1
|
Hu J, Craig MS, Knight SP, De Looze C, Meaney JF, Kenny RA, Chen X, Chappell MA. Regional changes in cerebral perfusion with age when accounting for changes in gray-matter volume. Magn Reson Med 2025; 93:1807-1820. [PMID: 39568213 PMCID: PMC11782718 DOI: 10.1002/mrm.30376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE One possible contributing factor for cerebral blood flow (CBF) decline in normal aging is the increase in partial volume effects due to brain atrophy, as cortical thinning can exacerbate the contamination of gray-matter (GM) voxels by other tissue types. This work investigates CBF changes in normal aging of a large elderly cohort aged 54 to 84 and how correction for partial volume effects that would accommodate potential changes in GM might affect this. METHODS The study cohort consisted of 474 participants aged 54 to 84 years using pseudo-continuous arterial spin labeling MRI. A volumetric pipeline and a surface-based pipeline were applied to measure global and regional perfusion. Volumetric regions of interest (ROIs) included GM, cerebral white matter, vascular territories, and the brain atlas from the UK Biobank. The cortical parcellation was using Desikan-Killiany atlas. Non-partial volume effect correction (PVEc) and PVEc GM-CBF changes with aging were modeled using linear regressions. RESULTS Global GM CBF decreased by 0.17 mL/100 g/min per year with aging before PVEc (p < 0.05) and was 0.18 mL/100 g/min after PVEc (p < 0.05). All cortical parcels exhibited CBF decreases with age before PVEc. After PVEc, seven parcels retained decreasing trends. However, GM CBF demonstrated increase with age after PVEc in three parcels. CONCLUSION Although decreases in global perfusion are observed with aging before PVEc, perfusion variations appear to be more regionally selective after PVEc. This supports the understanding that variation in cerebral perfusion with age observed with imaging is influenced by regional changes in anatomy that can be accommodated with PVEc, but perfusion variation is still observable even after PVE is accounted for.
Collapse
Affiliation(s)
- Jian Hu
- Mental Health & Clinical Neurosciences, School of Medicine University of NottinghamNottinghamUK
- Sir Peter Mansfield Imaging Center, School of Medicine University of NottinghamNottinghamUK
| | - Martin S. Craig
- Mental Health & Clinical Neurosciences, School of Medicine University of NottinghamNottinghamUK
- Sir Peter Mansfield Imaging Center, School of Medicine University of NottinghamNottinghamUK
| | - Silvin P. Knight
- The Irish Longitudinal Study on Ageing, School of Medicine Trinity College DublinDublinIreland
- School of MedicineTrinity College DublinDublinIreland
| | - Celine De Looze
- The Irish Longitudinal Study on Ageing, School of Medicine Trinity College DublinDublinIreland
- School of MedicineTrinity College DublinDublinIreland
| | - James F. Meaney
- School of MedicineTrinity College DublinDublinIreland
- The National Center for Advanced Medical ImagingSt. James's HospitalDublinIreland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing, School of Medicine Trinity College DublinDublinIreland
- School of MedicineTrinity College DublinDublinIreland
- The Global Brain Health InstituteTrinity College DublinDublinIreland
- Mercer's Institute for Successful AgeingSt. James's HospitalDublinIreland
| | - Xin Chen
- Intelligent Modelling & Analysis GroupSchool of Computer Science, University of NottinghamNottinghamUK
| | - Michael A. Chappell
- Mental Health & Clinical Neurosciences, School of Medicine University of NottinghamNottinghamUK
- Sir Peter Mansfield Imaging Center, School of Medicine University of NottinghamNottinghamUK
| |
Collapse
|
2
|
Janthakhin Y, Juntapremjit S, Hummel K, Razzazi-Fazeli E, Kingtong S. The Alteration of Proteomic Profiles in Hippocampus of Type 2 Diabetic Mice Associated With Cognitive Impairment. Bioinform Biol Insights 2024; 18:11779322241306290. [PMID: 39703749 PMCID: PMC11656429 DOI: 10.1177/11779322241306290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Clinical and experimental studies have demonstrated that type 2 diabetes mellitus (T2DM) affects the brain structure and function, in particular the hippocampus, leading to cognitive impairments. However, the molecular mechanisms underlying cognitive deficits induced by T2DM are not fully understood. In this study, we aimed to investigate the effects of T2DM on behavior, the proteome profile in the hippocampus, and the potential molecular pathways involved in the development of cognitive dysfunction in T2DM mice. We found that the diabetic mice exhibited cognitive impairment in the novel object location recognition test and the novel object recognition test. The proteomic analysis revealed that various molecular pathways were involved in this context. These included the upregulation of proteins in the protein synthesis and folding pathway (EIF5A, RSP24, and PPIB), endocytosis and cellular trafficking (VPS24, SNX12, and ARP2/3), cannabinoid receptor interacting (CRIP1), ubiquitination (SKP1), and oxidative stress response (NUDT3). Downregulated proteins were related to mitochondria function (ANT1), neuronal development (ELP1), protein glycosylation (RPN2), and endocytosis (VPS4). Our study shows that T2DM mice exhibit neurocognitive impairment, which is linked to the dysregulation of hippocampal proteins involved in various molecular pathways. These findings contribute to a better understanding of the pathophysiology of T2DM-related cognitive impairment and may identify molecular targets for drug development to treat T2DM-associated cognitive impairment conditions.
Collapse
Affiliation(s)
- Yoottana Janthakhin
- Department of Research and Applied Psychology, Faculty of Education, Burapha University, Chonburi, Thailand
| | - Sirikran Juntapremjit
- Department of Learning Management, Faculty of Education, Burapha University, Chonburi, Thailand
| | - Karin Hummel
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | | | - Sutin Kingtong
- Department of Biology, Faculty of Science, Burapha University, Chonburi, Thailand
| |
Collapse
|
3
|
Chen B, Meseguer D, Lenck S, Thomas JL, Schneeberger M. Rewiring of the glymphatic landscape in metabolic disorders. Trends Endocrinol Metab 2024:S1043-2760(24)00295-9. [PMID: 39638721 DOI: 10.1016/j.tem.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
The incorporation of the glymphatic clearance system in the study of brain physiology aids in the advancement of innovative diagnostic and treatment strategies for neurological disorders. Exploring the glymphatic system across (from) neurological and (to) metabolic diseases may provide a better link between obesity and neurological disorders. Recent studies indicate the role of metabolic dysfunction as a risk factor for cognitive decline and neurological disorders through the disruption of the glymphatic system. Further investigation into how metabolic dysfunction disrupts glymphatic homeostasis and the domino effects on the neurovascular landscape, including neurovascular uncoupling, cerebral blood flow disruptions, blood-brain barrier leakage, and demyelination, can provide mechanistic insights into the link between obesity and neurological disorders.
Collapse
Affiliation(s)
- Bandy Chen
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
| | - David Meseguer
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Lenck
- Department of Neuroradiology, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France; Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Jean-Leon Thomas
- Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France; Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Marc Schneeberger
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA; Wu Tsai Institute for Mind and Brain, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Lee J, Kim J, An SJ. Association of diabetes risk with changes in memory, working memory, and processing speed among older adults. Front Psychol 2024; 15:1427139. [PMID: 39600601 PMCID: PMC11588497 DOI: 10.3389/fpsyg.2024.1427139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024] Open
Abstract
Background This study investigated the risk of diabetes by examining changes in memory, working memory, and processing speed among older adults to provide evidence on how each cognitive domain is associated with the risk of diabetes in older adults. Methods This study used Health and Retirement Study data and tracked the respondents from 2012 to 2020 (n = 5,748). The Telephone Interview for Cognitive Status-27 includes three cognitive tests (recall, seven subtraction, and counting backward tests) to assess each cognitive domain. A Cox proportional hazard regression was used to calculate the changes in the odds ratio (OR) of diabetes by increasing each cognitive function and the parameter in covariates. Results We found that the OR of diabetes decreased with increasing universal cognitive function, increasing memory, working memory, and processing speed, and that age increased the OR in all analysis models. Conclusion The findings of this study contribute to filling gaps in the literature by exploring: (a) the association between each cognitive function and the decline in diabetes risk and (b) the varying patterns of change in diabetes risk with increasing cognitive function.
Collapse
Affiliation(s)
- Jungjoo Lee
- School of Health Professions, College of Nursing and Health Professions, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Junhyoung Kim
- Department of Health Behavior, School of Public Health, Texas A&M University, College Station, TX, United States
| | - Sang Joon An
- Department of Neurology, The Convergence Institute of Healthcare and Medical Science, International St. Mary’s Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| |
Collapse
|
5
|
Kalantari S, Soltani M, Maghbooli M, Khoshe Mehr F, Kalantari Z, Borji S, Memari B, Hossein Heydari A, Elahi R, Bayat M, Salighehrad H. Alteraciones del flujo sanguíneo cerebral medidas con RM-ASL como predictor de demencia vascular en la enfermedad isquémica de pequeño vaso. RADIOLOGIA 2024. [DOI: 10.1016/j.rx.2024.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Li M, Li Y, Zhao K, Qin C, Chen Y, Liu Y, Qiu S, Tan X, Liang Y. Abnormal cerebral blood flow and brain function in type 2 diabetes mellitus. Endocrine 2024; 85:433-442. [PMID: 37340286 DOI: 10.1007/s12020-023-03342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/25/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE Type 2 diabetes mellitus (T2DM) lead to impaired cerebral blood perfusion, which leads to changes in brain function and affects the cognitive function of patients. In this study, cerebral blood flow (CBF) was used to evaluate the effect of T2DM on cerebral perfusion, and functional connectivity (FC) analysis was further used to explore whether the FC between the abnormal CBF region and the whole brain was changed. In addition, amplitude of low-frequency fluctuation (ALFF) and degree centrality (DC) were used to investigate the changes in spontaneous activity and connectivity strength of the brain network. METHODS We recruited 40 T2DM patients and 55 healthy controls (HCs). They underwent 3D-T1WI, rs-fMRI, arterial spin labeling (ASL) sequence scans and a series of cognitive tests. Cognitive test scores and brain imaging indicators were compared between the two groups, and the relationships among laboratory indicators, cognitive test scores, and brain imaging indicators were explored in the T2DM group. RESULTS Compared to HCs, The CBF values of Calcarine_L and Precuneus_R in the T2DM group were lower. The DC value of Paracentral_Lobule_L and Precuneus_L, and the ALFF value of Hippocampus_L in the T2DM group were higher. In addition, the CBF values of Calcarine_L was negatively correlated with fasting insulin and HOMA_IR. CONCLUSION This study found that there were regions of cerebral hypoperfusion in T2DM patients, which are associated with insulin resistance. In addition, we found abnormally elevated brain activity and enhanced functional connectivity in T2DM patients, which we speculated was the compensatory mechanism of brain neural activity.
Collapse
Affiliation(s)
- Mingrui Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Magnatic Resonance Imaging, Zhanjiang First Hospital of Traditional Chinese Medicine, Zhanjiang, China
| | - Yifan Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kui Zhao
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunhong Qin
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuna Chen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Liu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijun Qiu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xin Tan
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yi Liang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
7
|
Deery HA, Liang E, Di Paolo R, Voigt K, Murray G, Siddiqui MN, Egan GF, Moran C, Jamadar SD. The association of regional cerebral blood flow and glucose metabolism in normative ageing and insulin resistance. Sci Rep 2024; 14:14574. [PMID: 38914735 PMCID: PMC11196590 DOI: 10.1038/s41598-024-65396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Rising rates of insulin resistance and an ageing population are set to exact an increasing toll on individuals and society. Here we examine the contribution of age and insulin resistance to the association of cerebral blood flow and glucose metabolism; both critical process in the supply of energy for the brain. Thirty-four younger (20-42 years) and 41 older (66-86 years) healthy adults underwent a simultaneous resting state MR/PET scan, including arterial spin labelling. Rates of cerebral blood flow and glucose metabolism were derived using a functional atlas of 100 brain regions. Older adults had lower cerebral blood flow than younger adults in 95 regions, reducing to 36 regions after controlling for cortical atrophy and blood pressure. Lower cerebral blood flow was also associated with worse working memory and slower reaction time in tasks requiring cognitive flexibility and response inhibition. Younger and older insulin sensitive adults showed small, negative correlations between relatively high rates of regional cerebral blood flow and glucose metabolism. This pattern was inverted in insulin resistant older adults, who showed hypoperfusion and hypometabolism across the cortex, and a positive correlation. In insulin resistant younger adults, the association showed inversion to positive correlations, although not to the extent seen in older adults. Our findings suggest that the normal course of ageing and insulin resistance alter the rates of and associations between cerebral blood flow and glucose metabolism. They underscore the criticality of insulin sensitivity to brain health across the adult lifespan.
Collapse
Affiliation(s)
- Hamish A Deery
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia.
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia.
| | - Emma Liang
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Robert Di Paolo
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Katharina Voigt
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Gerard Murray
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - M Navyaan Siddiqui
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Chris Moran
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Rd, Melbourne, VIC, 3004, Australia
| | - Sharna D Jamadar
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia.
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia.
| |
Collapse
|
8
|
Clemons GA, Silva ACE, Acosta CH, Udo MSB, Tesic V, Rodgers KM, Wu CYC, Citadin CT, Lee RHC, Neumann JT, Allani S, Prentice H, Zhang Q, Lin HW. Protein arginine methyltransferase 4 modulates nitric oxide synthase uncoupling and cerebral blood flow in Alzheimer's disease. J Cell Physiol 2024; 239:e30858. [PMID: 36036549 PMCID: PMC9971360 DOI: 10.1002/jcp.30858] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of mortality, disability, and long-term care burden in the United States, with women comprising the majority of AD diagnoses. While AD-related dementia is associated with tau and amyloid beta accumulation, concurrent derangements in cerebral blood flow have been observed alongside these proteinopathies in humans and rodent models. The homeostatic production of nitric oxide synthases (NOS) becomes uncoupled in AD which leads to decreased NO-mediated vasodilation and oxidative stress via the production of peroxynitrite (ONOO-∙) superoxide species. Here, we investigate the role of the novel protein arginine methyltransferase 4 (PRMT4) enzyme function and its downstream product asymmetric dimethyl arginine (ADMA) as it relates to NOS dysregulation and cerebral blood flow in AD. ADMA (type-1 PRMT product) has been shown to bind NOS as a noncanonic ligand causing enzymatic dysfunction. Our results from RT-qPCR and protein analyses suggest that aged (9-12 months) female mice bearing tau- and amyloid beta-producing transgenic mutations (3xTg-AD) express higher levels of PRMT4 in the hippocampus when compared to age- and sex-matched C57BL6/J mice. In addition, we performed studies to quantify the expression and activity of different NOS isoforms. Furthermore, laser speckle contrast imaging analysis was indicative that 3xTg-AD mice have dysfunctional NOS activity, resulting in reduced production of NO metabolites, enhanced production of free-radical ONOO-, and decreased cerebral blood flow. Notably, the aforementioned phenomena can be reversed via pharmacologic PRMT4 inhibition. Together, these findings implicate the potential importance of PRMT4 signaling in the pathogenesis of Alzheimer's-related cerebrovascular derangement.
Collapse
Affiliation(s)
- Garrett A Clemons
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | | | - Christina H Acosta
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Mariana Sayuri Berto Udo
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Vesna Tesic
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Krista M Rodgers
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Cristiane T Citadin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Jake T Neumann
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, West Virginia, USA
| | - Shailaja Allani
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, Florida, USA
| | - Howard Prentice
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Hung Wen Lin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
9
|
Farkhani S, Payab M, Sharifi F, Sharifi Y, Mohammadi S, Shadman Z, Fahimfar N, Heshmat R, Hadizadeh A, Shafiee G, Nabipour I, Tavakoli F, Larijani B, Ebrahimpur M, Ostovar A. Association between pre-diabetes or diabetes and cognitive impairment in a community-dwelling older population: Bushehr Elderly Health (BEH) program. J Diabetes Metab Disord 2024; 23:639-646. [PMID: 38932839 PMCID: PMC11196454 DOI: 10.1007/s40200-023-01325-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/27/2023] [Indexed: 06/28/2024]
Abstract
Background Persistent uncontrolled hyperglycemia is recognized as one of the risk factors for cognitive disorders. Accordingly, both type 1 and type 2 diabetes may predispose individuals to cognitive impairment, particularly in cases where glycemic control is insufficient. The objective of this comprehensive study is to separately assess cognitive dysfunctions in diabetic and non-diabetic older adults. Methods This cross-sectional study is part of phase 2 of the Bushehr elderly health program (BEHP). Cognitive function was evaluated using the Mini-cog and categorical verbal fluency tests (CFTs). Patients were classified as non-diabetics, pre-diabetics, or diabetics based on the diagnostic criteria for diabetes mellitus (DM). To compare the means of the two groups, we utilized the t-test or the Mann-Whitney test. Additionally Multivariable logistic regression models were used to determine the association between pre-diabetes or DM and cognitive impairment. Results Out of 1533 participants, 693 (45.2%) were identified as having cognitive impairment. The average hemoglobin A1C was higher in participants with cognitive impairment compared to those without cognitive impairment. (5.8 ± 1.6% vs. 5.5 ± 1.4%, P = 0.004). Furthermore, the mean blood glucose levels were found to be more elevated in cases of cognitive impairment (108.0 ± 47.4 mg/dL vs. 102.1 ± 0.35 mg/dL, P = 0.002). After adjusting for age, gender, body mass index (BMI), waist circumference, amount of physical activity, and smoking, the multivariable logistic regression model, declared an association between diabetes and cognitive impairment (OR = 1.48, P = 0.003). In addition, older patients, females, widows, and individuals with elevated LDL-Cs and those with high blood pressure were found to be more vulnerable to cognitive impairment. Conclusion The Bushehr Elderly Health Program (BEHP) study revealed that individuals affected with cognitive impairment may exhibit higher levels of HbA1c. This suggests a positive correlation between elevated HbA1c and cognitive impairment.
Collapse
Affiliation(s)
- Sara Farkhani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Sharifi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sammy Mohammadi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhaleh Shadman
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Fahimfar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Hadizadeh
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farnaz Tavakoli
- Nephrology and Kidney Transplant Ward, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahbube Ebrahimpur
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Feng L, Gao L. The role of neurovascular coupling dysfunction in cognitive decline of diabetes patients. Front Neurosci 2024; 18:1375908. [PMID: 38576869 PMCID: PMC10991808 DOI: 10.3389/fnins.2024.1375908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Neurovascular coupling (NVC) is an important mechanism to ensure adequate blood supply to active neurons in the brain. NVC damage can lead to chronic impairment of neuronal function. Diabetes is characterized by high blood sugar and is considered an important risk factor for cognitive impairment. In this review, we provide fMRI evidence of NVC damage in diabetic patients with cognitive decline. Combined with the exploration of the major mechanisms and signaling pathways of NVC, we discuss the effects of chronic hyperglycemia on the cellular structure of NVC signaling, including key receptors, ion channels, and intercellular connections. Studying these diabetes-related changes in cell structure will help us understand the underlying causes behind diabetes-induced NVC damage and early cognitive decline, ultimately helping to identify the most effective drug targets for treatment.
Collapse
Affiliation(s)
| | - Ling Gao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Alshaheri Durazo A, Weigand AJ, Bangen KJ, Membreno R, Mudaliar S, Thomas KR. Type 2 Diabetes Moderates the Association Between Amyloid and 1-Year Change in Everyday Functioning in Older Veterans. J Alzheimers Dis 2024; 97:219-228. [PMID: 38160359 DOI: 10.3233/jad-230917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) affects ∼25% of Veterans, a prevalence rate double that of the general population. T2DM is associated with greater dementia risk and has been shown to exacerbate the impact of Alzheimer's disease (AD) risk factors on declines in daily functioning; however, there are few studies that investigate these patterns in older Veterans. OBJECTIVE This study sought to determine whether T2DM moderates the association between amyloid-β (Aβ) positron emission tomography (PET) and 1-year change in everyday functioning in older Veterans. METHODS One-hundred-ninety-eight predominately male Vietnam-Era Veterans without dementia from the Department of Defense-Alzheimer's Disease Neuroimaging Initiative (DoD-ADNI) with (n = 74) and without (n = 124) T2DM completed Aβ PET imaging and everyday functioning measures, including the Clinical Dementia Rating-Sum of Boxes (CDR-SB) and Everyday Cognition (ECog). Linear mixed effects models tested the moderating role of T2DM on the association between Aβ PET and 1-year change in everyday functioning. RESULTS The 3-way T2DM×Aβ PET×time interaction was significant for CDR-SB (p < 0.001) as well as the Memory (p = 0.007) and Language (p = 0.011) subscales from the ECog. Greater amyloid burden was associated with greater increases in functional difficulties, but only in Veterans with T2DM. CONCLUSIONS Higher Aβ was only associated with declines in everyday functioning over 1 year in Veterans with T2DM. Given that people with T2DM are more likely to have co-occurring cerebrovascular disease, the combination of multiple neuropathologies may result in faster declines. Future studies should examine how diabetes duration, severity, and medications impact these associations.
Collapse
Affiliation(s)
- Alin Alshaheri Durazo
- San Diego State University, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Alexandra J Weigand
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Katherine J Bangen
- VA San Diego Healthcare System, San Diego, CA, USA
- University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Rachel Membreno
- San Diego State University, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Sunder Mudaliar
- VA San Diego Healthcare System, San Diego, CA, USA
- University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Kelsey R Thomas
- VA San Diego Healthcare System, San Diego, CA, USA
- University of California, San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
12
|
Nakhla MZ, Bangen KJ, Schiehser DM, Roesch S, Zlatar ZZ. Greater subjective cognitive decline severity is associated with worse memory performance and lower entorhinal cerebral blood flow in healthy older adults. J Int Neuropsychol Soc 2024; 30:1-10. [PMID: 36781410 PMCID: PMC10423746 DOI: 10.1017/s1355617723000115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
OBJECTIVE Subjective cognitive decline (SCD) is a potential early risk marker for Alzheimer's disease (AD), but its utility may vary across individuals. We investigated the relationship of SCD severity with memory function and cerebral blood flow (CBF) in areas of the middle temporal lobe (MTL) in a cognitively normal and overall healthy sample of older adults. Exploratory analyses examined if the association of SCD severity with memory and MTL CBF was different in those with lower and higher cardiovascular disease (CVD) risk status. METHODS Fifty-two community-dwelling older adults underwent magnetic resonance imaging, neuropsychological testing, and were administered the Everyday Cognition Scale (ECog) to measure SCD. Regression models investigated whether ECog scores were associated with memory performance and MTL CBF, followed by similar exploratory regressions stratified by CVD risk status (i.e., lower vs higher stroke risk). RESULTS Higher ECog scores were associated with lower objective memory performance and lower entorhinal cortex CBF after adjusting for demographics and mood. In exploratory stratified analyses, these associations remained significant in the higher stroke risk group only. CONCLUSIONS Our preliminary findings suggest that SCD severity is associated with cognition and brain markers of preclinical AD in otherwise healthy older adults with overall low CVD burden and that this relationship may be stronger for individuals with higher stroke risk, although larger studies with more diverse samples are needed to confirm these findings. Our results shed light on individual characteristics that may increase the utility of SCD as an early risk marker of cognitive decline.
Collapse
Affiliation(s)
- Marina Z. Nakhla
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Ct, San Diego, CA
- Department of Psychiatry; University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093
- Research Service, VA San Diego Healthcare System, La Jolla, California, 3350 La Jolla Village Dr., San Diego, CA 92161
| | - Katherine J. Bangen
- Department of Psychiatry; University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093
- Research Service, VA San Diego Healthcare System, La Jolla, California, 3350 La Jolla Village Dr., San Diego, CA 92161
| | - Dawn M. Schiehser
- Department of Psychiatry; University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093
- Research Service, VA San Diego Healthcare System, La Jolla, California, 3350 La Jolla Village Dr., San Diego, CA 92161
| | - Scott Roesch
- Department of Psychology, San Diego State University, 5500 Campanile Dr., San Diego, 92182
| | - Zvinka Z. Zlatar
- Department of Psychiatry; University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| |
Collapse
|
13
|
You TY, Dong Q, Cui M. Emerging Links between Cerebral Blood Flow Regulation and Cognitive Decline: A Role for Brain Microvascular Pericytes. Aging Dis 2023:AD.2022.1204. [PMID: 37163446 PMCID: PMC10389833 DOI: 10.14336/ad.2022.1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/04/2022] [Indexed: 05/12/2023] Open
Abstract
Cognitive impairment associated with vascular etiology has been of considerable interest in the development of dementia. Recent studies have started to uncover cerebral blood flow deficits in initiating cognitive deterioration. Brain microvascular pericytes, the only type of contractile cells in capillaries, are involved in the precise modulation of vascular hemodynamics due to their ability to regulate resistance in the capillaries. They exhibit potential in maintaining the capillary network geometry and basal vascular tone. In addition, pericytes can facilitate better blood flow supply in response to neurovascular coupling. Their dysfunction is thought to disturb cerebral blood flow causing metabolic imbalances or structural injuries, leading to consequent cognitive decline. In this review, we summarize the characteristics of microvascular pericytes in brain blood flow regulation and outline the framework of a two-hit hypothesis in cognitive decline, where we emphasize how pericytes serve as targets of cerebral blood flow dysregulation that occurs with neurological challenges, ranging from genetic factors, aging, and pathological proteins to ischemic stress.
Collapse
Affiliation(s)
- Tong-Yao You
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Aderinto N, Olatunji G, Abdulbasit M, Ashinze P, Faturoti O, Ajagbe A, Ukoaka B, Aboderin G. The impact of diabetes in cognitive impairment: A review of current evidence and prospects for future investigations. Medicine (Baltimore) 2023; 102:e35557. [PMID: 37904406 PMCID: PMC10615478 DOI: 10.1097/md.0000000000035557] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/18/2023] [Indexed: 11/01/2023] Open
Abstract
Cognitive impairment in individuals with diabetes represents a multifaceted and increasingly prevalent health concern. This review critically examines the current evidence regarding the intricate relationship between diabetes and cognitive decline. It highlights the existing knowledge on the impact of diabetes on cognitive function, spanning from mild cognitive impairment to dementia, including vascular and Alzheimer dementia. The review underscores the need for a standardized diagnostic paradigm and explores research gaps, such as the implications of cognitive impairment in younger populations and various diabetes types. Furthermore, this review emphasizes the relevance of diabetes-related comorbidities, including hypertension and dyslipidemia, in influencing cognitive decline. It advocates for a comprehensive, interdisciplinary approach, integrating insights from neuroscience, endocrinology, and immunology to elucidate the mechanistic underpinnings of diabetes-related cognitive impairment. The second part of this review outlines prospective research directions and opportunities. It advocates for longitudinal studies to understand disease progression better and identifies critical windows of vulnerability. The search for accurate biomarkers and predictive factors is paramount, encompassing genetic and epigenetic considerations. Personalized approaches and tailored interventions are essential in addressing the substantial variability in cognitive outcomes among individuals with diabetes.
Collapse
Affiliation(s)
- Nicholas Aderinto
- Department of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Kwara State, Nigeria
| | - Muili Abdulbasit
- Department of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Patrick Ashinze
- Saint Francis Catholic Hospital, Okpara Inland, Warri Catholic Diocesan Hospital Commission, Delta State, Nigeria
| | - Olamide Faturoti
- Department of Medicine and Surgery, University of Ilorin, Kwara State, Nigeria
| | - Abayomi Ajagbe
- Department of Anatomy, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - Bonaventure Ukoaka
- Department of Internal Medicine, Asokoro District Hospital, Abuja, Nigeria
| | - Gbolahan Aboderin
- Department of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
15
|
Carter KJ, Ward AT, Kellawan JM, Harrell JW, Peltonen GL, Roberts GS, Al-Subu A, Hagen SA, Serlin RC, Eldridge MW, Wieben O, Schrage WG. Reduced basal macrovascular and microvascular cerebral blood flow in young adults with metabolic syndrome: potential mechanisms. J Appl Physiol (1985) 2023; 135:94-108. [PMID: 37199780 PMCID: PMC10292973 DOI: 10.1152/japplphysiol.00688.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/26/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023] Open
Abstract
Ninety-million Americans suffer metabolic syndrome (MetSyn), increasing the risk of diabetes and poor brain outcomes, including neuropathology linked to lower cerebral blood flow (CBF), predominantly in anterior regions. We tested the hypothesis that total and regional CBF is lower in MetSyn more so in the anterior brain and explored three potential mechanisms. Thirty-four controls (25 ± 5 yr) and 19 MetSyn (30 ± 9 yr), with no history of cardiovascular disease/medications, underwent four-dimensional flow magnetic resonance imaging (MRI) to quantify macrovascular CBF, whereas arterial spin labeling quantified brain perfusion in a subset (n = 38/53). Contributions of cyclooxygenase (COX; n = 14), nitric oxide synthase (NOS, n = 17), or endothelin receptor A signaling (n = 13) were tested with indomethacin, NG-monomethyl-L-arginine (L-NMMA), and Ambrisentan, respectively. Total CBF was 20 ± 16% lower in MetSyn (725 ± 116 vs. 582 ± 119 mL/min, P < 0.001). Anterior and posterior brain regions were 17 ± 18% and 30 ± 24% lower in MetSyn; reductions were not different between regions (P = 0.112). Global perfusion was 16 ± 14% lower in MetSyn (44 ± 7 vs. 36 ± 5 mL/100 g/min, P = 0.002) and regionally in frontal, occipital, parietal, and temporal lobes (range 15-22%). The decrease in CBF with L-NMMA (P = 0.004) was not different between groups (P = 0.244, n = 14, 3), and Ambrisentan had no effect on either group (P = 0.165, n = 9, 4). Interestingly, indomethacin reduced CBF more in Controls in the anterior brain (P = 0.041), but CBF decrease in posterior was not different between groups (P = 0.151, n = 8, 6). These data indicate that adults with MetSyn exhibit substantially reduced brain perfusion without regional differences. Moreover, this reduction is not due to loss of NOS or gain of ET-1 signaling but rather a loss of COX vasodilation.NEW & NOTEWORTHY We tested the impact of insulin resistance (IR) on resting cerebral blood flow (CBF) in adults with metabolic syndrome (MetSyn). Using MRI and research pharmaceuticals to study the role of NOS, ET-1, or COX signaling, we found that adults with MetSyn exhibit substantially lower CBF that is not explained by changes in NOS or ET-1 signaling. Interestingly, adults with MetSyn show a loss of COX-mediated vasodilation in the anterior but not posterior circulation.
Collapse
Affiliation(s)
- Katrina J Carter
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin, United States
| | - Aaron T Ward
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin, United States
| | - J Mikhail Kellawan
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States
| | - John W Harrell
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, United States
| | - Garrett L Peltonen
- School of Nursing and Kinesiology, Western New Mexico University, Silver City, New Mexico, United States
| | - Grant S Roberts
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, United States
| | - Awni Al-Subu
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States
| | - Scott A Hagen
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States
| | - Ronald C Serlin
- Department of Educational Psychology, University of Wisconsin, Madison, Wisconsin, United States
| | - Marlowe W Eldridge
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, United States
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, United States
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin, United States
| |
Collapse
|
16
|
Zong X, Jimenez J, Li T, Powers WJ. In vivo detection of penetrating arteriole alterations in cerebral white matter in patients with diabetes with 7 T MRI. Magn Reson Imaging 2023; 100:84-92. [PMID: 36965833 PMCID: PMC10206523 DOI: 10.1016/j.mri.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Cerebral small vessel disease (SVD) is responsible for primary intracerebral hemorrhages, lacunar infarcts and white matter hyperintensity in T2 weighted images. While the brain lesions attributed to small vessel disease can be characterized by conventional MRI, it remains challenging to noninvasively measure the early pathological changes of the small underlying vessels. We evaluated the feasibility of detecting alterations in white matter penetrating arterioles (PA) in patients with diabetes with ultra-high field 7 T MRI. 19 participants with diabetes mellitus (DM) and 19 age- and sex-matched healthy controls were scanned with whole brain T2 and susceptibility weighted MRI and a single slice phase contrast MRI 15 mm above the corpus callosum. The PC-MRI scans were repeated three times. PA masks were manually drawn on the first images after anonymization or automatically segmented on all three images. For each PA, lumen diameter, flow velocity and volume flow rate were derived by model-based analyses of complex difference images. Quasi-Poisson regression was performed for PA count using disease condition, age, and sex as independent variables. Linear mixed effect model analyses were performed for the other measurements using disease condition and age as fixed effect and participant pair specific disease condition as random effect. No severe radiological features of SVD were observed in T2 and susceptibility weighted images in any of the participants except for white matter hyperintensities with Fazekas score of 1 or 2 in 68% and 26% of patients and controls, respectively. The minimum diameter of visible PA was 78 μm and the majority had diameters <250 μm. Among the manually segmented PA with tilt angle less than 30o from the slice normal direction, flow velocities were lower in the DM group (1.9 ± 0.6 vs. 2.2 ± 0.6; p = 0.022), while no significant difference was observed in count, diameter, or volume flow rate. Similar results were observed in the automatically segmented PA. We also observed significantly increased diameter or decreased velocity with age in some of the scans. This study suggests that early PA alterations that are discriminative of disease state and age might be detectable in human cerebral white matter with 7 T MRI in vivo.
Collapse
Affiliation(s)
- Xiaopeng Zong
- Biomedical Research Imaging Center, Durham, NC 27599, USA; Department of Radiology, University of North Carolina at Chapel Hill, Durham, NC 27599, USA.
| | - Jordan Jimenez
- Biomedical Research Imaging Center, Durham, NC 27599, USA
| | - Tengfei Li
- Biomedical Research Imaging Center, Durham, NC 27599, USA; Department of Radiology, University of North Carolina at Chapel Hill, Durham, NC 27599, USA
| | - William J Powers
- Department of Neurology, Duke University School of Medicine, Durham, NC 27599, USA
| |
Collapse
|
17
|
Shigemizu D, Akiyama S, Suganuma M, Furutani M, Yamakawa A, Nakano Y, Ozaki K, Niida S. Classification and deep-learning-based prediction of Alzheimer disease subtypes by using genomic data. Transl Psychiatry 2023; 13:232. [PMID: 37386009 DOI: 10.1038/s41398-023-02531-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
Late-onset Alzheimer's disease (LOAD) is the most common multifactorial neurodegenerative disease among elderly people. LOAD is heterogeneous, and the symptoms vary among patients. Genome-wide association studies (GWAS) have identified genetic risk factors for LOAD but not for LOAD subtypes. Here, we examined the genetic architecture of LOAD based on Japanese GWAS data from 1947 patients and 2192 cognitively normal controls in a discovery cohort and 847 patients and 2298 controls in an independent validation cohort. Two distinct groups of LOAD patients were identified. One was characterized by major risk genes for developing LOAD (APOC1 and APOC1P1) and immune-related genes (RELB and CBLC). The other was characterized by genes associated with kidney disorders (AXDND1, FBP1, and MIR2278). Subsequent analysis of albumin and hemoglobin values from routine blood test results suggested that impaired kidney function could lead to LOAD pathogenesis. We developed a prediction model for LOAD subtypes using a deep neural network, which achieved an accuracy of 0.694 (2870/4137) in the discovery cohort and 0.687 (2162/3145) in the validation cohort. These findings provide new insights into the pathogenic mechanisms of LOAD.
Collapse
Affiliation(s)
- Daichi Shigemizu
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan.
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
| | - Shintaro Akiyama
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Mutsumi Suganuma
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Motoki Furutani
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Akiko Yamakawa
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Shumpei Niida
- Core Facility Administration, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| |
Collapse
|
18
|
Kálcza Jánosi K, Lukács A. Independent and interactive effect of type 2 diabetes and hypertension on memory functions in middle aged adults. BMC Endocr Disord 2023; 23:59. [PMID: 36894922 PMCID: PMC9999571 DOI: 10.1186/s12902-023-01308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND The study distinguishes the effect of type 2 diabetes and hypertension on cognitive functions when the two diseases are alone or when they occur together, compared to healthy individuals. METHODS A total of 143 middle-aged adults were screened using the Wechsler Memory Scale - Revised psychometric test (verbal memory, visual memory, attention/concentration and delayed memory). Participants were divided into four groups based on their diseases: patients with type 2 diabetes (36), patients with hypertension (30), patients having both diseases (33), and healthy controls (44). RESULTS This study found no differences among investigated groups in verbal and visual memory, however, hypertension and both-disease group performed unfavorably compared to patients with diabetes and to healthy individuals in attention/concentration and delayed memory. CONCLUSIONS The findings of this study suggest that there is a relationship between hypertension and cognitive dysfunction, whereas type 2 diabetes without consequences was not proved to have an association with cognitive decline in middle-aged people.
Collapse
Affiliation(s)
- Kinga Kálcza Jánosi
- Faculty of Psychology and Educational Sciences, Babes-Bolyai University, 7, Sindicatelor Street, 400604 Cluj-Napoca-Napoca, Romania
| | - Andrea Lukács
- Faculty of Health Sciences, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| |
Collapse
|
19
|
Detecting type 2 diabetes mellitus cognitive impairment using whole-brain functional connectivity. Sci Rep 2023; 13:3940. [PMID: 36894561 PMCID: PMC9998866 DOI: 10.1038/s41598-023-28163-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/13/2023] [Indexed: 03/11/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is closely linked to cognitive decline and alterations in brain structure and function. Resting-state functional magnetic resonance imaging (rs-fMRI) is used to diagnose neurodegenerative diseases, such as cognitive impairment (CI), Alzheimer's disease (AD), and vascular dementia (VaD). However, whether the functional connectivity (FC) of patients with T2DM and mild cognitive impairment (T2DM-MCI) is conducive to early diagnosis remains unclear. To answer this question, we analyzed the rs-fMRI data of 37 patients with T2DM and mild cognitive impairment (T2DM-MCI), 93 patients with T2DM but no cognitive impairment (T2DM-NCI), and 69 normal controls (NC). We achieved an accuracy of 87.91% in T2DM-MCI versus T2DM-NCI classification and 80% in T2DM-NCI versus NC classification using the XGBoost model. The thalamus, angular, caudate nucleus, and paracentral lobule contributed most to the classification outcome. Our findings provide valuable knowledge to classify and predict T2DM-related CI, can help with early clinical diagnosis of T2DM-MCI, and provide a basis for future studies.
Collapse
|
20
|
Huang D, Guo Y, Guan X, Pan L, Zhu Z, Chen Z, Dijkhuizen RM, Duering M, Yu F, Boltze J, Li P. Recent advances in arterial spin labeling perfusion MRI in patients with vascular cognitive impairment. J Cereb Blood Flow Metab 2023; 43:173-184. [PMID: 36284489 PMCID: PMC9903225 DOI: 10.1177/0271678x221135353] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/01/2022] [Accepted: 09/21/2022] [Indexed: 01/24/2023]
Abstract
Cognitive impairment (CI) is a major health concern in aging populations. It impairs patients' independent life and may progress to dementia. Vascular cognitive impairment (VCI) encompasses all cerebrovascular pathologies that contribute to cognitive impairment (CI). Moreover, the majority of CI subtypes involve various aspects of vascular dysfunction. Recent research highlights the critical role of reduced cerebral blood flow (CBF) in the progress of VCI, and the detection of altered CBF may help to detect or even predict the onset of VCI. Arterial spin labeling (ASL) is a non-invasive, non-ionizing perfusion MRI technique for assessing CBF qualitatively and quantitatively. Recent methodological advances enabling improved signal-to-noise ratio (SNR) and data acquisition have led to an increase in the use of ASL to assess CBF in VCI patients. Combined with other imaging modalities and biomarkers, ASL has great potential for identifying early VCI and guiding prediction and prevention strategies. This review focuses on recent advances in ASL-based perfusion MRI for identifying patients at high risk of VCI.
Collapse
Affiliation(s)
- Dan Huang
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunlu Guo
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Guan
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijun Pan
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyu Zhu
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeng’ai Chen
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Marco Duering
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Germany
- Medical Image Analysis Center (MIAC) and qbig, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Fang Yu
- Department of Anesthesiology, Westchester Medical Center, New York Medical College, NY, USA
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Peiying Li
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Brenner EK, Weigand AJ, Edwards L, Thomas KR, Edmonds EC, Bondi MW, Bangen KJ. Brain Derived Neurotrophic Factor Interacts with White Matter Hyperintensities to Influence Processing Speed and Hippocampal Volume in Older Adults. J Alzheimers Dis 2023; 93:141-149. [PMID: 36970903 PMCID: PMC10200154 DOI: 10.3233/jad-221178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays an important role in regulating synaptic activity and plasticity. OBJECTIVE Given that type-2 diabetes (T2DM) increases the risk of cognitive decline, and studies have suggested lower BDNF levels may be a risk factor of diabetic neurovascular complications, we sought to investigate total white matter hyperintensities (WMH) as a moderator of the effect of BDNF on hippocampal volume and cognition. METHODS Older adults without dementia from the Alzheimer's Disease Neuroimaging Initiative (N = 454 including 49 with T2DM and 405 without diabetes) underwent neuropsychological evaluation, magnetic resonance imaging to quantify hippocampal and WMH volumes, and blood draw to assess BDNF. RESULTS Adjusting for age, sex, and APOE ɛ4 carrier status, there was a significant interaction between total WMH and BDNF on bilateral hippocampal volume in the non-T2DM group (t = 2.63, p = 0.009). Examination of main effect models with a dichotomous high/low BNDF group revealed a significant main effect for low BDNF (t = -4.98, p < 0.001), such that as WMH increased, bilateral hippocampal volume decreased. There was also a significant interaction between total WMH and BDNF on processing speed in the non-T2DM group (t = 2.91, p = 0.004). There was a significant main effect for low BDNF (t = -3.55, p < 0.001) such that as WMH increased, processing speed decreased. The interactions were not significant in the T2DM group. CONCLUSION These results further elucidate the protective role that BDNF plays on cognition, as well as the cognitive effects of WMH.
Collapse
Affiliation(s)
- Einat K. Brenner
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Alexandra J. Weigand
- San Diego State University/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Lauren Edwards
- San Diego State University/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Kelsey R. Thomas
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | | | - Mark W. Bondi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Katherine J. Bangen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | | |
Collapse
|
22
|
Rodrigues B, Portugal-Nunes C, Magalhães R, Schmidt L, Moreira PS, Soares JM, Castanho TC, Marques P, Sousa N, Santos NC. Larger dlPFC and vmPFC grey matter volumes are associated with high adherence to the Mediterranean diet: A cross-sectional study in older adults. AGING BRAIN 2023; 3:100064. [PMID: 36911265 PMCID: PMC9997170 DOI: 10.1016/j.nbas.2023.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Dietary self-control is associated with inter-individual differences in neuroanatomy. Yet, whether such inter-individual differences are also associated with healthier dietary patterns is yet to be determined. In this cross-sectional study, a total of 100 northern Portuguese older community-dwellers were assessed with regards to i) the adherence to a healthy dietary eating pattern - the Mediterranean diet (MedDiet), and ii) grey matter density (GMD) of brain regions associated with valuation and dietary self-regulation, the ventromedial (vmPFC) and dorsolateral prefrontal cortex (dlPFC), through voxel-based morphometry. Healthy food choices were ascertained through the Mediterranean Diet Adherence Screener (MEDAS) where higher scores indicated greater adherence to the MedDiet. Voxel-based morphometry showed that greater grey matter density in the dlPFC and vmPFC associated with a higher adherence to the MedDiet. These results replicate previous links between dietary decision-making measured under laboratory conditions and the neuroanatomy of the brain's valuation and self-control system. Importantly, they shed new light on the potential relevance of inter-individual differences in the neuroanatomy of these two brain regions for adhering to healthier dietary patterns in everyday life.
Collapse
Affiliation(s)
- Belina Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Carlos Portugal-Nunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Liane Schmidt
- Control-Interoception-Attention (CIA) Team, Paris Brain Institute, Inserm/CNRS/Sorbonne University, UMR 7225/U1127, Hôpital Pitié-Salpêtrière, Paris, France
| | - Pedro Silva Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - José Miguel Soares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Teresa Costa Castanho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal.,Association P5 Digital Medical Centre, School of Medicine, University of Minho, Braga, Portugal
| | - Paulo Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal.,Association P5 Digital Medical Centre, School of Medicine, University of Minho, Braga, Portugal
| | - Nadine Correia Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal.,Association P5 Digital Medical Centre, School of Medicine, University of Minho, Braga, Portugal
| |
Collapse
|
23
|
Gonçalves JS, Seiça RM, Laranjinha J, Lourenço CF. Impairment of neurovascular coupling in the hippocampus due to decreased nitric oxide bioavailability supports early cognitive dysfunction in type 2 diabetic rats. Free Radic Biol Med 2022; 193:669-675. [PMID: 36372286 DOI: 10.1016/j.freeradbiomed.2022.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Numerous epidemiological and preclinical studies have established a strong correlation between type 2 diabetes (T2DM) and cognitive impairment and T2DM is now established as an undisputable risk factor in different forms of dementia. However, the mechanisms underlying cognitive impairment in T2DM are still not fully understood. The temporal and spatial coupling between neuronal activity and cerebral blood flow (CBF) - neurovascular coupling (NVC) - is essential for normal brain function. Neuronal-derived nitric oxide (⦁NO) produced through the nNOS-NMDAr pathway, is recognized as a key messenger in NVC, especially in the hippocampus. Of note, impaired hippocampal perfusion in T2DM patients has been closely linked to learning and memory dysfunction. In this study, we aimed to investigate the functionality of NVC, in terms of neuronal-•NO signaling and spatial memory performance, in young Goto-Kakizaki (GK) rats, a non-obese model of T2DM. For that, we performed direct and simultaneous measurements of •NO concentration dynamics and microvascular CBF changes in the hippocampus upon glutamatergic activation. We found that limited •NO bioavailability, connected to shorter and faster •NO transients in response to glutamatergic neuronal activation, is associated with decreased hemodynamic responses and a decline in spatial memory performance. This evidence supports a close mechanistic association between neuronal-triggered •NO concentration dynamics in the hippocampus, local microvascular responses, and cognitive performance in young diabetic animals, establishing the functionality of NVC as a critical early factor to consider in the cascade of events leading to cognitive decline in T2DM. These results suggest that strategies capable to overcome the limited •NO bioavailability in early stages of T2DM and maintaining a functional NVC pathway may configure pertinent therapeutic approaches to mitigate the risk for cognitive impairment in T2DM.
Collapse
Affiliation(s)
- João S Gonçalves
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Raquel M Seiça
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| | - Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
24
|
Canna A, Esposito F, Tedeschi G, Trojsi F, Passaniti C, di Meo I, Polito R, Maiorino MI, Paolisso G, Cirillo M, Rizzo MR. Neurovascular coupling in patients with type 2 diabetes mellitus. Front Aging Neurosci 2022; 14:976340. [PMID: 36118711 PMCID: PMC9476313 DOI: 10.3389/fnagi.2022.976340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Functional and metabolic neural changes in Type 2 diabetes mellitus (T2DM) can be associated with poor cognitive performances. Here we analyzed the functional-metabolic neurovascular coupling (NVC) in the brain of T2DM patients. Thirty-three patients (70 ± 6 years, 15 males) with recent T2DM diagnosis and 18 healthy control (HC) subjects (65 ± 9 years, 9 males) were enrolled in a brain MRI study to identify the potential effects of T2DM on NVC. T2DM patients were either drug-naive (n = 19) or under treatment with metformin (n = 14) since less than 6 months. Arterial spin labeling and blood oxygen level dependent resting-state functional MRI (RS-fMRI) images were combined to derive NVC measures in brain regions and large-scale networks in a standard brain parcelation. Altered NVC values in T2DM patients were correlated with cognitive performances spanning several neurological domains using Spearman correlation coefficients. Compared to HC, T2DM patients had reduced NVC in the default mode network (DMN) and increased NVC in three regions of the dorsal (DAN) and salience-ventral (SVAN) attention networks. NVC abnormalities in DAN and SVAN were associated with reduced visuo-spatial cognitive performances. A spatial pattern of NVC reduction in the DMN, accompanied by isolated regional NVC increases in DAN and SVAN, could reflect the emergence of (defective) compensatory processes in T2DM patients in response to altered neurovascular conditions. Overall, this pattern is reminiscent of neural abnormalities previously observed in Alzheimer’s disease, suggesting that similar neurobiological mechanisms, secondary to insulin resistance and manifesting as NVC alterations, might be developing in T2DM pathology.
Collapse
|
25
|
Hakim A. Perspectives on the complex links between depression and dementia. Front Aging Neurosci 2022; 14:821866. [PMID: 36092800 PMCID: PMC9449721 DOI: 10.3389/fnagi.2022.821866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/05/2022] [Indexed: 12/04/2022] Open
Abstract
This review highlights that depression is a growing health problem for the individual, and because of its high frequency in most societies, a growing burden on health care budgets. The focus of the review is the physiological links between depression and dementia, specifically Alzheimer’s disease. It suggests that depression is a significant risk factor for cognitive decline and explores the pathways that may lead depressed individuals to suffer this outcome. This review shows that depression and a number of its precursors activate pro-inflammatory mediators. These lead to cerebral small vessel disease with the consequent reduction in cerebral blood flow, which is known to precede cognitive decline. Thus, the impact of depression on the physiological events that lead to dementia is identical to the impact of other dementia risk factors recently reviewed. Depression is distinct, however, in being a relatively treatable condition, but the impact of treating depression on later cognitive decline is not always positive, leading to the hypothesis that only the antidepressants that attenuate inflammation alleviate subsequent cognitive decline.
Collapse
Affiliation(s)
- Antoine Hakim
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Antoine Hakim,
| |
Collapse
|
26
|
Li ZY, Ma T, Yu Y, Hu B, Han Y, Xie H, Ni MH, Chen ZH, Zhang YM, Huang YX, Li WH, Wang W, Yan LF, Cui GB. Changes of brain function in patients with type 2 diabetes mellitus measured by different analysis methods: A new coordinate-based meta-analysis of neuroimaging. Front Neurol 2022; 13:923310. [PMID: 36090859 PMCID: PMC9449648 DOI: 10.3389/fneur.2022.923310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022] Open
Abstract
Objective Neuroimaging meta-analysis identified abnormal neural activity alterations in patients with type 2 diabetes mellitus (T2DM), but there was no consistency or heterogeneity analysis between different brain imaging processing strategies. The aim of this meta-analysis was to determine consistent changes of regional brain functions in T2DM via the indicators obtained by using different post-processing methods. Methods Since the indicators obtained using varied post-processing methods reflect different neurophysiological and pathological characteristics, we further conducted a coordinate-based meta-analysis (CBMA) of the two categories of neuroimaging literature, which were grouped according to similar data processing methods: one group included regional homogeneity (ReHo), independent component analysis (ICA), and degree centrality (DC) studies, while the other group summarized the literature on amplitude of low-frequency fluctuation (ALFF) and cerebral blood flow (CBF). Results The final meta-analysis included 23 eligible trials with 27 data sets. Compared with the healthy control group, when neuroimaging studies were combined with ReHo, ICA, and DC measurements, the brain activity of the right Rolandic operculum, right supramarginal gyrus, and right superior temporal gyrus in T2DM patients decreased significantly. When neuroimaging studies were combined with ALFF and CBF measurements, there was no clear evidence of differences in the brain function between T2DM and HCs. Conclusion T2DM patients have a series of spontaneous abnormal brain activities, mainly involving brain regions related to learning, memory, and emotion, which provide early biomarkers for clarifying the mechanism of cognitive impairment and neuropsychiatric disorders in diabetes. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=247071, PROSPERO [CRD42021247071].
Collapse
Affiliation(s)
- Ze-Yang Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Teng Ma
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying Yu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Hu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Han
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Xie
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Min-Hua Ni
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Faculty of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhu-Hong Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang-Ming Zhang
- Battalion of the Second Regiment of Cadets of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yu-Xiang Huang
- Battalion of the Second Regiment of Cadets of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wen-Hua Li
- Battalion of the Second Regiment of Cadets of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wen Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- *Correspondence: Guang-Bin Cui ;
| | - Lin-Feng Yan
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Lin-Feng Yan
| | - Guang-Bin Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Wen Wang
| |
Collapse
|
27
|
Luo W, Wang J, Chen M, Zhou S, Deng D, Liu F, Yu Y. Alterations of Cerebral Blood Flow and Its Connectivity in Olfactory-Related Brain Regions of Type 2 Diabetes Mellitus Patients. Front Neurosci 2022; 16:904468. [PMID: 35898415 PMCID: PMC9309479 DOI: 10.3389/fnins.2022.904468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
To investigate the alteration of cerebral blood flow (CBF) and its connectivity patterns in olfactory-related regions of type 2 diabetes mellitus (T2DM) patients using arterial spin labeling (ASL). Sixty-nine patients with T2DM and 63 healthy controls (HCs) underwent ASL scanning using 3.0T magnetic resonance imaging. We compared the CBF values of the olfactory-related brain regions between the two groups and analyzed the correlation between their changes and clinical variables. We also used these regions as seeds to explore the differences in CBF connectivity patterns in olfactory-related brain regions between the T2DM patients and HCs. Compared with the HC group, the CBF of the right orbital part of the inferior frontal gyrus (OIFG), right insula, and bilateral olfactory cortex was decreased in the T2DM patients. Moreover, the duration of the patients was negatively correlated with the CBF changes in the right OIFG, right insula, and right olfactory cortex. The CBF changes in the right OIFG were positively correlated with the Self-Rating Depression Scale scores, those in the right insula were negatively correlated with the max blood glucose of continuous glucose, and those in the right olfactory cortex were negatively correlated with the mean blood glucose of continuous glucose. In addition, the T2DM patients also showed decreased CBF connectivity between the right OIFG and the left temporal pole of the middle temporal gyrus and increased CBF connectivity between the right medial orbital part of the superior frontal gyrus and the right orbital part of the superior frontal gyrus and between the right olfactory cortex and the bilateral caudate and the left putamen. Patients with T2DM have decreased CBF and altered CBF connectivity in multiple olfactory-related brain regions. These changes may help explain why olfactory dysfunction occurs in patients with T2DM, thus providing insights into the neuropathological mechanism of olfactory dysfunction and cognitive decline in T2DM patients.
Collapse
Affiliation(s)
- Wei Luo
- Department of Imaging, Chaohu Hospital of Anhui Medical University, Hefei, China
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
| | - Jie Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
| | - Mimi Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
| | - Shanlei Zhou
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Datong Deng
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fujun Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Imaging, Chaohu Hospital of Anhui Medical University, Hefei, China
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- *Correspondence: Yongqiang Yu,
| |
Collapse
|
28
|
Barloese MCJ, Bauer C, Petersen ET, Hansen CS, Madsbad S, Siebner HR. Neurovascular Coupling in Type 2 Diabetes With Cognitive Decline. A Narrative Review of Neuroimaging Findings and Their Pathophysiological Implications. Front Endocrinol (Lausanne) 2022; 13:874007. [PMID: 35860697 PMCID: PMC9289474 DOI: 10.3389/fendo.2022.874007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/17/2022] [Indexed: 01/21/2023] Open
Abstract
Type 2 diabetes causes substantial long-term damage in several organs including the brain. Cognitive decline is receiving increased attention as diabetes has been established as an independent risk factor along with the identification of several other pathophysiological mechanisms. Early detection of detrimental changes in cerebral blood flow regulation may represent a useful clinical marker for development of cognitive decline for at-risk persons. Technically, reliable evaluation of neurovascular coupling is possible with several caveats but needs further development before it is clinically convenient. Different modalities including ultrasound, positron emission tomography and magnetic resonance are used preclinically to shed light on the many influences on vascular supply to the brain. In this narrative review, we focus on the complex link between type 2 diabetes, cognition, and neurovascular coupling and discuss how the disease-related pathology changes neurovascular coupling in the brain from the organ to the cellular level. Different modalities and their respective pitfalls are covered, and future directions suggested.
Collapse
Affiliation(s)
- Mads C. J. Barloese
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Imaging, Center for Functional and Diagnostic Imaging, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Christian Bauer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Radiography, Department of Technology, University College Copenhagen, Copenhagen, Denmark
| | - Esben Thade Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Center for Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | | | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital - Bispebjerg and Fredriksberg, Copenhagen, Denmark
| |
Collapse
|
29
|
Ehtewish H, Arredouani A, El-Agnaf O. Diagnostic, Prognostic, and Mechanistic Biomarkers of Diabetes Mellitus-Associated Cognitive Decline. Int J Mol Sci 2022; 23:6144. [PMID: 35682821 PMCID: PMC9181591 DOI: 10.3390/ijms23116144] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Cognitive dysfunctions such as mild cognitive impairment (MCI), Alzheimer's disease (AD), and other forms of dementia are recognized as common comorbidities of type 2 diabetes mellitus (T2DM). Currently, there are no disease-modifying therapies or definitive clinical diagnostic and prognostic tools for dementia, and the mechanisms underpinning the link between T2DM and cognitive dysfunction remain equivocal. Some of the suggested pathophysiological mechanisms underlying cognitive decline in diabetes patients include hyperglycemia, insulin resistance and altered insulin signaling, neuroinflammation, cerebral microvascular injury, and buildup of cerebral amyloid and tau proteins. Given the skyrocketing global rates of diabetes and neurodegenerative disorders, there is an urgent need to discover novel biomarkers relevant to the co-morbidity of both conditions to guide future diagnostic approaches. This review aims to provide a comprehensive background of the potential risk factors, the identified biomarkers of diabetes-related cognitive decrements, and the underlying processes of diabetes-associated cognitive dysfunction. Aging, poor glycemic control, hypoglycemia and hyperglycemic episodes, depression, and vascular complications are associated with increased risk of dementia. Conclusive research studies that have attempted to find specific biomarkers are limited. However, the most frequent considerations in such investigations are related to C reactive protein, tau protein, brain-derived neurotrophic factor, advanced glycation end products, glycosylated hemoglobin, and adipokines.
Collapse
Affiliation(s)
- Hanan Ehtewish
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar;
| | - Abdelilah Arredouani
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar;
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar
| | - Omar El-Agnaf
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar;
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar
| |
Collapse
|
30
|
Redel JM, DiFrancesco M, Lee GR, Ziv A, Dolan LM, Brady CC, Shah AS. Cerebral blood flow is lower in youth with type 2 diabetes compared to obese controls: A pilot study. Pediatr Diabetes 2022; 23:291-300. [PMID: 35001473 DOI: 10.1111/pedi.13313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022] Open
Abstract
AIM The cerebral vasculature may be susceptible to the adverse effects of type 2 diabetes. In this pilot study, we compared cerebral blood flow (CBF) in youth with type 2 diabetes to obese, euglycemic controls, and explored the association between CBF and a non-invasive measure of atherosclerosis, carotid intima-medial thickness (IMT). METHODS Global and regional CBF were compared between youth with type 2 diabetes (mean age 16.7 ± 2.0 years, n = 20) and age, race, and sex similar obese youth without diabetes (17.4 ± 1.9 years, n = 19) using arterial spin labeling magnetic resonance imaging. Mean CBF values were compared between groups. Voxel-wise results were evaluated for statistical significance (p < 0.05) after adjustment for multiple comparisons. Carotid IMT in the type 2 diabetes group was correlated with CBF. RESULTS Compared to obese controls, the type 2 diabetes group had significantly lower global CBF (49.7 ± 7.2 vs. 63.8 ± 11.5 ml/gm/min, p < 0.001). Significantly lower CBF was observed in multiple brain regions for the type 2 diabetes group, while no regions with higher CBF were identified. In the type 2 diabetes group, carotid IMT was inversely correlated with CBF, both globally (r = -0.70, p = 0.002) and in regional clusters. CONCLUSIONS In this pilot study, lower CBF was seen in youth with type 2 diabetes compared to youth with obesity and IMT was inversely correlated with CBF. Cerebrovascular impairment may be present in youth with type 2 diabetes. These findings could represent a mechanistic link to explain previously reported brain volume and neurocognitive differences.
Collapse
Affiliation(s)
- Jacob M Redel
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA.,Division of Endocrinology, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Mark DiFrancesco
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Gregory R Lee
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Adi Ziv
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Adolescent Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Adolescent Medicine Unit, Department of Day Care Hospitalization, Schneider Children's Hospital Medical Center of Israel, Petah Tikva, Israel
| | - Lawrence M Dolan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Cassandra C Brady
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Division of Endocrinology and Diabetes, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Amy S Shah
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
31
|
Yalçin M, Mundorf A, Thiel F, Amatriain-Fernández S, Kalthoff IS, Beucke JC, Budde H, Garthus-Niegel S, Peterburs J, Relógio A. It's About Time: The Circadian Network as Time-Keeper for Cognitive Functioning, Locomotor Activity and Mental Health. Front Physiol 2022; 13:873237. [PMID: 35547585 PMCID: PMC9081535 DOI: 10.3389/fphys.2022.873237] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
A variety of organisms including mammals have evolved a 24h, self-sustained timekeeping machinery known as the circadian clock (biological clock), which enables to anticipate, respond, and adapt to environmental influences such as the daily light and dark cycles. Proper functioning of the clock plays a pivotal role in the temporal regulation of a wide range of cellular, physiological, and behavioural processes. The disruption of circadian rhythms was found to be associated with the onset and progression of several pathologies including sleep and mental disorders, cancer, and neurodegeneration. Thus, the role of the circadian clock in health and disease, and its clinical applications, have gained increasing attention, but the exact mechanisms underlying temporal regulation require further work and the integration of evidence from different research fields. In this review, we address the current knowledge regarding the functioning of molecular circuits as generators of circadian rhythms and the essential role of circadian synchrony in a healthy organism. In particular, we discuss the role of circadian regulation in the context of behaviour and cognitive functioning, delineating how the loss of this tight interplay is linked to pathological development with a focus on mental disorders and neurodegeneration. We further describe emerging new aspects on the link between the circadian clock and physical exercise-induced cognitive functioning, and its current usage as circadian activator with a positive impact in delaying the progression of certain pathologies including neurodegeneration and brain-related disorders. Finally, we discuss recent epidemiological evidence pointing to an important role of the circadian clock in mental health.
Collapse
Affiliation(s)
- Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Annakarina Mundorf
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Freya Thiel
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sandra Amatriain-Fernández
- Institute for Systems Medicine and Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
| | - Ida Schulze Kalthoff
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Jan-Carl Beucke
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Henning Budde
- Institute for Systems Medicine and Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
| | - Susan Garthus-Niegel
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Jutta Peterburs
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
32
|
Hu Y, Zhou Y, Yang Y, Tang H, Si Y, Chen Z, Shi Y, Fang H. Metformin Protects Against Diabetes-Induced Cognitive Dysfunction by Inhibiting Mitochondrial Fission Protein DRP1. Front Pharmacol 2022; 13:832707. [PMID: 35392573 PMCID: PMC8981993 DOI: 10.3389/fphar.2022.832707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/14/2022] [Indexed: 01/17/2023] Open
Abstract
Objectives: Diabetes is an independent risk factor for dementia. Mitochondrial dysfunction is a critical player in diabetes and diabetic complications. The present study aimed to investigate the role of mitochondrial dynamic changes in diabetes-associated cognitive impairment. Methods: Cognitive functions were examined by novel object recognition and T-maze tests. Mice hippocampi were collected for electron microscopy and immunofluorescence examination. Neuron cell line HT22 and primary hippocampal neurons were challenged with high glucose in vitro. Mitotracker-Red CM-H2X ROS was used to detect mitochondrial-derived free radicals. Results: Diabetic mice exhibited memory loss and spatial disorientation. Electron microscopy revealed that diabetic mice had larger synaptic gaps, attenuated postsynaptic density and fewer dendritic spines in the hippocampus. More round-shape mitochondria were observed in hippocampal neurons in diabetic mice than those in control mice. In cultured neurons, high glucose induced a high phosphorylated level of dynamin-related protein 1 (DRP1) and increased oxidative stress, resulting in cell apoptosis. Inhibition of mitochondrial fission by Mdivi-1 and metformin significantly decreased oxidative stress and prevented cell apoptosis in cultured cells. Treatment of Mdivi-1 and metformin restored cognitive function in diabetic mice. Conclusion: Metformin restores cognitive function by inhibiting mitochondrial fission, reducing mitochondrial-derived oxidative stress, and mitigating neuron loss in hippocampi of diabetic mice. The protective effects of metformin shed light on the therapeutic strategy of cognitive impairment.
Collapse
Affiliation(s)
- Yan Hu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Anesthesiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yile Zhou
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yajie Yang
- Department of Anesthesiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Haihong Tang
- Department of Anesthesiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yuan Si
- Department of Anesthesiology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhouyi Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Shi
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Vidyashree M, Deepeshwar S, Nagarathna R, Manjunath NK, Kaligal C, Kanthi A, Nagendra HR, Bathala L, Sharma VK. Transcranial Doppler studies in Type 2 diabetes mellitus: A systematic review. Diabetes Res Clin Pract 2022; 186:109808. [PMID: 35247526 DOI: 10.1016/j.diabres.2022.109808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Type II Diabetes mellitus (T2DM) patients are at the risk of developing cerebrovascular diseases, often contributed by altered cerebral haemodynamics. We present a systematic review of studies on cerebral haemodynamics assessment using transcranial Doppler (TCD) in T2DM. REVIEW METHOD A systematic review of the published articles in the English language between 1991 to 2021. DATA SOURCES Articles were retrieved via Pubmed and Cochrane library. We included Cross-sectional, prospective, retrospective, randomized controlled, and cross-over studies for this review. RESULTS A total of 25 articles met the inclusion criteria, which provided data for 3212 patients. CONCLUSION Cerebral autoregulation is often impaired among patients with T2DM. The risk increased with the duration of T2DM, related complications and presence of comorbidities.
Collapse
Affiliation(s)
- Mahadevappa Vidyashree
- Yoga and Life Sciences, Swami Vivekananda Yoga Anusandana Samsthana(S-VYASA), Bangalore, India.
| | - Singh Deepeshwar
- Yoga and Life Sciences, Swami Vivekananda Yoga Anusandana Samsthana(S-VYASA), Bangalore, India.
| | - Raghuram Nagarathna
- Yoga and Life Sciences, Swami Vivekananda Yoga Anusandana Samsthana(S-VYASA), Bangalore, India
| | | | - Chidananda Kaligal
- Yoga and Life Sciences, Swami Vivekananda Yoga Anusandana Samsthana(S-VYASA), Bangalore, India
| | - Amit Kanthi
- Yoga and Life Sciences, Swami Vivekananda Yoga Anusandana Samsthana(S-VYASA), Bangalore, India
| | | | | | - Vijay K Sharma
- Yong Loo Lin School of Medicine, National University of Singapore and Division of Neurology, National University Hospital, Singapore
| |
Collapse
|
34
|
Secondary Analysis of Walking Activities During the Acute Stroke Hospital Stay and Cerebrovascular Health. Cardiopulm Phys Ther J 2022; 33:130-137. [DOI: 10.1097/cpt.0000000000000196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Deane CS, Din USU, Sian TS, Smith K, Gates A, Lund JN, Williams JP, Rueda R, Pereira SL, Atherton PJ, Phillips BE. Curcumin Enhances Fed-State Muscle Microvascular Perfusion but Not Leg Glucose Uptake in Older Adults. Nutrients 2022; 14:nu14061313. [PMID: 35334969 PMCID: PMC8953570 DOI: 10.3390/nu14061313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Therapeutic interventions aimed at enhancing blood flow may combat the postprandial vascular and metabolic dysfunction that manifests with chronological ageing. We compared the effects of acute curcumin (1000 mg) coupled with an oral nutritional supplement (ONS, 7.5 g protein, 24 g carbohydrate and 6 g fat) versus a placebo and ONS (control) on cerebral and leg macrovascular blood flow, leg muscle microvascular blood flow, brachial artery endothelial function, and leg insulin and glucose responses in healthy older adults (n = 12, 50% male, 73 ± 1 year). Curcumin enhanced m. tibialis anterior microvascular blood volume (MBV) at 180 and 240 min following the ONS (baseline: 1.0 vs. 180 min: 1.08 ± 0.02, p = 0.01 vs. 240 min: 1.08 ± 0.03, p = 0.01), and MBV was significantly higher compared with the control at both time points (p < 0.05). MBV increased from baseline in the m. vastus lateralis at 240 min after the ONS in both groups (p < 0.05), and there were no significant differences between groups. Following the ONS, leg blood flow and leg vascular conductance increased, and leg vascular resistance decreased similarly in both conditions (p < 0.05). Brachial artery flow-mediated dilation and middle cerebral artery blood flow were unchanged in both conditions (p > 0.05). Similarly, the curcumin and control groups demonstrated comparable increases in glucose uptake and insulin in response to the ONS. Thus, acute curcumin supplementation enhanced ONS-induced increases in m. tibialis anterior MBV without potentiating m. vastus lateralis MBV, muscle glucose uptake, or systemic endothelial or macrovascular function in healthy older adults.
Collapse
Affiliation(s)
- Colleen S. Deane
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK;
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Ushnah S. U. Din
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
| | - Tanvir S. Sian
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - Ken Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
| | - Amanda Gates
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
| | - Jonathan N. Lund
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - John P. Williams
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - Ricardo Rueda
- Research and Development, Abbott Nutrition, 18004 Granada, Spain;
| | | | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Correspondence: (P.J.A.); (B.E.P.)
| | - Bethan E. Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Correspondence: (P.J.A.); (B.E.P.)
| |
Collapse
|
36
|
Incremental Doses of Nitrate-Rich Beetroot Juice Do Not Modify Cognitive Function and Cerebral Blood Flow in Overweight and Obese Older Adults: A 13-Week Pilot Randomised Clinical Trial. Nutrients 2022; 14:nu14051052. [PMID: 35268027 PMCID: PMC8912345 DOI: 10.3390/nu14051052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
Nitrate-rich food increases nitric oxide (NO) production and may have beneficial effects on vascular, metabolic, and brain function. This pilot study tested the effects of prolonged consumption of a range of doses of dietary nitrate (NO3-), provided as beetroot juice, on cognitive function and cerebral blood flow (CBF) in overweight and obese older participants. The study had a 13-week single-blind, randomised, parallel design, and 62 overweight and obese older participants (aged 60 to 75 years) received the following interventions: (1) high NO3- (2 × 70 mL beetroot juice/day) (2) medium NO3- (70 mL beetroot juice/day), (3) low NO3- (70 mL beetroot juice on alternate days), or (4) placebo (70 mL of NO3--depleted beetroot juice on alternate days). Cognitive functions were assessed using the Computerised Mental Performance Assessment System (COMPASS) assessment battery. CBF, monitored by concentration changes in oxygenated and deoxygenated haemoglobin, was assessed in the frontal cortex using near-infrared spectroscopy. The findings of this pilot study showed that cognitive function and CBF were not affected by supplementation with NO3--rich beetroot juice for 13 weeks, irrespective of the NO3- dose administered. These findings require confirmation in larger studies using more sophisticated imaging methods (i.e., MRI) to determine whether prolonged dietary NO3- supplementation influences brain function in older overweight people.
Collapse
|
37
|
Ahmad R, Chowdhury K, Kumar S, Irfan M, Reddy GS, Akter F, Jahan D, Haque M. Diabetes Mellitus: A Path to Amnesia, Personality, and Behavior Change. BIOLOGY 2022; 11:biology11030382. [PMID: 35336756 PMCID: PMC8945557 DOI: 10.3390/biology11030382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Diabetes Mellitus (DM) is a metabolic disorder resulting from a disturbance of insulin secretion, action, or both. Hyperglycemia and overproduction of superoxide induce the development and progression of chronic complications of DM. The impact of DM and its complication on the central nervous system (CNS) such as dementia and Alzheimer’s Disease (AD) still remain obscure. In dementia, there is a gradual decline in cognitive function. The incidence of dementia increases with age, and patient become socially, physically, and mentally more vulnerable and dependent. The symptoms often emerge decades after the onset of pathophysiology, thus impairing early therapeutic intervention. Most diabetic subjects who develop dementia are above the age of 65, but diabetes may also cause an increased risk of developing dementia before 65 years. Vascular dementia is the second most common form of dementia after AD. Type 2 DM (T2DM) increases the incidence of vascular dementia (since its covers the vascular system) and AD. The functional and structural integrity of the CNS is altered in T2DM due to increased synthesis of Aβ. Additionally, hyperphosphorylation of Tau protein also results from dysregulation of various signaling cascades in T2DM, thereby causing neuronal damage and AD. There is the prospect for development of a therapy that may help prevent or halt the progress of dementia resulting from T2DM. Abstract Type 2 diabetes mellitus is increasingly being associated with cognition dysfunction. Dementia, including vascular dementia and Alzheimer’s Disease, is being recognized as comorbidities of this metabolic disorder. The progressive hallmarks of this cognitive dysfunction include mild impairment of cognition and cognitive decline. Dementia and mild impairment of cognition appear primarily in older patients. Studies on risk factors, neuropathology, and brain imaging have provided important suggestions for mechanisms that lie behind the development of dementia. It is a significant challenge to understand the disease processes related to diabetes that affect the brain and lead to dementia development. The connection between diabetes mellitus and dysfunction of cognition has been observed in many human and animal studies that have noted that mechanisms related to diabetes mellitus are possibly responsible for aggravating cognitive dysfunction. This article attempts to narrate the possible association between Type 2 diabetes and dementia, reviewing studies that have noted this association in vascular dementia and Alzheimer’s Disease and helping to explain the potential mechanisms behind the disease process. A Google search for “Diabetes Mellitus and Dementia” was carried out. Search was also done for “Diabetes Mellitus”, “Vascular Dementia”, and “Alzheimer’s Disease”. The literature search was done using Google Scholar, Pubmed, Embase, ScienceDirect, and MEDLINE. Keeping in mind the increasing rate of Diabetes Mellitus, it is important to establish the Type 2 diabetes’ effect on the brain and diseases of neurodegeneration. This narrative review aims to build awareness regarding the different types of dementia and their relationship with diabetes.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh;
| | - Kona Chowdhury
- Department of Pediatrics, Gonoshasthaya Samaj Vittik Medical College and Hospital, Dhaka 1344, Bangladesh;
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, 907/A, Uvarsad Gandhinagar, Gujarat 382422, India;
| | - Mohammed Irfan
- Department of Forensics, Federal University of Pelotas, Pelotas 96020-010, RS, Brazil;
| | - Govindool Sharaschandra Reddy
- Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA;
| | - Farhana Akter
- Department of Endocrinology, Chittagong Medical College, Chattogram 4203, Bangladesh;
| | - Dilshad Jahan
- Department of Hematology, Asgar Ali Hospital, 111/1/A Distillery Road, Gandaria Beside Dhupkhola, Dhaka 1204, Bangladesh;
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: or
| |
Collapse
|
38
|
Liu J, Yang X, Li Y, Xu H, Ren J, Zhou P. Cerebral Blood Flow Alterations in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Arterial Spin Labeling Studies. Front Aging Neurosci 2022; 14:847218. [PMID: 35250549 PMCID: PMC8888831 DOI: 10.3389/fnagi.2022.847218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveArterial spin labeling (ASL) studies have revealed inconsistent regional cerebral blood flow (CBF) alterations in patients with type 2 diabetes mellitus (T2DM). The aim of this systematic review and meta-analysis was to identify concordant regional CBF alterations in T2DM.MethodsA systematic review was conducted to the published literatures comparing cerebral perfusion between patients with T2DM and healthy controls using ASL. The seed-based d mapping (SDM) was further used to perform quantitative meta-analysis on voxel-based literatures and to estimate the regional CBF alterations in patients with T2DM. Metaregression was performed to explore the associations between clinical characteristics and cerebral perfusion alterations.ResultsA total of 13 studies with 14 reports were included in the systematic review and 7 studies with 7 reports were included in the quantitative meta-analysis. The qualitative review found widespread CBF reduction in cerebral lobes in T2DM. The meta-analysis found increased regional CBF in right supplementary motor area and decreased regional CBF in bilateral middle occipital gyrus, left caudate nucleus, right superior parietal gyrus, and left calcarine fissure/surrounding cortex in T2DM.ConclusionThe patterns of cerebral perfusion alterations, characterized by the decreased CBF in occipital and parietal lobes, might be the neuropathology of visual impairment and cognitive aging in T2DM.
Collapse
|
39
|
Thomas KR, Weigand AJ, Cota IH, Edmonds EC, Wierenga CE, Bondi MW, Bangen KJ. Intrusion errors moderate the relationship between blood glucose and regional cerebral blood flow in cognitively unimpaired older adults. Brain Imaging Behav 2022; 16:219-227. [PMID: 34415491 PMCID: PMC8825619 DOI: 10.1007/s11682-021-00495-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 02/03/2023]
Abstract
Regional cerebral blood flow (CBF) has a complex relationship with cognitive functioning such that cognitively unimpaired individuals at risk for Alzheimer's disease (AD) may show regional hyperperfusion, while those with cognitive impairment typically show hypoperfusion. Diabetes and word-list intrusion errors are both linked to greater risk of cognitive decline and dementia. Our study examined associations between fasting blood glucose, word-list intrusion errors, and regional CBF. 113 cognitively unimpaired older adults had arterial spin labeling MRI to measure CBF in a priori AD vulnerable regions: medial temporal lobe (MTL), inferior parietal lobe (IPL), precuneus, medial orbitofrontal cortex (mOFC), and pericalcarine (control region). Hierarchical linear regressions, adjusting for demographics, vascular risk, and reference CBF region, examined the main effect of blood glucose on regional CBF as well as whether intrusions moderated this relationship. Higher glucose was associated with higher CBF in the precuneus (β = .134, 95% CI = .007 to .261, p = .039), IPL (β = .173, 95% CI = .072 to .276, p = .001), and mOFC (β = .182, 95% CI = .047 to .320, p = .009). There was no main effect of intrusions on CBF across regions. However, the glucose x intrusions interaction was significant such that having higher glucose levels and more intrusion errors was associated with reduced CBF in the MTL (β = -.186, 95% CI = -.334 to -.040, p = .013) and precuneus (β = -.146, 95% CI = -.273 to -.022, p = .022). These findings may reflect early neurovascular dysregulation, whereby higher CBF is needed to maintain unimpaired cognition in individuals with higher glucose levels. However, lower regional CBF in unimpaired participants with both higher glucose and more intrusions suggests a failure in this early compensatory mechanism that may signal a decrease in neural activity in AD vulnerable regions.
Collapse
Affiliation(s)
- Kelsey R Thomas
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive (151), San Diego, CA, USA.
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| | - Alexandra J Weigand
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Isabel H Cota
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive (151), San Diego, CA, USA
| | - Emily C Edmonds
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive (151), San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Christina E Wierenga
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive (151), San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Katherine J Bangen
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive (151), San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
40
|
Zhao H, Wang F, Luo GH, Lei H, Peng F, Ren QP, Chen W, Wu YF, Yin LC, Liu JC, Pan SN. Assessment of structural brain changes in patients with type 2 diabetes mellitus using the MRI-based brain atrophy and lesion index. Neural Regen Res 2022; 17:618-624. [PMID: 34380902 PMCID: PMC8504365 DOI: 10.4103/1673-5374.320996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) often have cognitive impairment and structural brain abnormalities. The magnetic resonance imaging (MRI)-based brain atrophy and lesion index can be used to evaluate common brain changes and their correlation with cognitive function, and can therefore also be used to reflect whole-brain structural changes related to T2DM. A total of 136 participants (64 men and 72 women, aged 55–86 years) were recruited for our study between January 2014 and December 2016. All participants underwent MRI and Mini-Mental State Examination assessment (including 42 healthy control, 38 T2DM without cognitive impairment, 26 with cognitive impairment but without T2DM, and 30 T2DM with cognitive impairment participants). The total and sub-category brain atrophy and lesion index scores in patients with T2DM with cognitive impairment were higher than those in healthy controls. Differences in the brain atrophy and lesion index of gray matter lesions and subcortical dilated perivascular spaces were found between non-T2DM patients with cognitive impairment and patients with T2DM and cognitive impairment. After adjusting for age, the brain atrophy and lesion index retained its capacity to identify patients with T2DM with cognitive impairment. These findings suggest that the brain atrophy and lesion index, based on T1-weighted and T2-weighted imaging, is of clinical value for identifying patients with T2DM and cognitive impairment. Gray matter lesions and subcortical dilated perivascular spaces may be potential diagnostic markers of T2DM that is complicated by cognitive impairment. This study was approved by the Medical Ethics Committee of University of South China (approval No. USC20131109003) on November 9, 2013, and was retrospectively registered with the Chinese Clinical Trial Registry (registration No. ChiCTR1900024150) on June 27, 2019.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province; Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Fang Wang
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Guang-Hua Luo
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Hao Lei
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Fei Peng
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Qiu-Ping Ren
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Wei Chen
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Yan-Fang Wu
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Li-Chun Yin
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Jin-Cai Liu
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Shi-Nong Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
41
|
Worley ML, Reed EL, J Kueck P, Dirr J, Klaes N, Schlader ZJ, D Johnson B. Hot head-out water immersion does not acutely alter dynamic cerebral autoregulation or cerebrovascular reactivity to hypercapnia. Temperature (Austin) 2021; 8:381-401. [PMID: 34901320 DOI: 10.1080/23328940.2021.1894067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Recurring hot head-out water immersion (HOWI) enhances peripheral vascular function and cerebral blood velocity during non-immersion conditions. However, it is unknown if an acute bout of hot HOWI alters cerebrovascular function. Using two experimental studies, we tested the hypotheses that dynamic cerebral autoregulation (dCA) and cerebrovascular reactivity (CVR) are improved during an acute bout of hot (HOT; 39 °C) vs. thermoneutral (TN; 35 °C) HOWI. Eighteen healthy participants (eight females) completed the dCA study, and 14 participants (6 females) completed the CVR study. Both studies consisted of two randomized (TNdCA vs. HOTdCA; TNCVR vs. HOTCVR) 45minute HOWI visits. Middle cerebral artery blood velocity (MCAvmean) was continuously recorded. dCA was assessed using a respiratory impedance device and analyzed via transfer gain and phase in the low-frequency band. CVR was assessed using stepped hypercapnia. Assessments were completed PRE and 30 minutes into HOWI. Values are reported as a change (Δ) from PRE (mean ± SD). There were no differences at PRE for either study. ΔMCAvmean was greater in TNdCA (TNdCA: 4 ± 4 vs. HOTdCA: -3 ± 5 cm/s; P < 0.01) and TNCVR (TNCVR: 5 ± 4 vs. HOTCVR: -1 ± 6 cm/s; P < 0.01) during HOWI. ΔGain was greater in HOTdCA during HOWI (TNdCA: -0.09 ± 0.15 vs. HOTdCA: 0.10 ± 0.17 cm/s/mmHg; P = 0.04). ΔPhase (P > 0.84) and ΔCVR (P > 0.94) were not different between conditions. These data indicate that hot and thermoneutral water immersion do not acutely alter cerebrovascular function in healthy, young adults.
Collapse
Affiliation(s)
- Morgan L Worley
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, United States
| | - Emma L Reed
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, United States
| | - Paul J Kueck
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, United States
| | - Jacqueline Dirr
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, United States
| | - Nathan Klaes
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, United States
| | - Zachary J Schlader
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, United States.,Department of Kinesiology, School of Public Health, Indiana University, Bloomington, United States
| | - Blair D Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, United States.,Department of Kinesiology, School of Public Health, Indiana University, Bloomington, United States
| |
Collapse
|
42
|
Carter KJ, Ward AT, Kellawan JM, Eldridge MW, Al-Subu A, Walker BJ, Lee JW, Wieben O, Schrage WG. Nitric oxide synthase inhibition in healthy adults reduces regional and total cerebral macrovascular blood flow and microvascular perfusion. J Physiol 2021; 599:4973-4989. [PMID: 34587648 PMCID: PMC9009720 DOI: 10.1113/jp281975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022] Open
Abstract
The importance of nitric oxide (NO) in regulating cerebral blood flow (CBF) remains unresolved, due in part to methodological approaches, which lack a comprehensive assessment of both global and regional effects. Importantly, NO synthase (NOS) expression and activity appear greater in some anterior brain regions, suggesting region-specific NOS influence on CBF. We hypothesized that NO contributes to basal CBF in healthy adults, in a regionally distinct pattern that predominates in the anterior circulation. Fourteen healthy adults (7 females; 24 ± 5 years) underwent two magnetic resonance imaging (MRI) study visits with saline (placebo) or the NOS inhibitor, L-NMMA, administered in a randomized, single-blind approach. 4D flow MRI quantified total and regional macrovascular CBF, whereas arterial spin labelling (ASL) MRI quantified total and regional microvascular perfusion. L-NMMA (or volume-matched saline) was infused intravenously for 5 min prior to imaging. L-NMMA reduced CBF (L-NMMA: 722 ± 100 vs. placebo: 771 ± 121 ml/min, P = 0.01) with similar relative reductions (5-7%) in anterior and posterior cerebral circulations, due in part to the reduced cross-sectional area of 9 of 11 large cerebral arteries. Global microvascular perfusion (ASL) was reduced by L-NMMA (L-NMMA: 42 ± 7 vs. placebo: 47 ± 8 ml/100g/min, P = 0.02), with 7-11% reductions in both hemispheres of the frontal, parietal and temporal lobes, and in the left occipital lobe. We conclude that NO contributes to macrovascular and microvascular regulation including larger artery resting diameter. Contrary to our hypothesis, the influence of NO on cerebral perfusion appears regionally uniform in healthy young adults. KEY POINTS: Cerebral blood flow (CBF) is vital for brain health, but the signals that are key to regulating CBF remain unclear. Nitric oxide (NO) is produced in the brain, but its importance in regulating CBF remains controversial since prior studies have not studied all regions of the brain simultaneously. Using modern MRI approaches, a drug that inhibits the enzymes that make NO (L-NMMA) reduced CBF by up to 11% in different brain regions. NO helps maintain proper CBF in healthy adults. These data will help us understand whether the reductions in CBF that occur during ageing or cardiovascular disease are related to shifts in NO signalling.
Collapse
Affiliation(s)
- Katrina J Carter
- Department of Kinesiology, University of Wisconsin, Madison, WI, USA
| | - Aaron T Ward
- Department of Kinesiology, University of Wisconsin, Madison, WI, USA
| | - J Mikhail Kellawan
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | | | - Awni Al-Subu
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Benjamin J Walker
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Jeffrey W Lee
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
43
|
Werhane ML, Thomas KR, Bangen KJ, Weigand AJ, Edmonds EC, Nation DA, Sundermann EE, Bondi MW, Delano-Wood L. Arterial Stiffening Moderates the Relationship Between Type-2 Diabetes Mellitus and White Matter Hyperintensity Burden in Older Adults With Mild Cognitive Impairment. Front Aging Neurosci 2021; 13:716638. [PMID: 34759811 PMCID: PMC8574966 DOI: 10.3389/fnagi.2021.716638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Cerebrovascular dysfunction has been proposed as a possible mechanism underlying cognitive impairment in the context of type 2 diabetes mellitus (DM). Although magnetic resonance imaging (MRI) evidence of cerebrovascular disease, such as white matter hyperintensities (WMH), is often observed in DM, the vascular dynamics underlying this pathology remain unclear. Thus, we assessed the independent and combined effects of DM status and different vascular hemodynamic measures (i.e., systolic, diastolic, and mean arterial blood pressure and pulse pressure index [PPi]) on WMH burden in cognitively unimpaired (CU) older adults and those with mild cognitive impairment (MCI). Methods: 559 older adults (mean age: 72.4 years) from the Alzheimer's Disease Neuroimaging Initiative were categorized into those with diabetes (DM+; CU = 43, MCI = 34) or without diabetes (DM-; CU = 279; MCI = 203). Participants underwent BP assessment, from which all vascular hemodynamic measures were derived. T2-FLAIR MRI was used to quantify WMH burden. Hierarchical linear regression, adjusting for age, sex, BMI, intracranial volume, CSF amyloid, and APOE ε4 status, examined the independent and interactive effects of DM status and each vascular hemodynamic measure on total WMH burden. Results: The presence of DM (p = 0.046), but not PPi values (p = 0.299), was independently associated with greater WMH burden overall after adjusting for covariates. Analyses stratified by cognitive status revealed a significant DM status x PPi interaction within the MCI group (p = 0.001) such that higher PPi values predicted greater WMH burden in the DM + but not DM- group. No significant interactions were observed in the CU group (all ps > 0.05). Discussion: Results indicate that higher PPi values are positively associated with WMH burden in diabetic older adults with MCI, but not their non-diabetic or CU counterparts. Our findings suggest that arterial stiffening and reduced vascular compliance may have a role in development of cerebrovascular pathology within the context of DM in individuals at risk for future cognitive decline. Given the specificity of these findings to MCI, future exploration of the sensitivity of earlier brain markers of vascular insufficiency (i.e., prior to macrostructural white matter changes) to the effects of DM and arterial stiffness/reduced vascular compliance in CU individuals is warranted.
Collapse
Affiliation(s)
- Madeleine L. Werhane
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - Kelsey R. Thomas
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Katherine J. Bangen
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Alexandra J. Weigand
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, San Diego, CA, United States
| | - Emily C. Edmonds
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Daniel A. Nation
- Department of Psychological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Erin E. Sundermann
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Mark W. Bondi
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Lisa Delano-Wood
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
44
|
Yuan CL, Yi R, Dong Q, Yao LF, Liu B. The relationship between diabetes-related cognitive dysfunction and leukoaraiosis. Acta Neurol Belg 2021; 121:1101-1110. [PMID: 33893981 DOI: 10.1007/s13760-021-01676-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/10/2021] [Indexed: 12/17/2022]
Abstract
Cognitive dysfunction is a degenerative disease of the central nervous system, which often associates with ageing brain as well as neurodegenerative diseases. A growing body of evidence suggests that patients with diabetes mellitus (DM) have a significantly higher risk of cognitive impairment. In recent years, studies have found that patients with diabetes-related cognitive dysfunction have an increased burden of leukoaraiosis (LA), and larger white matter hyperintensity (WMH) volume. With the recent advancement of technologies, multimodal imaging is widely exploited for the precise evaluation of central nervous system diseases. Emerging studies suggest that LA pathology can be used as a predictive signal of white matter lesions in patients with diabetes-related cognitive dysfunction, providing support for early identification and diagnosis of disease. This article reviews the findings, epidemiological characteristics, pathogenesis, imaging features, prevention and treatment of LA pathophysiology in patients with diabetes-related cognitive dysfunction.
Collapse
Affiliation(s)
- Chun-Lan Yuan
- Department of Neurology, The First Affiliated Hospital Of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, People's Republic of China
| | - Ran Yi
- Department of Endocrine, The First Affiliated Hospital Of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, People's Republic of China
| | - Qi Dong
- Department of Neurology, The First Affiliated Hospital Of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, People's Republic of China.
| | - Li-Fen Yao
- Department of Neurology, The First Affiliated Hospital Of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, People's Republic of China
| | - Bin Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital Of Harbin Medical University, No. 37 Yiyuan Street, Harbin, 150001, People's Republic of China.
| |
Collapse
|
45
|
Kleinloog JPD, Tischmann L, Mensink RP, Adam TC, Joris PJ. Longer-term soy nut consumption improves cerebral blood flow and psychomotor speed: results of a randomized, controlled crossover trial in older men and women. Am J Clin Nutr 2021; 114:2097-2106. [PMID: 34510189 PMCID: PMC8634607 DOI: 10.1093/ajcn/nqab289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/11/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Effects of soy foods on cerebral blood flow (CBF)-a marker of cerebrovascular function-may contribute to the beneficial effects of plant-based diets on cognitive performance. OBJECTIVES We aimed to investigate longer-term effects of soy nut consumption on CBF in older adults. Changes in 3 different domains of cognitive performance were also studied. METHODS Twenty-three healthy participants (age: 60-70 y; BMI: 20-30 kg/m2) participated in a randomized, controlled, single-blinded crossover trial with an intervention (67 g/d of soy nuts providing ∼25.5 g protein and 174 mg isoflavones) and control period (no nuts) of 16 wk, separated by an 8-wk washout period. Adults followed the Dutch food-based dietary guidelines. At the end of each period, CBF was assessed with arterial spin labeling MRI. Psychomotor speed, executive function, and memory were assessed using the Cambridge Neuropsychological Test Automated Battery (CANTAB). RESULTS No serious adverse events were reported, and soy nut intake was well tolerated. Body weights remained stable during the study. Serum isoflavone concentrations increased (daidzein mean difference ± SD: 128 ± 113 ng/mL, P < 0.001; genistein: 454 ± 256 ng/mL, P < 0.001), indicating excellent compliance. Regional CBF increased in 4 brain clusters located in the left occipital and temporal lobes (mean ± SD increase: 11.1 ± 12.4 mL · 100 g-1 · min-1, volume: 11,296 mm3, P < 0.001), bilateral occipital lobe (12.1 ± 15.0 mL · 100 g-1 · min-1, volume: 2632 mm3, P = 0.002), right occipital and parietal lobes (12.7 ± 14.3 mL · 100 g-1 · min-1, volume: 2280 mm3, P = 0.005), and left frontal lobe (12.4 ± 14.5 mL · 100 g-1 · min-1, volume: 2120 mm3, P = 0.009) which is part of the ventral network. These 4 regions are involved in psychomotor speed performance, which improved as the movement time reduced by (mean ± SD) 20 ± 37 ms (P = 0.005). Executive function and memory did not change. CONCLUSIONS Longer-term soy nut consumption may improve cerebrovascular function of older adults, because regional CBF increased. Effects may underlie observed improvements in psychomotor speed.This trial was registered at clinicaltrials.gov as NCT03627637.
Collapse
Affiliation(s)
- Jordi P D Kleinloog
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Lea Tischmann
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Tanja C Adam
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
46
|
Lotan R, Ganmore I, Livny A, Itzhaki N, Waserman M, Shelly S, Zacharia M, Moshier E, Uribarri J, Beisswenger P, Cai W, Troen AM, Beeri MS. Effect of Advanced Glycation End Products on Cognition in Older Adults with Type 2 Diabetes: Results from a Pilot Clinical Trial. J Alzheimers Dis 2021; 82:1785-1795. [PMID: 34250935 DOI: 10.3233/jad-210131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Dietary advanced glycation end-products (AGEs) are linked to cognitive decline. However, clinical trials have not tested the effect of AGEs on cognition in older adults. OBJECTIVE The aim of the current pilot trial was to examine the feasibility of an intervention to reduce dietary AGEs on cognition and on cerebral blood flow (CBF). METHODS The design is a pilot randomized controlled trial of dietary AGEs reduction in older adults with type 2 diabetes. Seventy-five participants were randomized to two arms. The control arm received standard of care (SOC) guidelines for good glycemic control; the intervention arm, in addition to SOC guidelines, were instructed to reduce their dietary AGEs intake. Global cognition and CBF were assessed at baseline and after 6 months of intervention. RESULTS At baseline, we found a reverse association between AGEs and cognitive functioning, possibly reflecting the long-term toxicity of AGEs on the brain. There was a significant improvement in global cognition at 6 months in both the intervention and SOC groups which was more prominent in participants with mild cognitive impairment. We also found that at baseline, higher AGEs were associated with increased CBF in the left inferior parietal cortex; however, 6 months of the AGEs lowering intervention did not affect CBF levels, despite lowering AGEs exposure in blood. CONCLUSION The current pilot trial focused on the feasibility and methodology of intervening through diet to reduce AGEs in older adults with type 2 diabetes. Our results suggest that participants with mild cognitive impairment may benefit from an intensive dietary intervention.
Collapse
Affiliation(s)
- Roni Lotan
- The Nutrition and Brain Health Laboratory, The Institute of Biochemistry, Food and Nutrition Science, The Robert H. Smith Faculty of Agriculture Food and the Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ithamar Ganmore
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel.,Memory Clinic, Sheba Medical Center, Tel Hashomer, Israel.,Neurology department, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abigail Livny
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Nofar Itzhaki
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Mark Waserman
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Shahar Shelly
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel.,Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Moran Zacharia
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Erin Moshier
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jaime Uribarri
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Weijing Cai
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aron M Troen
- The Nutrition and Brain Health Laboratory, The Institute of Biochemistry, Food and Nutrition Science, The Robert H. Smith Faculty of Agriculture Food and the Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
47
|
Wang Y, Sun L, He G, Gang X, Zhao X, Wang G, Ning G. Cerebral perfusion alterations in type 2 diabetes mellitus - a systematic review. Front Neuroendocrinol 2021; 62:100916. [PMID: 33957174 DOI: 10.1016/j.yfrne.2021.100916] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/04/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is related to abnormal brain structure and function, increasing the risk of cognitive impairment and dementia. We systematically reviewed the published literature focusing on cerebral perfusion in patients with T2DM. Although no significant difference was found in global cerebral blood flow (CBF) between the T2DM group and the healthy control group, the regional cerebral perfusion in T2DM was significantly reduced in multiple locations, including the occipital lobe, domains involved in the default mode network and the cerebellum. The decline in regional CBF was associated with a wide range of cognitive disorders in T2DM, including learning, memory, attention, and executive processing, as well as visual function. In addition, diabetes-related biochemical indicators, such as glycated hemoglobin and insulin resistance, were negatively correlated with regional CBF. In general, these functional perfusion imaging studies indicate that decreased CBF in T2DM may be a potential cause of cognitive impairment.
Collapse
Affiliation(s)
- Yaqiong Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China
| | - Lin Sun
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China
| | - Guangyu He
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Guixia Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Guang Ning
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China; National Clinical Research Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
48
|
Bangen KJ, Smirnov DS, Delano-Wood L, Wierenga CE, Bondi MW, Salmon DP, Galasko D. Arterial stiffening acts synergistically with APOE genotype and AD biomarker status to influence memory in older adults without dementia. Alzheimers Res Ther 2021; 13:121. [PMID: 34210365 PMCID: PMC8246656 DOI: 10.1186/s13195-021-00851-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/31/2021] [Indexed: 12/02/2022]
Abstract
BACKGROUND Arterial stiffening has emerged as an important risk factor for Alzheimer's disease (AD) and related dementias. Carotid-femoral pulse wave velocity has been proposed as a non-invasive and reproducible method to assess arterial stiffness. However, the association of pulse wave velocity with performance across multiple cognitive domains as well as interactions with in vivo AD biomarkers and apolipoprotein E (APOE) genotype has received limited study. METHOD We studied 193 older adult volunteers (167 with normal cognition and 26 with mild cognitive impairment) who underwent comprehensive medical and neuropsychological evaluation at the University of California, San Diego Alzheimer's Disease Research Center. Cerebrospinal fluid (CSF) biomarkers were available on 123 participants (63%). Linear models examined whether pulse wave velocity significantly interacted with APOE ε4 status and CSF AD biomarker positivity (based on the ratio of total tau over beta-amyloid [tau/Aβ42]) on memory, language, executive functioning, attention, and visuospatial abilities. RESULTS After adjusting for demographic characteristics and vascular risk burden, across the entire sample, pulse wave velocity was associated with poorer executive functioning but not the performance in the other cognitive domains. When the modifying effects of AD genetic risk and CSF AD biomarkers were considered, pulse wave velocity interacted with APOE genotype and CSF tau/Aβ ratio such that a stronger association between elevated pulse wave velocity and poorer memory performance was found among those positive for CSF and genetic AD markers. There were no significant interaction effects for non-memory cognitive domains. CONCLUSION The findings suggest that pulse wave velocity, a non-invasive method to assess arterial wall properties, may be a useful marker of risk for cognitive decline, particularly among individuals who are APOE ε4 carriers or CSF AD biomarke0r-positive.
Collapse
Affiliation(s)
- Katherine J Bangen
- Research Service, VA San Diego Healthcare System, Building 13, 3350 La Jolla Village Drive (151A), San Diego, CA, 92161, USA.
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| | - Denis S Smirnov
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Lisa Delano-Wood
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Christina E Wierenga
- Research Service, VA San Diego Healthcare System, Building 13, 3350 La Jolla Village Drive (151A), San Diego, CA, 92161, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - David P Salmon
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
49
|
Liu J, Li Y, Yang X, Xu H, Ren J, Zhou P. Regional Spontaneous Neural Activity Alterations in Type 2 Diabetes Mellitus: A Meta-Analysis of Resting-State Functional MRI Studies. Front Aging Neurosci 2021; 13:678359. [PMID: 34220486 PMCID: PMC8245688 DOI: 10.3389/fnagi.2021.678359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 01/06/2023] Open
Abstract
Objective: Resting-state functional magnetic resonance imaging (rs-fMRI) studies have revealed inconsistent regional spontaneous neural activity alterations in patients with type 2 diabetes mellitus (T2DM). The aim of our meta-analysis was to identify concordant regional spontaneous neural activity abnormalities in patients with T2DM. Methods: A systematic search was conducted to identify voxel-based rs-fMRI studies comparing T2DM patients with healthy controls. The permutation of subject images seed-based d mapping (SDM) was used to quantitatively estimate the regional spontaneous neural activity abnormalities in patients with T2DM. Metaregression was conducted to examine the associations between clinical characteristics and functional alterations. Results: A total of 16 studies with 19 datasets including 434 patients with T2DM and 391 healthy controls were included. Patients with T2DM showed hypoactivity in the right medial superior frontal gyrus, right superior temporal gyrus, and left lingual gyrus, whereas hyperactivity in the right cerebellum. Metaregression analysis identified negative correlation between regional activity in the medial superior frontal and anterior cingulate gyri and illness duration of patients with T2DM. Conclusion: The patterns of regional spontaneous neural activity alterations, characterized by hypoactivity in the medial pre-frontal cortex, visual cortex, and superior temporal gyrus, whereas hyperactivity in the cerebellum, might represent the underlying neuropathological mechanisms of T2DM.
Collapse
Affiliation(s)
- Jieke Liu
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Li
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xi Yang
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Xu
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Ren
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Zhou
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
50
|
Bangen KJ, Thomas KR, Sanchez DL, Edmonds EC, Weigand AJ, Delano-Wood L, Bondi MW. Entorhinal Perfusion Predicts Future Memory Decline, Neurodegeneration, and White Matter Hyperintensity Progression in Older Adults. J Alzheimers Dis 2021; 81:1711-1725. [PMID: 33967041 DOI: 10.3233/jad-201474] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Altered cerebral blood flow (CBF) has been linked to increased risk for Alzheimer's disease (AD). However, whether altered CBF contributes to AD risk by accelerating cognitive decline remains unclear. It also remains unclear whether reductions in CBF accelerate neurodegeneration and development of small vessel cerebrovascular disease. OBJECTIVE To examine associations between CBF and trajectories of memory performance, regional brain atrophy, and global white matter hyperintensity (WMH) volume. METHOD 147 Alzheimer's Disease Neuroimaging Initiative participants free of dementia underwent arterial spin labeling (ASL) magnetic resonance imaging (MRI) to measure CBF and serial neuropsychological and structural MRI examinations. Linear mixed effects models examined 5-year rate of change in memory and 4-year rate of change in regional brain atrophy and global WMH volumes as a function of baseline regional CBF. Entorhinal and hippocampal CBF were examined in separate models. RESULTS Adjusting for demographic characteristics, pulse pressure, apolipoprotein E ɛ4 positivity, cerebrospinal fluid p-tau/Aβ ratio, and neuronal metabolism (i.e., fluorodeoxyglucose standardized uptake value ratio), lower baseline entorhinal CBF predicted faster rates of decline in memory as well as faster entorhinal thinning and WMH progression. Hippocampal CBF did not predict cognitive or brain structure trajectories. CONCLUSION Findings highlight the importance of early cerebrovascular dysfunction in AD risk and suggest that entorhinal CBF as measured by noninvasive ASL MRI is a useful biomarker predictive of future cognitive decline and of risk of both.
Collapse
Affiliation(s)
- Katherine J Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Kelsey R Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Danielle L Sanchez
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Emily C Edmonds
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra J Weigand
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA, USA
| | - Lisa Delano-Wood
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | | |
Collapse
|