affiliation(s)
- Amr Adel Ahmed Abd El-Aal
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
- Marine Microbiology Lab., National Institute of Oceanography and Fisheries (NIOF), Alexandria, 84511, Egypt
| | - Fairen Angelin Jayakumar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chandrajit Lahiri
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
- Department of Biotechnology, Atmiya University, Rajkot, Gujarat, 360005, India
| | - Kuan Onn Tan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
| | - Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
47
|
Cashman-Kadri S, Lagüe P, Fliss I, Beaulieu L. Assessing the Activity under Different Physico-Chemical Conditions, Digestibility, and Innocuity of a GAPDH-Related Fish Antimicrobial Peptide and Analogs Thereof. Antibiotics (Basel) 2023; 12:1410. [PMID: 37760707 PMCID: PMC10525732 DOI: 10.3390/antibiotics12091410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The antimicrobial activity of SJGAP (skipjack tuna GAPDH-related antimicrobial peptide) and four chemical analogs thereof was determined under different physicochemical conditions, including different pH values, the presence of monovalent and divalent cations, and after a heating treatment. The toxicity of these five peptides was also studied with hemolytic activity assays, while their stability under human gastrointestinal conditions was evaluated using a dynamic in vitro digestion model and chromatographic and mass spectrometric analyses. The antibacterial activity of all analogs was found to be inhibited by the presence of divalent cations, while monovalent cations had a much less pronounced impact, even promoting the activity of the native SJGAP. The peptides were also more active at acidic pH values, but they did not all show the same stability following a heat treatment. SJGAP and its analogs did not show significant hemolytic activity (except for one of the analogs at a concentration equivalent to 64 times that of its minimum inhibitory concentration), and the two analogs whose digestibility was studied degraded very rapidly once they entered the stomach compartment of the digestion model. This study highlights for the first time the characteristics of antimicrobial peptides from Scombridae or homologous to GAPDH that are directly related to their potential clinical or food applications.
Collapse
Affiliation(s)
- Samuel Cashman-Kadri
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (S.C.-K.); (I.F.)
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada
- Québec-Océan, Université Laval, Québec, QC G1V 0A6, Canada
| | - Patrick Lagüe
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec, QC G1V 0A6, Canada;
- Institute for Integrative Systems Biology, Department of Biochemistry, Microbiology and Bio-Informatics, Pavillon, Alexandre-Vachon, Université Laval, 1045 Avenue de la Medecine, Québec, QC G1V 0A6, Canada
- The Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), 1045 Avenue de la Medecine, Québec, QC G1V 0A6, Canada
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (S.C.-K.); (I.F.)
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (S.C.-K.); (I.F.)
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada
- Québec-Océan, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
48
|
Mo X, Zhao S, Zhao J, Huang Y, Li T, Zhu Y, Li G, Li Y, Shan H. Targeting collagen damage for sustained in situ antimicrobial activities. J Control Release 2023; 360:122-132. [PMID: 37321327 DOI: 10.1016/j.jconrel.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Antimicrobial peptides (AMPs) are promising anti-infective drugs, but their use is restricted by their short-term retention at the infection site, non-targeted uptake, and adverse effects on normal tissues. Since infection often follows an injury (e.g., in a wound bed), directly immobilizing AMPs to the damaged collagenous matrix of the injured tissues may help overcome these limitations by transforming the extracellular matrix microenvironment of the infection site into a natural reservoir of AMPs for sustained in situ release. Here, we developed and demonstrated an AMP-delivery strategy by conjugating a dimeric construct of AMP Feleucin-K3 (Flc) and a collagen hybridizing peptide (CHP), which enabled selective and prolonged anchoring of the Flc-CHP conjugate to the damaged and denatured collagen in the infected wounds in vitro and in vivo. We found that the dimeric Flc and CHP conjugate design preserved the potent and broad-spectrum antimicrobial activities of Flc while significantly enhancing and extending its antimicrobial efficacy in vivo and facilitating tissue repair in a rat wound healing model. Because collagen damage is ubiquitous in almost all injuries and infections, our strategy of targeting collagen damage may open up new avenues for antimicrobial treatments in a range of infected tissues.
Collapse
Affiliation(s)
- Xiaoyun Mo
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, and Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Suwen Zhao
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, and Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Jie Zhao
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, and Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yongjie Huang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, and Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Tao Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, and Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yongqiao Zhu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, and Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Gang Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, and Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yang Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, and Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, and Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Department of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| |
Collapse
|
49
|
Chen N, Jiang C. Antimicrobial peptides: Structure, mechanism, and modification. Eur J Med Chem 2023; 255:115377. [PMID: 37099837 DOI: 10.1016/j.ejmech.2023.115377] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023]
Affiliation(s)
- Na Chen
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Cheng Jiang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| |
Collapse
|
50
|
Vinutha AS, Rajasekaran R. Insight on the mechanism of hexameric Pseudin-4 against bacterial membrane-mimetic environment. J Comput Aided Mol Des 2023:10.1007/s10822-023-00516-2. [PMID: 37368161 DOI: 10.1007/s10822-023-00516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
As an alternative to antibiotics, Antimicrobial Peptides (AMPs) possess unique properties including cationic, amphipathic and their abundance in nature, but the exact characteristics of AMPs against bacterial membranes are still undetermined. To estimate the structural stability and functional activity of AMPs, the Pseudin AMPs (Pse-1, Pse-2, Pse-3, and Pse-4) from Hylid frog species, Pseudis paradoxa, an abundantly discovered source for AMPs were examined. We studied the intra-peptide interactions and thermal denaturation stability of peptides, as well as the geometrical parameters and secondary structure profiles of their conformational trajectories. On this basis, the peptides were screened out and the highly stable peptide, Pse-4 was subjected to membrane simulation in order to observe the changes in membrane curvature formed by Pse-4 insertion. Monomeric Pse-4 was found to initiate the membrane disruption; however, a stable multimeric form of Pse-4 might be competent to counterbalance the helix-coil transition and to resist the hydrophobic membrane environment. Eventually, hexameric Pse-4 on membrane simulation exhibited the hydrogen bond formation with E. coli bacterial membrane and thereby, leading to the formation of membrane spanning pore that allowed the entry of excess water molecules into the membrane shell, thus causing membrane deformation. Our report points out the mechanism of Pse-4 peptide against the bacterial membrane for the first time. Relatively, Pse-4 works on the barrel stave model against E. coli bacterial membrane; hence it might act as a good therapeutic scaffold in the treatment of multi-drug resistant bacterial strains.
Collapse
Affiliation(s)
- A S Vinutha
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - R Rajasekaran
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India.
| |
Collapse
|