1
|
Sharma S, Wadkar A, Kommajosyula SP. Muscarinic receptors at the auditory thalamocortical circuits and relevance to hearing. Life Sci 2025; 369:123522. [PMID: 40044029 DOI: 10.1016/j.lfs.2025.123522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/09/2025]
Abstract
The auditory thalamus and cortex are the critical structures in the auditory hierarchy, owing to their crucial role in plasticity, auditory object formation, speech understanding, and spatiotemporal integration. Acetylcholine, a key neuromodulator, alters the abovementioned processes by orchestrating its effects with other neurotransmitters and its high-affinity receptor, the muscarinic receptor. This manuscript extensively covers the localization and function of different muscarinic receptors in the auditory thalamocortical system. Gaps in research of muscarinic localization and function are identified in hearing function. Also, a scarcity of studies examining muscarinic structure and function with tinnitus and hearing loss (age-related/noise-induced) is presented. Central changes in neurotransmitter receptors and auditory coding occur due to maladaptive plasticity in hearing loss and tinnitus and alter auditory object formation and spatiotemporal discrimination behaviors. Addressing these gaps are key to developing therapeutic strategies for hearing loss and tinnitus, apart from rectifying cochlear insult that led to hearing loss/tinnitus. Focusing on the muscarinic receptors is important owing to their abundance and demonstrated functional role in the auditory thalamocortical circuits and cortical development in mutant mice. In conclusion, this review emphasizes the need to answer questions on the localization and function of muscarinic receptors.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Medchal District, Hyderabad 500078, India
| | - Avinash Wadkar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Medchal District, Hyderabad 500078, India
| | - Srinivasa Prasad Kommajosyula
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Medchal District, Hyderabad 500078, India.
| |
Collapse
|
2
|
Haghir H, Kuckertz A, Zhao L, Hami J, Palomero-Gallagher N. A new map of the rat isocortex and proisocortex: cytoarchitecture and M 2 receptor distribution patterns. Brain Struct Funct 2024; 229:1795-1822. [PMID: 37318645 PMCID: PMC11485150 DOI: 10.1007/s00429-023-02654-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/13/2023] [Indexed: 06/16/2023]
Abstract
Neurotransmitters and their receptors are key molecules in information transfer between neurons, thus enabling inter-areal communication. Therefore, multimodal atlases integrating the brain's cyto- and receptor architecture constitute crucial tools to understand the relationship between its structural and functional segregation. Cholinergic muscarinic M2 receptors have been shown to be an evolutionarily conserved molecular marker of primary sensory areas in the mammalian brain. To complement existing rodent atlases, we applied a silver cell body staining and quantitative in vitro receptor autoradiographic visualization of M2 receptors to alternating sections throughout the entire brain of five adult male Wistar rats (three sectioned coronally, one horizontally, one sagittally). Histological sections and autoradiographs were scanned at a spatial resolution of 1 µm and 20 µm per pixel, respectively, and files were stored as 8 bit images. We used these high-resolution datasets to create an atlas of the entire rat brain, including the olfactory bulb, cerebellum and brainstem. We describe the cyto- and M2 receptor architectonic features of 48 distinct iso- and proisocortical areas across the rat forebrain and provide their mean M2 receptor density. The ensuing parcellation scheme, which is discussed in the framework of existing comprehensive atlasses, includes the novel subdivision of mediomedial secondary visual area Oc2MM into anterior (Oc2MMa) and posterior (Oc2MMp) parts, and of lateral visual area Oc2L into rostrolateral (Oc2Lr), intermediate dorsolateral (Oc2Lid), intermediate ventrolateral (Oc2Liv) and caudolateral (Oc2Lc) secondary visual areas. The M2 receptor densities and the comprehensive map of iso-and proisocortical areas constitute useful tools for future computational and neuroscientific studies.
Collapse
Affiliation(s)
- Hossein Haghir
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anika Kuckertz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Ling Zhao
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Javad Hami
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
- Faculty of Medicine, HMU Health and Medical University Potsdam, 14471, Potsdam, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany.
- C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
3
|
Sharma K, Deco G, Solodkin A. The localization of coma. Cogn Neuropsychol 2024:1-20. [PMID: 39471280 DOI: 10.1080/02643294.2024.2420406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024]
Abstract
Coma and disorders of consciousness (DoC) are common manifestations of acute severe brain injuries. Research into their neuroanatomical basis can be traced from Hippocrates to the present day. Lesions causing DoC have traditionally been conceptualized as decreasing "alertness" from damage to the ascending arousal system, and/or, reducing level of "awareness" due to structural or functional impairment of large-scale brain networks. Within this framework, pharmacological and neuromodulatory interventions to promote recovery from DoC have hitherto met with limited success. This is partly due to inter-individual heterogeneity of brain injury patterns, and an incomplete understanding of brain network properties that characterize consciousness. Advances in multiscale computational modelling of brain dynamics have opened a unique opportunity to explore the causal mechanisms of brain activity at the biophysical level. These models can provide a novel approach for selection and optimization of potential interventions by simulation of brain network dynamics individualized for each patient.
Collapse
Affiliation(s)
- Kartavya Sharma
- Neurocritical care division, Departments of Neurology & Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ana Solodkin
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
4
|
Khan AF, Iturria-Medina Y. Beyond the usual suspects: multi-factorial computational models in the search for neurodegenerative disease mechanisms. Transl Psychiatry 2024; 14:386. [PMID: 39313512 PMCID: PMC11420368 DOI: 10.1038/s41398-024-03073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
From Alzheimer's disease to amyotrophic lateral sclerosis, the molecular cascades underlying neurodegenerative disorders remain poorly understood. The clinical view of neurodegeneration is confounded by symptomatic heterogeneity and mixed pathology in almost every patient. While the underlying physiological alterations originate, proliferate, and propagate potentially decades before symptomatic onset, the complexity and inaccessibility of the living brain limit direct observation over a patient's lifespan. Consequently, there is a critical need for robust computational methods to support the search for causal mechanisms of neurodegeneration by distinguishing pathogenic processes from consequential alterations, and inter-individual variability from intra-individual progression. Recently, promising advances have been made by data-driven spatiotemporal modeling of the brain, based on in vivo neuroimaging and biospecimen markers. These methods include disease progression models comparing the temporal evolution of various biomarkers, causal models linking interacting biological processes, network propagation models reproducing the spatial spreading of pathology, and biophysical models spanning cellular- to network-scale phenomena. In this review, we discuss various computational approaches for integrating cross-sectional, longitudinal, and multi-modal data, primarily from large observational neuroimaging studies, to understand (i) the temporal ordering of physiological alterations, i(i) their spatial relationships to the brain's molecular and cellular architecture, (iii) mechanistic interactions between biological processes, and (iv) the macroscopic effects of microscopic factors. We consider the extents to which computational models can evaluate mechanistic hypotheses, explore applications such as improving treatment selection, and discuss how model-informed insights can lay the groundwork for a pathobiological redefinition of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada.
| |
Collapse
|
5
|
Simmonite M, Khammash D, Michon KJ, Hamlin A, Taylor SF, Vesia M, Polk TA. Age and visual cortex inhibition: a TMS-MRS study. Cereb Cortex 2024; 34:bhae352. [PMID: 39227309 DOI: 10.1093/cercor/bhae352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
Paired-pulse transcranial magnetic stimulation is a valuable tool for investigating inhibitory mechanisms in motor cortex. We recently demonstrated its use in measuring cortical inhibition in visual cortex, using an approach in which participants trace the size of phosphenes elicited by stimulation to occipital cortex. Here, we investigate age-related differences in primary visual cortical inhibition and the relationship between primary visual cortical inhibition and local GABA+ in the same region, estimated using magnetic resonance spectroscopy. GABA+ was estimated in 28 young (18 to 28 years) and 47 older adults (65 to 84 years); a subset (19 young, 18 older) also completed a paired-pulse transcranial magnetic stimulation session, which assessed visual cortical inhibition. The paired-pulse transcranial magnetic stimulation measure of inhibition was significantly lower in older adults. Uncorrected GABA+ in primary visual cortex was also significantly lower in older adults, while measures of GABA+ that were corrected for the tissue composition of the magnetic resonance spectroscopy voxel were unchanged with age. Furthermore, paired-pulse transcranial magnetic stimulation-measured inhibition and magnetic resonance spectroscopy-measured tissue-corrected GABA+ were significantly positively correlated. These findings are consistent with an age-related decline in cortical inhibition in visual cortex and suggest paired-pulse transcranial magnetic stimulation effects in visual cortex are driven by GABAergic mechanisms, as has been demonstrated in motor cortex.
Collapse
Affiliation(s)
- Molly Simmonite
- Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109, United States
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, United States
| | - Dalia Khammash
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, United States
| | - Katherine J Michon
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, United States
| | - Abbey Hamlin
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, United States
| | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109, United States
| | - Michael Vesia
- School of Kinesiology, University of Michigan, 830 North University, Ann Arbor, MI 48109, United States
| | - Thad A Polk
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, United States
| |
Collapse
|
6
|
Johansen A, Beliveau V, Colliander E, Raval NR, Dam VH, Gillings N, Aznar S, Svarer C, Plavén-Sigray P, Knudsen GM. An In Vivo High-Resolution Human Brain Atlas of Synaptic Density. J Neurosci 2024; 44:e1750232024. [PMID: 38997157 PMCID: PMC11326867 DOI: 10.1523/jneurosci.1750-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Synapses are fundamental to the function of the central nervous system and are implicated in a number of brain disorders. Despite their pivotal role, a comprehensive imaging resource detailing the distribution of synapses in the human brain has been lacking until now. Here, we employ high-resolution PET neuroimaging in healthy humans (17F/16M) to create a 3D atlas of the synaptic marker Synaptic Vesicle glycoprotein 2A (SV2A). Calibration to absolute density values (pmol/ml) was achieved by leveraging postmortem human brain autoradiography data. The atlas unveils distinctive cortical and subcortical gradients of synapse density that reflect functional topography and hierarchical order from core sensory to higher-order integrative areas-a distribution that diverges from SV2A mRNA patterns. Furthermore, we found a positive association between IQ and SV2A density in several higher-order cortical areas. This new resource will help advance our understanding of brain physiology and the pathogenesis of brain disorders, serving as a pivotal tool for future neuroscience research.
Collapse
Affiliation(s)
- Annette Johansen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Vincent Beliveau
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Emil Colliander
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nakul Ravi Raval
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut 06520
- Yale PET Center, Yale University, New Haven, Connecticut 06520
| | - Vibeke Høyrup Dam
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Nic Gillings
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Susana Aznar
- Center for Neuroscience and Stereology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, Copenhagen 2400, Denmark
| | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Pontus Plavén-Sigray
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
7
|
Niu M, Rapan L, Froudist-Walsh S, Zhao L, Funck T, Amunts K, Palomero-Gallagher N. Multimodal mapping of macaque monkey somatosensory cortex. Prog Neurobiol 2024; 239:102633. [PMID: 38830482 DOI: 10.1016/j.pneurobio.2024.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
The somatosensory cortex is a brain region responsible for receiving and processing sensory information from across the body and is structurally and functionally heterogeneous. Since the chemoarchitectonic segregation of the cerebral cortex can be revealed by transmitter receptor distribution patterns, by using a quantitative multireceptor architectonical analysis, we determined the number and extent of distinct areas of the macaque somatosensory cortex. We identified three architectonically distinct cortical entities within the primary somatosensory cortex (i.e., 3bm, 3bli, 3ble), four within the anterior parietal cortex (i.e., 3am, 3al, 1 and 2) and six subdivisions (i.e., S2l, S2m, PVl, PVm, PRl and PRm) within the lateral fissure. We provide an ultra-high resolution 3D atlas of macaque somatosensory areas in stereotaxic space, which integrates cyto- and receptor architectonic features of identified areas. Multivariate analyses of the receptor fingerprints revealed four clusters of identified areas based on the degree of (dis)similarity of their receptor architecture. Each of these clusters can be associated with distinct levels of somatosensory processing, further demonstrating that the functional segregation of cortical areas is underpinned by differences in their molecular organization.
Collapse
Affiliation(s)
- Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Lucija Rapan
- C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Seán Froudist-Walsh
- Bristol Computational Neuroscience Unit, Faculty of Engineering, University of Bristol, Bristol, UK
| | - Ling Zhao
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Thomas Funck
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
8
|
Cano-Astorga N, Plaza-Alonso S, DeFelipe J, Alonso-Nanclares L. Volume electron microscopy analysis of synapses in primary regions of the human cerebral cortex. Cereb Cortex 2024; 34:bhae312. [PMID: 39106175 PMCID: PMC11302151 DOI: 10.1093/cercor/bhae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 08/09/2024] Open
Abstract
Functional and structural studies investigating macroscopic connectivity in the human cerebral cortex suggest that high-order associative regions exhibit greater connectivity compared to primary ones. However, the synaptic organization of these brain regions remains unexplored. In the present work, we conducted volume electron microscopy to investigate the synaptic organization of the human brain obtained at autopsy. Specifically, we examined layer III of Brodmann areas 17, 3b, and 4, as representative areas of primary visual, somatosensorial, and motor cortex. Additionally, we conducted comparative analyses with our previous datasets of layer III from temporopolar and anterior cingulate associative cortical regions (Brodmann areas 24, 38, and 21). 9,690 synaptic junctions were 3D reconstructed, showing that certain synaptic characteristics are specific to particular regions. The number of synapses per volume, the proportion of the postsynaptic targets, and the synaptic size may distinguish one region from another, regardless of whether they are associative or primary cortex. By contrast, other synaptic characteristics were common to all analyzed regions, such as the proportion of excitatory and inhibitory synapses, their shapes, their spatial distribution, and a higher proportion of synapses located on dendritic spines. The present results provide further insights into the synaptic organization of the human cerebral cortex.
Collapse
Affiliation(s)
- Nicolás Cano-Astorga
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, Madrid 28002, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University—Cajal Institute, Arzobispo Morcillo 4, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, Madrid 28031, Spain
| | - Sergio Plaza-Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, Madrid 28002, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, Madrid 28031, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, Madrid 28002, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, Madrid 28031, Spain
| | - Lidia Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, Madrid 28002, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, Madrid 28031, Spain
| |
Collapse
|
9
|
Dugan C, Zikopoulos B, Yazdanbakhsh A. A neural modeling approach to study mechanisms underlying the heterogeneity of visual spatial frequency sensitivity in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:63. [PMID: 39013944 PMCID: PMC11252134 DOI: 10.1038/s41537-024-00480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
Patients with schizophrenia exhibit abnormalities in spatial frequency sensitivity, and it is believed that these abnormalities indicate more widespread dysfunction and dysregulation of bottom-up processing. The early visual system, including the first-order Lateral Geniculate Nucleus of the thalamus (LGN) and the primary visual cortex (V1), are key contributors to spatial frequency sensitivity. Medicated and unmedicated patients with schizophrenia exhibit contrasting changes in spatial frequency sensitivity, thus making it a useful probe for examining potential effects of the disorder and antipsychotic medications in neural processing. We constructed a parameterized, rate-based neural model of on-center/off-surround neurons in the early visual system to investigate the impacts of changes to the excitatory and inhibitory receptive field subfields. By incorporating changes in both the excitatory and inhibitory subfields that are associated with pathophysiological findings in schizophrenia, the model successfully replicated perceptual data from behavioral/functional studies involving medicated and unmedicated patients. Among several plausible mechanisms, our results highlight the dampening of excitation and/or increase in the spread and strength of the inhibitory subfield in medicated patients and the contrasting decreased spread and strength of inhibition in unmedicated patients. Given that the model was successful at replicating results from perceptual data under a variety of conditions, these elements of the receptive field may be useful markers for the imbalances seen in patients with schizophrenia.
Collapse
Affiliation(s)
- Caroline Dugan
- Program in Neuroscience, Boston University, Boston, MA, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA.
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA.
| | - Arash Yazdanbakhsh
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA.
- Computational Neuroscience and Vision Laboratory, Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
| |
Collapse
|
10
|
Nebli A, Schiffer C, Niu M, Palomero-Gallagher N, Amunts K, Dickscheid T. Generative Modelling of Cortical Receptor Distributions from Cytoarchitectonic Images in the Macaque Brain. Neuroinformatics 2024; 22:389-402. [PMID: 38976151 PMCID: PMC11329581 DOI: 10.1007/s12021-024-09673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
Neurotransmitter receptor densities are relevant for understanding the molecular architecture of brain regions. Quantitative in vitro receptor autoradiography, has been introduced to map neurotransmitter receptor distributions of brain areas. However, it is very time and cost-intensive, which makes it challenging to obtain whole-brain distributions. At the same time, high-throughput light microscopy and 3D reconstructions have enabled high-resolution brain maps capturing measures of cell density across the whole human brain. Aiming to bridge gaps in receptor measurements for building detailed whole-brain atlases, we study the feasibility of predicting realistic neurotransmitter density distributions from cell-body stainings. Specifically, we utilize conditional Generative Adversarial Networks (cGANs) to predict the density distributions of the M2 receptor of acetylcholine and the kainate receptor for glutamate in the macaque monkey's primary visual (V1) and motor cortex (M1), based on light microscopic scans of cell-body stained sections. Our model is trained on corresponding patches from aligned consecutive sections that display cell-body and receptor distributions, ensuring a mapping between the two modalities. Evaluations of our cGANs, both qualitative and quantitative, show their capability to predict receptor densities from cell-body stained sections while maintaining cortical features such as laminar thickness and curvature. Our work underscores the feasibility of cross-modality image translation problems to address data gaps in multi-modal brain atlases.
Collapse
Affiliation(s)
- Ahmed Nebli
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
- Helmholtz AI, Research Centre Jülich, Jülich, Germany.
| | - Christian Schiffer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Helmholtz AI, Research Centre Jülich, Jülich, Germany
| | - Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile & Oscar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile & Oscar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Timo Dickscheid
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Helmholtz AI, Research Centre Jülich, Jülich, Germany
- Institute of Computer Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Luppi AI, Liu ZQ, Milisav F, Bazinet V, Hansen J, Misic B. From abstract networks to biological realities. Phys Life Rev 2024; 49:12-14. [PMID: 38471192 DOI: 10.1016/j.plrev.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Affiliation(s)
- Andrea I Luppi
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Zhen-Qi Liu
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Filip Milisav
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Vincent Bazinet
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Justine Hansen
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Tsolias A, Zhou Y, Mojica CA, Sakharkar M, Tsolias MZ, Moore TL, Rosene DL, Medalla M. Neuroanatomical Substrates of Circuit-Specific Cholinergic Modulation across the Primate Anterior Cingulate Cortex. J Neurosci 2024; 44:e0953232024. [PMID: 38719447 PMCID: PMC11170673 DOI: 10.1523/jneurosci.0953-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024] Open
Abstract
Acetylcholine is a robust neuromodulator of the limbic system and a critical regulator of arousal and emotions. The anterior cingulate cortex (ACC) and the amygdala (AMY) are key limbic structures that are both densely innervated by cholinergic afferents and interact with each other for emotional regulation. The ACC is composed of functionally distinct dorsal (A24), rostral (A32), and ventral (A25) areas that differ in their connections with the AMY. The structural substrates of cholinergic modulation of distinct ACC microcircuits and outputs to AMY are thought to depend on the laminar and subcellular localization of cholinergic receptors. The present study examines the distribution of muscarinic acetylcholine receptors, m1 and m2, on distinct excitatory and inhibitory neurons and on AMY-targeting projection neurons within ACC areas, via immunohistochemistry and injections of neural tracers into the basolateral AMY in adult rhesus monkeys of both sexes. We found that laminar densities of m1+ and m2+ expressing excitatory and inhibitory neurons depended on area and cell type. Among the ACC areas, ventral subgenual ACC A25 exhibited greater m2+ localization on presynaptic inhibitory axon terminals and greater density of m1+ and m2+ expressing AMY-targeting (tracer+) pyramidal neurons. These patterns suggest robust cholinergic disinhibition and potentiation of amygdalar outputs from the limbic ventral ACC, which may be linked to the hyperexcitability of this subgenual ACC area in depression. These findings reveal the anatomical substrate of diverse cholinergic modulation of specific ACC microcircuits and amygdalar outputs that mediate cognitive-emotional integration and dysfunctions underlying stress and affective disorders.
Collapse
Affiliation(s)
- Alexandra Tsolias
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Yuxin Zhou
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Chromewell A Mojica
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Mitali Sakharkar
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Marianna Z Tsolias
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Tara L Moore
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
13
|
Schoonover KE, Dienel SJ, Holly Bazmi H, Enwright JF, Lewis DA. Altered excitatory and inhibitory ionotropic receptor subunit expression in the cortical visuospatial working memory network in schizophrenia. Neuropsychopharmacology 2024; 49:1183-1192. [PMID: 38548877 PMCID: PMC11109337 DOI: 10.1038/s41386-024-01854-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/14/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024]
Abstract
Dysfunction of the cortical dorsal visual stream and visuospatial working memory (vsWM) network in individuals with schizophrenia (SZ) likely reflects alterations in both excitatory and inhibitory neurotransmission within nodes responsible for information transfer across the network, including primary visual (V1), visual association (V2), posterior parietal (PPC), and dorsolateral prefrontal (DLPFC) cortices. However, the expression patterns of ionotropic glutamatergic and GABAergic receptor subunits across these regions, and alterations of these patterns in SZ, have not been investigated. We quantified transcript levels of key subunits for excitatory N-methyl-D-aspartate receptors (NMDARs), excitatory alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs), and inhibitory GABAA receptors (GABAARs) in postmortem total gray matter from V1, V2, PPC, and DLPFC of unaffected comparison (UC) and matched SZ subjects. In UC subjects, levels of most AMPAR and NMDAR mRNAs exhibited opposite rostral-to-caudal gradients, with AMPAR GRIA1 and GRIA2 mRNA levels highest in DLPFC and NMDAR GRIN1 and GRIN2A mRNA levels highest in V1. GABRA5 and GABRA1 mRNA levels were highest in DLPFC and V1, respectively. In SZ, most transcript levels were lower relative to UC subjects, with these differences largest in V1, intermediate in V2 and PPC, and smallest in DLPFC. In UC subjects, these distinct patterns of receptor transcript levels across the cortical vsWM network suggest that the balance between excitation and inhibition is achieved in a region-specific manner. In SZ subjects, the large deficits in excitatory and inhibitory receptor transcript levels in caudal sensory regions suggest that abnormalities early in the vsWM pathway might contribute to altered information processing in rostral higher-order regions.
Collapse
Affiliation(s)
- Kirsten E Schoonover
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Behavioral Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samuel J Dienel
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - H Holly Bazmi
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John F Enwright
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Magrou L, Joyce MKP, Froudist-Walsh S, Datta D, Wang XJ, Martinez-Trujillo J, Arnsten AFT. The meso-connectomes of mouse, marmoset, and macaque: network organization and the emergence of higher cognition. Cereb Cortex 2024; 34:bhae174. [PMID: 38771244 PMCID: PMC11107384 DOI: 10.1093/cercor/bhae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
The recent publications of the inter-areal connectomes for mouse, marmoset, and macaque cortex have allowed deeper comparisons across rodent vs. primate cortical organization. In general, these show that the mouse has very widespread, "all-to-all" inter-areal connectivity (i.e. a "highly dense" connectome in a graph theoretical framework), while primates have a more modular organization. In this review, we highlight the relevance of these differences to function, including the example of primary visual cortex (V1) which, in the mouse, is interconnected with all other areas, therefore including other primary sensory and frontal areas. We argue that this dense inter-areal connectivity benefits multimodal associations, at the cost of reduced functional segregation. Conversely, primates have expanded cortices with a modular connectivity structure, where V1 is almost exclusively interconnected with other visual cortices, themselves organized in relatively segregated streams, and hierarchically higher cortical areas such as prefrontal cortex provide top-down regulation for specifying precise information for working memory storage and manipulation. Increased complexity in cytoarchitecture, connectivity, dendritic spine density, and receptor expression additionally reveal a sharper hierarchical organization in primate cortex. Together, we argue that these primate specializations permit separable deconstruction and selective reconstruction of representations, which is essential to higher cognition.
Collapse
Affiliation(s)
- Loïc Magrou
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Mary Kate P Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Sean Froudist-Walsh
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, BS8 1QU, United Kingdom
| | - Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Xiao-Jing Wang
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Julio Martinez-Trujillo
- Departments of Physiology and Pharmacology, and Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
15
|
Bazinet V, Hansen JY, Misic B. Towards a biologically annotated brain connectome. Nat Rev Neurosci 2023; 24:747-760. [PMID: 37848663 DOI: 10.1038/s41583-023-00752-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
The brain is a network of interleaved neural circuits. In modern connectomics, brain connectivity is typically encoded as a network of nodes and edges, abstracting away the rich biological detail of local neuronal populations. Yet biological annotations for network nodes - such as gene expression, cytoarchitecture, neurotransmitter receptors or intrinsic dynamics - can be readily measured and overlaid on network models. Here we review how connectomes can be represented and analysed as annotated networks. Annotated connectomes allow us to reconceptualize architectural features of networks and to relate the connection patterns of brain regions to their underlying biology. Emerging work demonstrates that annotated connectomes help to make more veridical models of brain network formation, neural dynamics and disease propagation. Finally, annotations can be used to infer entirely new inter-regional relationships and to construct new types of network that complement existing connectome representations. In summary, biologically annotated connectomes offer a compelling way to study neural wiring in concert with local biological features.
Collapse
Affiliation(s)
- Vincent Bazinet
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Justine Y Hansen
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
16
|
Saberi A, Paquola C, Wagstyl K, Hettwer MD, Bernhardt BC, Eickhoff SB, Valk SL. The regional variation of laminar thickness in the human isocortex is related to cortical hierarchy and interregional connectivity. PLoS Biol 2023; 21:e3002365. [PMID: 37943873 PMCID: PMC10684102 DOI: 10.1371/journal.pbio.3002365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/28/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
The human isocortex consists of tangentially organized layers with unique cytoarchitectural properties. These layers show spatial variations in thickness and cytoarchitecture across the neocortex, which is thought to support function through enabling targeted corticocortical connections. Here, leveraging maps of the 6 cortical layers based on 3D human brain histology, we aimed to quantitatively characterize the systematic covariation of laminar structure in the cortex and its functional consequences. After correcting for the effect of cortical curvature, we identified a spatial pattern of changes in laminar thickness covariance from lateral frontal to posterior occipital regions, which differentiated the dominance of infra- versus supragranular layer thickness. Corresponding to the laminar regularities of cortical connections along cortical hierarchy, the infragranular-dominant pattern of laminar thickness was associated with higher hierarchical positions of regions, mapped based on resting-state effective connectivity in humans and tract-tracing of structural connections in macaques. Moreover, we show that regions with similar laminar thickness patterns have a higher likelihood of structural connections and strength of functional connections. In sum, here we characterize the organization of laminar thickness in the human isocortex and its association with cortico-cortical connectivity, illustrating how laminar organization may provide a foundational principle of cortical function.
Collapse
Affiliation(s)
- Amin Saberi
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Casey Paquola
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Konrad Wagstyl
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Meike D. Hettwer
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Boris C. Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Simon B. Eickhoff
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L. Valk
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
17
|
Dugan C, Zikopoulos B, Yazdanbakhsh A. A neural modeling approach to study mechanisms underlying the heterogeneity of visual spatial frequency sensitivity in schizophrenia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.563001. [PMID: 37904992 PMCID: PMC10614973 DOI: 10.1101/2023.10.18.563001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Patients with schizophrenia exhibit abnormalities in spatial frequency sensitivity, and it is believed that these abnormalities indicate more widespread dysfunction and dysregulation of bottom-up processing. The early visual system, including the first-order Lateral Geniculate Nucleus of the thalamus (LGN) and the primary visual cortex (V1), are key contributors to spatial frequency sensitivity. Medicated and unmedicated patients with schizophrenia exhibit contrasting changes in spatial frequency sensitivity, thus making it a useful probe for examining potential effects of the disorder and antipsychotic medications in neural processing. We constructed a parameterized, rate-based neural model of on-center/off-surround neurons in the early visual system to investigate the impacts of changes to the excitatory and inhibitory receptive field subfields. By incorporating changes in both the excitatory and inhibitory subfields that are associated with pathophysiological findings in schizophrenia, the model successfully replicated perceptual data from behavioral/functional studies involving medicated and unmedicated patients. Among several plausible mechanisms, our results highlight the dampening of excitation and/or increase in the spread and strength of the inhibitory subfield in medicated patients and the contrasting decreased spread and strength of inhibition in unmedicated patients. Given that the model was successful at replicating results from perceptual data under a variety of conditions, these elements of the receptive field may be useful markers for the imbalances seen in patients with schizophrenia.
Collapse
Affiliation(s)
- Caroline Dugan
- Program in Neuroscience, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
| | - Arash Yazdanbakhsh
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Computational Neuroscience and Vision Laboratory, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
18
|
Shafiei G, Fulcher BD, Voytek B, Satterthwaite TD, Baillet S, Misic B. Neurophysiological signatures of cortical micro-architecture. Nat Commun 2023; 14:6000. [PMID: 37752115 PMCID: PMC10522715 DOI: 10.1038/s41467-023-41689-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Systematic spatial variation in micro-architecture is observed across the cortex. These micro-architectural gradients are reflected in neural activity, which can be captured by neurophysiological time-series. How spontaneous neurophysiological dynamics are organized across the cortex and how they arise from heterogeneous cortical micro-architecture remains unknown. Here we extensively profile regional neurophysiological dynamics across the human brain by estimating over 6800 time-series features from the resting state magnetoencephalography (MEG) signal. We then map regional time-series profiles to a comprehensive multi-modal, multi-scale atlas of cortical micro-architecture, including microstructure, metabolism, neurotransmitter receptors, cell types and laminar differentiation. We find that the dominant axis of neurophysiological dynamics reflects characteristics of power spectrum density and linear correlation structure of the signal, emphasizing the importance of conventional features of electromagnetic dynamics while identifying additional informative features that have traditionally received less attention. Moreover, spatial variation in neurophysiological dynamics is co-localized with multiple micro-architectural features, including gene expression gradients, intracortical myelin, neurotransmitter receptors and transporters, and oxygen and glucose metabolism. Collectively, this work opens new avenues for studying the anatomical basis of neural activity.
Collapse
Affiliation(s)
- Golia Shafiei
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ben D Fulcher
- School of Physics, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Bradley Voytek
- Department of Cognitive Science, Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
19
|
Khan AF, Adewale Q, Lin SJ, Baumeister TR, Zeighami Y, Carbonell F, Palomero-Gallagher N, Iturria-Medina Y. Patient-specific models link neurotransmitter receptor mechanisms with motor and visuospatial axes of Parkinson's disease. Nat Commun 2023; 14:6009. [PMID: 37752107 PMCID: PMC10522603 DOI: 10.1038/s41467-023-41677-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Parkinson's disease involves multiple neurotransmitter systems beyond the classical dopaminergic circuit, but their influence on structural and functional alterations is not well understood. Here, we use patient-specific causal brain modeling to identify latent neurotransmitter receptor-mediated mechanisms contributing to Parkinson's disease progression. Combining the spatial distribution of 15 receptors from post-mortem autoradiography with 6 neuroimaging-derived pathological factors, we detect a diverse set of receptors influencing gray matter atrophy, functional activity dysregulation, microstructural degeneration, and dendrite and dopaminergic transporter loss. Inter-individual variability in receptor mechanisms correlates with symptom severity along two distinct axes, representing motor and psychomotor symptoms with large GABAergic and glutamatergic contributions, and cholinergically-dominant visuospatial, psychiatric and memory dysfunction. Our work demonstrates that receptor architecture helps explain multi-factorial brain re-organization, and suggests that distinct, co-existing receptor-mediated processes underlie Parkinson's disease.
Collapse
Affiliation(s)
- Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Quadri Adewale
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Sue-Jin Lin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Tobias R Baumeister
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Yashar Zeighami
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, and JARA - Translational Brain Medicine, Aachen, Germany
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada.
| |
Collapse
|
20
|
Cano-Astorga N, Plaza-Alonso S, DeFelipe J, Alonso-Nanclares L. 3D synaptic organization of layer III of the human anterior cingulate and temporopolar cortex. Cereb Cortex 2023; 33:9691-9708. [PMID: 37455478 PMCID: PMC10472499 DOI: 10.1093/cercor/bhad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
The human anterior cingulate and temporopolar cortices have been proposed as highly connected nodes involved in high-order cognitive functions, but their synaptic organization is still basically unknown due to the difficulties involved in studying the human brain. Using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) to study the synaptic organization of the human brain obtained with a short post-mortem delay allows excellent results to be obtained. We have used this technology to analyze layer III of the anterior cingulate cortex (Brodmann area 24) and the temporopolar cortex, including the temporal pole (Brodmann area 38 ventral and dorsal) and anterior middle temporal gyrus (Brodmann area 21). Our results, based on 6695 synaptic junctions fully reconstructed in 3D, revealed that Brodmann areas 24, 21 and ventral area 38 showed similar synaptic density and synaptic size, whereas dorsal area 38 displayed the highest synaptic density and the smallest synaptic size. However, the proportion of the different types of synapses (excitatory and inhibitory), the postsynaptic targets, and the shapes of excitatory and inhibitory synapses were similar, regardless of the region examined. These observations indicate that certain aspects of the synaptic organization are rather homogeneous, whereas others show specific variations across cortical regions.
Collapse
Affiliation(s)
- Nicolás Cano-Astorga
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, 28002 Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University - Cajal Institute, 28029 Madrid, Spain
| | - Sergio Plaza-Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, 28002 Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, 28031 Madrid, Spain
| | - Lidia Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, 28031 Madrid, Spain
| |
Collapse
|
21
|
Rapan L, Froudist-Walsh S, Niu M, Xu T, Zhao L, Funck T, Wang XJ, Amunts K, Palomero-Gallagher N. Cytoarchitectonic, receptor distribution and functional connectivity analyses of the macaque frontal lobe. eLife 2023; 12:e82850. [PMID: 37578332 PMCID: PMC10425179 DOI: 10.7554/elife.82850] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/14/2023] [Indexed: 08/15/2023] Open
Abstract
Based on quantitative cyto- and receptor architectonic analyses, we identified 35 prefrontal areas, including novel subdivisions of Walker's areas 10, 9, 8B, and 46. Statistical analysis of receptor densities revealed regional differences in lateral and ventrolateral prefrontal cortex. Indeed, structural and functional organization of subdivisions encompassing areas 46 and 12 demonstrated significant differences in the interareal levels of α2 receptors. Furthermore, multivariate analysis included receptor fingerprints of previously identified 16 motor areas in the same macaque brains and revealed 5 clusters encompassing frontal lobe areas. We used the MRI datasets from the non-human primate data sharing consortium PRIME-DE to perform functional connectivity analyses using the resulting frontal maps as seed regions. In general, rostrally located frontal areas were characterized by bigger fingerprints, that is, higher receptor densities, and stronger regional interconnections. Whereas more caudal areas had smaller fingerprints, but showed a widespread connectivity pattern with distant cortical regions. Taken together, this study provides a comprehensive insight into the molecular structure underlying the functional organization of the cortex and, thus, reconcile the discrepancies between the structural and functional hierarchical organization of the primate frontal lobe. Finally, our data are publicly available via the EBRAINS and BALSA repositories for the entire scientific community.
Collapse
Affiliation(s)
- Lucija Rapan
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Sean Froudist-Walsh
- Center for Neural Science, New York UniversityNew YorkUnited States
- Bristol Computational Neuroscience Unit, Faculty of Engineering, University of BristolBristolUnited Kingdom
| | - Meiqi Niu
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Ting Xu
- Center for the Developing Brain, Child Mind InstituteNew YorkUnited States
| | - Ling Zhao
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Thomas Funck
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Xiao-Jing Wang
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Katrin Amunts
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-UniversityDüsseldorfGermany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-UniversityDüsseldorfGermany
| |
Collapse
|
22
|
Luppi AI, Cabral J, Cofre R, Mediano PAM, Rosas FE, Qureshi AY, Kuceyeski A, Tagliazucchi E, Raimondo F, Deco G, Shine JM, Kringelbach ML, Orio P, Ching S, Sanz Perl Y, Diringer MN, Stevens RD, Sitt JD. Computational modelling in disorders of consciousness: Closing the gap towards personalised models for restoring consciousness. Neuroimage 2023; 275:120162. [PMID: 37196986 PMCID: PMC10262065 DOI: 10.1016/j.neuroimage.2023.120162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/16/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023] Open
Abstract
Disorders of consciousness are complex conditions characterised by persistent loss of responsiveness due to brain injury. They present diagnostic challenges and limited options for treatment, and highlight the urgent need for a more thorough understanding of how human consciousness arises from coordinated neural activity. The increasing availability of multimodal neuroimaging data has given rise to a wide range of clinically- and scientifically-motivated modelling efforts, seeking to improve data-driven stratification of patients, to identify causal mechanisms for patient pathophysiology and loss of consciousness more broadly, and to develop simulations as a means of testing in silico potential treatment avenues to restore consciousness. As a dedicated Working Group of clinicians and neuroscientists of the international Curing Coma Campaign, here we provide our framework and vision to understand the diverse statistical and generative computational modelling approaches that are being employed in this fast-growing field. We identify the gaps that exist between the current state-of-the-art in statistical and biophysical computational modelling in human neuroscience, and the aspirational goal of a mature field of modelling disorders of consciousness; which might drive improved treatments and outcomes in the clinic. Finally, we make several recommendations for how the field as a whole can work together to address these challenges.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - Joana Cabral
- Life and Health Sciences Research Institute, University of Minho, Portugal
| | - Rodrigo Cofre
- CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile; Centre National de la Recherche Scientifique (CNRS), Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Gif-sur-Yvette, France
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK; Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK; Centre for Complexity Science, Imperial College London, London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
| | - Abid Y Qureshi
- University of Kansas Medical Center, Kansas City, MO, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, USA
| | - Enzo Tagliazucchi
- Departamento de Física (UBA) e Instituto de Fisica de Buenos Aires (CONICET), Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Federico Raimondo
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - James M Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Psychiatry, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso and Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - ShiNung Ching
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yonatan Sanz Perl
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institut du Cerveau et de la Moelle épinière - Paris Brain Institute, ICM, Paris, France; National Scientific and Technical Research Council (CONICET), Godoy Cruz, CABA 2290, Argentina
| | - Michael N Diringer
- Department of Neurology and Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Robert D Stevens
- Departments of Anesthesiology and Critical Care Medicine, Neurology, and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jacobo Diego Sitt
- Institut du Cerveau et de la Moelle épinière - Paris Brain Institute, ICM, Paris, France; Sorbonne Université, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.
| |
Collapse
|
23
|
Froudist-Walsh S, Xu T, Niu M, Rapan L, Zhao L, Margulies DS, Zilles K, Wang XJ, Palomero-Gallagher N. Gradients of neurotransmitter receptor expression in the macaque cortex. Nat Neurosci 2023; 26:1281-1294. [PMID: 37336976 PMCID: PMC10322721 DOI: 10.1038/s41593-023-01351-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/01/2023] [Indexed: 06/21/2023]
Abstract
Dynamics and functions of neural circuits depend on interactions mediated by receptors. Therefore, a comprehensive map of receptor organization across cortical regions is needed. In this study, we used in vitro receptor autoradiography to measure the density of 14 neurotransmitter receptor types in 109 areas of macaque cortex. We integrated the receptor data with anatomical, genetic and functional connectivity data into a common cortical space. We uncovered a principal gradient of receptor expression per neuron. This aligns with the cortical hierarchy from sensory cortex to higher cognitive areas. A second gradient, driven by serotonin 5-HT1A receptors, peaks in the anterior cingulate, default mode and salience networks. We found a similar pattern of 5-HT1A expression in the human brain. Thus, the macaque may be a promising translational model of serotonergic processing and disorders. The receptor gradients may enable rapid, reliable information processing in sensory cortical areas and slow, flexible integration in higher cognitive areas.
Collapse
MESH Headings
- Aged
- Animals
- Female
- Humans
- Male
- Rats
- Autoradiography
- Brain Mapping
- Cerebral Cortex/cytology
- Cerebral Cortex/metabolism
- Cognition
- Dendritic Spines
- Gyrus Cinguli/cytology
- Gyrus Cinguli/metabolism
- Macaca fascicularis
- Rats, Inbred Lew
- Receptor, Serotonin, 5-HT1A/analysis
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, Cholinergic/analysis
- Receptors, Cholinergic/metabolism
- Receptors, Dopamine/analysis
- Receptors, Dopamine/metabolism
- Receptors, Neurotransmitter/analysis
- Receptors, Neurotransmitter/metabolism
- Serotonin/metabolism
- Species Specificity
- Myelin Sheath/metabolism
Collapse
Affiliation(s)
- Sean Froudist-Walsh
- Computational Neuroscience Unit, Faculty of Engineering, University of Bristol, Bristol, UK
- Center for Neural Science, New York University, New York, NY, USA
| | - Ting Xu
- Child Mind Institute, New York, NY, USA
| | - Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Lucija Rapan
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Ling Zhao
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, University of Paris Cité, Paris, France
| | | | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
24
|
Lawn T, Howard MA, Turkheimer F, Misic B, Deco G, Martins D, Dipasquale O. From neurotransmitters to networks: Transcending organisational hierarchies with molecular-informed functional imaging. Neurosci Biobehav Rev 2023; 150:105193. [PMID: 37086932 PMCID: PMC10390343 DOI: 10.1016/j.neubiorev.2023.105193] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
The human brain exhibits complex interactions across micro, meso-, and macro-scale organisational principles. Recent synergistic multi-modal approaches have begun to link micro-scale information to systems level dynamics, transcending organisational hierarchies and offering novel perspectives into the brain's function and dysfunction. Specifically, the distribution of micro-scale properties (such as receptor density or gene expression) can be mapped onto macro-scale measures from functional MRI to provide novel neurobiological insights. Methodological approaches to enrich functional imaging analyses with molecular information are rapidly evolving, with several streams of research having developed relatively independently, each offering unique potential to explore the trans-hierarchical functioning of the brain. Here, we address the three principal streams of research - spatial correlation, molecular-enriched network, and in-silico whole brain modelling analyses - to provide a critical overview of the different sources of molecular information, how this information can be utilised within analyses of fMRI data, the merits and pitfalls of each methodology, and, through the use of key examples, highlight their promise to shed new light on key domains of neuroscientific inquiry.
Collapse
Affiliation(s)
- Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Matthew A Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Bratislav Misic
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Ramon Trias Fargas 25-27, Barcelona 08005, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
25
|
Luppi AI, Hansen JY, Adapa R, Carhart-Harris RL, Roseman L, Timmermann C, Golkowski D, Ranft A, Ilg R, Jordan D, Bonhomme V, Vanhaudenhuyse A, Demertzi A, Jaquet O, Bahri MA, Alnagger NL, Cardone P, Peattie AR, Manktelow AE, de Araujo DB, Sensi SL, Owen AM, Naci L, Menon DK, Misic B, Stamatakis EA. In vivo mapping of pharmacologically induced functional reorganization onto the human brain's neurotransmitter landscape. SCIENCE ADVANCES 2023; 9:eadf8332. [PMID: 37315149 PMCID: PMC10266734 DOI: 10.1126/sciadv.adf8332] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
To understand how pharmacological interventions can exert their powerful effects on brain function, we need to understand how they engage the brain's rich neurotransmitter landscape. Here, we bridge microscale molecular chemoarchitecture and pharmacologically induced macroscale functional reorganization, by relating the regional distribution of 19 neurotransmitter receptors and transporters obtained from positron emission tomography, and the regional changes in functional magnetic resonance imaging connectivity induced by 10 different mind-altering drugs: propofol, sevoflurane, ketamine, lysergic acid diethylamide (LSD), psilocybin, N,N-Dimethyltryptamine (DMT), ayahuasca, 3,4-methylenedioxymethamphetamine (MDMA), modafinil, and methylphenidate. Our results reveal a many-to-many mapping between psychoactive drugs' effects on brain function and multiple neurotransmitter systems. The effects of both anesthetics and psychedelics on brain function are organized along hierarchical gradients of brain structure and function. Last, we show that regional co-susceptibility to pharmacological interventions recapitulates co-susceptibility to disorder-induced structural alterations. Collectively, these results highlight rich statistical patterns relating molecular chemoarchitecture and drug-induced reorganization of the brain's functional architecture.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Justine Y. Hansen
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Ram Adapa
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Robin L. Carhart-Harris
- Psychedelics Division - Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Leor Roseman
- Center for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK
| | - Christopher Timmermann
- Center for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK
| | - Daniel Golkowski
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Andreas Ranft
- School of Medicine, Department of Anesthesiology and Intensive Care, Technical University of Munich, Munich, Germany
| | - Rüdiger Ilg
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, München, Germany
- Department of Neurology, Asklepios Clinic, Bad Tölz, Germany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University Munich, München, Germany
- University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Vincent Bonhomme
- Department of Anesthesia and Intensive Care Medicine, Liege University Hospital, Liege, Belgium
- Anesthesia and Perioperative Neuroscience Laboratory, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
| | - Audrey Vanhaudenhuyse
- Department of Anesthesia and Intensive Care Medicine, Liege University Hospital, Liege, Belgium
| | - Athena Demertzi
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liege, Liege, Belgium
| | - Oceane Jaquet
- Department of Anesthesia and Intensive Care Medicine, Liege University Hospital, Liege, Belgium
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liege, Liege, Belgium
| | - Naji L. N. Alnagger
- Department of Anesthesia and Intensive Care Medicine, Liege University Hospital, Liege, Belgium
| | - Paolo Cardone
- Department of Anesthesia and Intensive Care Medicine, Liege University Hospital, Liege, Belgium
| | - Alexander R. D. Peattie
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | - Stefano L. Sensi
- Department of Neuroscience and Imaging and Clinical Science, Center for Advanced Studies and Technology, Institute for Advanced Biomedical Technologies, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA, USA
| | - Adrian M. Owen
- Department of Psychology and Department of Physiology and Pharmacology, Western Institute for Neuroscience (WIN), Western University, London, ON, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - David K. Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Wolfon Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Bratislav Misic
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Emmanuel A. Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Shine JM. Neuromodulatory control of complex adaptive dynamics in the brain. Interface Focus 2023; 13:20220079. [PMID: 37065268 PMCID: PMC10102735 DOI: 10.1098/rsfs.2022.0079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 04/18/2023] Open
Abstract
How is the massive dimensionality and complexity of the microscopic constituents of the nervous system brought under sufficiently tight control so as to coordinate adaptive behaviour? A powerful means for striking this balance is to poise neurons close to the critical point of a phase transition, at which a small change in neuronal excitability can manifest a nonlinear augmentation in neuronal activity. How the brain could mediate this critical transition is a key open question in neuroscience. Here, I propose that the different arms of the ascending arousal system provide the brain with a diverse set of heterogeneous control parameters that can be used to modulate the excitability and receptivity of target neurons-in other words, to act as control parameters for mediating critical neuronal order. Through a series of worked examples, I demonstrate how the neuromodulatory arousal system can interact with the inherent topological complexity of neuronal subsystems in the brain to mediate complex adaptive behaviour.
Collapse
Affiliation(s)
- James M. Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| |
Collapse
|
27
|
Bazinet V, Hansen JY, Vos de Wael R, Bernhardt BC, van den Heuvel MP, Misic B. Assortative mixing in micro-architecturally annotated brain connectomes. Nat Commun 2023; 14:2850. [PMID: 37202416 DOI: 10.1038/s41467-023-38585-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
The wiring of the brain connects micro-architecturally diverse neuronal populations, but the conventional graph model, which encodes macroscale brain connectivity as a network of nodes and edges, abstracts away the rich biological detail of each regional node. Here, we annotate connectomes with multiple biological attributes and formally study assortative mixing in annotated connectomes. Namely, we quantify the tendency for regions to be connected based on the similarity of their micro-architectural attributes. We perform all experiments using four cortico-cortical connectome datasets from three different species, and consider a range of molecular, cellular, and laminar annotations. We show that mixing between micro-architecturally diverse neuronal populations is supported by long-distance connections and find that the arrangement of connections with respect to biological annotations is associated to patterns of regional functional specialization. By bridging scales of cortical organization, from microscale attributes to macroscale connectivity, this work lays the foundation for next-generation annotated connectomics.
Collapse
Affiliation(s)
- Vincent Bazinet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Justine Y Hansen
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Martijn P van den Heuvel
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
28
|
Zhao L, Mühleisen TW, Pelzer DI, Burger B, Beins EC, Forstner AJ, Herms S, Hoffmann P, Amunts K, Palomero-Gallagher N, Cichon S. Relationships between neurotransmitter receptor densities and expression levels of their corresponding genes in the human hippocampus. Neuroimage 2023; 273:120095. [PMID: 37030412 PMCID: PMC10167541 DOI: 10.1016/j.neuroimage.2023.120095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023] Open
Abstract
Neurotransmitter receptors are key molecules in signal transmission, their alterations are associated with brain dysfunction. Relationships between receptors and their corresponding genes are poorly understood, especially in humans. We combined in vitro receptor autoradiography and RNA sequencing to quantify, in the same tissue samples (7 subjects), the densities of 14 receptors and expression levels of their corresponding 43 genes in the Cornu Ammonis (CA) and dentate gyrus (DG) of human hippocampus. Significant differences in receptor densities between both structures were found only for metabotropic receptors, whereas significant differences in RNA expression levels mostly pertained ionotropic receptors. Receptor fingerprints of CA and DG differ in shapes but have similar sizes; the opposite holds true for their "RNA fingerprints", which represent the expression levels of multiple genes in a single area. In addition, the correlation coefficients between receptor densities and corresponding gene expression levels vary widely and the mean correlation strength was weak-to-moderate. Our results suggest that receptor densities are not only controlled by corresponding RNA expression levels, but also by multiple regionally specific post-translational factors.
Collapse
|
29
|
Purohit P, Roy PK. Interaction between spatial perception and temporal perception enables preservation of cause-effect relationship: Visual psychophysics and neuronal dynamics. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:9101-9134. [PMID: 37161236 DOI: 10.3934/mbe.2023400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
INTRODUCTION Visual perception of moving objects is integral to our day-to-day life, integrating visual spatial and temporal perception. Most research studies have focused on finding the brain regions activated during motion perception. However, an empirically validated general mathematical model is required to understand the modulation of the motion perception. Here, we develop a mathematical formulation of the modulation of the perception of a moving object due to a change in speed, under the formulation of the invariance of causality. METHODS We formulated the perception of a moving object as the coordinate transformation from a retinotopic space onto perceptual space and derived a quantitative relationship between spatiotemporal coordinates. To validate our model, we undertook the analysis of two experiments: (i) the perceived length of the moving arc, and (ii) the perceived time while observing moving stimuli. We performed a magnetic resonance imaging (MRI) tractography investigation of subjects to demarcate the anatomical correlation of the modulation of the perception of moving objects. RESULTS Our theoretical model shows that the interaction between visual-spatial and temporal perception, during the perception of moving object is described by coupled linear equations; and experimental observations validate our model. We observed that cerebral area V5 may be an anatomical correlate for this interaction. The physiological basis of interaction is shown by a Lotka-Volterra system delineating interplay between acetylcholine and dopamine neurotransmitters, whose concentrations vary periodically with the orthogonal phase shift between them, occurring at the axodendritic synapse of complex cells at area V5. CONCLUSION Under the invariance of causality in the representation of events in retinotopic space and perceptual space, the speed modulates the perception of a moving object. This modulation may be due to variations of the tuning properties of complex cells at area V5 due to the dynamic interaction between acetylcholine and dopamine. Our analysis is the first significant study, to our knowledge, that establishes a mathematical linkage between motion perception and causality invariance.
Collapse
Affiliation(s)
- Pratik Purohit
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Prasun K Roy
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
- Department of Life Sciences, Shiv Nadar University (SNU), Delhi NCR, Dadri 201314, India
| |
Collapse
|
30
|
Mosayebi-Samani M, Agboada D, Mutanen TP, Haueisen J, Kuo MF, Nitsche MA. Transferability of cathodal tDCS effects from the primary motor to the prefrontal cortex: A multimodal TMS-EEG study. Brain Stimul 2023; 16:515-539. [PMID: 36828302 DOI: 10.1016/j.brs.2023.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/24/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Neurophysiological effects of transcranial direct current stimulation (tDCS) have been extensively studied over the primary motor cortex (M1). Much less is however known about its effects over non-motor areas, such as the prefrontal cortex (PFC), which is the neuronal foundation for many high-level cognitive functions and involved in neuropsychiatric disorders. In this study, we, therefore, explored the transferability of cathodal tDCS effects over M1 to the PFC. Eighteen healthy human participants (11 males and 8 females) were involved in eight randomized sessions per participant, in which four cathodal tDCS dosages, low, medium, and high, as well as sham stimulation, were applied over the left M1 and left PFC. After-effects of tDCS were evaluated via transcranial magnetic stimulation (TMS)-electroencephalography (EEG), and TMS-elicited motor evoked potentials (MEP), for the outcome parameters TMS-evoked potentials (TEP), TMS-evoked oscillations, and MEP amplitude alterations. TEPs were studied both at the regional and global scalp levels. The results indicate a regional dosage-dependent nonlinear neurophysiological effect of M1 tDCS, which is not one-to-one transferable to PFC tDCS. Low and high dosages of M1 tDCS reduced early positive TEP peaks (P30, P60), and MEP amplitudes, while an enhancement was observed for medium dosage M1 tDCS (P30). In contrast, prefrontal low, medium and high dosage tDCS uniformly reduced the early positive TEP peak amplitudes. Furthermore, for both cortical areas, regional tDCS-induced modulatory effects were not observed for late TEP peaks, nor TMS-evoked oscillations. However, at the global scalp level, widespread effects of tDCS were observed for both, TMS-evoked potentials and oscillations. This study provides the first direct physiological comparison of tDCS effects applied over different brain areas and therefore delivers crucial information for future tDCS applications.
Collapse
Affiliation(s)
- Mohsen Mosayebi-Samani
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Desmond Agboada
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Institute of Psychology, Federal Armed Forces University Munich, Neubiberg, Germany
| | - Tuomas P Mutanen
- Department of Neuroscience & Biomedical Engineering, Aalto University, School of Science, 00076, Aalto, Espoo, Finland
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld, Germany.
| |
Collapse
|
31
|
Rollenhagen A, Anstötz M, Zimmermann K, Kasugai Y, Sätzler K, Molnar E, Ferraguti F, Lübke JHR. Layer-specific distribution and expression pattern of AMPA- and NMDA-type glutamate receptors in the barrel field of the adult rat somatosensory cortex: a quantitative electron microscopic analysis. Cereb Cortex 2023; 33:2342-2360. [PMID: 35732315 PMCID: PMC9977369 DOI: 10.1093/cercor/bhac212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/14/2022] Open
Abstract
AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-d-aspartate) glutamate receptors are driving forces for synaptic transmission and plasticity at neocortical synapses. However, their distribution pattern in the adult rat neocortex is largely unknown and was quantified using freeze fracture replication combined with postimmunogold-labeling. Both receptors were co-localized at layer (L)4 and L5 postsynaptic densities (PSDs). At L4 dendritic shaft and spine PSDs, the number of gold grains detecting AMPA was similar, whereas at L5 shaft PSDs AMPA-receptors outnumbered those on spine PSDs. Their number was significantly higher at L5 vs. L4 PSDs. At L4 and L5 dendritic shaft PSDs, the number of gold grains detecting GluN1 was ~2-fold higher than at spine PSDs. The number of gold grains detecting the GluN1-subunit was higher for both shaft and spine PSDs in L5 vs. L4. Both receptors showed a large variability in L4 and L5. A high correlation between the number of gold grains and PSD size for both receptors and targets was observed. Both receptors were distributed over the entire PSD but showed a layer- and target-specific distribution pattern. The layer- and target-specific distribution of AMPA and GluN1 glutamate receptors partially contribute to the observed functional differences in synaptic transmission and plasticity in the neocortex.
Collapse
Affiliation(s)
- Astrid Rollenhagen
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo Brandt Str., Jülich 52425, Germany
| | - Max Anstötz
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo Brandt Str., Jülich 52425, Germany.,Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Universitätsstr. 1, Düsseldorf 40001, Germany
| | - Kerstin Zimmermann
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo Brandt Str., Jülich 52425, Germany
| | - Yu Kasugai
- Department of Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1a, Innsbruck A-6020, Austria
| | - Kurt Sätzler
- School of Biomedical Sciences, University of Ulster, Cromore Rd., Londonderry BT52 1SA, United Kingdom
| | - Elek Molnar
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Francesco Ferraguti
- Department of Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1a, Innsbruck A-6020, Austria
| | - Joachim H R Lübke
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo Brandt Str., Jülich 52425, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH/Medical University Aachen, Pauwelstr. 30, Aachen 52074, Germany.,JARA Translational Medicine Jülich/Aachen, Germany
| |
Collapse
|
32
|
Shafiei G, Fulcher BD, Voytek B, Satterthwaite TD, Baillet S, Misic B. Neurophysiological signatures of cortical micro-architecture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525101. [PMID: 36747831 PMCID: PMC9900796 DOI: 10.1101/2023.01.23.525101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Systematic spatial variation in micro-architecture is observed across the cortex. These micro-architectural gradients are reflected in neural activity, which can be captured by neurophysiological time-series. How spontaneous neurophysiological dynamics are organized across the cortex and how they arise from heterogeneous cortical micro-architecture remains unknown. Here we extensively profile regional neurophysiological dynamics across the human brain by estimating over 6 800 timeseries features from the resting state magnetoencephalography (MEG) signal. We then map regional time-series profiles to a comprehensive multi-modal, multi-scale atlas of cortical micro-architecture, including microstructure, metabolism, neurotransmitter receptors, cell types and laminar differentiation. We find that the dominant axis of neurophysiological dynamics reflects characteristics of power spectrum density and linear correlation structure of the signal, emphasizing the importance of conventional features of electromagnetic dynamics while identifying additional informative features that have traditionally received less attention. Moreover, spatial variation in neurophysiological dynamics is colocalized with multiple micro-architectural features, including genomic gradients, intracortical myelin, neurotransmitter receptors and transporters, and oxygen and glucose metabolism. Collectively, this work opens new avenues for studying the anatomical basis of neural activity.
Collapse
Affiliation(s)
- Golia Shafiei
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, NSW 2006, Australia
| | - Bradley Voytek
- Department of Cognitive Science, Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
| | - Theodore D. Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
33
|
Scott DN, Frank MJ. Adaptive control of synaptic plasticity integrates micro- and macroscopic network function. Neuropsychopharmacology 2023; 48:121-144. [PMID: 36038780 PMCID: PMC9700774 DOI: 10.1038/s41386-022-01374-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Synaptic plasticity configures interactions between neurons and is therefore likely to be a primary driver of behavioral learning and development. How this microscopic-macroscopic interaction occurs is poorly understood, as researchers frequently examine models within particular ranges of abstraction and scale. Computational neuroscience and machine learning models offer theoretically powerful analyses of plasticity in neural networks, but results are often siloed and only coarsely linked to biology. In this review, we examine connections between these areas, asking how network computations change as a function of diverse features of plasticity and vice versa. We review how plasticity can be controlled at synapses by calcium dynamics and neuromodulatory signals, the manifestation of these changes in networks, and their impacts in specialized circuits. We conclude that metaplasticity-defined broadly as the adaptive control of plasticity-forges connections across scales by governing what groups of synapses can and can't learn about, when, and to what ends. The metaplasticity we discuss acts by co-opting Hebbian mechanisms, shifting network properties, and routing activity within and across brain systems. Asking how these operations can go awry should also be useful for understanding pathology, which we address in the context of autism, schizophrenia and Parkinson's disease.
Collapse
Affiliation(s)
- Daniel N Scott
- Cognitive Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| | - Michael J Frank
- Cognitive Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
34
|
Correspondence between gene expression and neurotransmitter receptor and transporter density in the human brain. Neuroimage 2022; 264:119671. [PMID: 36209794 DOI: 10.1016/j.neuroimage.2022.119671] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
Neurotransmitter receptors modulate signaling between neurons. Thus, neurotransmitter receptors and transporters play a key role in shaping brain function. Due to the lack of comprehensive neurotransmitter receptor/transporter density datasets, microarray gene expression measuring mRNA transcripts is often used as a proxy for receptor densities. In the present report, we comprehensively test the spatial correlation between gene expression and protein density for a total of 27 neurotransmitter receptors, receptor binding-sites, and transporters across 9 different neurotransmitter systems, using both PET and autoradiography radioligand-based imaging modalities. We find poor spatial correspondences between gene expression and density for all neurotransmitter receptors and transporters except four single-protein metabotropic receptors (5-HT1A, CB1, D2, and MOR). These expression-density associations are related to gene differential stability and can vary between cortical and subcortical structures. Altogether, we recommend using direct measures of receptor and transporter density when relating neurotransmitter systems to brain structure and function.
Collapse
|
35
|
Weakly Correlated Local Cortical State Switches under Anesthesia Lead to Strongly Correlated Global States. J Neurosci 2022; 42:8980-8996. [PMID: 36288946 PMCID: PMC9732829 DOI: 10.1523/jneurosci.0123-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/30/2022] [Accepted: 07/15/2022] [Indexed: 01/05/2023] Open
Abstract
During recovery from anesthesia, brain activity switches abruptly between a small set of discrete states. Surprisingly, this switching also occurs under constant doses of anesthesia, even in the absence of stimuli. These metastable states and the transitions between them are thought to form a "scaffold" that ultimately guides the brain back to wakefulness. The processes that constrain cortical activity patterns to these states and govern how states are coordinated between different cortical regions are unknown. If state transitions were driven by subcortical modulation, different cortical sites should exhibit near-synchronous state transitions. Conversely, spatiotemporal heterogeneity would suggest that state transitions are coordinated through corticocortical interactions. To differentiate between these hypotheses, we quantified synchrony of brain states in male rats exposed to a fixed isoflurane concentration. States were defined from spectra of local field potentials recorded across layers of visual and motor cortices. A transition synchrony measure shows that most state transitions are highly localized. Furthermore, while most pairs of cortical sites exhibit statistically significant coupling of both states and state transition times, coupling strength is typically weak. States and state transitions in the thalamic input layer (L4) are particularly decoupled from those in supragranular and infragranular layers. This suggests that state transitions are not imposed on the cortex by broadly projecting modulatory systems. Although each pairwise interaction is typically weak, we show that the multitude of such weak interactions is sufficient to confine global activity to a small number of discrete states.SIGNIFICANCE STATEMENT The brain consistently recovers to wakefulness after anesthesia, but this process is poorly understood. Previous work revealed that, during recovery from anesthesia, corticothalamic activity falls into one of several discrete patterns. The neuronal mechanisms constraining the cortex to just a few discrete states remain unknown. Global states could be coordinated by fluctuations in subcortical nuclei that project broadly to the cortex. Alternatively, these states may emerge from interactions within the cortex itself. Here, we provide evidence for the latter possibility by demonstrating that most pairs of cortical sites exhibit weak coupling. We thereby lay groundwork for future investigations of the specific cellular and network mechanisms of corticocortical activity state coupling.
Collapse
|
36
|
Hansen JY, Shafiei G, Markello RD, Smart K, Cox SML, Nørgaard M, Beliveau V, Wu Y, Gallezot JD, Aumont É, Servaes S, Scala SG, DuBois JM, Wainstein G, Bezgin G, Funck T, Schmitz TW, Spreng RN, Galovic M, Koepp MJ, Duncan JS, Coles JP, Fryer TD, Aigbirhio FI, McGinnity CJ, Hammers A, Soucy JP, Baillet S, Guimond S, Hietala J, Bedard MA, Leyton M, Kobayashi E, Rosa-Neto P, Ganz M, Knudsen GM, Palomero-Gallagher N, Shine JM, Carson RE, Tuominen L, Dagher A, Misic B. Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nat Neurosci 2022; 25:1569-1581. [PMID: 36303070 PMCID: PMC9630096 DOI: 10.1038/s41593-022-01186-3] [Citation(s) in RCA: 207] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 09/20/2022] [Indexed: 01/13/2023]
Abstract
Neurotransmitter receptors support the propagation of signals in the human brain. How receptor systems are situated within macro-scale neuroanatomy and how they shape emergent function remain poorly understood, and there exists no comprehensive atlas of receptors. Here we collate positron emission tomography data from more than 1,200 healthy individuals to construct a whole-brain three-dimensional normative atlas of 19 receptors and transporters across nine different neurotransmitter systems. We found that receptor profiles align with structural connectivity and mediate function, including neurophysiological oscillatory dynamics and resting-state hemodynamic functional connectivity. Using the Neurosynth cognitive atlas, we uncovered a topographic gradient of overlapping receptor distributions that separates extrinsic and intrinsic psychological processes. Finally, we found both expected and novel associations between receptor distributions and cortical abnormality patterns across 13 disorders. We replicated all findings in an independently collected autoradiography dataset. This work demonstrates how chemoarchitecture shapes brain structure and function, providing a new direction for studying multi-scale brain organization.
Collapse
Affiliation(s)
- Justine Y Hansen
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Golia Shafiei
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Ross D Markello
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Kelly Smart
- Yale PET Center, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Sylvia M L Cox
- Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Martin Nørgaard
- Department of Psychology, Center for Reproducible Neuroscience, Stanford University, Stanford, CA, USA
- Neurobiology Research Unit, Cimbi & OpenNeuroPET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Vincent Beliveau
- Neurobiology Research Unit, Cimbi & OpenNeuroPET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yanjun Wu
- Yale PET Center, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Jean-Dominique Gallezot
- Yale PET Center, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Étienne Aumont
- Cognitive Pharmacology Research Unit, UQAM, Montréal, QC, Canada
| | - Stijn Servaes
- McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montréal, QC, Canada
| | | | | | | | - Gleb Bezgin
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montréal, QC, Canada
| | - Thomas Funck
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Taylor W Schmitz
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - R Nathan Spreng
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Marian Galovic
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont Saint Peter, UK
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont Saint Peter, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont Saint Peter, UK
| | - Jonathan P Coles
- Department of Medicine, Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, Wolfson Brain Imaging Centre, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Franklin I Aigbirhio
- Department of Clinical Neurosciences, Wolfson Brain Imaging Centre, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Colm J McGinnity
- King's College London and Guy's and St. Thomas' PET Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Alexander Hammers
- King's College London and Guy's and St. Thomas' PET Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Jean-Paul Soucy
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Sylvain Baillet
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Synthia Guimond
- Department of Psychiatry, Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Psychoeducation and Psychology, University of Quebec in Outaouais, Gatineau, QC, Canada
| | - Jarmo Hietala
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Marc-André Bedard
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Cognitive Pharmacology Research Unit, UQAM, Montréal, QC, Canada
| | - Marco Leyton
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Eliane Kobayashi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Pedro Rosa-Neto
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montréal, QC, Canada
| | - Melanie Ganz
- Neurobiology Research Unit, Cimbi & OpenNeuroPET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Cimbi & OpenNeuroPET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - James M Shine
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Richard E Carson
- Yale PET Center, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Lauri Tuominen
- Department of Psychiatry, Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Alain Dagher
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
37
|
Markello RD, Hansen JY, Liu ZQ, Bazinet V, Shafiei G, Suárez LE, Blostein N, Seidlitz J, Baillet S, Satterthwaite TD, Chakravarty MM, Raznahan A, Misic B. neuromaps: structural and functional interpretation of brain maps. Nat Methods 2022; 19:1472-1479. [PMID: 36203018 PMCID: PMC9636018 DOI: 10.1038/s41592-022-01625-w] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022]
Abstract
Imaging technologies are increasingly used to generate high-resolution reference maps of brain structure and function. Comparing experimentally generated maps to these reference maps facilitates cross-disciplinary scientific discovery. Although recent data sharing initiatives increase the accessibility of brain maps, data are often shared in disparate coordinate systems, precluding systematic and accurate comparisons. Here we introduce neuromaps, a toolbox for accessing, transforming and analyzing structural and functional brain annotations. We implement functionalities for generating high-quality transformations between four standard coordinate systems. The toolbox includes curated reference maps and biological ontologies of the human brain, such as molecular, microstructural, electrophysiological, developmental and functional ontologies. Robust quantitative assessment of map-to-map similarity is enabled via a suite of spatial autocorrelation-preserving null models. neuromaps combines open-access data with transparent functionality for standardizing and comparing brain maps, providing a systematic workflow for comprehensive structural and functional annotation enrichment analysis of the human brain.
Collapse
Affiliation(s)
- Ross D Markello
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Justine Y Hansen
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Zhen-Qi Liu
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Vincent Bazinet
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Golia Shafiei
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Laura E Suárez
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Nadia Blostein
- Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Montréal, Quebec, Canada
| | - Jakob Seidlitz
- Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sylvain Baillet
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Theodore D Satterthwaite
- Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M Mallar Chakravarty
- Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Montréal, Quebec, Canada
| | - Armin Raznahan
- Section of Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
38
|
Multiscale neural gradients reflect transdiagnostic effects of major psychiatric conditions on cortical morphology. Commun Biol 2022; 5:1024. [PMID: 36168040 PMCID: PMC9515219 DOI: 10.1038/s42003-022-03963-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/07/2022] [Indexed: 02/06/2023] Open
Abstract
It is increasingly recognized that multiple psychiatric conditions are underpinned by shared neural pathways, affecting similar brain systems. Here, we carried out a multiscale neural contextualization of shared alterations of cortical morphology across six major psychiatric conditions (autism spectrum disorder, attention deficit/hyperactivity disorder, major depression disorder, obsessive-compulsive disorder, bipolar disorder, and schizophrenia). Our framework cross-referenced shared morphological anomalies with respect to cortical myeloarchitecture and cytoarchitecture, as well as connectome and neurotransmitter organization. Pooling disease-related effects on MRI-based cortical thickness measures across six ENIGMA working groups, including a total of 28,546 participants (12,876 patients and 15,670 controls), we identified a cortex-wide dimension of morphological changes that described a sensory-fugal pattern, with paralimbic regions showing the most consistent alterations across conditions. The shared disease dimension was closely related to cortical gradients of microstructure as well as neurotransmitter axes, specifically cortex-wide variations in serotonin and dopamine. Multiple sensitivity analyses confirmed robustness with respect to slight variations in analytical choices. Our findings embed shared effects of common psychiatric conditions on brain structure in multiple scales of brain organization, and may provide insights into neural mechanisms of transdiagnostic vulnerability.
Collapse
|
39
|
Murgaš M, Michenthaler P, Reed MB, Gryglewski G, Lanzenberger R. Correlation of receptor density and mRNA expression patterns in the human cerebral cortex. Neuroimage 2022; 256:119214. [PMID: 35452805 DOI: 10.1016/j.neuroimage.2022.119214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/13/2022] [Accepted: 04/13/2022] [Indexed: 01/06/2023] Open
Abstract
Changes in distribution of associated molecular targets have been reported across several neuropsychiatric disorders. However, the high-resolution topology of most proteins is unknown and simultaneous in vivo measurement in multi-receptor systems is complicated. To account for the missing proteomic information, messenger ribonucleic acid (mRNA) transcripts are typically used as a surrogate. Nonetheless, post-transcriptional and post-translational processes might cause the discrepancy between the final distribution of proteins and gene expression patterns. Therefore, this study aims to investigate ex vivo links between mRNA expression and corresponding receptor density in the human cerebral cortex. To this end, autoradiography data on the density of 15 different receptors in 38 brain regions were correlated with the expression patterns of 50 associated genes derived from microarray data (mA), RNA sequencing data (RNA-Seq) provided by the Allen Human Brain Atlas and predicted mRNA expression patterns (pred-mRNA). Spearman's rank correlation was used to evaluate the possible links between proteomic data and mRNA expression patterns. Correlations between mRNA and protein density varied greatly between targets: Positive associations were found for e.g. the serotonin 1A (pred-mRNA: rs = 0.708; mA: rs = 0.601) or kainate receptor (pred-mRNA: rs = 0.655; mA: rs = 0.601; RNA-Seq: rs = 0.575) as well as a few negative associations e.g. γ-Aminobutyric acid (GABA) A receptor subunit α3 (pred-mRNA: rs = -0.638; mA: rs = -0.619) or subunit α5 (pred-mRNA: rs = -0.565; mA: rs = -0.563), while most of the other investigated target receptors showed low correlations. The high variability in the correspondence of mRNA expression and receptor spatial distribution warrants caution when inferring the topology of molecular targets in the brain from transcriptome data. This not only highlights the longstanding value of molecular imaging but also indicates a need for comprehensive proteomic studies.
Collapse
Affiliation(s)
- Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Paul Michenthaler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Murray Bruce Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Child Study Center, Yale University, New Haven, USA
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| |
Collapse
|
40
|
Siebner HR, Funke K, Aberra AS, Antal A, Bestmann S, Chen R, Classen J, Davare M, Di Lazzaro V, Fox PT, Hallett M, Karabanov AN, Kesselheim J, Beck MM, Koch G, Liebetanz D, Meunier S, Miniussi C, Paulus W, Peterchev AV, Popa T, Ridding MC, Thielscher A, Ziemann U, Rothwell JC, Ugawa Y. Transcranial magnetic stimulation of the brain: What is stimulated? - A consensus and critical position paper. Clin Neurophysiol 2022; 140:59-97. [PMID: 35738037 PMCID: PMC9753778 DOI: 10.1016/j.clinph.2022.04.022] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 03/14/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022]
Abstract
Transcranial (electro)magnetic stimulation (TMS) is currently the method of choice to non-invasively induce neural activity in the human brain. A single transcranial stimulus induces a time-varying electric field in the brain that may evoke action potentials in cortical neurons. The spatial relationship between the locally induced electric field and the stimulated neurons determines axonal depolarization. The induced electric field is influenced by the conductive properties of the tissue compartments and is strongest in the superficial parts of the targeted cortical gyri and underlying white matter. TMS likely targets axons of both excitatory and inhibitory neurons. The propensity of individual axons to fire an action potential in response to TMS depends on their geometry, myelination and spatial relation to the imposed electric field and the physiological state of the neuron. The latter is determined by its transsynaptic dendritic and somatic inputs, intrinsic membrane potential and firing rate. Modeling work suggests that the primary target of TMS is axonal terminals in the crown top and lip regions of cortical gyri. The induced electric field may additionally excite bends of myelinated axons in the juxtacortical white matter below the gyral crown. Neuronal excitation spreads ortho- and antidromically along the stimulated axons and causes secondary excitation of connected neuronal populations within local intracortical microcircuits in the target area. Axonal and transsynaptic spread of excitation also occurs along cortico-cortical and cortico-subcortical connections, impacting on neuronal activity in the targeted network. Both local and remote neural excitation depend critically on the functional state of the stimulated target area and network. TMS also causes substantial direct co-stimulation of the peripheral nervous system. Peripheral co-excitation propagates centrally in auditory and somatosensory networks, but also produces brain responses in other networks subserving multisensory integration, orienting or arousal. The complexity of the response to TMS warrants cautious interpretation of its physiological and behavioural consequences, and a deeper understanding of the mechanistic underpinnings of TMS will be critical for advancing it as a scientific and therapeutic tool.
Collapse
Affiliation(s)
- Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Klaus Funke
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Aman S Aberra
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sven Bestmann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Robert Chen
- Krembil Brain Institute, University Health Network and Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Marco Davare
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anke N Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Nutrition and Exercise, University of Copenhagen, Copenhagen, Denmark
| | - Janine Kesselheim
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Mikkel M Beck
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Non-invasive Brain Stimulation Unit, Laboratorio di NeurologiaClinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - David Liebetanz
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sabine Meunier
- Sorbonne Université, Faculté de Médecine, INSERM U 1127, CNRS 4 UMR 7225, Institut du Cerveau, F-75013, Paris, France
| | - Carlo Miniussi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di DioFatebenefratelli, Brescia, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Angel V Peterchev
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA; Department of Electrical & Computer Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, USA
| | - Traian Popa
- Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Michael C Ridding
- University of South Australia, IIMPACT in Health, Adelaide, Australia
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulf Ziemann
- Department of Neurology & Stroke, University Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yoshikazu Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Fukushima Global Medical Science Centre, Advanced Clinical Research Centre, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
41
|
Abstract
The neocortex is a complex neurobiological system with many interacting regions. How these regions work together to subserve flexible behavior and cognition has become increasingly amenable to rigorous research. Here, I review recent experimental and theoretical work on the modus operandi of a multiregional cortex. These studies revealed several general principles for the neocortical interareal connectivity, low-dimensional macroscopic gradients of biological properties across cortical areas, and a hierarchy of timescales for information processing. Theoretical work suggests testable predictions regarding differential excitation and inhibition along feedforward and feedback pathways in the cortical hierarchy. Furthermore, modeling of distributed working memory and simple decision-making has given rise to a novel mathematical concept, dubbed bifurcation in space, that potentially explains how different cortical areas, with a canonical circuit organization but gradients of biological heterogeneities, are able to subserve their respective (e.g., sensory coding versus executive control) functions in a modularly organized brain.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA;
| |
Collapse
|
42
|
Luppi AI, Mediano PAM, Rosas FE, Holland N, Fryer TD, O'Brien JT, Rowe JB, Menon DK, Bor D, Stamatakis EA. A synergistic core for human brain evolution and cognition. Nat Neurosci 2022; 25:771-782. [PMID: 35618951 PMCID: PMC7614771 DOI: 10.1038/s41593-022-01070-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
How does the organization of neural information processing enable humans' sophisticated cognition? Here we decompose functional interactions between brain regions into synergistic and redundant components, revealing their distinct information-processing roles. Combining functional and structural neuroimaging with meta-analytic results, we demonstrate that redundant interactions are predominantly associated with structurally coupled, modular sensorimotor processing. Synergistic interactions instead support integrative processes and complex cognition across higher-order brain networks. The human brain leverages synergistic information to a greater extent than nonhuman primates, with high-synergy association cortices exhibiting the highest degree of evolutionary cortical expansion. Synaptic density mapping from positron emission tomography and convergent molecular and metabolic evidence demonstrate that synergistic interactions are supported by receptor diversity and human-accelerated genes underpinning synaptic function. This information-resolved approach provides analytic tools to disentangle information integration from coupling, enabling richer, more accurate interpretations of functional connectivity, and illuminating how the human neurocognitive architecture navigates the trade-off between robustness and integration.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK.
- The Alan Turing Institute, London, UK.
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
- Data Science Institute, Imperial College London, London, UK
- Center for Complexity Science, Imperial College London, London, UK
| | - Negin Holland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Daniel Bor
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
43
|
Fontanier V, Sarazin M, Stoll FM, Delord B, Procyk E. Inhibitory control of frontal metastability sets the temporal signature of cognition. eLife 2022; 11:63795. [PMID: 35635439 PMCID: PMC9200403 DOI: 10.7554/elife.63795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical dynamics are organized over multiple anatomical and temporal scales. The mechanistic origin of the temporal organization and its contribution to cognition remain unknown. Here we demonstrate the cause of this organization by studying a specific temporal signature (time constant and latency) of neural activity. In monkey frontal areas, recorded during flexible decisions, temporal signatures display specific area-dependent ranges, as well as anatomical and cell-type distributions. Moreover, temporal signatures are functionally adapted to behaviorally relevant timescales. Fine-grained biophysical network models, constrained to account for experimentally observed temporal signatures, reveal that after-hyperpolarization potassium and inhibitory GABA-B conductances critically determine areas' specificity. They mechanistically account for temporal signatures by organizing activity into metastable states, with inhibition controlling state stability and transitions. As predicted by models, state durations non-linearly scale with temporal signatures in monkey, matching behavioral timescales. Thus, local inhibitory-controlled metastability constitutes the dynamical core specifying the temporal organization of cognitive functions in frontal areas.
Collapse
Affiliation(s)
| | - Matthieu Sarazin
- Institute of Intelligent Systems and Robotics (ISIR) - UMR 7222, Sorbonne Université, CNRS, Paris, France
| | - Frederic M Stoll
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Bruno Delord
- Institute of Intelligent Systems and Robotics (ISIR) - UMR 7222, Sorbonne Université, CNRS, Paris, France
| | - Emmanuel Procyk
- Stem Cell and Brain Research Institute U1208, Inserm, Lyon, France
| |
Collapse
|
44
|
Scholtens LH, Pijnenburg R, de Lange SC, Huitinga I, van den Heuvel MP. Common Microscale and Macroscale Principles of Connectivity in the Human Brain. J Neurosci 2022; 42:4147-4163. [PMID: 35422441 PMCID: PMC9121834 DOI: 10.1523/jneurosci.1572-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/27/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
The brain requires efficient information transfer between neurons and large-scale brain regions. Brain connectivity follows predictable organizational principles. At the cellular level, larger supragranular pyramidal neurons have larger, more branched dendritic trees, more synapses, and perform more complex computations; at the macroscale, region-to-region connections display a diverse architecture with highly connected hub areas facilitating complex information integration and computation. Here, we explore the hypothesis that the branching structure of large-scale region-to-region connectivity follows similar organizational principles as the neuronal scale. We examine microscale connectivity of basal dendritic trees of supragranular pyramidal neurons (300+) across 10 cortical areas in five human donor brains (1 male, 4 female). Dendritic complexity was quantified as the number of branch points, tree length, spine count, spine density, and overall branching complexity. High-resolution diffusion-weighted MRI was used to construct white matter trees of corticocortical wiring. Examining complexity of the resulting white matter trees using the same measures as for dendritic trees shows heteromodal association areas to have larger, more complex white matter trees than primary areas (p < 0.0001) and macroscale complexity to run in parallel with microscale measures, in terms of number of inputs (r = 0.677, p = 0.032), branch points (r = 0.797, p = 0.006), tree length (r = 0.664, p = 0.036), and branching complexity (r = 0.724, p = 0.018). Our findings support the integrative theory that brain connectivity follows similar principles of connectivity at neuronal and macroscale levels and provide a framework to study connectivity changes in brain conditions at multiple levels of organization.SIGNIFICANCE STATEMENT Within the human brain, cortical areas are involved in a wide range of processes, requiring different levels of information integration and local computation. At the cellular level, these regional differences reflect a predictable organizational principle with larger, more complexly branched supragranular pyramidal neurons in higher order regions. We hypothesized that the 3D branching structure of macroscale corticocortical connections follows the same organizational principles as the cellular scale. Comparing branching complexity of dendritic trees of supragranular pyramidal neurons and of MRI-based regional white matter trees of macroscale connectivity, we show that macroscale branching complexity is larger in higher order areas and that microscale and macroscale complexity go hand in hand. Our findings contribute to a multiscale integrative theory of brain connectivity.
Collapse
Affiliation(s)
- Lianne H Scholtens
- Complex Traits Genetics Department, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Rory Pijnenburg
- Complex Traits Genetics Department, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Siemon C de Lange
- Complex Traits Genetics Department, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Martijn P van den Heuvel
- Complex Traits Genetics Department, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Child Psychiatry, Amsterdam Neuroscience, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
45
|
Zachlod D, Bludau S, Cichon S, Palomero-Gallagher N, Amunts K. Combined analysis of cytoarchitectonic, molecular and transcriptomic patterns reveal differences in brain organization across human functional brain systems. Neuroimage 2022; 257:119286. [PMID: 35597401 DOI: 10.1016/j.neuroimage.2022.119286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 01/14/2023] Open
Abstract
Brain areas show specific cellular, molecular, and gene expression patterns that are linked to function, but their precise relationships are largely unknown. To unravel these structure-function relationships, a combined analysis of 53 neurotransmitter receptor genes, receptor densities of six transmitter systems and cytoarchitectonic data of the auditory, somatosensory, visual, motor systems was conducted. Besides covariation of areal gene expression with receptor density, the study reveals specific gene expression patterns in functional systems, which are most prominent for the inhibitory GABAA and excitatory glutamatergic NMDA receptors. Furthermore, gene expression-receptor relationships changed in a systematic manner according to information flow from primary to higher associative areas. The findings shed new light on the relationship of anatomical, functional, and molecular and transcriptomic principles of cortical segregation towards a more comprehensive understanding of human brain organization.
Collapse
Affiliation(s)
- Daniel Zachlod
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Sebastian Bludau
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sven Cichon
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Nicola Palomero-Gallagher
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, and JARA - Translational Brain Medicine, Aachen, Germany
| | - Katrin Amunts
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
46
|
Herold C, Ockermann PN, Amunts K. Behavioral Training Related Neurotransmitter Receptor Expression Dynamics in the Nidopallium Caudolaterale and the Hippocampal Formation of Pigeons. Front Physiol 2022; 13:883029. [PMID: 35600306 PMCID: PMC9114877 DOI: 10.3389/fphys.2022.883029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Learning and memory are linked to dynamic changes at the level of synapses in brain areas that are involved in cognitive tasks. For example, changes in neurotransmitter receptors are prerequisite for tuning signals along local circuits and long-range networks. However, it is still unclear how a series of learning events promotes plasticity within the system of neurotransmitter receptors and their subunits to shape information processing at the neuronal level. Therefore, we investigated the expression of different glutamatergic NMDA (GRIN) and AMPA (GRIA) receptor subunits, the GABAergic GABARG2 subunit, dopaminergic DRD1, serotonergic 5HTR1A and noradrenergic ADRA1A receptors in the pigeon's brain. We studied the nidopallium caudolaterale, the avian analogue of the prefrontal cortex, and the hippocampal formation, after training the birds in a rewarded stimulus-response association (SR) task and in a simultaneous-matching-to-sample (SMTS) task. The results show that receptor expression changed differentially after behavioral training compared to an untrained control group. In the nidopallium caudolaterale, GRIN2B, GRIA3, GRIA4, DRD1D, and ADRA1A receptor expression was altered after SR training and remained constantly decreased after the SMTS training protocol, while GRIA2 and DRD1A decreased only under the SR condition. In the hippocampal formation, GRIN2B decreased and GABARG2 receptor expression increased after SR training. After SMTS sessions, GRIN2B remained decreased, GABARG2 remained increased if compared to the control group. None of the investigated receptors differed directly between both conditions, although differentially altered. The changes in both regions mostly occur in favor of the stimulus response task. Thus, the present data provide evidence that neurotransmitter receptor expression dynamics play a role in the avian prefrontal cortex and the hippocampal formation for behavioral training and is uniquely, regionally and functionally associated to cognitive processes including learning and memory.
Collapse
Affiliation(s)
- Christina Herold
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp N. Ockermann
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, Jülich, Germany
| |
Collapse
|
47
|
Hilgetag CC, Goulas A, Changeux JP. A natural cortical axis connecting the outside and inside of the human brain. Netw Neurosci 2022; 6:950-959. [PMID: 36875013 PMCID: PMC9976644 DOI: 10.1162/netn_a_00256] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/17/2022] [Indexed: 11/04/2022] Open
Abstract
What structural and connectivity features of the human brain help to explain the extraordinary human cognitive abilities? We recently proposed a set of relevant connectomic fundamentals, some of which arise from the size scaling of the human brain relative to other primate brains, while others of these fundamentals may be uniquely human. In particular, we suggested that the remarkable increase of the size of the human brain due to its prolonged prenatal development has brought with it an increased sparsification, hierarchical modularization, as well as increased depth and cytoarchitectonic differentiation of brain networks. These characteristic features are complemented by a shift of projection origins to the upper layers of many cortical areas as well as the significantly prolonged postnatal development and plasticity of the upper cortical layers. Another fundamental aspect of cortical organization that has emerged in recent research is the alignment of diverse features of evolution, development, cytoarchitectonics, function, and plasticity along a principal, natural cortical axis from sensory ("outside") to association ("inside") areas. Here we highlight how this natural axis is integrated in the characteristic organization of the human brain. In particular, the human brain displays a developmental expansion of outside areas and a stretching of the natural axis such that outside areas are more widely separated from each other and from inside areas than in other species. We outline some functional implications of this characteristic arrangement.
Collapse
Affiliation(s)
- Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany.,Department of Health Sciences, Boston University, Boston, MA, USA
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany
| | - Jean-Pierre Changeux
- CNRS UMR 3571, Institut Pasteur, Paris, France.,Communications Cellulaires, Collège de France, Paris, France
| |
Collapse
|
48
|
Receptor architecture of macaque and human early visual areas: not equal, but comparable. Brain Struct Funct 2021; 227:1247-1263. [PMID: 34931262 PMCID: PMC9046358 DOI: 10.1007/s00429-021-02437-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022]
Abstract
Existing cytoarchitectonic maps of the human and macaque posterior occipital cortex differ in the number of areas they display, thus hampering identification of homolog structures. We applied quantitative in vitro receptor autoradiography to characterize the receptor architecture of the primary visual and early extrastriate cortex in macaque and human brains, using previously published cytoarchitectonic criteria as starting point of our analysis. We identified 8 receptor architectonically distinct areas in the macaque brain (mV1d, mV1v, mV2d, mV2v, mV3d, mV3v, mV3A, mV4v), and their respective counterpart areas in the human brain (hV1d, hV1v, hV2d, hV2v, hV3d, hV3v, hV3A, hV4v). Mean densities of 14 neurotransmitter receptors were quantified in each area, and ensuing receptor fingerprints used for multivariate analyses. The 1st principal component segregated macaque and human early visual areas differ. However, the 2nd principal component showed that within each species, area-specific differences in receptor fingerprints were associated with the hierarchical processing level of each area. Subdivisions of V2 and V3 were found to cluster together in both species and were segregated from subdivisions of V1 and from V4v. Thus, comparative studies like this provide valuable architectonic insights into how differences in underlying microstructure impact evolutionary changes in functional processing of the primate brain and, at the same time, provide strong arguments for use of macaque monkey brain as a suitable animal model for translational studies.
Collapse
|
49
|
Yokoyama C, Autio JA, Ikeda T, Sallet J, Mars RB, Van Essen DC, Glasser MF, Sadato N, Hayashi T. Comparative connectomics of the primate social brain. Neuroimage 2021; 245:118693. [PMID: 34732327 PMCID: PMC9159291 DOI: 10.1016/j.neuroimage.2021.118693] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/27/2021] [Accepted: 10/29/2021] [Indexed: 01/13/2023] Open
Abstract
Social interaction is thought to provide a selection pressure for human intelligence, yet little is known about its neurobiological basis and evolution throughout the primate lineage. Recent advances in neuroimaging have enabled whole brain investigation of brain structure, function, and connectivity in humans and non-human primates (NHPs), leading to a nascent field of comparative connectomics. However, linking social behavior to brain organization across the primates remains challenging. Here, we review the current understanding of the macroscale neural mechanisms of social behaviors from the viewpoint of system neuroscience. We first demonstrate an association between the number of cortical neurons and the size of social groups across primates, suggesting a link between neural information-processing capacity and social capabilities. Moreover, by capitalizing on recent advances in species-harmonized functional MRI, we demonstrate that portions of the mirror neuron system and default-mode networks, which are thought to be important for representation of the other's actions and sense of self, respectively, exhibit similarities in functional organization in macaque monkeys and humans, suggesting possible homologies. With respect to these two networks, we describe recent developments in the neurobiology of social perception, joint attention, personality and social complexity. Together, the Human Connectome Project (HCP)-style comparative neuroimaging, hyperscanning, behavioral, and other multi-modal investigations are expected to yield important insights into the evolutionary foundations of human social behavior.
Collapse
Affiliation(s)
- Chihiro Yokoyama
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Joonas A Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takuro Ikeda
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, Oxford University, Oxford, United Kingdom; University of Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - David C Van Essen
- Departments of Neuroscience, Washington University Medical School, St Louis, MO, United States of America
| | - Matthew F Glasser
- Departments of Neuroscience, Washington University Medical School, St Louis, MO, United States of America; Department of Radiology, Washington University Medical School, St Louis, MO, United States of America
| | - Norihiro Sadato
- National Institute for Physiological Sciences, Okazaki, Japan; The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
50
|
Rockland KS. Cytochrome oxidase "blobs": a call for more anatomy. Brain Struct Funct 2021; 226:2793-2806. [PMID: 34382115 PMCID: PMC8778949 DOI: 10.1007/s00429-021-02360-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/31/2021] [Indexed: 11/29/2022]
Abstract
An ordered relation of structure and function has been a cornerstone in thinking about brain organization. Like the brain itself, however, this is not straightforward and is confounded both by functional intricacy and structural plasticity (many routes to a given outcome). As a striking case of putative structure-function correlation, this mini-review focuses on the relatively well-characterized pattern of cytochrome oxidase (CO) blobs (aka "patches" or "puffs") in the supragranular layers of macaque monkey visual cortex. The pattern is without doubt visually compelling, and the semi-dichotomous array of CO+ blobs and CO- interblobs is consistent with multiple studies reporting compartment-specific preferential connectivity and distinctive physiological response properties. Nevertheless, as briefly reviewed here, the finer anatomical organization of this system is surprisingly under-investigated, and the relation to functional aspects, therefore, unclear. Microcircuitry, cell type, and three-dimensional spatiotemporal level investigations of the CO+ CO- pattern are needed and may open new views to structure-function organization of visual cortex, and to phylogenetic and ontogenetic comparisons across nonhuman primates (NHP), and between NHP and humans.
Collapse
Affiliation(s)
- Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 72 East Concord St., Boston, MA, 02118, USA.
| |
Collapse
|