1
|
Somasundaram P, Farley MM, Rudy MA, Sigal K, Asencor AI, Stefanoff DG, Shah M, Goli P, Heo J, Wang S, Tran NM, Watkins TA. Coordinated stimulation of axon regenerative and neurodegenerative transcriptional programs by ATF4 following optic nerve injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.29.534798. [PMID: 37034690 PMCID: PMC10081193 DOI: 10.1101/2023.03.29.534798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Stress signaling is important for determining the fates of neurons following axonal insults. Previously we showed that the stress-responsive kinase PERK contributes to injury-induced neurodegeneration (Larhammar et al., 2017). Here we show that PERK acts primarily through Activating Transcription Factor-4 (ATF4) to stimulate not only pro-apoptotic but also pro-regenerative responses following optic nerve damage. Using conditional knockout mice, we find an extensive PERK/ATF4-dependent transcriptional response that includes canonical ATF4 target genes and modest contributions by C/EBP Homologous Protein (CHOP). Overlap with c-Jun-dependent transcription suggests interplay with a parallel stress pathway that orchestrates regenerative and apoptotic responses. Accordingly, neuronal knockout of ATF4 recapitulates the neuroprotection afforded by PERK deficiency, and PERK or ATF4 knockout impairs optic axon regeneration enabled by disrupting the tumor suppressor PTEN. These findings reveal an integral role for PERK/ATF4 in coordinating neurodegenerative and regenerative responses to CNS axon injury.
Collapse
|
2
|
Bakulin A, Teyssier NB, Kampmann M, Khoroshkin M, Goodarzi H. pyPAGE: A framework for Addressing biases in gene-set enrichment analysis-A case study on Alzheimer's disease. PLoS Comput Biol 2024; 20:e1012346. [PMID: 39236079 PMCID: PMC11421795 DOI: 10.1371/journal.pcbi.1012346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Inferring the driving regulatory programs from comparative analysis of gene expression data is a cornerstone of systems biology. Many computational frameworks were developed to address this problem, including our iPAGE (information-theoretic Pathway Analysis of Gene Expression) toolset that uses information theory to detect non-random patterns of expression associated with given pathways or regulons. Our recent observations, however, indicate that existing approaches are susceptible to the technical biases that are inherent to most real world annotations. To address this, we have extended our information-theoretic framework to account for specific biases and artifacts in biological networks using the concept of conditional information. To showcase pyPAGE, we performed a comprehensive analysis of regulatory perturbations that underlie the molecular etiology of Alzheimer's disease (AD). pyPAGE successfully recapitulated several known AD-associated gene expression programs. We also discovered several additional regulons whose differential activity is significantly associated with AD. We further explored how these regulators relate to pathological processes in AD through cell-type specific analysis of single cell and spatial gene expression datasets. Our findings showcase the utility of pyPAGE as a precise and reliable biomarker discovery in complex diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Artemy Bakulin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Noam B. Teyssier
- Institute for Neurodegenerative Diseases, University of California San Francisco, California, United States of America
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Matvei Khoroshkin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Department of Urology, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Department of Urology, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
- Arc Institute, Palo Alto, California, United States of America
| |
Collapse
|
3
|
Munshi S, Alarbi AM, Zheng H, Kuplicki R, Burrows K, Figueroa-Hall LK, Victor TA, Aupperle RL, Khalsa SS, Paulus MP, Teague TK, Savitz J. Increased expression of ER stress, inflammasome activation, and mitochondrial biogenesis-related genes in peripheral blood mononuclear cells in major depressive disorder. Mol Psychiatry 2024:10.1038/s41380-024-02695-2. [PMID: 39174649 DOI: 10.1038/s41380-024-02695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
A subset of major depressive disorder (MDD) is characterized by immune system dysfunction, but the intracellular origin of these immune changes remains unclear. Here we tested the hypothesis that abnormalities in endoplasmic reticulum (ER) stress, inflammasome activity and mitochondrial biogenesis contribute to the development of systemic inflammation in MDD. RT-qPCR was used to measure mRNA expression of key organellar genes from peripheral blood mononuclear cells (PBMCs) isolated from 186 MDD and 67 healthy control (HC) subjects. The comparative CT (2-ΔΔCT) method was applied to quantify mRNA expression using GAPDH as the reference gene. After controlling for age, sex, BMI, and medication status using linear regression models, expression of the inflammasome (NLRC4 and NLRP3) and the ER stress (XBP1u, XBP1s, and ATF4) genes was found to be significantly increased in the MDD versus the HC group. Sensitivity analyses excluding covariates yielded similar results. After excluding outliers, expression of the inflammasome genes was no longer statistically significant but expression of the ER stress genes (XBP1u, XBP1s, and ATF4) remained significant and the mitochondrial biogenesis gene, MFN2, was significantly increased in the MDD group. NLRC4 and MFN2 were positively correlated with serum C-reactive protein concentrations, while ASC trended significant. The altered expression of inflammasome activation, ER stress, and mitochondrial biogenesis pathway components suggest that dysfunction of these organelles may play a role in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Soumyabrata Munshi
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Ahlam M Alarbi
- Integrative Immunology Center, Department of Surgery and Department of Psychiatry, University of Oklahoma - School of Community Medicine, 4502 E. 41st St., Tulsa, OK, 74135, USA
| | - Haixia Zheng
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - Rayus Kuplicki
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
| | - Kaiping Burrows
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
| | - Leandra K Figueroa-Hall
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - Teresa A Victor
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
| | - Robin L Aupperle
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, 300 UCLA Medical Plaza, Los Angeles, CA, 90095, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - T Kent Teague
- Integrative Immunology Center, Department of Surgery and Department of Psychiatry, University of Oklahoma - School of Community Medicine, 4502 E. 41st St., Tulsa, OK, 74135, USA
- Department of Biochemistry and Microbiology, Center for Health Sciences, Oklahoma State University, 1111 W. 17th St., Tulsa, OK, 74107, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| |
Collapse
|
4
|
Haddadi M, Haghi M, Rezaei N, Kiani Z, Akkülah T, Celik A. APOE and Alzheimer's disease: Pathologic clues from transgenic Drosophila melanogaster. Arch Gerontol Geriatr 2024; 123:105420. [PMID: 38537387 DOI: 10.1016/j.archger.2024.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 03/19/2024] [Indexed: 06/06/2024]
Abstract
Alzheimer's disease (AD) is one of the most common forms of neurodegenerative diseases. Apolipoprotein E4 (ApoE4) is the main genetic risk factor in the development of late-onset AD. However, the exact mechanism underlying ApoE4-mediated neurodegeneration remains unclear. We utilized Drosophila melanogaster to examine the neurotoxic effects of various human APOE isoforms when expressed specifically in glial and neural cells. We assessed impacts on mitochondrial dynamics, ER stress, lipid metabolism, and bio-metal ion concentrations in the central nervous system (CNS) of the transgenic flies. Dachshund antibody staining revealed a reduction in the number of Kenyon cells. Behavioral investigations including ethanol tolerance and learning and memory performance demonstrated neuronal dysfunction in APOE4-expressing larvae and adult flies. Transcription level of marf and drp-1 were found to be elevated in APOE4 flies, while atf4, atf6, and xbp-1 s showed down regulation. Enhanced concentrations of triglyceride and cholesterol in the CNS were observed in APOE4 transgenic flies, with especially pronounced effects upon glial-specific expression of the gene. Spectrophotometry of brain homogenate revealed enhanced Fe++ and Zn++ ion levels in conjunction with diminished Cu++ levels upon APOE4 expression. To explore therapeutic strategies, we subjected the flies to heat-shock treatment, aiming to activate heat-shock proteins (HSPs) and assess their potential to mitigate the neurotoxic effects of APOE isoforms. The results showed potential therapeutic benefits for APOE4-expressing flies, hinting at an ability to attenuate memory deterioration. Overall, our findings suggest that APOE4 can alter lipid metabolism, bio metal ion homeostasis, and disrupt the harmonious fission-fusion balance of neuronal and glial mitochondria, ultimately inducing ER stress. These alterations mirror the main clinical manifestations of AD in patients. Therefore, our work underscores the suitability of Drosophila as a fertile model for probing the pathological roles of APOE and furthering our understanding of diverse isoform-specific functions.
Collapse
Affiliation(s)
- Mohammad Haddadi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran; Genetics and Non-communicable Diseases Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mehrnaz Haghi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Niloofar Rezaei
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Zahra Kiani
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Taha Akkülah
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkiye; Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkiye
| | - Arzu Celik
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkiye; Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkiye
| |
Collapse
|
5
|
Zhang N, Zhang S, Dong X. Plant-derived bioactive compounds and their novel role in central nervous system disorder treatment via ATF4 targeting: A systematic literature review. Biomed Pharmacother 2024; 176:116811. [PMID: 38795641 DOI: 10.1016/j.biopha.2024.116811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Central nervous system (CNS) disorders exhibit exceedingly intricate pathogenic mechanisms. Pragmatic and effective solutions remain elusive, significantly compromising human life and health. Activating transcription factor 4 (ATF4) participates in the regulation of multiple pathophysiological processes, including CNS disorders. Considering the widespread involvement of ATF4 in the pathological process of CNS disorders, the targeted regulation of ATF4 by plant-derived bioactive compounds (PDBCs) may become a viable strategy for the treatment of CNS disorders. However, the regulatory relationship between PDBCs and ATF4 remains incompletely understood. Here, we aimed to comprehensively review the studies on PDBCs targeting ATF4 to ameliorate CNS disorders, thereby offering novel directions and insights for the treatment of CNS disorders. A computerized search was conducted on PubMed, Embase, Web of Science, and Google Scholar databases to identify preclinical experiments related to PDBCs targeting ATF4 for the treatment of CNS disorders. The search timeframe was from the inception of the databases to December 2023. Two assessors conducted searches using the keywords "ATF4," "Central Nervous System," "Neurological," "Alzheimer's disease," "Parkinson's Disease," "Stroke," "Spinal Cord Injury," "Glioblastoma," "Traumatic Brain Injury," and "Spinal Cord Injury." Overall, 31 studies were included, encompassing assessments of 27 PDBCs. Combining results from in vivo and in vitro studies, we observed that these PDBCs, via ATF4 modulation, prevent the deposition of amyloid-like fibers such as Aβ, tau, and α-synuclein. They regulate ERS, reduce the release of inflammatory factors, restore mitochondrial membrane integrity to prevent oxidative stress, regulate synaptic plasticity, modulate autophagy, and engage anti-apoptotic mechanisms. Consequently, they exert neuroprotective effects in CNS disorders. Numerous PDBCs targeting ATF4 have shown potential in facilitating the restoration of CNS functionality, thereby presenting expansive prospects for the treatment of such disorders. However, future endeavors necessitate high-quality, large-scale, and comprehensive preclinical and clinical studies to further validate this therapeutic potential.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, the Seventh Clinical College of China Medical University, No. 24 Central Street, Xinfu District, Fushun, Liaoning 113000, China
| | - Shun Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| |
Collapse
|
6
|
Zhang N, Nao J, Zhang S, Dong X. Novel insights into the activating transcription factor 4 in Alzheimer's disease and associated aging-related diseases: Mechanisms and therapeutic implications. Front Neuroendocrinol 2024; 74:101144. [PMID: 38797197 DOI: 10.1016/j.yfrne.2024.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Ageing is inherent to all human beings, most mechanistic explanations of ageing results from the combined effects of various physiological and pathological processes. Additionally, aging pivotally contributes to several chronic diseases. Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding protein family, has recently emerged as a pivotal player owing to its indispensable role in the pathophysiological processes of Alzheimer's disease and aging-related diseases. Moreover, ATF4 is integral to numerous biological processes. Therefore, this article aims to comprehensively review relevant research on the role of ATF4 in the onset and progression of aging-related diseases, elucidating its potential mechanisms and therapeutic approaches. Our objective is to furnish scientific evidence for the early identification of risk factors in aging-related diseases and pave the way for new research directions for their treatment. By elucidating the signaling pathway network of ATF4 in aging-related diseases, we aspire to gain a profound understanding of the molecular and cellular mechanisms, offering novel strategies for addressing aging and developing related therapeutics.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, the Seventh Clinical College of China Medical University, No. 24 Central Street, Xinfu District, Fushun 113000, Liaoning, China.
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Shun Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| |
Collapse
|
7
|
Chen J, Huang X, Zhang S, Zhu X. ATF4 inhibits tumor development and mediates p-GCN2/ASNS upregulation in colon cancer. Sci Rep 2024; 14:13042. [PMID: 38844625 PMCID: PMC11156644 DOI: 10.1038/s41598-024-63895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Colon cancer (CC) is a highly malignant tumor with a high incidence and poor prognosis. This study aimed to explore the function and molecular mechanisms of activating transcription factor 4 (ATF4) in CC. The expression levels of ATF4, GCN2, and ASNS in CC tissues were measured using immunohistochemistry (IHC) and reverse transcription quantitative PCR (RT-qPCR). Cell counting kit-8 (CCK-8), clone formation, transwell, and flow cytometry assays were conducted to assess cell viability, clonogenicity, migration, invasion, cell cycle, and apoptosis, respectively, in the ATF4 knockdown and overexpression SW480 cell lines. The effect of ATF4 on the expression of GCN2 and ASNS was detected using RT-qPCR, Chip-qPCR, and western blotting. ATF4, GCN2, and ASNS were expressed at low levels in CC tissues, and all had a significant negative correlation with tumor diameter. ATF4 knockdown promoted cell proliferation, invasion, and S-phase cell cycle and inhibited apoptosis in SW480 cells. In contrast, ATF4 overexpression had the opposite effect. Furthermore, ATF4 overexpression enhanced ATF4 binding to the ASNS promoter region. ATF4 knockdown significantly inhibited the expression of p-GCN2 and ASNS, whereas ATF4 overexpression significantly upregulated their expression. ATF4 inhibited CC cell viability, clone formation ability, migration, and invasion and promoted apoptosis, possibly by regulating the expression of p-GCN2 and ASNS. Our study provides a novel potential therapeutic target for the treatment of CC.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, 530021, Guangxi, China
- Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiaopeng Huang
- Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Shuai Zhang
- Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, 530021, Guangxi, China.
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, Guangxi, China.
| |
Collapse
|
8
|
Smirnova AM, Hronová V, Mohammad MP, Herrmannová A, Gunišová S, Petráčková D, Halada P, Coufal Š, Świrski M, Rendleman J, Jendruchová K, Hatzoglou M, Beznosková P, Vogel C, Valášek LS. Stem-loop-induced ribosome queuing in the uORF2/ATF4 overlap fine-tunes stress-induced human ATF4 translational control. Cell Rep 2024; 43:113976. [PMID: 38507410 PMCID: PMC11058473 DOI: 10.1016/j.celrep.2024.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Activating transcription factor 4 (ATF4) is a master transcriptional regulator of the integrated stress response, leading cells toward adaptation or death. ATF4's induction under stress was thought to be due to delayed translation reinitiation, where the reinitiation-permissive upstream open reading frame 1 (uORF1) plays a key role. Accumulating evidence challenging this mechanism as the sole source of ATF4 translation control prompted us to investigate additional regulatory routes. We identified a highly conserved stem-loop in the uORF2/ATF4 overlap, immediately preceded by a near-cognate CUG, which introduces another layer of regulation in the form of ribosome queuing. These elements explain how the inhibitory uORF2 can be translated under stress, confirming prior observations but contradicting the original regulatory model. We also identified two highly conserved, potentially modified adenines performing antagonistic roles. Finally, we demonstrated that the canonical ATF4 translation start site is substantially leaky scanned. Thus, ATF4's translational control is more complex than originally described, underpinning its key role in diverse biological processes.
Collapse
Affiliation(s)
- Anna M Smirnova
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Vladislava Hronová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Denisa Petráčková
- Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Petr Halada
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Štěpán Coufal
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Michał Świrski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Kristína Jendruchová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Petra Beznosková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Christine Vogel
- Department of Biology, New York University, New York, NY, USA.
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
9
|
Diaw SH, Delcambre S, Much C, Ott F, Kostic VS, Gajos A, Münchau A, Zittel S, Busch H, Grünewald A, Klein C, Lohmann K. DYT-THAP1: exploring gene expression in fibroblasts for potential biomarker discovery. Neurogenetics 2024; 25:141-147. [PMID: 38498291 DOI: 10.1007/s10048-024-00752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Dystonia due to pathogenic variants in the THAP1 gene (DYT-THAP1) shows variable expressivity and reduced penetrance of ~ 50%. Since THAP1 encodes a transcription factor, modifiers influencing this variability likely operate at the gene expression level. This study aimed to assess the transferability of differentially expressed genes (DEGs) in neuronal cells related to pathogenic variants in the THAP1 gene, which were previously identified by transcriptome analyses. For this, we performed quantitative (qPCR) and Digital PCR (dPCR) in cultured fibroblasts. RNA was extracted from THAP1 manifesting (MMCs) and non-manifesting mutation carriers (NMCs) as well as from healthy controls. The expression profiles of ten of 14 known neuronal DEGs demonstrated differences in fibroblasts between these three groups. This included transcription factors and targets (ATF4, CLN3, EIF2A, RRM1, YY1), genes involved in G protein-coupled receptor signaling (BDKRB2, LPAR1), and a gene linked to apoptosis and DNA replication/repair (CRADD), which all showed higher expression levels in MMCs and NMCs than in controls. Moreover, the analysis of genes linked to neurological disorders (STXBP1, TOR1A) unveiled differences in expression patterns between MMCs and controls. Notably, the genes CUEDC2, DRD4, ECH1, and SIX2 were not statistically significantly differentially expressed in fibroblast cultures. With > 70% of the tested genes being DEGs also in fibroblasts, fibroblasts seem to be a suitable model for DYT-THAP1 research despite some restrictions. Furthermore, at least some of these DEGs may potentially also serve as biomarkers of DYT-THAP1 and influence its penetrance and expressivity.
Collapse
Affiliation(s)
| | - Sylvie Delcambre
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L-4362, Luxembourg
| | - Christoph Much
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Fabian Ott
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Vladimir S Kostic
- Institute of Neurology, School of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Agata Gajos
- Department of Extrapyramidal Diseases, Medical University of Lodz, Lodz, 90-647, Poland
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, 23562, Lübeck, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hauke Busch
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L-4362, Luxembourg
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany.
| |
Collapse
|
10
|
Tatara Y, Kasai S, Kokubu D, Tsujita T, Mimura J, Itoh K. Emerging Role of GCN1 in Disease and Homeostasis. Int J Mol Sci 2024; 25:2998. [PMID: 38474243 PMCID: PMC10931611 DOI: 10.3390/ijms25052998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
GCN1 is recognized as a factor that is essential for the activation of GCN2, which is a sensor of amino acid starvation. This function is evolutionarily conserved from yeast to higher eukaryotes. However, recent studies have revealed non-canonical functions of GCN1 that are independent of GCN2, such as its participation in cell proliferation, apoptosis, and the immune response, beyond the borders of species. Although it is known that GCN1 and GCN2 interact with ribosomes to accomplish amino acid starvation sensing, recent studies have reported that GCN1 binds to disomes (i.e., ribosomes that collide each other), thereby regulating both the co-translational quality control and stress response. We propose that GCN1 regulates ribosome-mediated signaling by dynamically changing its partners among RWD domain-possessing proteins via unknown mechanisms. We recently demonstrated that GCN1 is essential for cell proliferation and whole-body energy regulation in mice. However, the manner in which ribosome-initiated signaling via GCN1 is related to various physiological functions warrants clarification. GCN1-mediated mechanisms and its interaction with other quality control and stress response signals should be important for proteostasis during aging and neurodegenerative diseases, and may be targeted for drug development.
Collapse
Affiliation(s)
- Yota Tatara
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Shuya Kasai
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Daichi Kokubu
- Diet and Well-Being Research Institute, KAGOME, Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Tadayuki Tsujita
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga City 840-8502, Saga, Japan;
| | - Junsei Mimura
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Ken Itoh
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| |
Collapse
|
11
|
Zhang CH, Yan YJ, Luo Q. The molecular mechanisms and potential drug targets of ferroptosis in myocardial ischemia-reperfusion injury. Life Sci 2024; 340:122439. [PMID: 38278348 DOI: 10.1016/j.lfs.2024.122439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI), caused by the initial interruption and subsequent restoration of coronary artery blood, results in further damage to cardiac function, affecting the prognosis of patients with acute myocardial infarction. Ferroptosis is an iron-dependent, superoxide-driven, non-apoptotic form of regulated cell death that is involved in the pathogenesis of MIRI. Ferroptosis is characterized by the accumulation of lipid peroxides (LOOH) and redox disequilibrium. Free iron ions can induce lipid oxidative stress as a substrate of the Fenton reaction and lipoxygenase (LOX) and participate in the inactivation of a variety of lipid antioxidants including CoQ10 and GPX4, destroying the redox balance and causing cell death. The metabolism of amino acid, iron, and lipids, including associated pathways, is considered as a specific hallmark of ferroptosis. This review systematically summarizes the latest research progress on the mechanisms of ferroptosis and discusses and analyzes the therapeutic approaches targeting ferroptosis to alleviate MIRI.
Collapse
Affiliation(s)
- Chen-Hua Zhang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yu-Jie Yan
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Qi Luo
- School of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
12
|
Yang Y, Lu D, Wang M, Liu G, Feng Y, Ren Y, Sun X, Chen Z, Wang Z. Endoplasmic reticulum stress and the unfolded protein response: emerging regulators in progression of traumatic brain injury. Cell Death Dis 2024; 15:156. [PMID: 38378666 PMCID: PMC10879178 DOI: 10.1038/s41419-024-06515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Traumatic brain injury (TBI) is a common trauma with high mortality and disability rates worldwide. However, the current management of this disease is still unsatisfactory. Therefore, it is necessary to investigate the pathophysiological mechanisms of TBI in depth to improve the treatment options. In recent decades, abundant evidence has highlighted the significance of endoplasmic reticulum stress (ERS) in advancing central nervous system (CNS) disorders, including TBI. ERS following TBI leads to the accumulation of unfolded proteins, initiating the unfolded protein response (UPR). Protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1 (IRE1), and activating transcription factor 6 (ATF6) are the three major pathways of UPR initiation that determine whether a cell survives or dies. This review focuses on the dual effects of ERS on TBI and discusses the underlying mechanisms. It is suggested that ERS may crosstalk with a series of molecular cascade responses, such as mitochondrial dysfunction, oxidative stress, neuroinflammation, autophagy, and cell death, and is thus involved in the progression of secondary injury after TBI. Hence, ERS is a promising candidate for the management of TBI.
Collapse
Affiliation(s)
- Yayi Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Menghan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Yun Feng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
13
|
Smirnova AM, Hronova V, Mohammad MP, Herrmannova A, Gunisova S, Petrackova D, Halada P, Coufal S, Swirski M, Rendelman J, Jendruchova K, Hatzoglou M, Beznoskova P, Vogel C, Valasek LS. Stem-loop induced ribosome queuing in the uORF2/ATF4 overlap fine-tunes stress-induced human ATF4 translational control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.12.548609. [PMID: 37502919 PMCID: PMC10369994 DOI: 10.1101/2023.07.12.548609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
ATF4 is a master transcriptional regulator of the integrated stress response leading cells towards adaptation or death. ATF4's induction under stress was thought to be mostly due to delayed translation reinitiation, where the reinitiation-permissive uORF1 plays a key role. Accumulating evidence challenging this mechanism as the sole source of ATF4 translation control prompted us to investigate additional regulatory routes. We identified a highly conserved stem-loop in the uORF2/ATF4 overlap, immediately preceded by a near-cognate CUG, which introduces another layer of regulation in the form of ribosome queuing. These elements explain how the inhibitory uORF2 can be translated under stress, confirming prior observations, but contradicting the original regulatory model. We also identified two highly conserved, potentially modified adenines performing antagonistic roles. Finally, we demonstrate that the canonical ATF4 translation start site is substantially leaky-scanned. Thus, ATF4's translational control is more complex than originally described underpinning its key role in diverse biological processes.
Collapse
|
14
|
Passos V, Henkel LM, Wang J, Zapatero-Belinchón FJ, Möller R, Sun G, Waltl I, Schneider T, Wachs A, Ritter B, Kropp KA, Zhu S, Deleidi M, Kalinke U, Schulz TF, Höglinger G, Gerold G, Wegner F, Viejo-Borbolla A. Innate immune response to SARS-CoV-2 infection contributes to neuronal damage in human iPSC-derived peripheral neurons. J Med Virol 2024; 96:e29455. [PMID: 38323709 DOI: 10.1002/jmv.29455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Severe acute respiratory coronavirus 2 (SARS-CoV-2) causes neurological disease in the peripheral and central nervous system (PNS and CNS, respectively) of some patients. It is not clear whether SARS-CoV-2 infection or the subsequent immune response are the key factors that cause neurological disease. Here, we addressed this question by infecting human induced pluripotent stem cell-derived CNS and PNS neurons with SARS-CoV-2. SARS-CoV-2 infected a low number of CNS neurons and did not elicit a robust innate immune response. On the contrary, SARS-CoV-2 infected a higher number of PNS neurons. This resulted in expression of interferon (IFN) λ1, several IFN-stimulated genes and proinflammatory cytokines. The PNS neurons also displayed alterations characteristic of neuronal damage, as increased levels of sterile alpha and Toll/interleukin receptor motif-containing protein 1, amyloid precursor protein and α-synuclein, and lower levels of cytoskeletal proteins. Interestingly, blockade of the Janus kinase and signal transducer and activator of transcription pathway by Ruxolitinib did not increase SARS-CoV-2 infection, but reduced neuronal damage, suggesting that an exacerbated neuronal innate immune response contributes to pathogenesis in the PNS. Our results provide a basis to study coronavirus disease 2019 (COVID-19) related neuronal pathology and to test future preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Vania Passos
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Lisa M Henkel
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Jiayi Wang
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Francisco J Zapatero-Belinchón
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Rebecca Möller
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guorong Sun
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Inken Waltl
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Talia Schneider
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Amelie Wachs
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Birgit Ritter
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Kai A Kropp
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Shuyong Zhu
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Michela Deleidi
- Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ulrich Kalinke
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Thomas F Schulz
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
| | - Günter Höglinger
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
| | - Gisa Gerold
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Munshi S, Alarbi A, Zheng H, Kuplicki R, Burrows K, Figueroa-Hall L, Victor T, Aupperle R, Khalsa S, Paulus M, Teague TK, Savitz J. Increased expression of ER stress, inflammasome activation, and mitochondrial biogenesis-related genes in peripheral blood mononuclear cells in major depressive disorder. RESEARCH SQUARE 2024:rs.3.rs-3564760. [PMID: 38260352 PMCID: PMC10802690 DOI: 10.21203/rs.3.rs-3564760/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A subset of major depressive disorder (MDD) is characterized by immune system dysfunction, but the intracellular origin of these immune changes remains unclear. Here we tested the hypothesis that abnormalities in the endoplasmic reticulum (ER) stress, inflammasome activity and mitochondrial biogenesis contribute to the development of systemic inflammation in MDD. RT-qPCR was used to measure mRNA expression of key organellar genes from peripheral blood mononuclear cells (PBMCs) isolated from 186 MDD and 67 healthy control (HC) subjects. The comparative CT (2-ΔΔCT) method was applied to quantify mRNA expression using GAPDH as the reference gene. After controlling for age, sex, BMI, and medication status using linear regression models, expression of the inflammasome (NLRC4 and NLRP3) and the ER stress (XBP1u, XBP1s, and ATF4) genes was found to be significantly increased in the MDD versus the HC group. After excluding outliers, expression of the inflammasome genes was no longer statistically significant but expression of the ER stress genes (XBP1u, XBP1s, and ATF4) and the mitochondrial biogenesis gene, MFN2, was significantly increased in the MDD group. ASC and MFN2 were positively correlated with serum C-reactive protein concentrations. The altered expression of inflammasome activation, ER stress, and mitochondrial biogenesis pathway components suggest that dysfunction of these organelles may play a role in the pathogenesis of MDD.
Collapse
|
16
|
Nigro I, Miglionico R, Carmosino M, Gerbino A, Masato A, Sandre M, Bubacco L, Antonini A, Rinaldi R, Bisaccia F, Armentano MF. Neuroprotective Effect of Antiapoptotic URG7 Protein on Human Neuroblastoma Cell Line SH-SY5Y. Int J Mol Sci 2023; 25:481. [PMID: 38203652 PMCID: PMC10779352 DOI: 10.3390/ijms25010481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Up-regulated Gene clone 7 (URG7) is a protein localized in the endoplasmic reticulum (ER) and overexpressed in liver cells upon hepatitis B virus (HBV) infection. Its activity has been related to the attenuation of ER stress resulting from HBV infection, promoting protein folding and ubiquitination and reducing cell apoptosis overall. While the antiapoptotic activity of URG7 in HBV-infected cells may have negative implications, this effect could be exploited positively in the field of proteinopathies, such as neurodegenerative diseases. In this work, we aimed to verify the possible contribution of URG7 as a reliever of cellular proteostasis alterations in a neuronal in vitro system. Following tunicamycin-induced ER stress, URG7 was shown to modulate different markers of the unfolded protein response (UPR) in favor of cell survival, mitigating ER stress and activating autophagy. Furthermore, URG7 promoted ubiquitination, and determined a reduction in protein aggregation, calcium release from the ER and intracellular ROS content, confirming its pro-survival activity. Therefore, in light of the results reported in this work, we hypothesize that URG7 offers activity as an ER stress reliever in a neuronal in vitro model, and we paved the way for a new approach in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ilaria Nigro
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano, 10, 85100 Potenza, Italy; (I.N.); (R.M.); (M.C.); (R.R.); (F.B.)
| | - Rocchina Miglionico
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano, 10, 85100 Potenza, Italy; (I.N.); (R.M.); (M.C.); (R.R.); (F.B.)
| | - Monica Carmosino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano, 10, 85100 Potenza, Italy; (I.N.); (R.M.); (M.C.); (R.R.); (F.B.)
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125 Bari, Italy;
| | - Anna Masato
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121 Padova, Italy; (A.M.); (L.B.)
- UK Dementia Research Institute at UCL, University College London, Tottenham Ct Rd, London W1T 7NF, UK
| | - Michele Sandre
- Department of Neurosciences, University of Padova, Via Belzoni, 160, 35121 Padova, Italy; (M.S.); (A.A.)
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, 35121 Padova, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121 Padova, Italy; (A.M.); (L.B.)
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, 35121 Padova, Italy
| | - Angelo Antonini
- Department of Neurosciences, University of Padova, Via Belzoni, 160, 35121 Padova, Italy; (M.S.); (A.A.)
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, 35121 Padova, Italy
| | - Roberta Rinaldi
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano, 10, 85100 Potenza, Italy; (I.N.); (R.M.); (M.C.); (R.R.); (F.B.)
| | - Faustino Bisaccia
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano, 10, 85100 Potenza, Italy; (I.N.); (R.M.); (M.C.); (R.R.); (F.B.)
| | - Maria Francesca Armentano
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano, 10, 85100 Potenza, Italy; (I.N.); (R.M.); (M.C.); (R.R.); (F.B.)
| |
Collapse
|
17
|
Kim G, Lee J, Ha J, Kang I, Choe W. Endoplasmic Reticulum Stress and Its Impact on Adipogenesis: Molecular Mechanisms Implicated. Nutrients 2023; 15:5082. [PMID: 38140341 PMCID: PMC10745682 DOI: 10.3390/nu15245082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a pivotal role in adipogenesis, which encompasses the differentiation of adipocytes and lipid accumulation. Sustained ER stress has the potential to disrupt the signaling of the unfolded protein response (UPR), thereby influencing adipogenesis. This comprehensive review illuminates the molecular mechanisms that underpin the interplay between ER stress and adipogenesis. We delve into the dysregulation of UPR pathways, namely, IRE1-XBP1, PERK and ATF6 in relation to adipocyte differentiation, lipid metabolism, and tissue inflammation. Moreover, we scrutinize how ER stress impacts key adipogenic transcription factors such as proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs) along with their interaction with other signaling pathways. The cellular ramifications include alterations in lipid metabolism, dysregulation of adipokines, and aged adipose tissue inflammation. We also discuss the potential roles the molecular chaperones cyclophilin A and cyclophilin B play in adipogenesis. By shedding light on the intricate relationship between ER stress and adipogenesis, this review paves the way for devising innovative therapeutic interventions.
Collapse
Affiliation(s)
- Gyuhui Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiyoon Lee
- Department of Biological Sciences, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30609, USA;
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
18
|
Catalani E, Brunetti K, Del Quondam S, Cervia D. Targeting Mitochondrial Dysfunction and Oxidative Stress to Prevent the Neurodegeneration of Retinal Ganglion Cells. Antioxidants (Basel) 2023; 12:2011. [PMID: 38001864 PMCID: PMC10669517 DOI: 10.3390/antiox12112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The imbalance of redox homeostasis contributes to neurodegeneration, including that related to the visual system. Mitochondria, essential in providing energy and responsible for several cell functions, are a significant source of reactive oxygen and/or nitrogen species, and they are, in turn, sensitive to free radical imbalance. Dysfunctional mitochondria are implicated in the development and progression of retinal pathologies and are directly involved in retinal neuronal degeneration. Retinal ganglion cells (RGCs) are higher energy consumers susceptible to mitochondrial dysfunctions that ultimately cause RGC loss. Proper redox balance and mitochondrial homeostasis are essential for maintaining healthy retinal conditions and inducing neuroprotection. In this respect, the antioxidant treatment approach is effective against neuronal oxidative damage and represents a challenge for retinal diseases. Here, we highlighted the latest findings about mitochondrial dysfunction in retinal pathologies linked to RGC degeneration and discussed redox-related strategies with potential neuroprotective properties.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (K.B.); (S.D.Q.)
| | | | | | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (K.B.); (S.D.Q.)
| |
Collapse
|
19
|
Catalani E, Del Quondam S, Brunetti K, Cherubini A, Bongiorni S, Taddei AR, Zecchini S, Giovarelli M, De Palma C, Perrotta C, Clementi E, Prantera G, Cervia D. Neuroprotective role of plumbagin on eye damage induced by high-sucrose diet in adult fruit fly Drosophila melanogaster. Biomed Pharmacother 2023; 166:115298. [PMID: 37597318 DOI: 10.1016/j.biopha.2023.115298] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023] Open
Abstract
The natural compound plumbagin has a wide range of pharmacological and potential therapeutic activities, although its role in neuroretina degeneration is unknown. Here we evaluated the effects of plumbagin on retina homeostasis of the fruit fly Drosophila melanogaster fed with high glucose diet, a model of hyperglycemia-induced eye impairment to study the pathophysiology of diabetic retinopathy at the early stages. To this aim, the visual system of flies orally administered with plumbagin has been analyzed at structural, functional, and molecular/cellular level as for instance neuronal apoptosis/autophagy dysregulation and oxidative stress-related signals. Our results demonstrated that plumbagin ameliorates the visual performance of hyperglycemic flies. Drosophila eye-structure, clearly altered by hyperglycemia, i.e. defects of the pattern of ommatidia, irregular rhabdomeres, vacuoles, damaged mitochondria, and abnormal phototransduction units were rescued, at least in part, by plumbagin. In addition, it reactivated autophagy, decreased the presence of cell death/apoptotic features, and exerted antioxidant effects in the retina. In terms of mechanisms favoring death/survival ratio, Nrf2 signaling activation may be one of the strategies by which plumbagin reduced redox unbalance mainly increasing the levels of glutathione-S-transferase. Likewise, plumbagin may act additively and/or synergistically inhibiting the mitochondrial-endoplasmic reticulum stress and unfolded protein response pathways, which prevented neuronal impairment and eye damage induced by reactive oxygen species. These results provide an avenue for further studies, which may be helpful to develop novel therapeutic candidates and drug targets against eye neurotoxicity by high glucose, a key aspect in retinal complications of diabetes.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Agnese Cherubini
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Silvia Bongiorni
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Anna Rita Taddei
- Section of Electron Microscopy, Great Equipment Center, Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via L. Vanvitelli 32, 20129 Milano, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; Scientific Institute IRCCS "Eugenio Medea", via Don Luigi Monza 20, 23842 Bosisio Parini, Italy
| | - Giorgio Prantera
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy.
| |
Collapse
|
20
|
Stolzenburg LR, Esmaeeli S, Kulkarni AS, Murphy E, Kwon T, Preiss C, Bahnassawy L, Stender JD, Manos JD, Reinhardt P, Rahimov F, Waring JF, Ramathal CY. Functional characterization of a single nucleotide polymorphism associated with Alzheimer's disease in a hiPSC-based neuron model. PLoS One 2023; 18:e0291029. [PMID: 37751459 PMCID: PMC10521995 DOI: 10.1371/journal.pone.0291029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023] Open
Abstract
Neurodegenerative diseases encompass a group of debilitating conditions resulting from progressive nerve cell death. Of these, Alzheimer's disease (AD) occurs most frequently, but is currently incurable and has limited treatment success. Late onset AD, the most common form, is highly heritable but is caused by a combination of non-genetic risk factors and many low-effect genetic variants whose disease-causing mechanisms remain unclear. By mining the FinnGen study database of phenome-wide association studies, we identified a rare variant, rs148726219, enriched in the Finnish population that is associated with AD risk and dementia, and appears to have arisen on a common haplotype with older AD-associated variants such as rs429358. The rs148726219 variant lies in an overlapping intron of the FosB proto-oncogene (FOSB) and ERCC excision repair 1 (ERCC1) genes. To understand the impact of this SNP on disease phenotypes, we performed CRISPR/Cas9 editing in a human induced pluripotent stem cell (hiPSC) line to generate isogenic clones harboring heterozygous and homozygous alleles of rs148726219. hiPSC clones differentiated into induced excitatory neurons (iNs) did not exhibit detectable molecular or morphological variation in differentiation potential compared to isogenic controls. However, global transcriptome analysis showed differential regulation of nearby genes and upregulation of several biological pathways related to neuronal function, particularly synaptogenesis and calcium signaling, specifically in mature iNs harboring rs148726219 homozygous and heterozygous alleles. Functional differences in iN circuit maturation as measured by calcium imaging were observed across genotypes. Edited mature iNs also displayed downregulation of unfolded protein response and cell death pathways. This study implicates a phenotypic impact of rs148726219 in the context of mature neurons, consistent with its identification in late onset AD, and underscores a hiPSC-based experimental model to functionalize GWAS-identified variants.
Collapse
Affiliation(s)
| | - Sahar Esmaeeli
- AbbVie Inc., North Chicago, Illinois, United States of America
| | | | - Erin Murphy
- AbbVie Inc., North Chicago, Illinois, United States of America
| | - Taekyung Kwon
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, United States of America
| | - Christina Preiss
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, United States of America
| | - Lamiaa Bahnassawy
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, Ludwigshafen, Germany
| | | | - Justine D. Manos
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, United States of America
| | - Peter Reinhardt
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, Ludwigshafen, Germany
| | - Fedik Rahimov
- AbbVie Inc., North Chicago, Illinois, United States of America
| | | | | |
Collapse
|
21
|
Han CZ, Li RZ, Hansen E, Trescott S, Fixsen BR, Nguyen CT, Mora CM, Spann NJ, Bennett HR, Poirion O, Buchanan J, Warden AS, Xia B, Schlachetzki JCM, Pasillas MP, Preissl S, Wang A, O'Connor C, Shriram S, Kim R, Schafer D, Ramirez G, Challacombe J, Anavim SA, Johnson A, Gupta M, Glass IA, Levy ML, Haim SB, Gonda DD, Laurent L, Hughes JF, Page DC, Blurton-Jones M, Glass CK, Coufal NG. Human microglia maturation is underpinned by specific gene regulatory networks. Immunity 2023; 56:2152-2171.e13. [PMID: 37582369 PMCID: PMC10529991 DOI: 10.1016/j.immuni.2023.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/11/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
Microglia phenotypes are highly regulated by the brain environment, but the transcriptional networks that specify the maturation of human microglia are poorly understood. Here, we characterized stage-specific transcriptomes and epigenetic landscapes of fetal and postnatal human microglia and acquired corresponding data in induced pluripotent stem cell (iPSC)-derived microglia, in cerebral organoids, and following engraftment into humanized mice. Parallel development of computational approaches that considered transcription factor (TF) co-occurrence and enhancer activity allowed prediction of shared and state-specific gene regulatory networks associated with fetal and postnatal microglia. Additionally, many features of the human fetal-to-postnatal transition were recapitulated in a time-dependent manner following the engraftment of iPSC cells into humanized mice. These data and accompanying computational approaches will facilitate further efforts to elucidate mechanisms by which human microglia acquire stage- and disease-specific phenotypes.
Collapse
Affiliation(s)
- Claudia Z Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rick Z Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily Hansen
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Samantha Trescott
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Bethany R Fixsen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Celina T Nguyen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Cristina M Mora
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Nathanael J Spann
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hunter R Bennett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Olivier Poirion
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Justin Buchanan
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anna S Warden
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Bing Xia
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Martina P Pasillas
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sebastian Preissl
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Allen Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Shreya Shriram
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Roy Kim
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Danielle Schafer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Gabriela Ramirez
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Jean Challacombe
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samuel A Anavim
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Avalon Johnson
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Mihir Gupta
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ian A Glass
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | - Michael L Levy
- Department of Neurosurgery, University of California, San Diego-Rady Children's Hospital, San Diego, CA 92123, USA
| | - Sharona Ben Haim
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - David D Gonda
- Department of Neurosurgery, University of California, San Diego-Rady Children's Hospital, San Diego, CA 92123, USA
| | - Louise Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - David C Page
- Whitehead Institute, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92696, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Nicole G Coufal
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
22
|
Yang T, Zhang Y, Chen L, Thomas ER, Yu W, Cheng B, Li X. The potential roles of ATF family in the treatment of Alzheimer's disease. Biomed Pharmacother 2023; 161:114544. [PMID: 36934558 DOI: 10.1016/j.biopha.2023.114544] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/20/2023] Open
Abstract
Activating transcription factors, ATFs, is a family of transcription factors that activate gene expression and transcription by recognizing and combining the cAMP response element binding proteins (CREB). It is present in various viruses as a cellular gene promoter. ATFs is involved in regulating the mammalian gene expression that is associated with various cell physiological processes. Therefore, ATFs play an important role in maintaining the intracellular homeostasis. ATF2 and ATF3 is mostly involved in mediating stress responses. ATF4 regulates the oxidative metabolism, which is associated with the survival of cells. ATF5 is presumed to regulate apoptosis, and ATF6 is involved in the regulation of endoplasmic reticulum stress (ERS). ATFs is actively studied in oncology. At present, there has been an increasing amount of research on ATFs for the treatment of neurological diseases. Here, we have focused on the different types of ATFs and their association with Alzheimer's disease (AD). The level of expression of different ATFs have a significant difference in AD patients when compared to healthy control. Recent studies have suggested that ATFs are implicated in the pathogenesis of AD, such as neuronal repair, maintenance of synaptic activity, maintenance of cell survival, inhibition of apoptosis, and regulation of stress responses. In this review, the potential role of ATFs for the treatment of AD has been highlighted. In addition, we have systematically reviewed the progress of research on ATFs in AD. This review will provide a basic and innovative understanding on the pathogenesis and treatment of AD.
Collapse
Affiliation(s)
- Ting Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Yuhong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Lixuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | | | - Wenjing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Bo Cheng
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, China.
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
23
|
Hosseini-Gerami L, Ficulle E, Humphryes-Kirilov N, Airey DC, Scherschel J, Kananathan S, Eastwood BJ, Bose S, Collier DA, Laing E, Evans D, Broughton H, Bender A. Mechanism of action deconvolution of the small-molecule pathological tau aggregation inhibitor Anle138b. Alzheimers Res Ther 2023; 15:52. [PMID: 36918909 PMCID: PMC10012450 DOI: 10.1186/s13195-023-01182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/06/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND A key histopathological hallmark of Alzheimer's disease (AD) is the presence of neurofibrillary tangles of aggregated microtubule-associated protein tau in neurons. Anle138b is a small molecule which has previously shown efficacy in mice in reducing tau aggregates and rescuing AD disease phenotypes. METHODS In this work, we employed bioinformatics analysis-including pathway enrichment and causal reasoning-of an in vitro tauopathy model. The model consisted of cultured rat cortical neurons either unseeded or seeded with tau aggregates derived from human AD patients, both of which were treated with Anle138b to generate hypotheses for its mode of action. In parallel, we used a collection of human target prediction models to predict direct targets of Anle138b based on its chemical structure. RESULTS Combining the different approaches, we found evidence supporting the hypothesis that the action of Anle138b involves several processes which are key to AD progression, including cholesterol homeostasis and neuroinflammation. On the pathway level, we found significantly enriched pathways related to these two processes including those entitled "Superpathway of cholesterol biosynthesis" and "Granulocyte adhesion and diapedesis". With causal reasoning, we inferred differential activity of SREBF1/2 (involved in cholesterol regulation) and mediators of the inflammatory response such as NFKB1 and RELA. Notably, our findings were also observed in Anle138b-treated unseeded neurons, meaning that the inferred processes are independent of tau pathology and thus represent the direct action of the compound in the cellular system. Through structure-based ligand-target prediction, we predicted the intracellular cholesterol carrier NPC1 as well as NF-κB subunits as potential targets of Anle138b, with structurally similar compounds in the model training set known to target the same proteins. CONCLUSIONS This study has generated feasible hypotheses for the potential mechanism of action of Anle138b, which will enable the development of future molecular interventions aiming to reduce tau pathology in AD patients.
Collapse
Affiliation(s)
- Layla Hosseini-Gerami
- Centre for Molecular Informatics, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- AbsoluteAi Ltd, London, UK
| | - Elena Ficulle
- Eli Lilly and Company, Windlesham, UK
- Zifo RnD Solutions, London, UK
| | | | - David C Airey
- Eli Lilly and Company, Corporate Centre, Indianapolis, IN, USA
| | | | | | - Brian J Eastwood
- Eli Lilly and Company, Windlesham, UK
- Eli Lilly and Company, Bracknell, UK
- Eli Lilly and Company (Retired), Bracknell, UK
| | - Suchira Bose
- Eli Lilly and Company, Windlesham, UK
- Eli Lilly and Company, Bracknell, UK
| | - David A Collier
- Eli Lilly and Company, Windlesham, UK
- Eli Lilly and Company, Bracknell, UK
- Social, Genetic and Developmental Psychiatry Centre, IoPPN, Kings's College London and Genetic and Genomic Consulting Ltd, Farnham, UK
| | - Emma Laing
- Eli Lilly and Company, Windlesham, UK
- GSK, Stevenage, UK
| | - David Evans
- Eli Lilly and Company, Windlesham, UK
- DeepMind, London, UK
| | | | - Andreas Bender
- Centre for Molecular Informatics, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
24
|
Gouveia Roque C, Chung KM, McCurdy EP, Jagannathan R, Randolph LK, Herline-Killian K, Baleriola J, Hengst U. CREB3L2-ATF4 heterodimerization defines a transcriptional hub of Alzheimer's disease gene expression linked to neuropathology. SCIENCE ADVANCES 2023; 9:eadd2671. [PMID: 36867706 PMCID: PMC9984184 DOI: 10.1126/sciadv.add2671] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Gene expression is changed by disease, but how these molecular responses arise and contribute to pathophysiology remains less understood. We discover that β-amyloid, a trigger of Alzheimer's disease (AD), promotes the formation of pathological CREB3L2-ATF4 transcription factor heterodimers in neurons. Through a multilevel approach based on AD datasets and a novel chemogenetic method that resolves the genomic binding profile of dimeric transcription factors (ChIPmera), we find that CREB3L2-ATF4 activates a transcription network that interacts with roughly half of the genes differentially expressed in AD, including subsets associated with β-amyloid and tau neuropathologies. CREB3L2-ATF4 activation drives tau hyperphosphorylation and secretion in neurons, in addition to misregulating the retromer, an endosomal complex linked to AD pathogenesis. We further provide evidence for increased heterodimer signaling in AD brain and identify dovitinib as a candidate molecule for normalizing β-amyloid-mediated transcriptional responses. The findings overall reveal differential transcription factor dimerization as a mechanism linking disease stimuli to the development of pathogenic cellular states.
Collapse
Affiliation(s)
- Cláudio Gouveia Roque
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kyung Min Chung
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ethan P. McCurdy
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Radhika Jagannathan
- Division of Aging and Dementia, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Lisa K. Randolph
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Krystal Herline-Killian
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jimena Baleriola
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
- Department of Cell Biology and Histology, University of the Basque Country, Leioa, Spain
| | - Ulrich Hengst
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
25
|
Neill G, Masson GR. A stay of execution: ATF4 regulation and potential outcomes for the integrated stress response. Front Mol Neurosci 2023; 16:1112253. [PMID: 36825279 PMCID: PMC9941348 DOI: 10.3389/fnmol.2023.1112253] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
ATF4 is a cellular stress induced bZIP transcription factor that is a hallmark effector of the integrated stress response. The integrated stress response is triggered by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 complex that can be carried out by the cellular stress responsive kinases; GCN2, PERK, PKR, and HRI. eIF2α phosphorylation downregulates mRNA translation initiation en masse, however ATF4 translation is upregulated. The integrated stress response can output two contradicting outcomes in cells; pro-survival or apoptosis. The mechanism for choice between these outcomes is unknown, however combinations of ATF4 heterodimerisation partners and post-translational modifications have been linked to this regulation. This semi-systematic review article covers ATF4 target genes, heterodimerisation partners and post-translational modifications. Together, this review aims to be a useful resource to elucidate the mechanisms controlling the effects of the integrated stress response. Additional putative roles of the ATF4 protein in cell division and synaptic plasticity are outlined.
Collapse
Affiliation(s)
- Graham Neill
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | | |
Collapse
|
26
|
Activating Transcription Factor 3 Diminishes Ischemic Cerebral Infarct and Behavioral Deficit by Downregulating Carboxyl-Terminal Modulator Protein. Int J Mol Sci 2023; 24:ijms24032306. [PMID: 36768628 PMCID: PMC9917101 DOI: 10.3390/ijms24032306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Activating transcription factor 3 (ATF3) is a stress-induced transcription factor and a familiar neuronal marker for nerve injury. This factor has been shown to protect neurons from hypoxic insult in vitro by suppressing carboxyl-terminal modulator protein (CTMP) transcription, and indirectly activating the anti-apoptotic Akt/PKB cascade. Despite prior studies in vitro, whether this neuroprotective pathway also exists in the brain in vivo after ischemic insult remains to be determined. In the present study, we showed a rapid and marked induction of ATF3 mRNA throughout ischemia-reperfusion in a middle cerebral artery (MCA) occlusion model. Although the level of CTMP mRNA was quickly induced upon ischemia, its level showed only a mild increase after reperfusion. With the gain-of-function approach, both pre- and post-ischemic administration of Ad-ATF3 ameliorated brain infarct and neurological deficits. Whereas, with the loss-of-function approach, ATF3 knockout (KO) mice showed bigger infarct and worse functional outcome after ischemia. In addition, these congenital defects were rescued upon reintroducing ATF3 to the brain of KO mice. ATF3 overexpression led to a lower level of CTMP and a higher level of p-Akt(473) in the ischemic brain. On the contrary, ATF3 KO resulted in upregulation of CTMP and downregulation of p-Akt(473) instead. Furthermore, post-ischemic CTMP siRNA knockdown led to smaller infarct and better behaviors. CTMP siRNA knockdown increased the level of p-Akt(473), but did not alter the ATF3 level in the ischemic brain, upholding the ATF3→CTMP signal cascade. In summary, our proof-of-principle experiments support the existence of neuroprotective ATF3→CTMP signal cascade regulating the ischemic brain. Furthermore, these results suggest the therapeutic potential for both ATF3 overexpression and CTMP knockdown for stroke treatment.
Collapse
|
27
|
Wang X, Zhang G, Dasgupta S, Niewold EL, Li C, Li Q, Luo X, Tan L, Ferdous A, Lorenzi PL, Rothermel BA, Gillette TG, Adams CM, Scherer PE, Hill JA, Wang ZV. ATF4 Protects the Heart From Failure by Antagonizing Oxidative Stress. Circ Res 2022; 131:91-105. [PMID: 35574856 PMCID: PMC9351829 DOI: 10.1161/circresaha.122.321050] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cellular redox control is maintained by generation of reactive oxygen/nitrogen species balanced by activation of antioxidative pathways. Disruption of redox balance leads to oxidative stress, a central causative event in numerous diseases including heart failure. Redox control in the heart exposed to hemodynamic stress, however, remains to be fully elucidated. METHODS Pressure overload was triggered by transverse aortic constriction in mice. Transcriptomic and metabolomic regulations were evaluated by RNA-sequencing and metabolomics, respectively. Stable isotope tracer labeling experiments were conducted to determine metabolic flux in vitro. Neonatal rat ventricular myocytes and H9c2 cells were used to examine molecular mechanisms. RESULTS We show that production of cardiomyocyte NADPH, a key factor in redox regulation, is decreased in pressure overload-induced heart failure. As a consequence, the level of reduced glutathione is downregulated, a change associated with fibrosis and cardiomyopathy. We report that the pentose phosphate pathway and mitochondrial serine/glycine/folate metabolic signaling, 2 NADPH-generating pathways in the cytosol and mitochondria, respectively, are induced by transverse aortic constriction. We identify ATF4 (activating transcription factor 4) as an upstream transcription factor controlling the expression of multiple enzymes in these 2 pathways. Consistently, joint pathway analysis of transcriptomic and metabolomic data reveal that ATF4 preferably controls oxidative stress and redox-related pathways. Overexpression of ATF4 in neonatal rat ventricular myocytes increases NADPH-producing enzymes' whereas silencing of ATF4 decreases their expression. Further, stable isotope tracer experiments reveal that ATF4 overexpression augments metabolic flux within these 2 pathways. In vivo, cardiomyocyte-specific deletion of ATF4 exacerbates cardiomyopathy in the setting of transverse aortic constriction and accelerates heart failure development, attributable, at least in part, to an inability to increase the expression of NADPH-generating enzymes. CONCLUSIONS Our findings reveal that ATF4 plays a critical role in the heart under conditions of hemodynamic stress by governing both cytosolic and mitochondrial production of NADPH.
Collapse
Affiliation(s)
- Xiaoding Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Guangyu Zhang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Subhajit Dasgupta
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Erica L. Niewold
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Li
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qinfeng Li
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiang Luo
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics & Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anwarul Ferdous
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Philip L. Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics & Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Beverly A. Rothermel
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas G. Gillette
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher M. Adams
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph A. Hill
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhao V. Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
28
|
The Intertwined Roles of Oxidative Stress and Endoplasmic Reticulum Stress in Glaucoma. Antioxidants (Basel) 2022; 11:antiox11050886. [PMID: 35624748 PMCID: PMC9137739 DOI: 10.3390/antiox11050886] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide, and the burden of the disease continues to grow as the global population ages. Currently, the only treatment option is to lower intraocular pressure. A better understanding of glaucoma pathogenesis will help us to develop novel therapeutic options. Oxidative stress has been implicated in the pathogenesis of many diseases. Oxidative stress occurs when there is an imbalance in redox homeostasis, with reactive oxygen species producing processes overcoming anti-oxidant defensive processes. Oxidative stress works in a synergistic fashion with endoplasmic reticulum stress, to drive glaucomatous damage to trabecular meshwork, retinal ganglion cells and the optic nerve head. We discuss the oxidative stress and endoplasmic reticulum stress pathways and their connections including their key intermediary, calcium. We highlight therapeutic options aimed at disrupting these pathways and discuss their potential role in glaucoma treatment.
Collapse
|
29
|
Wu G, Zhang X, Li S, Wang L, Bai J, Wang H, Shu Q. Silencing ATF4 inhibits JMJD3‐dependent JUNB/ETS1 axis and mitigates cerebral ischemic injury. J Biochem Mol Toxicol 2022; 36:e23070. [PMID: 35403324 DOI: 10.1002/jbt.23070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Gang Wu
- Department of Anesthesiology The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Xi'an Zhang
- Department of Translational Medicine center Ninth Hospital of Xi'an Affiliated to Xi'an Jiaotong University Xi'an China
| | - Shijun Li
- Department of Pharmacy Wuhan Union Hospital Wuhan China
| | - Lina Wang
- Department of Translational Medicine center Ninth Hospital of Xi'an Affiliated to Xi'an Jiaotong University Xi'an China
| | - Jie Bai
- Department of Anesthesiology The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Hanxiang Wang
- Department of Pharmacy Wuhan Union Hospital Wuhan China
| | - Qing Shu
- Department of Translational Medicine center Ninth Hospital of Xi'an Affiliated to Xi'an Jiaotong University Xi'an China
| |
Collapse
|
30
|
Li H, Wen W, Luo J. Targeting Endoplasmic Reticulum Stress as an Effective Treatment for Alcoholic Pancreatitis. Biomedicines 2022; 10:biomedicines10010108. [PMID: 35052788 PMCID: PMC8773075 DOI: 10.3390/biomedicines10010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
Pancreatitis and alcoholic pancreatitis are serious health concerns with an urgent need for effective treatment strategies. Alcohol is a known etiological factor for pancreatitis, including acute pancreatitis (AP) and chronic pancreatitis (CP). Excessive alcohol consumption induces many pathological stress responses; of particular note is endoplasmic reticulum (ER) stress and adaptive unfolded protein response (UPR). ER stress results from the accumulation of unfolded/misfolded protein in the ER and is implicated in the pathogenesis of alcoholic pancreatitis. Here, we summarize the possible mechanisms by which ER stress contributes to alcoholic pancreatitis. We also discuss potential approaches targeting ER stress and UPR in developing novel therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
| | - Wen Wen
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
| | - Jia Luo
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
- Iowa City VA Health Care System, Iowa City, IA 52246, USA
- Correspondence: ; Tel.: +1-319-335-2256
| |
Collapse
|
31
|
Shivarudrappa AH, Sharan K, Ponesakki G. Lutein activates downstream signaling pathways of unfolded protein response in hyperglycemic ARPE-19 cells. Eur J Pharmacol 2022; 914:174663. [PMID: 34861209 DOI: 10.1016/j.ejphar.2021.174663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/01/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023]
Abstract
We have earlier demonstrated that lutein effectively prevents hyperglycemia generated sustained oxidative stress in ARPE-19 cells by activating Nrf2 (nuclear factor erythroid 2-related factor 2) signaling. Since evidence portrays an intricate connection between ER (endoplasmic reticulum) stress and hyperglycemia-mediated oxidative stress, we aimed to explore the protective mechanism of lutein on hyperglycemia-induced ER stress in ARPE-19 cells. To determine the effect of lutein, we probed three major downstream branches of unfolded protein response (UPR) signaling pathways using western blot, immunofluorescent and RT-PCR techniques. The data showed a reduction (38%) in protein expression of an imperative ER chaperon, BiP (binding immunoglobulin protein), in glucose-treated ARPE-19 cells. At the same time, lutein pretreatment blocked this glucose-mediated effect, leading to a significant increase in BiP expression. Lutein promoted the phosphorylation of IRE1 (inositol requiring enzyme 1) and subsequent splicing of XBP1 (X-box binding protein 1), leading to enhanced nuclear translocation. Likewise, lutein activated the expression and translocation of transcription factors, ATF6 (activating transcription factor 6) and ATF4 (activating transcription factor 4) suppressed by hyperglycemia. Lutein also increased CHOP (C/EBP-homologous protein) levels in ARPE-19 cultured under high glucose conditions. The mRNA expression study showed that lutein pretreatment upregulates downstream UPR genes HRD1 (ERAD-associated E3 ubiquitin-protein ligase HRD1), p58IPK (protein kinase inhibitor p58) compared to high glucose treatment alone. From our study, it is clear that lutein show protection against hyperglycemia-mediated ER stress in ARPE-19 cells by activating IRE1-XBP1, ATF6, and ATF4 pathways and their downstream activators. Thus, lutein may have the pharmacological potential for protection against widespread disease conditions of ER stress.
Collapse
Affiliation(s)
- Arpitha Haranahalli Shivarudrappa
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ganesan Ponesakki
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India; Department of Biochemistry and Biotechnology, CSIR-Central Leather Research Institute (CLRI), Chennai, 600 020, India.
| |
Collapse
|
32
|
The Role of the Universally Conserved ATPase YchF/Ola1 in Translation Regulation during Cellular Stress. Microorganisms 2021; 10:microorganisms10010014. [PMID: 35056463 PMCID: PMC8779481 DOI: 10.3390/microorganisms10010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
The ability to respond to metabolic or environmental changes is an essential feature in all cells and involves both transcriptional and translational regulators that adjust the metabolic activity to fluctuating conditions. While transcriptional regulation has been studied in detail, the important role of the ribosome as an additional player in regulating gene expression is only beginning to emerge. Ribosome-interacting proteins are central to this translational regulation and include universally conserved ribosome interacting proteins, such as the ATPase YchF (Ola1 in eukaryotes). In both eukaryotes and bacteria, the cellular concentrations of YchF/Ola1 determine the ability to cope with different stress conditions and are linked to several pathologies in humans. The available data indicate that YchF/Ola1 regulates the stress response via controlling non-canonical translation initiation and via protein degradation. Although the molecular mechanisms appear to be different between bacteria and eukaryotes, increased non-canonical translation initiation is a common consequence of YchF/Ola1 regulated translational control in E. coli and H. sapiens. In this review, we summarize recent insights into the role of the universally conserved ATPase YchF/Ola1 in adapting translation to unfavourable conditions.
Collapse
|
33
|
Li JY, Liu SQ, Yao RQ, Tian YP, Yao YM. A Novel Insight Into the Fate of Cardiomyocytes in Ischemia-Reperfusion Injury: From Iron Metabolism to Ferroptosis. Front Cell Dev Biol 2021; 9:799499. [PMID: 34926476 PMCID: PMC8675329 DOI: 10.3389/fcell.2021.799499] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Ischemia-reperfusion injury (IRI), critically involved in the pathology of reperfusion therapy for myocardial infarction, is closely related to oxidative stress the inflammatory response, and disturbances in energy metabolism. Emerging evidence shows that metabolic imbalances of iron participate in the pathophysiological process of cardiomyocyte IRI [also termed as myocardial ischemia-reperfusion injury (MIRI)]. Iron is an essential mineral required for vital physiological functions, including cellular respiration, lipid and oxygen metabolism, and protein synthesis. Nevertheless, cardiomyocyte homeostasis and viability are inclined to be jeopardized by iron-induced toxicity under pathological conditions, which is defined as ferroptosis. Upon the occurrence of IRI, excessive iron is transported into cells that drive cardiomyocytes more vulnerable to ferroptosis by the accumulation of reactive oxygen species (ROS) through Fenton reaction and Haber–Weiss reaction. The increased ROS production in ferroptosis correspondingly leads cardiomyocytes to become more sensitive to oxidative stress under the exposure of excess iron. Therefore, ferroptosis might play an important role in the pathogenic progression of MIRI, and precisely targeting ferroptosis mechanisms may be a promising therapeutic option to revert myocardial remodeling. Notably, targeting inhibitors are expected to prevent MIRI deterioration by suppressing cardiomyocyte ferroptosis. Here, we review the pathophysiological alterations from iron homeostasis to ferroptosis together with potential pathways regarding ferroptosis secondary to cardiovascular IRI. We also provide a comprehensive analysis of ferroptosis inhibitors and initiators, as well as regulatory genes involved in the setting of MIRI.
Collapse
Affiliation(s)
- Jing-yan Li
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuang-qing Liu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ren-qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ying-ping Tian
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Ying-ping Tian, ; Yong-ming Yao,
| | - Yong-ming Yao
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- *Correspondence: Ying-ping Tian, ; Yong-ming Yao,
| |
Collapse
|
34
|
Zaky DA, Eldehna WM, El Kerdawy AM, Abdallah DM, El Abhar HS, Wadie W. Recombinant human growth hormone improves the immune status of rats with septic encephalopathy: The role of VEGFR2 in the prevalence of endoplasmic reticulum stress repair module. Int Immunopharmacol 2021; 101:108370. [PMID: 34794887 DOI: 10.1016/j.intimp.2021.108370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022]
Abstract
Septic encephalopathy results from the intense reaction of the immune system to infection. The role of growth hormone (GH) signaling in maintaining brain function is well established; however, the involvement of the vascular endothelial growth factor receptor-2 (VEGFR2) in the potential modulatory effect of GH on septic encephalopathy-associated endoplasmic reticulum stress (ERS) and blood-brain barrier (BBB) permeability is not well-understood. Therefore, after the induction of mid-grade sepsis by cecal ligation/perforation, rats were subcutaneously injected with recombinant human GH (rhGH)/somatropin alone or preceded by the VEGFR2 antagonist WAG-4S for 7 days. rhGH/somatropin reduced bodyweight loss and plasma endotoxin, maintained the hyperthermic state, and improved motor/memory functions. Additionally, rhGH/somatropin increased the junctional E-cadherin and β-catenin pool in the cerebral cortex to enhance the BBB competency, effects that were abolished by VEGFR2 blockade. Also, it activated cortical VEGFR2/mammalian target of the Rapamycin (mTOR) axis to mitigate ERS. The latter was reflected by the deactivation of the inositol-requiring enzyme-1α (IRE1α)/spliced X-box binding protein-1 (XBP1s) trajectory and the reduction in the protein levels of the death markers, C/EBP homologous protein (CHOP)/growth arrest and DNA damage-153 (GADD153), c-jun-N-terminal kinase (JNK), and caspase-3 with the simultaneous augmentation of expression of the unfolded protein response transducer proteinkinaseR-like ERkinase (PERK). Furthermore, rhGH/somatropin suppressed the phosphorylation of eukaryotic initiation factor-2α (eIF2α), upregulated the gene expression of activating transcription factor-4 (ATF4), GADD34, and glucose-regulated protein-78/binding immunoglobulin (GRP78/Bip). Moreover, it increased the glutathione level and reduced lipid peroxidation in the cerebral cortex. The VEGFR2 antagonist reversed the effect of rhGH/somatropin on PERK and IRE1α and boosted the apoptotic markers but neither affected p-eIF2α nor GADD34. Hence, we conclude that VEGFR2 activation by rhGH/somatropin plays a crucial role in assembling the BBB adherens junctions via its antioxidant capacity, ERS relief, and reducing endotoxemia in septic encephalopathy.
Collapse
Affiliation(s)
- Doaa A Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt
| | - Hanan S El Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Future University in Egypt, Cairo, P.O. Box 11835, Egypt
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt
| |
Collapse
|
35
|
Rapid ATF4 Depletion Resets Synaptic Responsiveness after cLTP. eNeuro 2021; 8:ENEURO.0239-20.2021. [PMID: 33980608 PMCID: PMC8177969 DOI: 10.1523/eneuro.0239-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 04/14/2021] [Accepted: 04/24/2021] [Indexed: 12/14/2022] Open
Abstract
Activating transcription factor 4 [ATF4 (also called CREB2)], in addition to its well studied role in stress responses, is proposed to play important physiologic functions in regulating learning and memory. However, the nature of these functions has not been well defined and is subject to apparently disparate views. Here, we provide evidence that ATF4 is a regulator of excitability during synaptic plasticity. We evaluated the role of ATF4 in mature hippocampal cultures subjected to a brief chemically induced LTP (cLTP) protocol that results in changes in mEPSC properties and synaptic AMPA receptor density 1 h later, with return to baseline by 24 h. We find that ATF4 protein, but not its mRNA, is rapidly depleted by ∼50% in response to cLTP induction via NMDA receptor activation. Depletion is detectable in dendrites within 15 min and in cell bodies by 1 h, and returns to baseline by 8 h. Such changes correlate with a parallel depletion of phospho-eIF2a, suggesting that ATF4 loss is driven by decreased translation. To probe the physiologic role of cLTP-induced ATF4 depletion, we constitutively overexpressed the protein. Reversing ATF4 depletion by overexpression blocked the recovery of synaptic activity and AMPA receptor density to baseline values that would otherwise occur 24 h after cLTP induction. This reversal was not reproduced by a transcriptionally inactive ATF4 mutant. These findings support the role of ATF4 as a required element in resetting baseline synaptic responsiveness after cLTP.
Collapse
|
36
|
Kalish BT, Kim E, Finander B, Duffy EE, Kim H, Gilman CK, Yim YS, Tong L, Kaufman RJ, Griffith EC, Choi GB, Greenberg ME, Huh JR. Maternal immune activation in mice disrupts proteostasis in the fetal brain. Nat Neurosci 2021; 24:204-213. [PMID: 33361822 PMCID: PMC7854524 DOI: 10.1038/s41593-020-00762-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022]
Abstract
Maternal infection and inflammation during pregnancy are associated with neurodevelopmental disorders in offspring, but little is understood about the molecular mechanisms underlying this epidemiologic phenomenon. Here, we leveraged single-cell RNA sequencing to profile transcriptional changes in the mouse fetal brain in response to maternal immune activation (MIA) and identified perturbations in cellular pathways associated with mRNA translation, ribosome biogenesis and stress signaling. We found that MIA activates the integrated stress response (ISR) in male, but not female, MIA offspring in an interleukin-17a-dependent manner, which reduced global mRNA translation and altered nascent proteome synthesis. Moreover, blockade of ISR activation prevented the behavioral abnormalities as well as increased cortical neural activity in MIA male offspring. Our data suggest that sex-specific activation of the ISR leads to maternal inflammation-associated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Brian T Kalish
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
| | - Eunha Kim
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Benjamin Finander
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Erin E Duffy
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Hyunju Kim
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Casey K Gilman
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yeong Shin Yim
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lilin Tong
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Randal J Kaufman
- Degenerative Disease Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Eric C Griffith
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gloria B Choi
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael E Greenberg
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
37
|
Shin YH, Cho H, Choi BY, Kim J, Ha J, Suh SW, Park SB. Phenotypic Discovery of Neuroprotective Agents by Regulation of Tau Proteostasis via Stress-Responsive Activation of PERK Signaling. Angew Chem Int Ed Engl 2021; 60:1831-1838. [PMID: 33210431 PMCID: PMC7898623 DOI: 10.1002/anie.202013915] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Indexed: 02/06/2023]
Abstract
Tau protein aggregates are a recognized neuropathological feature in Alzheimer's disease as well as many other neurodegenerative disorders, known as tauopathies. The development of tau-targeting therapies is therefore extremely important but efficient strategies or protein targets are still unclear. Here, we performed a cell-based phenotypic screening under endoplasmic reticulum (ER) stress conditions and identified a small molecule, SB1617, capable of suppressing abnormal tau protein aggregation. By applying label-free target identification technology, we revealed that the transient enhancement of protein kinase-like endoplasmic reticulum kinase (PERK) signaling pathway through the inhibition of stress-responsive SB1617 targets, PDIA3 and DNAJC3, is an effective strategy for regulating proteostasis in tauopathies. The molecular mechanism and the promising efficacy of SB1617 were demonstrated in neuronal cells and a mouse model with traumatic brain injury, a tauopathy known to involve ER stress.
Collapse
Affiliation(s)
- Young-Hee Shin
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Hana Cho
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Korea
| | - Bo Young Choi
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Jonghoon Kim
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Korea.,Present address: Department of Chemistry, Soongsil University, Seoul, 06978, Korea
| | - Jaeyoung Ha
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Seung Bum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Korea.,Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
38
|
2,3,5,6-Tetramethylpyrazine protects retinal photoreceptors against endoplasmic reticulum stress by modulating ATF4-mediated inhibition of PRP aggregation. J Mol Med (Berl) 2021; 99:383-402. [PMID: 33409554 DOI: 10.1007/s00109-020-02017-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/17/2023]
Abstract
Endoplasmic reticulum (ER) stress is a common threat to photoreceptors during the pathogenesis of chronic retinopathies and often results in irreversible visual impairment. 2,3,5,6-Tetramethylpyrazine (TMP), which possesses many beneficial pharmacological activities, is a potential drug that could be used to protect photoreceptors. In the present study, we found that the cellular growth rate of 661 W cells cultured under low glucose conditions was lower than that of control cells, while the G2/M phase of the cell cycle was longer. We further found that the mitochondrial membrane potential (ΔΨm) was lower and that ER stress factor expression was increased in 661 W cells cultured under low glucose conditions. TMP reversed these trends. Visual function and cell counts in the outer nuclear layer (ONL) were low and the TUNEL-positive rate in the ONL was high in a C3H mouse model of spontaneous retinal degeneration. Similarly, visual function was decreased, and the TUNEL-positive rate in the ONL was increased in fasted C57/BL6j mice compared with control mice. On the other hand, ER stress factor expression was found to be increased in the retinas of both mouse models, as shown by reverse transcription real-time PCR (RT-qPCR) and western blotting. TMP reversed the physiological and molecular biological variations observed in both mouse models, and ATF4 expression was enhanced again. Further investigation by using western blotting illustrated that the proportion of insoluble prion protein (PRP) versus soluble PRP was reduced both in vitro and in vivo. Taken together, these results suggest that TMP increased the functions of photoreceptors by alleviating ER stress in vitro and in vivo, and the intrinsic mechanism was the ATF4-mediated inhibition of PRP aggregation. TMP may potentially be used clinically as a therapeutic agent to attenuate the functional loss of photoreceptors during the pathogenesis of chronic retinopathies. KEY MESSAGES: • Already known: TMP is a beneficial drug mainly used in clinic to enhance organ functions, and the intrinsic mechanism is still worthy of exploring. • New in the study: We discovered that TMP ameliorated retinal photoreceptors function via ER stress alleviation, which was promoted by ATF4-mediated inhibition of PRP aggregation. • Application prospect: In prospective clinical practices, TMP may potentially be used in the clinic as a therapeutic agent to attenuate the photoreceptors functional reduction in chronic retinopathies.
Collapse
|
39
|
Read DE, Gupta A, Cawley K, Fontana L, Agostinis P, Samali A, Gupta S. Downregulation of miR-17-92 Cluster by PERK Fine-Tunes Unfolded Protein Response Mediated Apoptosis. Life (Basel) 2021; 11:life11010030. [PMID: 33418948 PMCID: PMC7825066 DOI: 10.3390/life11010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 01/07/2023] Open
Abstract
An important event in the unfolded protein response (UPR) is activation of the endoplasmic reticulum (ER) kinase PERK. The PERK signalling branch initially mediates a prosurvival response, which progresses to a proapoptotic response upon prolonged ER stress. However, the molecular mechanisms of PERK-mediated cell death are not well understood. Here we show that expression of the primary miR-17-92 transcript and mature miRNAs belonging to the miR-17-92 cluster are decreased during UPR. We found that miR-17-92 promoter reporter activity was reduced during UPR in a PERK-dependent manner. Furthermore, we show that activity of the miR-17-92 promoter is repressed by ectopic expression of ATF4 and NRF2. Promoter deletion analysis mapped the region responding to UPR-mediated repression to a site in the proximal region of the miR-17-92 promoter. Hypericin-mediated photo-oxidative ER damage reduced the expression of miRNAs belonging to the miR-17-92 cluster in wild-type but not in PERK-deficient cells. Importantly, ER stress-induced apoptosis was inhibited upon miR-17-92 overexpression in SH-SY5Y and H9c2 cells. Our results reveal a novel function for ATF4 and NRF2, where repression of the miR-17-92 cluster plays an important role in ER stress-mediated apoptosis. Mechanistic details are provided for the potentiation of cell death via sustained PERK signalling mediated repression of the miR-17-92 cluster.
Collapse
Affiliation(s)
- Danielle E. Read
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, National University of Ireland-Galway, H91 TK33 Galway, Ireland;
| | - Ananya Gupta
- Discipline of Physiology, School of Medicine, National University of Ireland-Galway, H91 TK33 Galway, Ireland;
| | - Karen Cawley
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland; (K.C.); (A.S.)
| | - Laura Fontana
- Ragon Institute of MGH, MIT and Harvard, Cambridge, 02138 MA, USA;
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium;
- VIB Center for Cancer Biology Research, 3000 Leuven, Belgium
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland; (K.C.); (A.S.)
| | - Sanjeev Gupta
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, National University of Ireland-Galway, H91 TK33 Galway, Ireland;
- Correspondence:
| |
Collapse
|
40
|
Shin Y, Cho H, Choi BY, Kim J, Ha J, Suh SW, Park SB. Phenotypic Discovery of Neuroprotective Agents by Regulation of Tau Proteostasis via Stress‐Responsive Activation of PERK Signaling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Young‐Hee Shin
- CRI Center for Chemical Proteomics Department of Chemistry Seoul National University Seoul 08826 Korea
| | - Hana Cho
- Department of Biophysics and Chemical Biology Seoul National University Seoul 08826 Korea
| | - Bo Young Choi
- Department of Physiology College of Medicine Hallym University Chuncheon 24252 Korea
| | - Jonghoon Kim
- CRI Center for Chemical Proteomics Department of Chemistry Seoul National University Seoul 08826 Korea
- Present address: Department of Chemistry Soongsil University Seoul 06978 Korea
| | - Jaeyoung Ha
- Department of Biophysics and Chemical Biology Seoul National University Seoul 08826 Korea
| | - Sang Won Suh
- Department of Physiology College of Medicine Hallym University Chuncheon 24252 Korea
| | - Seung Bum Park
- CRI Center for Chemical Proteomics Department of Chemistry Seoul National University Seoul 08826 Korea
- Department of Biophysics and Chemical Biology Seoul National University Seoul 08826 Korea
| |
Collapse
|
41
|
Masood M, Grimm S, El-Bahrawy M, Yagüe E. TMEFF2: A Transmembrane Proteoglycan with Multifaceted Actions in Cancer and Disease. Cancers (Basel) 2020; 12:cancers12123862. [PMID: 33371267 PMCID: PMC7766544 DOI: 10.3390/cancers12123862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Simple Summary We recently came across an intriguing protein while screening for tumour-specific apoptosis inducers. It is known as the transmembrane protein with an EGF-like and two Follistatin-like domains 2 (TMEFF2). The gene was identified and characterized by five different groups almost simultaneously around 2000. Physiological function of TMEFF2 is elusive; however, the protein is reported to be involved in wide-ranging physiological and pathological functions including neuroprotection in Alzheimer’s diseases, interferon induction and one-carbon metabolism. Moreover, the TMEFF2 promoter and 5′-upstream regions harbour a CpG island which is progressively methylated upon progression in a wide variety of cancers. Numerous primary publications suggest the methylation of TMEFF2 as a prognostic and even diagnostic marker in different cancers. The primary literature regarding TMEFF2 is distributed far and wide, and despite having more than 150 primary publications mentioning TMEFF2 (or its aliases) in the title or abstract on PubMed, a comprehensive literature review is not available. We believe the reason behind this is firstly the sheer diversity of subjects of these publications and secondly the numerous primary publications reporting contradictory information about TMEFF2, especially when it comes to its oncogenic versus the onco-suppressive roles. The interest in TMEFF2 is growing again; PubMed returning at least 60 publications mentioning TMEFF2 (or its aliases) within the last year. We have made a laborious effort and written a comprehensive review article on TMEFF2 where we have not only compiled and contextualized the information regarding it but also critically analysed the information in the major primary publications. In addition, we have proposed some answers to the apparent TMEFF2 disagreements on its function. This information could serve as a valuable tool for readers not only about TMEFF2 but also on the dual role of type-I transmembrane proteoglycans (harbouring Follistatin-like domains) in oncogenesis and onco-suppression. Abstract Transmembrane protein with an EGF-like and two Follistatin-like domains 2 (TMEFF2) is a 374-residue long type-I transmembrane proteoglycan which is proteolytically shed from the cell surface. The protein is involved in a range of functions including metabolism, neuroprotection, apoptosis, embryonic development, onco-suppression and endocrine function. TMEFF2 is methylated in numerous cancers, and an inverse correlation with the stage, response to therapy and survival outcome has been observed. Moreover, TMEFF2 methylation increases with breast, colon and gastric cancer progression. TMEFF2 is methylated early during oncogenesis in breast and colorectal cancer, and the detection of methylated free-circulating TMEFF2 DNA has been suggested as a potential diagnostic tool. The TMEFF2 downregulation signature equals and sometimes outperforms the Gleason and pathological scores in prostate cancer. TMEFF2 is downregulated in glioma and cotricotropinomas, and it impairs the production of adrenocorticotropic hormone in glioma cells. Interestingly, through binding the amyloid β protein, its precursor and derivatives, TMEFF2 provides neuroprotection in Alzheimer’s disease. Despite undergoing extensive investigation over the last two decades, the primary literature regarding TMEFF2 is incoherent and offers conflicting information, in particular, the oncogenic vs. onco-suppressive role of TMEFF2 in prostate cancer. For the first time, we have compiled, contextualised and critically analysed the vast body of TMEFF2-related literature and answered the apparent discrepancies regarding its function, tissue expression, intracellular localization and oncogenic vs. onco-suppressive role.
Collapse
Affiliation(s)
- Motasim Masood
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
| | - Stefan Grimm
- Department of Medicine, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
| | - Mona El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Correspondence: (M.E.-B.); (E.Y.); Tel.: +44-(0)77-7157-4968 (M.E.B.); +44-(0)20-7594-2802 (E.Y.)
| | - Ernesto Yagüe
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
- Correspondence: (M.E.-B.); (E.Y.); Tel.: +44-(0)77-7157-4968 (M.E.B.); +44-(0)20-7594-2802 (E.Y.)
| |
Collapse
|
42
|
Zhou RP, Chen Y, Wei X, Yu B, Xiong ZG, Lu C, Hu W. Novel insights into ferroptosis: Implications for age-related diseases. Theranostics 2020; 10:11976-11997. [PMID: 33204324 PMCID: PMC7667696 DOI: 10.7150/thno.50663] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022] Open
Abstract
Rapid increase in aging populations is an urgent problem because older adults are more likely to suffer from disabilities and age-related diseases (ARDs), burdening healthcare systems and society in general. ARDs are characterized by the progressive deterioration of tissues and organs over time, eventually leading to tissue and organ failure. To date, there are no effective interventions to prevent the progression of ARDs. Hence, there is an urgent need for new treatment strategies. Ferroptosis, an iron-dependent cell death, is linked to normal development and homeostasis. Accumulating evidence, however, has highlighted crucial roles for ferroptosis in ARDs, including neurodegenerative and cardiovascular diseases. In this review, we a) summarize initiation, regulatory mechanisms, and molecular signaling pathways involved in ferroptosis, b) discuss the direct and indirect involvement of the activation and/or inhibition of ferroptosis in the pathogenesis of some important diseases, and c) highlight therapeutic targets relevant for ARDs.
Collapse
Affiliation(s)
- Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Xin Wei
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Bin Yu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi-Gang Xiong
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Chao Lu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| |
Collapse
|
43
|
Increased immunosuppression impairs tissue homeostasis with aging and age-related diseases. J Mol Med (Berl) 2020; 99:1-20. [PMID: 33025106 PMCID: PMC7782450 DOI: 10.1007/s00109-020-01988-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 01/10/2023]
Abstract
Abstract Chronic low-grade inflammation is a common hallmark of the aging process and many age-related diseases. There is substantial evidence that persistent inflammation is associated with a compensatory anti-inflammatory response which prevents excessive tissue damage. Interestingly, the inflammatory state encountered with aging, called inflammaging, is associated with the anti-inflammaging process. The age-related activation of immunosuppressive network includes an increase in the numbers of myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and macrophages (Mreg/M2c). Immunosuppressive cells secrete several anti-inflammatory cytokines, e.g., TGF-β and IL-10, as well as reactive oxygen and nitrogen species (ROS/RNS). Moreover, immunosuppressive cells suppress the function of effector immune cells by catabolizing l-arginine and tryptophan through the activation of arginase 1 (ARG1) and indoleamine 2,3-dioxygenase (IDO), respectively. Unfortunately, the immunosuppressive armament also induces harmful bystander effects in neighboring cells by impairing host tissue homeostasis. For instance, TGF-β signaling can trigger many age-related degenerative changes, e.g., cellular senescence, fibrosis, osteoporosis, muscle atrophy, and the degeneration of the extracellular matrix. In addition, changes in the levels of ROS, RNS, and the metabolites of the kynurenine pathway can impair tissue homeostasis. This review will examine in detail the harmful effects of the immunosuppressive cells on host tissues. It seems that this age-related immunosuppression prevents inflammatory damage but promotes the tissue degeneration associated with aging and age-related diseases. Key messages • Low-grade inflammation is associated with the aging process and age-related diseases. • Persistent inflammation activates compensatory immunosuppression with aging. • The numbers of immunosuppressive cells increase with aging and age-related diseases. • Immunosuppressive mechanisms evoke harmful bystander effects in host tissues. • Immunosuppression promotes tissue degeneration with aging and age-related diseases.
Collapse
|
44
|
Proteotoxic Stress and Cell Death in Cancer Cells. Cancers (Basel) 2020; 12:cancers12092385. [PMID: 32842524 PMCID: PMC7563887 DOI: 10.3390/cancers12092385] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
To maintain proteostasis, cells must integrate information and activities that supervise protein synthesis, protein folding, conformational stability, and also protein degradation. Extrinsic and intrinsic conditions can both impact normal proteostasis, causing the appearance of proteotoxic stress. Initially, proteotoxic stress elicits adaptive responses aimed at restoring proteostasis, allowing cells to survive the stress condition. However, if the proteostasis restoration fails, a permanent and sustained proteotoxic stress can be deleterious, and cell death ensues. Many cancer cells convive with high levels of proteotoxic stress, and this condition could be exploited from a therapeutic perspective. Understanding the cell death pathways engaged by proteotoxic stress is instrumental to better hijack the proliferative fate of cancer cells.
Collapse
|
45
|
Zaky DA, Wadie W, Eldehna WM, El Kerdawy AM, Abdallah DM, El Abhar HS. Modulation of endoplasmic reticulum stress response in gut-origin encephalopathy: Impact of vascular endothelial growth factor receptor-2 manipulation. Life Sci 2020; 252:117654. [PMID: 32277979 DOI: 10.1016/j.lfs.2020.117654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/09/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Septic encephalopathy, the most frequent complication of sepsis, is orchestrated by a complex interplay of signals that leads to high mortality rates among intensive care unit patients. However, the role of the vascular endothelial growth factor receptor-2 (VEGFR2) in endoplasmic reticulum stress response (ERSR), during septic encephalopathy, is still elusive. AIM This study was aimed to examine the effect of an in-house designed/synthesized VEGFR2 antagonist, named WAG4S, on septic encephalopathy using cecal ligation and perforation (CLP). MAIN METHODS Rats were intraperitoneally injected with WAG-4S (1 mg/kg/d) for 7 days post-CLP. KEY FINDINGS In septic animals, VEGFR2 antagonism declined the expression of cortical p-VEGFR2 and p-mammalian target of rapamycin complex-1 (p-mTORC1). It also worsened the behavioral and histopathological alterations beyond CLP. However, and contrary to CLP, WAG-4S decreased the p-protein kinase R-like ER kinase (p-PERK) and eukaryotic initiation factor-2α (p-eIF2α) expression. Moreover, VEGFR2 blockade upregulated the mRNA expression of activating transcription factor-4 (ATF4), binding immunoglobulin protein/glucose-regulated protein-78 (Bip/GRP78), growth arrest and DNA damage-34 (GADD34) and spliced X-box binding protein-1 (XBP1s) above CLP. Similarly, it boosted inositol requiring enzyme-1α (IRE1α) activation and redox imbalance. In the same context, WAG-4S augmented the protein levels of CLP-induced ERSR apoptotic markers, namely C/EBP homologous protein (CHOP/GADD153), c-jun N-terminal kinase (JNK) and caspase-3. SIGNIFICANCE In conclusion, the PERK/eIF2α axis inhibition, during septic encephalopathy, is VEGFR2-independent, whereas the activated IRE1α/XBP1s/CHOP/JNK/caspase-3 cue promotes the ERSR execution module through VEGFR2 inhibition. This has turned VEGFR2 into a potential therapeutic target for ameliorating such an ailment.
Collapse
Affiliation(s)
- Doaa A Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt.
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt
| | - Hanan S El Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo, P.O. Box 11562, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, P.O. Box 11835, Egypt
| |
Collapse
|
46
|
Gorbatyuk MS, Starr CR, Gorbatyuk OS. Endoplasmic reticulum stress: New insights into the pathogenesis and treatment of retinal degenerative diseases. Prog Retin Eye Res 2020; 79:100860. [PMID: 32272207 DOI: 10.1016/j.preteyeres.2020.100860] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/08/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Physiological equilibrium in the retina depends on coordinated work between rod and cone photoreceptors and can be compromised by the expression of mutant proteins leading to inherited retinal degeneration (IRD). IRD is a diverse group of retinal dystrophies with multifaceted molecular mechanisms that are not fully understood. In this review, we focus on the contribution of chronically activated unfolded protein response (UPR) to inherited retinal pathogenesis, placing special emphasis on studies employing genetically modified animal models. As constitutively active UPR in degenerating retinas may activate pro-apoptotic programs associated with oxidative stress, pro-inflammatory signaling, dysfunctional autophagy, free cytosolic Ca2+ overload, and altered protein synthesis rate in the retina, we focus on the regulatory mechanisms of translational attenuation and approaches to overcoming translational attenuation in degenerating retinas. We also discuss current research on the role of the UPR mediator PERK and its downstream targets in degenerating retinas and highlight the therapeutic benefits of reprogramming PERK signaling in preclinical animal models of IRD. Finally, we describe pharmacological approaches targeting UPR in ocular diseases and consider their potential applications to IRD.
Collapse
Affiliation(s)
- Marina S Gorbatyuk
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA.
| | - Christopher R Starr
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA
| | - Oleg S Gorbatyuk
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA
| |
Collapse
|
47
|
Zhao N, Ren Y, Yamazaki Y, Qiao W, Li F, Felton LM, Mahmoudiandehkordi S, Kueider-Paisley A, Sonoustoun B, Arnold M, Shue F, Zheng J, Attrebi ON, Martens YA, Li Z, Bastea L, Meneses AD, Chen K, Thompson JW, St John-Williams L, Tachibana M, Aikawa T, Oue H, Job L, Yamazaki A, Liu CC, Storz P, Asmann YW, Ertekin-Taner N, Kanekiyo T, Kaddurah-Daouk R, Bu G. Alzheimer's Risk Factors Age, APOE Genotype, and Sex Drive Distinct Molecular Pathways. Neuron 2020; 106:727-742.e6. [PMID: 32199103 DOI: 10.1016/j.neuron.2020.02.034] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/26/2019] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
Abstract
Evidence suggests interplay among the three major risk factors for Alzheimer's disease (AD): age, APOE genotype, and sex. Here, we present comprehensive datasets and analyses of brain transcriptomes and blood metabolomes from human apoE2-, apoE3-, and apoE4-targeted replacement mice across young, middle, and old ages with both sexes. We found that age had the greatest impact on brain transcriptomes highlighted by an immune module led by Trem2 and Tyrobp, whereas APOE4 was associated with upregulation of multiple Serpina3 genes. Importantly, these networks and gene expression changes were mostly conserved in human brains. Finally, we observed a significant interaction between age, APOE genotype, and sex on unfolded protein response pathway. In the periphery, APOE2 drove distinct blood metabolome profile highlighted by the upregulation of lipid metabolites. Our work identifies unique and interactive molecular pathways underlying AD risk factors providing valuable resources for discovery and validation research in model systems and humans.
Collapse
Affiliation(s)
- Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| | - Yingxue Ren
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Fuyao Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lindsey M Felton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Siamak Mahmoudiandehkordi
- Department of Psychiatry and Behavioral Sciences, Department of Medicine and the Duke Institute for Brain Sciences, Duke University, Durham, NC 27708, USA
| | - Alexandra Kueider-Paisley
- Department of Psychiatry and Behavioral Sciences, Department of Medicine and the Duke Institute for Brain Sciences, Duke University, Durham, NC 27708, USA
| | | | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Department of Medicine and the Duke Institute for Brain Sciences, Duke University, Durham, NC 27708, USA; Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria 85764, Germany
| | - Francis Shue
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jiaying Zheng
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Olivia N Attrebi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Zonghua Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ligia Bastea
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Axel D Meneses
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kai Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - J Will Thompson
- Duke Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27701, USA
| | - Lisa St John-Williams
- Duke Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Masaya Tachibana
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tomonori Aikawa
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Hiroshi Oue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lucy Job
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Akari Yamazaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Department of Medicine and the Duke Institute for Brain Sciences, Duke University, Durham, NC 27708, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
48
|
Solomon IH, Chettimada S, Misra V, Lorenz DR, Gorelick RJ, Gelman BB, Morgello S, Gabuzda D. White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. Mol Neurobiol 2019; 57:1115-1130. [PMID: 31691183 DOI: 10.1007/s12035-019-01795-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Neurocognitive impairment (NCI) remains a significant cause of morbidity in human immunodeficiency virus (HIV)-positive individuals despite highly active antiretroviral therapy (HAART). White matter abnormalities have emerged as a key component of age-related neurodegeneration, and accumulating evidence suggests they play a role in HIV-associated neurocognitive disorders. Viral persistence in the brain induces chronic inflammation associated with lymphocytic infiltration, microglial proliferation, myelin loss, and cerebrovascular lesions. In this study, gene expression profiling was performed on frontal white matter from 34 older HIV+ individuals on HAART (18 with NCI) and 24 HIV-negative controls. We used the NanoString nCounter platform to evaluate 933 probes targeting inflammation, interferon and stress responses, energy metabolism, and central nervous system-related genes. Viral loads were measured using single-copy assays. Compared to HIV- controls, HIV+ individuals exhibited increased expression of genes related to interferon, MHC-1, and stress responses, myeloid cells, and T cells and decreased expression of genes associated with oligodendrocytes and energy metabolism in white matter. These findings correlated with increased white matter inflammation and myelin pallor, suggesting interferon (IRFs, IFITM1, ISG15, MX1, OAS3) and stress response (ATF4, XBP1, CHOP, CASP1, WARS) gene expression changes are associated with decreased energy metabolism (SREBF1, SREBF2, PARK2, TXNIP) and oligodendrocyte myelin production (MAG, MOG), leading to white matter dysfunction. Machine learning identified a 15-gene signature predictive of HIV status that was validated in an independent cohort. No specific gene expression patterns were associated with NCI. These findings suggest therapies that decrease chronic inflammation while protecting mitochondrial function may help to preserve white matter integrity in older HIV+ individuals.
Collapse
Affiliation(s)
- Isaac H Solomon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Sukrutha Chettimada
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Vikas Misra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA
| | - David R Lorenz
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Susan Morgello
- Department of Neurology, Icahn School of Medicine of Mount Sinai, New York, NY, USA
| | - Dana Gabuzda
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA. .,Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Sidorova YA, Volcho KP, Salakhutdinov NF. Neuroregeneration in Parkinson's Disease: From Proteins to Small Molecules. Curr Neuropharmacol 2019; 17:268-287. [PMID: 30182859 PMCID: PMC6425072 DOI: 10.2174/1570159x16666180905094123] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 01/07/2023] Open
Abstract
Background: Parkinson’s disease (PD) is the second most common neurodegenerative disorder worldwide, the lifetime risk of developing this disease is 1.5%. Motor diagnostic symptoms of PD are caused by degeneration of nigrostria-tal dopamine neurons. There is no cure for PD and current therapy is limited to supportive care that partially alleviates dis-ease signs and symptoms. As diagnostic symptoms of PD result from progressive degeneration of dopamine neurons, drugs restoring these neurons may significantly improve treatment of PD. Method: A literature search was performed using the PubMed, Web of Science and Scopus databases to discuss the pro-gress achieved in the development of neuroregenerative agents for PD. Papers published before early 2018 were taken into account. Results: Here, we review several groups of potential agents capable of protecting and restoring dopamine neurons in cul-tures or animal models of PD including neurotrophic factors and small molecular weight compounds. Conclusion: Despite the promising results of in vitro and in vivo experiments, none of the found agents have yet shown conclusive neurorestorative properties in PD patients. Meanwhile, a few promising biologicals and small molecules have been identified. Their further clinical development can eventually give rise to disease-modifying drugs for PD. Thus, inten-sive research in the field is justified.
Collapse
Affiliation(s)
- Yulia A Sidorova
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Konstantin P Volcho
- Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - Nariman F Salakhutdinov
- Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
50
|
Cau L, Takahara H, Thompson PR, Serre G, Méchin MC, Simon M. Peptidylarginine Deiminase Inhibitor Cl-Amidine Attenuates Cornification and Interferes with the Regulation of Autophagy in Reconstructed Human Epidermis. J Invest Dermatol 2019; 139:1889-1897.e4. [PMID: 30878672 DOI: 10.1016/j.jid.2019.02.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
Abstract
Deimination, a post-translational modification catalyzed by a family of enzymes called peptidylarginine deiminases (PADs), is the conversion of arginine into citrulline residues in a protein. Deimination has been associated with numerous physiological and pathological processes. Our aim was to study its implication in the homeostasis of human epidermis, where three PADs are expressed, namely PAD1, 2, and 3. Three-dimensional reconstructed human epidermis (RHEs) were treated for 2 days with increased concentrations (0-800 μM) of Cl-amidine, a specific PAD inhibitor. Cl-amidine treatments inhibited deimination in a dose-dependent manner and were not cytotoxic for keratinocytes. At 800 μM , Cl-amidine was shown to reduce deimination by half, alter keratinocyte differentiation, decrease the number of corneocyte layers, significantly increase the number of transitional cells, induce clustering of mitochondria and of heterogeneous vesicles in the cytoplasm of granular keratinocytes, and upregulate the expression of autophagy proteins, including LC3-II, sestrin-2, and p62/SQSTM1. LC3 and PADs were further shown to partially co-localize in the upper epidermis. These results demonstrated that Cl-amidine treatments slow down cornification and alter autophagy in the granular layer. They suggest that PAD1 and/or PAD3 play a role in the constitutive epidermal autophagy process that appears as an important step in cornification.
Collapse
Affiliation(s)
- Laura Cau
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Hidenari Takahara
- Department of Applied Biological Resource Sciences, School of Agriculture, University of Ibaraki, Ibaraki, Japan
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Guy Serre
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Marie-Claire Méchin
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Michel Simon
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Toulouse, France.
| |
Collapse
|