1
|
Oliver-Pons C, Sala-Vila A, Cofán M, Serra-Mir M, Roth I, Valls-Pedret C, Domènech M, Ortega E, Rajaram S, Sabaté J, Ros E, Chiva-Blanch G. Effects of walnut consumption for 2 years on older adults' bone health in the Walnuts and Healthy Aging (WAHA) trial. J Am Geriatr Soc 2024; 72:2471-2482. [PMID: 38818857 DOI: 10.1111/jgs.19007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Nutritional strategies to maintain bone health in aging individuals are of great interest. Given the beneficial nutrient composition of walnuts, rich in alpha-linolenic (the vegetable n-3 fatty acid) and polyphenols, their regular consumption might be a dietary option to reduce age-related bone loss. We determined whether daily walnut consumption improves bone mineral density (BMD) and circulating biomarkers of bone turnover. METHODS The Walnuts and Healthy Aging study (WAHA) is a two-center, parallel, randomized controlled trial evaluating the effect of a diet enriched with walnuts at ≈15% energy compared with a control diet for 2 years on age-related health outcomes in healthy men and women aged 63-79 years. Changes in BMD were a prespecified secondary outcome only at the Barcelona node of the trial, where 352 participants were randomized. Retention rate was 92.6%. Primary endpoints were 2-year changes in BMD at the spine and the nondominant femoral neck, determined by dual-energy X-ray absorptiometry (DXA). Secondary endpoints were 2-year changes in bone turnover biomarkers (adrenocorticotropic hormone, Dickkopf WNT signaling pathway inhibitor-1, osteoprotegerin, osteocalcin, osteopontin, sclerostin, parathyroid hormone, and fibroblast growth factor-23), which were quantified in 211 randomly selected participants. RESULTS The walnut diet versus the control diet had no effect on 2-year changes in BMD at the spine (0.15% vs. 0.35%, p = 0.632) and femoral neck (-0.90% vs. -0.70%, p = 0.653), or on bone turnover biomarkers. Results were similar in participants treated or not with bone resorption inhibitors or those with or without osteoporosis/osteopenia at inclusion. CONCLUSIONS Compared with the usual diet, a diet enriched with walnuts at 15% of energy for 2 years failed to improve BMD or circulating markers of bone metabolism in healthy older people.
Collapse
Affiliation(s)
- Carla Oliver-Pons
- Lipid Clinic, Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Aleix Sala-Vila
- Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Montserrat Cofán
- Lipid Clinic, Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mercè Serra-Mir
- Lipid Clinic, Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Irene Roth
- Lipid Clinic, Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cinta Valls-Pedret
- Lipid Clinic, Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mònica Domènech
- Lipid Clinic, Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Emilio Ortega
- Lipid Clinic, Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Sujatha Rajaram
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, California, USA
| | - Joan Sabaté
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, California, USA
| | - Emilio Ros
- Lipid Clinic, Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Gemma Chiva-Blanch
- Lipid Clinic, Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Health Sciences Faculty, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| |
Collapse
|
2
|
Cofán M, Checa A, Serra-Mir M, Roth I, Valls-Pedret C, Lopez-Illamola A, Doménech M, Rajaram S, Lázaro I, Sabaté J, Ros E, Wheelock CE, Sala-Vila A. A Walnut-Enriched Diet for 2 Years Changes the Serum Oxylipin Profile in Healthy Older Persons. J Nutr 2024; 154:395-402. [PMID: 38081585 DOI: 10.1016/j.tjnut.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND Oxylipins are products derived from polyunsaturated fatty acids (PUFAs) that play a role in cardiovascular disease and aging. Fish oil-derived n-3 PUFAs promote the formation of anti-inflammatory and vasodilatory oxylipins; however, there are little data on oxylipins derived from α-linolenic acid (C18:3n-3), the primary plant-derived n-3 PUFA. Walnuts are a source of C18:3n-3. OBJECTIVES To investigate the effect on serum oxylipins of a diet enriched with walnuts at 15% energy (30-60 g/d; 2.6-5.2 g C18:3n-3/d) for 2 y compared to a control diet (abstention from walnuts) in healthy older males and females (63-79 y). METHODS The red blood cell proportion of α-linolenic acid was determined by gas chromatography as a measure of compliance. Ultra-performance liquid chromatography-tandem mass spectrometry was used to measure serum concentrations of 53 oxylipins in participants randomly assigned to receive the walnut diet (n = 64) or the control diet (n = 51). Two-year concentration changes (final minus baseline) were log-transformed (base log-10) and standardized (mean-centered and divided by the standard deviation of each variable). Volcano plots were then generated (fold change ≥1.5; false discovery rate ≤0.1). For each oxylipin delta surviving multiple testing, we further assessed between-intervention group differences by analysis of covariance adjusting for age, sex, BMI, and the baseline concentration of the oxylipin. RESULTS The 2-y change in red blood cell C18:3n-3 in the walnut group was significantly higher than that in the control group (P < 0.001). Compared to the control diet, the walnut diet resulted in statistically significantly greater increases in 3 C18:3n-3-derived oxylipins (9-HOTrE, 13-HOTrE, and 12,13-EpODE) and in the C20:5n-3 derived 14,15-diHETE, and greater reductions of the C20:4n-6-derived 5-HETE, 19-HETE, and 5,6-diHETrE. CONCLUSIONS Long-term walnut consumption changes the serum oxylipin profile in healthy older persons. Our results add novel mechanistic evidence on the cardioprotective effects of walnuts. TRIAL REGISTRATION Clinicaltrials.gov Identifier: NCT01634841.
Collapse
Affiliation(s)
- Montserrat Cofán
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Checa
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - M Serra-Mir
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain
| | - I Roth
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain
| | - Cinta Valls-Pedret
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain
| | - Anna Lopez-Illamola
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain
| | - Monica Doménech
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain
| | - Sujatha Rajaram
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, United States
| | - Iolanda Lázaro
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Joan Sabaté
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, United States
| | - Emilio Ros
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden.
| | - Aleix Sala-Vila
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain; The Fatty Acid Research Institute, Sioux Falls, SD, United States.
| |
Collapse
|
3
|
Lövdén M, Pagin A, Bartrés-Faz D, Boraxbekk CJ, Brandmaier AM, Demnitz N, Drevon CA, Ebmeier KP, Fjell AM, Ghisletta P, Gorbach T, Lindenberger U, Plachti A, Walhovd KB, Nyberg L. No moderating influence of education on the association between changes in hippocampus volume and memory performance in aging. AGING BRAIN 2023; 4:100082. [PMID: 37457634 PMCID: PMC10338350 DOI: 10.1016/j.nbas.2023.100082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Contemporary accounts of factors that may modify the risk for age-related neurocognitive disorders highlight education and its contribution to a cognitive reserve. By this view, individuals with higher educational attainment should show weaker associations between changes in brain and cognition than individuals with lower educational attainment. We tested this prediction in longitudinal data on hippocampus volume and episodic memory from 708 middle-aged and older individuals using local structural equation modeling. This technique does not require categorization of years of education and does not constrain the shape of relationships, thereby maximizing the chances of revealing an effect of education on the hippocampus-memory association. The results showed that the data were plausible under the assumption that there was no influence of education on the association between change in episodic memory and change in hippocampus volume. Restricting the sample to individuals with elevated genetic risk for dementia (APOE ε4 carriers) did not change these results. We conclude that the influence of education on changes in episodic memory and hippocampus volume is inconsistent with predictions by the cognitive reserve theory.
Collapse
Affiliation(s)
- Martin Lövdén
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Amos Pagin
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences and Institute of Neurosciences, University of Barcelona, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Carl-Johan Boraxbekk
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital – Amager and Hvidovre, Copenhagen, Denmark
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Sports Medicine Copenhagen (ISMC) and Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Andreas M. Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Department of Psychology, MSB Medical School Berlin, Berlin, Germany
| | - Naiara Demnitz
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital – Amager and Hvidovre, Copenhagen, Denmark
| | - Christian A. Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo & Vitas AS, Oslo Science Park, Norway
| | - Klaus P. Ebmeier
- Department of Psychiatry, Warneford Hospital, University of Oxford, UK
| | - Anders M. Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, POB 1094, 0317 Oslo, Norway
- ComputationalRadiology and Artificial Intelligence, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, Norway
| | - Paolo Ghisletta
- Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland
- Faculty of Psychology, UniDistance Suisse, Brig, Switzerland
| | - Tetiana Gorbach
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Anna Plachti
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital – Amager and Hvidovre, Copenhagen, Denmark
| | - Kristine B. Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, POB 1094, 0317 Oslo, Norway
- ComputationalRadiology and Artificial Intelligence, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, Norway
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland
| |
Collapse
|
4
|
Hosseini Adarmanabadi SMH, Karami Gilavand H, Taherkhani A, Sadat Rafiei SK, Shahrokhi M, Faaliat S, Biabani M, Abil E, Ansari A, Sheikh Z, Poudineh M, Khalaji A, ShojaeiBaghini M, Koorangi A, Deravi N. Pharmacotherapeutic potential of walnut (Juglans spp.) in age-related neurological disorders. IBRO Neurosci Rep 2023; 14:1-20. [PMID: 36507190 PMCID: PMC9727645 DOI: 10.1016/j.ibneur.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Global and regional trends of population aging spotlight major public health concerns. As one of the most common adverse prognostic factors, advanced age is associated with a remarkable incidence risk of many non-communicable diseases, affecting major organ systems of the human body. Age-dependent factors and molecular processes can change the nervous system's normal function and lead to neurodegenerative disorders. Oxidative stress results from of a shift toward reactive oxygen species (ROS) production in the equilibrium between ROS generation and the antioxidant defense system. Oxidative stress and neuroinflammation caused by Amyloid-ß protein deposition in the human brain are the most likely pathogenesis of Alzheimer's disease (AD). Walnut extracts could reduce Amyloid-ß fibrillation and aggregation, indicating their beneficial effects on memory and cognition. Walnut can also improve movement disabilities in Parkinson's disease due to their antioxidant and neuroprotective effect by reducing ROS and nitric oxide (NO) generation and suppressing oxidative stress. It is noteworthy that Walnut compounds have potential antiproliferative effects on Glioblastoma (the most aggressive primary cerebral neoplasm). This effective therapeutic agent can stimulate apoptosis of glioma cells in response to oxidative stress, concurrent with preventing angiogenesis and migration of tumor cells, improving the quality of life and life expectancy of patients with glioblastoma. Antioxidant Phenolic compounds of the Walnut kernel could explain the significant anti-convulsion ability of Walnut to provide good prevention and treatment for epileptic seizures. Moreover, the anti-inflammatory effect of Walnut oil could be beneficial in treating multiple sclerosis. In this study, we review the pharmaceutical properties of Walnut in age-related neurological disorders.
Collapse
Affiliation(s)
| | - Helia Karami Gilavand
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Taherkhani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Kiarash Sadat Rafiei
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sara Faaliat
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Morteza Biabani
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elaheh Abil
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Akram Ansari
- Laboratory Science, Hormozgan University of Medical Science, Bandar Abbas, Iran
| | - Zahra Sheikh
- Student Research Committee, School of medicine, Babol University of Medical Sciences, Babol, Iran
| | | | | | - Mahdie ShojaeiBaghini
- Medical Informatics, Research Center, Institute for Futures Studies in Health, Kerman, Iran
| | - Amirhosein Koorangi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Effect of Walnut Supplementation on Dietary Polyphenol Intake and Urinary Polyphenol Excretion in the Walnuts and Healthy Aging Study. Nutrients 2023; 15:nu15051253. [PMID: 36904251 PMCID: PMC10005107 DOI: 10.3390/nu15051253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Among all tree nuts, walnuts contain the highest total polyphenols by weight. This secondary data analysis examined the effect of daily walnut supplementation on the total dietary polyphenols and subclasses and the urinary excretion of total polyphenols in a free-living elderly population. In this 2-year prospective, randomized intervention trial (ID NCT01634841), the dietary polyphenol intake of participants who added walnuts daily to their diets at 15% of daily energy were compared to those in the control group that consumed a walnut-free diet. Dietary polyphenols and subclasses were estimated from 24 h dietary recalls. Phenolic estimates were derived from Phenol-Explorer database version 3.6. Participants in the walnut group compared to the control group had a higher intake of total polyphenols, flavonoids, flavanols, and phenolic acids in mg/d (IQR): 2480 (1955, 3145) vs. 1897 (1369, 2496); 56 (42,84) vs. 29 (15, 54); 174 (90, 298) vs. 140 (61, 277); and 368 (246, 569) vs. 242 (89, 398), respectively. There was a significant inverse association between dietary flavonoid intake and urine polyphenol excretion; less urinary excretion may imply that some of the polyphenols were eliminated via the gut. Nuts had a significant contribution to the total polyphenols in the diet, suggesting that a single food like walnuts added to habitual diet can increase the polyphenol intake in a Western population.
Collapse
|
6
|
Binnewies J, Nawijn L, Brandmaier AM, Baaré WFC, Bartrés-Faz D, Drevon CA, Düzel S, Fjell AM, Han LKM, Knights E, Lindenberger U, Milaneschi Y, Mowinckel AM, Nyberg L, Plachti A, Madsen KS, Solé-Padullés C, Suri S, Walhovd KB, Zsoldos E, Ebmeier KP, Penninx BWJH. Associations of depression and regional brain structure across the adult lifespan: Pooled analyses of six population-based and two clinical cohort studies in the European Lifebrain consortium. Neuroimage Clin 2022; 36:103180. [PMID: 36088843 PMCID: PMC9467888 DOI: 10.1016/j.nicl.2022.103180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Major depressive disorder has been associated with lower prefrontal thickness and hippocampal volume, but it is unknown whether this association also holds for depressive symptoms in the general population. We investigated associations of depressive symptoms and depression status with brain structures across population-based and patient-control cohorts, and explored whether these associations are similar over the lifespan and across sexes. METHODS We included 3,447 participants aged 18-89 years from six population-based and two clinical patient-control cohorts of the European Lifebrain consortium. Cross-sectional meta-analyses using individual person data were performed for associations of depressive symptoms and depression status with FreeSurfer-derived thickness of bilateral rostral anterior cingulate cortex (rACC) and medial orbitofrontal cortex (mOFC), and hippocampal and total grey matter volume (GMV), separately for population-based and clinical cohorts. RESULTS Across patient-control cohorts, depressive symptoms and presence of mild-to-severe depression were associated with lower mOFC thickness (rsymptoms = -0.15/ rstatus = -0.22), rACC thickness (rsymptoms = -0.20/ rstatus = -0.25), hippocampal volume (rsymptoms = -0.13/ rstatus = 0.13) and total GMV (rsymptoms = -0.21/ rstatus = -0.25). Effect sizes were slightly larger for presence of moderate-to-severe depression. Associations were similar across age groups and sex. Across population-based cohorts, no associations between depression and brain structures were observed. CONCLUSIONS Fitting with previous meta-analyses, depressive symptoms and depression status were associated with lower mOFC, rACC thickness, and hippocampal and total grey matter volume in clinical patient-control cohorts, although effect sizes were small. The absence of consistent associations in population-based cohorts with mostly mild depressive symptoms, suggests that significantly lower thickness and volume of the studied brain structures are only detectable in clinical populations with more severe depressive symptoms.
Collapse
Affiliation(s)
- Julia Binnewies
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands.
| | - Laura Nawijn
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck, UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany; Department of Psychology, MSB Medical School Berlin, Berlin, Germany
| | - William F C Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - David Bartrés-Faz
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona and Institut de Neurociències, Universitat de Barcelona, Spain
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo & Vitas Ltd, Oslo Science Park, Oslo, Norway
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck, UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - Laura K M Han
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ethan Knights
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck, UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Yuri Milaneschi
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands
| | | | - Lars Nyberg
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Anna Plachti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Radiography, Department of Technology, University College Copenhagen, Copenhagen, Denmark
| | - Cristina Solé-Padullés
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona and Institut de Neurociències, Universitat de Barcelona, Spain
| | - Sana Suri
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom; Department of Psychiatry, University of Oxford, United Kingdom
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - Enikő Zsoldos
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom; Department of Psychiatry, University of Oxford, United Kingdom
| | - Klaus P Ebmeier
- Department of Psychiatry, University of Oxford, United Kingdom
| | - Brenda W J H Penninx
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Walhovd KB, Nyberg L, Lindenberger U, Amlien IK, Sørensen Ø, Wang Y, Mowinckel AM, Kievit RA, Ebmeier KP, Bartrés-Faz D, Kühn S, Boraxbekk CJ, Ghisletta P, Madsen KS, Baaré WFC, Zsoldos E, Magnussen F, Vidal-Piñeiro D, Penninx B, Fjell AM. Brain aging differs with cognitive ability regardless of education. Sci Rep 2022; 12:13886. [PMID: 35974034 PMCID: PMC9381768 DOI: 10.1038/s41598-022-17727-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Higher general cognitive ability (GCA) is associated with lower risk of neurodegenerative disorders, but neural mechanisms are unknown. GCA could be associated with more cortical tissue, from young age, i.e. brain reserve, or less cortical atrophy in adulthood, i.e. brain maintenance. Controlling for education, we investigated the relative association of GCA with reserve and maintenance of cortical volume, -area and -thickness through the adult lifespan, using multiple longitudinal cognitively healthy brain imaging cohorts (n = 3327, 7002 MRI scans, baseline age 20-88 years, followed-up for up to 11 years). There were widespread positive relationships between GCA and cortical characteristics (level-level associations). In select regions, higher baseline GCA was associated with less atrophy over time (level-change associations). Relationships remained when controlling for polygenic scores for both GCA and education. Our findings suggest that higher GCA is associated with cortical volumes by both brain reserve and -maintenance mechanisms through the adult lifespan.
Collapse
Affiliation(s)
- Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Blindern, POB1094, 0317, Oslo, Norway.
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.
| | - Lars Nyberg
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Blindern, POB1094, 0317, Oslo, Norway
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Blindern, POB1094, 0317, Oslo, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Blindern, POB1094, 0317, Oslo, Norway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Blindern, POB1094, 0317, Oslo, Norway
| | - Athanasia M Mowinckel
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Blindern, POB1094, 0317, Oslo, Norway
| | - Rogier A Kievit
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, The Netherlands, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences & Institute of Neurosciences, Universitat de Barcelona, and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Simone Kühn
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Clinic and Policlinic for Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carl-Johan Boraxbekk
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
- Institute of Sports Medicine Copenhagen (ISMC) and Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paolo Ghisletta
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- UniDistance Suisse, Brig, Switzerland
- Swiss National Centre of Competence in Research LIVES, University of Geneva, Geneva, Switzerland
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Radiography, Department of Technology, University College Copenhagen, Copenhagen, Denmark
| | - Willliam F C Baaré
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Enikő Zsoldos
- Department of Psychiatry, University of Oxford, Oxford, UK
- Welcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Fredrik Magnussen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Blindern, POB1094, 0317, Oslo, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Blindern, POB1094, 0317, Oslo, Norway
| | - Brenda Penninx
- Amsterdam Neuroscience, Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Blindern, POB1094, 0317, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Jehi T, Sabaté J, Bitok E, Sala-Vila A, Ros E, Cofan M, Oda K, Rajaram S. n-3 index is associated with cardiometabolic risk factors but is not improved by walnut intake in free-living elderly: a single-blind, randomised controlled trial. Br J Nutr 2022; 129:1-8. [PMID: 35687008 DOI: 10.1017/s0007114522001751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
n-3 index, the erythrocyte proportion of the EPA + DHA fatty acids is a clinical marker of age-related disease risk. It is unclear whether regular intake of α-linolenic acid (ALA), a plant-derived n-3 polyunsaturated fatty acid, raises n-3 index in older adults. Of the 356 participants at the Loma Linda, CA centre from the original study, a randomly selected subset (n 192) was included for this secondary analysis (mostly Caucasian women, mean age 69 years). Participants were assigned to either the walnut (15 % of daily energy from walnuts) or the control group (usual diet, no walnuts) for 2 years. Erythrocyte fatty acids were determined at baseline and 1-year following intervention. No differences were observed for erythrocyte EPA, but erythrocyte DHA decreased albeit modestly in the walnut group (-0·125 %) and slightly improved in the control group (0·17 %). The change in n-3 index between the walnut and control groups was significantly different only among fish consumers (those who ate fish ≥ once/month). Longitudinal analyses combining both groups showed significant inverse association between the 1-year changes of the n-3 index and fasting plasma TAG (ß = -10), total cholesterol (ß = -5·59) and plasma glucose (ß = -0·27). Consuming ALA-rich walnuts failed to improve n-3 index in elders. A direct source of EPA/DHA may be needed to achieve desirable n-3 index, as it is inversely associated with cardiometabolic risk. Nevertheless, incorporating walnuts as part of heart healthy diets is still encouraged.
Collapse
Affiliation(s)
- Tony Jehi
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Joan Sabaté
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Edward Bitok
- Department of Nutrition & Dietetics, School of Allied Health Professions, Loma Linda University, Loma Linda, CA, USA
| | - Aleix Sala-Vila
- The Fatty Acid Research Institute, Sioux Falls, SD, USA
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Emilio Ros
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Montse Cofan
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Keiji Oda
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Sujatha Rajaram
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
9
|
Gil-Zamorano J, Cofán M, López de las Hazas MC, García-Blanco T, García-Ruiz A, Doménech M, Serra-Mir M, Roth I, Valls-Pedret C, Rajaram S, Sabaté J, Ros E, Dávalos A, Sala-Vila A. Interplay of Walnut Consumption, Changes in Circulating miRNAs and Reduction in LDL-Cholesterol in Elders. Nutrients 2022; 14:nu14071473. [PMID: 35406086 PMCID: PMC9003099 DOI: 10.3390/nu14071473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
The mechanisms underlying the lipid-lowering effect of nuts remain elusive. This study explores whether one-year supplementation with walnuts decreases LDL-cholesterol (LDL-C) by affecting the expression of circulating microRNAs (c-miRNA). In this sub-study of the Walnuts and Healthy Aging (WAHA) trial, we obtained fasting serum at baseline and at 1 year from 330 free-living participants (63–79 year, 68% women), allocated into a control group (CG, abstinence from walnuts, n = 164) and a walnut group (WG, 15% of daily energy as walnuts, ~30–60 g/d, n = 166). Participants in the WG showed a 1 year decrease in LDL-C (−9.07, (95% confidence interval: −12.87; −5.73) mg/dL; p = 0.010 versus changes in the CG). We conducted a miRNA array in eight randomly selected participants in the WG who decreased in LDL-C. This yielded 53 c-miRNAs with statistically significant changes, 27 of which survived the correction for multiple testing. When validating them in the full population, statistical significance lasted for hsa-miR-551a, being upregulated in the WG. In mediation analysis, the change in hsa-miR-551a was unrelated to LDL-C decrease. Long-term supplementation with walnuts decreased LDL-C independently of the changes in c-miRNA. The hsa-miR-551a upregulation, which has been linked to a reduced cell migration and invasion in several carcinomas, suggests a novel mechanism of walnuts in cancer risk.
Collapse
Affiliation(s)
- Judit Gil-Zamorano
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM + CSIC, 28049 Madrid, Spain; (J.G.-Z.); (M.-C.L.d.l.H.); (T.G.-B.); (A.G.-R.)
| | - Montserrat Cofán
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, 08036 Barcelona, Spain; (M.C.); (M.D.); (M.S.-M.); (I.R.); (C.V.-P.); (E.R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María-Carmen López de las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM + CSIC, 28049 Madrid, Spain; (J.G.-Z.); (M.-C.L.d.l.H.); (T.G.-B.); (A.G.-R.)
| | - Tatiana García-Blanco
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM + CSIC, 28049 Madrid, Spain; (J.G.-Z.); (M.-C.L.d.l.H.); (T.G.-B.); (A.G.-R.)
| | - Almudena García-Ruiz
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM + CSIC, 28049 Madrid, Spain; (J.G.-Z.); (M.-C.L.d.l.H.); (T.G.-B.); (A.G.-R.)
| | - Mónica Doménech
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, 08036 Barcelona, Spain; (M.C.); (M.D.); (M.S.-M.); (I.R.); (C.V.-P.); (E.R.)
| | - Mercè Serra-Mir
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, 08036 Barcelona, Spain; (M.C.); (M.D.); (M.S.-M.); (I.R.); (C.V.-P.); (E.R.)
| | - Irene Roth
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, 08036 Barcelona, Spain; (M.C.); (M.D.); (M.S.-M.); (I.R.); (C.V.-P.); (E.R.)
| | - Cinta Valls-Pedret
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, 08036 Barcelona, Spain; (M.C.); (M.D.); (M.S.-M.); (I.R.); (C.V.-P.); (E.R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sujatha Rajaram
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA; (S.R.); (J.S.)
| | - Joan Sabaté
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA; (S.R.); (J.S.)
| | - Emilio Ros
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, 08036 Barcelona, Spain; (M.C.); (M.D.); (M.S.-M.); (I.R.); (C.V.-P.); (E.R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM + CSIC, 28049 Madrid, Spain; (J.G.-Z.); (M.-C.L.d.l.H.); (T.G.-B.); (A.G.-R.)
- Correspondence: (A.D.); (A.S.-V.); Tel.: +34-912796985 (A.D.); +34-933160400 (A.S.-V.)
| | - Aleix Sala-Vila
- Cardiovascular Risk and Nutrition, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Correspondence: (A.D.); (A.S.-V.); Tel.: +34-912796985 (A.D.); +34-933160400 (A.S.-V.)
| |
Collapse
|
10
|
Vidal-Pineiro D, Wang Y, Krogsrud SK, Amlien IK, Baaré WFC, Bartres-Faz D, Bertram L, Brandmaier AM, Drevon CA, Düzel S, Ebmeier K, Henson RN, Junqué C, Kievit RA, Kühn S, Leonardsen E, Lindenberger U, Madsen KS, Magnussen F, Mowinckel AM, Nyberg L, Roe JM, Segura B, Smith SM, Sørensen Ø, Suri S, Westerhausen R, Zalesky A, Zsoldos E, Walhovd KB, Fjell A. Individual variations in 'brain age' relate to early-life factors more than to longitudinal brain change. eLife 2021; 10:e69995. [PMID: 34756163 PMCID: PMC8580481 DOI: 10.7554/elife.69995] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
Brain age is a widely used index for quantifying individuals' brain health as deviation from a normative brain aging trajectory. Higher-than-expected brain age is thought partially to reflect above-average rate of brain aging. Here, we explicitly tested this assumption in two independent large test datasets (UK Biobank [main] and Lifebrain [replication]; longitudinal observations ≈ 2750 and 4200) by assessing the relationship between cross-sectional and longitudinal estimates of brain age. Brain age models were estimated in two different training datasets (n ≈ 38,000 [main] and 1800 individuals [replication]) based on brain structural features. The results showed no association between cross-sectional brain age and the rate of brain change measured longitudinally. Rather, brain age in adulthood was associated with the congenital factors of birth weight and polygenic scores of brain age, assumed to reflect a constant, lifelong influence on brain structure from early life. The results call for nuanced interpretations of cross-sectional indices of the aging brain and question their validity as markers of ongoing within-person changes of the aging brain. Longitudinal imaging data should be preferred whenever the goal is to understand individual change trajectories of brain and cognition in aging.
Collapse
Affiliation(s)
- Didac Vidal-Pineiro
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of OsloOsloNorway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of OsloOsloNorway
| | - Stine K Krogsrud
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of OsloOsloNorway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of OsloOsloNorway
| | - William FC Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and HvidovreCopenhagenDenmark
| | - David Bartres-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Lars Bertram
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of OsloOsloNorway
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of LübeckLubeckGermany
| | - Andreas M Brandmaier
- Max Planck UCL Centre for Computational Psychiatry and Ageing ResearchBerlinGermany
- Center for Lifespan Psychology, Max Planck Institute for Human DevelopmentBerlinGermany
| | - Christian A Drevon
- Department of Nutrition, Inst Basic Med Sciences, Faculty of Medicine, University of Oslo & Vitas LtdOsloNorway
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human DevelopmentBerlinGermany
| | - Klaus Ebmeier
- Department of Psychiatry, University of OxfordOxfordUnited Kingdom
| | - Richard N Henson
- MRC Cognition and Brain Sciences Unit and Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Carme Junqué
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| | - Rogier Andrew Kievit
- MRC Cognition and Brain Sciences Unit and Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenNetherlands
| | - Simone Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human DevelopmentBerlinGermany
- Department of Psychiatry, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Esten Leonardsen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of OsloOsloNorway
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing ResearchBerlinGermany
- Center for Lifespan Psychology, Max Planck Institute for Human DevelopmentBerlinGermany
| | - Kathrine S Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and HvidovreCopenhagenDenmark
- Radiography, Department of Technology, University College CopenhagenCopenhagenDenmark
| | - Fredrik Magnussen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of OsloOsloNorway
| | - Athanasia Monika Mowinckel
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of OsloOsloNorway
| | - Lars Nyberg
- Umeå Centre for Functional Brain Imaging, Department of Integrative Medical Biology, Physiology Section and Department of Radiation Sciences, Diagnostic Radiology, Umeå UniversityUmeåSweden
| | - James M Roe
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of OsloOsloNorway
| | - Barbara Segura
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| | - Stephen M Smith
- Center for Lifespan Psychology, Max Planck Institute for Human DevelopmentBerlinGermany
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of OsloOsloNorway
| | - Sana Suri
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of OxfordOxfordUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging, Departments of Psychiatry and Clinical Neuroscience, University of OxfordOxfordUnited Kingdom
| | - Rene Westerhausen
- Section for Cognitive Neuroscience and Neuropsychology, Department of Psychology, University of OsloOsloNorway
| | - Andrew Zalesky
- Department of Biomedical Engineering, Faculty of Engineering and IT, The University of MelbourneMelbourneAustralia
| | - Enikő Zsoldos
- Wellcome Centre for Integrative Neuroimaging, Departments of Psychiatry and Clinical Neuroscience, University of OxfordOxfordUnited Kingdom
| | - Kristine Beate Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of OsloOsloNorway
- Department of radiology and nuclear medicine, Oslo University HospitalOsloNorway
| | - Anders Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of OsloOsloNorway
- Department of radiology and nuclear medicine, Oslo University HospitalOsloNorway
| |
Collapse
|
11
|
Fjell AM, Grydeland H, Wang Y, Amlien IK, Bartres-Faz D, Brandmaier AM, Düzel S, Elman J, Franz CE, Håberg AK, Kietzmann TC, Kievit RA, Kremen WS, Krogsrud SK, Kühn S, Lindenberger U, Macía D, Mowinckel AM, Nyberg L, Panizzon MS, Solé-Padullés C, Sørensen Ø, Westerhausen R, Walhovd KB. The genetic organization of longitudinal subcortical volumetric change is stable throughout the lifespan. eLife 2021; 10:66466. [PMID: 34180395 PMCID: PMC8260220 DOI: 10.7554/elife.66466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/26/2021] [Indexed: 11/13/2022] Open
Abstract
Development and aging of the cerebral cortex show similar topographic organization and are governed by the same genes. It is unclear whether the same is true for subcortical regions, which follow fundamentally different ontogenetic and phylogenetic principles. We tested the hypothesis that genetically governed neurodevelopmental processes can be traced throughout life by assessing to which degree brain regions that develop together continue to change together through life. Analyzing over 6000 longitudinal MRIs of the brain, we used graph theory to identify five clusters of coordinated development, indexed as patterns of correlated volumetric change in brain structures. The clusters tended to follow placement along the cranial axis in embryonic brain development, suggesting continuity from prenatal stages, and correlated with cognition. Across independent longitudinal datasets, we demonstrated that developmental clusters were conserved through life. Twin-based genetic correlations revealed distinct sets of genes governing change in each cluster. Single-nucleotide polymorphisms-based analyses of 38,127 cross-sectional MRIs showed a similar pattern of genetic volume–volume correlations. In conclusion, coordination of subcortical change adheres to fundamental principles of lifespan continuity and genetic organization.
Collapse
Affiliation(s)
- Anders Martin Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Hakon Grydeland
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - David Bartres-Faz
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Jeremy Elman
- Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, United States
| | - Carol E Franz
- Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, United States
| | - Asta K Håberg
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tim C Kietzmann
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Rogier Andrew Kievit
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - William S Kremen
- Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, United States.,Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, United States
| | - Stine K Krogsrud
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Simone Kühn
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Didac Macía
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Athanasia Monika Mowinckel
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Lars Nyberg
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.,Department of Radiation Sciences, Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Matthew S Panizzon
- Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, United States.,Department of Psychiatry, University of California, San Diego, La Jolla, United States
| | - Cristina Solé-Padullés
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Rene Westerhausen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Kristine Beate Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
López de Las Hazas MC, Gil-Zamorano J, Cofán M, Mantilla-Escalante DC, Garcia-Ruiz A, Del Pozo-Acebo L, Pastor O, Yañez-Mo M, Mazzeo C, Serra-Mir M, Doménech M, Valls-Pedret C, Rajaram S, Sabaté J, Ros E, Sala-Vila A, Dávalos A. One-year dietary supplementation with walnuts modifies exosomal miRNA in elderly subjects. Eur J Nutr 2021; 60:1999-2011. [PMID: 32979076 DOI: 10.1007/s00394-020-02390-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Epidemiological studies and clinical trials support the association of nut consumption with a lower risk of prevalent non-communicable diseases, particularly cardiovascular disease. However, the molecular mechanisms underlying nut benefits remain to be fully described. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression and play a pivotal role in health and disease. Exosomes are extracellular vesicles released from cells and mediate intercellular communication. Whether nut consumption modulates circulating miRNAs (c-miRNAs) transported in exosomes is poorly described. METHODS Cognitively healthy elderly subjects were randomized to either control (n = 110, abstaining from walnuts) or daily supplementation with walnuts (15% of their total energy, ≈30-60 g/day, n = 101) for 1-year. C-miRNAs were screened in exosomes isolated from 10 samples, before and after supplementation, and identified c-miRNA candidates were validated in the whole cohort. In addition, nanoparticle tracking analysis and lipidomics were assessed in pooled exosomes from the whole cohort. RESULTS Exosomal hsa-miR-32-5p and hsa-miR-29b-3p were consistently induced by walnut consumption. No major changes in exosomal lipids, nanoparticle concentration or size were found. CONCLUSION Our results provide novel evidence that certain c-miRNAs transported in exosomes are modulated by walnut consumption. The extent to which this finding contributes to the benefits of walnuts deserves further research.
Collapse
Affiliation(s)
- María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, IMDEA Food Institute, CEI UAM+CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain
| | - Judit Gil-Zamorano
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, IMDEA Food Institute, CEI UAM+CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain
| | - Montserrat Cofán
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d´Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Diana C Mantilla-Escalante
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, IMDEA Food Institute, CEI UAM+CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain
| | - Almudena Garcia-Ruiz
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, IMDEA Food Institute, CEI UAM+CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain
| | - Lorena Del Pozo-Acebo
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, IMDEA Food Institute, CEI UAM+CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain
| | - Oscar Pastor
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
- Servicio de Bioquímica Clínica (UCA-CCM), Hospital Ramón y Cajal-IRYCIS, 28034, Madrid, Spain
| | - María Yañez-Mo
- Department of Molecular Biology, UAM, 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBM-SO), Instituto de Investigación Sanitaria Princesa (IIS-IP), 28049, Madrid, Spain
| | - Carla Mazzeo
- Department of Molecular Biology, UAM, 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBM-SO), Instituto de Investigación Sanitaria Princesa (IIS-IP), 28049, Madrid, Spain
| | - Mercè Serra-Mir
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d´Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Spain
| | - Monica Doménech
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d´Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Spain
| | - Cinta Valls-Pedret
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d´Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Spain
| | - Sujatha Rajaram
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Joan Sabaté
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Emilio Ros
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d´Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Aleix Sala-Vila
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, 08003, Spain.
- Hospital del Mar Medical Research Institute, IMIM, Dr. Aiguader 88, 08003, Barcelona, Spain.
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, IMDEA Food Institute, CEI UAM+CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain.
| |
Collapse
|
13
|
Vaqué-Alcázar L, Abellaneda-Pérez K, Solé-Padullés C, Bargalló N, Valls-Pedret C, Ros E, Sala-Llonch R, Bartrés-Faz D. Functional brain changes associated with cognitive trajectories determine specific tDCS-induced effects among older adults. J Neurosci Res 2021; 99:2188-2200. [PMID: 34047384 DOI: 10.1002/jnr.24849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
The combination of transcranial direct current stimulation (tDCS) with functional magnetic resonance imaging (fMRI) can provide original data to investigate age-related brain changes. We examined neural activity modulations induced by two multifocal tDCS procedures based on two distinct montages fitting two N-back task-based fMRI patterns ("compensatory" and "maintenance") related to high working memory (WM) in a previous publication (Fernández-Cabello et al. Neurobiol Aging (2016);48:23-33). We included 24 participants classified as stable or decliners according to their 4-year WM trajectories following a retrospective longitudinal approach. Then, we studied longitudinal fMRI differences between groups (stable and decliners) and across multifocal tDCS montages ("compensatory" and "maintenance") applied using a single-blind sham-controlled cross-over design. Decliners evidenced over-activation of non-related WM areas after 4 years of follow-up. Focusing on tDCS effects, among the decliner group, the "compensatory"-tDCS montage reduced the activity over the posterior regions where these subjects showed longitudinal hyperactivation. These results reinforce the notion that tDCS effects are characterized by an activity reduction and might be more noticeable in compromised systems. Importantly, the data provide novel evidence that cognitive trajectories predict tDCS effects in older adults.
Collapse
Affiliation(s)
- Lídia Vaqué-Alcázar
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Kilian Abellaneda-Pérez
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Solé-Padullés
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Núria Bargalló
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Neuroradiology Section, Radiology Service, Centre de Diagnòstic per la Imatge, Hospital Clínic, Barcelona, Spain
| | - Cinta Valls-Pedret
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Emilio Ros
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Roser Sala-Llonch
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Consorcio Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
| |
Collapse
|
14
|
Valero-Vello M, Peris-Martínez C, García-Medina JJ, Sanz-González SM, Ramírez AI, Fernández-Albarral JA, Galarreta-Mira D, Zanón-Moreno V, Casaroli-Marano RP, Pinazo-Duran MD. Searching for the Antioxidant, Anti-Inflammatory, and Neuroprotective Potential of Natural Food and Nutritional Supplements for Ocular Health in the Mediterranean Population. Foods 2021; 10:1231. [PMID: 34071459 PMCID: PMC8229954 DOI: 10.3390/foods10061231] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Adherence to a healthy diet offers a valuable intervention to compete against the increasing cases of ocular diseases worldwide, such as dry eye disorders, myopia progression, cataracts, glaucoma, diabetic retinopathy, or age macular degeneration. Certain amounts of micronutrients must be daily provided for proper functioning of the visual system, such as vitamins, carotenoids, trace metals and omega-3 fatty acids. Among natural foods, the following have to be considered for boosting eye/vision health: fish, meat, eggs, nuts, legumes, citrus fruits, nuts, leafy green vegetables, orange-colored fruits/vegetables, olives-olive oil, and dairy products. Nutritional supplements have received much attention as potential tools for managing chronic-degenerative ocular diseases. A systematic search of PubMed, Web of Science, hand-searched publications and historical archives were performed by the professionals involved in this study, to include peer-reviewed articles in which natural food, nutrient content, and its potential relationship with ocular health. Five ophthalmologists and two researchers collected the characteristics, quality and suitability of the above studies. Finally, 177 publications from 1983 to 2021 were enclosed, mainly related to natural food, Mediterranean diet (MedDiet) and nutraceutic supplementation. For the first time, original studies with broccoli and tigernut (chufa de Valencia) regarding the ocular surface dysfunction, macular degeneration, diabetic retinopathy and glaucoma were enclosed. These can add value to the diet, counteract nutritional defects, and help in the early stages, as well as in the course of ophthalmic pathologies. The main purpose of this review, enclosed in the Special Issue "Health Benefits and Nutritional Quality of Fruits, Nuts and Vegetables," is to identify directions for further research on the role of diet and nutrition in the eyes and vision, and the potential antioxidant, anti-inflammatory and neuroprotective effects of natural food (broccoli, saffron, tigernuts and walnuts), the Mediterranean Diet, and nutraceutic supplements that may supply a promising and highly affordable scenario for patients at risk of vision loss. This review work was designed and carried out by a multidisciplinary group involved in ophthalmology and ophthalmic research and especially in nutritional ophthalmology.
Collapse
Affiliation(s)
- Mar Valero-Vello
- Ophthalmic Research Unit “Santiago Grisolía” Foundation for the Promotion of Health and Biomedical Research of Valencia FISABIO, 46017 Valencia, Spain; (M.V.-V.); (J.J.G.-M.); (S.M.S.-G.); (M.D.P.-D.)
| | - Cristina Peris-Martínez
- Ophthalmic Medical Center (FOM), Foundation for the Promotion of Health and Biomedical Research of Valencia (FISABIO), 46015 Valencia, Spain;
- Department of Surgery, University of Valencia, 46019 Valencia, Spain
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
| | - José J. García-Medina
- Ophthalmic Research Unit “Santiago Grisolía” Foundation for the Promotion of Health and Biomedical Research of Valencia FISABIO, 46017 Valencia, Spain; (M.V.-V.); (J.J.G.-M.); (S.M.S.-G.); (M.D.P.-D.)
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Department of Ophthalmology, General University Hospital “Morales Meseguer”, 30007 Murcia, Spain
- Department of Ophthalmology and Optometry, University of Murcia, 30120 Murcia, Spain
| | - Silvia M. Sanz-González
- Ophthalmic Research Unit “Santiago Grisolía” Foundation for the Promotion of Health and Biomedical Research of Valencia FISABIO, 46017 Valencia, Spain; (M.V.-V.); (J.J.G.-M.); (S.M.S.-G.); (M.D.P.-D.)
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Cellular and Molecular Ophthalmobiology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Ana I. Ramírez
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Department of Immunology, Ophthalmology and Otorrinolaringology, Institute of Ophthalmic Research “Ramón Castroviejo”, Complutense University of Madrid, 28040 Madrid, Spain;
| | - José A. Fernández-Albarral
- Department of Immunology, Ophthalmology and Otorrinolaringology, Institute of Ophthalmic Research “Ramón Castroviejo”, Complutense University of Madrid, 28040 Madrid, Spain;
| | - David Galarreta-Mira
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Department of Ophthalmology. University Clinic Hospital of Valladolid, 47003 Valladolid, Spain
| | - Vicente Zanón-Moreno
- Ophthalmic Research Unit “Santiago Grisolía” Foundation for the Promotion of Health and Biomedical Research of Valencia FISABIO, 46017 Valencia, Spain; (M.V.-V.); (J.J.G.-M.); (S.M.S.-G.); (M.D.P.-D.)
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Faculty of Health Sciences, International University of Valencia, 46002 Valencia, Spain
| | - Ricardo P. Casaroli-Marano
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Departament of Surgery, School of Medicine and Health Sciences, Clinic Hospital of Barcelona, Universitat de Barcelona, 08036 Barcelona, Spain
| | - María D. Pinazo-Duran
- Ophthalmic Research Unit “Santiago Grisolía” Foundation for the Promotion of Health and Biomedical Research of Valencia FISABIO, 46017 Valencia, Spain; (M.V.-V.); (J.J.G.-M.); (S.M.S.-G.); (M.D.P.-D.)
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, Institute of Health Carlos III, 28029 Madrid, Spain; (A.I.R.); (D.G.-M.); (R.P.C.-M.)
- Cellular and Molecular Ophthalmobiology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
15
|
Chen X, Drew J, Berney W, Lei W. Neuroprotective Natural Products for Alzheimer's Disease. Cells 2021; 10:1309. [PMID: 34070275 PMCID: PMC8225186 DOI: 10.3390/cells10061309] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the number one neurovegetative disease, but its treatment options are relatively few and ineffective. In efforts to discover new strategies for AD therapy, natural products have aroused interest in the research community and in the pharmaceutical industry for their neuroprotective activity, targeting different pathological mechanisms associated with AD. A wide variety of natural products from different origins have been evaluated preclinically and clinically for their neuroprotective mechanisms in preventing and attenuating the multifactorial pathologies of AD. This review mainly focuses on the possible neuroprotective mechanisms from natural products that may be beneficial in AD treatment and the natural product mixtures or extracts from different sources that have demonstrated neuroprotective activity in preclinical and/or clinical studies. It is believed that natural product mixtures or extracts containing multiple bioactive compounds that can work additively or synergistically to exhibit multiple neuroprotective mechanisms might be an effective approach in AD drug discovery.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Joshua Drew
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Wren Berney
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Presbyterian College, Clinton, SC 29325, USA
| |
Collapse
|
16
|
Plant Foods Rich in Antioxidants and Human Cognition: A Systematic Review. Antioxidants (Basel) 2021; 10:antiox10050714. [PMID: 33946461 PMCID: PMC8147117 DOI: 10.3390/antiox10050714] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress can compromise central nervous system integrity, thereby affecting cognitive ability. Consumption of plant foods rich in antioxidants could thereby protect cognition. We systematically reviewed the literature exploring the effects of antioxidant-rich plant foods on cognition. Thirty-one studies were included: 21 intervention, 4 cross-sectional (one with a cohort in prospective observation as well), and 6 prospective studies. Subjects belonged to various age classes (young, adult, and elderly). Some subjects examined were healthy, some had mild cognitive impairment (MCI), and some others were demented. Despite the different plant foods and the cognitive assessments used, the results can be summarized as follows: 7 studies reported a significant improvement in all cognitive domains examined; 19 found significant improvements only in some cognitive areas, or only for some food subsets; and 5 showed no significant improvement or no effectiveness. The impact of dietary plant antioxidants on cognition appears promising: most of the examined studies showed associations with significant beneficial effects on cognitive functions-in some cases global or only in some specific domains. There was typically an acute, preventive, or therapeutic effect in young, adult, and elderly people, whether they were healthy, demented, or affected by MCI. Their effects, however, are not attributable only to anti-oxidation.
Collapse
|
17
|
Pinazo-Durán MD, García-Medina JJ, Sanz-González SM, O’Connor JE, Casaroli-Marano RP, Valero-Velló M, López-Gálvez M, Peris-Martínez C, Zanón-Moreno V, Diaz-Llopis M. Signature of Circulating Biomarkers in Recurrent Non-Infectious Anterior Uveitis. Immunomodulatory Effects of DHA-Triglyceride. A Pilot Study. Diagnostics (Basel) 2021; 11:724. [PMID: 33921773 PMCID: PMC8072877 DOI: 10.3390/diagnostics11040724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to identify circulating biomarkers of recurrent non-infectious anterior uveitis (NIAU), and to address the anti-inflammatory effects of triglyceride containing docosahexaenoic acid (DHA-TG). A prospective multicenter study was conducted in 72 participants distributed into: patients diagnosed with recurrent NIAU in the quiescence stage (uveitis group (UG); n = 36) and healthy controls (control group (CG); n = 36). Each group was randomly assigned to the oral supplementation of one pill/day (+) containing DHA-TG (n = 18) or no-pill condition (-) (n = 17) for three consecutive months. Data from demographics, risk factors, comorbidities, eye complications and therapy were recorded. Blood was collected and processed to determine pro-inflammatory biomarkers by bead-base multiplex assay. Statistical processing with multivariate statistical analysis was performed. The mean age was 50, 12 (10, 31) years. The distribution by gender was 45% males and 55% females. The mean number of uveitis episodes was 5 (2). Higher plasma expression of interleukin (IL)-6 was detected in the UG versus the CG (p = 5 × 10-5). Likewise, significantly higher plasma levels were seen for IL-1β, IL-2, INFγ (p = 10-4), and TNFα (p = 2 × 10-4) in the UG versus the CG. Significantly lower values of the above molecules were found in the +DHA-TG than in the -DHA-TG subgroups, after 3 months of follow-up, TNFα (p = 10-7) and IL-6 (p = 3 × 10-6) being those that most significantly changed. Signatures of circulating inflammatory mediators were obtained in the quiescent stage of recurrent NIAU patients. This 3-month follow-up strongly reinforces that a regular oral administration of DHA-TG reduces the inflammatory load and may potentially supply a prophylaxis-adjunctive mediator for patients at risk of uveitis vision loss.
Collapse
Affiliation(s)
- Maria D. Pinazo-Durán
- Ophthalmic Research Unit “Santiago Grisolía”, Fundación Investigación Sanitaria y Biomédica (FISABIO), Ave. Gaspar Aguilar 90, 46017 Valencia, Spain; (M.D.P.-D.); (J.J.G.-M.); (M.V.-V.)
- Research Group in Cellular and Molecular Ophthalmo-Biology, Department of Surgery, University of Valencia, Ave. Blasco Ibañez 15, 46010 Valencia, Spain;
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (R.P.C.-M.); (M.L.-G.); (C.P.-M.); (V.Z.-M.)
| | - Jose J. García-Medina
- Ophthalmic Research Unit “Santiago Grisolía”, Fundación Investigación Sanitaria y Biomédica (FISABIO), Ave. Gaspar Aguilar 90, 46017 Valencia, Spain; (M.D.P.-D.); (J.J.G.-M.); (M.V.-V.)
- Research Group in Cellular and Molecular Ophthalmo-Biology, Department of Surgery, University of Valencia, Ave. Blasco Ibañez 15, 46010 Valencia, Spain;
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (R.P.C.-M.); (M.L.-G.); (C.P.-M.); (V.Z.-M.)
- Department of Ophthalmology, General University Hospital “Morales Meseguer”, Ave. Marqués de los Vélez, s/n, 30008 Murcia, Spain
- Department of Ophthalmology and Optometry, University of Murcia, Edificio LAIB Planta 5ª, Carretera Buenavista s/n, 30120 El Palmar Murcia, Spain
| | - Silvia M. Sanz-González
- Ophthalmic Research Unit “Santiago Grisolía”, Fundación Investigación Sanitaria y Biomédica (FISABIO), Ave. Gaspar Aguilar 90, 46017 Valencia, Spain; (M.D.P.-D.); (J.J.G.-M.); (M.V.-V.)
- Research Group in Cellular and Molecular Ophthalmo-Biology, Department of Surgery, University of Valencia, Ave. Blasco Ibañez 15, 46010 Valencia, Spain;
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (R.P.C.-M.); (M.L.-G.); (C.P.-M.); (V.Z.-M.)
| | - Jose E. O’Connor
- Laboratory of Cytomics, Joint Research Unit Principe Felipe Research Center and University of Valencia, 46010 Valencia, Spain;
| | - Ricardo P. Casaroli-Marano
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (R.P.C.-M.); (M.L.-G.); (C.P.-M.); (V.Z.-M.)
- Department of Surgery, School of Medicine and Hospital Clinic de Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Mar Valero-Velló
- Ophthalmic Research Unit “Santiago Grisolía”, Fundación Investigación Sanitaria y Biomédica (FISABIO), Ave. Gaspar Aguilar 90, 46017 Valencia, Spain; (M.D.P.-D.); (J.J.G.-M.); (M.V.-V.)
- Research Group in Cellular and Molecular Ophthalmo-Biology, Department of Surgery, University of Valencia, Ave. Blasco Ibañez 15, 46010 Valencia, Spain;
| | - Maribel López-Gálvez
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (R.P.C.-M.); (M.L.-G.); (C.P.-M.); (V.Z.-M.)
- Department of Ophthalmology, University Clinic Hospital of Valladolid, 47003 Valladolid, Spain
| | - Cristina Peris-Martínez
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (R.P.C.-M.); (M.L.-G.); (C.P.-M.); (V.Z.-M.)
- Ophthalmic Medical Center (FOM), Foundation for the Promotion of Health and Biomedical Research of Valencia (FISABIO), 46015 Valencia, Spain
| | - Vicente Zanón-Moreno
- Spanish Net of Ophthalmic Research “OFTARED” RD16/0008/0022, of the Institute of Health Carlos III, 28029 Madrid, Spain; (R.P.C.-M.); (M.L.-G.); (C.P.-M.); (V.Z.-M.)
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
| | - Manuel Diaz-Llopis
- Research Group in Cellular and Molecular Ophthalmo-Biology, Department of Surgery, University of Valencia, Ave. Blasco Ibañez 15, 46010 Valencia, Spain;
| |
Collapse
|
18
|
Fjell AM, Sørensen Ø, Amlien IK, Bartrés-Faz D, Bros DM, Buchmann N, Demuth I, Drevon CA, Düzel S, Ebmeier KP, Idland AV, Kietzmann TC, Kievit R, Kühn S, Lindenberger U, Mowinckel AM, Nyberg L, Price D, Sexton CE, Solé-Padullés C, Pudas S, Sederevicius D, Suri S, Wagner G, Watne LO, Westerhausen R, Zsoldos E, Walhovd KB. Self-reported sleep relates to hippocampal atrophy across the adult lifespan: results from the Lifebrain consortium. Sleep 2021; 43:5628807. [PMID: 31738420 PMCID: PMC7215271 DOI: 10.1093/sleep/zsz280] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
Objectives Poor sleep is associated with multiple age-related neurodegenerative and neuropsychiatric conditions. The hippocampus plays a special role in sleep and sleep-dependent cognition, and accelerated hippocampal atrophy is typically seen with higher age. Hence, it is critical to establish how the relationship between sleep and hippocampal volume loss unfolds across the adult lifespan. Methods Self-reported sleep measures and MRI-derived hippocampal volumes were obtained from 3105 cognitively normal participants (18–90 years) from major European brain studies in the Lifebrain consortium. Hippocampal volume change was estimated from 5116 MRIs from 1299 participants for whom longitudinal MRIs were available, followed up to 11 years with a mean interval of 3.3 years. Cross-sectional analyses were repeated in a sample of 21,390 participants from the UK Biobank. Results No cross-sectional sleep—hippocampal volume relationships were found. However, worse sleep quality, efficiency, problems, and daytime tiredness were related to greater hippocampal volume loss over time, with high scorers showing 0.22% greater annual loss than low scorers. The relationship between sleep and hippocampal atrophy did not vary across age. Simulations showed that the observed longitudinal effects were too small to be detected as age-interactions in the cross-sectional analyses. Conclusions Worse self-reported sleep is associated with higher rates of hippocampal volume decline across the adult lifespan. This suggests that sleep is relevant to understand individual differences in hippocampal atrophy, but limited effect sizes call for cautious interpretation.
Collapse
Affiliation(s)
- Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
| | - David Bartrés-Faz
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Spain
| | - Didac Maciá Bros
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Spain
| | - Nikolaus Buchmann
- Department of Cardiology, Charité - University Medicine Berlin Campus Benjamin Franklin, Berlin, Germany
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany
| | - Christian A Drevon
- Vitas AS, Research Park, Gaustadalleen 21, 0349, Oslo and 6 University of Oslo, Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, Medicine/University of Oslo, Norway
| | - Sandra Düzel
- Max Planck Institute for Human Development, Germany
| | | | - Ane-Victoria Idland
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway.,Oslo Delirium Research Group, Department of Geriatric Medicine, University of Oslo, Norway.,Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Tim C Kietzmann
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Rogier Kievit
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Simone Kühn
- Max Planck Institute for Human Development, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Germany
| | | | | | - Lars Nyberg
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Darren Price
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Claire E Sexton
- Department of Psychiatry, University of Oxford, UK.,Global Brain Health Institute, Department of Neurology, University of California San Francisco, CA.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Cristina Solé-Padullés
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Spain
| | - Sara Pudas
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | | | - Sana Suri
- Department of Psychiatry, University of Oxford, UK.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Gerd Wagner
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Department of Geriatric Medicine, University of Oslo, Norway
| | - René Westerhausen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
| | - Enikő Zsoldos
- Department of Psychiatry, University of Oxford, UK.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| |
Collapse
|
19
|
Hossain S, Beydoun MA, Weiss J, Kuczmarski MF, Evans MK, Zonderman AB. Longitudinal associations between dietary quality and Alzheimer's disease genetic risk on cognitive performance among African American adults. Br J Nutr 2020; 124:1264-1276. [PMID: 32248879 PMCID: PMC7541564 DOI: 10.1017/s0007114520001269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Poor diet quality (DQ) is associated with poor cognition and increased neurodegeneration, including Alzheimer's disease (AD). We are interested in the role of DQ on cognitive functioning (by sex and increasing genetic risk for AD), in a sample of African American (AA) middle-aged adults. We analysed a sub-group of participants (about 55 % women; mean follow-up time of about 4·7 years) from the Healthy Aging in Neighborhoods of Diversity across the Life Span study with a genetic risk score for AD (hAlzScore). The Healthy Eating Index-2010, Dietary Approaches to Stop Hypertension and the mean adequacy ratio computed at baseline (2004-2009) and follow-up visits (2009-2013) were used to assess initial DQ and change over time. Linear mixed-effects regression models were utilised, adjusting for select covariates, selection bias and multiple testing. DQ change (ΔDQ) was associated with California Verbal Learning Test-List A - overall (0·15 (se 0·06), P = 0·008) and in women (0·21 (se 0·08), P = 0·006), at highest AD risk, indicating protective effects over time. Greater AD risk was longitudinally associated with poorer Clock Command Test scores in men. Poor DQ was positively and cross-sectionally associated with Trails B scores, but in women only. Better-quality diet was associated with a slower decline in verbal memory among AA women, with greater AD risk. Insufficient clinical evidence and/or mixed findings dictate that more studies are needed to investigate brain morphology and volume changes in relation to DQ in an at-risk population for AD, over time.
Collapse
Affiliation(s)
- Sharmin Hossain
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD
| | - May A. Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD
| | - Jordan Weiss
- Population Studies Center and the Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie F. Kuczmarski
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD
| |
Collapse
|
20
|
Fjell AM, Sørensen Ø, Amlien IK, Bartrés-Faz D, Brandmaier AM, Buchmann N, Demuth I, Drevon CA, Düzel S, Ebmeier KP, Ghisletta P, Idland AV, Kietzmann TC, Kievit RA, Kühn S, Lindenberger U, Magnussen F, Macià D, Mowinckel AM, Nyberg L, Sexton CE, Solé-Padullés C, Pudas S, Roe JM, Sederevicius D, Suri S, Vidal-Piñeiro D, Wagner G, Watne LO, Westerhausen R, Zsoldos E, Walhovd KB. Poor Self-Reported Sleep is Related to Regional Cortical Thinning in Aging but not Memory Decline-Results From the Lifebrain Consortium. Cereb Cortex 2020; 31:1953-1969. [PMID: 33236064 PMCID: PMC7945023 DOI: 10.1093/cercor/bhaa332] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
We examined whether sleep quality and quantity are associated with cortical and memory changes in cognitively healthy participants across the adult lifespan. Associations between self-reported sleep parameters (Pittsburgh Sleep Quality Index, PSQI) and longitudinal cortical change were tested using five samples from the Lifebrain consortium (n = 2205, 4363 MRIs, 18–92 years). In additional analyses, we tested coherence with cell-specific gene expression maps from the Allen Human Brain Atlas, and relations to changes in memory performance. “PSQI # 1 Subjective sleep quality” and “PSQI #5 Sleep disturbances” were related to thinning of the right lateral temporal cortex, with lower quality and more disturbances being associated with faster thinning. The association with “PSQI #5 Sleep disturbances” emerged after 60 years, especially in regions with high expression of genes related to oligodendrocytes and S1 pyramidal neurons. None of the sleep scales were related to a longitudinal change in episodic memory function, suggesting that sleep-related cortical changes were independent of cognitive decline. The relationship to cortical brain change suggests that self-reported sleep parameters are relevant in lifespan studies, but small effect sizes indicate that self-reported sleep is not a good biomarker of general cortical degeneration in healthy older adults.
Collapse
Affiliation(s)
- Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0188 Oslo, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway
| | - David Bartrés-Faz
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| | - Nikolaus Buchmann
- Department of Cardiology, Charité - University Medicine Berlin Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, 10117 Berlin, Germany
| | - Christian A Drevon
- Vitas AS, Research Park, Gaustadalleen 21, 0349 Oslo, Norway.,Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Klaus P Ebmeier
- Department of Psychiatry, University of Oxford, Oxford OX1 2JD UK
| | - Paolo Ghisletta
- Faculty of Psychology and Educational Sciences, Swiss Distance University Institute, Swiss National Centre of Competence in Research LIVES, University of Geneva, 1205 Geneva, Switzerland
| | - Ane-Victoria Idland
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway.,Oslo Delirium Research Group, Department of Geriatric Medicine, University of Oslo, 0315 Oslo, Norway.,Institute of Basic Medical Sciences, University of Oslo, 0315 Oslo, Norway
| | - Tim C Kietzmann
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 1TN, UK.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Rogier A Kievit
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 1TN, UK
| | - Simone Kühn
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| | - Fredrik Magnussen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway
| | - Didac Macià
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Athanasia M Mowinckel
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
| | - Claire E Sexton
- Department of Psychiatry, University of Oxford, Oxford OX1 2JD UK.,Global Brain Health Institute, Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX1 2JD, UK
| | - Cristina Solé-Padullés
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Sara Pudas
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
| | - James M Roe
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway
| | - Donatas Sederevicius
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Oxford OX1 2JD UK.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX1 2JD, UK
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway
| | - Gerd Wagner
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Department of Geriatric Medicine, University of Oslo, 0315 Oslo, Norway
| | - René Westerhausen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway
| | - Enikő Zsoldos
- Department of Psychiatry, University of Oxford, Oxford OX1 2JD UK.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX1 2JD, UK
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0315 Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0188 Oslo, Norway
| |
Collapse
|
21
|
Petrovic S, Arsic A, Ristic-Medic D, Cvetkovic Z, Vucic V. Lipid Peroxidation and Antioxidant Supplementation in Neurodegenerative Diseases: A Review of Human Studies. Antioxidants (Basel) 2020; 9:1128. [PMID: 33202952 PMCID: PMC7696060 DOI: 10.3390/antiox9111128] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/05/2023] Open
Abstract
Being characterized by progressive and severe damage in neuronal cells, neurodegenerative diseases (NDDs) are the major cause of disability and morbidity in the elderly, imposing a significant economic and social burden. As major components of the central nervous system, lipids play important roles in neural health and pathology. Disturbed lipid metabolism, particularly lipid peroxidation (LPO), is associated with the development of many NDDs, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), all of which show elevated levels of LPO products and LPO-modified proteins. Thus, the inhibition of neuronal oxidation might slow the progression and reduce the severity of NDD; natural antioxidants, such as polyphenols and antioxidant vitamins, seem to be the most promising agents. Here, we summarize current literature data that were derived from human studies on the effect of natural polyphenols and vitamins A, C, and E supplementation in patients with AD, PD, and ALS. Although these compounds may reduce the severity and slow the progression of NDD, research gaps remain in antioxidants supplementation in AD, PD, and ALS patients, which indicates that further human studies applying antioxidant supplementation in different forms of NDDs are urgently needed.
Collapse
Affiliation(s)
- Snjezana Petrovic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.A.); (D.R.-M.)
| | - Aleksandra Arsic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.A.); (D.R.-M.)
| | - Danijela Ristic-Medic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.A.); (D.R.-M.)
| | - Zorica Cvetkovic
- Department of Hematology, Clinical Hospital Center Zemun, 11000 Belgrade, Serbia;
- Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Vesna Vucic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.A.); (D.R.-M.)
| |
Collapse
|
22
|
Sørensen Ø, Brandmaier AM, Macià D, Ebmeier K, Ghisletta P, Kievit RA, Mowinckel AM, Walhovd KB, Westerhausen R, Fjell A. Meta-analysis of generalized additive models in neuroimaging studies. Neuroimage 2020; 224:117416. [PMID: 33017652 DOI: 10.1016/j.neuroimage.2020.117416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Analyzing data from multiple neuroimaging studies has great potential in terms of increasing statistical power, enabling detection of effects of smaller magnitude than would be possible when analyzing each study separately and also allowing to systematically investigate between-study differences. Restrictions due to privacy or proprietary data as well as more practical concerns can make it hard to share neuroimaging datasets, such that analyzing all data in a common location might be impractical or impossible. Meta-analytic methods provide a way to overcome this issue, by combining aggregated quantities like model parameters or risk ratios. Most meta-analytic tools focus on parametric statistical models, and methods for meta-analyzing semi-parametric models like generalized additive models have not been well developed. Parametric models are often not appropriate in neuroimaging, where for instance age-brain relationships may take forms that are difficult to accurately describe using such models. In this paper we introduce meta-GAM, a method for meta-analysis of generalized additive models which does not require individual participant data, and hence is suitable for increasing statistical power while upholding privacy and other regulatory concerns. We extend previous works by enabling the analysis of multiple model terms as well as multivariate smooth functions. In addition, we show how meta-analytic p-values can be computed for smooth terms. The proposed methods are shown to perform well in simulation experiments, and are demonstrated in a real data analysis on hippocampal volume and self-reported sleep quality data from the Lifebrain consortium. We argue that application of meta-GAM is especially beneficial in lifespan neuroscience and imaging genetics. The methods are implemented in an accompanying R package metagam, which is also demonstrated.
Collapse
Affiliation(s)
- Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Pb. 1094 Blindern, Oslo 0317, Norway.
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Dídac Macià
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Spain
| | | | - Paolo Ghisletta
- Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland; Swiss Distance University Institute, Switzerland; Swiss National Centre of Competence in Research LIVES, University of Geneva, Switzerland
| | - Rogier A Kievit
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Athanasia M Mowinckel
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Pb. 1094 Blindern, Oslo 0317, Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Pb. 1094 Blindern, Oslo 0317, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - Rene Westerhausen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Pb. 1094 Blindern, Oslo 0317, Norway
| | - Anders Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Pb. 1094 Blindern, Oslo 0317, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| |
Collapse
|
23
|
Gorbach T, Pudas S, Bartrés-Faz D, Brandmaier AM, Düzel S, Henson RN, Idland AV, Lindenberger U, Macià Bros D, Mowinckel AM, Solé-Padullés C, Sørensen Ø, Walhovd KB, Watne LO, Westerhausen R, Fjell AM, Nyberg L. Longitudinal association between hippocampus atrophy and episodic-memory decline in non-demented APOE ε4 carriers. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12110. [PMID: 33015312 PMCID: PMC7521596 DOI: 10.1002/dad2.12110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The apolipoprotein E (APOE) ε4 allele is the main genetic risk factor for Alzheimer's disease (AD), accelerated cognitive aging, and hippocampal atrophy, but its influence on the association between hippocampus atrophy and episodic-memory decline in non-demented individuals remains unclear. METHODS We analyzed longitudinal (two to six observations) magnetic resonance imaging (MRI)-derived hippocampal volumes and episodic memory from 748 individuals (55 to 90 years at baseline, 50% female) from the European Lifebrain consortium. RESULTS The change-change association for hippocampal volume and memory was significant only in ε4 carriers (N = 173, r = 0.21, P = .007; non-carriers: N = 467, r = 0.073, P = .117). The linear relationship was significantly steeper for the carriers [t(629) = 2.4, P = .013]. A similar trend toward a stronger change-change relation for carriers was seen in a subsample with more than two assessments. DISCUSSION These findings provide evidence for a difference in hippocampus-memory association between ε4 carriers and non-carriers, thus highlighting how genetic factors modulate the translation of the AD-related pathophysiological cascade into cognitive deficits.
Collapse
Affiliation(s)
- Tetiana Gorbach
- Department of Integrative Medical Biology Umeå University Umeå Sweden
- Umeå Center for Functional Brain Imaging Umeå University Umeå Sweden
| | - Sara Pudas
- Department of Integrative Medical Biology Umeå University Umeå Sweden
- Umeå Center for Functional Brain Imaging Umeå University Umeå Sweden
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences University of Barcelona Barcelona Spain
| | - Andreas M Brandmaier
- Center for Lifespan Psychology Max Planck Institute for Human Development Berlin Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research Berlin Germany
| | - Sandra Düzel
- Center for Lifespan Psychology Max Planck Institute for Human Development Berlin Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research Berlin Germany
| | - Richard N Henson
- MRC Cognition and Brain Sciences Unit University of Cambridge, Cambridge UK
| | - Ane-Victoria Idland
- Oslo Delirium Research Group, Department of Geriatric Medicine University of Oslo, Oslo Norway
| | - Ulman Lindenberger
- Center for Lifespan Psychology Max Planck Institute for Human Development Berlin Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research Berlin Germany
| | - Didac Macià Bros
- Department of Medicine, Faculty of Medicine and Health Sciences University of Barcelona Barcelona Spain
| | | | - Cristina Solé-Padullés
- Department of Medicine, Faculty of Medicine and Health Sciences University of Barcelona Barcelona Spain
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition University of Oslo, Oslo Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition University of Oslo, Oslo Norway
- Department of Radiology and Nuclear Medicine Oslo University Hospital, Oslo Norway
| | - Leiv Otto Watne
- MRC Cognition and Brain Sciences Unit University of Cambridge, Cambridge UK
| | - René Westerhausen
- Center for Lifespan Changes in Brain and Cognition University of Oslo, Oslo Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition University of Oslo, Oslo Norway
- Department of Radiology and Nuclear Medicine Oslo University Hospital, Oslo Norway
| | - Lars Nyberg
- Department of Integrative Medical Biology Umeå University Umeå Sweden
- Umeå Center for Functional Brain Imaging Umeå University Umeå Sweden
- Department of Radiation Sciences Umeå University Umeå Sweden
| |
Collapse
|
24
|
D'Angelo S. Current Evidence on the Effect of Dietary Polyphenols Intake on Brain Health. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401316999200714160126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
In recent years, the possibility of favorably influencing the cognitive capacity
through the promotion of lifestyle modifications has been increasingly investigated. In particular,
the relationship between nutritional habits and brain health has attracted special attention. Polyphenols
are secondary metabolites of plants. These phytochemicals are present in vegetables, fruits, legumes,
olive oil, nuts. They include several antioxidant compounds and are generally considered to be
involved in defense against chronic human diseases. In recent years, there has been a growing scientific
interest in their potential health benefits to the brain.
Objective:
In this mini-review, we focus on the current evidence defining the position of polyphenols
dietary intake in the prevention/slowdown of human neurodegenerative diseases.
Methods:
A literature research was performed using the keywords “polyphenols”, “brain”, “nutrition”,
individually or all together, focusing on human trials.
Results:
The available clinical studies on the effect of polyphenols on cognitive functions are quite
convincing. Regular dietary intake of polyphenols would seem to reduce the risk of neurodegenerative
diseases. Moreover, beyond their beneficial power on the central nervous system, these phytochemicals
seem also to be able to work on numerous cellular targets. They show different biological
actions, that however, have to be confirmed in long-term randomized clinical trials. Currently, most
data propose that a combination of phytonutrients instead of any single polyphenol is responsible for
health benefits.
Conclusions:
Evolving indications suggest that dietary polyphenols may exercise beneficial actions
on the central nervous system, thus representing a possible tool to preserve cognitive performance.
Key questions to improve the coherence and reproducibility in the development of polyphenols as a
possible future therapeutic drug require a better understanding of the sources of polyphenols, their
treatment and more standardized tests including bioavailability of bioactive metabolites and studies
of permeability of the brain.
Collapse
Affiliation(s)
- Stefania D'Angelo
- Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| |
Collapse
|
25
|
Arslan J, Gilani AUH, Jamshed H, Khan SF, Kamal MA. Edible Nuts for Memory. Curr Pharm Des 2020; 26:4712-4720. [PMID: 32767923 DOI: 10.2174/1381612826666200806095649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022]
Abstract
Nuts hold prime significance throughout the world as they offer multiple health benefits owing to their highly nutritious profile. A number of scientific studies have demonstrated their actions against inflammation, oxidative damage, the aging process, as well as dementia or memory loss. However, only walnuts, followed by almonds, hazelnuts and pistachios, have shown promising results in empirical studies for memory improvements. So, the current review focuses on presenting hypotheses regarding anti-dementia property of nine different nuts: almond, walnut, pistachio, Brazil nut, peanut, pecans, cashew, hazelnut, and chestnut. The nutritious profile of nuts contains essential fats (mostly mono- and poly-unsaturated fatty acids), proteins (source for arginine, lysine and tryptophan), vitamins (riboflavin, folate, and various tocopherols), fibers, minerals (calcium, sodium, magnesium, phosphorus and potassium) and trace elements (copper, zinc, and selenium). Interestingly, the constituents of natural products, nuts being an excellent example, work synergistically and/or in a side-effect neutralizing manner. These latter properties can make nuts an alternate therapy for humankind to fight against memory loss.
Collapse
Affiliation(s)
- Jamshed Arslan
- Department of Basic Medical Sciences, Barrett Hodgson University, Karachi 74900, Pakistan
| | | | - Humaira Jamshed
- Department of Integrated Sciences and Mathematics, Dhanani School of Science and Engineering, Habib University, Karachi 75290, Pakistan
| | - Sumaiya F Khan
- Atta-ur-Rahman School of Applied Bioscience, National University of Science and Technology, Islamabad, Pakistan
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.,Enzymoics; Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| |
Collapse
|
26
|
Sala-Vila A, Valls-Pedret C, Rajaram S, Coll-Padrós N, Cofán M, Serra-Mir M, Pérez-Heras AM, Roth I, Freitas-Simoes TM, Doménech M, Calvo C, López-Illamola A, Bitok E, Buxton NK, Huey L, Arechiga A, Oda K, Lee GJ, Corella D, Vaqué-Alcázar L, Sala-Llonch R, Bartrés-Faz D, Sabaté J, Ros E. Effect of a 2-year diet intervention with walnuts on cognitive decline. The Walnuts And Healthy Aging (WAHA) study: a randomized controlled trial. Am J Clin Nutr 2020; 111:590-600. [PMID: 31912155 DOI: 10.1093/ajcn/nqz328] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/11/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Walnut consumption counteracts oxidative stress and inflammation, 2 drivers of cognitive decline. Clinical data concerning effects on cognition are lacking. OBJECTIVES The Walnuts And Healthy Aging study is a 2-center (Barcelona, Spain; Loma Linda, CA) randomized controlled trial examining the cognitive effects of a 2-y walnut intervention in cognitively healthy elders. METHODS We randomly allocated 708 free-living elders (63-79 y, 68% women) to a diet enriched with walnuts at ∼15% energy (30-60 g/d) or a control diet (abstention from walnuts). We administered a comprehensive neurocognitive test battery at baseline and 2 y. Change in the global cognition composite was the primary outcome. We performed repeated structural and functional brain MRI in 108 Barcelona participants. RESULTS A total of 636 participants completed the intervention. Besides differences in nutrient intake, participants from Barcelona smoked more, were less educated, and had lower baseline neuropsychological test scores than those from Loma Linda. Walnuts were well tolerated and compliance was good. Modified intention-to-treat analyses (n = 657) uncovered no between-group differences in the global cognitive composite, with mean changes of -0.072 (95% CI: -0.100, -0.043) in the walnut diet group and -0.086 (95% CI: -0.115, -0.057) in the control diet group (P = 0.491). Post hoc analyses revealed significant differences in the Barcelona cohort, with unadjusted changes of -0.037 (95% CI: -0.077, 0.002) in the walnut group and -0.097 (95% CI: -0.137, -0.057) in controls (P = 0.040). Results of brain fMRI in a subset of Barcelona participants indicated greater functional network recruitment in a working memory task in controls. CONCLUSIONS Walnut supplementation for 2 y had no effect on cognition in healthy elders. However, brain fMRI and post hoc analyses by site suggest that walnuts might delay cognitive decline in subgroups at higher risk. These encouraging but inconclusive results warrant further investigation, particularly targeting disadvantaged populations, in whom greatest benefit could be expected.This trial was registered at clinicaltrials.gov as NCT01634841.
Collapse
Affiliation(s)
- Aleix Sala-Vila
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain.,Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Cinta Valls-Pedret
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| | - Sujatha Rajaram
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Nina Coll-Padrós
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Montserrat Cofán
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| | - Mercè Serra-Mir
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana M Pérez-Heras
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Irene Roth
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Tania M Freitas-Simoes
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mónica Doménech
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carlos Calvo
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| | - Anna López-Illamola
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Edward Bitok
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Natalie K Buxton
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Lynnley Huey
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Adam Arechiga
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, USA
| | - Keiji Oda
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Grace J Lee
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, USA
| | - Dolores Corella
- CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain.,Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, Spain
| | - Lídia Vaqué-Alcázar
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Roser Sala-Llonch
- Department of Biomedicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Joan Sabaté
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Emilio Ros
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
27
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2020; 3:CD003177. [PMID: 32114706 PMCID: PMC7049091 DOI: 10.1002/14651858.cd003177.pub5] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3)), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) may benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess the effects of increased intake of fish- and plant-based omega-3 fats for all-cause mortality, cardiovascular events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to February 2019, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to August 2019, with no language restrictions. We handsearched systematic review references and bibliographies and contacted trial authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation or advice to increase LCn3 or ALA intake, or both, versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trials for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 86 RCTs (162,796 participants) in this review update and found that 28 were at low summary risk of bias. Trials were of 12 to 88 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most trials assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet. LCn3 doses ranged from 0.5 g a day to more than 5 g a day (19 RCTs gave at least 3 g LCn3 daily). Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (risk ratio (RR) 0.97, 95% confidence interval (CI) 0.93 to 1.01; 143,693 participants; 11,297 deaths in 45 RCTs; high-certainty evidence), cardiovascular mortality (RR 0.92, 95% CI 0.86 to 0.99; 117,837 participants; 5658 deaths in 29 RCTs; moderate-certainty evidence), cardiovascular events (RR 0.96, 95% CI 0.92 to 1.01; 140,482 participants; 17,619 people experienced events in 43 RCTs; high-certainty evidence), stroke (RR 1.02, 95% CI 0.94 to 1.12; 138,888 participants; 2850 strokes in 31 RCTs; moderate-certainty evidence) or arrhythmia (RR 0.99, 95% CI 0.92 to 1.06; 77,990 participants; 4586 people experienced arrhythmia in 30 RCTs; low-certainty evidence). Increasing LCn3 may slightly reduce coronary heart disease mortality (number needed to treat for an additional beneficial outcome (NNTB) 334, RR 0.90, 95% CI 0.81 to 1.00; 127,378 participants; 3598 coronary heart disease deaths in 24 RCTs, low-certainty evidence) and coronary heart disease events (NNTB 167, RR 0.91, 95% CI 0.85 to 0.97; 134,116 participants; 8791 people experienced coronary heart disease events in 32 RCTs, low-certainty evidence). Overall, effects did not differ by trial duration or LCn3 dose in pre-planned subgrouping or meta-regression. There is little evidence of effects of eating fish. Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20; 19,327 participants; 459 deaths in 5 RCTs, moderate-certainty evidence),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25; 18,619 participants; 219 cardiovascular deaths in 4 RCTs; moderate-certainty evidence), coronary heart disease mortality (RR 0.95, 95% CI 0.72 to 1.26; 18,353 participants; 193 coronary heart disease deaths in 3 RCTs; moderate-certainty evidence) and coronary heart disease events (RR 1.00, 95% CI 0.82 to 1.22; 19,061 participants; 397 coronary heart disease events in 4 RCTs; low-certainty evidence). However, increased ALA may slightly reduce risk of cardiovascular disease events (NNTB 500, RR 0.95, 95% CI 0.83 to 1.07; but RR 0.91, 95% CI 0.79 to 1.04 in RCTs at low summary risk of bias; 19,327 participants; 884 cardiovascular disease events in 5 RCTs; low-certainty evidence), and probably slightly reduces risk of arrhythmia (NNTB 91, RR 0.73, 95% CI 0.55 to 0.97; 4912 participants; 173 events in 2 RCTs; moderate-certainty evidence). Effects on stroke are unclear. Increasing LCn3 and ALA had little or no effect on serious adverse events, adiposity, lipids and blood pressure, except increasing LCn3 reduced triglycerides by ˜15% in a dose-dependent way (high-certainty evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and low-certainty evidence suggests that increasing LCn3 slightly reduces risk of coronary heart disease mortality and events, and reduces serum triglycerides (evidence mainly from supplement trials). Increasing ALA slightly reduces risk of cardiovascular events and arrhythmia.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Teesside UniversitySchool of Social Sciences, Humanities and LawMiddlesboroughUKTS1 3BA
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Sciences42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthCoupland Building 3Oxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
28
|
Al Abdrabalnabi A, Rajaram S, Bitok E, Oda K, Beeson WL, Kaur A, Cofán M, Serra-Mir M, Roth I, Ros E, Sabaté J. Effects of Supplementing the Usual Diet with a Daily Dose of Walnuts for Two Years on Metabolic Syndrome and Its Components in an Elderly Cohort. Nutrients 2020; 12:E451. [PMID: 32053984 PMCID: PMC7071225 DOI: 10.3390/nu12020451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence links nut consumption with an improved risk of metabolic syndrome (MetS); however, long-term trials are lacking. We examined the effects of a daily dose of walnuts for two years on MetS in a large elderly cohort. A total of 698 healthy elderly participants were randomly assigned to either a walnut supplemented or a control diet. The participants in the walnut group were provided with packaged walnuts (1, 1.5, or 2 oz. or ~15% of energy) and asked to incorporate them into their daily habitual diet. The participants in the control group were asked to continue with their habitual diet and abstain from eating walnuts and other tree nuts. Intake of n-3 fatty acid supplements was not permitted in either group. Fasting blood chemistries, blood pressure, and anthropometric measurements were obtained at baseline and at the end of intervention. A total of 625 participants (67% women, mean age 69.1 y) completed this two-year study (90% retention rate). Triglycerides decreased in both walnut (-0.94 mg/dl) and control (-0.96 mg/dl) groups, with no significant between-group differences. There was a non-significant decrease in systolic and diastolic blood pressure in the walnut group (-1.30 and -0.71 mm Hg, respectively) and no change in the control group. Fasting blood glucose decreased by ~1 point in both the walnut and control groups. There were no significant between-group differences in the development or reversion of MetS. In conclusion, supplementing the diet of older adults with a daily dose of walnuts had no effect on MetS status or any of its components, although the walnut group tended to have lower blood pressure.
Collapse
Affiliation(s)
- Ahmed Al Abdrabalnabi
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA; (A.A.A.); (S.R.); (K.O.); (W.L.B.); (A.K.)
| | - Sujatha Rajaram
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA; (A.A.A.); (S.R.); (K.O.); (W.L.B.); (A.K.)
| | - Edward Bitok
- Department of Nutrition and Dietetics, School of Allied Health Professions, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Keiji Oda
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA; (A.A.A.); (S.R.); (K.O.); (W.L.B.); (A.K.)
| | - W. Lawrence Beeson
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA; (A.A.A.); (S.R.); (K.O.); (W.L.B.); (A.K.)
| | - Amandeep Kaur
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA; (A.A.A.); (S.R.); (K.O.); (W.L.B.); (A.K.)
| | - Montserrat Cofán
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.C.); (M.S.-M.); (I.R.); (E.R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercè Serra-Mir
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.C.); (M.S.-M.); (I.R.); (E.R.)
| | - Irene Roth
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.C.); (M.S.-M.); (I.R.); (E.R.)
| | - Emilio Ros
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.C.); (M.S.-M.); (I.R.); (E.R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Joan Sabaté
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA; (A.A.A.); (S.R.); (K.O.); (W.L.B.); (A.K.)
| |
Collapse
|
29
|
Functional and structural correlates of working memory performance and stability in healthy older adults. Brain Struct Funct 2019; 225:375-386. [PMID: 31873799 DOI: 10.1007/s00429-019-02009-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022]
Abstract
Despite the well-described deleterious effects of aging on cognition, some individuals are able to show stability. Here, we aimed to describe the functional and structural brain characteristics of older individuals, particularly focusing on those with stable working memory (WM) performance, as measured with a verbal N-back task across a 2-year follow-up interval. Forty-seven subjects were categorized as stables or decliners based on their WM change. Stables were further subdivided into high performers (SHP) and low performers (SLP), based on their baseline scores. At both time points, magnetic resonance imaging (MRI) data were acquired, including task-based functional MRI (fMRI) and structural T1-MRI. Although there was no significant interaction between overall stables and decliners as regards fMRI patterns, decliners exhibited over-activation in the right superior parietal lobule at follow-up as compared to baseline, while SHP showed reduced the activity in this region. Further, at follow-up, decliners exhibited more activity than SHP but in left temporo-parietal cortex and posterior cingulate (i.e., non-task-related areas). Also, at the cross-sectional level, SLP showed lower activity than SHP at both time points and less activity than decliners at follow-up. Concerning brain structure, a generalized significant cortical thinning over time was identified for the whole sample. Notwithstanding, the decliners evidenced a greater rate of atrophy comprising the posterior middle and inferior temporal gyrus as compared to the stable group. Overall, fMRI data suggest unsuccessful compensation in the case of decliners, shown as increases in functional recruitment during the task in the context of a loss in WM performance and brain atrophy. On the other hand, among older individuals with WM cognitive stability, differences in baseline performance might determine dissimilar fMRI trajectories. In this vein, the findings in the SHP subgroup support the brain maintenance hypothesis, suggesting that stable and high WM performance in aging is sustained by functional efficiency and maintained brain structure rather than compensatory changes.
Collapse
|
30
|
Domènech M, Serra-Mir M, Roth I, Freitas-Simoes T, Valls-Pedret C, Cofán M, López A, Sala-Vila A, Calvo C, Rajaram S, Sabaté J, Ros E. Effect of a Walnut Diet on Office and 24-Hour Ambulatory Blood Pressure in Elderly Individuals. Hypertension 2019; 73:1049-1057. [PMID: 30879358 PMCID: PMC6467552 DOI: 10.1161/hypertensionaha.118.12766] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Supplemental Digital Content is available in the text. Nut consumption lowers blood cholesterol and is associated with reduced cardiovascular disease, but effects on blood pressure (BP) are inconsistent. We assessed the 2-year effects of a walnut diet versus a control diet on office BP and 24-hours ambulatory BP in free-living elders participating in the Walnuts and Healthy Aging study, a randomized trial testing the effects of walnuts at ≈15% energy on age-related disorders. In a prespecified analysis, we enrolled 305 participants, of whom 236 (75%) completed the study (65% women; age, 69 years; 60% with mild hypertension). Walnuts were well tolerated, and compliance was >98%. Mean baseline office BP was 128/79 mm Hg. Adjusted changes from baseline in mean office systolic BP were −4.61 mm Hg (95% CI, −7.43 to −1.79 mm Hg) in the walnut group and −0.59 mm Hg (−3.38 to 2.21 mm Hg) in controls (P=0.051). Respective changes in mean systolic 24-hour ambulatory BP were −3.86 mm Hg (CI, −5.45 to −2.26 mm Hg) and −2.00 mm Hg (CI, −3.58 to −0.42 mm Hg; P=0.111). No changes in diastolic BP were observed. In participants in the upper tertile of baseline 24-hour ambulatory systolic BP (>125 mm Hg), mean 2-year systolic 24-hour BP was −8.5 mm Hg (CI, −12 to −5.0 mm Hg) in the walnut group and −2.5 mm Hg (CI, −6.3 to 1.3 mm Hg) in controls (P=0.034). During the trial, participants in the walnut group required less uptitration of antihypertensive medication and had better overall BP regulation than controls. Walnut consumption reduces systolic BP in elderly subjects, particularly in those with mild hypertension.
Collapse
Affiliation(s)
- Mónica Domènech
- From the Lipid Clinic, Endocrinology and Nutrition Service, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain (M.D., M.S.-M., I.R., T.F.-S., C.V.-P., M.C., A.L., A.S.-V., C.C., E.R.)
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (M.D., M.S.-M., C.V.-P., M.C., A.L., A.S.-V., C.C., E.R.)
- Faculty of Medicine and Health Sciences. University of Barcelona (M.D.)
| | - Mercè Serra-Mir
- From the Lipid Clinic, Endocrinology and Nutrition Service, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain (M.D., M.S.-M., I.R., T.F.-S., C.V.-P., M.C., A.L., A.S.-V., C.C., E.R.)
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (M.D., M.S.-M., C.V.-P., M.C., A.L., A.S.-V., C.C., E.R.)
| | - Irene Roth
- From the Lipid Clinic, Endocrinology and Nutrition Service, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain (M.D., M.S.-M., I.R., T.F.-S., C.V.-P., M.C., A.L., A.S.-V., C.C., E.R.)
| | - Tania Freitas-Simoes
- From the Lipid Clinic, Endocrinology and Nutrition Service, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain (M.D., M.S.-M., I.R., T.F.-S., C.V.-P., M.C., A.L., A.S.-V., C.C., E.R.)
| | - Cinta Valls-Pedret
- From the Lipid Clinic, Endocrinology and Nutrition Service, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain (M.D., M.S.-M., I.R., T.F.-S., C.V.-P., M.C., A.L., A.S.-V., C.C., E.R.)
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (M.D., M.S.-M., C.V.-P., M.C., A.L., A.S.-V., C.C., E.R.)
| | - Montserrat Cofán
- From the Lipid Clinic, Endocrinology and Nutrition Service, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain (M.D., M.S.-M., I.R., T.F.-S., C.V.-P., M.C., A.L., A.S.-V., C.C., E.R.)
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (M.D., M.S.-M., C.V.-P., M.C., A.L., A.S.-V., C.C., E.R.)
| | - Anna López
- From the Lipid Clinic, Endocrinology and Nutrition Service, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain (M.D., M.S.-M., I.R., T.F.-S., C.V.-P., M.C., A.L., A.S.-V., C.C., E.R.)
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (M.D., M.S.-M., C.V.-P., M.C., A.L., A.S.-V., C.C., E.R.)
| | - Aleix Sala-Vila
- From the Lipid Clinic, Endocrinology and Nutrition Service, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain (M.D., M.S.-M., I.R., T.F.-S., C.V.-P., M.C., A.L., A.S.-V., C.C., E.R.)
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (M.D., M.S.-M., C.V.-P., M.C., A.L., A.S.-V., C.C., E.R.)
| | - Carlos Calvo
- From the Lipid Clinic, Endocrinology and Nutrition Service, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain (M.D., M.S.-M., I.R., T.F.-S., C.V.-P., M.C., A.L., A.S.-V., C.C., E.R.)
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (M.D., M.S.-M., C.V.-P., M.C., A.L., A.S.-V., C.C., E.R.)
| | - Sujatha Rajaram
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, CA (S.R., J.S.)
| | - Joan Sabaté
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, CA (S.R., J.S.)
| | - Emilio Ros
- From the Lipid Clinic, Endocrinology and Nutrition Service, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain (M.D., M.S.-M., I.R., T.F.-S., C.V.-P., M.C., A.L., A.S.-V., C.C., E.R.)
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (M.D., M.S.-M., C.V.-P., M.C., A.L., A.S.-V., C.C., E.R.)
| |
Collapse
|
31
|
Rajaram S, Jones J, Lee GJ. Plant-Based Dietary Patterns, Plant Foods, and Age-Related Cognitive Decline. Adv Nutr 2019; 10:S422-S436. [PMID: 31728502 PMCID: PMC6855948 DOI: 10.1093/advances/nmz081] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/11/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022] Open
Abstract
The aging population is expanding, as is the prevalence of age-related cognitive decline (ARCD). Of the several risk factors that predict the onset and progression of ARCD, 2 important modifiable risk factors are diet and physical activity. Dietary patterns that emphasize plant foods can exert neuroprotective effects. In this comprehensive review, we examine studies in humans of plant-based dietary patterns and polyphenol-rich plant foods and their role in either preventing ARCD and/or improving cognitive function. As yet, there is no direct evidence to support the benefits of a vegetarian diet in preventing cognitive decline. However, there is emerging evidence for brain-health-promoting effects of several plant foods rich in polyphenols, anti-inflammatory dietary patterns, and plant-based dietary patterns such as the Mediterranean diet that include a variety of fruits, vegetables, legumes, nuts, and whole grains. The bioactive compounds present in these dietary patterns include antioxidant vitamins, polyphenols, other phytochemicals, and unsaturated fatty acids. In animal models these nutrients and non-nutrients have been shown to enhance neurogenesis, synaptic plasticity, and neuronal survival by reducing oxidative stress and neuroinflammation. In this review, we summarize the mounting evidence in favor of plant-centered dietary patterns, inclusive of polyphenol-rich foods for cognitive well-being. Randomized clinical trials support the role of plant foods (citrus fruits, grapes, berries, cocoa, nuts, green tea, and coffee) in improving specific domains of cognition, most notably frontal executive function. We also identify knowledge gaps and recommend future studies to identify whether plant-exclusive diets have an added cognitive advantage compared with plant-centered diets with fish and/or small amounts of animal foods.
Collapse
Affiliation(s)
- Sujatha Rajaram
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, USA,Address correspondence to SR (e-mail: )
| | - Julie Jones
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Grace J Lee
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
32
|
Rusu ME, Mocan A, Ferreira ICFR, Popa DS. Health Benefits of Nut Consumption in Middle-Aged and Elderly Population. Antioxidants (Basel) 2019; 8:E302. [PMID: 31409026 PMCID: PMC6719153 DOI: 10.3390/antiox8080302] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is considered the major risk factor for most chronic disorders. Oxidative stress and chronic inflammation are two major contributors for cellular senescence, downregulation of stress response pathways with a decrease of protective cellular activity and accumulation of cellular damage, leading in time to age-related diseases. This review investigated the most recent clinical trials and cohort studies published in the last ten years, which presented the influence of tree nut and peanut antioxidant diets in preventing or delaying age-related diseases in middle-aged and elderly subjects (≥55 years old). Tree nut and peanut ingestion has the possibility to influence blood lipid count, biochemical and anthropometric parameters, endothelial function and inflammatory biomarkers, thereby positively affecting cardiometabolic morbidity and mortality, cancers, and cognitive disorders, mainly through the nuts' healthy lipid profile and antioxidant and anti-inflammatory mechanisms of actions. Clinical evidence and scientific findings demonstrate the importance of diets characterized by a high intake of nuts and emphasize their potential in preventing age-related diseases, validating the addition of tree nuts and peanuts in the diet of older adults. Therefore, increased consumption of bioactive antioxidant compounds from nuts clearly impacts many risk factors related to aging and can extend health span and lifespan.
Collapse
Affiliation(s)
- Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, "Luliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "Luliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania
- Laboratory of Chromatography, ICHAT, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança (IPB), Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Daniela-Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania
| |
Collapse
|
33
|
The red blood cell proportion of arachidonic acid relates to shorter leukocyte telomeres in Mediterranean elders: A secondary analysis of a randomized controlled trial. Clin Nutr 2019; 38:958-961. [DOI: 10.1016/j.clnu.2018.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/02/2018] [Accepted: 02/10/2018] [Indexed: 11/18/2022]
|
34
|
Biochemical deficits and cognitive decline in brain aging: Intervention by dietary supplements. J Chem Neuroanat 2019; 95:70-80. [DOI: 10.1016/j.jchemneu.2018.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/28/2018] [Accepted: 04/13/2018] [Indexed: 01/23/2023]
|
35
|
Comelli NC, Romero OE, Diez PA, Marinho CF, Schliserman P, Carrizo A, Ortiz EV, Duchowicz PR. QSAR Study of Biologically Active Essential Oils against Beetles Infesting the Walnut in Catamarca, Argentina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12855-12865. [PMID: 30418029 DOI: 10.1021/acs.jafc.8b04161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Essential oils from six species of aromatic plants collected in the Catamarca Province of Argentina were evaluated for their chemical composition and repellent and insecticidal activities against beetles of the genus Carpophilus (Coleoptera: Nitidulidae) and Oryzaephilus (Coleoptera: Silvanidae) that infest the local walnut production. Experimental data were analyzed using generalized estimating equations, with normal distribution and the identity link function. From the spectral information from the tested essential oils, we worked their molecular modeling as mixtures by developing mixture descriptors ( Dmix) that combined the molecular descriptor of each component in the mixture ( d i) and its relative concentration ( x i), i.e., Dmix = f( d i, x i). The application of chemoinformatic approaches determined that a combination of mixture descriptors related to molecular size, branchedness, charge distribution, and electronegativity were useful to explain the bioactivity profile against Carpophilus spp. and Oryzaephilus spp. The reported models were rigorously validated using stringent statistical parameters and essential oils reported with repellent activity against other beetle species from the Nitidulidae and Silvanidae families. This model confirmed each essential oil as a repellent with a comparable performance to the experimental reports.
Collapse
Affiliation(s)
- Nieves C Comelli
- Centro de Investigaciones y Transferencia de Catamarca , CITCA-CONICET/UNCA , 4700 Catamarca , Argentina
- Facultad de Ciencias Agrarias , Universidad Nacional de Catamarca, FCA-UNCA , 4700 Catamarca , Argentina
| | - Oscar E Romero
- Centro de Investigaciones y Transferencia de Catamarca , CITCA-CONICET/UNCA , 4700 Catamarca , Argentina
- Facultad de Ciencias Agrarias , Universidad Nacional de Catamarca, FCA-UNCA , 4700 Catamarca , Argentina
| | - Patricia A Diez
- Centro de Investigaciones y Transferencia de Catamarca , CITCA-CONICET/UNCA , 4700 Catamarca , Argentina
| | - Claudia F Marinho
- Centro de Investigaciones y Transferencia de Catamarca , CITCA-CONICET/UNCA , 4700 Catamarca , Argentina
| | - Pablo Schliserman
- Centro de Investigaciones y Transferencia de Catamarca , CITCA-CONICET/UNCA , 4700 Catamarca , Argentina
| | - Adrian Carrizo
- Agencia De Extensión Rural Andalgalá , Instituto Nacional de Tecnología Agropecuaria, AER Andalgalá-INTA , 4740 Catamarca , Argentina
| | - Erlinda V Ortiz
- Instituto de Monitoreo y Control de la Degradación Geoambiental, Facultad de Tecnología y Ciencias Aplicadas , Universidad Nacional de Catamarca IMCoDeG, UNCa , 4700 Catamarca , Argentina
| | - Pablo R Duchowicz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) , CONICET, Universidad Nacional de La Plata (UNLP) , Diag. 113 y 64, C.C. 16, Sucursal 4 , 1900 La Plata , Argentina
| |
Collapse
|
36
|
Freitas-Simoes TM, Cofán M, Blasco MA, Soberón N, Foronda M, Serra-Mir M, Roth I, Valls-Pedret C, Doménech M, Ponferrada-Ariza E, Calvo C, Rajaram S, Sabaté J, Ros E, Sala-Vila A. Walnut Consumption for Two Years and Leukocyte Telomere Attrition in Mediterranean Elders: Results of a Randomized Controlled Trial. Nutrients 2018; 10:nu10121907. [PMID: 30518050 PMCID: PMC6316673 DOI: 10.3390/nu10121907] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/12/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
Randomized controlled trials on diet and shortening of leukocyte telomere length (LTL) mostly focus on marine-derived n-3 polyunsaturated fatty acids (PUFA). Walnuts are a sustainable source of n-3 PUFA. We investigated whether inclusion of walnuts (15% of energy) in the diet for 2 years would maintain LTL in cognitively healthy elders (63–79 years old) compared to a control group (habitual diet, abstaining from walnuts). This opportunistic sub-study was conducted within the Walnuts and Healthy Aging study, a dual-centre (Barcelona, Spain and Loma Linda University, California) parallel trial. A sub-set of the Barcelona site participants were randomly assigned to the walnut (n = 80) or control group (n = 69). We assessed LTL at baseline and at 2 years and we conducted repeated-measures ANCOVA with 2 factors: time (baseline, 2 years) and group (control, walnut) and their interaction. Adjusted means (95% confidence interval) of LTL (in kb) in controls were 7.360 (7.084,7.636) at baseline and 7.061 (6.835,7.288) after 2 years; corresponding values in the walnut group were 7.064 (6.807,7.320) and 7.074 (6.864,7.284). The time × intervention interaction was nearly significant (p = 0.079), suggestive of a trend of walnut consumption in preserving LTL. This exploratory research finding should be confirmed in trials with adequate statistical power.
Collapse
Affiliation(s)
- Tania-Marisa Freitas-Simoes
- Lipid Clinic, Department of Endocrinology and Nutrition, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, Edifici Helios, despatx 8, 08036 Barcelona, Spain.
| | - Montserrat Cofán
- Lipid Clinic, Department of Endocrinology and Nutrition, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, Edifici Helios, despatx 8, 08036 Barcelona, Spain.
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.
| | - Nora Soberón
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.
| | - Miguel Foronda
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.
| | - Mercè Serra-Mir
- Lipid Clinic, Department of Endocrinology and Nutrition, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, Edifici Helios, despatx 8, 08036 Barcelona, Spain.
| | - Irene Roth
- Lipid Clinic, Department of Endocrinology and Nutrition, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, Edifici Helios, despatx 8, 08036 Barcelona, Spain.
| | - Cinta Valls-Pedret
- Lipid Clinic, Department of Endocrinology and Nutrition, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, Edifici Helios, despatx 8, 08036 Barcelona, Spain.
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Mónica Doménech
- Lipid Clinic, Department of Endocrinology and Nutrition, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, Edifici Helios, despatx 8, 08036 Barcelona, Spain.
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Elena Ponferrada-Ariza
- Lipid Clinic, Department of Endocrinology and Nutrition, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, Edifici Helios, despatx 8, 08036 Barcelona, Spain.
| | - Carlos Calvo
- Lipid Clinic, Department of Endocrinology and Nutrition, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, Edifici Helios, despatx 8, 08036 Barcelona, Spain.
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Sujatha Rajaram
- Department of Nutrition, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Joan Sabaté
- Department of Nutrition, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Emilio Ros
- Lipid Clinic, Department of Endocrinology and Nutrition, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, Edifici Helios, despatx 8, 08036 Barcelona, Spain.
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Aleix Sala-Vila
- Lipid Clinic, Department of Endocrinology and Nutrition, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, Edifici Helios, despatx 8, 08036 Barcelona, Spain.
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| |
Collapse
|
37
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, AlAbdulghafoor FK, Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11:CD003177. [PMID: 30521670 PMCID: PMC6517311 DOI: 10.1002/14651858.cd003177.pub4] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Researchers have suggested that omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess effects of increased intake of fish- and plant-based omega-3 for all-cause mortality, cardiovascular (CVD) events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to September 2016, with no language restrictions. We handsearched systematic review references and bibliographies and contacted authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation and/or advice to increase LCn3 or ALA intake versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet. LCn3 doses ranged from 0.5g/d LCn3 to > 5 g/d (16 RCTs gave at least 3g/d LCn3).Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high-quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high-quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses - LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs) and ALA may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low-quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low-quality evidence with greater effects in trials at low summary risk of bias), and probably reduces risk of arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.Sensitivity analysis retaining only trials at low summary risk of bias moved effect sizes towards the null (RR 1.0) for all LCn3 primary outcomes except arrhythmias, but for most ALA outcomes, effect sizes moved to suggest protection. LCn3 funnel plots suggested that adding in missing studies/results would move effect sizes towards null for most primary outcomes. There were no dose or duration effects in subgrouping or meta-regression.There was no evidence that increasing LCn3 or ALA altered serious adverse events, adiposity or lipids, except LCn3 reduced triglycerides by ˜15% in a dose-dependant way (high-quality evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and high-quality evidence suggests that increasing EPA and DHA has little or no effect on mortality or cardiovascular health (evidence mainly from supplement trials). Previous suggestions of benefits from EPA and DHA supplements appear to spring from trials with higher risk of bias. Low-quality evidence suggests ALA may slightly reduce CVD event and arrhythmia risk.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Durham UniversityWolfson Research InstituteDurhamUKDH1 3LE
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Fai K AlAbdulghafoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Science42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthJR Moore BuildingOxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
38
|
Abdelhamid AS, Martin N, Bridges C, Brainard JS, Wang X, Brown TJ, Hanson S, Jimoh OF, Ajabnoor SM, Deane KHO, Song F, Hooper L. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11:CD012345. [PMID: 30484282 PMCID: PMC6517012 DOI: 10.1002/14651858.cd012345.pub3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Evidence on the health effects of total polyunsaturated fatty acids (PUFA) is equivocal. Fish oils are rich in omega-3 PUFA and plant oils in omega-6 PUFA. Evidence suggests that increasing PUFA-rich foods, supplements or supplemented foods can reduce serum cholesterol, but may increase body weight, so overall cardiovascular effects are unclear. OBJECTIVES To assess effects of increasing total PUFA intake on cardiovascular disease and all-cause mortality, lipids and adiposity in adults. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017 and clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to September 2016, without language restrictions. We checked trials included in relevant systematic reviews. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing higher with lower PUFA intakes in adults with or without cardiovascular disease that assessed effects over 12 months or longer. We included full texts, abstracts, trials registry entries and unpublished data. Outcomes were all-cause mortality, cardiovascular disease mortality and events, risk factors (blood lipids, adiposity, blood pressure), and adverse events. We excluded trials where we could not separate effects of PUFA intake from other dietary, lifestyle or medication interventions. DATA COLLECTION AND ANALYSIS Two review authors independently screened titles and abstracts, assessed trials for inclusion, extracted data, and assessed risk of bias. We wrote to authors of included trials for further data. Meta-analyses used random-effects analysis, sensitivity analyses included fixed-effects and limiting to low summary risk of bias. We assessed GRADE quality of evidence. MAIN RESULTS We included 49 RCTs randomising 24,272 participants, with duration of one to eight years. Eleven included trials were at low summary risk of bias, 33 recruited participants without cardiovascular disease. Baseline PUFA intake was unclear in most trials, but 3.9% to 8% of total energy intake where reported. Most trials gave supplemental capsules, but eight gave dietary advice, eight gave supplemental foods such as nuts or margarine, and three used a combination of methods to increase PUFA.Increasing PUFA intake probably has little or no effect on all-cause mortality (risk 7.8% vs 7.6%, risk ratio (RR) 0.98, 95% confidence interval (CI) 0.89 to 1.07, 19,290 participants in 24 trials), but probably slightly reduces risk of coronary heart disease events from 14.2% to 12.3% (RR 0.87, 95% CI 0.72 to 1.06, 15 trials, 10,076 participants) and cardiovascular disease events from 14.6% to 13.0% (RR 0.89, 95% CI 0.79 to 1.01, 17,799 participants in 21 trials), all moderate-quality evidence. Increasing PUFA may slightly reduce risk of coronary heart disease death (6.6% to 6.1%, RR 0.91, 95% CI 0.78 to 1.06, 9 trials, 8810 participants) andstroke (1.2% to 1.1%, RR 0.91, 95% CI 0.58 to 1.44, 11 trials, 14,742 participants, though confidence intervals include important harms), but has little or no effect on cardiovascular mortality (RR 1.02, 95% CI 0.82 to 1.26, 16 trials, 15,107 participants) all low-quality evidence. Effects of increasing PUFA on major adverse cardiac and cerebrovascular events and atrial fibrillation are unclear as evidence is of very low quality.Increasing PUFA intake probably slightly decreases triglycerides (by 15%, MD -0.12 mmol/L, 95% CI -0.20 to -0.04, 20 trials, 3905 participants), but has little or no effect on total cholesterol (mean difference (MD) -0.12 mmol/L, 95% CI -0.23 to -0.02, 26 trials, 8072 participants), high-density lipoprotein (HDL) (MD -0.01 mmol/L, 95% CI -0.02 to 0.01, 18 trials, 4674 participants) or low-density lipoprotein (LDL) (MD -0.01 mmol/L, 95% CI -0.09 to 0.06, 15 trials, 3362 participants). Increasing PUFA probably has little or no effect on adiposity (body weight MD 0.76 kg, 95% CI 0.34 to 1.19, 12 trials, 7100 participants).Effects of increasing PUFA on serious adverse events such as pulmonary embolism and bleeding are unclear as the evidence is of very low quality. AUTHORS' CONCLUSIONS This is the most extensive systematic review of RCTs conducted to date to assess effects of increasing PUFA on cardiovascular disease, mortality, lipids or adiposity. Increasing PUFA intake probably slightly reduces risk of coronary heart disease and cardiovascular disease events, may slightly reduce risk of coronary heart disease mortality and stroke (though not ruling out harms), but has little or no effect on all-cause or cardiovascular disease mortality. The mechanism may be via TG reduction.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Nicole Martin
- University College LondonInstitute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Charlene Bridges
- University College LondonInstitute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Xia Wang
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Sarah Hanson
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Oluseyi F Jimoh
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Sarah M Ajabnoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
39
|
Bitok E, Rajaram S, Jaceldo-Siegl K, Oda K, Sala-Vila A, Serra-Mir M, Ros E, Sabaté J. Effects of Long-Term Walnut Supplementation on Body Weight in Free-Living Elderly: Results of a Randomized Controlled Trial. Nutrients 2018; 10:nu10091317. [PMID: 30231466 PMCID: PMC6163338 DOI: 10.3390/nu10091317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 01/04/2023] Open
Abstract
Objective: To assess the effects of chronic walnut consumption on body weight and adiposity in elderly individuals. Methods: The Walnuts and Healthy Aging study is a dual-center (Barcelona, Spain and Loma Linda University (LLU)), 2-year randomized parallel trial. This report concerns only the LLU cohort. Healthy elders (mean age 69 year, 67% women) were randomly assigned to walnut (n = 183) or control diets (n = 173). Subjects in the walnut group received packaged walnuts (28–56 g/day), equivalent to ≈15% of daily energy requirements, to incorporate into their habitual diet, while those in the control group abstained from walnuts. Adiposity was measured periodically, and data were adjusted for in-trial changes in self-reported physical activity. Results: After 2 years, body weight significantly decreased (p = 0.031), while body fat significantly increased (p = 0.0001). However, no significant differences were observed between the control and walnut groups regarding body weight (−0.6 kg and −0.4 kg, respectively, p = 0.67) or body fat (+0.9% and +1.3%, respectively, p = 0.53). Lean body mass, waist circumference, and waist-to-hip ratio remained essentially unchanged. Sensitivity analyses were consistent with the findings of primary analysis. Conclusion: Our findings indicate that walnuts can be incorporated into the daily diet of healthy elders without concern for adverse effects on body weight or body composition.
Collapse
Affiliation(s)
- Edward Bitok
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA.
- Department of Nutrition & Dietetics, School of Allied Health Professions, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Sujatha Rajaram
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Karen Jaceldo-Siegl
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Keiji Oda
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Aleix Sala-Vila
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona 08036, Spain.
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain.
| | - Mercè Serra-Mir
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona 08036, Spain.
| | - Emilio Ros
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona 08036, Spain.
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain.
| | - Joan Sabaté
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
40
|
Abdelhamid AS, Martin N, Bridges C, Brainard JS, Wang X, Brown TJ, Hanson S, Jimoh OF, Ajabnoor SM, Deane KHO, Song F, Hooper L. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 7:CD012345. [PMID: 30019767 PMCID: PMC6513571 DOI: 10.1002/14651858.cd012345.pub2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Evidence on the health effects of total polyunsaturated fatty acids (PUFA) is equivocal. Fish oils are rich in omega-3 PUFA and plant oils in omega-6 PUFA. Evidence suggests that increasing PUFA-rich foods, supplements or supplemented foods can reduce serum cholesterol, but may increase body weight, so overall cardiovascular effects are unclear. OBJECTIVES To assess effects of increasing total PUFA intake on cardiovascular disease and all-cause mortality, lipids and adiposity in adults. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017 and clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to September 2016, without language restrictions. We checked trials included in relevant systematic reviews. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing higher with lower PUFA intakes in adults with or without cardiovascular disease that assessed effects over 12 months or longer. We included full texts, abstracts, trials registry entries and unpublished data. Outcomes were all-cause mortality, cardiovascular disease mortality and events, risk factors (blood lipids, adiposity, blood pressure), and adverse events. We excluded trials where we could not separate effects of PUFA intake from other dietary, lifestyle or medication interventions. DATA COLLECTION AND ANALYSIS Two review authors independently screened titles and abstracts, assessed trials for inclusion, extracted data, and assessed risk of bias. We wrote to authors of included trials for further data. Meta-analyses used random-effects analysis, sensitivity analyses included fixed-effects and limiting to low summary risk of bias. We assessed GRADE quality of evidence. MAIN RESULTS We included 49 RCTs randomising 24,272 participants, with duration of one to eight years. Eleven included trials were at low summary risk of bias, 33 recruited participants without cardiovascular disease. Baseline PUFA intake was unclear in most trials, but 3.9% to 8% of total energy intake where reported. Most trials gave supplemental capsules, but eight gave dietary advice, eight gave supplemental foods such as nuts or margarine, and three used a combination of methods to increase PUFA.Increasing PUFA intake probably has little or no effect on all-cause mortality (risk 7.8% vs 7.6%, risk ratio (RR) 0.98, 95% confidence interval (CI) 0.89 to 1.07, 19,290 participants in 24 trials), but probably slightly reduces risk of coronary heart disease events from 14.2% to 12.3% (RR 0.87, 95% CI 0.72 to 1.06, 15 trials, 10,076 participants) and cardiovascular disease events from 14.6% to 13.0% (RR 0.89, 95% CI 0.79 to 1.01, 17,799 participants in 21 trials), all moderate-quality evidence. Increasing PUFA may slightly reduce risk of coronary heart disease death (6.6% to 6.1%, RR 0.91, 95% CI 0.78 to 1.06, 9 trials, 8810 participants) andstroke (1.2% to 1.1%, RR 0.91, 95% CI 0.58 to 1.44, 11 trials, 14,742 participants, though confidence intervals include important harms), but has little or no effect on cardiovascular mortality (RR 1.02, 95% CI 0.82 to 1.26, 16 trials, 15,107 participants) all low-quality evidence. Effects of increasing PUFA on major adverse cardiac and cerebrovascular events and atrial fibrillation are unclear as evidence is of very low quality.Increasing PUFA intake slightly reduces total cholesterol (mean difference (MD) -0.12 mmol/L, 95% CI -0.23 to -0.02, 26 trials, 8072 participants) and probably slightly decreases triglycerides (MD -0.12 mmol/L, 95% CI -0.20 to -0.04, 20 trials, 3905 participants), but has little or no effect on high-density lipoprotein (HDL) (MD -0.01 mmol/L, 95% CI -0.02 to 0.01, 18 trials, 4674 participants) or low-density lipoprotein (LDL) (MD -0.01 mmol/L, 95% CI -0.09 to 0.06, 15 trials, 3362 participants). Increasing PUFA probably causes slight weight gain (MD 0.76 kg, 95% CI 0.34 to 1.19, 12 trials, 7100 participants).Effects of increasing PUFA on serious adverse events such as pulmonary embolism and bleeding are unclear as the evidence is of very low quality. AUTHORS' CONCLUSIONS This is the most extensive systematic review of RCTs conducted to date to assess effects of increasing PUFA on cardiovascular disease, mortality, lipids or adiposity. Increasing PUFA intake probably slightly reduces risk of coronary heart disease and cardiovascular disease events, may slightly reduce risk of coronary heart disease mortality and stroke (though not ruling out harms), but has little or no effect on all-cause or cardiovascular disease mortality. The mechanism may be via lipid reduction, but increasing PUFA probably slightly increases weight.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Nicole Martin
- University College LondonFarr Institute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Charlene Bridges
- University College LondonFarr Institute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Xia Wang
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Sarah Hanson
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Oluseyi F Jimoh
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Sarah M Ajabnoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| |
Collapse
|
41
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, AlAbdulghafoor FK, Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 7:CD003177. [PMID: 30019766 PMCID: PMC6513557 DOI: 10.1002/14651858.cd003177.pub3] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Researchers have suggested that omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess effects of increased intake of fish- and plant-based omega-3 for all-cause mortality, cardiovascular (CVD) events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to September 2016, with no language restrictions. We handsearched systematic review references and bibliographies and contacted authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation and/or advice to increase LCn3 or ALA intake versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet.Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high-quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high-quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses - LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and it may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low-quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low-quality evidence), and probably reduces risk of CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs), and arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.Sensitivity analysis retaining only trials at low summary risk of bias moved effect sizes towards the null (RR 1.0) for all LCn3 primary outcomes except arrhythmias, but for most ALA outcomes, effect sizes moved to suggest protection. LCn3 funnel plots suggested that adding in missing studies/results would move effect sizes towards null for most primary outcomes. There were no dose or duration effects in subgrouping or meta-regression.There was no evidence that increasing LCn3 or ALA altered serious adverse events, adiposity or lipids, although LCn3 slightly reduced triglycerides and increased HDL. ALA probably reduces HDL (high- or moderate-quality evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and high-quality evidence suggests that increasing EPA and DHA has little or no effect on mortality or cardiovascular health (evidence mainly from supplement trials). Previous suggestions of benefits from EPA and DHA supplements appear to spring from trials with higher risk of bias. Low-quality evidence suggests ALA may slightly reduce CVD event risk, CHD mortality and arrhythmia.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Durham UniversityWolfson Research InstituteDurhamUKDH1 3LE
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Fai K AlAbdulghafoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Science42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthJR Moore BuildingOxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| |
Collapse
|
42
|
Sarubbo F, Moranta D, Pani G. Dietary polyphenols and neurogenesis: Molecular interactions and implication for brain ageing and cognition. Neurosci Biobehav Rev 2018; 90:456-470. [DOI: 10.1016/j.neubiorev.2018.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 04/05/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022]
|
43
|
|