1
|
León-Rodríguez A, Grondona JM, Marín-Wong S, López-Aranda MF, López-Ávalos MD. Long-term reprogramming of primed microglia after moderate inhibition of CSF1R signaling. Glia 2025; 73:175-195. [PMID: 39448548 DOI: 10.1002/glia.24627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
In acute neuroinflammation, microglia activate transiently, and return to a resting state later on. However, they may retain immune memory of such event, namely priming. Primed microglia are more sensitive to new stimuli and develop exacerbated responses, representing a risk factor for neurological disorders with an inflammatory component. Strategies to control the hyperactivation of microglia are, hence, of great interest. The receptor for colony stimulating factor 1 (CSF1R), expressed in myeloid cells, is essential for microglia viability, so its blockade with specific inhibitors (e.g. PLX5622) results in significant depletion of microglial population. Interestingly, upon inhibitor withdrawal, new naïve microglia repopulate the brain. Depletion-repopulation has been proposed as a strategy to reprogram microglia. However, substantial elimination of microglia is inadvisable in human therapy. To overcome such drawback, we aimed to reprogram long-term primed microglia by CSF1R partial inhibition. Microglial priming was induced in mice by acute neuroinflammation, provoked by intracerebroventricular injection of neuraminidase. After 3-weeks recovery, low-dose PLX5622 treatment was administrated for 12 days, followed by a withdrawal period of 7 weeks. Twelve hours before euthanasia, mice received a peripheral lipopolysaccharide (LPS) immune challenge, and the subsequent microglial inflammatory response was evaluated. PLX5622 provoked a 40%-50% decrease in microglial population, but basal levels were restored 7 weeks later. In the brain regions studied, hippocampus and hypothalamus, LPS induced enhanced microgliosis and inflammatory activation in neuraminidase-injected mice, while PLX5622 treatment prevented these changes. Our results suggest that PLX5622 used at low doses reverts microglial priming and, remarkably, prevents broad microglial depletion.
Collapse
Affiliation(s)
- Ana León-Rodríguez
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain
| | - Jesús M Grondona
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain
| | - Sonia Marín-Wong
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Manuel F López-Aranda
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain
| | - María D López-Ávalos
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain
| |
Collapse
|
2
|
Vijaya AK, Kuras S, Šimoliūnas E, Mingaila J, Makovskytė K, Buišas R, Daliri EBM, Meškys R, Baltriukienė D, Burokas A. Prebiotics Mitigate the Detrimental Effects of High-Fat Diet on memory, anxiety and microglia functionality in Ageing Mice. Brain Behav Immun 2024; 122:167-184. [PMID: 39142421 DOI: 10.1016/j.bbi.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024] Open
Abstract
Ageing is characterised by a progressive increase in systemic inflammation and especially neuroinflammation. Neuroinflammation is associated with altered brain states that affect behaviour, such as an increased level of anxiety with a concomitant decline in cognitive abilities. Although multiple factors play a role in the development of neuroinflammation, microglia have emerged as a crucial target. Microglia are the only macrophage population in the CNS parenchyma that plays a crucial role in maintaining homeostasis and in the immune response, which depends on the activation and subsequent deactivation of microglia. Therefore, microglial dysfunction has a major impact on neuroinflammation. The gut microbiota has been shown to significantly influence microglia from birth to adulthood in terms of development, proliferation, and function. Diet is a key modulating factor that influences the composition of the gut microbiota, along with prebiotics that support the growth of beneficial gut bacteria. Although the role of diet in neuroinflammation and behaviour has been well established, its relationship with microglia functionality is less explored. This article establishes a link between diet, animal behaviour and the functionality of microglia. The results of this research stem from experiments on mouse behaviour, i.e., memory, anxiety, and studies on microglia functionality, i.e., cytochemistry (phagocytosis, cellular senescence, and ROS assays), gene expression and protein quantification. In addition, shotgun sequencing was performed to identify specific bacterial families that may play a crucial role in the brain function. The results showed negative effects of long-term consumption of a high fat diet on ageing mice, epitomised by increased body weight, glucose intolerance, anxiety, cognitive impairment and microglia dysfunction compared to ageing mice on a control diet. These effects were a consequence of the changes in gut microbiota modulated by the diet. However, by adding the prebiotics fructo- and galacto-oligosaccharides, we were able to mitigate the deleterious effects of a long-term high-fat diet.
Collapse
Affiliation(s)
- Akshay Kumar Vijaya
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Simonas Kuras
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Egidijus Šimoliūnas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Jonas Mingaila
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Karolina Makovskytė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Rokas Buišas
- Department of Neurobiology and Biophysics, Institute of Bioscience, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Eric Banan-Mwine Daliri
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Daiva Baltriukienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania.
| | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
3
|
Spelta LEW, Real CC, Bruno V, Buchpiguel CA, Garcia RCT, Torres LH, de Paula Faria D, Marcourakis T. Impact of cannabidiol on brain glucose metabolism of C57Bl/6 male mice previously exposed to cocaine. J Neurosci Res 2024; 102:e25327. [PMID: 38588037 DOI: 10.1002/jnr.25327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/10/2024]
Abstract
Despite evidence of the beneficial effects of cannabidiol (CBD) in animal models of cocaine use disorder (CUD), CBD neuronal mechanisms remain poorly understood. This study investigated the effects of CBD treatment on brain glucose metabolism, in a CUD animal model, using [18F]FDG positron emission tomography (PET). Male C57Bl/6 mice were injected with cocaine (20 mg/kg, i.p.) every other day for 9 days, followed by 8 days of CBD administration (30 mg/kg, i.p.). After 48 h, animals were challenged with cocaine. Control animals received saline/vehicle. [18F]FDG PET was performed at four time points: baseline, last day of sensitization, last day of withdrawal/CBD treatment, and challenge. Subsequently, the animals were euthanized and immunohistochemistry was performed on the hippocampus and amygdala to assess the CB1 receptors, neuronal nuclear protein, microglia (Iba1), and astrocytes (GFAP). Results showed that cocaine administration increased [18F]FDG uptake following sensitization. CBD treatment also increased [18F]FDG uptake in both saline and cocaine groups. However, animals that were sensitized and challenged with cocaine, and those receiving only an acute cocaine injection during the challenge phase, did not exhibit increased [18F]FDG uptake when treated with CBD. Furthermore, CBD induced modifications in the integrated density of NeuN, Iba, GFAP, and CB1R in the hippocampus and amygdala. This is the first study addressing the impact of CBD on brain glucose metabolism in a preclinical model of CUD using PET. Our findings suggest that CBD disrupts cocaine-induced changes in brain energy consumption and activity, which might be correlated with alterations in neuronal and glial function.
Collapse
Affiliation(s)
- Lidia Emmanuela Wiazowski Spelta
- Laboratory of Neurotoxicology, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Caroline Cristiano Real
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Clinical Medicine, Nuclear Medicine and PET Centre, Aarhus University, Aarhus, Denmark
| | - Vitor Bruno
- Laboratory of Neurotoxicology, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Larissa Helena Torres
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Tania Marcourakis
- Laboratory of Neurotoxicology, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Steinfeld MR, Torregrossa MM. Consequences of adolescent drug use. Transl Psychiatry 2023; 13:313. [PMID: 37802983 PMCID: PMC10558564 DOI: 10.1038/s41398-023-02590-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/22/2023] [Accepted: 08/23/2023] [Indexed: 10/08/2023] Open
Abstract
Substance use in adolescence is a known risk factor for the development of neuropsychiatric and substance use disorders in adulthood. This is in part due to the fact that critical aspects of brain development occur during adolescence, which can be altered by drug use. Despite concerted efforts to educate youth about the potential negative consequences of substance use, initiation remains common amongst adolescents world-wide. Additionally, though there has been substantial research on the topic, many questions remain about the predictors and the consequences of adolescent drug use. In the following review, we will highlight some of the most recent literature on the neurobiological and behavioral effects of adolescent drug use in rodents, non-human primates, and humans, with a specific focus on alcohol, cannabis, nicotine, and the interactions between these substances. Overall, consumption of these substances during adolescence can produce long-lasting changes across a variety of structures and networks which can have enduring effects on behavior, emotion, and cognition.
Collapse
Affiliation(s)
- Michael R Steinfeld
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA.
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA
| |
Collapse
|
5
|
Wang T, Yin Y, Jiang X, Ruan Y, Xu J, Hu X, Li T, Chu L, Li L. Exploring the mechanism of luteolin by regulating microglia polarization based on network pharmacology and in vitro experiments. Sci Rep 2023; 13:13767. [PMID: 37612462 PMCID: PMC10447507 DOI: 10.1038/s41598-023-41101-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023] Open
Abstract
Neuroinflammation manifests following injury to the central nervous system (CNS) and M1/M2 polarization of microglia is closely associated with the development of this neuroinflammation. In this study, multiple databases were used to collect targets regarding luteolin and microglia polarization. After obtaining a common target, a protein-protein interaction (PPI) network was created and further analysis was performed to obtain the core network. Molecular docking of the core network with luteolin after gene enrichment analysis. In vitro experiments were used to examine the polarization of microglia and the expression of related target proteins. A total of 77 common targets were obtained, and the core network obtained by further analysis contained 38 proteins. GO and KEGG analyses revealed that luteolin affects microglia polarization in regulation of inflammatory response as well as the interleukin (IL)-17 and tumor necrosis factor (TNF) signaling pathways. Through in vitro experiments, we confirmed that the use of luteolin reduced the expression of inducible nitric oxide synthase (iNOS), IL-6, TNF-α, p-NFκBIA (p-IκB-α), p-NFκB p65, and MMP9, while upregulating the expression of Arg-1 and IL-10. This study reveals various potential mechanisms by which luteolin induces M2 polarization in microglia to inhibit the neuroinflammatory response.
Collapse
Affiliation(s)
- Tianyue Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuanjun Yin
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xinyu Jiang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yanmin Ruan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiawen Xu
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaowei Hu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Tianyi Li
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lisheng Chu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Lin Li
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
6
|
Askari VR, Baradaran Rahimi V, Shafiee-Nick R. Low Doses of β-Caryophyllene Reduced Clinical and Paraclinical Parameters of an Autoimmune Animal Model of Multiple Sclerosis: Investigating the Role of CB 2 Receptors in Inflammation by Lymphocytes and Microglial. Brain Sci 2023; 13:1092. [PMID: 37509022 PMCID: PMC10377147 DOI: 10.3390/brainsci13071092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Multiple Sclerosis (MS) is a prevalent inflammatory disease in which the immune system plays an essential role in the damage, inflammation, and demyelination of central nervous system neurons (CNS). The cannabinoid receptor type 2 (CB2) agonists possess anti-inflammatory effects against noxious stimuli and elevate the neuronal survival rate. We attempted to analyze the protective impact of low doses of β-Caryophyllene (BCP) in experimental autoimmune encephalomyelitis (EAE) mice as a chronic MS model. Immunization of female C57BL/6 mice was achieved through two subcutaneous injections into different areas of the hind flank with an emulsion that consisted of myelin Myelin oligodendrocyte glycoprotein (MOG)35-55 (150 µg) and complete Freund's adjuvant (CFA) (400 µg) with an equal volume. Two intraperitoneal (i.p.) injections of pertussis toxin (300 ng) were performed on the animals on day zero (immunizations day) and 48 h (2nd day) after injection of MOG + CFA. The defensive effect of low doses of BCP (2.5 and 5 mg/kg/d) was investigated in the presence and absence of a CB2 receptor antagonist (1 mg/kg, AM630) in the EAE model. We also examined the pro/anti-inflammatory cytokine levels and the polarization of brain microglia and spleen lymphocytes in EAE animals. According to our findings, low doses of BCP offered protective impacts in the EAE mice treatment in a CB2 receptor-dependent way. In addition, according to results, BCP decreased the pathological and clinical defects in EAE mice via modulating adaptive (lymphocytes) and innate (microglia) immune systems from inflammatory phenotypes (M1/Th1/Th17) to anti-inflammatory (M2/Th2/Treg) phenotypes. Additionally, BCP elevated the anti-inflammatory cytokine IL-10 and reduced blood inflammatory cytokines. BCP almost targeted the systemic immune system more than the CNS immune system. Thus, a low dose of BCP can be suggested as a therapeutic effect on MS treatment with potent anti-inflammatory effects and possibly lower toxicity.
Collapse
Affiliation(s)
- Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Reza Shafiee-Nick
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| |
Collapse
|
7
|
Coelho A, Lima-Bastos S, Gobira P, Lisboa S. Endocannabinoid signaling and epigenetics modifications in the neurobiology of stress-related disorders. Neuronal Signal 2023; 7:NS20220034. [PMID: 37520658 PMCID: PMC10372471 DOI: 10.1042/ns20220034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Stress exposure is associated with psychiatric conditions, such as depression, anxiety, and post-traumatic stress disorder (PTSD). It is also a vulnerability factor to developing or reinstating substance use disorder. Stress causes several changes in the neuro-immune-endocrine axis, potentially resulting in prolonged dysfunction and diseases. Changes in several transmitters, including serotonin, dopamine, glutamate, gamma-aminobutyric acid (GABA), glucocorticoids, and cytokines, are associated with psychiatric disorders or behavioral alterations in preclinical studies. Complex and interacting mechanisms make it very difficult to understand the physiopathology of psychiatry conditions; therefore, studying regulatory mechanisms that impact these alterations is a good approach. In the last decades, the impact of stress on biology through epigenetic markers, which directly impact gene expression, is under intense investigation; these mechanisms are associated with behavioral alterations in animal models after stress or drug exposure, for example. The endocannabinoid (eCB) system modulates stress response, reward circuits, and other physiological functions, including hypothalamus-pituitary-adrenal axis activation and immune response. eCBs, for example, act retrogradely at presynaptic neurons, limiting the release of neurotransmitters, a mechanism implicated in the antidepressant and anxiolytic effects after stress. Epigenetic mechanisms can impact the expression of eCB system molecules, which in turn can regulate epigenetic mechanisms. This review will present evidence of how the eCB system and epigenetic mechanisms interact and the consequences of this interaction in modulating behavioral changes after stress exposure in preclinical studies or psychiatric conditions. Moreover, evidence that correlates the involvement of the eCB system and epigenetic mechanisms in drug abuse contexts will be discussed.
Collapse
Affiliation(s)
- Arthur A. Coelho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Sávio Lima-Bastos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Pedro H. Gobira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Sabrina F. Lisboa
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| |
Collapse
|
8
|
Wang M, Liu M, Ma Z. Cannabinoid type 2 receptor activation inhibits MPP +-induced M1 differentiation of microglia through activating PI3K/Akt/Nrf2 signal pathway. Mol Biol Rep 2023; 50:4423-4433. [PMID: 36977807 DOI: 10.1007/s11033-023-08395-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Growing evidence indicates that cannabinoid type 2 (CB2) receptor activation inhibits neuroinflammation in the pathogenesis of Parkinson's disease (PD). Nonetheless, the precise mechanisms of CB2 receptor-mediated neuroprotection have not been fully elucidated. The differentiation of microglia from the M1 to M2 phenotype plays a vital role in neuroinflammation. METHODS In the present study, we investigated the effect of CB2 receptor activation on the M1/M2 phenotypic transformation of microglia treated with 1-methyl-4-phenylpyridinium (MPP+). The M1 phenotype microglia markers, including inducible nitric oxide (iNOS), interleukin 6 (IL-6), and CD86, and the M2 phenotype microglia markers, including arginase-1 (Arg-1), IL-10, and CD206, were detected by western blots and flow cytometry. The levels of phosphoinositide-3-kinase (PI3K)/Akt and nuclear factor erythroid 2-related factor 2 (Nrf2) were determined by Western blots. Subsequent addition of Nrf2 inhibitors initially revealed the specific mechanism by which CB2 receptors affect phenotypic changes in microglia. RESULTS Our results showed that pretreatment with JWH133 significantly inhibited the MPP+-induced up-regulation of M1 phenotype microglia markers. Meanwhile, JWH133 increased the levels of M2 phenotype microglia markers. JWH133-mediated effects were blocked by co-treatment with AM630. Mechanism studies found that MPP+ treatment downregulated PI3K, Akt phosphorylated proteins, and nuclear Nrf2 protein. JWH133 pretreatment promoted PI3K/Akt activation and facilitated nuclear translocation of Nrf2, which was reversed by the PI3K inhibitor. Further studies showed that Nrf2 inhibitors inverted the effect of JWH133 on microglia polarization. CONCLUSION The results indicate that CB2 receptor activation promotes MPP+-induced microglia transformation from M1 to M2 phenotype through PI3K/Akt/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Mengya Wang
- Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disorders, Qingdao University, Qingdao, 266071, China
| | - Man Liu
- Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disorders, Qingdao University, Qingdao, 266071, China
| | - Zegang Ma
- Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
9
|
Microglial Cannabinoid CB 2 Receptors in Pain Modulation. Int J Mol Sci 2023; 24:ijms24032348. [PMID: 36768668 PMCID: PMC9917135 DOI: 10.3390/ijms24032348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Pain, especially chronic pain, can strongly affect patients' quality of life. Cannabinoids ponhave been reported to produce potent analgesic effects in different preclinical pain models, where they primarily function as agonists of Gi/o protein-coupled cannabinoid CB1 and CB2 receptors. The CB1 receptors are abundantly expressed in both the peripheral and central nervous systems. The central activation of CB1 receptors is strongly associated with psychotropic adverse effects, thus largely limiting its therapeutic potential. However, the CB2 receptors are promising targets for pain treatment without psychotropic adverse effects, as they are primarily expressed in immune cells. Additionally, as the resident immune cells in the central nervous system, microglia are increasingly recognized as critical players in chronic pain. Accumulating evidence has demonstrated that the expression of CB2 receptors is significantly increased in activated microglia in the spinal cord, which exerts protective consequences within the surrounding neural circuitry by regulating the activity and function of microglia. In this review, we focused on recent advances in understanding the role of microglial CB2 receptors in spinal nociceptive circuitry, highlighting the mechanism of CB2 receptors in modulating microglia function and its implications for CB2 receptor- selective agonist-mediated analgesia.
Collapse
|
10
|
Hartmann A, Vila-Verde C, Guimarães FS, Joca SR, Lisboa SF. The NLRP3 Inflammasome in Stress Response: Another Target for the Promiscuous Cannabidiol. Curr Neuropharmacol 2023; 21:284-308. [PMID: 35410608 PMCID: PMC10190150 DOI: 10.2174/1570159x20666220411101217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/14/2022] [Accepted: 03/27/2022] [Indexed: 11/22/2022] Open
Abstract
Many psychiatric patients do not respond to conventional therapy. There is a vast effort to investigate possible mechanisms involved in treatment resistance, trying to provide better treatment options, and several data points toward a possible involvement of inflammatory mechanisms. Microglia, glial, and resident immune cells are involved in complex responses in the brain, orchestrating homeostatic functions, such as synaptic pruning and maintaining neuronal activity. In contrast, microglia play a major role in neuroinflammation, neurodegeneration, and cell death. Increasing evidence implicate microglia dysfunction in neuropsychiatric disorders. The mechanisms are still unclear, but one pathway in microglia has received increased attention in the last 8 years, i.e., the NLRP3 inflammasome pathway. Stress response and inflammation, including microglia activation, can be attenuated by Cannabidiol (CBD). CBD has antidepressant, anti-stress, antipsychotic, anti-inflammatory, and other properties. CBD effects are mediated by direct or indirect modulation of many receptors, enzymes, and other targets. This review will highlight some findings for neuroinflammation and microglia involvement in stress-related psychiatric disorders, particularly addressing the NLRP3 inflammasome pathway. Moreover, we will discuss evidence and mechanisms for CBD effects in psychiatric disorders and animal models and address its potential effects on stress response via neuroinflammation and NLRP3 inflammasome modulation.
Collapse
Affiliation(s)
- Alice Hartmann
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Carla Vila-Verde
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Francisco S. Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - Sâmia R. Joca
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
- BioMolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP);
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sabrina F. Lisboa
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
- BioMolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP);
| |
Collapse
|
11
|
de Almeida V, Seabra G, Reis-de-Oliveira G, Zuccoli GS, Rumin P, Fioramonte M, Smith BJ, Zuardi AW, Hallak JEC, Campos AC, Crippa JA, Martins-de-Souza D. Cannabinoids modulate proliferation, differentiation, and migration signaling pathways in oligodendrocytes. Eur Arch Psychiatry Clin Neurosci 2022; 272:1311-1323. [PMID: 35622101 DOI: 10.1007/s00406-022-01425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/02/2022] [Indexed: 11/03/2022]
Abstract
Cannabinoid signaling, mainly via CB1 and CB2 receptors, plays an essential role in oligodendrocyte health and functions. However, the specific molecular signals associated with the activation or blockade of CB1 and CB2 receptors in this glial cell have yet to be elucidated. Mass spectrometry-based shotgun proteomics and in silico biology tools were used to determine which signaling pathways and molecular mechanisms are triggered in a human oligodendrocytic cell line (MO3.13) by several pharmacological stimuli: the phytocannabinoid cannabidiol (CBD); CB1 and CB2 agonists ACEA, HU308, and WIN55, 212-2; CB1 and CB2 antagonists AM251 and AM630; and endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG). The modulation of cannabinoid signaling in MO3.13 was found to affect pathways linked to cell proliferation, migration, and differentiation of oligodendrocyte progenitor cells. Additionally, we found that carbohydrate and lipid metabolism, as well as mitochondrial function, were modulated by these compounds. Comparing the proteome changes and upstream regulators among treatments, the highest overlap was between the CB1 and CB2 antagonists, followed by overlaps between AEA and 2-AG. Our study opens new windows of opportunities, suggesting that cannabinoid signaling in oligodendrocytes might be relevant in the context of demyelinating and neurodegenerative diseases. Proteomics data are available at ProteomeXchange (PXD031923).
Collapse
Affiliation(s)
- Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil.
| | - Gabriela Seabra
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Priscila Rumin
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Mariana Fioramonte
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Bradley J Smith
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Antonio W Zuardi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute for Science and Technology, Translational Medicine, São Paulo, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute for Science and Technology, Translational Medicine, São Paulo, Brazil
| | - Alline C Campos
- National Institute for Science and Technology, Translational Medicine, São Paulo, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute for Science and Technology, Translational Medicine, São Paulo, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil. .,Instituto Nacional de Biomarcadores Em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico E Tecnológico, São Paulo, Brazil. .,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil. .,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
| |
Collapse
|
12
|
Brisch R, Wojtylak S, Saniotis A, Steiner J, Gos T, Kumaratilake J, Henneberg M, Wolf R. The role of microglia in neuropsychiatric disorders and suicide. Eur Arch Psychiatry Clin Neurosci 2022; 272:929-945. [PMID: 34595576 PMCID: PMC9388452 DOI: 10.1007/s00406-021-01334-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
This narrative review examines the possible role of microglial cells, first, in neuroinflammation and, second, in schizophrenia, depression, and suicide. Recent research on the interactions between microglia, astrocytes and neurons and their involvement in pathophysiological processes of neuropsychiatric disorders is presented. This review focuses on results from postmortem, positron emission tomography (PET) imaging studies, and animal models of schizophrenia and depression. Third, the effects of antipsychotic and antidepressant drug therapy, and of electroconvulsive therapy on microglial cells are explored and the upcoming development of therapeutic drugs targeting microglia is described. Finally, there is a discussion on the role of microglia in the evolutionary progression of human lineage. This view may contribute to a new understanding of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ralf Brisch
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Szymon Wojtylak
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Arthur Saniotis
- Department of Anthropology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Department of Pharmacy, Knowledge University, Erbil, Kurdistan Region, Iraq
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University, Magdeburg, Germany
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Jaliya Kumaratilake
- Biological Anthropology and Comparative Anatomy Research Unit, Medical School, The University of Adelaide, Adelaide, Australia
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Research Unit, Medical School, The University of Adelaide, Adelaide, Australia
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Rainer Wolf
- Department of Nursing and Health, Hochschule Fulda, University of Applied Sciences, Fulda, Germany.
| |
Collapse
|
13
|
Fernández‐Arjona MDM, León‐Rodríguez A, Grondona JM, López‐Ávalos MD. Long-term priming of hypothalamic microglia is associated with energy balance disturbances under diet-induced obesity. Glia 2022; 70:1734-1761. [PMID: 35603807 PMCID: PMC9540536 DOI: 10.1002/glia.24217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 12/16/2022]
Abstract
Exposure of microglia to an inflammatory environment may lead to their priming and exacerbated response to future inflammatory stimuli. Here we aimed to explore hypothalamic microglia priming and its consequences on energy balance regulation. A model of intracerebroventricular administration of neuraminidase (NA, which is present in various pathogens such as influenza virus) was used to induce acute neuroinflammation. Evidences of primed microglia were observed 3 months after NA injection, namely (1) a heightened response of microglia located in the hypothalamic arcuate nucleus after an in vivo inflammatory challenge (high fat diet [HFD] feeding for 10 days), and (2) an enhanced response of microglia isolated from NA-treated mice and challenged in vitro to LPS. On the other hand, the consequences of a previous NA-induced neuroinflammation were further evaluated in an alternative inflammatory and hypercaloric scenario, such as the obesity generated by continued HDF feeding. Compared with sham-injected mice, NA-treated mice showed increased food intake and, surprisingly, reduced body weight. Besides, NA-treated mice had enhanced microgliosis (evidenced by increased number and reactive morphology of microglia) and a reduced population of POMC neurons in the basal hypothalamus. Thus, a single acute neuroinflammatory event may elicit a sustained state of priming in microglial cells, and in particular those located in the hypothalamus, with consequences in hypothalamic cytoarchitecture and its regulatory function upon nutritional challenges.
Collapse
Affiliation(s)
- María del Mar Fernández‐Arjona
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Grupo de investigación en Neuropsicofarmacología, Laboratorio de Medicina RegenerativaHospital Regional Universitario de MálagaMálagaSpain
| | - Ana León‐Rodríguez
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Biología Celular, Genética y Fisiología, Facultad de CienciasUniversidad de Málaga, Campus de TeatinosMálagaSpain
| | - Jesús M. Grondona
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Biología Celular, Genética y Fisiología, Facultad de CienciasUniversidad de Málaga, Campus de TeatinosMálagaSpain
| | - María D. López‐Ávalos
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Biología Celular, Genética y Fisiología, Facultad de CienciasUniversidad de Málaga, Campus de TeatinosMálagaSpain
| |
Collapse
|
14
|
Urbonaite G, Knyzeliene A, Bunn FS, Smalskys A, Neniskyte U. The impact of maternal high-fat diet on offspring neurodevelopment. Front Neurosci 2022; 16:909762. [PMID: 35937892 PMCID: PMC9354026 DOI: 10.3389/fnins.2022.909762] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022] Open
Abstract
A maternal high-fat diet affects offspring neurodevelopment with long-term consequences on their brain health and behavior. During the past three decades, obesity has rapidly increased in the whole human population worldwide, including women of reproductive age. It is known that maternal obesity caused by a high-fat diet may lead to neurodevelopmental disorders in their offspring, such as autism spectrum disorder, attention deficit hyperactivity disorder, anxiety, depression, and schizophrenia. A maternal high-fat diet can affect offspring neurodevelopment due to inflammatory activation of the maternal gut, adipose tissue, and placenta, mirrored by increased levels of pro-inflammatory cytokines in both maternal and fetal circulation. Furthermore, a maternal high fat diet causes gut microbial dysbiosis further contributing to increased inflammatory milieu during pregnancy and lactation, thus disturbing both prenatal and postnatal neurodevelopment of the offspring. In addition, global molecular and cellular changes in the offspring's brain may occur due to epigenetic modifications including the downregulation of brain-derived neurotrophic factor (BDNF) expression and the activation of the endocannabinoid system. These neurodevelopmental aberrations are reflected in behavioral deficits observed in animals, corresponding to behavioral phenotypes of certain neurodevelopmental disorders in humans. Here we reviewed recent findings from rodent models and from human studies to reveal potential mechanisms by which a maternal high-fat diet interferes with the neurodevelopment of the offspring.
Collapse
Affiliation(s)
- Gintare Urbonaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Agne Knyzeliene
- Centre for Cardiovascular Science, The Queen’s Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Fanny Sophia Bunn
- Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Adomas Smalskys
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Urte Neniskyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
15
|
Anxiety-like behavior and microglial activation in the amygdala after acute neuroinflammation induced by microbial neuraminidase. Sci Rep 2022; 12:11581. [PMID: 35803999 PMCID: PMC9270343 DOI: 10.1038/s41598-022-15617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
Short-term behavioral alterations are associated with infection and aid the recovery from sickness. However, concerns have raised that sustained behavioral disturbances after acute neuroinflammation could relate to neurological diseases in the long run. We aimed to explore medium- and long-term behavioral disturbances after acute neuroinflammation in rats, using a model based on the intracerebroventricular administration of the enzyme neuraminidase (NA), which is part of some pathogenic bacteria and viruses. Neurological and behavioral assessments were performed 2 and 10 weeks after the injection of NA, and neuroinflammation was evaluated by gene expression and histology. No alterations were observed regarding basic neurological functions or locomotor capacity in NA-injected rats. However, they showed a reduction in unsupported rearing, and increased grooming and freezing behaviors, which indicate anxiety-like behavior. A principal component analysis including a larger set of parameters further supported such anxiety-like behavior. The anxiety profile was observed 2 weeks after NA-injection, but not after 10 weeks. Concomitantly, the amygdala presented increased number of microglial cells showing a morphologic bias towards an activated state. A similar but subtler tendency was observed in hypothalamic microglia located in the paraventricular nucleus. Also, in the hypothalamus the pattern recognition receptor toll-like receptor 4 (TLR4) was slightly overexpressed 2 weeks after NA injection. These results demonstrate that NA-induced neuroinflammation provokes anxiety-like behavior in the medium term, which disappears with time. Concurrent microgliosis in the amygdala could explain such behavior. Further experiments should aim to explore subtle but long-lasting alterations observed 10 weeks after NA injection, both in amygdala and hypothalamus, as well as mild behavioral changes.
Collapse
|
16
|
Ribeiro MA, Aguiar RP, Scarante FF, Fusse EJ, de Oliveira RMW, Guimaraes FS, Campos AC. Spontaneous Activity of CB2 Receptors Attenuates Stress-Induced Behavioral and Neuroplastic Deficits in Male Mice. Front Pharmacol 2022; 12:805758. [PMID: 35126139 PMCID: PMC8814367 DOI: 10.3389/fphar.2021.805758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
The monoaminergic theory of depression/anxiety disorders cannot fully explain the behavioral and neuroplastic changes observed after ADs chronic treatment. Endocannabinoid system, which comprises CB2 receptors, has been associated with the chronic effects of these drugs, especially in stressed mice. CB2-KO mice display more vulnerability to stressful stimuli. In the present study, we hypothesized that the behavioral and neuroplastic effects observed after repeated treatment with the AD escitalopram (Esc) in chronically stressed mice depend on CB2 receptor signaling. Male mice submitted to chronic unpredictable stress (CUS) paradigm (21 days) were treated daily with AM630 (0.01; 0.03 or 0.3 mg/kg, i.p) a CB2 receptor antagonist/inverse agonist. At e 19th day of the CUS protocol, mice were submitted to Open field test and Tail-suspension test to evaluate antidepressant-like behavior. At the end of the stress protocol, mice were submitted to Novel Suppressed Feeding test (day 22nd) to evaluate anxiety-like behavior. In a second series of experiments, male mice treated with Esc (10 mg/kg, daily, 21 days) in the presence or not of AM630 (0.30 mg/kg) were submitted to the same round of behavioral tests in the same conditions as performed in the dose-response curve protocol. Animals were then euthanized under deep anesthesia, and their brains/hippocampi removed for immunohistochemistry (Doublecortin-DCX) or Western Blot assay. Our results demonstrated that chronic treatment with AM630, a CB2 antagonist/inverse agonist, induces anxiolytic-like effects in stressed mice. Moreover, chronic reduction of CB2 receptor endogenous activity by AM630 attenuated the neuroplastic (potentiating stress-induced decreased expression of pro-BDNF, but enhanced pmTOR and DAGL expression in the hippocampus reduced in stressed mice), the antidepressant- but not the anxiolytic-like effects of Esc. AM630 alone or in combination with Esc decreased the expression of DCX + cell in both the subgranular and granular layers of the dentate gyrus (DG), indicating a general reduction of DCX + neuroblasts and a decrease in their migration through the DG layers. We suggest that the antidepressant-like behavior and the pro-neurogenic effect, but not the anxiolytic like behavior, promoted by Esc in stressed mice are, at least in part, mediated by CB2 receptors.
Collapse
Affiliation(s)
- Melissa A. Ribeiro
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Rafael P. Aguiar
- Department of Pharmacology- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Franciele F. Scarante
- Department of Pharmacology- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Eduardo J. Fusse
- Mental Health Graduate Program- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rubia M. W. de Oliveira
- Department of Pharmacology- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Francisco S. Guimaraes
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Alline C Campos
- Pharmacology, University of São Paulo, São Paulo, Brazil
- *Correspondence: Alline C Campos,
| |
Collapse
|
17
|
Coelho AA, Vila-Verde C, Sartim AG, Uliana DL, Braga LA, Guimarães FS, Lisboa SF. Inducible Nitric Oxide Synthase Inhibition in the Medial Prefrontal Cortex Attenuates the Anxiogenic-Like Effect of Acute Restraint Stress via CB 1 Receptors. Front Psychiatry 2022; 13:923177. [PMID: 35911236 PMCID: PMC9330908 DOI: 10.3389/fpsyt.2022.923177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Stress exposure can result in several proinflammatory alterations in the brain, including overexpression of the inducible isoform of nitric oxide synthase (iNOS) in the medial prefrontal cortex (mPFC). These changes may be involved in the development of many psychiatric conditions. However, it is unknown if iNOS in mPFC plays a significant role in stress-induced behavioral changes. The endocannabinoid (ECB) system is also influenced by stress. Its activation seems to be a counter regulatory mechanism to prevent or decrease the stress-mediated neuroinflammatory consequences. However, it is unclear if the ECB system and iNOS interact to influence stress consequences. This study aimed to test the hypothesis that the anti-stress effect of iNOS inhibition in mPFC involves the local ECB system, particularly the CB1 cannabinoid receptors. Male Wistar rats with guide cannula aimed at the mPFC were submitted to acute restraint stress (RS) for 2 h. In the following morning, rats received bilateral microinjections of vehicle, AM251 (CB1 antagonist; 100 pmol), and/or 1400W (iNOS selective inhibitor; 10-4, 10-3, or 10-2 nmol) into the prelimbic area of mPFC (PL-mPFC) before being tested in the elevated plus-maze (EPM). iNOS inhibition by 1400W prevented the anxiogenic-like effect observed in animals submitted to RS. The drug did not promote behavior changes in naive animals, demonstrating a stress-dependent effect. The 1400W-anti-stress effect was prevented by local pretreatment with AM251. Our data suggest that iNOS inhibition may facilitate the local endocannabinoid signaling, attenuating stress effects.
Collapse
Affiliation(s)
- Arthur A Coelho
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil.,Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto-University of São Paulo, São Paulo, Brazil
| | - Carla Vila-Verde
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil
| | - Ariandra G Sartim
- Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto-University of São Paulo, São Paulo, Brazil
| | - Daniela L Uliana
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil.,Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Laura A Braga
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil
| | - Francisco S Guimarães
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil
| | - Sabrina F Lisboa
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil.,Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto-University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Molecular Findings Guiding the Modulation of the Endocannabinoid System as a Potential Target to Treat Schizophrenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:89-103. [DOI: 10.1007/978-3-030-97182-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
19
|
Tsai CF, Chen GW, Chen YC, Shen CK, Lu DY, Yang LY, Chen JH, Yeh WL. Regulatory Effects of Quercetin on M1/M2 Macrophage Polarization and Oxidative/Antioxidative Balance. Nutrients 2021; 14:nu14010067. [PMID: 35010945 PMCID: PMC8746507 DOI: 10.3390/nu14010067] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/23/2022] Open
Abstract
Macrophage polarization plays essential and diverse roles in most diseases, such as atherosclerosis, adipose tissue inflammation, and insulin resistance. Homeostasis dysfunction in M1/M2 macrophage polarization causes pathological conditions and inflammation. Neuroinflammation is characterized by microglial activation and the concomitant production of pro-inflammatory cytokines, leading to numerous neurodegenerative diseases and psychiatric disorders. Decreased neuroinflammation can be obtained by using natural compounds, including flavonoids, which are known to ameliorate inflammatory responses. Among flavonoids, quercetin possesses multiple pharmacological applications and regulates several biological activities. In the present study, we found that quercetin effectively inhibited the expression of lipocalin-2 in both macrophages and microglial cells stimulated by lipopolysaccharides (LPS). The production of nitric oxide (NO) and expression levels of the pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, were also attenuated by quercetin treatment. Our results also showed that quercetin significantly reduced the expression levels of the M1 markers, such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β, in the macrophages and microglia. The M1 polarization-associated chemokines, C–C motif chemokine ligand (CCL)-2 and C-X-C motif chemokine ligand (CXCL)-10, were also effectively reduced by the quercetin treatment. In addition, quercetin markedly reduced the production of various reactive oxygen species (ROS) in the microglia. The microglial phagocytic ability induced by the LPS was also effectively reduced by the quercetin treatment. Importantly, the quercetin increased the expression levels of the M2 marker, IL-10, and the endogenous antioxidants, heme oxygenase (HO)-1, glutamate-cysteine ligase catalytic subunit (GCLC), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H quinone oxidoreductase-1 (NQO1). The enhancement of the M2 markers and endogenous antioxidants by quercetin was activated by the AMP-activated protein kinase (AMPK) and Akt signaling pathways. Together, our study reported that the quercetin inhibited the effects of M1 polarization, including neuroinflammatory responses, ROS production, and phagocytosis. Moreover, the quercetin enhanced the M2 macrophage polarization and endogenous antioxidant expression in both macrophages and microglia. Our findings provide valuable information that quercetin may act as a potential drug for the treatment of diseases related to inflammatory disorders in the central nervous system.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413305, Taiwan
- Correspondence: (C.-F.T.); (W.-L.Y.)
| | - Guan-Wei Chen
- Institute of New Drug Development, China Medical University, Taichung 404328, Taiwan; (G.-W.C.); (Y.-C.C.)
| | - Yen-Chang Chen
- Institute of New Drug Development, China Medical University, Taichung 404328, Taiwan; (G.-W.C.); (Y.-C.C.)
| | - Ching-Kai Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404328, Taiwan;
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan;
- Department of Photonics and Communication Engineering, Asia University, Taichung 413305, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung 404328, Taiwan;
- Laboratory for Neural Repair, China Medical University Hospital, Taichung 404327, Taiwan
- Biomedical Technology R&D Center, China Medical University Hospital, Taichung 404327, Taiwan
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan;
| | - Wei-Lan Yeh
- Department of Biochemistry, School of Medicine, China Medical University, Taichung 404328, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung 404328, Taiwan
- Correspondence: (C.-F.T.); (W.-L.Y.)
| |
Collapse
|
20
|
Hashiesh HM, Sharma C, Goyal SN, Sadek B, Jha NK, Kaabi JA, Ojha S. A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid. Biomed Pharmacother 2021; 140:111639. [PMID: 34091179 DOI: 10.1016/j.biopha.2021.111639] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS), a conserved physiological system emerged as a novel pharmacological target for its significant role and potential therapeutic benefits ranging from neurological diseases to cancer. Among both, CB1 and CB2R types, CB2R have received attention for its pharmacological effects as antioxidant, anti-inflammatory, immunomodulatory and antiapoptotic that can be achieved without causing psychotropic adverse effects through CB1R. The ligands activate CB2R are of endogenous, synthetic and plant origin. In recent years, β-caryophyllene (BCP), a natural bicyclic sesquiterpene in cannabis as well as non-cannabis plants, has received attention due to its selective agonist property on CB2R. BCP has been well studied in a variety of pathological conditions mediating CB2R selective agonist property. The focus of the present manuscript is to represent the CB2R selective agonist mediated pharmacological mechanisms and therapeutic potential of BCP. The present narrative review summarizes insights into the CB2R-selective pharmacological properties and therapeutic potential of BCP such as cardioprotective, hepatoprotective, neuroprotective, nephroprotective, gastroprotective, chemopreventive, antioxidant, anti-inflammatory, and immunomodulator. The available evidences suggest that BCP, can be an important candidate of plant origin endowed with CB2R selective properties that may provide a pharmacological rationale for its pharmacotherapeutic application and pharmaceutical development like a drug. Additionally, given the wide availability in edible plants and dietary use, with safety, and no toxicity, BCP can be promoted as a nutraceutical and functional food for general health and well-being. Further, studies are needed to explore pharmacological and pharmaceutical opportunities for therapeutic and preventive applications of use of BCP in human diseases.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Juma Al Kaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Bin Sultan Al Nahyan Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
21
|
Duffy SS, Hayes JP, Fiore NT, Moalem-Taylor G. The cannabinoid system and microglia in health and disease. Neuropharmacology 2021; 190:108555. [PMID: 33845074 DOI: 10.1016/j.neuropharm.2021.108555] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
Recent years have yielded significant advances in our understanding of microglia, the immune cells of the central nervous system (CNS). Microglia are key players in CNS development, immune surveillance, and the maintenance of proper neuronal function throughout life. In the healthy brain, homeostatic microglia have a unique molecular signature. In neurological diseases, microglia become activated and adopt distinct transcriptomic signatures, including disease-associated microglia (DAM) implicated in neurodegenerative disorders. Homeostatic microglia synthesise the endogenous cannabinoids 2-arachidonoylglycerol and anandamide and express the cannabinoid receptors CB1 and CB2 at constitutively low levels. Upon activation, microglia significantly increase their synthesis of endocannabinoids and upregulate their expression of CB2 receptors, which promote a protective microglial phenotype by enhancing their production of neuroprotective factors and reducing their production of pro-inflammatory factors. Here, we summarise the effects of the microglial cannabinoid system in the CNS demyelinating disease multiple sclerosis, the neurodegenerative diseases Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, chronic inflammatory and neuropathic pain, and psychiatric disorders including depression, anxiety and schizophrenia. We discuss the therapeutic potential of cannabinoids in regulating microglial activity and highlight the need to further investigate their specific microglia-dependent immunomodulatory effects.
Collapse
Affiliation(s)
- Samuel S Duffy
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Jessica P Hayes
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Nathan T Fiore
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Gila Moalem-Taylor
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, UNSW Sydney, NSW, 2052, Australia.
| |
Collapse
|
22
|
Gunduz-Cinar O. The endocannabinoid system in the amygdala and modulation of fear. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110116. [PMID: 32976951 PMCID: PMC7511205 DOI: 10.1016/j.pnpbp.2020.110116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 01/01/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a persistent, trauma induced psychiatric condition characterized by lifelong complex cognitive, emotional and behavioral phenotype. Although many individuals that experience trauma are able to gradually diminish their emotional responding to trauma-related stimuli over time, known as extinction learning, individuals suffering from PTSD are impaired in this capacity. An inability to decline this initially normal and adaptive fear response, can be confronted with exposure-based therapies, often in combination with pharmacological treatments. Due to the complexity of PTSD, currently available pharmacotherapeutics are inadequate in treating the deficient extinction observed in many PTSD patients. To develop novel therapeutics, researchers have exploited the conserved nature of fear and stress-associated behavioral responses and neurocircuits across species in an attempt to translate knowledge gained from preclinical studies into the clinic. There is growing evidence on the endocannabinoid modulation of fear and stress due to their 'on demand' synthesis and degradation. Involvement of the endocannabinoids in fear extinction makes the endocannabinoid system very attractive for finding effective therapeutics for trauma and stress related disorders. In this review, a brief introduction on neuroanatomy and circuitry of fear extinction will be provided as a model to study PTSD. Then, the endocannabinoid system will be discussed as an important component of extinction modulation. In this regard, anandamide degrading enzyme, fatty acid amide hydrolase (FAAH) will be exemplified as a target identified and validated strongly from preclinical to clinical translational studies of enhancing extinction.
Collapse
Affiliation(s)
- Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse, NIH, Bethesda, MD, USA.
| |
Collapse
|
23
|
Mahdi O, Baharuldin MTH, Nor NHM, Chiroma SM, Jagadeesan S, Moklas MAM. The Neuroprotective Properties, Functions, and Roles of Cannabis sativa in Selected Diseases Related to the Nervous System. Cent Nerv Syst Agents Med Chem 2021; 21:20-38. [PMID: 33504317 DOI: 10.2174/1871524921666210127110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cannabis and its extracts are now being explored due to their huge health benefits. Although, the effect they elicit, whether on humans or rodents, may vary based on the age of the animal/subject and or the time in which the extract is administered. However, several debates exist concerning the various medical applications of these compounds. Nonetheless, their applicability as therapeutics should not be clouded based on their perceived negative biological actions. METHODS Articles from reliable databases such as Science Direct, PubMed, Google Scholar, Scopus, and Ovid were searched. Specific search methods were employed using multiple keywords: ''Medicinal Cannabis; endocannabinoid system; cannabinoids receptors; cannabinoids and cognition; brain disorders; neurodegenerative diseases''. For the inclusion/exclusion criteria, only relevant articles related to medicinal Cannabis and its various compounds were considered. RESULTS The current review highlights the role, effects, and involvement of Cannabis, cannabinoids, and endocannabinoids in preventing selected neurodegenerative diseases and possible amelioration of cognitive impairments. Furthermore, it also focuses on Cannabis utilization in many disease conditions such as Alzheimer's and Parkinson's disease among others. CONCLUSION In conclusion, the usage of Cannabis should be further explored as accumulating evidence suggests that it could be effective and somewhat safe, especially when adhered to the recommended dosage. Furthermore, in-depth studies should be conducted in order to unravel the specific mechanism underpinning the involvement of cannabinoids at the cellular level and their therapeutic applications.
Collapse
Affiliation(s)
- Onesimus Mahdi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| | - Mohamad T H Baharuldin
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| | - Nurul Huda M Nor
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| | - Samaila M Chiroma
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| | - Saravanan Jagadeesan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| | - Mohamad A M Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| |
Collapse
|
24
|
Tamura EK, Oliveira-Silva KS, Ferreira-Moraes FA, Marinho EAV, Guerrero-Vargas NN. Circadian rhythms and substance use disorders: A bidirectional relationship. Pharmacol Biochem Behav 2021; 201:173105. [PMID: 33444601 DOI: 10.1016/j.pbb.2021.173105] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 01/23/2023]
Abstract
The circadian system organizes circadian rhythms (biological cycles that occur around 24 h) that couple environmental cues (zeitgebers) with internal functions of the organism. The misalignment between circadian rhythms and external cues is known as chronodisruption and contributes to the development of mental, metabolic and other disorders, including cancer, cardiovascular diseases and addictive disorders. Drug addiction represents a global public health concern and affects the health and well-being of individuals, families and communities. In this manuscript, we reviewed evidence indicating a bidirectional relationship between the circadian system and the development of addictive disorders. We provide information on the interaction between the circadian system and drug addiction for each drug or drug class (alcohol, cannabis, hallucinogens, psychostimulants and opioids). We also describe evidence showing that drug use follows a circadian pattern, which changes with the progression of addiction. Furthermore, clock gene expression is also altered during the development of drug addiction in many brain areas related to drug reward, drug seeking and relapse. The regulation of the glutamatergic and dopaminergic neurocircuitry by clock genes is postulated to be the main circadian mechanism underlying the escalation of drug addiction. The bidirectional interaction between the circadian system and drug addiction seems to be mediated by the effects caused by each drug or class of drugs of abuse. These studies provide new insights on the development of successful strategies aimed at restoring/stabilizing circadian rhythms to reduce the risk for addiction development and relapse.
Collapse
Affiliation(s)
- Eduardo K Tamura
- Department of Health Sciences, Universidade Estadual de Santa Cruz, BR-415, Rodovia Ilhéus- Itabuna, Km-16, Salobrinho, Ilhéus, Bahia 45662-000, Brazil.
| | - Kallyane S Oliveira-Silva
- Department of Health Sciences, Universidade Estadual de Santa Cruz, BR-415, Rodovia Ilhéus- Itabuna, Km-16, Salobrinho, Ilhéus, Bahia 45662-000, Brazil
| | - Felipe A Ferreira-Moraes
- Department of Health Sciences, Universidade Estadual de Santa Cruz, BR-415, Rodovia Ilhéus- Itabuna, Km-16, Salobrinho, Ilhéus, Bahia 45662-000, Brazil
| | - Eduardo A V Marinho
- Department of Health Sciences, Universidade Estadual de Santa Cruz, BR-415, Rodovia Ilhéus- Itabuna, Km-16, Salobrinho, Ilhéus, Bahia 45662-000, Brazil
| | - Natalí N Guerrero-Vargas
- Department of Anatomy, Faculty of Medicine, Universidad Nacional Autonóma de México, Av Universidad 3000, Ciudad Universitaria, México City 04510, Mexico
| |
Collapse
|
25
|
Su T, Yan Y, Li Q, Ye J, Pei L. Endocannabinoid System Unlocks the Puzzle of Autism Treatment via Microglia. Front Psychiatry 2021; 12:734837. [PMID: 34744824 PMCID: PMC8568770 DOI: 10.3389/fpsyt.2021.734837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/27/2021] [Indexed: 01/15/2023] Open
Abstract
Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder and characterized by early childhood-onset impairments in social interaction and communication, restricted and repetitive patterns of behavior or interests. So far there is no effective treatment for ASD, and the pathogenesis of ASD remains unclear. Genetic and epigenetic factors have been considered to be the main cause of ASD. It is known that endocannabinoid and its receptors are widely distributed in the central nervous system, and provide a positive and irreversible change toward a more physiological neurodevelopment. Recently, the endocannabinoid system (ECS) has been found to participate in the regulation of social reward behavior, which has attracted considerable attention from neuroscientists and neurologists. Both animal models and clinical studies have shown that the ECS is a potential target for the treatment of autism, but the mechanism is still unknown. In the brain, microglia express a complete ECS signaling system. Studies also have shown that modulating ECS signaling can regulate the functions of microglia. By comprehensively reviewing previous studies and combining with our recent work, this review addresses the effects of targeting ECS on microglia, and how this can contribute to maintain the positivity of the central nervous system, and thus improve the symptoms of autism. This will provide insights for revealing the mechanism and developing new treatment strategies for autism.
Collapse
Affiliation(s)
- Tangfeng Su
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Yan
- Department of Neurology, People's Hospital of Dongxihu District, Wuhan, China
| | - Qiang Li
- Exchange, Development and Service Center for Science and Technology Talents, The Ministry of Science and Technology, Beijing, China
| | - Jiacai Ye
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Lei Pei
- Collaborative Innovation Center for Brain Science, The Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
26
|
Javid H, Rezayof A, Ghasemzadeh Z, Sardari M. The involvement of ventral hippocampal microglial cells, but not cannabinoid CB1 receptors, in morphine-induced analgesia in rats. Acta Neurol Belg 2020; 120:1077-1084. [PMID: 31006075 DOI: 10.1007/s13760-019-01144-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/12/2019] [Indexed: 12/12/2022]
Abstract
It is well known that glial cells are involved in pain processing. The purpose of the present study was to investigate the possible involvement of the ventral hippocampal (VH) glial cells in morphine-induced analgesia. A tail-flick apparatus was used to measure pain sensitivity in male Wistar rats that were bilaterally cannulated in the VH by stereotaxic surgery. The results showed that intraperitoneal (i.p.) administration of morphine (2.5-7.5 mg/kg) induced analgesia in a time-dependent manner. The blockade of the VH glial cell activation by bilateral microinjection of a glial inhibitor, minocycline (5-15 µg/rat) into the VH with an ineffective dose of morphine (2.5 mg/kg, i.p) significantly increased morphine analgesia. Considering that the endocannabinoid system via CB1 receptors play a crucial role in pain modulation, we also assessed the possible role of the VH cannabinoid CB1 receptors in the functional interaction between minocycline and morphine in acute pain. Our results indicated that intra-VH injection of the cannabinoid CB1 receptor agonist, arachidonylcyclopropylamide (ACPA; 4-12 ng/rat) had no effect on minocycline-induced potentiation of morphine analgesia. It should be considered that intra-VH microinjection of minocycline or ACPA by itself had no effect on tail-flick latency. Our findings suggest that the activation of the VH microglial cells may be involved in mediating pain sensation, because the inhibition of these cells by intra-VH injection of minocycline could potentiate morphine-induced analgesia. Although endocannabinoids have a regulatory role in glia function, the activation of CB1 receptors could not affect the potentiative effect of minocycline on morphine analgesia.
Collapse
Affiliation(s)
- Hanieh Javid
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, 4155-6455, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, 4155-6455, Tehran, Iran.
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, 4155-6455, Tehran, Iran
| | - Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, 4155-6455, Tehran, Iran
| |
Collapse
|
27
|
Wu LH, Huang BR, Lai SW, Lin C, Lin HY, Yang LY, Lu DY. SIRT1 activation by minocycline on regulation of microglial polarization homeostasis. Aging (Albany NY) 2020; 12:17990-18007. [PMID: 33021962 PMCID: PMC7585093 DOI: 10.18632/aging.103542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/25/2020] [Indexed: 01/24/2023]
Abstract
Sirtuin 1 (SIRT1) has been reported to be involved in the mechanisms underlying longevity and has also been indicated as a valuable regulator of age-related neurological disorders. Some natural products increase SIRT1 activity and stimulate deacetylation of various proteins. In the present study, SIRT1 overexpression by genetic modification or treatment with SIRT1 activators significantly inhibited the secretion of nitric oxide and expression of inducible nitric oxide synthase, cyclooxygenase 2, and proinflammatory mediator-interleukin 1β-in microglia. SIRT1 activation also decreased the levels of K379 acetyl-p53 and the protein inhibitor of activated Stat 1 expression in microglial cells. In addition, it dramatically promoted M2 polarization of microglia, which enhanced cell motility and altered phagocytic ability. We also used minocycline, a well-known inhibitor of microglial activation, to study the mechanism of SIRT1 signaling. Minocycline treatment decreased neuroinflammatory responses and promoted M2 polarization of microglia. It also reduced the acetyl-p53 level in the brain tissues in an inflammatory mouse model. Our findings demonstrated that SIRT1 participates in the maintenance of microglial polarization homeostasis and that minocycline exerts regulatory effects on SIRT1 activation. Therefore, our results indicate that SIRT1 activation may be a useful therapeutic target for the treatment of neuroinflammation-associated disorders.
Collapse
Affiliation(s)
- Ling-Hsuan Wu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Sheng-Wei Lai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Hsiao-Yun Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan,Laboratory for Neural Repair, China Medical University Hospital, Taichung, Taiwan,Biomedical Technology R&D Center, China Medical University Hospital, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan,Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
28
|
Li X, Shen L, Hua T, Liu ZJ. Structural and Functional Insights into Cannabinoid Receptors. Trends Pharmacol Sci 2020; 41:665-677. [PMID: 32739033 DOI: 10.1016/j.tips.2020.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/04/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Cannabinoid receptors type 1 (CB1) and 2 (CB2) are widely expressed in the human body, and are attractive drug targets in the prevention and management of central nervous system (CNS) and immune system dysfunction, respectively. Recent breakthroughs in the structural elucidation of cannabinoid receptors and their signaling complexes with G proteins, provide the important molecular basis of ligand-receptor interactions, activation and signaling mechanism, which will facilitate the next-generation drug design and the precise modulation of the endocannabinoid system. Here, we provide an overview on the structural features of cannabinoid receptors in different functional states and the diverse ligand binding modes. The major challenges and new strategies for future therapeutic applications targeting the endocannabinoid system (ECS) are also discussed.
Collapse
Affiliation(s)
- Xiaoting Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Ling Shen
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
29
|
Cabeen RP, Allman JM, Toga AW. THC Exposure is Reflected in the Microstructure of the Cerebral Cortex and Amygdala of Young Adults. Cereb Cortex 2020; 30:4949-4963. [PMID: 32377689 DOI: 10.1093/cercor/bhaa087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The endocannabinoid system serves a critical role in homeostatic regulation through its influence on processes underlying appetite, pain, reward, and stress, and cannabis has long been used for the related modulatory effects it provides through tetrahydrocannabinol (THC). We investigated how THC exposure relates to tissue microstructure of the cerebral cortex and subcortical nuclei using computational modeling of diffusion magnetic resonance imaging data in a large cohort of young adults from the Human Connectome Project. We report strong associations between biospecimen-defined THC exposure and microstructure parameters in discrete gray matter brain areas, including frontoinsular cortex, ventromedial prefrontal cortex, and the lateral amygdala subfields, with independent effects in behavioral measures of memory performance, negative intrusive thinking, and paternal substance abuse. These results shed new light on the relationship between THC exposure and microstructure variation in brain areas related to salience processing, emotion regulation, and decision making. The absence of effects in some other cannabinoid-receptor-rich brain areas prompts the consideration of cellular and molecular mechanisms that we discuss. Further studies are needed to characterize the nature of these effects across the lifespan and to investigate the mechanistic neurobiological factors connecting THC exposure and microstructural parameters.
Collapse
Affiliation(s)
- Ryan P Cabeen
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - John M Allman
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
30
|
Cortez IL, Rodrigues da Silva N, Guimarães FS, Gomes FV. Are CB2 Receptors a New Target for Schizophrenia Treatment? Front Psychiatry 2020; 11:587154. [PMID: 33329132 PMCID: PMC7673393 DOI: 10.3389/fpsyt.2020.587154] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/30/2020] [Indexed: 01/25/2023] Open
Abstract
Schizophrenia is a complex disorder that involves several neurotransmitters such as dopamine, glutamate, and GABA. More recently, the endocannabinoid system has also been associated with this disorder. Although initially described as present mostly in the periphery, cannabinoid type-2 (CB2) receptors are now proposed to play a role in several brain processes related to schizophrenia, such as modulation of dopaminergic neurotransmission, microglial activation, and neuroplastic changes induced by stress. Here, we reviewed studies describing the involvement of the CB2 receptor in these processes and their association with the pathophysiology of schizophrenia. Taken together, these pieces of evidence indicate that CB2 receptor may emerge as a new target for the development of antipsychotic drugs.
Collapse
Affiliation(s)
- Isadora L Cortez
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Naielly Rodrigues da Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
31
|
Combination of Imipramine, a sphingomyelinase inhibitor, and β-caryophyllene improve their therapeutic effects on experimental autoimmune encephalomyelitis (EAE). Int Immunopharmacol 2019; 77:105923. [DOI: 10.1016/j.intimp.2019.105923] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/27/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022]
|
32
|
Araujo DJ, Tjoa K, Saijo K. The Endocannabinoid System as a Window Into Microglial Biology and Its Relationship to Autism. Front Cell Neurosci 2019; 13:424. [PMID: 31619967 PMCID: PMC6759510 DOI: 10.3389/fncel.2019.00424] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/03/2019] [Indexed: 11/17/2022] Open
Abstract
Microglia are the resident, innate immune cells of the central nervous system (CNS) and are critical in managing CNS injuries and infections. Microglia also maintain CNS homeostasis by influencing neuronal development, viability, and function. However, aberrant microglial activity and phenotypes are associated with CNS pathology, including autism spectrum disorder (ASD). Thus, improving our knowledge of microglial regulation could provide insights into the maintenance of CNS homeostasis as well as the prevention and treatment of ASD. Control of microglial activity is in part overseen by small, lipid-derived molecules known as endogenous cannabinoids (endocannabinoids). Endocannabinoids are one component of the endocannabinoid system (ECS), which also includes the enzymes that metabolize these ligands, in addition to cannabinoid receptor 1 (CB1) and 2 (CB2). Interestingly, increased ECS signaling leads to an anti-inflammatory, neuroprotective phenotype in microglia. Here, we review the literature and propose that ECS signaling represents a largely untapped area for understanding microglial biology and its relationship to ASD, with special attention paid to issues surrounding the use of recreational cannabis (marijuana). We also discuss major questions within the field and suggest directions for future research.
Collapse
Affiliation(s)
- Daniel John Araujo
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Karensa Tjoa
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Kaoru Saijo
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
33
|
Lafaye G, Desterke C, Marulaz L, Benyamina A. Cannabidiol affects circadian clock core complex and its regulation in microglia cells. Addict Biol 2019; 24:921-934. [PMID: 30307084 DOI: 10.1111/adb.12660] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/27/2022]
Abstract
Cannabis is often used by consumers for sleep disorders. Studies show that circadian rhythm could be affected by a misuse of cannabis. Recent research has connected the role of microglial cells with psychiatric disorders such as substance abuse. The aim was to show the effect of two major components of cannabis on circadian genes regulation in microglial cells. In BV-2 microglial cells, cannabidiol (CBD) induces a deregulation of circadian genes with (P-value = 0.039) or without (P-value = 0.0015) lipopolisaccharides stimulation. CBD up regulated Arntl (P = 9.72E-5) and down regulated Clock (P = 0.0034) in BV-2 cells. Temporal expression of Arntl (light and dark P = 0.0054) and Clock (light and dark P = 0.047) was confirmed to have 24 hours light and dark rhythmic regulation in dissected suprachiasmatic nucleus as well as of Cb1 cannabinoid receptor (light and dark P = 0.019). In BV-2 microglia cells, CBD also up regulated CRY2 (P = 0.0473) and PER1 (P = 0.0131). Other nuclear molecules show a deregulation of circadian rhythm in microglial cells by CBD, such as RORA, RevErbα, RORB, CREBBP, AFT4, AFT5 and NFIL3. Our study suggests that circadian rhythm in microglial cells is deregulated by CBD but not by THC. It is consistent with clinical observations of the use of therapeutic cannabis to treat insomnia.
Collapse
Affiliation(s)
- Geneviève Lafaye
- Dpt Addictologie, AP-HP, GH Paris-Sud, Hôpital Paul Brousse, Villejuif, France
- INSERM U1178, Villejuif, France
| | | | - Laurent Marulaz
- Dpt Addictologie, AP-HP, GH Paris-Sud, Hôpital Paul Brousse, Villejuif, France
- INSERM U1178, Villejuif, France
| | - Amine Benyamina
- Dpt Addictologie, AP-HP, GH Paris-Sud, Hôpital Paul Brousse, Villejuif, France
- INSERM U1178, Villejuif, France
| |
Collapse
|
34
|
Churchward MA, Michaud ER, Todd KG. Supporting microglial niches for therapeutic benefit in psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109648. [PMID: 31078613 DOI: 10.1016/j.pnpbp.2019.109648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022]
Abstract
Inflammation is an essential tissue response to injury, stress, or infection resulting in debris and/or pathogen clearance intended to promote healing and recovery. Due to the status as an immune 'privileged' tissue, microglia serve as endogenous regulators of inflammation in the central nervous system, but maintain communication with peripheral immune system to enable recruitment of peripheral immune cells in case of injury or infection. While microglia retain the functional capacity for a full range of inflammatory functions - microglia express a range of pattern-recognition receptors and function as innate immune cells, carry out phagocytosis of pathogens, and act as antigen presenting cells - in the healthy central nervous system (CNS) these functions are rarely engaged. Subsequently microglia are being recognized to occupy an increasing number of homeostatic niches, and in many cases have adopted immune or inflammatory mechanisms to carry out these niche functions absent immune activation. These sterile inflammatory functions are challenging long-held views of the role of inflammation in the central nervous system while simultaneously expanding the potential for the development of truly novel therapeutic interventions for a range of neuroinflammatory, neurodegenerative, and neuropsychiatric disorders. In the present review we discuss recent preclinical evidence for conserved niche functions for microglia whose disruption may causally contribute to various psychiatric disorders, and prospective targets for restoring disrupted niches.
Collapse
Affiliation(s)
- M A Churchward
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada.
| | - E R Michaud
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - K G Todd
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G2R3, Canada
| |
Collapse
|
35
|
The protective effects of β-caryophyllene on LPS-induced primary microglia M1/M2 imbalance: A mechanistic evaluation. Life Sci 2019; 219:40-73. [DOI: 10.1016/j.lfs.2018.12.059] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/06/2018] [Accepted: 12/31/2018] [Indexed: 11/21/2022]
|
36
|
Cannabinoid signalling in embryonic and adult neurogenesis: possible implications for psychiatric and neurological disorders. Acta Neuropsychiatr 2019; 31:1-16. [PMID: 29764526 DOI: 10.1017/neu.2018.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cannabinoid signalling modulates several aspects of brain function, including the generation and survival of neurons during embryonic and adult periods. The present review intended to summarise evidence supporting a role for the endocannabinoid system on the control of neurogenesis and neurogenesis-dependent functions. Studies reporting participation of cannabinoids on the regulation of any step of neurogenesis and the effects of cannabinoid compounds on animal models possessing neurogenesis-dependent features were selected from Medline. Qualitative evaluation of the selected studies indicated that activation of cannabinoid receptors may change neurogenesis in embryonic or adult nervous systems alongside rescue of phenotypes in animal models of different psychiatric and neurological disorders. The text offers an overview on the effects of cannabinoids on central nervous system development and the possible links with psychiatric and neurological disorders such as anxiety, depression, schizophrenia, brain ischaemia/stroke and Alzheimer's disease. An understanding of the mechanisms by which cannabinoid signalling influences developmental and adult neurogenesis will help foster the development of new therapeutic strategies for neurodevelopmental, psychiatric and neurological disorders.
Collapse
|
37
|
Promising neuroprotective effects of β-caryophyllene against LPS-induced oligodendrocyte toxicity: A mechanistic study. Biochem Pharmacol 2018; 159:154-171. [PMID: 30529211 DOI: 10.1016/j.bcp.2018.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023]
Abstract
Myelin loss subsequent to oligodendrocyte death has been reported in a variety of myelin-associated disorders such as multiple sclerosis (MS). Lipopolysaccharide (LPS) has been shown to elicit cellular responses in the central nervous system (CNS) and trigger immune infiltrates and glial cells to release a variety of inflammatory cytokines and mediators. LPS-induced oligodendrocytes toxicity may be chosen as an efficient model to evaluate the role of oligodendrocytes in neuroprotective activities of compounds. β-Caryophyllene (BCP) is a selective type 2 cannabinoid (CB2) receptor agonist. However, the mechanisms underlying the anti-inflammatory effects of BCP are not completely understood. On this basis, we aimed to investigate the protective effects of a wide range of BCP concentrations against LPS-induced toxicity in a proliferative oligodendrocyte cell line (OLN-93) and evaluate the possible correlation between BCP concentration and selective modulation of CB2, Nrf2, sphingomyelinase (SMase) and peroxisome proliferator-activated receptors (PPAR)-γ signaling pathways. We found that LPS significantly increases the levels of reactive oxygen species (ROS), nitric oxide (NO) metabolite and tumor necrosis factor (TNF)-α production while decreases the level of GSH. BCP could prevent LPS-induced cytotoxicity and excessive production of NO, ROS, and TNF-α. Also, we demonstrated that BCP's protective effects against LPS-induced oligodendrocytes toxicity were mediated via the CB2 receptor through different pathways including Nrf2/HO-1/anti-oxidant axis, and PPAR-γ, at low (0.2 and 1 µM), and high (10-50 µM) concentrations, respectively. Additionally, we observed that the addition of SMase inhibitors imipramine (IMP) and fluoxetine (FLX) synergistically increased the protective effects of BCP. Finally, BCP at low concentrations exerted promising protective effects that could be considered for the treatment of neurodegenerative disorders such as MS. However, more studies using other models of neurodegenerative diseases should be undertaken to assess different parameters such as the activity or expression of SMase.
Collapse
|
38
|
Sun ML, Ao JP, Wang YR, Huang Q, Li TF, Li XY, Wang YX. Lappaconitine, a C18-diterpenoid alkaloid, exhibits antihypersensitivity in chronic pain through stimulation of spinal dynorphin A expression. Psychopharmacology (Berl) 2018; 235:2559-2571. [PMID: 29926144 DOI: 10.1007/s00213-018-4948-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022]
Abstract
Lappaconitine is a representative C18-diterpenoid alkaloid extracted from Aconitum sinomontanum Nakai and has been prescribed as a pain relief medicine in China for more than 30 years. This study evaluated its antihypersensitivity activity in the rat models of neuropathic and cancer pains and explored its underlying mechanisms. Subcutaneous injection of cumulative doses of lappaconitine produced dose-dependent mechanical antiallodynia and thermal antihyperalgesia in spinal nerve ligation-induced neuropathic rats. The cumulative dose-response analysis exhibited their Emax values of 53.3 and 58.3% MPE, and ED50 values of 1.1 and 1.6 mg/kg. Single intrathecal lappaconitine dose in neuropathy also dose- and time-dependently blocked mechanical allodynia, with an Emax of 66.1% MPE and an ED50 of 0.8 μg. Its multiple twice-daily intrathecal administration over 7 days did not induce mechanical antiallodynic tolerance. Subcutaneous cumulative doses of lappaconitine also produced dose-dependent blockade of mechanical allodynia in the rat bone cancer pain model induced by tibia implantation of cancer cells, with the Emax of 57.9% MPE and ED50 of 2.0 mg/kg. Furthermore, lappaconitine treatment stimulated spinal dynorphin A expression in neuropathic rats, and in primary cultures of microglia but not neurons or astrocytes. Intrathecal pretreatment with the specific microglia depletor liposome-encapsulated clodronate, dynorphin A antibody, and κ-opioid receptor antagonist GNTI totally suppressed intrathecal and subcutaneous lappaconitine-induced mechanical antiallodynia. This study suggests that lappaconitine exhibits antinociception through directly stimulating spinal microglial dynorphin A expression. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Ming-Li Sun
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jun-Ping Ao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yi-Rui Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qian Huang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Teng-Fei Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xin-Yan Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China. .,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| |
Collapse
|
39
|
Fedoce ADG, Ferreira F, Bota RG, Bonet-Costa V, Sun PY, Davies KJA. The role of oxidative stress in anxiety disorder: cause or consequence? Free Radic Res 2018; 52:737-750. [PMID: 29742940 PMCID: PMC6218334 DOI: 10.1080/10715762.2018.1475733] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Anxiety disorders are the most common mental illness in the USA affecting 18% of the population. The cause(s) of anxiety disorders is/are not completely clear, and research in the neurobiology of anxiety at the molecular level is still rather limited. Although mounting clinical and preclinical evidence now indicates that oxidative stress may be a major component of anxiety pathology, whether oxidative stress is the cause or consequence remains elusive. Studies conducted over the past few years suggest that anxiety disorders may be characterised by lowered antioxidant defences and increased oxidative damage to proteins, lipids, and nucleic acids. In particular, oxidative modifications to proteins have actually been proposed as a potential factor in the onset and progression of several psychiatric disorders, including anxiety and depressive disorders. Oxidised proteins are normally degraded by the proteasome proteolytic complex in the cell cytoplasm, nucleus, and endoplasmic reticulum. The Lon protease performs a similar protective function inside mitochondria. Impairment of the proteasome and/or the Lon protease results in the accumulation of toxic oxidised proteins in the brain, which can cause severe neuronal trauma. Recent evidence points to possible proteolytic dysfunction and accumulation of damaged, oxidised proteins as factors that may determine the appearance and severity of psychotic symptoms in mood disorders. Thus, critical interactions between oxidative stress, proteasome, and the Lon protease may provide keys to the molecular mechanisms involved in emotional regulation, and may also be of great help in designing and screening novel anxiolytics and antidepressants.
Collapse
Affiliation(s)
- Alessandra das Graças Fedoce
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Frederico Ferreira
- Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Laboratory on Thymus Research, Rio de Janeiro, Brazil
| | - Robert G. Bota
- Department of Psychiatry, University of California, Irvine, Orange, CA 92868
| | - Vicent Bonet-Costa
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Patrick Y. Sun
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Kelvin J. A. Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, & Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| |
Collapse
|
40
|
de la Tremblaye PB, O'Neil DA, LaPorte MJ, Cheng JP, Beitchman JA, Thomas TC, Bondi CO, Kline AE. Elucidating opportunities and pitfalls in the treatment of experimental traumatic brain injury to optimize and facilitate clinical translation. Neurosci Biobehav Rev 2018; 85:160-175. [PMID: 28576511 PMCID: PMC5709241 DOI: 10.1016/j.neubiorev.2017.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/12/2017] [Indexed: 12/19/2022]
Abstract
The aim of this review is to discuss the research presented in a symposium entitled "Current progress in characterizing therapeutic strategies and challenges in experimental CNS injury" which was presented at the 2016 International Behavioral Neuroscience Society annual meeting. Herein we discuss diffuse and focal traumatic brain injury (TBI) and ensuing chronic behavioral deficits as well as potential rehabilitative approaches. We also discuss the effects of stress on executive function after TBI as well as the response of the endocrine system and regulatory feedback mechanisms. The role of the endocannabinoids after CNS injury is also discussed. Finally, we conclude with a discussion of antipsychotic and antiepileptic drugs, which are provided to control TBI-induced agitation and seizures, respectively. The review consists predominantly of published data.
Collapse
Affiliation(s)
- Patricia B de la Tremblaye
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Darik A O'Neil
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Megan J LaPorte
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jeffrey P Cheng
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joshua A Beitchman
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, United States; Midwestern University, Glendale, AZ, United States
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, United States; Phoenix VA Healthcare System, Phoenix, AZ, United States
| | - Corina O Bondi
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony E Kline
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
41
|
Sild M, Ruthazer ES, Booij L. Major depressive disorder and anxiety disorders from the glial perspective: Etiological mechanisms, intervention and monitoring. Neurosci Biobehav Rev 2017; 83:474-488. [DOI: 10.1016/j.neubiorev.2017.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/08/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022]
|
42
|
Niu J, Huang D, Zhou R, Yue M, Xu T, Yang J, He L, Tian H, Liu X, Zeng J. Activation of dorsal horn cannabinoid CB2 receptor suppresses the expression of P2Y 12 and P2Y 13 receptors in neuropathic pain rats. J Neuroinflammation 2017; 14:185. [PMID: 28899427 PMCID: PMC5596460 DOI: 10.1186/s12974-017-0960-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/06/2017] [Indexed: 12/27/2022] Open
Abstract
Background More evidence suggests that dorsal spinal cord microglia is an important site contributing to CB2 receptor-mediated analgesia. The upregulation of P2Y12 and P2Y13 purinoceptors in spinal dorsal horn microglia is involved in the development of pain behavior caused by peripheral nerve injury. However, it is not known whether the expression of P2Y12 and P2Y13 receptors at spinal dorsal horn will be influenced after CB2 receptor activation in neuropathic pain rats. Methods Chronic constriction injury (CCI) and intrathecal ADPbetaS injection were performed in rats to induce neuropathic pain. The paw withdrawal latency (PWL) was used to evaluate thermal hyperalgesia in neuropathic rats. The expression of P2Y12 and P2Y13 receptors, p-p38MAPK, and NF-kappaBp65 was detected with RT-PCR and western blotting analysis. Results Treatment with AM1241 produces a pronounced inhibition of CCI-induced thermal hyperalgesia and significantly inhibited the increased expression of P2Y12 and P2Y13 receptors at the mRNA and protein levels, which open up the possibility that P2Y12 and P2Y13 receptor expression are downregulated by CB2 receptor agonist AM1241 in CCI rats. Western blot analysis demonstrated that AM1241 reduced the elevated expression of p-p38MAPK and NF-κBp65 in the dorsal spinal cord induced by CCI. After administration with either SB203580 (p38MAPK inhibitor) or PDTC (NF-kappaB inhibitor), the levels of P2Y13 receptor expression in the dorsal spinal cord were lower than those in the CCI group. However, in CCI rats, the increased expression of P2Y12 receptor was prevented by intrathecal administration of PDTC but not by SB203580. In addition, minocycline significantly decreased the increased expression of P2Y12 and P2Y13 receptors. The similar results can be observed in ADPbetaS-treated rats. Intrathecal injection of ADPbataS causes thermal hyperalgesia and increased expression of P2Y12 and P2Y13 receptors in the dorsal spinal cord of naive rats. Moreover, intrathecal injection of AM1241 alleviates pain response and reduces the elevated expression of P2Y12 and P2Y13 receptors, p-p38MAPK, and NF-κBp65 in the dorsal spinal cord of ADPbetaS-treated rats. Intrathecal injection of SB203580 significantly inhibited the ADPbetaS-induced P2Y13 receptor expression, without affecting P2Y12 receptor expression. However, treatment with either SB203580 or PDTC effectively inhibited P2Y13 receptor expression compared to ADPbetaS-treated rats. Conclusions In CCI- and ADPbetaS-treated rats, AM1241 pretreatment could efficiently activate CB2 receptor, while inhibiting p38MAPK and NF-kappaB activation in the dorsal spinal cord. CB2 receptor stimulation decreased P2Y13 receptor expression via p38MAPK/NF-kappaB signaling. On the other hand, CB2 receptor activation decreased P2Y12 receptor expression via p38MAPK-independent NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- Juan Niu
- Department of Physiology, Zunyi Medical College, Zunyi, Guizhou province, 563006, China
| | - Dujuan Huang
- Department of Physiology, Zunyi Medical College, Zunyi, Guizhou province, 563006, China
| | - Rui Zhou
- Department of Physiology, Zunyi Medical College, Zunyi, Guizhou province, 563006, China
| | - MingXia Yue
- Department of Physiology, Zunyi Medical College, Zunyi, Guizhou province, 563006, China
| | - Tao Xu
- Department of Physiology, Zunyi Medical College, Zunyi, Guizhou province, 563006, China
| | - Junna Yang
- Department of Physiology, Zunyi Medical College, Zunyi, Guizhou province, 563006, China
| | - Li He
- Department of Physiology, Zunyi Medical College, Zunyi, Guizhou province, 563006, China
| | - Hong Tian
- Department of Physiology, Zunyi Medical College, Zunyi, Guizhou province, 563006, China
| | - XiaoHong Liu
- Department of Physiology, Zunyi Medical College, Zunyi, Guizhou province, 563006, China
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical College, Zunyi, Guizhou province, 563006, China.
| |
Collapse
|
43
|
Freitas HR, Isaac AR, Malcher-Lopes R, Diaz BL, Trevenzoli IH, De Melo Reis RA. Polyunsaturated fatty acids and endocannabinoids in health and disease. Nutr Neurosci 2017; 21:695-714. [PMID: 28686542 DOI: 10.1080/1028415x.2017.1347373] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are lipid derivatives of omega-3 (docosahexaenoic acid, DHA, and eicosapentaenoic acid, EPA) or of omega-6 (arachidonic acid, ARA) synthesized from membrane phospholipids and used as a precursor for endocannabinoids (ECs). They mediate significant effects in the fine-tune adjustment of body homeostasis. Phyto- and synthetic cannabinoids also rule the daily life of billions worldwide, as they are involved in obesity, depression and drug addiction. Consequently, there is growing interest to reveal novel active compounds in this field. Cloning of cannabinoid receptors in the 90s and the identification of the endogenous mediators arachidonylethanolamide (anandamide, AEA) and 2-arachidonyglycerol (2-AG), led to the characterization of the endocannabinoid system (ECS), together with their metabolizing enzymes and membrane transporters. Today, the ECS is known to be involved in diverse functions such as appetite control, food intake, energy balance, neuroprotection, neurodegenerative diseases, stroke, mood disorders, emesis, modulation of pain, inflammatory responses, as well as in cancer therapy. Western diet as well as restriction of micronutrients and fatty acids, such as DHA, could be related to altered production of pro-inflammatory mediators (e.g. eicosanoids) and ECs, contributing to the progression of cardiovascular diseases, diabetes, obesity, depression or impairing conditions, such as Alzheimer' s disease. Here we review how diets based in PUFAs might be linked to ECS and to the maintenance of central and peripheral metabolism, brain plasticity, memory and learning, blood flow, and genesis of neural cells.
Collapse
Affiliation(s)
- Hércules Rezende Freitas
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Alinny Rosendo Isaac
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | | | - Bruno Lourenço Diaz
- c Laboratory of Inflammation, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Isis Hara Trevenzoli
- d Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Ricardo Augusto De Melo Reis
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| |
Collapse
|
44
|
Abstract
OBJECTIVE Recent advances have provided compelling evidence for the role of excessive complement activity in the pathophysiology of schizophrenia. In this study, we aimed to detect the association of the gene encoding complement factor H (CFH), a regulator in complement activation, with schizophrenia. MATERIALS AND METHODS A sample of 1783 individuals with or without schizophrenia was recruited for genetic analysis. Genomic DNA samples were extracted from peripheral blood cells using multiplex polymerase chain reaction and the SNaPshot assay. A Database for Schizophrenia Genetic Research (SZDB) was used to detect the association of brain CFH expression with schizophrenia. Next, we performed a genotype-phenotype analysis to identify the relationship between CFH Y402H polymorphism and clinical features of schizophrenia. RESULTS There was a significant association of hippocampal CFH expression with schizophrenia (P=0.017), whereas this significance did not survive after adjusting for false discovery rate (P=0.105). Comparing the genotype and allele frequencies of the genotyped single-nucleotide polymorphisms between case and control groups showed no significant difference. There were significant differences in the scores of negative symptoms and delayed memory between the patients with C allele and those without C allele (P<0.01 and P=0.04 after Bonferroni correction, respectively). Furthermore, we observed a marginally significant association between the Y402H polymorphism and CFH expression in the hippocampus (P=0.051); however, this significance was lost after multiple testing correction (P=0.51, after Bonferroni correction). CONCLUSION Our findings provide suggestive evidence for the role of CFH in the development of negative symptoms and cognitive dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Qinyu Lv
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Weixing Fan
- Department of Psychiatry, Jinhua Second Hospital, Jinhua
| | - Wei Tang
- Department of Psychiatry, Wenzhou Kanging Hospital, Wenzhou, People's Republic of China
| | - Zhenghui Yi
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| |
Collapse
|
45
|
Cannabinoids as Regulators of Neural Development and Adult Neurogenesis. STEM CELL BIOLOGY AND REGENERATIVE MEDICINE 2017. [DOI: 10.1007/978-3-319-49343-5_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
46
|
Mecha M, Carrillo-Salinas F, Feliú A, Mestre L, Guaza C. Microglia activation states and cannabinoid system: Therapeutic implications. Pharmacol Ther 2016; 166:40-55. [DOI: 10.1016/j.pharmthera.2016.06.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
|