1
|
Cai W, Menon V. Heterogeneity of human insular cortex: Five principles of functional organization across multiple cognitive domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.646039. [PMID: 40236226 PMCID: PMC11996322 DOI: 10.1101/2025.03.28.646039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The insular cortex serves as a critical hub for human cognition, but how its anatomically distinct subregions coordinate diverse cognitive, emotional, and social functions remains unclear. Using the Human Connectome Project's multi-task fMRI dataset (N=524), we investigated how insular subregions dynamically engage during seven different cognitive tasks spanning executive function, social cognition, emotion, language, and motor control. Our findings reveal five key principles of human insular organization. First, insular subregions maintain distinct functional signatures that enable reliable differentiation based on activation and connectivity patterns across cognitive domains. Second, these subregions dynamically reconfigure their network interactions in response to specific task demands while preserving their core functional architecture. Third, clear functional specialization exists along the insula's dorsal-ventral axis: the dorsal anterior insula selectively responds to cognitive control demands through interactions with frontoparietal networks, while the ventral anterior insula preferentially processes emotional and social information via connections with limbic and default mode networks. Fourth, we observed counterintuitive connectivity patterns during demanding cognitive tasks, with the dorsal anterior insula decreasing connectivity to frontoparietal networks while increasing connectivity to default mode networks - suggesting a complex information routing mechanism rather than simple co-activation of task-relevant networks. Fifth, while a basic tripartite model captures core functional distinctions, finer-grained parcellations revealed additional cognitive domain-specific advantages that are obscured by simpler parcellation approaches. Our results illuminate how the insula's organization supports its diverse functional roles through selective engagement of distinct neural networks, providing a new framework for understanding both normal cognitive function and clinical disorders involving insular dysfunction.
Collapse
|
2
|
Patchitt J, Garfinkel S, Strawson WH, Miller M, Tsakiris M, Clark A, Critchley HD. Somatosensory false feedback biases emotional ratings through interoceptive embodiment. Sci Rep 2025; 15:11472. [PMID: 40181049 PMCID: PMC11968835 DOI: 10.1038/s41598-025-94971-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/18/2025] [Indexed: 04/05/2025] Open
Abstract
Mismatches between perceived and veridical physiological signals during false feedback (FFB) can bias emotional judgements. Paradigms using auditory FFB suggest perceived changes in heart rate (HR) increase ratings of emotional intensity irrespective of feedback type (increased or decreased HR), implicating right anterior insula as a mismatch comparator between exteroceptive and interoceptive information. However, few paradigms have examined effects of somatosensory FFB. Participants rated the emotional intensity of randomized facial expressions while they received 20 s blocks of pulsatile somatosensory stimulation at rates higher than HR, lower than HR, equivalent to HR, or no stimulation during a functional magnetic resonance neuroimaging scan. FFB exerted a bidirectional effect on reported intensity ratings of the emotional faces, increasing over the course of each 20 s stimulation block. Neuroimaging showed FFB engaging regions indicative of affective touch processing, embodiment, and reflex suppression. Contrasting higher vs. lower HR FFB revealed engagement of right insula and centres supporting socio-emotional processing. Results indicate that exposure to pulsatile somatosensory stimulation can influence emotional judgements though its progressive embodiment as a perceived interoceptive arousal state, biasing how affective salience is ascribed to external stimuli. Results are consistent with multimodal integration of priors and prediction-error signalling in shaping perceptual judgments.
Collapse
Affiliation(s)
- Joel Patchitt
- Sussex Centre for Consciousness Science, University of Sussex, Brighton, BN1 9QJ, UK.
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9RY, UK.
| | - Sarah Garfinkel
- Institute of Cognitive Neuroscience, University College London, London, WC1N 3AZ, UK
| | - William H Strawson
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9RY, UK
| | - Mark Miller
- Monash Centre for Consciousness and Contemplative Studies, Monash University, Melbourne, VIC, 3168, Australia
- Psychology Department, University of Toronto, Toronto, ON, M5S 2E5, Canada
| | - Manos Tsakiris
- Department of Psychology, Royal Holloway, University of London, Egham, TW20 0EX, UK
| | - Andy Clark
- School of Media, Arts and Humanities, University of Sussex, Brighton, BN1 9RG, UK
- School of Engineering and Informatics, University of Sussex, Brighton, BN1 9QG, UK
| | - Hugo D Critchley
- Sussex Centre for Consciousness Science, University of Sussex, Brighton, BN1 9QJ, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9RY, UK
| |
Collapse
|
3
|
Evrard HC, Blomqvist A. Balancing the role of the ventral posterior thalamus in pain and temperature. J Neurophysiol 2025; 133:1014-1015. [PMID: 40094372 DOI: 10.1152/jn.00009.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 03/19/2025] Open
Affiliation(s)
- Henry C Evrard
- International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Werner Reichardt Center for Integrative Neuroscience, Karl Eberhard University of Tübingen, Tübingen, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anders Blomqvist
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
Czoty PW, Kawas M, Madi K, Barcus R, Kim J, Hudson JP, Galbo-Thomma LK, Yuan H, Daunais JB, Whitlow CT. A role for the insula in establishing social dominance: structural and functional MRI studies in nonhuman primates. Cereb Cortex 2025; 35:bhaf043. [PMID: 40099834 PMCID: PMC11915092 DOI: 10.1093/cercor/bhaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/09/2025] [Accepted: 01/30/2025] [Indexed: 03/20/2025] Open
Abstract
Awareness of one's position in the social hierarchy is essential for survival. Conversely, poor social cognition is associated with several neuropsychiatric diseases. Although brain regions that mediate understanding of the social hierarchy are poorly understood, recent evidence implicates the insula. Magnetic resonance imaging (MRI) scans were acquired in twelve individually housed male cynomolgus monkeys to determine whether structural and functional characteristics of the insular cortex predicted the social rank that monkeys would attain once they formed stable social hierarchies. Structural MRI revealed that left insular volume was significantly larger in monkeys that would become dominant vs. subordinate. No differences were observed in other areas including amygdala, caudate nucleus, or prefrontal cortex. Volumetric differences were localized to dorsal anterior regions of both left and right insulae. Functional MRI revealed that global correlation, a measure of connectedness to the rest of the brain, was significantly lower in the left insula of monkeys who would become dominant vs. subordinate. Moreover, the fractional amplitude of low-frequency fluctuations, a reflection of spontaneous brain activity, trended lower in bilateral insula in the future dominant monkeys. This prospective study provides evidence for a role of the insula in the establishment and maintenance of social dominance relationships.
Collapse
Affiliation(s)
- Paul W Czoty
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, United States
| | - Mohammad Kawas
- Department of Radiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, United States
- Department of Physiology & Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Kedar Madi
- Department of Radiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, United States
| | - Richard Barcus
- Department of Radiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, United States
| | - Jeongchul Kim
- Department of Radiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, United States
| | - Jeremy P Hudson
- Department of Radiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, United States
| | - Lindsey K Galbo-Thomma
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, United States
| | - Hongyu Yuan
- Department of Radiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, United States
| | - James B Daunais
- Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, United States
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, United States
| |
Collapse
|
5
|
Amano H, Tanabe HC, Ogihara N. Enlargement of the human prefrontal cortex and brain mentalizing network: anatomically homogenous cross-species brain transformation. Brain Struct Funct 2025; 230:34. [PMID: 39853417 PMCID: PMC11762074 DOI: 10.1007/s00429-025-02896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
To achieve a better understanding of the evolution of the large brain in humans, a comparative analysis of species differences in the brains of extant primate species is crucial, as it allows direct comparisons of the brains. We developed a method to achieve anatomically precise region-to-region homologous brain transformations across species using computational neuroanatomy. Utilizing three-dimensional neuroimaging data from humans (Homo sapiens), chimpanzees (Pan troglodytes), and Japanese macaques (Macaca fuscata), along with the anatomical labels of their respective brains, we aimed to create a cross-species average template brain that preserves neuroanatomical correspondence across species. Homologous transformation of the brain from one species to another can be computed using the cross-species average brain. Applying this transformation to human and chimpanzee brains revealed that, compared to chimpanzees, humans had significantly larger and more expanded prefrontal cortex, middle and posterior temporal gyrus, angular gyrus, precuneus, and cortical areas associated with mentalization. This neuroanatomically homologous brain transformation enables the systematic investigation of the similarities and differences in brain anatomy and structure across different species.
Collapse
Affiliation(s)
- Hideki Amano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Hiroki C Tanabe
- Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Nagoya, 464-8601, Japan
| | - Naomichi Ogihara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
6
|
Zhang J, Chen D, Deming P, Srirangarajan T, Theriault J, Kragel PA, Hartley L, Lee KM, McVeigh K, Wager TD, Wald LL, Satpute AB, Quigley KS, Whitfield-Gabrieli S, Barrett LF, Bianciardi M. Cortical and subcortical mapping of the allostatic-interoceptive system in the human brain using 7 Tesla fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.07.20.548178. [PMID: 37546889 PMCID: PMC10401932 DOI: 10.1101/2023.07.20.548178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The brain continuously anticipates the energetic needs of the body and prepares to meet those needs before they arise, called allostasis. In support of allostasis, the brain continually models the sensory state of the body, called interoception. We replicated and extended a large-scale system supporting allostasis and interoception in the human brain using ultra-high precision 7 Tesla functional magnetic resonance imaging (fMRI) (N = 90), improving the precision of subgenual and pregenual anterior cingulate topography combined with extensive brainstem nuclei mapping. We observed over 90% of the anatomical connections published in tract-tracing studies in non-human animals. The system also included regions of dense intrinsic connectivity broadly throughout the system, some of which were identified previously as part of the backbone of neural communication across the brain. These results strengthen previous evidence for a whole-brain system supporting the modeling and regulation of the internal milieu of the body.
Collapse
Affiliation(s)
- Jiahe Zhang
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Danlei Chen
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Philip Deming
- Department of Psychology, Northeastern University, Boston, MA 02115
| | | | - Jordan Theriault
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02139
| | | | - Ludger Hartley
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Kent M. Lee
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Kieran McVeigh
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Tor D. Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| | - Lawrence L. Wald
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02139
| | - Ajay B. Satpute
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Karen S. Quigley
- Department of Psychology, Northeastern University, Boston, MA 02115
| | | | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA 02115
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02139
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02139
| | - Marta Bianciardi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02139
- Division of Sleep Medicine, Harvard University, Boston, MA
| |
Collapse
|
7
|
Li K, Qian L, Zhang C, Zhang J, Xue C, Zhang Y, Deng W. The entorhinal cortex and cognitive impairment in schizophrenia: A comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111218. [PMID: 39672531 DOI: 10.1016/j.pnpbp.2024.111218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Schizophrenia, a severe mental illness characterized by cognitive impairment and olfactory dysfunction, remains an enigma with its pathological mechanism yet to be fully elucidated. The entorhinal cortex, a pivotal structure involved in numerous neural loop circuits related to olfaction, cognition, and emotion, has garnered significant attention due to its structural and functional abnormalities, which have been implicated in the pathogenesis of schizophrenia. This review focuses on the abnormal structural and functional changes in the entorhinal cortex in schizophrenia patients, as evidenced by neuroimaging, cellular biology, and genetic studies. These changes are posited to play a crucial role in the pathogenesis of cognitive impairment in schizophrenia. Furthermore, this review explores the various intervention strategies targeting the entorhinal cortex in current treatment modalities and proposes potential directions for future research endeavors, thereby providing a novel perspective on unraveling the complexity of neural mechanisms underlying schizophrenia and developing innovative therapeutic approaches for schizophrenia.
Collapse
Affiliation(s)
- Kun Li
- Shandong Daizhuang Hospital, Jining, Shandong Province 272075, China; Jining Key Laboratory of Neuromodulation, Jining, Shandong Province 272075, China.
| | - Liju Qian
- Shandong Daizhuang Hospital, Jining, Shandong Province 272075, China
| | - Chenchen Zhang
- Shandong Daizhuang Hospital, Jining, Shandong Province 272075, China
| | - Jiajia Zhang
- Department of Psychology, Xinxiang Medical University, Henan 453003, China
| | - Chuang Xue
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310063, China
| | - Yuebing Zhang
- Shandong Daizhuang Hospital, Jining, Shandong Province 272075, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310063, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China.
| |
Collapse
|
8
|
Yoshioka T, Kimiki S, Yamazaki M, Hamano T, Ou M, Ode Y, Ehara R, Kajino K, Kasai S, Yoshizawa K, Saitoh T, Yamada D, Nagase H, Saitoh A. Agonists of the opioid δ-receptor improve irritable bowel syndrome-like symptoms via the central nervous system. Br J Pharmacol 2024. [PMID: 39721072 DOI: 10.1111/bph.17428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND AND PURPOSE Irritable bowel syndrome (IBS) is a common condition that is challenging to treat, and novel drugs are needed for this condition. Previously, a chronic vicarious social defeat stress (cVSDS) mouse model exhibits IBS-like symptoms. Also agonists of the opioid δ-receptor exert anti-stress effects in rodents with minimal adverse effects. Here, we evaluated the effects of δ-receptor agonists on the IBS-like symptoms in cVSDS mice. EXPERIMENTAL APPROACH cVSDS mice (male C57BL/6J mice) were prepared following a 10-day exposure to witness of social defeat stress. Subsequently, intestinal peristaltic motility and abdominal hyperalgesia were evaluated using the charcoal meal test (CMT) and capsaicin-induced hyperalgesia test (CHT), respectively. Extracellular glutamate levels were measured using in vivo brain microdialysis. The drug was singly administrated 30 min before testing. KEY RESULTS In cVSDS mice, systemic (10 mg kg-1) and intracerebroventricular (30 nmol) administration of a δ-receptor agonist regulated intestinal peristalsis in the CMT and relieved abdominal pain in the CHT. Effects of systemic administration were blocked by intracerebroventricular injection of a δ-receptor inhibitor. Local infusion of the δ-receptor agonist (0.6 nmol) into the insular cortex improved cVSDS-induced intestinal hypermotility. The in vivo brain microdialysis study showed that re-exposure to VSDS elevated the extracellular glutamate levels in the IC, which was restored by the δ-receptor agonist. CONCLUSIONS AND IMPLICATIONS We propose that agonists of opioid δ-receptors are potential drugs for the radical treatment of IBS because they can ameliorate IBS-like symptoms via the CNS, specifically the insular cortex.
Collapse
Affiliation(s)
- Toshinori Yoshioka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Sayaka Kimiki
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Mayuna Yamazaki
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Takumi Hamano
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Mizuki Ou
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yumi Ode
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Rui Ehara
- Laboratory of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Keita Kajino
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Satoka Kasai
- Laboratory of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kazumi Yoshizawa
- Laboratory of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
9
|
Martino M, Magioncalda P. A working model of neural activity and phenomenal experience in psychosis. Mol Psychiatry 2024; 29:3814-3825. [PMID: 38844531 DOI: 10.1038/s41380-024-02607-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 12/05/2024]
Abstract
According to classical phenomenology, phenomenal experience is composed of perceptions (related to environmental stimuli) and imagery/ideas (unrelated to environmental stimuli). Intensity/vividness is supposed to represent the key phenomenal difference between perceptions and ideas, higher in perceptions than ideas, and thus the core subjective criterion to distinguish reality from imagination. At a neural level, phenomenal experience is related to brain activity in the sensory areas, driven by receptor stimulation (underlying perception) or associative areas (underlying imagery/ideas). An alteration of the phenomenal experience that leads to a loss of contact with reality characterizes psychosis, which mainly consists of hallucinations (false perceptions) and delusions (fixed ideas). According to the current data on their neural correlates across subclinical conditions and different neuropsychiatric disorders (such as schizophrenia), hallucinations are mainly associated with: transient (modality-specific) activations of sensory cortices (primarily superior temporal gyrus, occipito-temporal cortex, postcentral gyrus, and insula) during the hallucinatory experience; increased intrinsic activity/connectivity of associative/default-mode network (DMN) areas (primarily temporoparietal junction, posterior cingulate cortex, and medial prefrontal cortex); and deficits in the sensory systems. Analogously, delusions are mainly associated with increased intrinsic activity/connectivity of associative/DMN areas (primarily medial prefrontal cortex). Integrating these data into our three-dimensional model of neural activity and phenomenal-behavioral patterns, we propose the following model of psychosis. A functional/structural deficit in the sensory systems complemented by a functional reconfiguration of intrinsic brain activity favoring hyperactivity of associative/DMN areas may drive neuronal activations in the sensory (auditory/visual/somatosensory) areas and insular (interoceptive) areas with spatiotemporal configurations maximally independent from environmental stimuli and predominantly related to associative processing. This manifests in perception deficit and imagery/ideas composed of exteroceptive-like and interoceptive/affective-like elements that show a phenomenal intensity indistinguishable from perceptions, impairing the reality monitoring, along with minimal changeability by environmental stimuli, ultimately resulting in dissociation of the phenomenal experience from the environment, i.e., psychosis.
Collapse
Affiliation(s)
- Matteo Martino
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| | - Paola Magioncalda
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Medical Research, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
- Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| |
Collapse
|
10
|
Peng L, Xu L, Zhang Z, Wang Z, Chen J, Zhong X, Wang L, Xu R, Shao Y. Effects of total sleep deprivation on functional connectivity of the anterior cingulate cortex: Insights from resting-state fMRI in healthy adult males. Int J Psychophysiol 2024; 206:112460. [PMID: 39447841 DOI: 10.1016/j.ijpsycho.2024.112460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Inadequate sleep significantly impacts an individual's health by compromising inhibitory control and self-regulation abilities. This study employed resting-state functional magnetic resonance imaging (fMRI) to assess the functional connectivity between the anterior cingulate cortex (ACC) and the whole brain in 16 healthy adult males after 36 h of total sleep deprivation. Additionally, this study investigated alterations in individuals' inhibitory control functions and physiological mechanisms following sleep deprivation. The results showed a significant increase in functional connectivity between the ACC, the left angular gyrus, and the right hippocampus following 36 h of continuous sleep deprivation. Conversely, functional connectivity was notably decreased between the ACC and the right insular cortex, right paracingulate gyrus, and bilateral putamen. Furthermore, changes in ACC functional connectivity were significantly correlated with alterations in behavioral performance in the go/no-go task after sleep deprivation. This study contributes to understanding brain network mechanisms in the anterior cingulate gyrus after sleep deprivation. It clarifies the relationship between functional connectivity changes in the anterior cingulate gyrus and inhibitory control post-sleep deprivation.
Collapse
Affiliation(s)
- Lei Peng
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Lin Xu
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Zheyuan Zhang
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Zexuan Wang
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Jie Chen
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Xiao Zhong
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Letong Wang
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Ruiping Xu
- Guangzhou Institute of Sports Science. No 299, Tianhe Road, Tianhe District, Guangzhou 510620, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
11
|
Fontes MAP, Dos Santos Machado LR, Viana ACR, Cruz MH, Nogueira ÍS, Oliveira MGL, Neves CB, Godoy ACV, Henderson LA, Macefield VG. The insular cortex, autonomic asymmetry and cardiovascular control: looking at the right side of stroke. Clin Auton Res 2024; 34:549-560. [PMID: 39316247 DOI: 10.1007/s10286-024-01066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE Evidence from animal and human studies demonstrates that cortical regions play a key role in autonomic modulation with a differential role for some brain regions located in the left and right brain hemispheres. Known as autonomic asymmetry, this phenomenon has been demonstrated by clinical observations, by experimental models, and currently by combined neuroimaging and direct recordings of sympathetic nerve activity. Previous studies report peculiar autonomic-mediated cardiovascular alterations following unilateral damage to the left or right insula, a multifunctional key cortical region involved in emotional processing linked to autonomic cardiovascular control and featuring asymmetric characteristics. METHODS Based on clinical studies reporting specific damage to the insular cortex, this review aims to provide an overview of the prognostic significance of unilateral (left or right hemisphere) post-insular stroke cardiac alterations. In addition, we review experimental data aiming to unravel the central mechanisms involved in post-insular stroke cardiovascular complications. RESULTS AND CONCLUSION Current clinical and experimental data suggest that stroke of the right insula can present a worse cardiovascular prognosis.
Collapse
Affiliation(s)
- Marco Antônio Peliky Fontes
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil.
| | - Liliane Ramos Dos Santos Machado
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Ana Clara Rocha Viana
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Matheus Henrique Cruz
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Ícaro Santos Nogueira
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Marcela Gondim Lima Oliveira
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Christiane Braga Neves
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Ana Caroline Ventris Godoy
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | | | - Vaughan G Macefield
- Department of Neuroscience, Monash University, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
12
|
Adamic EM, Teed AR, Avery J, de la Cruz F, Khalsa S. Hemispheric divergence of interoceptive processing across psychiatric disorders. eLife 2024; 13:RP92820. [PMID: 39535878 PMCID: PMC11560129 DOI: 10.7554/elife.92820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Interactions between top-down attention and bottom-up visceral inputs are assumed to produce conscious perceptions of interoceptive states, and while each process has been independently associated with aberrant interoceptive symptomatology in psychiatric disorders, the neural substrates of this interface are unknown. We conducted a preregistered functional neuroimaging study of 46 individuals with anxiety, depression, and/or eating disorders (ADE) and 46 propensity-matched healthy comparisons (HC), comparing their neural activity across two interoceptive tasks differentially recruiting top-down or bottom-up processing within the same scan session. During an interoceptive attention task, top-down attention was voluntarily directed towards cardiorespiratory or visual signals. In contrast, during an interoceptive perturbation task, intravenous infusions of isoproterenol (a peripherally-acting beta-adrenergic receptor agonist) were administered in a double-blinded and placebo-controlled fashion to drive bottom-up cardiorespiratory sensations. Across both tasks, neural activation converged upon the insular cortex, localizing within the granular and ventral dysgranular subregions bilaterally. However, contrasting hemispheric differences emerged, with the ADE group exhibiting (relative to HCs) an asymmetric pattern of overlap in the left insula, with increased or decreased proportions of co-activated voxels within the left or right dysgranular insula, respectively. The ADE group also showed less agranular anterior insula activation during periods of bodily uncertainty (i.e. when anticipating possible isoproterenol-induced changes that never arrived). Finally, post-task changes in insula functional connectivity were associated with anxiety and depression severity. These findings confirm the dysgranular mid-insula as a key cortical interface where attention and prediction meet real-time bodily inputs, especially during heightened awareness of interoceptive states. Furthermore, the dysgranular mid-insula may indeed be a 'locus of disruption' for psychiatric disorders.
Collapse
Affiliation(s)
- Emily M Adamic
- Laureate Institute for Brain ResearchTulsaUnited States
- Department of Biological Sciences, University of TulsaTulsaUnited States
| | - Adam R Teed
- Laureate Institute for Brain ResearchTulsaUnited States
| | - Jason Avery
- Laboratory of Brain and Cognition, National Institute of Mental HealthBethesdaUnited States
| | - Feliberto de la Cruz
- Laboratory for Autonomic Neuroscience, Imaging, and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University HospitalJenaGermany
| | - Sahib Khalsa
- Laureate Institute for Brain ResearchTulsaUnited States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los AngelesLos AngelesUnited States
| |
Collapse
|
13
|
Critchley HD, Patchitt J. Interoception, Insula, and Autonomic Integration: Relevance to the Expression and Treatment of Psychiatric Symptoms. Curr Top Behav Neurosci 2024. [PMID: 39531201 DOI: 10.1007/7854_2024_518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The mind is embodied, and this is relevant to mental health and psychiatric illness. Interoception is the body-to-brain axis of sensory information flow and its representation at the neural and psychological levels. Interoception is the purported basis for motivation and emotion, and as an inescapable stream of information about the health and functioning of the whole organism, it is proposed to be the foundation to the conscious unitary sense of self. Correspondingly, this central representation of internal state is relevant to understanding the expression of psychological symptoms and behaviours and ultimately psychiatric disorders. Here we review interoception, particularly from a cardiovascular perspective, and how understanding theoretical neural and psychological aspects of interoception relates to perceptions, thoughts, and feelings. We examine how perturbations in interoceptive processing are expressed in mental symptoms and psychiatric disorders and show how this knowledge may yield new treatment targets.
Collapse
Affiliation(s)
- Hugo D Critchley
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK.
| | - Joel Patchitt
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| |
Collapse
|
14
|
Wittmann M, Droit-Volet S. Subjective Time in Ordinary and Non-ordinary States of Consciousness: How Interoceptive Feelings Inform Us About the Passage of Time. Curr Top Behav Neurosci 2024. [PMID: 39485647 DOI: 10.1007/7854_2024_520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
In accordance with Bud (A.D.) Craig's theories, we maintain that ascending physiological signals in their temporal dynamics are a necessary prerequisite for human time judgments. Functional neuroimaging and psychophysiological evidence have increasingly demonstrated that the subjective judgment of time is based on the physical and emotional self. The psychological literature reveals how emotions and related body feelings shape subjective time. Empirical studies of altered states of consciousness, namely meditative states, are also of prime interest as the perception of the physical state is strongly modulated and thereby affects the subjective experience of time. Our conclusion is that the sense of time is strongly embodied.
Collapse
Affiliation(s)
- Marc Wittmann
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany.
| | | |
Collapse
|
15
|
Coffeen U, Ramírez-Rodríguez GB, Simón-Arceo K, Mercado F, Almanza A, Jaimes O, Parra-Vitela D, Vázquez-Barreto M, Pellicer F. The Role of the Insular Cortex and Serotonergic System in the Modulation of Long-Lasting Nociception. Cells 2024; 13:1718. [PMID: 39451236 PMCID: PMC11506361 DOI: 10.3390/cells13201718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 10/26/2024] Open
Abstract
The insular cortex (IC) is a brain region that both receives relevant sensory information and is responsible for emotional and cognitive processes, allowing the perception of sensory information. The IC has connections with multiple sites of the pain matrix, including cortico-cortical interactions with the anterior cingulate cortex (ACC) and top-down connections with sites of descending pain inhibition. We explored the changes in the extracellular release of serotonin (5HT) and its major metabolite, 5-hydroxyindoleacetic acid (5HIAA), after inflammation was induced by carrageenan injection. Additionally, we explored the role of 5HT receptors (the 5HT1A, 5HT2A, and 5HT3 receptors) in the IC after inflammatory insult. The results showed an increase in the extracellular levels of 5HT and 5-HIAA during the inflammatory process compared to physiological levels. Additionally, the 5HT1A receptor was overexpressed. Finally, the 5HT1A, 5HT2A, and 5HT3 receptor blockade in the IC had antinociceptive effects. Our results highlight the role of serotonergic neurotransmission in long-lasting inflammatory nociception within the IC.
Collapse
Affiliation(s)
- Ulises Coffeen
- Laboratorio de Neurofisiología Integrativa, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (U.C.); (K.S.-A.); (O.J.)
| | - Gerardo B. Ramírez-Rodríguez
- Laboratorio de Neurogénesis, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Karina Simón-Arceo
- Laboratorio de Neurofisiología Integrativa, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (U.C.); (K.S.-A.); (O.J.)
| | - Francisco Mercado
- Laboratorio de Fisiología Celular, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (F.M.); (A.A.)
| | - Angélica Almanza
- Laboratorio de Fisiología Celular, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (F.M.); (A.A.)
| | - Orlando Jaimes
- Laboratorio de Neurofisiología Integrativa, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (U.C.); (K.S.-A.); (O.J.)
| | - Doris Parra-Vitela
- CIANyD Centro Integral Para la Atención de Neuropatía y Dolor, Toluca 50110, Mexico;
| | | | - Francisco Pellicer
- Laboratorio de Neurofisiología Integrativa, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (U.C.); (K.S.-A.); (O.J.)
| |
Collapse
|
16
|
Stoll FM, Rudebeck PH. Decision-making shapes dynamic inter-areal communication within macaque ventral frontal cortex. Curr Biol 2024; 34:4526-4538.e5. [PMID: 39293441 PMCID: PMC11461104 DOI: 10.1016/j.cub.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Macaque ventral frontal cortex is composed of a set of anatomically heterogeneous and highly interconnected areas. Collectively, these areas have been implicated in many higher-level affective and cognitive processes, most notably the adaptive control of decision-making. Despite this appreciation, little is known about how subdivisions of ventral frontal cortex dynamically interact with each other during decision-making. Here, we assessed functional interactions between areas by analyzing the activity of thousands of single neurons recorded from eight anatomically defined subdivisions of ventral frontal cortex in macaques performing a visually guided two-choice probabilistic task for different fruit juices. We found that the onset of stimuli and reward delivery globally increased communication between all parts of ventral frontal cortex. Inter-areal communication was, however, temporally specific, occurred through unique activity subspaces between areas, and depended on the encoding of decision variables. In particular, areas 12l and 12o showed the highest connectivity with other areas while being more likely to receive information from other parts of ventral frontal cortex than to send it. This pattern of functional connectivity suggests a role for these two areas in integrating diverse sources of information during decision processes. Taken together, our work reveals the specific patterns of inter-areal communication between anatomically connected subdivisions of ventral frontal cortex that are dynamically engaged during decision-making.
Collapse
Affiliation(s)
- Frederic M Stoll
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
17
|
Medvediev VV, Cherkasov VG, Marushchenko MO, Vaslovych VV, Tsymbaliuk VI. Giant Fusiform Cells of the Brain: Discovery, Identification, and Probable Functions. CYTOL GENET+ 2024; 58:411-427. [DOI: 10.3103/s0095452724050098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 01/05/2025]
|
18
|
Sun W, Billot A, Du J, Wei X, Lemley RA, Daneshzand M, Nummenmaa A, Buckner RL, Eldaief MC. Precision Network Modeling of Transcranial Magnetic Stimulation Across Individuals Suggests Therapeutic Targets and Potential for Improvement. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.15.24311994. [PMID: 39185539 PMCID: PMC11343249 DOI: 10.1101/2024.08.15.24311994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Higher-order cognitive and affective functions are supported by large-scale networks in the brain. Dysfunction in different networks is proposed to associate with distinct symptoms in neuropsychiatric disorders. However, the specific networks targeted by current clinical transcranial magnetic stimulation (TMS) approaches are unclear. While standard-of-care TMS relies on scalp-based landmarks, recent FDA-approved TMS protocols use individualized functional connectivity with the subgenual anterior cingulate cortex (sgACC) to optimize TMS targeting. Leveraging previous work on precision network estimation and recent advances in network-level TMS targeting, we demonstrate that clinical TMS approaches target different functional networks between individuals. Homotopic scalp positions (left F3 and right F4) target different networks within and across individuals, and right F4 generally favors a right-lateralized control network. We also modeled the impact of targeting the dorsolateral prefrontal cortex (dlPFC) zone anticorrelated with the sgACC and found that the individual-specific anticorrelated region variably targets a network coupled to reward circuitry. Combining individualized, precision network mapping and electric field (E-field) modeling, we further illustrate how modeling can be deployed to prospectively target distinct closely localized association networks in the dlPFC with meaningful spatial selectivity and E-field intensity and retrospectively assess network engagement. Critically, we demonstrate the feasibility and reliability of this approach in an independent cohort of participants (including those with Major Depressive Disorder) who underwent repeated sessions of TMS to distinct networks, with precise targeting derived from a low-burden single session of data. Lastly, our findings emphasize differences between selectivity and maximal intensity, highlighting the need to consider both metrics in precision TMS efforts.
Collapse
Affiliation(s)
- Wendy Sun
- Division of Medical Sciences, Harvard Medical School, Boston, MA 02115
- Dept. of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Anne Billot
- Division of Medical Sciences, Harvard Medical School, Boston, MA 02115
- Dept. of Neurology, Massachusetts General Hospital, Charlestown, MA 02129
| | - Jingnan Du
- Dept. of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Xiangyu Wei
- Dept. of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Rachel A Lemley
- Dept. of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Mohammad Daneshzand
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
| | - Randy L Buckner
- Division of Medical Sciences, Harvard Medical School, Boston, MA 02115
- Dept. of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138
- Dept. of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
| | - Mark C Eldaief
- Division of Medical Sciences, Harvard Medical School, Boston, MA 02115
- Dept. of Neurology, Massachusetts General Hospital, Charlestown, MA 02129
- Dept. of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
| |
Collapse
|
19
|
Alldritt S, Ramirez J, de Wael RV, Bethlehem R, Seidlitz J, Wang Z, Nenning K, Esper N, Smallwood J, Franco A, Byeon K, Alexander-Bloch A, Amaral D, Amiez C, Balezeau F, Baxter M, Becker G, Bennett J, Berkner O, Blezer E, Brambrink A, Brochier T, Butler B, Campos L, Canet-Soulas E, Chalet L, Chen A, Cléry J, Constantinidis C, Cook D, Dehaene S, Dorfschmidt L, Drzewiecki C, Erdman J, Everling S, Falchier A, Fleysher L, Fox A, Freiwald W, Froesel M, Froudist-Walsh S, Fudge J, Funck T, Gacoin M, Gale D, Gallivan J, Garin C, Griffiths T, Guedj C, Hadj-Bouziane F, Hamed S, Harel N, Hartig R, Hiba B, Howell B, Jarraya B, Jung B, Kalin N, Karpf J, Kastner S, Klink C, Kovacs-Balint Z, Kroenke C, Kuchan M, Kwok S, Lala K, Leopold D, Li G, Lindenfors P, Linn G, Mars R, Masiello K, Menon R, Messinger A, Meunier M, Mok K, Morrison J, Nacef J, Nagy J, Neudecker V, Neuringer M, Noonan M, Ortiz-Rios M, Perez-Zoghbi J, Petkov C, Pinsk M, Poirier C, Procyk E, Rajimehr R, Reader S, Rudko D, Rushworth M, Russ B, Sallet J, Sanchez M, Schmid M, Schwiedrzik C, Scott J, Sein J, Sharma K, et alAlldritt S, Ramirez J, de Wael RV, Bethlehem R, Seidlitz J, Wang Z, Nenning K, Esper N, Smallwood J, Franco A, Byeon K, Alexander-Bloch A, Amaral D, Amiez C, Balezeau F, Baxter M, Becker G, Bennett J, Berkner O, Blezer E, Brambrink A, Brochier T, Butler B, Campos L, Canet-Soulas E, Chalet L, Chen A, Cléry J, Constantinidis C, Cook D, Dehaene S, Dorfschmidt L, Drzewiecki C, Erdman J, Everling S, Falchier A, Fleysher L, Fox A, Freiwald W, Froesel M, Froudist-Walsh S, Fudge J, Funck T, Gacoin M, Gale D, Gallivan J, Garin C, Griffiths T, Guedj C, Hadj-Bouziane F, Hamed S, Harel N, Hartig R, Hiba B, Howell B, Jarraya B, Jung B, Kalin N, Karpf J, Kastner S, Klink C, Kovacs-Balint Z, Kroenke C, Kuchan M, Kwok S, Lala K, Leopold D, Li G, Lindenfors P, Linn G, Mars R, Masiello K, Menon R, Messinger A, Meunier M, Mok K, Morrison J, Nacef J, Nagy J, Neudecker V, Neuringer M, Noonan M, Ortiz-Rios M, Perez-Zoghbi J, Petkov C, Pinsk M, Poirier C, Procyk E, Rajimehr R, Reader S, Rudko D, Rushworth M, Russ B, Sallet J, Sanchez M, Schmid M, Schwiedrzik C, Scott J, Sein J, Sharma K, Shmuel A, Styner M, Sullivan E, Thiele A, Todorov O, Tsao D, Tusche A, Vlasova R, Wang Z, Wang L, Wang J, Weiss A, Wilson C, Yacoub E, Zarco W, Zhou Y, Zhu J, Margulies D, Fair D, Schroeder C, Milham M, Xu T. Brain Charts for the Rhesus Macaque Lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610193. [PMID: 39257737 PMCID: PMC11383706 DOI: 10.1101/2024.08.28.610193] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Recent efforts to chart human brain growth across the lifespan using large-scale MRI data have provided reference standards for human brain development. However, similar models for nonhuman primate (NHP) growth are lacking. The rhesus macaque, a widely used NHP in translational neuroscience due to its similarities in brain anatomy, phylogenetics, cognitive, and social behaviors to humans, serves as an ideal NHP model. This study aimed to create normative growth charts for brain structure across the macaque lifespan, enhancing our understanding of neurodevelopment and aging, and facilitating cross-species translational research. Leveraging data from the PRIMatE Data Exchange (PRIME-DE) and other sources, we aggregated 1,522 MRI scans from 1,024 rhesus macaques. We mapped non-linear developmental trajectories for global and regional brain structural changes in volume, cortical thickness, and surface area over the lifespan. Our findings provided normative charts with centile scores for macaque brain structures and revealed key developmental milestones from prenatal stages to aging, highlighting both species-specific and comparable brain maturation patterns between macaques and humans. The charts offer a valuable resource for future NHP studies, particularly those with small sample sizes. Furthermore, the interactive open resource (https://interspeciesmap.childmind.org) supports cross-species comparisons to advance translational neuroscience research.
Collapse
Affiliation(s)
- S. Alldritt
- Center for the Integrative Developmental Neuroscience, Child Mind Institute
| | | | | | - R. Bethlehem
- University of Cambridge, Department of Psychology
| | | | | | | | | | | | | | | | - A. Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia
- Department of Psychiatry, University of Pennsylvania
| | - D.G. Amaral
- Department of Psychiatry and Behavioral Sciences and The MIND Institute
- University of California Davis
| | - C. Amiez
- Stem Cell and Brain Research Institute
| | | | - M.G. Baxter
- Section on Comparative Medicine, Wake Forest University School of Medicine
| | | | - J. Bennett
- University of California Davis, Dept of Psychology
| | - O. Berkner
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | | | | | - B. Butler
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | | | | | - A. Chen
- East China Normal University
| | | | | | | | | | | | | | | | | | - A. Falchier
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | - A. Fox
- University of California Davis
| | | | - M. Froesel
- Institute for Cognitive Science Marc Jeannerod
| | | | | | | | - M. Gacoin
- Institute for Cognitive Science Marc Jeannerod
| | | | | | - C.M. Garin
- Department of Biomedical Engineering, Vanderbilt University
- Institut des Sciences Cognitives Marc Jeannerod (ISC-MJ)
| | | | - C. Guedj
- Lyon Neuroscience Research Center, University of Geneva
| | | | - S.B. Hamed
- Institute for Cognitive Science Marc Jeannerod
| | | | - R. Hartig
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | - B. Hiba
- Institute for Cognitive Science Marc Jeannerod
| | - B.R. Howell
- Emory National Primate Research Center, Emory University
- Fralin Biomedical Research Institute, Virginia Tech
- Carilion Department of Human Development and Family Science, Virginia Tech
| | | | | | | | - J. Karpf
- Oregon National Primate Research Center
| | - S. Kastner
- Princeton Neuroscience Institute & Department of Psychology, Princeton University
| | - C. Klink
- Netherlands Institute for Neuroscience
| | | | | | | | | | - K.N. Lala
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St. Andrews
| | | | - G. Li
- University of North Carolina at Chapel Hill
| | - P. Lindenfors
- Institute for Futures Studies, Stockholm, Sweden
- Centre for Cultural Evolution & Department of Zoology, Stockholm University, Sweden
| | - G. Linn
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | - K. Masiello
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | | | - M. Meunier
- Lyon Neuroscience Research Center, ImpAct Team
| | | | | | | | - J. Nagy
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| | | | | | | | - M. Ortiz-Rios
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate Research
| | | | | | - M. Pinsk
- Princeton Neuroscience Institute, Princeton University
| | | | - E. Procyk
- Stem Cell and Brain Research Institute
| | - R. Rajimehr
- McGovern Institute for Brain Research, Massachusetts Institute of Technology
| | - S.M. Reader
- Department of Biology, Utrecht University
- Department of Biology, McGill University
| | | | | | - B.E. Russ
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | - J. Sallet
- University of Oxford
- INSERM Stem Cell & Brain Research Institute
| | - M.M. Sanchez
- Emory National Primate Research Center; Emory University
- Department of Psychiatry & Behavioral Sciences, School of Medicine
| | | | - C.M. Schwiedrzik
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Cognitive Neurobiology
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen
- Perception and Plasticity Group, German Primate Center – Leibniz Institute for Primate Research
| | - J.A. Scott
- Department of Bioengineering, Santa Clara University
| | | | | | | | - M. Styner
- University of North Carolina at Chapel Hill
| | | | | | - O.S. Todorov
- Department of Biology and Helmholtz Institute, Utrecht University
| | - D. Tsao
- Department of Computation and Neural Systems, California Institute of Technology
| | | | - R. Vlasova
- University of North Carolina at Chapel Hill
| | | | - L. Wang
- East China Normal University
| | - J. Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | | | | | | | | | - Y. Zhou
- Krieger Mind/Brain Institute, Department of Neurosurgery, Johns Hopkins University
| | - J. Zhu
- Department of Biomedical Engineering, Vanderbilt University
| | | | | | - C. Schroeder
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
- Deptartment of Psychiatry, Neurology and Neurosurgery, Columbia University
| | - M. Milham
- Child Mind Institute
- Nathan Kline Institute
| | - T. Xu
- Center for the Integrative Developmental Neuroscience, Child Mind Institute
| |
Collapse
|
20
|
Tolchinsky A, Ellis GFR, Levin M, Kaňková Š, Burgdorf JS. Disgust as a primary emotional system and its clinical relevance. Front Psychol 2024; 15:1454774. [PMID: 39295749 PMCID: PMC11409098 DOI: 10.3389/fpsyg.2024.1454774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 09/21/2024] Open
Abstract
This paper advocates for considering disgust as a primary emotional system within Panksepp's Affective Neuroscience framework, which has the potential to improve the efficacy of psychotherapy with obsessive-compulsive disorder, hypochondriasis, and emetophobia. In 2007, Toronchuk and Ellis provided comprehensive evidence that DISGUST system, as they defined it, matched all Panksepp's criteria for a primary emotional system. A debate ensued and was not unambiguously resolved. This paper is an attempt to resume this discussion and supplement it with the data that accumulated since then on DISGUST's relationship with the immune system and the role of DISGUST dysregulation in psychopathology. We hope that renewed research interest in DISGUST has the potential to improve clinical efficacy with hard-to-treat conditions.
Collapse
Affiliation(s)
- Alexey Tolchinsky
- Professional Psychology Program, George Washington University, Washington, DC, United States
| | - George F R Ellis
- Department of Mathematics, University of Cape Town, Cape Town, South Africa
| | - Michael Levin
- Allen Discovery Center at Tufts University, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Šárka Kaňková
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czechia
| | - Jeffrey S Burgdorf
- Department of Biomedical Engineering, The Falk Center for Molecular Therapeutics, Northwestern University, Evanston, IL, United States
| |
Collapse
|
21
|
Maekawa T, Sasaoka T, Inui T, Fermin ASR, Yamawaki S. Heart rate and insula activity increase in response to music in individuals with high interoceptive sensitivity. PLoS One 2024; 19:e0299091. [PMID: 39172913 PMCID: PMC11340984 DOI: 10.1371/journal.pone.0299091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 02/05/2024] [Indexed: 08/24/2024] Open
Abstract
Interoception plays an important role in emotion processing. However, the neurobiological substrates of the relationship between visceral responses and emotional experiences remain unclear. In the present study, we measured interoceptive sensitivity using the heartbeat discrimination task and investigated the effects of individual differences in interoceptive sensitivity on changes in pulse rate and insula activity in response to subjective emotional intensity. We found a positive correlation between heart rate and valence level when listening to music only in the high interoceptive sensitivity group. The valence level was also positively correlated with music-elicited anterior insula activity. Furthermore, a region of interest analysis of insula subregions revealed significant activity in the left dorsal dysgranular insula for individuals with high interoceptive sensitivity relative to individuals with low interoceptive sensitivity while listening to the high-valence music pieces. Our results suggest that individuals with high interoceptive sensitivity use their physiological responses to assess their emotional level when listening to music. In addition, insula activity may reflect the use of interoceptive signals to estimate emotions.
Collapse
Affiliation(s)
- Toru Maekawa
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Minami-Ku, Hiroshima, Japan
| | - Takafumi Sasaoka
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Minami-Ku, Hiroshima, Japan
| | | | - Alan S. R. Fermin
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Minami-Ku, Hiroshima, Japan
| | - Shigeto Yamawaki
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Minami-Ku, Hiroshima, Japan
| |
Collapse
|
22
|
Stoll FM, Rudebeck PH. Decision-making shapes dynamic inter-areal communication within macaque ventral frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602229. [PMID: 39026728 PMCID: PMC11257438 DOI: 10.1101/2024.07.05.602229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Macaque ventral frontal cortex is comprised of a set of anatomically heterogeneous and highly interconnected areas. Collectively these areas have been implicated in many higher-level affective and cognitive processes, most notably the adaptive control of decision-making. Despite this appreciation, little is known about how subdivisions of ventral frontal cortex dynamically interact with each other during decision-making. Here we assessed functional interactions between areas by analyzing the activity of thousands of single neurons recorded from eight anatomically defined subdivisions of ventral frontal cortex in macaques performing a visually guided two-choice probabilistic task for different fruit juices. We found that the onset of stimuli and reward delivery globally increased communication between all parts of ventral frontal cortex. Inter-areal communication was, however, temporally specific, occurred through unique activity subspaces between areas, and depended on the encoding of decision variables. In particular, areas 12l and 12o showed the highest connectivity with other areas while being more likely to receive information from other parts of ventral frontal cortex than to send it. This pattern of functional connectivity suggests a role for these two areas in integrating diverse sources of information during decision processes. Taken together, our work reveals the specific patterns of interareal communication between anatomically connected subdivisions of ventral frontal cortex that are dynamically engaged during decision-making.
Collapse
Affiliation(s)
- Frederic M. Stoll
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Lead Contact
| | - Peter H. Rudebeck
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
23
|
Heni M. The insulin resistant brain: impact on whole-body metabolism and body fat distribution. Diabetologia 2024; 67:1181-1191. [PMID: 38363340 PMCID: PMC11153284 DOI: 10.1007/s00125-024-06104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/19/2023] [Indexed: 02/17/2024]
Abstract
Insulin exerts its actions not only on peripheral organs but is also transported into the brain where it performs distinct functions in various brain regions. This review highlights recent advancements in our understanding of insulin's actions within the brain, with a specific emphasis on investigations in humans. It summarises current knowledge on the transport of insulin into the brain. Subsequently, it showcases robust evidence demonstrating the existence and physiological consequences of brain insulin action, while also introducing the presence of brain insulin resistance in humans. This pathophysiological condition goes along with an impaired acute modulation of peripheral metabolism in response to brain insulin action, particularly in the postprandial state. Furthermore, brain insulin resistance has been associated with long-term adiposity and an unfavourable adipose tissue distribution, thus implicating it in the pathogenesis of subgroups of obesity and (pre)diabetes that are characterised by distinct patterns of body fat distribution. Encouragingly, emerging evidence suggests that brain insulin resistance could represent a treatable entity, thereby opening up novel therapeutic avenues to improve systemic metabolism and enhance brain functions, including cognition. The review closes with an outlook towards prospective research directions aimed at further elucidating the clinical implications of brain insulin resistance. It emphasises the critical need to establish feasible diagnostic measures and effective therapeutic interventions.
Collapse
Affiliation(s)
- Martin Heni
- Division of Endocrinology and Diabetology, Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany.
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital of Tübingen, Tübingen, Germany.
| |
Collapse
|
24
|
Feldman MJ, Bliss-Moreau E, Lindquist KA. The neurobiology of interoception and affect. Trends Cogn Sci 2024; 28:643-661. [PMID: 38395706 PMCID: PMC11222051 DOI: 10.1016/j.tics.2024.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Scholars have argued for centuries that affective states involve interoception, or representations of the state of the body. Yet, we lack a mechanistic understanding of how signals from the body are transduced, transmitted, compressed, and integrated by the brains of humans to produce affective states. We suggest that to understand how the body contributes to affect, we first need to understand information flow through the nervous system's interoceptive pathways. We outline such a model and discuss how unique anatomical and physiological aspects of interoceptive pathways may give rise to the qualities of affective experiences in general and valence and arousal in particular. We conclude by considering implications and future directions for research on interoception, affect, emotions, and human mental experiences.
Collapse
Affiliation(s)
- M J Feldman
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - E Bliss-Moreau
- Department of Psychology, University of California Davis, Davis, CA, USA; California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - K A Lindquist
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
25
|
Zinn PO, Habib A, Deng H, Gecici NN, Elidrissy H, Alami Idrissi Y, Amjadzadeh M, Sherry NS. Uncovering Interoceptive Human Insular Lobe Function through Intraoperative Cortical Stimulation-A Review. Brain Sci 2024; 14:646. [PMID: 39061387 PMCID: PMC11274540 DOI: 10.3390/brainsci14070646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The insular cortex, a critical hub in the brain's sensory, cognitive, and emotional networks, remains an intriguing subject of study. In this article, we discuss its intricate functional neuroanatomy, emphasizing its pivotal role in processing olfactory information. Through concise exploration, we delve into the insula's diverse connectivity and its involvement in sensory integration, particularly in olfaction. Stimulation studies in humans reveal compelling insights into the insula's contribution to the perception of smell, hinting at its broader implications for cognitive processing. Additionally, we explore an avenue of research in which studying olfactory processing via insular stimulation could unravel higher-level cognitive processes. This innovative approach could help give a fresh perspective on the interplay between sensory and cognitive domains, offering valuable insights into the neural mechanisms underlying cognition and emotion. In conclusion, future research efforts should emphasize a multidisciplinary approach, combining advanced imaging and surgical techniques to explore the intricate functions of the human insula. Moreover, awake craniotomies could offer a unique opportunity for real-time observation, shedding light on its neural circuitry and contributions to higher-order brain functions. Furthermore, olfaction's direct cortical projection enables precise exploration of insular function, promising insights into cognitive and emotional processes. This multifaceted approach will deepen our understanding of the insular cortex and its significance in human cognition and emotion.
Collapse
Affiliation(s)
- Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Hansen Deng
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
| | - Neslihan Nisa Gecici
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Hayat Elidrissy
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Yassine Alami Idrissi
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Mohammadreza Amjadzadeh
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Natalie Sandel Sherry
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- Department of Hematology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA
| |
Collapse
|
26
|
Livermore JJA, Skora LI, Adamatzky K, Garfinkel SN, Critchley HD, Campbell-Meiklejohn D. General and anxiety-linked influences of acute serotonin reuptake inhibition on neural responses associated with attended visceral sensation. Transl Psychiatry 2024; 14:241. [PMID: 38844469 PMCID: PMC11156930 DOI: 10.1038/s41398-024-02971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Ordinary sensations from inside the body are important causes and consequences of our affective states and behaviour, yet the roles of neurotransmitters in interoceptive processing have been unclear. With a within-subjects design, this experiment tested the impacts of acute increases of endogenous extracellular serotonin on the neural processing of attended internal sensations and the links of these effects to anxiety using a selective serotonin reuptake inhibitor (SSRI) (20 mg CITALOPRAM) and a PLACEBO. Twenty-one healthy volunteers (fourteen female, mean age 23.9) completed the Visceral Interoceptive Attention (VIA) task while undergoing functional magnetic resonance imaging (fMRI) with each treatment. The VIA task required focused attention on the heart, stomach, or visual sensation. The relative neural interoceptive responses to heart sensation [heart minus visual attention] (heart-IR) and stomach sensation [stomach minus visual attention] (stomach-IR) were compared between treatments. Visual attention subtraction controlled for the general effects of CITALOPRAM on sensory processing. CITALOPRAM was associated with lower interoceptive processing in viscerosensory (the stomach-IR of bilateral posterior insular cortex) and integrative/affective (the stomach-IR and heart-IR of bilateral amygdala) components of interoceptive neural pathways. In anterior insular cortex, CITALOPRAM reductions of heart-IR depended on anxiety levels, removing a previously known association between anxiety and the region's response to attended heart sensation observed with PLACEBO. Preliminary post hoc analysis indicated that CITALOPRAM effects on the stomach-IR of the amygdalae corresponded to acute anxiety changes. This direct evidence of general and anxiety-linked serotonergic influence on neural interoceptive processes advances our understanding of interoception, its regulation, and anxiety.
Collapse
Affiliation(s)
| | - Lina I Skora
- School of Psychology, University of Sussex, Brighton, UK
- Heinrich Heine Universität, Düsseldorf, Germany
- Sussex Centre for Consciousness Science, University of Sussex, Brighton, UK
| | | | - Sarah N Garfinkel
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Hugo D Critchley
- Sussex Centre for Consciousness Science, University of Sussex, Brighton, UK
- Brighton and Sussex Medical School, Brighton, UK
- Sussex Partnership NHS Foundation Trust, Brighton, UK
| | | |
Collapse
|
27
|
Adamic EM, Teed AR, Avery JA, de la Cruz F, Khalsa SS. Hemispheric divergence of interoceptive processing across psychiatric disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.08.570759. [PMID: 38105986 PMCID: PMC10723463 DOI: 10.1101/2023.12.08.570759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Interactions between top-down attention and bottom-up visceral inputs are assumed to produce conscious perceptions of interoceptive states, and while each process has been independently associated with aberrant interoceptive symptomatology in psychiatric disorders, the neural substrates of this interface are unknown. We conducted a preregistered functional neuroimaging study of 46 individuals with anxiety, depression, and/or eating disorders (ADE) and 46 propensity-matched healthy comparisons (HC), comparing their neural activity across two interoceptive tasks differentially recruiting top-down or bottom-up processing within the same scan session. During an interoceptive attention task, top-down attention was voluntarily directed towards cardiorespiratory or visual signals, whereas during an interoceptive perturbation task, intravenous infusions of isoproterenol (a peripherally-acting beta-adrenergic receptor agonist) were administered in a double-blinded and placebo-controlled fashion to drive bottom-up cardiorespiratory sensations. Across both tasks, neural activation converged upon the insular cortex, localizing within the granular and ventral dysgranular subregions bilaterally. However, contrasting hemispheric differences emerged, with the ADE group exhibiting (relative to HCs) an asymmetric pattern of overlap in the left insula, with increased or decreased proportions of co-activated voxels within the left or right dysgranular insula, respectively. The ADE group also showed less agranular anterior insula activation during periods of bodily uncertainty (i.e., when anticipating possible isoproterenol-induced changes that never arrived). Finally, post-task changes in insula functional connectivity were associated with anxiety and depression severity. These findings confirm the dysgranular mid-insula as a key cortical interface where attention and prediction meet real-time bodily inputs, especially during heightened awareness of interoceptive states. Further, the dysgranular mid-insula may indeed be a "locus of disruption" for psychiatric disorders.
Collapse
Affiliation(s)
- Emily M Adamic
- Laureate Institute for Brain Research, Tulsa, OK, USA, 74136
- Department of Biological Sciences, University of Tulsa, Tulsa, OK, USA, 74104
| | - Adam R Teed
- Laureate Institute for Brain Research, Tulsa, OK, USA, 74136
| | - Jason A Avery
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA, 20814
| | - Feliberto de la Cruz
- Laboratory for Autonomic Neuroscience, Imaging, and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Thuringia, Germany, 07743
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, USA, 74136
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA, 74119
| |
Collapse
|
28
|
Islam J, Rahman MT, Kc E, Park YS. Deciphering the functional role of insular cortex stratification in trigeminal neuropathic pain. J Headache Pain 2024; 25:76. [PMID: 38730344 PMCID: PMC11084050 DOI: 10.1186/s10194-024-01784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Trigeminal neuropathic pain (TNP) is a major concern in both dentistry and medicine. The progression from normal to chronic TNP through activation of the insular cortex (IC) is thought to involve several neuroplastic changes in multiple brain regions, resulting in distorted pain perception and associated comorbidities. While the functional changes in the insula are recognized contributors to TNP, the intricate mechanisms underlying the involvement of the insula in TNP processing remain subjects of ongoing investigation. Here, we have overviewed the most recent advancements regarding the functional role of IC in regulating TNP alongside insights into the IC's connectivity with other brain regions implicated in trigeminal pain pathways. In addition, the review examines diverse modulation strategies that target the different parts of the IC, thereby suggesting novel diagnostic and therapeutic management of chronic TNP in the future.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Md Taufiqur Rahman
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Elina Kc
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Korea.
| |
Collapse
|
29
|
Fermin ASR, Sasaoka T, Maekawa T, Ono K, Chan HL, Yamawaki S. Insula-cortico-subcortical networks predict interoceptive awareness and stress resilience. Asian J Psychiatr 2024; 95:103991. [PMID: 38484483 DOI: 10.1016/j.ajp.2024.103991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Interoception, the neural sensing of visceral signals, and interoceptive awareness (IA), the conscious perception of interoception, are crucial for life survival functions and mental health. Resilience, the capacity to overcome adversity, has been associated with reduced interoceptive disturbances. Here, we sought evidence for our Insula Modular Active Control (IMAC) model that suggest that the insula, a brain region specialized in the processing of interoceptive information, realizes IA and contributes to resilience and mental health via cortico-subcortical connections. METHODS 64 healthy participants (32 females; ages 18-34 years) answered questionnaires that assess IA and resilience. Mental health was evaluated with the Beck Depression Inventory II that assesses depressive mood. Participants also underwent a 15 minute resting-state functional resonance imaging session. Pearson correlations and mediation analyses were used to investigate the relationship between IA and resilience and their contributions to depressive mood. We then performed insula seed-based functional connectivity analyzes to identify insula networks involved in IA, resilience and depressive mood. RESULTS We first demonstrated that resilience mediates the relationship between IA and depressive mood. Second, shared and distinct intra-insula, insula-cortical and insula-subcortical networks were associated with IA, resilience and also predicted the degree of experienced depressive mood. Third, while resilience was associated with stronger insula-precuneus, insula-cerebellum and insula-prefrontal networks, IA was linked with stronger intra-insula, insula-striatum and insula-motor networks. CONCLUSIONS Our findings help understand the roles of insula-cortico-subcortical networks in IA and resilience. These results also highlight the potential use of insula networks as biomarkers for depression prediction.
Collapse
Affiliation(s)
- Alan S R Fermin
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan.
| | - Takafumi Sasaoka
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Toru Maekawa
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Kentaro Ono
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Hui-Ling Chan
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Shigeto Yamawaki
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
30
|
Charbonneau JA, Santistevan AC, Raven EP, Bennett JL, Russ BE, Bliss-Moreau E. Evolutionarily conserved neural responses to affective touch in monkeys transcend consciousness and change with age. Proc Natl Acad Sci U S A 2024; 121:e2322157121. [PMID: 38648473 PMCID: PMC11067024 DOI: 10.1073/pnas.2322157121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/05/2024] [Indexed: 04/25/2024] Open
Abstract
Affective touch-a slow, gentle, and pleasant form of touch-activates a different neural network than which is activated during discriminative touch in humans. Affective touch perception is enabled by specialized low-threshold mechanoreceptors in the skin with unmyelinated fibers called C tactile (CT) afferents. These CT afferents are conserved across mammalian species, including macaque monkeys. However, it is unknown whether the neural representation of affective touch is the same across species and whether affective touch's capacity to activate the hubs of the brain that compute socioaffective information requires conscious perception. Here, we used functional MRI to assess the preferential activation of neural hubs by slow (affective) vs. fast (discriminative) touch in anesthetized rhesus monkeys (Macaca mulatta). The insula, anterior cingulate cortex (ACC), amygdala, and secondary somatosensory cortex were all significantly more active during slow touch relative to fast touch, suggesting homologous activation of the interoceptive-allostatic network across primate species during affective touch. Further, we found that neural responses to affective vs. discriminative touch in the insula and ACC (the primary cortical hubs for interoceptive processing) changed significantly with age. Insula and ACC in younger animals differentiated between slow and fast touch, while activity was comparable between conditions for aged monkeys (equivalent to >70 y in humans). These results, together with prior studies establishing conserved peripheral nervous system mechanisms of affective touch transduction, suggest that neural responses to affective touch are evolutionarily conserved in monkeys, significantly impacted in old age, and do not necessitate conscious experience of touch.
Collapse
Affiliation(s)
- Joey A. Charbonneau
- Neuroscience Graduate Program, University of California, Davis, CA95616
- Neuroscience and Behavior Unit, California National Primate Research Center, University of California, Davis, CA95616
| | - Anthony C. Santistevan
- Neuroscience and Behavior Unit, California National Primate Research Center, University of California, Davis, CA95616
- Department of Psychology, University of California, Davis, CA95616
| | - Erika P. Raven
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY10016
| | - Jeffrey L. Bennett
- Neuroscience and Behavior Unit, California National Primate Research Center, University of California, Davis, CA95616
- Department of Psychology, University of California, Davis, CA95616
- Department of Psychiatry and Behavioral Sciences, University of California, Davis School of Medicine, Sacramento, CA95817
- The Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Sacramento, CA95817
| | - Brian E. Russ
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY10962
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Psychiatry, New York University Langone, New York, NY10016
| | - Eliza Bliss-Moreau
- Neuroscience and Behavior Unit, California National Primate Research Center, University of California, Davis, CA95616
- Department of Psychology, University of California, Davis, CA95616
| |
Collapse
|
31
|
Cao HL, Meng YJ, Zhang YM, Deng W, Guo WJ, Li ML, Li T. The volume of gray matter mediates the relationship between glucolipid metabolism and neurocognition in first-episode, drug-naïve patients with schizophrenia. J Psychiatr Res 2024; 172:402-410. [PMID: 38458112 DOI: 10.1016/j.jpsychires.2024.02.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/17/2024] [Accepted: 02/24/2024] [Indexed: 03/10/2024]
Abstract
We aimed to examine the hypotheses that glucolipid metabolism is linked to neurocognition and gray matter volume (GMV) and that GMV mediates the association of glucolipid metabolism with neurocognition in first-episode, drug-naïve (FEDN) patients with schizophrenia. Parameters of glucolipid metabolism, neurocognition, and magnetic resonance imaging were assessed in 63 patients and 31 controls. Compared to controls, patients exhibited higher levels of fasting glucose, triglyceride, and insulin resistance index, lower levels of cholesterol and high-density lipoprotein cholesterol, poorer neurocognitive functions, and decreased GMV in the bilateral insula, left middle occipital gyrus, and left postcentral gyrus. In the patient group, triglyceride levels and the insulin resistance index exhibited a negative correlation with Rapid Visual Information Processing (RVP) mean latency, a measure of attention within the Cambridge Neurocognitive Test Automated Battery (CANTAB), while showing a positive association with GMV in the right insula. The mediation model revealed that triglyceride and insulin resistance index had a significant positive indirect (mediated) influence on RVP mean latency through GMV in the right insula. Glucolipid metabolism was linked to both neurocognitive functions and GMV in FEDN patients with schizophrenia, with the effect pattern differing from that observed in chronic schizophrenia or schizophrenia comorbid with metabolic syndrome. Moreover, glucolipid metabolism might indirectly contribute to neurocognitive deficits through the mediating role of GMV in these patients.
Collapse
Affiliation(s)
- Hai-Ling Cao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya-Jing Meng
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya-Min Zhang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wan-Jun Guo
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming-Li Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
32
|
Yang D, Xu J, Xu K, Xu P. Skeletal interoception in osteoarthritis. Bone Res 2024; 12:22. [PMID: 38561376 PMCID: PMC10985098 DOI: 10.1038/s41413-024-00328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/02/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
The interoception maintains proper physiological conditions and metabolic homeostasis by releasing regulatory signals after perceving changes in the internal state of the organism. Among its various forms, skeletal interoception specifically regulates the metabolic homeostasis of bones. Osteoarthritis (OA) is a complex joint disorder involving cartilage, subchondral bone, and synovium. The subchondral bone undergoes continuous remodeling to adapt to dynamic joint loads. Recent findings highlight that skeletal interoception mediated by aberrant mechanical loads contributes to pathological remodeling of the subchondral bone, resulting in subchondral bone sclerosis in OA. The skeletal interoception is also a potential mechanism for chronic synovial inflammation in OA. In this review, we offer a general overview of interoception, specifically skeletal interoception, subchondral bone microenviroment and the aberrant subchondral remedeling. We also discuss the role of skeletal interoception in abnormal subchondral bone remodeling and synovial inflammation in OA, as well as the potential prospects and challenges in exploring novel OA therapies that target skeletal interoception.
Collapse
Affiliation(s)
- Dinglong Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jiawen Xu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
33
|
Rawish T, Wendiggensen P, Friedrich J, Frings C, Münchau A, Beste C. Neurophysiological processes reflecting the effects of the immediate past during the dynamic management of actions. Neuroimage 2024; 288:120526. [PMID: 38280691 DOI: 10.1016/j.neuroimage.2024.120526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 01/29/2024] Open
Abstract
In recent years, there has been many efforts to establish a comprehensive theoretical framework explaining the working mechanisms involved in perception-action integration. This framework stresses the importance of the immediate past on mechanisms supporting perception-action integration. The present study investigates the neurophysiological principles of dynamic perception-action bindings, particularly considering the influence of the immediate history on action control mechanisms. For this purpose, we conducted an established stimulus-response binding paradigm during EEG recording. The SR-task measures stimulus-response binding in terms of accuracy and reaction time differences depending on the degree of feature overlap between conditions. Alpha, beta and theta band activity in distinct time domains as well as associated brain regions were investigated applying time-frequency analyses, a beamforming approach as well as correlation analyses. We demonstrate, for the first time, interdependencies of neuronal processes relying on the immediate past. The reconfiguration of an action seems to overwrite immediately preceding processes. The analyses revealed modulations of theta (TBA), alpha (ABA) and beta band activity (BBA) in connection with fronto-temporal structures supporting the theoretical assumptions of the considered conceptual framework. The close interplay of attentional modulation by gating irrelevant information (ABA) and binding and retrieval processes (TBA) is reflected by the correlation of ABA in all pre-probe-intervals with post-probe TBA. Likewise, the role of BBA in maintaining the event file until retrieval is corroborated by BBA preceding the TBA-associated retrieval of perception-action codes. Following action execution, TBA shifted towards visual association cortices probably reflecting preparation for upcoming information, while ABA and BBA continue to reflect processes of attentional control and information selection for goal-directed behavior. The present work provides the first empirical support for concepts about the neurophysiological mechanisms of dynamic management of perception and action.
Collapse
Affiliation(s)
- Tina Rawish
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | | | - Julia Friedrich
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Christian Frings
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Christian Beste
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany; Department of Psychology, Shandong Normal University, Jinan, PR China.
| |
Collapse
|
34
|
Martino M, Magioncalda P. A three-dimensional model of neural activity and phenomenal-behavioral patterns. Mol Psychiatry 2024; 29:639-652. [PMID: 38114633 DOI: 10.1038/s41380-023-02356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
How phenomenal experience and behavior are related to neural activity in physiology and psychopathology represents a fundamental question in neuroscience and psychiatry. The phenomenal-behavior patterns may be deconstructed into basic dimensions, i.e., psychomotricity, affectivity, and thought, which might have distinct neural correlates. This work provides a data overview on the relationship of these phenomenal-behavioral dimensions with brain activity across physiological and pathological conditions (including major depressive disorder, bipolar disorder, schizophrenia, attention-deficit/hyperactivity disorder, anxiety disorders, addictive disorders, Parkinson's disease, Tourette syndrome, Alzheimer's disease, and frontotemporal dementia). Accordingly, we propose a three-dimensional model of neural activity and phenomenal-behavioral patterns. In this model, neural activity is organized into distinct units in accordance with connectivity patterns and related input/output processing, manifesting in the different phenomenal-behavioral dimensions. (1) An external neural unit, which involves the sensorimotor circuit/brain's sensorimotor network and is connected with the external environment, processes external inputs/outputs, manifesting in the psychomotor dimension (processing of exteroception/somatomotor activity). External unit hyperactivity manifests in psychomotor excitation (hyperactivity/hyperkinesia/catatonia), while external unit hypoactivity manifests in psychomotor inhibition (retardation/hypokinesia/catatonia). (2) An internal neural unit, which involves the interoceptive-autonomic circuit/brain's salience network and is connected with the internal/body environment, processes internal inputs/outputs, manifesting in the affective dimension (processing of interoception/autonomic activity). Internal unit hyperactivity manifests in affective excitation (anxiety/dysphoria-euphoria/panic), while internal unit hypoactivity manifests in affective inhibition (anhedonia/apathy/depersonalization). (3) An associative neural unit, which involves the brain's associative areas/default-mode network and is connected with the external/internal units (but not with the environment), processes associative inputs/outputs, manifesting in the thought dimension (processing of ideas). Associative unit hyperactivity manifests in thought excitation (mind-wandering/repetitive thinking/psychosis), while associative unit hypoactivity manifests in thought inhibition (inattention/cognitive deficit/consciousness loss). Finally, these neural units interplay and dynamically combine into various neural states, resulting in the complex phenomenal experience and behavior across physiology and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Matteo Martino
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| | - Paola Magioncalda
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
- Department of Medical Research, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| |
Collapse
|
35
|
Nakamura NH, Oku Y, Fukunaga M. "Brain-breath" interactions: respiration-timing-dependent impact on functional brain networks and beyond. Rev Neurosci 2024; 35:165-182. [PMID: 37651646 DOI: 10.1515/revneuro-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/06/2023] [Indexed: 09/02/2023]
Abstract
Breathing is a natural daily action that one cannot do without, and it sensitively and intensely changes under various situations. What if this essential act of breathing can impact our overall well-being? Recent studies have demonstrated that breathing oscillations couple with higher brain functions, i.e., perception, motor actions, and cognition. Moreover, the timing of breathing, a phase transition from exhalation to inhalation, modulates specific cortical activity and accuracy in cognitive tasks. To determine possible respiratory roles in attentional and memory processes and functional neural networks, we discussed how breathing interacts with the brain that are measured by electrophysiology and functional neuroimaging: (i) respiration-dependent modulation of mental health and cognition; (ii) respiratory rhythm generation and respiratory pontomedullary networks in the brainstem; (iii) respiration-dependent effects on specific brainstem regions and functional neural networks (e.g., glutamatergic PreBötzinger complex neurons, GABAergic parafacial neurons, adrenergic C1 neurons, parabrachial nucleus, locus coeruleus, temporoparietal junction, default-mode network, ventral attention network, and cingulo-opercular salience network); and (iv) a potential application of breathing manipulation in mental health care. These outlines and considerations of "brain-breath" interactions lead to a better understanding of the interoceptive and cognitive mechanisms that underlie brain-body interactions in health conditions and in stress-related and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nozomu H Nakamura
- Division of Physiome, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Yoshitaka Oku
- Division of Physiome, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Masaki Fukunaga
- Section of Brain Function Information, National Institute of Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
36
|
Cormie MA, Moayedi M. Selective noninvasive modulation of insular subregions supports differential functions in the pain experience. Pain 2024:00006396-990000000-00506. [PMID: 38314822 DOI: 10.1097/j.pain.0000000000003172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 02/07/2024]
Affiliation(s)
- Matthew Alexander Cormie
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Massieh Moayedi
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
- Department of Dentistry, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
37
|
Zhang X, Xie M, Li W, Xu Z, Wang Z, Jiang W, Wu Y, Liu N. Abnormalities of structural covariance of insular subregions in drug-naïve OCD patients. Cereb Cortex 2024; 34:bhad469. [PMID: 38102948 DOI: 10.1093/cercor/bhad469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
The insula plays a significant role in the neural mechanisms of obsessive-compulsive disorder. Previous studies have identified functional and structural abnormalities in insula in obsessive-compulsive disorder patients. The predictive coding model in the context of interoception can explain the psychological and neuropathological manifestations observed in obsessive-compulsive disorder. The model is based on the degree of laminar differentiation of cerebral cortex. The interindividual differences in a local measure of brain structure often covary with interindividual differences in other brain regions. We investigated the anatomical network involving the insula in a drug-naïve obsessive-compulsive disorder sample. We recruited 58 obsessive-compulsive disorder patients and 84 matched health controls. The cortical thickness covariance maps between groups were compared at each vertex. We also evaluated the modulation of Yale-Brown Obsessive-Compulsive Scale scores and obsessive-compulsive disorder duration on thickness covariance. Our findings indicated that the thickness covariance seeded from granular and dysgranular insula are different compared with controls. The duration and severity of obsessive-compulsive disorder can modulate the thickness covariance of granular and dysgranular insula with posterior cingulate cortex and rostral anterior cingulate cortex. Our results revealed aberrant insular structural characteristics and cortical thickness covariance in obsessive-compulsive disorder patients, contributing to a better understanding of the involvement of insula in the pathological mechanisms underlying obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Xuedi Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Minyao Xie
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wangyue Li
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhihan Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhongqi Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wenjing Jiang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yu Wu
- School of Psychology, Nanjing Normal University, Nanjing 210023, China
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
38
|
Sypré L, Sharma S, Mantini D, Nelissen K. Intrinsic functional clustering of the macaque insular cortex. Front Integr Neurosci 2024; 17:1272529. [PMID: 38250745 PMCID: PMC10797002 DOI: 10.3389/fnint.2023.1272529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
The functional organization of the primate insula has been studied using a variety of techniques focussing on regional differences in either architecture, connectivity, or function. These complementary methods offered insights into the complex organization of the insula and proposed distinct parcellation schemes at varying levels of detail and complexity. The advent of imaging techniques that allow non-invasive assessment of structural and functional connectivity, has popularized data-driven connectivity-based parcellation methods to investigate the organization of the human insula. Yet, it remains unclear if the subdivisions derived from these data-driven clustering methods reflect meaningful descriptions of the functional specialization of the insula. In this study, we employed hierarchical clustering to examine the cluster parcellations of the macaque insula. As our aim was exploratory, we examined parcellations consisting of two up to ten clusters. Three different cluster validation methods (fingerprinting, silhouette, elbow) converged on a four-cluster solution as the most optimal representation of our data. Examining functional response properties of these clusters, in addition to their brain-wide functional connectivity suggested a functional specialization related to processing gustatory, somato-motor, vestibular and social visual cues. However, a more detailed functional differentiation aligning with previous functional investigations of insula subfields became evident at higher cluster numbers beyond the proposed optimal four clusters. Overall, our findings demonstrate that resting-state-based hierarchical clustering can provide a meaningful description of the insula's functional organization at some level of detail. Nonetheless, cluster parcellations derived from this method are best combined with data obtained through other modalities, to provide a more comprehensive and detailed account of the insula's complex functional organization.
Collapse
Affiliation(s)
- Lotte Sypré
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | - Dante Mantini
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Movement Control & Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Koen Nelissen
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Bufacchi RJ, Battaglia-Mayer A, Iannetti GD, Caminiti R. Cortico-spinal modularity in the parieto-frontal system: A new perspective on action control. Prog Neurobiol 2023; 231:102537. [PMID: 37832714 DOI: 10.1016/j.pneurobio.2023.102537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/22/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Classical neurophysiology suggests that the motor cortex (MI) has a unique role in action control. In contrast, this review presents evidence for multiple parieto-frontal spinal command modules that can bypass MI. Five observations support this modular perspective: (i) the statistics of cortical connectivity demonstrate functionally-related clusters of cortical areas, defining functional modules in the premotor, cingulate, and parietal cortices; (ii) different corticospinal pathways originate from the above areas, each with a distinct range of conduction velocities; (iii) the activation time of each module varies depending on task, and different modules can be activated simultaneously; (iv) a modular architecture with direct motor output is faster and less metabolically expensive than an architecture that relies on MI, given the slow connections between MI and other cortical areas; (v) lesions of the areas composing parieto-frontal modules have different effects from lesions of MI. Here we provide examples of six cortico-spinal modules and functions they subserve: module 1) arm reaching, tool use and object construction; module 2) spatial navigation and locomotion; module 3) grasping and observation of hand and mouth actions; module 4) action initiation, motor sequences, time encoding; module 5) conditional motor association and learning, action plan switching and action inhibition; module 6) planning defensive actions. These modules can serve as a library of tools to be recombined when faced with novel tasks, and MI might serve as a recombinatory hub. In conclusion, the availability of locally-stored information and multiple outflow paths supports the physiological plausibility of the proposed modular perspective.
Collapse
Affiliation(s)
- R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS), Shanghai, China
| | - A Battaglia-Mayer
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Italy
| | - G D Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | - R Caminiti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
40
|
Krockenberger MS, Saleh-Mattesich TO, Evrard HC. Cytoarchitectonic and connection stripes in the dysgranular insular cortex in the macaque monkey. J Comp Neurol 2023; 531:2019-2043. [PMID: 38105579 DOI: 10.1002/cne.25571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
The insula has been classically divided into broad granular, dysgranular, and agranular architectonic sectors. We previously proposed a novel partition, dividing each sector into four to seven sharply delimited architectonic areas, with the dysgranular areas being possibly further subdivided into subtle horizontal partitions or "stripes." In architectonics, discrete subparcellations are prone to subjective variability and need being supported with additional neuroanatomical methods. Here, using a secondary analysis of indirect connectional data in the rhesus macaque monkey, we examined the spatial relationship between the dysgranular architectonic stripes and tract-tracing labeling patterns produced in the insula with injections of neuronal tracers in other cortical regions. The injections consistently produced sharply delimited patches of anterograde and/or retrograde labeling, which formed stripes across consecutive coronal sections of the insula. While the overall pattern of labeling on individual coronal sections varied with the injection site, the boundaries of the patches consistently coincided with architectonic boundaries on an adjacent cyto- (Nissl) and/or myelo- (Gallyas) architectonic section. This overlap supports the existence of a fine dysgranular stripe-like partition of the primate insula, with possibly major implications for interoceptive processing in primates including humans. The modular organization of the insula could underlie a serial stream of integration from a dorsal primary interoceptive cortex toward progressively more ventral egocentric "self-agency" and allocentric "social" dysgranular processing units.
Collapse
Affiliation(s)
- Matthias S Krockenberger
- Werner Reichardt Center for Integrative Neuroscience, Karl Eberhard University of Tübingen, Tübingen, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Tatianna O Saleh-Mattesich
- Werner Reichardt Center for Integrative Neuroscience, Karl Eberhard University of Tübingen, Tübingen, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Henry C Evrard
- Werner Reichardt Center for Integrative Neuroscience, Karl Eberhard University of Tübingen, Tübingen, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
41
|
Rolls A. Immunoception: the insular cortex perspective. Cell Mol Immunol 2023; 20:1270-1276. [PMID: 37386172 PMCID: PMC10616063 DOI: 10.1038/s41423-023-01051-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
To define the systemic neuroimmune interactions in health and disease, we recently suggested immunoception as a term that refers to the existence of bidirectional functional loops between the brain and the immune system. This concept suggests that the brain constantly monitors changes in immune activity and, in turn, can regulate the immune system to generate a physiologically synchronized response. Therefore, the brain has to represent information regarding the state of the immune system, which can occure in multiple ways. One such representation is an immunengram, a trace that is partially stored by neurons and partially by the local tissue. This review will discuss our current understanding of immunoception and immunengrams, focusing on their manifestation in a specific brain region, the insular cortex (IC).
Collapse
Affiliation(s)
- Asya Rolls
- Department of Immunology, Department of Neuroscience, Technion, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
42
|
Zarifkar P, Shaff NA, Nersesjan V, Mayer AR, Ryman S, Kondziella D. Lesion network mapping of eye-opening apraxia. Brain Commun 2023; 5:fcad288. [PMID: 37953849 PMCID: PMC10636562 DOI: 10.1093/braincomms/fcad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/01/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Apraxia of eyelid opening (or eye-opening apraxia) is characterized by the inability to voluntarily open the eyes because of impaired supranuclear control. Here, we examined the neural substrates implicated in eye-opening apraxia through lesion network mapping. We analysed brain lesions from 27 eye-opening apraxia stroke patients and compared them with lesions from 20 aphasia and 45 hemiballismus patients serving as controls. Lesions were mapped onto a standard brain atlas using resting-state functional MRI data derived from 966 healthy adults in the Harvard Dataverse. Our analyses revealed that most eye-opening apraxia-associated lesions occurred in the right hemisphere, with subcortical or mixed cortical/subcortical involvement. Despite their anatomical heterogeneity, these lesions functionally converged on the bilateral dorsal anterior and posterior insula. The functional connectivity map for eye-opening apraxia was distinct from those for aphasia and hemiballismus. Hemiballismus lesions predominantly mapped onto the putamen, particularly the posterolateral region, while aphasia lesions were localized to language-processing regions, primarily within the frontal operculum. In summary, in patients with eye-opening apraxia, disruptions in the dorsal anterior and posterior insula may compromise their capacity to initiate the appropriate eyelid-opening response to relevant interoceptive and exteroceptive stimuli, implicating a complex interplay between salience detection and motor execution.
Collapse
Affiliation(s)
- Pardis Zarifkar
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | | | - Vardan Nersesjan
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Copenhagen Research Center for Mental Health—CORE, Copenhagen University Hospital, 2900 Copenhagen, Denmark
| | | | | | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 1172 Copenhagen, Denmark
| |
Collapse
|
43
|
Sypré L, Durand JB, Nelissen K. Functional characterization of macaque insula using task-based and resting-state fMRI. Neuroimage 2023; 276:120217. [PMID: 37271304 DOI: 10.1016/j.neuroimage.2023.120217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/13/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023] Open
Abstract
Neurophysiological investigations over the past decades have demonstrated the involvement of the primate insula in a wide array of sensory, cognitive, affective and regulatory functions, yet the complex functional organization of the insula remains unclear. Here we examined to what extent non-invasive task-based and resting-state fMRI provides support for functional specialization and integration of sensory and motor information in the macaque insula. Task-based fMRI experiments suggested a functional specialization related to processing of ingestive/taste/distaste information in anterior insula, grasping-related sensorimotor responses in middle insula and vestibular information in posterior insula. Visual stimuli depicting social information involving conspecific`s lip-smacking gestures yielded responses in middle and anterior portions of dorsal and ventral insula, overlapping partially with the sensorimotor and ingestive/taste/distaste fields. Functional specialization/integration of the insula was further corroborated by seed-based whole brain resting-state analyses, showing distinct functional connectivity gradients across the anterio-posterior extent of both dorsal and ventral insula. Posterior insula showed functional correlations in particular with vestibular/optic flow network regions, mid-dorsal insula with vestibular/optic flow as well as parieto-frontal regions of the sensorimotor grasping network, mid-ventral insula with social/affiliative network regions in temporal, cingulate and prefrontal cortices and anterior insula with taste and mouth motor networks including premotor and frontal opercular regions.
Collapse
Affiliation(s)
- Lotte Sypré
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | | | - Koen Nelissen
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
44
|
Fermin AS, Sasaoka T, Maekawa T, Chan HL, Machizawa MG, Okada G, Okamoto Y, Yamawaki S. Insula neuroanatomical networks predict interoceptive awareness. Heliyon 2023; 9:e18307. [PMID: 37520943 PMCID: PMC10374932 DOI: 10.1016/j.heliyon.2023.e18307] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Interoceptive awareness (IA), the subjective and conscious perception of visceral and physiological signals from the body, has been associated with functions of cortical and subcortical neural systems involved in emotion control, mood and anxiety disorders. We recently hypothesized that IA and its contributions to mental health are realized by a brain interoception network (BIN) linking brain regions that receive ascending interoceptive information from the brainstem, such as the amygdala, insula and anterior cingulate cortex (ACC). However, little evidence exists to support this hypothesis. In order to test this hypothesis, we used a publicly available dataset that contained both anatomical neuroimaging data and an objective measure of IA assessed with a heartbeat detection task. Whole-brain Voxel-Based Morphometry (VBM) was used to investigate the association of IA with gray matter volume (GMV) and the structural covariance network (SCN) of the amygdala, insula and ACC. The relationship between IA and mental health was investigated with questionnaires that assessed depressive symptoms and anxiety. We found a positive correlation between IA and state anxiety, but not with depressive symptoms. In the VBM analysis, only the GMV of the left anterior insula showed a positive association with IA. A similar association was observed between the parcellated GMV of the left dorsal agranular insula, located in the anterior insula, and IA. The SCN linking the right dorsal agranular insula with the left dorsal agranular insula and left hyper-granular insula were positively correlated with IA. No association between GMV or SCN and depressive symptoms or anxiety were observed. These findings revealed a previously unknown association between IA, insula volume and intra-insula SCNs. These results may support development of non-invasive neuroimaging interventions, e.g., neurofeedback, seeking to improve IA and to prevent development of mental health problems, such anxiety disorders.
Collapse
Affiliation(s)
- Alan S.R. Fermin
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, 734-8553, Hiroshima city, Hiroshima, Japan
| | - Takafumi Sasaoka
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, 734-8553, Hiroshima city, Hiroshima, Japan
| | - Toru Maekawa
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, 734-8553, Hiroshima city, Hiroshima, Japan
| | - Hui-Ling Chan
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, 734-8553, Hiroshima city, Hiroshima, Japan
| | - Maro G. Machizawa
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, 734-8553, Hiroshima city, Hiroshima, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Hiroshima University, 734-8553, Hiroshima city, Hiroshima, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Hiroshima University, 734-8553, Hiroshima city, Hiroshima, Japan
| | - Shigeto Yamawaki
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, 734-8553, Hiroshima city, Hiroshima, Japan
| |
Collapse
|
45
|
Kumar VJ, Scheffler K, Grodd W. The structural connectivity mapping of the intralaminar thalamic nuclei. Sci Rep 2023; 13:11938. [PMID: 37488187 PMCID: PMC10366221 DOI: 10.1038/s41598-023-38967-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
The intralaminar nuclei of the thalamus play a pivotal role in awareness, conscious experience, arousal, sleep, vigilance, as well as in cognitive, sensory, and sexual processing. Nonetheless, in humans, little is known about the direct involvement of these nuclei in such multifaceted functions and their structural connections in the brain. Thus, examining the versatility of structural connectivity of the intralaminar nuclei with the rest of the brain seems reasonable. Herein, we attempt to show the direct structural connectivity of the intralaminar nuclei to diencephalic, mesencephalic, and cortical areas using probabilistic tracking of the diffusion data from the human connectome project. The intralaminar nuclei fiber distributions span a wide range of subcortical and cortical areas. Moreover, the central medial and parafascicular nucleus reveal similar connectivity to the temporal, visual, and frontal cortices with only slight variability. The central lateral nucleus displays a refined projection to the superior colliculus and fornix. The centromedian nucleus seems to be an essential component of the subcortical somatosensory system, as it mainly displays connectivity via the medial and superior cerebellar peduncle to the brainstem and the cerebellar lobules. The subparafascicular nucleus projects to the somatosensory processing areas. It is interesting to note that all intralaminar nuclei have connections to the brainstem. In brief, the structural connectivity of the intralaminar nuclei aligns with the structural core of various functional demands for arousal, emotion, cognition, sensory, vision, and motor processing. This study sheds light on our understanding of the structural connectivity of the intralaminar nuclei with cortical and subcortical structures, which is of great interest to a broader audience in clinical and neuroscience research.
Collapse
Affiliation(s)
| | - Klaus Scheffler
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University Clinic Tübingen, Tübingen, Germany
| | - Wolfgang Grodd
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
46
|
Kumari V, Chauhan S, Vakani K, Antonova E, Bryant J. Camera-based visual feedback learning aid for recovering sense of smell and taste in COVID-19 survivors: a proof-of-concept study. Front Psychol 2023; 14:1213254. [PMID: 37502751 PMCID: PMC10371255 DOI: 10.3389/fpsyg.2023.1213254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction A significant proportion of people report persistent COVID-19-related anosmia, hyposmia or parosmia, often accompanied with ageusia, hypogeusia or dysgeusia. Here, we present a proof-of-concept study that assessed the feasibility and acceptability of a new Camera-Based Visual Feedback Learning Aid (CVFLA) and explored its potential to restore or improve persistent COVID-19-related smell and/or taste impairment. Methods Fifteen adult participants with persistent smell and/or taste impairment were randomly allocated to 7-, 14-, or 21-days baseline of symptom monitoring before receiving the intervention in up to 10 sessions (length and frequency determined by participant's preference and progress) using a specialised CVFLA apparatus (patent no. 10186160). Smell and taste were assessed pre- and post-intervention subjectively, and also objectively using the ODOFIN Taste Strips and Sniffin Sticks. Participant feedback about their experience of receiving CVFLA was obtained via a semi-structured interview conducted by someone not involved in delivering the intervention. Results The intervention was extremely well received, with no dropouts related to the intervention. There was also a significant improvement in smell and taste from pre- to post-CVFLA intervention (mean number of sessions = 7.46, SD = 2.55; total duration = 389.96 min, SD = 150.93) both in subjective and objective measures. All participants, except one, reported experiencing some improvement from the 2nd or 3rd session. Discussion This new CVFLA intervention shows promise in improving COVID-19 related impairment in smell and taste with a very high level of acceptability. Further studies with larger samples are required to confirm its potential in restoring, improving or correcting smell and/or taste impairment in relevant clinical and non-clinical groups.
Collapse
Affiliation(s)
- Veena Kumari
- Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom
- Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom
| | - Satyam Chauhan
- Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom
- Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom
| | - Krupa Vakani
- Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom
- Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom
| | - Elena Antonova
- Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom
- Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom
| | | |
Collapse
|
47
|
Mallela AN, Deng H, Gholipour A, Warfield SK, Goldschmidt E. Heterogeneous growth of the insula shapes the human brain. Proc Natl Acad Sci U S A 2023; 120:e2220200120. [PMID: 37279278 PMCID: PMC10268209 DOI: 10.1073/pnas.2220200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/13/2023] [Indexed: 06/08/2023] Open
Abstract
The human cerebrum consists of a precise and stereotyped arrangement of lobes, primary gyri, and connectivity that underlies human cognition [P. Rakic, Nat. Rev. Neurosci. 10, 724-735 (2009)]. The development of this arrangement is less clear. Current models explain individual primary gyrification but largely do not account for the global configuration of the cerebral lobes [T. Tallinen, J. Y. Chung, J. S. Biggins, L. Mahadevan, Proc. Natl. Acad. Sci. U.S.A. 111, 12667-12672 (2014) and D. C. Van Essen, Nature 385, 313-318 (1997)]. The insula, buried in the depths of the Sylvian fissure, is unique in terms of gyral anatomy and size. Here, we quantitatively show that the insula has unique morphology and location in the cerebrum and that these key differences emerge during fetal development. Finally, we identify quantitative differences in developmental migration patterns to the insula that may underlie these differences. We calculated morphologic data in the insula and other lobes in adults (N = 107) and in an in utero fetal brain atlas (N = 81 healthy fetuses). In utero, the insula grows an order of magnitude slower than the other lobes and demonstrates shallower sulci, less curvature, and less surface complexity both in adults and progressively throughout fetal development. Spherical projection analysis demonstrates that the lenticular nuclei obstruct 60 to 70% of radial pathways from the ventricular zone (VZ) to the insula, forcing a curved migration to the insula in contrast to a direct radial pathway. Using fetal diffusion tractography, we identify radial glial fascicles that originate from the VZ and curve around the lenticular nuclei to form the insula. These results confirm existing models of radial migration to the cortex and illustrate findings that suggest differential insular and cerebral development, laying the groundwork to understand cerebral malformations and insular function and pathologies.
Collapse
Affiliation(s)
- Arka N. Mallela
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA15213
| | - Hansen Deng
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA15213
| | - Ali Gholipour
- Department of Radiology, Harvard Medical School, Boston, MA02115
- Department of Radiology, Boston Children’s Hospital, Boston, MA02115
| | - Simon K. Warfield
- Department of Radiology, Harvard Medical School, Boston, MA02115
- Department of Radiology, Boston Children’s Hospital, Boston, MA02115
| | - Ezequiel Goldschmidt
- Department of Radiology, Harvard Medical School, Boston, MA02115
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA94143
| |
Collapse
|
48
|
Areeudomwong P, Duangyod T, Sutalangka C, Buttagat V. Integrated Effects of Thai Essential Oil and Balance Exercise on Parameters associated with Falls in Older Adults at Risk of Falling: A Randomized Controlled Study. Ann Geriatr Med Res 2023; 27:141-150. [PMID: 37403317 DOI: 10.4235/agmr.23.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Reducing the risk of falling by improving balance and leg strength may be a preventive strategy. This study evaluated the integrated effects of Thai essential oil and balance exercises on parameters associated with Falls in community-dwelling older adults at risk of falling. METHODS Fifty-six participants were randomly allocated to either the intervention group (IG), which performed balance exercises while smelling Thai essential oil scents of Zanthoxylum limonella (Dennst.) Alston, or the control group (CG), which performed balance exercises while receiving a control patch. Balance exercises were practiced for 12, 30-minute sessions over 4 weeks. Static and dynamic balance with eyes open and eyes closed (EC), leg muscle strength, agility, and fear of falling were assessed at baseline, after the 4-week intervention, and at 1 month after the last intervention session. RESULTS Both groups showed significant improvements in static and dynamic balance, ankle plantarflexor strength, and agility after the 4-week intervention (p<0.05), which persisted at the 1-month follow-up (p<0.05). Compared to the CG, the IG demonstrated significantly better static balance in terms of elliptical sway area (p=0.04) and center of pressure (CoP) velocity (p=0.001) during EC, as well as ankle plantarflexor strength (p=0.01). The IG also maintained a significantly greater improvement in CoP velocity during EC (p=0.01). CONCLUSION Integrated Thai essential oil and balance exercises improved static balance and ankle plantarflexor strength compared to the balance exercise with a control patch in older adults at risk of falling.
Collapse
Affiliation(s)
- Pattanasin Areeudomwong
- Department of Physical Therapy, School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Thidarat Duangyod
- Department of Applied Thai Traditional Medicine, School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Chatchada Sutalangka
- Department of Physical Therapy, School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Vitsarut Buttagat
- Department of Physical Therapy, School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| |
Collapse
|
49
|
Seymour B, Crook RJ, Chen ZS. Post-injury pain and behaviour: a control theory perspective. Nat Rev Neurosci 2023; 24:378-392. [PMID: 37165018 PMCID: PMC10465160 DOI: 10.1038/s41583-023-00699-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/12/2023]
Abstract
Injuries of various types occur commonly in the lives of humans and other animals and lead to a pattern of persistent pain and recuperative behaviour that allows safe and effective recovery. In this Perspective, we propose a control-theoretic framework to explain the adaptive processes in the brain that drive physiological post-injury behaviour. We set out an evolutionary and ethological view on how animals respond to injury, illustrating how the behavioural state associated with persistent pain and recuperation may be just as important as phasic pain in ensuring survival. Adopting a normative approach, we suggest that the brain implements a continuous optimal inference of the current state of injury from diverse sensory and physiological signals. This drives the various effector control mechanisms of behavioural homeostasis, which span the modulation of ongoing motivation and perception to drive rest and hyper-protective behaviours. However, an inherent problem with this is that these protective behaviours may partially obscure information about whether injury has resolved. Such information restriction may seed a tendency to aberrantly or persistently infer injury, and may thus promote the transition to pathological chronic pain states.
Collapse
Affiliation(s)
- Ben Seymour
- Institute for Biomedical Engineering, University of Oxford, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, Headington, Oxford, UK.
| | - Robyn J Crook
- Department of Biology, San Francisco State University, San Francisco, CA, USA.
| | - Zhe Sage Chen
- Departments of Psychiatry, Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA.
- Interdisciplinary Pain Research Program, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
50
|
Cushnie AK, Tang W, Heilbronner SR. Connecting Circuits with Networks in Addiction Neuroscience: A Salience Network Perspective. Int J Mol Sci 2023; 24:9083. [PMID: 37240428 PMCID: PMC10219092 DOI: 10.3390/ijms24109083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Human neuroimaging has demonstrated the existence of large-scale functional networks in the cerebral cortex consisting of topographically distant brain regions with functionally correlated activity. The salience network (SN), which is involved in detecting salient stimuli and mediating inter-network communication, is a crucial functional network that is disrupted in addiction. Individuals with addiction display dysfunctional structural and functional connectivity of the SN. Furthermore, while there is a growing body of evidence regarding the SN, addiction, and the relationship between the two, there are still many unknowns, and there are fundamental limitations to human neuroimaging studies. At the same time, advances in molecular and systems neuroscience techniques allow researchers to manipulate neural circuits in nonhuman animals with increasing precision. Here, we describe attempts to translate human functional networks to nonhuman animals to uncover circuit-level mechanisms. To do this, we review the structural and functional connections of the salience network and its homology across species. We then describe the existing literature in which circuit-specific perturbation of the SN sheds light on how functional cortical networks operate, both within and outside the context of addiction. Finally, we highlight key outstanding opportunities for mechanistic studies of the SN.
Collapse
Affiliation(s)
- Adriana K. Cushnie
- Department of Neuroscience, University of Minnesota Twin Cities, 2-164 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA;
| | - Wei Tang
- Department of Computer Science, Indiana University Bloomington, Bloomington, IN 47408, USA
| | - Sarah R. Heilbronner
- Department of Neuroscience, University of Minnesota Twin Cities, 2-164 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA;
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|