1
|
Sun L, Bai Y, Kang F, Lei Y. Biosignals in the Gut-Brain Axis Transmission: Function and Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67045-67053. [PMID: 38572786 DOI: 10.1021/acsami.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The gut-brain axis (GBA) is an important information pathway connecting the brain, the central nervous system (CNS), and the gastrointestinal (GI) tract. On the one hand, gut microbiota can influence the function brain through GBA; on the other hand, the brain can also change the structural composition of gut microbiota via GBA. It contains a myriad of biosignals, such as monoamines, inflammatory cytokines, and macro-biomolecules, as the information carriers. Highly selective, sensitive, and reliable sensing techniques are essential to resolve the specific function of individual biosignals. This review summarizes the widely reported biosignals related to GBA and their functions, and organizes the latest sensing tools to provide feasible characterization ideas for GBA-related work. In addition, these low-cost, fast-responding sensors can also be used for early identification and diagnosis of GBA-related diseases (e.g., depression). Finally, the problems and deficiencies in this field are pointed out to provide a reference for the orientation of researchers in the sensing field.
Collapse
Affiliation(s)
- Linxuan Sun
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Yichao Bai
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Feiyu Kang
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Yu Lei
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
2
|
Feng J, Cen Q, Cui Y, Hu X, Li M, Wang L, Wei J, Sun N, Wang J, Zhang A. Lactobacillus rhamnosus: An emerging probiotic with therapeutic potential for depression. Pharmacol Res 2024; 211:107541. [PMID: 39653301 DOI: 10.1016/j.phrs.2024.107541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/18/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
Depression, a complex psychological disorder, involves multiple biological pathways in its pathogenesis. In recent years, the gut-brain axis theory has provided novel insights into the pathogenesis of depression, particularly the crucial role of the gut microbiota in mood regulation. While there remains no universal consensus on the most efficacious strains for depression treatment, Lactobacillus rhamnosus has risen to prominence within the realm of probiotics for its potential to positively modulate depressive symptoms. This review preliminarily explores the clinical significance of Lactobacillus rhamnosus in the treatment of depression and summarizes the potential mechanisms by which Lactobacillus rhamnosus treats depression, including its regulation of gut microbiota, alterations in gene expression, improvement of intestinal barrier function, maintenance of neurotransmitter balance, suppression of inflammatory responses, modulation of the immune system, coping with oxidative stress, and optimization of metabolic processes. Future research needs to further explore these mechanisms and combine them with clinical research results to optimize treatment plans and provide more effective treatment options for patients with depression.
Collapse
Affiliation(s)
- Jing Feng
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiuyu Cen
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanru Cui
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaomin Hu
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Min Li
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Linjie Wang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Juanfang Wei
- College of Physical Education and Health, Geely University of China, Chengdu, China
| | - Nianyi Sun
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Junyu Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Wang L, Qin N, Shi L, Liu R, Zhu T. Gut Microbiota and Tryptophan Metabolism in Pathogenesis of Ischemic Stroke: A Potential Role for Food Homologous Plants. Mol Nutr Food Res 2024; 68:e2400639. [PMID: 39551995 DOI: 10.1002/mnfr.202400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/15/2024] [Indexed: 11/19/2024]
Abstract
SCOPE The intestinal flora is involved in the maintenance of human health and the development of diseases, and is closely related to the brain. As an essential amino acid, tryptophan (TRP) participates in a variety of physiological functions in the body and affects the growth and health of the human body. TRP catabolites produced by the gut microbiota are important signaling molecules for microbial communities and host-microbe interactions, and play an important role in maintaining health and disease pathogenesis. METHODS AND RESULTS The review first demonstrates the evidence of TRP metabolism in stroke and the relationship between gut microbiota and TRP metabolism. Furthermore, the review reveals that food homologous plants (FHP) bioactive compounds have been shown to regulate various metabolic pathways of the gut microbiota, including the biosynthesis of valine, leucine, isoleucine, and vitamin B6 metabolism. The most notable metabolic alteration is in TRP metabolism. CONCLUSION The interaction between gut microbiota and TRP metabolism offers a plausible explanation for the notable bioactivities of FHP in the treatment of ischemic stroke (IS). This review enhances the comprehension of the underlying mechanisms associated with the bioactivity of FHP on IS.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Na Qin
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
| | - Liuliu Shi
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, PR China
| | - Rujuan Liu
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, PR China
| | - Ting Zhu
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
| |
Collapse
|
4
|
Md Samsuzzaman, Hong SM, Lee JH, Park H, Chang KA, Kim HB, Park MG, Eo H, Oh MS, Kim SY. Depression like-behavior and memory loss induced by methylglyoxal is associated with tryptophan depletion and oxidative stress: a new in vivo model of neurodegeneration. Biol Res 2024; 57:87. [PMID: 39574138 PMCID: PMC11580208 DOI: 10.1186/s40659-024-00572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Depression and memory loss are prevalent neurodegenerative disorders, with diabetic patients facing an elevated risk of brain dysfunction. Methylglyoxal (MGO) formation, which is heightened in diabetes owing to hyperglycemia and gut dysbiosis, may serve as a critical link between diabetes and brain diseases. Despite the high prevalence of MGO, the precise mechanisms underlying MGO-induced depression and memory loss remain unclear. RESULTS We investigated the effect of MGO stress on depression like-behavior and memory loss to elucidate the potential interplay between MGO-induced tryptophan (Trp) metabolism impairment and oxidative stress in the brain. It demonstrates that MGO induces depression-like behavior in mice, as confirmed by the OFT, TST, FST, SPT, and EPM behavioral tests. MGO led to the depletion of Trp and related neurotransmitters as 5-HT, EPI, and DA in the mouse brain. Additionally, MGO reduced the cell count in the DG, CA1, and CA3 hippocampal regions and modulated TPH2 levels in the brain. Notably, co-treatment with MGO and Trp mirrored the effects observed after Trp-null treatment in neurons, including reduced TPH1 and TPH2 levels and inhibition of neuronal outgrowth. Furthermore, MGO significantly altered the expression of key proteins associated with neurodegeneration, such as p-Tau, p-GSK-3β, APP, oAβ, BDNF, NGF, and p-TrkB. Concurrently, MGO activated MAPKs through ROS induction, triggering a redox imbalance by downregulating Nrf-2, Ho-1, TXNRD1, Trx, Sirt-3, and Sirt-5 expression levels, NAD+, and CAT activity in the mouse brain. This led to an accelerated neuroinflammatory response, as evidenced by increased expression of Iba-1, p-NF-κB, and the secretion of IL-6 and TNF-α. Importantly, Trp treatment ameliorated MGO-induced depression like-behavior and memory loss in mice and markedly mitigated increased expression of p-Tau, APP, p-ERK1/2, p-pJNK, and p-NF-κB in the brain. Likewise, Trp treatment also induced the expression of MGO detoxifying factors GLO-I and GLO-II and CAT activity, suggesting the induction of an antioxidant system and reduced inflammation by inhibiting IL-6 and TNF-α secretion. CONCLUSIONS Our data revealed that MGO-induced depression like-behavior and memory deficits resulted from disturbances in Trp, 5-HT, BDNF, and NGF levels, increased p-Tau and APP expression, neuroinflammation, and impaired redox status (Nrf-2/Ho-1/TXNRD1/Sirt3/5) in the brain.
Collapse
Affiliation(s)
- Md Samsuzzaman
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, 21201, USA
| | - Seong-Min Hong
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Jae Hyuk Lee
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Hyunjun Park
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Keun-A Chang
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Hyun-Bum Kim
- Department of East-West Medical Science, Graduate School of East-West Medical, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Korea
| | - Myoung Gyu Park
- MetaCen Therapeutics Company, Changnyong-daero 256 Beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Hyeyoon Eo
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Myung Sook Oh
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea.
- Gachon Institute of Pharmaceutical Science, Gachon University, #191, Hambakmoe-ro, Yeonsu-gu, Incheon, 21936, Republic of Korea.
| |
Collapse
|
5
|
Qian X, Li Q, Zhu H, Chen Y, Lin G, Zhang H, Chen W, Wang G, Tian P. Bifidobacteria with indole-3-lactic acid-producing capacity exhibit psychobiotic potential via reducing neuroinflammation. Cell Rep Med 2024; 5:101798. [PMID: 39471819 PMCID: PMC11604549 DOI: 10.1016/j.xcrm.2024.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/24/2024] [Accepted: 09/29/2024] [Indexed: 11/01/2024]
Abstract
The escalating global prevalence of depression demands effective therapeutic strategies, with psychobiotics emerging as a promising solution. However, the molecular mechanisms governing the neurobehavioral impact of psychobiotics remain elusive. This study reveals a significant reduction in hippocampal indole-3-lactic acid (ILA) levels in depressed mice, which is ameliorated by the psychobiotic Bifidobacterium breve. In both human subjects and mice, the ILA increase in the circulatory system results from bifidobacteria supplementation. Further investigation identifies the key aromatic lactate dehydrogenase (Aldh) gene and pathway in bifidobacteria responsible for ILA production. Importantly, the antidepressant effects are nullified in the Aldh mutants compared to the wild-type strain. At the bifidobacteria species level, those with Aldh exhibit heightened antidepressant effects. Finally, this study emphasizes the antidepressant efficacy of psychobiotic-derived ILA, potentially mediated by aryl hydrocarbon receptor (AhR) signaling activation to alleviate neuroinflammation. This study unveils the molecular and genetic foundations of psychobiotics' antidepressant effects, offering insights for microbial therapies targeting mood disorders.
Collapse
Affiliation(s)
- Xin Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qing Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Huiyue Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ying Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guopeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Vuralli D, Ceren Akgor M, Dagidir HG, Onat P, Yalinay M, Sezerman U, Bolay H. Microbiota alterations are related to migraine food triggers and inflammatory markers in chronic migraine patients with medication overuse headache. J Headache Pain 2024; 25:192. [PMID: 39516813 PMCID: PMC11546420 DOI: 10.1186/s10194-024-01891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE Chronic migraine (CM) patients with medication overuse headache (MOH) were recently shown to be associated with leaky gut and inflammation. We aimed to investigate gut microbiota profiles of CM patients with MOH, and their correlations with inflammatory serum parameters, migraine food triggers, and comorbid anxiety and depression. MATERIALS AND METHODS The study included women participants (32 CM patients with NSAID overuse headache, and 16 healthy non-headache sufferers). Migraine duration, monthly migraine headache days, presence of irritable bowel syndrome symptoms, and HADS-D and HADS-A scores were recorded. Serum samples were collected to measure circulating LPS, HMGB1, HIF-1α, and IL-6. The gut microbiota profiles of the patients were evaluated using fecal samples. RESULTS Serum LPS, HMGB1, HIF-1α, and IL-6 levels were significantly higher in the CM + MOH group compared to the healthy controls. HADS-A and HADS-D scores were considerably higher in the CM + MOH group compared to the healthy controls. In the microbiota analysis, alpha and beta diversities were similar between the two groups. The class Clostridia, the order Eubacteriales, and the genus Ruminococcus were less abundant in the CM + NSAID overuse headache group compared to the control group. At the genus level Desulfovibrio, Gemmiger, and Dialister and at the species level, Clostridium fessum, Blautia luti, Dorea longicatena, Eubacterium coprostanoligenes, and Gemmiger formicilis were more abundant in the CM + NSAID overuse headache group compared to the control group. Desulfovibrio, Gemmiger, Dialister, Ethanoligenens harbinense, Eubacterium coprostanoligenes, Dorea longicatena, and Thermoclostridium stercorarium showed positive correlations and Clostridia bacteria showed negative correlations with migraine food triggers. Positive correlations were found between LPS and Hapalosiphonaceae, HMGB1 and Melghirimyces, HIF1-α and Rouxeilla and Blautia luti, IL-6 and Melghirimyces and Ruminococcus. CONCLUSION In CM patients with MOH, we have revealed the presence of dysbiosis towards an inflammatory state, and positive correlations were shown between altered gut microbiota and inflammatory serum parameters and migraine food triggers.
Collapse
Affiliation(s)
- Doga Vuralli
- Department of Neurology and Algology, Gazi University Faculty of Medicine, Ankara, Türkiye
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara, Türkiye
- Neuropsychiatry Center, Gazi University, Ankara, Türkiye
| | - Merve Ceren Akgor
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara, Türkiye
| | - Hale Gok Dagidir
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara, Türkiye
| | - Pınar Onat
- Epigenetiks Genetic Bioinformatics Software Inc., Istanbul, Türkiye
| | - Meltem Yalinay
- Department of Clinical Microbiology, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem University Faculty of Medicine, Istanbul, Türkiye
| | - Hayrunnisa Bolay
- Department of Neurology and Algology, Gazi University Faculty of Medicine, Ankara, Türkiye.
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara, Türkiye.
- Neuropsychiatry Center, Gazi University, Ankara, Türkiye.
| |
Collapse
|
7
|
Galley JD, King MK, Rajasekera TA, Batabyal A, Woodke ST, Gur TL. Gestational administration of Bifidobacterium dentium results in intergenerational modulation of inflammatory, metabolic, and social behavior. Brain Behav Immun 2024; 122:44-57. [PMID: 39128569 DOI: 10.1016/j.bbi.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
Prenatal stress (PNS) profoundly impacts maternal and offspring health, with enduring effects including microbiome alterations, neuroinflammation, and behavioral disturbances such as reductions in social behavior. Converging lines of evidence from preclinical and clinical studies suggest that PNS disrupts tryptophan (Trp) metabolic pathways and reduces gut Bifidobacteria, a known beneficial bacterial genus that metabolizes Trp. Specifically, previous work from our lab demonstrated that human prenatal mood disorders in mothers are associated with reduced Bifidobacterium dentium in infants at 13 months. Given that Bifidobacterium has been positively associated with neurodevelopmental and other health benefits and is depleted by PNS, we hypothesized that supplementing PNS-exposed pregnant dams with B. dentium would ameliorate PNS-induced health deficits. We measured inflammatory outputs, Trp metabolite levels and enzymatic gene expression in dams and fetal offspring, and social behavior in adult offspring. We determined that B. dentium reduced maternal systemic inflammation and fetal offspring neuroinflammation, while modulating tryptophan metabolism and increasing kynurenic acid and indole-3-propionic acid intergenerationally. Additional health benefits were demonstrated by the abrogation of PNS-induced reductions in litter weight. Finally, offspring of the B. dentium cohort demonstrated increased sociability in males primarily and increased social novelty primarily in females. Together these data illustrate that B. dentium can orchestrate interrelated host immune, metabolic and behavioral outcomes during and after gestation for both dam and offspring and may be a candidate for prevention of the negative sequelae of stress.
Collapse
Affiliation(s)
- Jeffrey D Galley
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mackenzie K King
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Therese A Rajasekera
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Anandi Batabyal
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Tamar L Gur
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
8
|
Vajdi M, Khorvash F, Askari G. A randomized, double-blind, placebo-controlled parallel trial to test the effect of inulin supplementation on migraine headache characteristics, quality of life and mental health symptoms in women with migraine. Food Funct 2024; 15:10088-10098. [PMID: 39291634 DOI: 10.1039/d4fo02796e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Migraine is a complex neurovascular disorder characterized by recurrent headache attacks that are often accompanied by symptoms such as vomiting, nausea, and sensitivity to sound or light. Preventing migraine attacks is highly important. Recent research has indicated that alterations in gut microbiota may influence the underlying mechanisms of migraines. This study aimed to investigate the effects of inulin supplementation on migraine headache characteristics, quality of life (QOL), and mental health symptoms in women with migraines. In a randomized double-blind placebo-controlled trial, 80 women with migraines aged 20 to 50 years were randomly assigned to receive 10 g day-1 of inulin or a placebo supplement for 12 weeks. Severity, frequency, and duration of migraine attacks, as well as depression, anxiety, stress, QOL, and headache impact test (HIT-6) scores, were examined at the start of the study and after 12 weeks of intervention. In this study, the primary outcome focused on the frequency of headache attacks, while secondary outcomes encompassed the duration and severity of headache attacks, QOL, and mental health. There was a significant reduction in severity (-1.95 vs. -0.84, P = 0.004), duration (-6.95 vs. -2.05, P = 0.023), frequency (-2.09 vs. -0.37, P < 0.001), and HIT-6 score (-10.30 vs. -6.52, P < 0.023) in the inulin group compared with the control. Inulin supplementation improved mental health symptoms, including depression (-4.47 vs. -1.45, P < 0.001), anxiety (-4.37 vs. -0.70, P < 0.001), and stress (-4.40 vs. -1.50, P < 0.001). However, no significant difference was observed between the two groups regarding changes in QOL score. This study provides evidence supporting the beneficial effects of inulin supplement on migraine symptoms and mental health status in women with migraines. Further studies are necessary to confirm these findings. Trial registration: Iranian Registry of Clinical Trials (https://www.irct.ir) (ID: IRCT20121216011763N58).
Collapse
Affiliation(s)
- Mahdi Vajdi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Fariborz Khorvash
- Neurology Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Bertollo AG, Mingoti MED, Ignácio ZM. Neurobiological mechanisms in the kynurenine pathway and major depressive disorder. Rev Neurosci 2024:revneuro-2024-0065. [PMID: 39245854 DOI: 10.1515/revneuro-2024-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Major depressive disorder (MDD) is a prevalent psychiatric disorder that has damage to people's quality of life. Tryptophan is the precursor to serotonin, a critical neurotransmitter in mood modulation. In mammals, most free tryptophan is degraded by the kynurenine pathway (KP), resulting in a range of metabolites involved in inflammation, immune response, and neurotransmission. The imbalance between quinolinic acid (QA), a toxic metabolite, and kynurenic acid (KynA), a protective metabolite, is a relevant phenomenon involved in the pathophysiology of MDD. Proinflammatory cytokines increase the activity of the enzyme indoleamine 2,3-dioxygenase (IDO), leading to the degradation of tryptophan in the KP and an increase in the release of QA. IDO activates proinflammatory genes, potentiating neuroinflammation and deregulating other physiological mechanisms related to chronic stress and MDD. This review highlights the physiological mechanisms involved with stress and MDD, which are underlying an imbalance of the KP and discuss potential therapeutic targets.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Maiqueli Eduarda Dama Mingoti
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
10
|
He Y, Wang K, Su N, Yuan C, Zhang N, Hu X, Fu Y, Zhao F. Microbiota-gut-brain axis in health and neurological disease: Interactions between gut microbiota and the nervous system. J Cell Mol Med 2024; 28:e70099. [PMID: 39300699 PMCID: PMC11412916 DOI: 10.1111/jcmm.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Along with mounting evidence that gut microbiota and their metabolites migrate endogenously to distal organs, the 'gut-lung axis,' 'gut-brain axis,' 'gut-liver axis' and 'gut-renal axis' have been established. Multiple animal recent studies have demonstrated gut microbiota may also be a key susceptibility factor for neurological disorders such as Alzheimer's disease, Parkinson's disease and autism. The gastrointestinal tract is innervated by the extrinsic sympathetic and vagal nerves and the intrinsic enteric nervous system, and the gut microbiota interacts with the nervous system to maintain homeostatic balance in the host gut. A total of 1507 publications on the interactions between the gut microbiota, the gut-brain axis and neurological disorders are retrieved from the Web of Science to investigate the interactions between the gut microbiota and the nervous system and the underlying mechanisms involved in normal and disease states. We provide a comprehensive overview of the effects of the gut microbiota and its metabolites on nervous system function and neurotransmitter secretion, as well as alterations in the gut microbiota in neurological disorders, to provide a basis for the possibility of targeting the gut microbiota as a therapeutic agent for neurological disorders.
Collapse
Affiliation(s)
- Yuhong He
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Ke Wang
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| | - Niri Su
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Chongshan Yuan
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Naisheng Zhang
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Xiaoyu Hu
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Yunhe Fu
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Feng Zhao
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
11
|
Deore R, Ansari R, Awathale SN, Shelke M, Badwaik HR, Goyal SN, Nakhate KT. Lycopene alleviates BCG-induced depressive phenotypes in mice by disrupting 5-HT3 receptor - IDO1 interplay in the brain. Eur J Pharmacol 2024; 977:176707. [PMID: 38830456 DOI: 10.1016/j.ejphar.2024.176707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
The 5-HT3 receptor and indoleamine 2,3-dioxygenase 1 (IDO1) enzyme play a crucial role in the pathogenesis of depression as their activation reduces serotonin contents in the brain. Since molecular docking analysis revealed lycopene as a potent 5-HT3 receptor antagonist and IDO1 inhibitor, we hypothesized that lycopene might disrupt the interplay between the 5-HT3 receptor and IDO1 to mitigate depression. In mice, the depression-like phenotypes were induced by inoculating Bacillus Calmette-Guerin (BCG). Lycopene (intraperitoneal; i.p.) was administered alone or in combination with 5-HT3 receptor antagonist ondansetron (i.p.) or IDO1 inhibitor minocycline (i.p.), and the behavioral screening was performed by the sucrose preference test, open field test, tail suspension test, and splash test which are based on the different principles. Further, the brains were subjected to the biochemical analysis of serotonin and its precursor tryptophan by the HPLC. The results showed depression-like behavior in BCG-inoculated mice, which was reversed by lycopene administration. Moreover, prior treatment with ondansetron or minocycline potentiated the antidepressant action of lycopene. Minocycline pretreatment also enhanced the antidepressant effect of ondansetron indicating the regulation of IDO1 activity by 5-HT3 receptor-triggered signaling. Biochemical analysis of brain samples revealed a drastic reduction in the levels of tryptophan and serotonin in depressed animals, which were restored following treatment with lycopene and its combination with ondansetron or minocycline. Taken together, the data from molecular docking, behavioral experiments, and biochemical estimation suggest that lycopene might block the 5-HT3 receptor and consequently inhibit the activity of IDO1 to ameliorate BCG-induced depression in mice.
Collapse
Affiliation(s)
- Rucha Deore
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Rashid Ansari
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Sanjay N Awathale
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Madhav Shelke
- Department of Quality Assurance, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Hemant R Badwaik
- Department of Pharmaceutical Chemistry, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Bhilai, 490020, Chhattisgarh, India
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India.
| |
Collapse
|
12
|
Hu A, Zaongo SD, Harypursat V, Wang X, Ouyang J, Chen Y. HIV-associated neurocognitive disorder: key implications of the microbiota-gut-brain axis. Front Microbiol 2024; 15:1428239. [PMID: 39155987 PMCID: PMC11327151 DOI: 10.3389/fmicb.2024.1428239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
HIV-associated neurocognitive disorder (HAND) is now recognized to be relatively common in people living with HIV (PLWH), and remains a common cause of cognitive impairment. Unfortunately, the fundamental pathogenic processes underlying this specific outcome of HIV infection have not as yet been fully elucidated. With increased interest in research related to the microbiota-gut-brain axis, the gut-brain axis has been shown to play critical roles in regulating central nervous system disorders such as Alzheimer's disease and Parkinson's disease. PLWH are characterized by a particular affliction, referred to as gut-associated dysbiosis syndrome, which provokes an alteration in microbial composition and diversity, and of their associated metabolite composition within the gut. Interestingly, the gut microbiota has also been recognized as a key element, which both positively and negatively influences human brain health, including the functioning and development of the central nervous system (CNS). In this review, based on published evidence, we critically discuss the relevant interactions between the microbiota-gut-brain axis and the pathogenesis of HAND in the context of HIV infection. It is likely that HAND manifestation in PLWH mainly results from (i) gut-associated dysbiosis syndrome and a leaky gut on the one hand and (ii) inflammation on the other hand. In other words, the preceding features of HIV infection negatively alter the composition of the gut microbiota (microbes and their associated metabolites) and promote proinflammatory immune responses which singularly or in tandem damage neurons and/or induce inadequate neuronal signaling. Thus, HAND is fairly prevalent in PLWH. This work aims to demonstrate that in the quest to prevent and possibly treat HAND, the gut microbiota may ultimately represent a therapeutically targetable "host factor."
Collapse
Affiliation(s)
- Aizhen Hu
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Xin Wang
- Phase I Clinical Trial Center, Chonggang General Hospital, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Yaokai Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
13
|
Schneider E, O'Riordan KJ, Clarke G, Cryan JF. Feeding gut microbes to nourish the brain: unravelling the diet-microbiota-gut-brain axis. Nat Metab 2024; 6:1454-1478. [PMID: 39174768 DOI: 10.1038/s42255-024-01108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
The prevalence of brain disorders, including stress-related neuropsychiatric disorders and conditions with cognitive dysfunction, is rising. Poor dietary habits contribute substantially to this accelerating trend. Conversely, healthy dietary intake supports mood and cognitive performance. Recently, the communication between the microorganisms within the gastrointestinal tract and the brain along the gut-brain axis has gained prominence as a potential tractable target to modulate brain health. The composition and function of the gut microbiota is robustly influenced by dietary factors to alter gut-brain signalling. To reflect this interconnection between diet, gut microbiota and brain functioning, we propose that a diet-microbiota-gut-brain axis exists that underpins health and well-being. In this Review, we provide a comprehensive overview of the interplay between diet and gut microbiota composition and function and the implications for cognition and emotional functioning. Important diet-induced effects on the gut microbiota for the development, prevention and maintenance of neuropsychiatric disorders are described. The diet-microbiota-gut-brain axis represents an uncharted frontier for brain health diagnostics and therapeutics across the lifespan.
Collapse
Affiliation(s)
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
14
|
K M M, Ghosh P, Nagappan K, Palaniswamy DS, Begum R, Islam MR, Tagde P, Shaikh NK, Farahim F, Mondal TK. From Gut Microbiomes to Infectious Pathogens: Neurological Disease Game Changers. Mol Neurobiol 2024:10.1007/s12035-024-04323-0. [PMID: 38967904 DOI: 10.1007/s12035-024-04323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Gut microbiota and infectious diseases affect neurological disorders, brain development, and function. Compounds generated in the gastrointestinal system by gut microbiota and infectious pathogens may mediate gut-brain interactions, which may circulate throughout the body and spread to numerous organs, including the brain. Studies shown that gut bacteria and disease-causing organisms may pass molecular signals to the brain, affecting neurological function, neurodevelopment, and neurodegenerative diseases. This article discusses microorganism-producing metabolites with neuromodulator activity, signaling routes from microbial flora to the brain, and the potential direct effects of gut bacteria and infectious pathogens on brain cells. The review also considered the neurological aspects of infectious diseases. The infectious diseases affecting neurological functions and the disease modifications have been discussed thoroughly. Recent discoveries and unique insights in this perspective need further validation. Research on the complex molecular interactions between gut bacteria, infectious pathogens, and the CNS provides valuable insights into the pathogenesis of neurodegenerative, behavioral, and psychiatric illnesses. This study may provide insights into advanced drug discovery processes for neurological disorders by considering the influence of microbial communities inside the human body.
Collapse
Affiliation(s)
- Muhasina K M
- Department of Pharmacognosy, JSS College of Pharmacy, Ooty, Tamil Nadu, 643001, India.
| | - Puja Ghosh
- Department of Pharmacognosy, JSS College of Pharmacy, Ooty, Tamil Nadu, 643001, India
| | - Krishnaveni Nagappan
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, Ooty, Tamil Nadu, 643001, India
| | | | - Rahima Begum
- Department of Microbiology, Gono Bishwabidyalay, Dhaka, Bangladesh
| | - Md Rabiul Islam
- Tennessee State University Chemistry department 3500 John A Merritt Blvd, Nashville, TN, 37209, USA
| | - Priti Tagde
- PRISAL(Pharmaceutical Royal International Society), Branch Office Bhopal, Bhopal, Madhya Pradesh, 462042, India
| | - Nusrat K Shaikh
- Department of Quality Assurance, Smt. N. M, Padalia Pharmacy College, Navapura, Ahmedabad, 382 210, Gujarat, India
| | - Farha Farahim
- Department of Nursing, King Khalid University, Abha, 61413, Kingdom of Saudi Arabia
| | | |
Collapse
|
15
|
Kavyani B, Ahn SB, Missailidis D, Annesley SJ, Fisher PR, Schloeffel R, Guillemin GJ, Lovejoy DB, Heng B. Dysregulation of the Kynurenine Pathway, Cytokine Expression Pattern, and Proteomics Profile Link to Symptomology in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Mol Neurobiol 2024; 61:3771-3787. [PMID: 38015302 DOI: 10.1007/s12035-023-03784-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Dysregulation of the kynurenine pathway (KP) is believed to play a significant role in neurodegenerative and cognitive disorders. While some evidence links the KP to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), further studies are needed to clarify the overall picture of how inflammation-driven KP disturbances may contribute to symptomology in ME/CFS. Here, we report that plasma levels of most bioactive KP metabolites differed significantly between ME/CFS patients and healthy controls in a manner consistent with their known contribution to symptomology in other neurological disorders. Importantly, we found that enhanced production of the first KP metabolite, kynurenine (KYN), correlated with symptom severity, highlighting the relationship between inflammation, KP dysregulation, and ME/CFS symptomology. Other significant changes in the KP included lower levels of the downstream KP metabolites 3-HK, 3-HAA, QUIN, and PIC that could negatively impact cellular energetics. We also rationalized KP dysregulation to changes in the expression of inflammatory cytokines and, for the first time, assessed levels of the iron (Fe)-regulating hormone hepcidin that is also inflammation-responsive. Levels of hepcidin in ME/CFS decreased nearly by half, which might reflect systemic low Fe levels or possibly ongoing hypoxia. We next performed a proteomics screen to survey for other significant differences in protein expression in ME/CFS. Interestingly, out of the seven most significantly modulated proteins in ME/CFS patient plasma, 5 proteins have roles in maintaining gut health, which considering the new appreciation of how gut microbiome and health modulates systemic KP could highlight a new explanation of symptomology in ME/CFS patients and potential new prognostic biomarker/s and/or treatment avenues.
Collapse
Affiliation(s)
- Bahar Kavyani
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Seong Beom Ahn
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Daniel Missailidis
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Sarah J Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Paul R Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | | | - Gilles J Guillemin
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - David B Lovejoy
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Sochacka K, Kotowska A, Lachowicz-Wiśniewska S. The Role of Gut Microbiota, Nutrition, and Physical Activity in Depression and Obesity-Interdependent Mechanisms/Co-Occurrence. Nutrients 2024; 16:1039. [PMID: 38613071 PMCID: PMC11013804 DOI: 10.3390/nu16071039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity and depression are interdependent pathological disorders with strong inflammatory effects commonly found worldwide. They determine the health status of the population and cause key problems in terms of morbidity and mortality. The role of gut microbiota and its composition in the treatment of obesity and psychological factors is increasingly emphasized. Published research suggests that prebiotic, probiotic, or symbiotic preparations can effectively intervene in obesity treatment and mood-dysregulation alleviation. Thus, this literature review aims to highlight the role of intestinal microbiota in treating depression and obesity. An additional purpose is to indicate probiotics, including psychobiotics and prebiotics, potentially beneficial in supporting the treatment of these two diseases.
Collapse
Affiliation(s)
- Klaudia Sochacka
- Faculty of Medicine and Health Sciences, Calisia University, 62-800 Kalisz, Poland;
| | - Agata Kotowska
- Department of Social Policy, Institute of Sociological Sciences, College of Social Sciences, University of Rzeszow, 35-310 Rzeszow, Poland;
| | | |
Collapse
|
17
|
Cui Y, Liu J, Lei X, Liu S, Chen H, Wei Z, Li H, Yang Y, Zheng C, Li Z. Dual-directional regulation of spinal cord injury and the gut microbiota. Neural Regen Res 2024; 19:548-556. [PMID: 37721283 PMCID: PMC10581592 DOI: 10.4103/1673-5374.380881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 06/05/2023] [Indexed: 09/19/2023] Open
Abstract
There is increasing evidence that the gut microbiota affects the incidence and progression of central nervous system diseases via the brain-gut axis. The spinal cord is a vital important part of the central nervous system; however, the underlying association between spinal cord injury and gut interactions remains unknown. Recent studies suggest that patients with spinal cord injury frequently experience intestinal dysfunction and gut dysbiosis. Alterations in the gut microbiota can cause disruption in the intestinal barrier and trigger neurogenic inflammatory responses which may impede recovery after spinal cord injury. This review summarizes existing clinical and basic research on the relationship between the gut microbiota and spinal cord injury. Our research identified three key points. First, the gut microbiota in patients with spinal cord injury presents a key characteristic and gut dysbiosis may profoundly influence multiple organs and systems in patients with spinal cord injury. Second, following spinal cord injury, weakened intestinal peristalsis, prolonged intestinal transport time, and immune dysfunction of the intestine caused by abnormal autonomic nerve function, as well as frequent antibiotic treatment, may induce gut dysbiosis. Third, the gut microbiota and associated metabolites may act on central neurons and affect recovery after spinal cord injury; cytokines and the Toll-like receptor ligand pathways have been identified as crucial mechanisms in the communication between the gut microbiota and central nervous system. Fecal microbiota transplantation, probiotics, dietary interventions, and other therapies have been shown to serve a neuroprotective role in spinal cord injury by modulating the gut microbiota. Therapies targeting the gut microbiota or associated metabolites are a promising approach to promote functional recovery and improve the complications of spinal cord injury.
Collapse
Affiliation(s)
- Yinjie Cui
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyi Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Lei
- International Cooperation and Exchange Office, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Shuwen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haixia Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhijian Wei
- International Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Hongru Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan Yang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chenguang Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhongzheng Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
18
|
Luqman A, He M, Hassan A, Ullah M, Zhang L, Rashid Khan M, Din AU, Ullah K, Wang W, Wang G. Mood and microbes: a comprehensive review of intestinal microbiota's impact on depression. Front Psychiatry 2024; 15:1295766. [PMID: 38404464 PMCID: PMC10884216 DOI: 10.3389/fpsyt.2024.1295766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Depression is considered a multifaceted and intricate mental disorder of growing concern due to its significant impact on global health issues. The human gut microbiota, also known as the "second brain," has an important role in the CNS by regulating it through chemical, immunological, hormonal, and neurological processes. Various studies have found a significant bidirectional link between the brain and the gut, emphasizing the onset of depression therapies. The biological and molecular processes underlying depression and microbiota are required, as the bidirectional association may represent a novel study. However, profound insights into the stratification and diversity of the gut microbiota are still uncommon. This article investigates the emerging evidence of a bacterial relationship between the gut and the brain's neurological system and its potential pathogenicity and relevance. The interplay of microbiota, immune system, nervous system neurotransmitter synthesis, and neuroplasticity transitions is also widely studied. The consequences of stress, dietary fibers, probiotics, prebiotics, and antibiotics on the GB axis are being studied. Multiple studies revealed the processes underlying this axis and led to the development of effective microbiota-based drugs for both prevention and treatment. Therefore, the results support the hypothesis that gut microbiota influences depression and provide a promising area of research for an improved knowledge of the etiology of the disease and future therapies.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | | | - Muhammad Rashid Khan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Pakistan
| | - Wei Wang
- Chongqing University Cancer Hospital, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
19
|
Hu X, Fang Z, Wang F, Mei Z, Huang X, Lin Y, Lin Z. A causal relationship between gut microbiota and subcortical brain structures contributes to the microbiota-gut-brain axis: a Mendelian randomization study. Cereb Cortex 2024; 34:bhae056. [PMID: 38415993 DOI: 10.1093/cercor/bhae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024] Open
Abstract
A correlation between gut microbiota and brain structure, referring to as a component of the gut-brain axis, has been observed in observational studies. However, the causality of this relationship and its specific bacterial taxa remains uncertain. To reveal the causal effects of gut microbiota on subcortical brain volume, we applied Mendelian randomization (MR) studies in this study. Genome-wide association study data were obtained from the MiBioGen Consortium (n = 18,340) and the Enhancing Neuro Imaging Genetics through Meta-Analysis Consortium (n = 13,170). The primary estimate was obtained utilizing the inverse-variance weighted, while heterogeneity and pleiotropy were assessed using the Cochrane Q statistic, MR Pleiotropy RESidual Sum and Outlier, and MR-Egger intercept. Our findings provide strong evidence that a higher abundance of the genus Parasutterella is causally correlated with a decrease in intracranial volume (β = -30,921.33, 95% CI -46,671.78 to -15,170.88, P = 1.19 × 10-4), and the genus FamilyXIIIUCG001 is associated with a decrease in thalamus volume (β = -141.96, 95% CI: -214.81 to -69.12, P = 1.0× 10-4). This MR study offers novel perspectives on the intricate interplay between the gut microbiota and subcortical brain volume, thereby lending some support to the existence of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Xuequn Hu
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| | - Zhiyong Fang
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| | - Feng Wang
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| | - Zhen Mei
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| | - Xiaofen Huang
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| | - Yuanxiang Lin
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| | - Zhangya Lin
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| |
Collapse
|
20
|
Comai S, Nunez N, Atkin T, Ghabrash MF, Zakarian R, Fielding A, Saint-Laurent M, Low N, Sauber G, Ragazzi E, Hillard CJ, Gobbi G. Dysfunction in endocannabinoids, palmitoylethanolamide, and degradation of tryptophan into kynurenine in individuals with depressive symptoms. BMC Med 2024; 22:33. [PMID: 38273283 PMCID: PMC10809514 DOI: 10.1186/s12916-024-03248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The endocannabinoid (eCB) system and the serotonin (5-HT) are both implicated in the severity of the depression. 5-HT is synthesized from the amino acid tryptophan (Trp), which is also a precursor for kynurenine (Kyn) whose production is increased at the expense of 5-HT in depressed patients. No clinical studies have investigated the crosstalk between the eCB system and the Trp/5-HT/Kyn pathways. Here, we hypothesized that the eCB system is associated with an enhanced Kyn production in relation to the severity of depressive symptoms. METHODS Eighty-two subjects (51 patients with a diagnosis of depressive disorder (DSM-5) and 31 healthy volunteers), were assessed with the Montgomery-Åsberg Depression Rating Scale (MADRS), Beck Depression Scale, and Global Clinical Impression. Serum concentrations of eCBs (N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG)); structurally related fatty acyl compounds 2-oleoylglycerol (2-OG), oleoylethanolamide (OEA), and palmitoylethanolamide (PEA); Trp, Kyn, Kyn/Trp ratio (an index of Trp degradation into Kyn) and 5-HT were also determined. RESULTS Following a principal component analysis including the severity of depression, Kyn and the Kyn/Trp ratio appear to be directly associated with 2-AG, AEA, and PEA. Interestingly, these biomarkers also permitted to distinguish the population into two main clusters: one of individuals having mild/severe depressive symptoms and the other with an absence of depressive symptoms. Using parametric analysis, higher serum levels of 2-AG, Kyn, and the ratio Kyn/Trp and lower levels of Trp and 5-HT were found in individuals with mild/severe depressive symptoms than in those without depressive symptoms. While in asymptomatic people, PEA was directly associated to Trp, and OEA indirectly linked to 5-HT, in individuals with depressive symptoms, these correlations were lost, and instead, positive correlations between AEA and 2-AG, PEA and AEA, and PEA vs 2-AG and OEA concentrations were found. CONCLUSIONS Parametric and non-parametric analyses suggest a possible association between eCBs, tryptophan/kynurenine biomarkers, and severity of depression, confirming a likely interplay among inflammation, stress, and depression. The enhanced relationships among the biomarkers of the 2-AG and AEA pathways and related lipids seen in individuals with depressive symptoms, but not in asymptomatics, suggest an altered metabolism of the eCB system in depression.
Collapse
Affiliation(s)
- Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Nicolas Nunez
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Tobias Atkin
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Rita Zakarian
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Allan Fielding
- Department of Psychiatry, McGill University Health Center, Montreal, QC, Canada
| | - Marie Saint-Laurent
- Department of Psychiatry, McGill University Health Center, Montreal, QC, Canada
| | - Nancy Low
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University Health Center, Montreal, QC, Canada
| | - Garrett Sauber
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Cecilia J Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gabriella Gobbi
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Department of Psychiatry, McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
21
|
Khan R, Di Gesù CM, Lee J, McCullough LD. The contribution of age-related changes in the gut-brain axis to neurological disorders. Gut Microbes 2024; 16:2302801. [PMID: 38237031 PMCID: PMC10798364 DOI: 10.1080/19490976.2024.2302801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Trillions of microbes live symbiotically in the host, specifically in mucosal tissues such as the gut. Recent advances in metagenomics and metabolomics have revealed that the gut microbiota plays a critical role in the regulation of host immunity and metabolism, communicating through bidirectional interactions in the microbiota-gut-brain axis (MGBA). The gut microbiota regulates both gut and systemic immunity and contributes to the neurodevelopment and behaviors of the host. With aging, the composition of the microbiota changes, and emerging studies have linked these shifts in microbial populations to age-related neurological diseases (NDs). Preclinical studies have demonstrated that gut microbiota-targeted therapies can improve behavioral outcomes in the host by modulating microbial, metabolomic, and immunological profiles. In this review, we discuss the pathways of brain-to-gut or gut-to-brain signaling and summarize the role of gut microbiota and microbial metabolites across the lifespan and in disease. We highlight recent studies investigating 1) microbial changes with aging; 2) how aging of the maternal microbiome can affect offspring health; and 3) the contribution of the microbiome to both chronic age-related diseases (e.g., Parkinson's disease, Alzheimer's disease and cerebral amyloidosis), and acute brain injury, including ischemic stroke and traumatic brain injury.
Collapse
Affiliation(s)
- Romeesa Khan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Claudia M. Di Gesù
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
22
|
Dubey H, Roychoudhury R, Alex A, Best C, Liu S, White A, Carlson A, Azcarate-Peril MA, Mansfield LS, Knickmeyer R. Effect of Human Infant Gut Microbiota on Mouse Behavior, Dendritic Complexity, and Myelination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563309. [PMID: 37961091 PMCID: PMC10634763 DOI: 10.1101/2023.10.24.563309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The mammalian gut microbiome influences numerous developmental processes. In human infants it has been linked with cognition, social skills, hormonal responses to stress, and brain connectivity. Yet, these associations are not necessarily causal. The present study tested whether two microbial stool communities, common in human infants, affected behavior, myelination, dendritic morphology, and spine density when used to colonize mouse models. Humanized animals were more like specific-pathogen free mice than germ-free mice for most phenotypes, although in males, both humanized groups were less social. Both humanized groups had thinner myelin sheaths in the hippocampus, than did germ-free animals. Humanized animals were similar to each other except for dendritic morphology and spine density where one group had greater dendritic length in the prefrontal cortex, greater dendritic volume in the nucleus accumbens, and greater spine density in both regions, compared to the other. Results add to a body of literature suggesting the gut microbiome impacts brain development. Teaser Fecal transplants from human infants with highly abundant Bifidobacterium , an important inhabitant of the intestinal tract of breastfed newborns, may promote brain connectivity in mice.
Collapse
|
23
|
Murray N, Al Khalaf S, Bastiaanssen TFS, Kaulmann D, Lonergan E, Cryan JF, Clarke G, Khashan AS, O’Connor K. Compositional and Functional Alterations in Intestinal Microbiota in Patients with Psychosis or Schizophrenia: A Systematic Review and Meta-analysis. Schizophr Bull 2023; 49:1239-1255. [PMID: 37210594 PMCID: PMC10483467 DOI: 10.1093/schbul/sbad049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND HYPOTHESIS Intestinal microbiota is intrinsically linked to human health. Evidence suggests that the composition and function of the microbiome differs in those with schizophrenia compared with controls. It is not clear how these alterations functionally impact people with schizophrenia. We performed a systematic review and meta-analysis to combine and evaluate data on compositional and functional alterations in microbiota in patients with psychosis or schizophrenia. STUDY DESIGN Original studies involving humans and animals were included. The electronic databases PsycINFO, EMBASE, Web of Science, PubMed/MEDLINE, and Cochrane were systematically searched and quantitative analysis performed. STUDY RESULTS Sixteen original studies met inclusion criteria (1376 participants: 748 cases and 628 controls). Ten were included in the meta-analysis. Although observed species and Chao 1 show a decrease in diversity in people with schizophrenia compared with controls (SMD = -0.14 and -0.66 respectively), that did not reach statistical significance. We did not find evidence for variations in richness or evenness of microbiota between patients and controls overall. Differences in beta diversity and consistent patterns in microbial taxa were noted across studies. We found increases in Bifidobacterium, Lactobacillus, and Megasphaera in schizophrenia groups. Variations in brain structure, metabolic pathways, and symptom severity may be associated with compositional alterations in the microbiome. The heterogeneous design of studies complicates a similar evaluation of functional readouts. CONCLUSIONS The microbiome may play a role in the etiology and symptomatology of schizophrenia. Understanding how the implications of alterations in microbial genes for symptomatic expression and clinical outcomes may contribute to the development of microbiome targeted interventions for psychosis.
Collapse
Affiliation(s)
- Nuala Murray
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Sukainah Al Khalaf
- School of Public Health, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David Kaulmann
- School of Public Health, University College Cork, Cork, Ireland
| | - Edgar Lonergan
- RISE, Early Intervention in Psychosis Service, South Lee Mental Health Services, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ali S Khashan
- School of Public Health, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Karen O’Connor
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- RISE, Early Intervention in Psychosis Service, South Lee Mental Health Services, Cork, Ireland
| |
Collapse
|
24
|
Schapira I, O'Neill MR, Russo-Savage L, Narla T, Laprade KA, Stafford JM, Ou Y. Measuring tryptophan dynamics using fast scan cyclic voltammetry at carbon fiber microelectrodes with improved sensitivity and selectivity. RSC Adv 2023; 13:26203-26212. [PMID: 37671005 PMCID: PMC10475881 DOI: 10.1039/d3ra04551j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Despite the fact that tryptophan (Trp) is an essential amino acid that humans typically obtain through diet, there are several interesting tryptophan dynamics at play in the body. Quantifying and understanding these dynamics are crucial in studies of depression, autism spectrum disorder, and other disorders that involve neurotransmitters directly synthesized from tryptophan. Here we detail the optimization of waveform parameters in fast scan cyclic voltammetry at carbon fiber microelectrodes to yield four-fold higher sensitivity and six-fold higher selectivity compared to previously reported methods. We demonstrate the utility of our method in measuring (1) exogenous Trp dynamics from administration of Trp to PC-12 cells with and without overexpression of tryptophan hydroxylase-2 and (2) endogenous Trp dynamics in pinealocyte cultures with and without stimulation via norepinephrine. We observed interesting differences in Trp dynamics in both model systems, which demonstrate that our method is indeed sensitive to Trp dynamics in different applications.
Collapse
Affiliation(s)
| | | | | | - Terdha Narla
- Department of Pharmacology, University of Vermont USA
| | | | - James M Stafford
- Neuroscience Graduate Program, University of Vermont USA
- Department of Neurological Sciences, University of Vermont USA
| | - Yangguang Ou
- Department of Chemistry, University of Vermont USA
- Neuroscience Graduate Program, University of Vermont USA
| |
Collapse
|
25
|
Xia S, Maitiniyazi G, Liu Y, Chen Y, Guo M, He J, Tao W, Li Z. Whey protein isolate attenuates depression-like behavior developed in a mouse model of breast tumor. Food Res Int 2023; 169:112849. [PMID: 37254425 DOI: 10.1016/j.foodres.2023.112849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/06/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Increasing evidence indicates that tryptophan (Trp) metabolism disturbance controls hippocampal 5-hydroxytryptamine (5-HT) and thereby affecting depression-like behavior, in which the gut microbiota (GM) might be involved. This study investigated the effect of Trp-rich whey protein isolate (WPI) on depressive-like behavior in 4T1 tumor-bearing mice. Female BALB/c mice were subcutaneously inoculated with murine 4T1 mammary carcinoma cells and received 2 g/kg of WPI by gavage daily for 21 days. The results showed that WPI exerted no significant effects on tumor weight and volume, but abrogated tumor-induced depression-like behavior, as evidenced by remarkably increased time and distance in the center of the open-field test, decreased immobility time in the tail suspension test, increased time and number of entries to the open arms in the elevated plus maze and sucrose preference. Moreover, WPI promoted the hippocampal Trp, 5-hydroxytryptophan (5-HTP), 5-HT, 5-hydroxyindoleacetic acid (5-HIAA) levels and inhibited kynurenine (Kyn) through up-regulating serotonin transporter (SERT) and down-regulating indoleamine 2, 3-dioxygenase (IDO). WPI showed an enriched microbial diversity indicated by increased Shannon index and decreased Simpson index, reduced the abundances of Proteobacteria, Rikenellaceae_RC9_gut_group, Alloprevotella and Prevotellaceae_UCG-001, and increased the abundance of unclassified_k__norank_d__Bacteria in tumor-bearing mice (P < 0.05). At level 3, WPI enhanced the function of microbial gene related to Trp metabolism in the KEGG pathways (P < 0.05). Our results suggest that WPI exhibits a potent antidepressant-like effect via the regulation of hippocampal Trp metabolism and alteration of GM composition and function, and it may be an effective prevention for cancer-related depression.
Collapse
Affiliation(s)
- Shufang Xia
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| | | | - Yuan Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yue Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Mengting Guo
- College of Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jianyun He
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Tao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Ziyuan Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
26
|
Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2023; 14:1130689. [PMID: 37404311 PMCID: PMC10316519 DOI: 10.3389/fendo.2023.1130689] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Cognitive function in humans depends on the complex and interplay between multiple body systems, including the hypothalamic-pituitary-adrenal (HPA) axis. The gut microbiota, which vastly outnumbers human cells and has a genetic potential that exceeds that of the human genome, plays a crucial role in this interplay. The microbiota-gut-brain (MGB) axis is a bidirectional signalling pathway that operates through neural, endocrine, immune, and metabolic pathways. One of the major neuroendocrine systems responding to stress is the HPA axis which produces glucocorticoids such as cortisol in humans and corticosterone in rodents. Appropriate concentrations of cortisol are essential for normal neurodevelopment and function, as well as cognitive processes such as learning and memory, and studies have shown that microbes modulate the HPA axis throughout life. Stress can significantly impact the MGB axis via the HPA axis and other pathways. Animal research has advanced our understanding of these mechanisms and pathways, leading to a paradigm shift in conceptual thinking about the influence of the microbiota on human health and disease. Preclinical and human trials are currently underway to determine how these animal models translate to humans. In this review article, we summarize the current knowledge of the relationship between the gut microbiota, HPA axis, and cognition, and provide an overview of the main findings and conclusions in this broad field.
Collapse
Affiliation(s)
- Jody A. Rusch
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- C17 Chemical Pathology Laboratory, Groote Schuur Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Lara R. Dugas
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
27
|
Medina-Rodriguez EM, Cruz AA, De Abreu JC, Beurel E. Stress, inflammation, microbiome and depression. Pharmacol Biochem Behav 2023:173561. [PMID: 37148918 DOI: 10.1016/j.pbb.2023.173561] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 09/13/2022] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
Psychiatric disorders are mental illnesses involving changes in mood, cognition and behavior. Their prevalence has rapidly increased in the last decades. One of the most prevalent psychiatric disorders is major depressive disorder (MDD), a debilitating disease lacking efficient treatments. Increasing evidence shows that microbial and immunological changes contribute to the pathophysiology of depression and both are modulated by stress. This bidirectional relationship constitutes the brain-gut axis involving various neuroendocrine, immunological, neuroenterocrine and autonomic pathways. The present review covers the most recent findings on the relationships between stress, the gut microbiome and the inflammatory response and their contribution to depression.
Collapse
Affiliation(s)
- Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences, United States of America; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33125, United States of America.
| | - Alyssa A Cruz
- Department of Psychiatry and Behavioral Sciences, United States of America
| | | | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, United States of America; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States of America
| |
Collapse
|
28
|
Song Y, Wang X, Ma W, Yang Y, Yan S, Sun J, Zhu X, Tang Y. Graves' disease as a driver of depression: a mechanistic insight. Front Endocrinol (Lausanne) 2023; 14:1162445. [PMID: 37152963 PMCID: PMC10157224 DOI: 10.3389/fendo.2023.1162445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Graves' disease (GD) is characterized by diffuse enlargement and overactivity of the thyroid gland, which may be accompanied by other physical symptoms. Among them, depression can dramatically damage patients' quality of life, yet its prevalence in GD has not received adequate attention. Some studies have established a strong correlation between GD and increased risk of depression, though the data from current study remains limited. The summary of mechanistic insights regarding GD and depression has underpinned possible pathways by which GD contributes to depression. In this review, we first summarized the clinical evidence that supported the increased prevalence of depression by GD. We then concentrated on the mechanistic findings related to the acceleration of depression in the context of GD, as mounting evidence has indicated that GD promotes the development of depression through various mechanisms, including triggering autoimmune responses, inducing hormonal disorders, and influencing the thyroid-gut-microbiome-brain axis. Finally, we briefly presented potential therapeutic approaches to decreasing the risk of depression among patients with GD.
Collapse
Affiliation(s)
- Yifei Song
- Beijing University of Chinese Medicine, Beijing, China
| | - Xinying Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Wenxin Ma
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Yang
- Tongling Municipal hospital, Anhui, China
| | - Shuxin Yan
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiapan Sun
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Xiaoyun Zhu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Tang
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Murakami Y, Imamura Y, Kasahara Y, Yoshida C, Momono Y, Fang K, Sakai D, Konishi Y, Nishiyama T. Maternal Inflammation with Elevated Kynurenine Metabolites Is Related to the Risk of Abnormal Brain Development and Behavioral Changes in Autism Spectrum Disorder. Cells 2023; 12:1087. [PMID: 37048160 PMCID: PMC10093447 DOI: 10.3390/cells12071087] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Several studies show that genetic and environmental factors contribute to the onset and progression of neurodevelopmental disorders. Maternal immune activation (MIA) during gestation is considered one of the major environmental factors driving this process. The kynurenine pathway (KP) is a major route of the essential amino acid L-tryptophan (Trp) catabolism in mammalian cells. Activation of the KP following neuro-inflammation can generate various endogenous neuroactive metabolites that may impact brain functions and behaviors. Additionally, neurotoxic metabolites and excitotoxicity cause long-term changes in the trophic support, glutamatergic system, and synaptic function following KP activation. Therefore, investigating the role of KP metabolites during neurodevelopment will likely promote further understanding of additional pathophysiology of neurodevelopmental disorders, including autism spectrum disorder (ASD). In this review, we describe the changes in KP metabolism in the brain during pregnancy and represent how maternal inflammation and genetic factors influence the KP during development. We overview the patients with ASD clinical data and animal models designed to verify the role of perinatal KP elevation in long-lasting biochemical, neuropathological, and behavioral deficits later in life. Our review will help shed light on new therapeutic strategies and interventions targeting the KP for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yuki Murakami
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata 573-1010, Japan
| | - Yukio Imamura
- Department of Architecture and Architectual Systems Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | - Yoshiyuki Kasahara
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Chihiro Yoshida
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yuta Momono
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ke Fang
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata 573-1010, Japan
| | - Daisuke Sakai
- Department of Biology, Kanazawa Medical University, Kanazawa 920-0293, Japan
| | - Yukuo Konishi
- Center for Baby Science, Doshisha University, Kyotanabe 619-0225, Japan
- Healthcare and Medical Data Multi-Level Integration Platform Group, RIKEN Medical Sciences Innovation Hub Program, Yokohama 230-0045, Japan
| | - Toshimasa Nishiyama
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata 573-1010, Japan
| |
Collapse
|
30
|
Kaikai NE, Ba-M Hamed S, Slimani A, Dilagui I, Hanchi AL, Soraa N, Mezrioui NE, Bennis M, Ghanima A. Chronic exposure to metam sodium-based pesticide in mice during adulthood elevated anxiety and depression-like behaviors: Involvement of serotoninergic depletion and gut microbiota dysbiosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104066. [PMID: 36640922 DOI: 10.1016/j.etap.2023.104066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Metam sodium-based pesticide (MS-BP) is widely used in agriculture and public health. We have previously demonstrated that maternal exposure to MS-BP resulted in sensorimotor alterations in mice offspring with long-lasting deficits including anxiety- and depression-like behaviors. Here, we project to verify whether these two neurobehavioral effects occur during adulthood following direct exposure to MS-BP and whether it results in changes in the serotoninergic system and gut microbiota. Our findings showed that chronic exposure to MS-BP increased anxiety- and depression-like behaviors, accompanied by a depletion of serotonin-like neurons within the dorsal raphe nucleus and a reduction in serotoninergic terminals in the infralimbic cortex and the basolateral amygdala. In addition, all MS-BP-exposed animals exhibited a reduced total bacterial number and diversity of gut microbiota. Taken together, our data demonstrated that MS-BP-induced behavioral changes could be related to the impairment of the serotoninergic system and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Nour-Eddine Kaikai
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakesh, Morocco; Research Laboratory for Sustainable Development and Health. Cadi Ayyad University, Faculty of Sciences and Techniques, Marrakesh, Morocco
| | - Saadia Ba-M Hamed
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakesh, Morocco
| | - Aiman Slimani
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Cadi Ayyad University, Faculty of Sciences, Marrakesh, Morocco
| | - Ilham Dilagui
- Laboratory of Microbiology, University Hospital Center Mohamed VI, Marrakesh, Morocco
| | - Asmae Lamrani Hanchi
- Laboratory of Microbiology, University Hospital Center Mohamed VI, Marrakesh, Morocco
| | - Nabila Soraa
- Laboratory of Microbiology, University Hospital Center Mohamed VI, Marrakesh, Morocco
| | - Nour-Eddine Mezrioui
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Cadi Ayyad University, Faculty of Sciences, Marrakesh, Morocco
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakesh, Morocco
| | - Abderrazzak Ghanima
- Research Laboratory for Sustainable Development and Health. Cadi Ayyad University, Faculty of Sciences and Techniques, Marrakesh, Morocco.
| |
Collapse
|
31
|
The Microbiota-Dependent Treatment of Wuzhuyu Decoction for Chronic Migraine Model Rat Associated with Anxiety-Depression Like Behavior. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2302653. [PMID: 36647428 PMCID: PMC9840058 DOI: 10.1155/2023/2302653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 01/09/2023]
Abstract
We previously found that Wuzhuyu Decoction (WZYD) could affect central and peripheral 5-HT to relieve hyperalgesia in chronic migraine (CM) model rats, possibly related to gut microbiota. However, the exact role of gut microbiota has not been elucidated. Accumulating evidence points to the possibility of treating central nervous system disease via the gut-brain axis. In our study, the inflammatory soup-induced CM model rats presented depression- and anxiety-like behaviors which both related to insufficient 5-HT. It was found that antibiotic administration caused community dysbiosis, and proteobacteria became the main dominant bacteria. The bacteria related to short-chain fatty acids and 5-HT generation were reduced, resulting in reduced levels of 5-HT, tryptophan hydroxylase, and secondary bile acids. Functional prediction-revealed sphingolipid signaling pathway in CM rats was significantly decreased and elevated after WZYD treatment. The effect of WZYD could be weakened by antibiotics. The CM rats exhibited anxiety- and depression-like behavior with 5-HT and number of neurons decreased in the CA1 and CA2 regions of hippocampal. The treatment of WZYD could recover to varying degrees. Antibiotics combined with WZYD attenuate the effect of WZYD on increasing the 5-HT content and related protein expression in the brain stem, plasma and colon, reducing CGRP, c-Fos, and inflammatory factors. And antibiotics also led to colon length increasing and stool retention, so that the antimigraine effect was weakened compared with WZYD. This experiment revealed that gut microbiota mediated WZYD treatment of CM rats with anxiety-depression like behavior.
Collapse
|
32
|
The ‘Whey’ to good health: Whey protein and its beneficial effect on metabolism, gut microbiota and mental health. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
van Zundert SKM, Broekhuizen M, Smit AJP, van Rossem L, Mirzaian M, Willemsen SP, Danser AHJ, De Rijke YB, Reiss IKM, Merkus D, Steegers-Theunissen RPM. The Role of the Kynurenine Pathway in the (Patho) physiology of Maternal Pregnancy and Fetal Outcomes: A Systematic Review. Int J Tryptophan Res 2022; 15:11786469221135545. [PMID: 36467775 PMCID: PMC9716456 DOI: 10.1177/11786469221135545] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/10/2022] [Indexed: 08/04/2023] Open
Abstract
INTRODUCTION Tryptophan is the precursor of kynurenine pathway (KP) metabolites which regulate immune tolerance, energy metabolism, and vascular tone. Since these processes are important during pregnancy, changes in KP metabolite concentrations may play a role in the pathophysiology of pregnancy complications. We hypothesize that KP metabolites can serve as novel biomarkers and preventive therapeutic targets. This review aimed to provide more insight into associations between KP metabolite concentrations in maternal and fetal blood, and in the placenta, and adverse maternal pregnancy and fetal outcomes. METHODS A systematic search was performed on 18 February 2022 comprising all KP metabolites, and keywords related to maternal pregnancy and fetal outcomes. English-written human studies measuring KP metabolite(s) in maternal or fetal blood or in the placenta in relation to pregnancy complications, were included. Methodological quality was assessed using the ErasmusAGE quality score (QS) (range: 0-10). A meta-analysis of the mean maternal tryptophan and kynurenine concentrations in uncomplicated pregnancies was conducted. RESULTS Of the 6262 unique records, 37 were included (median QS = 5). Tryptophan was investigated in most studies, followed by kynurenine, predominantly in maternal blood (n = 28/37), and in the second and third trimester of pregnancy (n = 29/37). Compared to uncomplicated pregnancies, decreased tryptophan in maternal blood was associated with an increased prevalence of depression, gestational diabetes mellitus, fetal growth restriction, spontaneous abortion, and preterm birth. Elevated tryptophan was only observed in women with pregnancy-induced hypertension compared to normotensive pregnant women. In women with preeclampsia, only kynurenic acid was altered; elevated in the first trimester of pregnancy, and positively associated with proteinuria in the third trimester of pregnancy. CONCLUSIONS KP metabolite concentrations were altered in a variety of maternal pregnancy and fetal complications. This review implies that physiological pregnancy requires a tight balance of KP metabolites, and that disturbances in either direction are associated with adverse maternal pregnancy and fetal outcomes.
Collapse
Affiliation(s)
- Sofie KM van Zundert
- Department of Obstetrics and
Gynecology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Clinical Chemistry,
Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Michelle Broekhuizen
- Division of Neonatology, Department of
Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Division of Pharmacology and Vascular
Medicine, Department of Internal Medicine, Erasmus MC University Medical Center,
Rotterdam, The Netherlands
- Division of Experimental Cardiology,
Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The
Netherlands
| | - Ashley JP Smit
- Department of Obstetrics and
Gynecology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Lenie van Rossem
- Department of Obstetrics and
Gynecology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mina Mirzaian
- Department of Clinical Chemistry,
Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sten P Willemsen
- Department of Obstetrics and
Gynecology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Biostatistics, Erasmus MC
University Medical Center, Rotterdam, The Netherlands
| | - AH Jan Danser
- Division of Pharmacology and Vascular
Medicine, Department of Internal Medicine, Erasmus MC University Medical Center,
Rotterdam, The Netherlands
| | - Yolanda B De Rijke
- Department of Clinical Chemistry,
Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Irwin KM Reiss
- Division of Neonatology, Department of
Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology,
Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The
Netherlands
- Walter Brendel Center of Experimental
Medicine, University Clinic Munich, Ludwig Maximillian University Munich, Munich,
Germany
| | | |
Collapse
|
34
|
Detection of the role of intestinal flora and tryptophan metabolism involved in antidepressant-like actions of crocetin based on a multi-omics approach. Psychopharmacology (Berl) 2022; 239:3657-3677. [PMID: 36169685 DOI: 10.1007/s00213-022-06239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
Abstract
RATIONALE Depression is a serious mood disorder, and crocetin has a variety of pharmacological activities, including antidepressant effect. The alterations of intestinal flora have a significant correlation with depression, and crocetin can alter the composition of intestinal flora in mice with depression-like behaviors. OBJECTIVE This study investigated the underlying antidepressant mechanisms of crocetin through multi-omics coupled with biochemical technique validation. METHODS Chronic unpredictable stress (CUMS) was used to induce mice model of depression to evaluate the antidepressant effect of crocetin through behavioral tests, and the metagenomic and metabolomic were used to explore the potential mechanisms involved. In order to verify its underlying mechanism, western blot (WB), Elisa, immune histological and HPLC techniques were used to detect the level of inflammatory cytokines and the level of metabolites/proteins related to tryptophan metabolism in crocetin-treated mice. RESULTS Crocetin ameliorated depression-like behaviors and increased mobility in depressive mice induced by CUMS. Metagenomic results showed that crocetin regulated the structure of intestinal flora, as well as significantly regulated the function gene related to derangements in energy metabolism and amino acid metabolism in mice with depression-like behaviors. Metabolomic results showed that the tryptophan metabolism, arginine metabolism and arachidonic acid metabolism played an essential role in exerting antidepressant-like effect of crocetin. According to multi-omics approaches and validation results, tryptophan metabolism and inflammation were identified and validated as valuable biological processes involved in the antidepressant effects of crocetin. Crocetin regulated the tryptophan metabolism in mice with depression-like behaviors, including increased aryl hydrocarbon receptor (AhR) expression, reduced indoleamine 2,3-dioxygenase 1 (IDO1) and serotonin transporter (SERT) expression in the hippocampus, elevated the content of 5-HT, kynurenic acid in serum and 5-HT, tryptophan in hippocampus. In addition, crocetin also attenuated inflammation in mice with depression-like behaviors, which presented with reducing the production of inflammatory cytokines in serum and colon. Meanwhile, crocetin up-regulated the expression of zonula occludens 1 (ZO-1) and occludin in ileum and colon to repair the intestinal barrier for preventing inflammation transfer. CONCLUSION Our findings clarify that crocetin exerted antidepressant effects through its anti-inflammation, repairment of intestinal barrier, modulatory on the intestinal flora and metabolic disorders, which further regulated tryptophan metabolism and impacted mitogen-activated protein kinase (MAPK) signaling pathway to enhance neural plasticity, thereby protect neural.
Collapse
|
35
|
Francis HM, Stevenson RJ, Tan LSY, Ehrenfeld L, Byeon S, Attuquayefio T, Gupta D, Lim CK. Kynurenic acid as a biochemical factor underlying the association between Western-style diet and depression: A cross-sectional study. Front Nutr 2022; 9:945538. [PMID: 36299996 PMCID: PMC9589270 DOI: 10.3389/fnut.2022.945538] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022] Open
Abstract
Consumption of a Western-style diet (WS-diet), high in saturated fat and added sugar, is associated with increased depression risk. However, the physiological mechanisms underlying the relationship requires elucidation. Diet can alter tryptophan metabolism along the kynurenine pathway (KP), potentially linking inflammation and depression. This study aimed to examine whether urinary inflammatory markers and KP metabolites differed according to WS-diet consumption and depression severity. Depression symptoms and habitual WS-diet consumption were assessed in 169 healthy adults aged 17–35 recruited from two experimental studies. Targeted metabolomics profiling of seven KP metabolites, ELISA-based assays of interleukin-6 (IL-6) and C-reactive protein (CRP) were performed using urine samples collected from the participants. Parametric tests were performed for group comparison and associations analysis. Multilevel mixed-effect modelling was applied to control for biases. Higher intake of WS-diet was associated with lower levels of neuroprotective kynurenic acid (KA; R = −0.17, p = 0.0236). There were no differences in IL-6 or CRP across diet groups (p > 0.05). Physical activity had negative associations with most KP metabolites. Mixed-effects regression analysis showed the glutamatergic inhibitor, KA, was the only biomarker to have a significant association with depression symptoms in a model adjusted for demographic and lifestyle variables: a unit increase in KA was associated with 0.21 unit decrease in Depression Anxiety and Stress Scale-21 depression score (p = 0.009). These findings suggest that urinary KA is associated with both habitual WS-diet intake, and levels of depression symptoms, independent of inflammation. Findings support the role of neuroprotection and glutamatergic modulation in depression. We propose that KA may act as endogenous glutamatergic inhibition in regulating depression severity in the absence of inflammation. Further comparison with blood-based markers will assist in validating the utility of non-invasive urine samples for measuring KP metabolites.
Collapse
Affiliation(s)
- Heather M. Francis
- Department of Psychology, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia,Department of Neurology, Royal North Shore Hospital, Sydney, NSW, Australia,*Correspondence: Heather M. Francis,
| | - Richard J. Stevenson
- Department of Psychology, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Lorraine S. Y. Tan
- Department of Psychology, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Lauren Ehrenfeld
- Department of Psychology, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Sooin Byeon
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Tuki Attuquayefio
- Department of Psychology, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Dolly Gupta
- Department of Psychology, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Chai K. Lim
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia,Chai K. Lim,
| |
Collapse
|
36
|
Wang Z, Shao D, Wu S, Song Z, Shi S. Heat stress-induced intestinal barrier damage and dimethylglycine alleviates via improving the metabolism function of microbiota gut brain axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114053. [PMID: 36084503 DOI: 10.1016/j.ecoenv.2022.114053] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Heat stress, a widely occurred in subtropical climate regions, causes ecosystem destruction, and intestine injury in humans and animals. As an important compound in the metabolic pathway of choline, dimethylglycine (DMG) shows anti-inflammatory effects. This study examines the beneficial effects of dietary DMG against heat stress-induced intestine injury and further explores the underlying molecular mechanisms using a broiler model. Here, we showed that DMG supplements exhibited positive effects to growth performance, as evidenced by the significantly increased body weight and feed conversion rate. These therapeutic effects attributed to repaired gut barrier integrity, increased content of anti-inflammatory cytokines IL-10, decreased content of pro-inflammatory cytokines IL-6, and down-regulated gene expression of the NF-κB signaling pathway. DMG treatment led to the reshaping of the gut microbiota composition, mainly increasing the short-chain fatty acid (SCFAs) strains such as Faecalibacterium, and Marvinbryantia. DMG treatment also increased two main members of SCFAs, including acetate acid and isobutyrate. Particularly, distinct effects were found which mediated the tryptophan metabolism in intestines such as increased tryptophan and 5-HT, which further alleviate the occurrence of intestinal barrier damage caused by heat stress. Additionally, DMG treatment promoted neuroendocrine function and stimulated the hypothalamic neurotransmitter metabolism by activating tryptophan metabolism in the hypothalamus. Overall, DMG supplementation effectively reduced the occurrence of intestinal inflammation induced by heat stress through modulating cecal microbial communities and improving the metabolism function of microbiota gut brain axis. Our findings revealed a novel mechanism by which gut microbiota could improve host health.
Collapse
Affiliation(s)
- Zhenxin Wang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China; Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Dan Shao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China
| | - Shu Wu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China
| | - Zhigang Song
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China.
| |
Collapse
|
37
|
Lukić I, Ivković S, Mitić M, Adžić M. Tryptophan metabolites in depression: Modulation by gut microbiota. Front Behav Neurosci 2022; 16:987697. [PMID: 36172468 PMCID: PMC9510596 DOI: 10.3389/fnbeh.2022.987697] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Clinical depression is a multifactorial disorder and one of the leading causes of disability worldwide. The alterations in tryptophan metabolism such as changes in the levels of serotonin, kynurenine, and kynurenine acid have been implicated in the etiology of depression for more than 50 years. In recent years, accumulated evidence has revealed that gut microbial communities, besides being essential players in various aspects of host physiology and brain functioning are also implicated in the etiology of depression, particularly through modulation of tryptophan metabolism. Therefore, the aim of this review is to summarize the evidence of the role of gut bacteria in disturbed tryptophan metabolism in depression. We summed up the effects of microbiota on serotonin, kynurenine, and indole pathway of tryptophan conversion relevant for understanding the pathogenesis of depressive behavior. Moreover, we reviewed data regarding the therapeutic effects of probiotics, particularly through the regulation of tryptophan metabolites. Taken together, these findings can open new possibilities for further improvement of treatments for depression based on the microbiota-mediated modulation of the tryptophan pathway.
Collapse
|
38
|
Liaqat H, Parveen A, Kim SY. Neuroprotective Natural Products’ Regulatory Effects on Depression via Gut–Brain Axis Targeting Tryptophan. Nutrients 2022; 14:nu14163270. [PMID: 36014776 PMCID: PMC9413544 DOI: 10.3390/nu14163270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
L-tryptophan (Trp) contributes to regulating bilateral communication of the gut–brain axis. It undergoes three major metabolic pathways, which lead to formation of kynurenine, serotonin (5-HT), and indole derivatives (under the control of the microbiota). Metabolites from the principal Trp pathway, kynurenic acid and quinolinic acid, exhibit neuroprotective activity, while picolinic acid exhibits antioxidant activity, and 5-HT modulates appetite, sleep cycle, and pain. Abnormality in Trp plays crucial roles in diseases, including depression, colitis, ulcer, and gut microbiota-related dysfunctions. To address these diseases, the use of natural products could be a favorable alternative because they are a rich source of compounds that can modulate the activity of Trp and combat various diseases through modulating different signaling pathways, including the gut microbiota, kynurenine pathway, and serotonin pathway. Alterations in the signaling cascade pathways via different phytochemicals may help us explore the deep relationships of the gut–brain axis to study neuroprotection. This review highlights the roles of natural products and their metabolites targeting Trp in different diseases. Additionally, the role of Trp metabolites in the regulation of neuroprotective and gastroprotective activities is discussed. This study compiles the literature on novel, potent neuroprotective agents and their action mechanisms in the gut–brain axis and proposes prospective future studies to identify more pharmaceuticals based on signaling pathways targeting Trp.
Collapse
Affiliation(s)
- Humna Liaqat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domzale, Slovenia
| | - Amna Parveen
- College of Pharmacy, Gachon University Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
- Correspondence: or (A.P.); (S.Y.K.)
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
- Correspondence: or (A.P.); (S.Y.K.)
| |
Collapse
|
39
|
The Role of the Gut Microbiota in the Effects of Early-Life Stress and Dietary Fatty Acids on Later-Life Central and Metabolic Outcomes in Mice. mSystems 2022; 7:e0018022. [PMID: 35695433 PMCID: PMC9238388 DOI: 10.1128/msystems.00180-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Early-life stress (ELS) leads to increased vulnerability for mental and metabolic disorders. We have previously shown that a low dietary ω-6/ω-3 polyunsaturated fatty acid (PUFA) ratio protects against ELS-induced cognitive impairments. Due to the importance of the gut microbiota as a determinant of long-term health, we here study the impact of ELS and dietary PUFAs on the gut microbiota and how this relates to the previously described cognitive, metabolic, and fatty acid profiles. Male mice were exposed to ELS via the limited bedding and nesting paradigm (postnatal day (P)2 to P9 and to an early diet (P2 to P42) with an either high (15) or low (1) ω-6 linoleic acid to ω-3 alpha-linolenic acid ratio. 16S rRNA was sequenced and analyzed from fecal samples at P21, P42, and P180. Age impacted α- and β-diversity. ELS and diet together predicted variance in microbiota composition and affected the relative abundance of bacterial groups at several taxonomic levels in the short and long term. For example, age increased the abundance of the phyla Bacteroidetes, while it decreased Actinobacteria and Verrucomicrobia; ELS reduced the genera RC9 gut group and Rikenella, and the low ω-6/ω-3 diet reduced the abundance of the Firmicutes Erysipelotrichia. At P42, species abundance correlated with body fat mass and circulating leptin (e.g., Bacteroidetes and Proteobacteria taxa) and fatty acid profiles (e.g., Firmicutes taxa). This study gives novel insights into the impact of age, ELS, and dietary PUFAs on microbiota composition, providing potential targets for noninvasive (nutritional) modulation of ELS-induced deficits. IMPORTANCE Early-life stress (ELS) leads to increased vulnerability to develop mental and metabolic disorders; however, the biological mechanisms leading to such programming are not fully clear. Increased attention has been given to the importance of the gut microbiota as a determinant of long-term health and as a potential target for noninvasive nutritional strategies to protect against the negative impact of ELS. Here, we give novel insights into the complex interaction between ELS, early dietary ω-3 availability, and the gut microbiota across ages and provide new potential targets for (nutritional) modulation of the long-term effects of the early-life environment via the microbiota.
Collapse
|
40
|
Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia. Mol Neurodegener 2022; 17:43. [PMID: 35715821 PMCID: PMC9204954 DOI: 10.1186/s13024-022-00548-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
A consequence of our progressively ageing global population is the increasing prevalence of worldwide age-related cognitive decline and dementia. In the absence of effective therapeutic interventions, identifying risk factors associated with cognitive decline becomes increasingly vital. Novel perspectives suggest that a dynamic bidirectional communication system between the gut, its microbiome, and the central nervous system, commonly referred to as the microbiota-gut-brain axis, may be a contributing factor for cognitive health and disease. However, the exact mechanisms remain undefined. Microbial-derived metabolites produced in the gut can cross the intestinal epithelial barrier, enter systemic circulation and trigger physiological responses both directly and indirectly affecting the central nervous system and its functions. Dysregulation of this system (i.e., dysbiosis) can modulate cytotoxic metabolite production, promote neuroinflammation and negatively impact cognition. In this review, we explore critical connections between microbial-derived metabolites (secondary bile acids, trimethylamine-N-oxide (TMAO), tryptophan derivatives and others) and their influence upon cognitive function and neurodegenerative disorders, with a particular interest in their less-explored role as risk factors of cognitive decline.
Collapse
|
41
|
He Q, Si C, Sun Z, Chen Y, Zhang X. The Intervention of Prebiotics on Depression via the Gut-Brain Axis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123671. [PMID: 35744797 PMCID: PMC9230023 DOI: 10.3390/molecules27123671] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
The imbalance of intestinal microbiota can cause the accumulation of endotoxin in the main circulation system of the human body, which has a great impact on human health. Increased work and life pressure have led to a rise in the number of people falling into depression, which has also reduced their quality of life. The gut–brain axis (GBA) is closely related to the pathological basis of depression, and intestinal microbiota can improve depressive symptoms through GBA. Previous studies have proven that prebiotics can modulate intestinal microbiota and thus participate in human health regulation. We reviewed the regulatory mechanism of intestinal microbiota on depression through GBA, and discussed the effects of prebiotics, including plant polysaccharides and polyphenols on the regulation of intestinal microbiota, providing new clues for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Qinghui He
- Amway (China) R&D Centre Co., Ltd., Guangzhou 510730, China;
| | - Congcong Si
- Ningbo Tech-inno Health Industry Co., Ltd., Ningbo 315211, China; (C.S.); (Z.S.); (Y.C.)
| | - Zhenjiao Sun
- Ningbo Tech-inno Health Industry Co., Ltd., Ningbo 315211, China; (C.S.); (Z.S.); (Y.C.)
| | - Yuhui Chen
- Ningbo Tech-inno Health Industry Co., Ltd., Ningbo 315211, China; (C.S.); (Z.S.); (Y.C.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
- Correspondence:
| |
Collapse
|
42
|
Morgan EW, Perdew GH, Patterson AD. Multi-Omics Strategies for Investigating the Microbiome in Toxicology Research. Toxicol Sci 2022; 187:189-213. [PMID: 35285497 PMCID: PMC9154275 DOI: 10.1093/toxsci/kfac029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Microbial communities on and within the host contact environmental pollutants, toxic compounds, and other xenobiotic compounds. These communities of bacteria, fungi, viruses, and archaea possess diverse metabolic potential to catabolize compounds and produce new metabolites. Microbes alter chemical disposition thus making the microbiome a natural subject of interest for toxicology. Sequencing and metabolomics technologies permit the study of microbiomes altered by acute or long-term exposure to xenobiotics. These investigations have already contributed to and are helping to re-interpret traditional understandings of toxicology. The purpose of this review is to provide a survey of the current methods used to characterize microbes within the context of toxicology. This will include discussion of commonly used techniques for conducting omic-based experiments, their respective strengths and deficiencies, and how forward-looking techniques may address present shortcomings. Finally, a perspective will be provided regarding common assumptions that currently impede microbiome studies from producing causal explanations of toxicologic mechanisms.
Collapse
Affiliation(s)
- Ethan W Morgan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrew D Patterson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
43
|
Tao E, Zhu Z, Hu C, Long G, Chen B, Guo R, Fang M, Jiang M. Potential Roles of Enterochromaffin Cells in Early Life Stress-Induced Irritable Bowel Syndrome. Front Cell Neurosci 2022; 16:837166. [PMID: 35370559 PMCID: PMC8964523 DOI: 10.3389/fncel.2022.837166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, also known as disorders of the gut–brain interaction; however, the pathophysiology of IBS remains unclear. Early life stress (ELS) is one of the most common risk factors for IBS development. However, the molecular mechanisms by which ELS induces IBS remain unclear. Enterochromaffin cells (ECs), as a prime source of peripheral serotonin (5-HT), play a pivotal role in intestinal motility, secretion, proinflammatory and anti-inflammatory effects, and visceral sensation. ECs can sense various stimuli and microbiota metabolites such as short-chain fatty acids (SCFAs) and secondary bile acids. ECs can sense the luminal environment and transmit signals to the brain via exogenous vagal and spinal nerve afferents. Increasing evidence suggests that an ECs-5-HT signaling imbalance plays a crucial role in the pathogenesis of ELS-induced IBS. A recent study using a maternal separation (MS) animal model mimicking ELS showed that MS induced expansion of intestinal stem cells and their differentiation toward secretory lineages, including ECs, leading to ECs hyperplasia, increased 5-HT production, and visceral hyperalgesia. This suggests that ELS-induced IBS may be associated with increased ECs-5-HT signaling. Furthermore, ECs are closely related to corticotropin-releasing hormone, mast cells, neuron growth factor, bile acids, and SCFAs, all of which contribute to the pathogenesis of IBS. Collectively, ECs may play a role in the pathogenesis of ELS-induced IBS. Therefore, this review summarizes the physiological function of ECs and focuses on their potential role in the pathogenesis of IBS based on clinical and pre-clinical evidence.
Collapse
Affiliation(s)
- Enfu Tao
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Zhenya Zhu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Chenmin Hu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Gao Long
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Bo Chen
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Rui Guo
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mizu Jiang
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- *Correspondence: Mizu Jiang,
| |
Collapse
|
44
|
Ortega MA, Alvarez-Mon MA, García-Montero C, Fraile-Martinez O, Guijarro LG, Lahera G, Monserrat J, Valls P, Mora F, Rodríguez-Jiménez R, Quintero J, Álvarez-Mon M. Gut Microbiota Metabolites in Major Depressive Disorder-Deep Insights into Their Pathophysiological Role and Potential Translational Applications. Metabolites 2022; 12:metabo12010050. [PMID: 35050172 PMCID: PMC8778125 DOI: 10.3390/metabo12010050] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is a complex and dynamic ecosystem essential for the proper functioning of the organism, affecting the health and disease status of the individuals. There is continuous and bidirectional communication between gut microbiota and the host, conforming to a unique entity known as "holobiont". Among these crosstalk mechanisms, the gut microbiota synthesizes a broad spectrum of bioactive compounds or metabolites which exert pleiotropic effects on the human organism. Many of these microbial metabolites can cross the blood-brain barrier (BBB) or have significant effects on the brain, playing a key role in the so-called microbiota-gut-brain axis. An altered microbiota-gut-brain (MGB) axis is a major characteristic of many neuropsychiatric disorders, including major depressive disorder (MDD). Significative differences between gut eubiosis and dysbiosis in mental disorders like MDD with their different metabolite composition and concentrations are being discussed. In the present review, the main microbial metabolites (short-chain fatty acids -SCFAs-, bile acids, amino acids, tryptophan -trp- derivatives, and more), their signaling pathways and functions will be summarized to explain part of MDD pathophysiology. Conclusions from promising translational approaches related to microbial metabolome will be addressed in more depth to discuss their possible clinical value in the management of MDD patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Correspondence:
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Paula Valls
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
| | - Fernando Mora
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), 28041 Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
45
|
Behavioural adaptations after antibiotic treatment in male mice are reversed by activation of the aryl hydrocarbon receptor. Brain Behav Immun 2021; 98:317-329. [PMID: 34461234 DOI: 10.1016/j.bbi.2021.08.228] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/15/2021] [Accepted: 08/21/2021] [Indexed: 01/08/2023] Open
Abstract
The intestinal microbiota plays an important role in regulating brain functions and behaviour. Microbiota-dependent changes in host physiology have been suggested to be key contributors to psychiatric conditions. However, specific host pathways modulated by the microbiota involved in behavioural control are lacking. Here, we assessed the role of the aryl hydrocarbon receptor (Ahr) in modulating microbiota-related alterations in behaviour in male and female mice after antibiotic (Abx) treatment. Mice of both sexes were treated with Abx to induce bacterial depletion. Mice were then tested in a battery of behavioural tests, including the elevated plus maze and open field tests (anxiety-like behaviour), 3 chamber test (social preference), and the tail suspension and forced swim tests (despair behaviour). Behavioural measurements in the tail suspension test were also performed after microbiota reconstitution and after administration of an Ahr agonist, β-naphthoflavone. Gene expression analyses were performed in the brain, liver, and colon by qPCR. Abx-induced bacterial depletion did not alter anxiety-like behaviour, locomotion, or social preference in either sex. A sex-dependent effect was observed in despair behaviour. Male mice had a reduction in despair behaviour after Abx treatment in both the tail suspension and forced swim tests. A similar alteration in despair behaviour was observed in Ahr knockout mice. Despair behaviour was normalized by either microbiota recolonization or Ahr activation in Abx-treated mice. Ahr activation by β-naphthoflavone was confirmed by increased expression of the Ahr-target genes Cyp1a1, Cyp1b1, and Ahrr. Our results demonstrate a role for Ahr in mediating the behaviours that are regulated by the crosstalk between the intestinal microbiota and the host. Ahr represents a novel potential modulator of behavioural conditions influenced by the intestinal microbiota.
Collapse
|
46
|
Ge T, Yao X, Zhao H, Yang W, Zou X, Peng F, Li B, Cui R. Gut microbiota and neuropsychiatric disorders: Implications for neuroendocrine-immune regulation. Pharmacol Res 2021; 173:105909. [PMID: 34543739 DOI: 10.1016/j.phrs.2021.105909] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
Recently, increasing evidence has shown gut microbiota dysbiosis might be implicated in the physiological mechanisms of neuropsychiatric disorders. Altered microbial community composition, diversity and distribution traits have been reported in neuropsychiatric disorders. However, the exact pathways by which the intestinal microbiota contribute to neuropsychiatric disorders remain largely unknown. Given that the onset and progression of neuropsychiatric disorders are characterized with complicated alterations of neuroendocrine and immunology, both of which can be continually affected by gut microbiota via "microbiome-gut-brain axis". Thus, we assess the complicated crosstalk between neuroendocrine and immunological regulation might underlie the mechanisms of gut microbiota associated with neuropsychiatric disorders. In this review, we summarized clinical and preclinical evidence on the role of the gut microbiota in neuropsychiatry disorders, especially in mood disorders and neurodevelopmental disorders. This review may elaborate the potential mechanisms of gut microbiota implicating in neuroendocrine-immune regulation and provide a comprehensive understanding of physiological mechanisms for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Haisheng Zhao
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Fanzhen Peng
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
47
|
Berding K, Vlckova K, Marx W, Schellekens H, Stanton C, Clarke G, Jacka F, Dinan TG, Cryan JF. Diet and the Microbiota-Gut-Brain Axis: Sowing the Seeds of Good Mental Health. Adv Nutr 2021; 12:1239-1285. [PMID: 33693453 PMCID: PMC8321864 DOI: 10.1093/advances/nmaa181] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the gut microbiota has emerged as a key component in regulating brain processes and behavior. Diet is one of the major factors involved in shaping the gut microbiota composition across the lifespan. However, whether and how diet can affect the brain via its effects on the microbiota is only now beginning to receive attention. Several mechanisms for gut-to-brain communication have been identified, including microbial metabolites, immune, neuronal, and metabolic pathways, some of which could be prone to dietary modulation. Animal studies investigating the potential of nutritional interventions on the microbiota-gut-brain axis have led to advancements in our understanding of the role of diet in this bidirectional communication. In this review, we summarize the current state of the literature triangulating diet, microbiota, and host behavior/brain processes and discuss potential underlying mechanisms. Additionally, determinants of the responsiveness to a dietary intervention and evidence for the microbiota as an underlying modulator of the effect of diet on brain health are outlined. In particular, we emphasize the understudied use of whole-dietary approaches in this endeavor and the need for greater evidence from clinical populations. While promising results are reported, additional data, specifically from clinical cohorts, are required to provide evidence-based recommendations for the development of microbiota-targeted, whole-dietary strategies to improve brain and mental health.
Collapse
Affiliation(s)
| | | | - Wolfgang Marx
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
| | - Harriet Schellekens
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - Felice Jacka
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Black Dog Institute, Randwick, NSW, Australia
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Douglas, QLD, Australia
| | - Timothy G Dinan
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
48
|
Prenatal stress-induced disruptions in microbial and host tryptophan metabolism and transport. Behav Brain Res 2021; 414:113471. [PMID: 34280459 DOI: 10.1016/j.bbr.2021.113471] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022]
Abstract
The aromatic amino acid tryptophan (Trp) is a precursor for multiple metabolites that can steer proper immune and neurodevelopment as well as social behavior in later life. Dysregulation in the Trp metabolic pathways and abundance of Trp or its derivatives, including indoles, kynurenine (Kyn), and particularly serotonin, has been associated with behavioral deficits and neuropsychiatric disorders including autism spectrum disorders (ASD) and schizophrenia. Previously, we have shown that prenatal stress (PNS) alters placental Trp and serotonin, and reduces Trp-metabolizing members of the maternal colonic microbiota. Given that PNS also results in alterations in offspring neurodevelopment, behavior and immune function, we hypothesized that PNS affects Trp metabolism and transport in both the maternal and fetal compartments, and that these alterations continue into adolescence. We surmised that this is due to reductions in Trp-metabolizing microbes that would otherwise reduce the Trp pool under normal metabolic conditions. To test this, pregnant mice were exposed to a restraint stressor and gene expression of enzymes involved in Trp and serotonin metabolism were measured. Specifically, tryptophan 2,3-dioxygenase, aryl hydrocarbon receptor, and solute carrier proteins, were altered due to PNS both prenatally and postnatally. Additionally, Parasutterella and Bifidobacterium, which metabolize Trp in the gut, were reduced in both the dam and the offspring. Together, the reductions of Trp-associated microbes and concomitant dysregulation in Trp metabolic machinery in dam and offspring suggest that PNS-induced Trp metabolic dysfunction may mediate aberrant fetal neurodevelopment.
Collapse
|
49
|
Gut microbiota alteration and modulation in psychiatric disorders: Current evidence on fecal microbiota transplantation. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110258. [PMID: 33497754 DOI: 10.1016/j.pnpbp.2021.110258] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
The micro-organisms residing within the gastrointestinal tract, namely gut microbiota, form a dynamic population proper of each individual, mostly composed by bacteria which co-evolved symbiotically with human species. The advances of culture-independent techniques allowed the understanding of the multiple functions of the gut microbiota in human physiology and disease, the latter often recognising a predisposing condition in an imbalanced intestinal microbial ecosystem (dysbiosis). A complex mutual interconnection between the central nervous system (CNS), the intestine and the gut microbiota, known as "microbiota-gut-brain axis", has been hypothesized to play a pivotal role in maintaining central and peripheral functions, as well as mental health. Thus, dysbiosis with specific microbiota imbalances seems to be strongly associated with the onset psychiatric disorders by altering neurodevelopment, enhancing neurodegeneration, affecting behaviour and mood. Fecal microbiota transplantation (FMT) consists of transferring the fecal matter from a donor into the gastrointestinal tract of a recipient, and it is used to quickly modulate the gut microbiota. This review focuses on the uses of FMT in psychiatric disorders. FMT has been used to induce dysbiosis and to study the disease development, or to heal dysbiosis-related mental disorders. Overall, FMT of impaired microbiota resulted effective in enhancing psychiatric-like disturbances (mainly depression and anxiety) in recipient animals, plausibly by impairing immune system, inflammatory and metabolic pathways, neurochemical processes and neuro-transmission. On the other side, preclinical and clinical data suggest that reversing or mitigating dysbiosis seems a promising strategy to restore behavioural impairments or to obtain psychiatric symptom relief. However, current evidence is limited by the lack of procedural standardization, the paucity of human studies in the vastity of psychiatric conditions and the need of a microbiota-targeted donor-recipient matching.
Collapse
|
50
|
Davies C, Mishra D, Eshraghi RS, Mittal J, Sinha R, Bulut E, Mittal R, Eshraghi AA. Altering the gut microbiome to potentially modulate behavioral manifestations in autism spectrum disorders: A systematic review. Neurosci Biobehav Rev 2021; 128:549-557. [PMID: 34271306 DOI: 10.1016/j.neubiorev.2021.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/04/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022]
Abstract
There is a potential association between gastrointestinal (GI) symptoms and the severity of autism spectrum disorder (ASD). Given this correlation, the possible impact of probiotics and prebiotics have been explored in research studies to modify the gut microbiome and ameliorate behavioral manifestations of ASD via modulating the gut-brain-microbiome axis. This systematic review focuses on the interplay between these factors in altering the behavioral manifestations of ASD. Probiotic supplementation tended to mitigate some of the behavioral manifestations of ASD, with less of a discernible trend on the microbiome level. Studies supplementing multiple probiotic species, such as microbiota transfer therapy, or including prebiotics performed better than single strain supplementation. Our analysis suggests that gut dysbiosis may increase intestinal permeability, leading to more severe GI symptoms and a systemic inflammatory response, which can alter permeability across the blood-brain barrier and synaptogenesis in the brain. Future studies are warranted to understand the precise contribution of altering gut microbiome on clinical manifestations of ASD that will open up avenues to develop preventive and treatment modalities.
Collapse
Affiliation(s)
- Camron Davies
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Dibyanshi Mishra
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Rebecca S Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Jeenu Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Rahul Sinha
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Erdogan Bulut
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Rahul Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Adrien A Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States; Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States; Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, United States.
| |
Collapse
|