1
|
Beatty AE, Barnes-Tompkins TM, Long KM, Tobiansky DJ. Comparative analysis of meningeal transcriptomes in birds: Potential pathways of resilience to repeated impacts. Anat Rec (Hoboken) 2024. [PMID: 39376204 DOI: 10.1002/ar.25583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024]
Abstract
The meninges and associated vasculature (MAV) play a crucial role in maintaining cerebral integrity and homeostasis. Recent advances in transcriptomic analysis have illuminated the significance of the MAV in understanding the complex physiological interactions at the interface between the skull and the brain after exposure to mechanical stress. To investigate how physiological responses may confer resilience against repetitive mechanical stress, we performed the first transcriptomic analysis of avian MAV tissues using the Downy Woodpecker (Dryobates pubescens) and Tufted Titmouse (Baeolophus bicolor) as the comparison species. Our findings reveal divergences in gene expression profiles related to immune response, cellular stress management, and protein translation machinery. The male woodpeckers exhibit a tailored immune modulation strategy that potentially dampens neuroinflammation while preserving protective immunity. Overrepresented genes involved in cellular stress responses suggest enhanced mechanisms for mitigating damage and promoting repair. Additionally, the enrichment of translation-associated pathways hints at increased capacity for protein turnover and cellular remodeling vital for recovery. Our study not only fills a critical gap in avian neurobiology but also lays the groundwork for research in comparative neuroprotection.
Collapse
Affiliation(s)
- Abby E Beatty
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, Maryland, USA
| | | | - Kira M Long
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana-Champaign, Illinois, USA
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, Idaho, USA
| | - Daniel J Tobiansky
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, Maryland, USA
- Program in Neuroscience, St. Mary's College of Maryland, St. Mary's City, Maryland, USA
| |
Collapse
|
2
|
Dyhrfort P, Lindblad C, Widgren A, Virhammar J, Piehl F, Bergquist J, Al Nimer F, Rostami E. Deciphering Proteomic Expression in Inflammatory Disorders: A Mass Spectrometry Exploration Comparing Infectious, Noninfectious, and Traumatic Brain Injuries in Human Cerebrospinal Fluid. Neurotrauma Rep 2024; 5:857-873. [PMID: 39391051 PMCID: PMC11462427 DOI: 10.1089/neur.2024.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
The central nervous system (CNS) evokes a complex inflammatory response to injury. Inflammatory cascades are present in traumatic, infectious, and noninfectious disorders affecting the brain. It contains a mixture of pro- and anti-inflammatory reactions involving well-known proteins, but also numerous proteins less explored in these processes. The aim of this study was to explore the distinct inflammatory response in traumatic brain injury (TBI) compared with other CNS injuries by utilization of mass-spectrometry. In total, 56 patients had their cerebrospinal fluid (CSF) analyzed with the use of mass-spectrometry. Among these, CSF was collected via an external ventricular drain (EVD) from n = 21 patients with acute TBI. The resulting protein findings were then compared with CSF obtained by lumbar puncture from n = 14 patients with noninfectious CNS disorders comprising relapsing-remitting multiple sclerosis, anti-N-methyl-d-aspartate-receptor encephalitis, acute disseminated encephalomyelitis, and n = 14 patients with progressive multifocal leukoencephalopathy, herpes simplex encephalitis, and other types of viral meningitis. We also utilized n = 7 healthy controls (HCs). In the comparison between TBI and noninfectious inflammatory CNS disorders, concentrations of 55 proteins significantly differed between the groups. Among them, 23 and 32 proteins were up- and downregulated, respectively, in the TBI group. No proteins were uniquely identified in either group. In the comparison of TBI and HC, 51 proteins were significantly different, with 24 and 27 proteins being up- and downregulated, respectively, in TBI. Two proteins (fibrinogen gamma chain and transketolase) were uniquely identified in all samples of the TBI group. Also in the last comparison, TBI versus infectious inflammatory CNS disorders, 51 proteins differed between the two groups, with 19 and 32 proteins being up- and downregulated, respectively, in TBI, and no unique proteins being identified. Due to large discrepancies between the groups compared, the following proteins were selected for further deeper analysis among those being differentially regulated: APOE, CFB, CHGA, CHI3L1, C3, FCGBP, FGA, GSN, IGFBP7, LRG1, SERPINA3, SOD3, and TTR. We found distinct proteomic profiles in the CSF of TBI patients compared with HC and different disease controls, indicating a specific interplay between inflammatory factors, metabolic response, and cell integrity. In relation to primarily infectious or inflammatory disorders, unique inflammatory pathways seem to be engaged, and could potentially serve as future treatment targets.
Collapse
Affiliation(s)
- Philip Dyhrfort
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Caroline Lindblad
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neurosciences, Addenbrooke’s Hospital, Cambridge University, Turku, Finland
| | - Anna Widgren
- Department of Chemistry—BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Johan Virhammar
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Neurology, Uppsala University Hospital, Uppsala, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden
| | - Jonas Bergquist
- Department of Chemistry—BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Faiez Al Nimer
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden
| | - Elham Rostami
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Li X, Guan Y, Chen D, Li J, Yu W, Zou H, Liu B, Chen L, Chen Z. Immune Cells Promote BDNF Expression by Infiltrated Macrophages via Interleukin 4 in the Cerebral Ischemia of Male Rats. J Neurosci Res 2024; 102:e25379. [PMID: 39235282 DOI: 10.1002/jnr.25379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024]
Abstract
We reported that infiltrated Ly6C+ macrophages express brain-derived neurotrophic factor (BDNF) only at the cerebral cortex infarct in a rat dMCAO model. However, the changein neuron-expressed BDNF, the niche components that induce the Ly6C+ cells to express BDNF, and the cellular sources of these components, remain unclear. In this study, immunofluorescence double staining was performed to label BDNF and Ly6C on brain sections at 3, 24, and 48 h following distal middle cerebral artery occlusion (dMCAO) of male rats, and to stain BDNF with Ly6C, IL-4R, and IL-10R. A neutralizing anti-IL-4 antibody was injected into the infarct, and the IL-4 and BDNF concentrations in the subareas of the infarct were determined using enzyme-linked immunosorbent assay. To find out the cellular sources of IL-4, the markers for microglia, T cells, and neurons were co-stained with IL-4 separately. In certain infarct subareas, the main BDNF-expressing cells shifted quickly from NeuN+ neurons to Ly6C+ cells during 24-48 h post-stroke, and the Ly6C+/BDNF+ cells mostly expressed IL-4 receptor. Following IL-4 neutralizing antibody injection, the BDNF, IL-4 protein levels, and BDNF+/Ly6C+ cells decreased significantly. The main IL-4-expressing cell type in this infarct subarea is not neuron either, but immune cells, including microglia, monocyte, macrophages, and T cells. The neurons, maintained BDNF and IL-4 expression in the peri-infarct area. In conclusion, in a specific cerebral subarea of the rat dMCAO model, IL-4 secreted by immune cells is one of the main inducers for Ly6C+ cells to express BDNF.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Neurology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, Yangzhou, China
| | - Yunqian Guan
- Cell Therapy Center, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Danni Chen
- Department of Clinical Medicine, Medical School of Yangzhou University, Yangzhou, China
| | - Jiyu Li
- Department of Orthopedic Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wenxiu Yu
- Department of Neurology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, Yangzhou, China
| | - Haiqiang Zou
- Department of Neurology, The General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Bochao Liu
- Cell Therapy Center, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Ling Chen
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Zhiguo Chen
- Cell Therapy Center, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Khoshkroodian B, Javid H, Pourbadie HG, Sayyah M. Toll-Like Receptor 1/2 Postconditioning by the Ligand Pam3cys Tempers Posttraumatic Hyperexcitability, Neuroinflammation, and Microglial Response: A Potential Candidate for Posttraumatic Epilepsy. Inflammation 2024:10.1007/s10753-024-02109-z. [PMID: 39044002 DOI: 10.1007/s10753-024-02109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Toll-like receptors (TLRs) are activated by endogenous molecules released from damaged cells and contribute to neuroinflammation following traumatic brain injury (TBI) and epilepsy. TLR1/2 agonist tri-palmitoyl-S-glyceryl-cysteine (Pam3cys) is a vaccine adjuvant with confirmed safety in humans. We assessed impact of TLR1/2 postconditioning by Pam3cys on epileptogenesis and neuroinflammation in male rats, 6, 24, and 48 h after mild-to-moderate TBI. Pam3cys was injected into cerebral ventricles 30 min after controlled cortical impact (CCI) injury. After 24 h, rats underwent chemical kindling by once every other day injections of pentylenetetrazole (PTZ) 35 mg/kg until development of generalized seizures. Number of intact neurons, brain expression of proinflammatory cytokine TNF-α, anti-inflammatory cytokine IL-10, and marker of anti-inflammatory microglia arginase1 (Arg1) were determined by immunoblotting. Astrocytes and macrophage/microglia activation/polarization at the contused area was assessed by double immunostaining with Iba1/Arg1, Iba1/iNOS and GFAP/iNOS, specific antibodies. The CCI-injured rats became kindled by less number of PTZ injections than sham-operated rats (9 versus 14 injections, p < 0.0001). Pam3cys treatment returned the accelerated rate of epileptogenesis in TBI state to the sham level. Pam3cys decreased neural death 48 h after TBI. It decreased TNF-α (6 h post-TBI, p < 0.01), and up-regulated IL-10 (p < 0.01) and Arg1 (p < 0.05) 48 h after TBI. The iNOS-positive cells decreased (p < 0.001) whereas Iba1/Arg1-positive cells enhanced (p < 0.01) after Pam3cys treatment. Pam3cys inhibits TBI-accelerated acquisition of seizures. Pam3cys reprograms microglia and up-regulates anti-inflammatory cytokines during the first few days after TBI. This capacity along with the clinical safety, makes Pam3cys a potential candidate for development of effective medications against posttraumatic epilepsy.
Collapse
Affiliation(s)
- Bahar Khoshkroodian
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Pasteur Street, Tehran, 13169455, Iran
| | - Hanieh Javid
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Pasteur Street, Tehran, 13169455, Iran
- Department of Neuroscience and Addition, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Gholami Pourbadie
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Pasteur Street, Tehran, 13169455, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Pasteur Street, Tehran, 13169455, Iran.
| |
Collapse
|
5
|
Chiollaz AC, Pouillard V, Habre C, Seiler M, Romano F, Spigariol F, Ritter Schenk C, Korff C, Maréchal F, Wyss V, Gruaz L, Montaner J, Manzano S, Sanchez JC. Diagnostic potential of IL6 and other blood-based inflammatory biomarkers in mild traumatic brain injury among children. Front Neurol 2024; 15:1432217. [PMID: 39055316 PMCID: PMC11270961 DOI: 10.3389/fneur.2024.1432217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Objectives Inflammatory biomarkers, as indicators of biological states, provide a valuable approach for accurate and reproducible measurements, crucial for the effective management of mild traumatic brain injury (mTBI) in pediatric patients. This study aims to assess the diagnostic utility of blood-based inflammatory markers IL6, IL8, and IL10 in children with mTBI, including those who did not undergo computed tomography (CT) scans. Methods A prospective multicentric cohort study involving 285 pediatric mTBI patients was conducted, stratified into CT-scanned and non-CT-scanned groups within 24 h post-trauma, alongside 74 control subjects. Biomarker levels were quantitatively analyzed using ELISA. Sensitivity and specificity metrics were calculated to determine the diagnostic efficacy of each biomarker. Results A total of 223 mTBI patients (78%) did not undergo CT scan examination but were kept in observation for symptoms monitoring at the emergency department (ED) for more than 6 h (in-hospital-observation patients). Among CT-scanned patients (n = 62), 14 (23%) were positive (CT+). Elevated levels of IL6 and IL10 were found in mTBI children compared to controls. Within mTBI patients, IL6 was significantly increased in CT+ patients compared to both CT- and in-hospital-observation patients. No significant differences were observed for IL8 among the compared groups. IL6 yielded a specificity of 48% in identifying CT- and in-hospital-observation patients, with 100% sensitivity in excluding all CT+ cases. These performances were maintained whether IL6 was measured within 6 h or within 24 h after the trauma. Conclusion The inflammatory marker IL6 emerges as a robust biomarker, showing promising stratification value for pediatric mTBI patients undergoing CT scans or staying in observation in a pediatric ED.
Collapse
Affiliation(s)
- Anne-Cécile Chiollaz
- Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Virginie Pouillard
- Pediatric Neurology Unit, Department of the Woman, Child and Adolescent, Geneva University Hospitals, Geneva, Switzerland
| | - Céline Habre
- Division of Radiology, University Hospitals of Geneva, Geneva, Switzerland
| | - Michelle Seiler
- Department of Pediatric Emergency, University Children's Hospital Zurich, Zürich, Switzerland
| | - Fabrizio Romano
- Division of Pediatric Emergency Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabian Spigariol
- Department of Pediatric Emergency, Neuchâtel Hospital (RHNE), Neuchâtel, Switzerland
| | | | - Christian Korff
- Pediatric Neurology Unit, Department of the Woman, Child and Adolescent, Geneva University Hospitals, Geneva, Switzerland
| | - Fabienne Maréchal
- Platform of Pediatric Clinical Research, Department of Woman, Child and Adolescent, Geneva University Hospitals, Geneva, Switzerland
| | - Verena Wyss
- Department of Pediatric Emergency, University Children's Hospital Zurich, Zürich, Switzerland
| | - Lyssia Gruaz
- Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joan Montaner
- Neurovascular Research Group, Institute of Biomedicine of Seville, IBiS/Virgen Macarena University Hospital/CSIC/University of Seville, Seville, Spain
| | - Sergio Manzano
- Department of Pediatric Emergency, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Charles Sanchez
- Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Zhou C, Li S, Qiu N, Sun P, Hamblin MH, Dixon CE, Chen J, Yin KJ. Loss of microRNA-15a/16-1 function promotes neuropathological and functional recovery in experimental traumatic brain injury. JCI Insight 2024; 9:e178650. [PMID: 38912585 PMCID: PMC11383186 DOI: 10.1172/jci.insight.178650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/15/2024] [Indexed: 06/25/2024] Open
Abstract
The diffuse axonal damage in white matter and neuronal loss, along with excessive neuroinflammation, hinder long-term functional recovery after traumatic brain injury (TBI). MicroRNAs (miRs) are small noncoding RNAs that negatively regulate protein-coding target genes in a posttranscriptional manner. Recent studies have shown that loss of function of the miR-15a/16-1 cluster reduced neurovascular damage and improved functional recovery in ischemic stroke and vascular dementia. However, the role of the miR-15a/16-1 cluster in neurotrauma is poorly explored. Here, we report that genetic deletion of the miR-15a/16-1 cluster facilitated the recovery of sensorimotor and cognitive functions, alleviated white matter/gray matter lesions, reduced cerebral glial cell activation, and inhibited infiltration of peripheral blood immune cells to brain parenchyma in a murine model of TBI when compared with WT controls. Moreover, intranasal delivery of the miR-15a/16-1 antagomir provided similar brain-protective effects conferred by genetic deletion of the miR-15a/16-1 cluster after experimental TBI, as evidenced by showing improved sensorimotor and cognitive outcomes, better white/gray matter integrity, and less inflammatory responses than the control antagomir-treated mice after brain trauma. miR-15a/16-1 genetic deficiency and miR-15a/16-1 antagomir also significantly suppressed inflammatory mediators in posttrauma brains. These results suggest miR-15a/16-1 as a potential therapeutic target for TBI.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Shun Li
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Na Qiu
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Ping Sun
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Milton H Hamblin
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - C Edward Dixon
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Ke-Jie Yin
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Poupon-Bejuit L, Geard A, Millicheap N, Rocha-Ferreira E, Hagberg H, Thornton C, Rahim AA. Diabetes drugs activate neuroprotective pathways in models of neonatal hypoxic-ischemic encephalopathy. EMBO Mol Med 2024; 16:1284-1309. [PMID: 38783166 PMCID: PMC11178908 DOI: 10.1038/s44321-024-00079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Hypoxic-ischaemic encephalopathy (HIE) arises from diminished blood flow and oxygen to the neonatal brain during labor, leading to infant mortality or severe brain damage, with a global incidence of 1.5 per 1000 live births. Glucagon-like Peptide 1 Receptor (GLP1-R) agonists, used in type 2 diabetes treatment, exhibit neuroprotective effects in various brain injury models, including HIE. In this study, we observed enhanced neurological outcomes in post-natal day 10 mice with surgically induced hypoxic-ischaemic (HI) brain injury after immediate systemic administration of exendin-4 or semaglutide. Short- and long-term assessments revealed improved neuropathology, survival rates, and locomotor function. We explored the mechanisms by which GLP1-R agonists trigger neuroprotection and reduce inflammation following oxygen-glucose deprivation and HI in neonatal mice, highlighting the upregulation of the PI3/AKT signalling pathway and increased cAMP levels. These findings shed light on the neuroprotective and anti-inflammatory effects of GLP1-R agonists in HIE, potentially extending to other neurological conditions, supporting their potential clinical use in treating infants with HIE.
Collapse
Affiliation(s)
- Laura Poupon-Bejuit
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Amy Geard
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Nathan Millicheap
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Eridan Rocha-Ferreira
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Ahad A Rahim
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK.
| |
Collapse
|
8
|
Dhull A, Zhang Z, Sharma R, Dar AI, Rani A, Wei J, Gopalakrishnan S, Ghannam A, Hahn V, Pulukuri AJ, Tasevski S, Moughni S, Wu BJ, Sharma A. Discovery of 2-deoxy glucose surfaced mixed layer dendrimer: a smart neuron targeted systemic drug delivery system for brain diseases. Theranostics 2024; 14:3221-3245. [PMID: 38855177 PMCID: PMC11155412 DOI: 10.7150/thno.95476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024] Open
Abstract
The availability of non-invasive drug delivery systems capable of efficiently transporting bioactive molecules across the blood-brain barrier to specific cells at the injury site in the brain is currently limited. Delivering drugs to neurons presents an even more formidable challenge due to their lower numbers and less phagocytic nature compared to other brain cells. Additionally, the diverse types of neurons, each performing specific functions, necessitate precise targeting of those implicated in the disease. Moreover, the complex synthetic design of drug delivery systems often hinders their clinical translation. The production of nanomaterials at an industrial scale with high reproducibility and purity is particularly challenging. However, overcoming this challenge is possible by designing nanomaterials through a straightforward, facile, and easily reproducible synthetic process. Methods: In this study, we have developed a third-generation 2-deoxy-glucose functionalized mixed layer dendrimer (2DG-D) utilizing biocompatible and cost-effective materials via a highly facile convergent approach, employing copper-catalyzed click chemistry. We further evaluated the systemic neuronal targeting and biodistribution of 2DG-D, and brain delivery of a neuroprotective agent pioglitazone (Pio) in a pediatric traumatic brain injury (TBI) model. Results: The 2DG-D exhibits favorable characteristics including high water solubility, biocompatibility, biological stability, nanoscale size, and a substantial number of end groups suitable for drug conjugation. Upon systemic administration in a pediatric mouse model of traumatic brain injury (TBI), the 2DG-D localizes in neurons at the injured brain site, clears rapidly from off-target locations, effectively delivers Pio, ameliorates neuroinflammation, and improves behavioral outcomes. Conclusions: The promising in vivo results coupled with a convenient synthetic approach for the construction of 2DG-D makes it a potential nanoplatform for addressing brain diseases.
Collapse
Affiliation(s)
- Anubhav Dhull
- Department of Chemistry, College of Arts and Sciences, Washington State University, 1470 NE College Ave, Pullman, WA, USA 99164
| | - Zhi Zhang
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan -Dearborn, 4901 Evergreen Rd, Dearborn, MI, USA 48128
| | - Rishi Sharma
- Department of Chemistry, College of Arts and Sciences, Washington State University, 1470 NE College Ave, Pullman, WA, USA 99164
| | - Aqib Iqbal Dar
- Department of Chemistry, College of Arts and Sciences, Washington State University, 1470 NE College Ave, Pullman, WA, USA 99164
| | - Anu Rani
- Department of Chemistry, College of Arts and Sciences, Washington State University, 1470 NE College Ave, Pullman, WA, USA 99164
| | - Jing Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA 99202
| | - Shamila Gopalakrishnan
- Department of Chemistry, College of Arts and Sciences, Washington State University, 1470 NE College Ave, Pullman, WA, USA 99164
| | - Amanda Ghannam
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan -Dearborn, 4901 Evergreen Rd, Dearborn, MI, USA 48128
| | - Victoria Hahn
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan -Dearborn, 4901 Evergreen Rd, Dearborn, MI, USA 48128
| | - Anunay James Pulukuri
- Department of Chemistry, College of Arts and Sciences, Washington State University, 1470 NE College Ave, Pullman, WA, USA 99164
| | - Stefanie Tasevski
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan -Dearborn, 4901 Evergreen Rd, Dearborn, MI, USA 48128
| | - Sara Moughni
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan -Dearborn, 4901 Evergreen Rd, Dearborn, MI, USA 48128
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA 99202
| | - Anjali Sharma
- Department of Chemistry, College of Arts and Sciences, Washington State University, 1470 NE College Ave, Pullman, WA, USA 99164
| |
Collapse
|
9
|
Varghese SM, Patel S, Nandan A, Jose A, Ghosh S, Sah RK, Menon B, K V A, Chakravarty S. Unraveling the Role of the Blood-Brain Barrier in the Pathophysiology of Depression: Recent Advances and Future Perspectives. Mol Neurobiol 2024:10.1007/s12035-024-04205-5. [PMID: 38730081 DOI: 10.1007/s12035-024-04205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Depression is a highly prevalent psychological disorder characterized by persistent dysphoria, psychomotor retardation, insomnia, anhedonia, suicidal ideation, and a remarkable decrease in overall well-being. Despite the prevalence of accessible antidepressant therapies, many individuals do not achieve substantial improvement. Understanding the multifactorial pathophysiology and the heterogeneous nature of the disorder could lead the way toward better outcomes. Recent findings have elucidated the substantial impact of compromised blood-brain barrier (BBB) integrity on the manifestation of depression. BBB functions as an indispensable defense mechanism, tightly overseeing the transport of molecules from the periphery to preserve the integrity of the brain parenchyma. The dysfunction of the BBB has been implicated in a multitude of neurological disorders, and its disruption and consequent brain alterations could potentially serve as important factors in the pathogenesis and progression of depression. In this review, we extensively examine the pathophysiological relevance of the BBB and delve into the specific modifications of its components that underlie the complexities of depression. A particular focus has been placed on examining the effects of peripheral inflammation on the BBB in depression and elucidating the intricate interactions between the gut, BBB, and brain. Furthermore, this review encompasses significant updates on the assessment of BBB integrity and permeability, providing a comprehensive overview of the topic. Finally, we outline the therapeutic relevance and strategies based on BBB in depression, including COVID-19-associated BBB disruption and neuropsychiatric implications. Understanding the comprehensive pathogenic cascade of depression is crucial for shaping the trajectory of future research endeavors.
Collapse
Affiliation(s)
- Shamili Mariya Varghese
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Shashikant Patel
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Soumya Ghosh
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Bindu Menon
- Department of Psychiatry, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India.
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
10
|
Kuang H, Zhu X, Chen H, Tang H, Zhao H. The immunomodulatory mechanism of acupuncture treatment for ischemic stroke: research progress, prospects, and future direction. Front Immunol 2024; 15:1319863. [PMID: 38756772 PMCID: PMC11096548 DOI: 10.3389/fimmu.2024.1319863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Ischemic stroke (IS) is one of the leading causes of death and disability. Complicated mechanisms are involved in the pathogenesis of IS. Immunomodulatory mechanisms are crucial to IS. Acupuncture is a traditional non-drug treatment that has been extensively used to treat IS. The exploration of neuroimmune modulation will broaden the understanding of the mechanisms underlying acupuncture treatment. This review summarizes the immune response of immune cells, immune cytokines, and immune organs after an IS. The immunomodulatory mechanisms of acupuncture treatment on the central nervous system and peripheral immunity, as well as the factors that influence the effects of acupuncture treatment, were summarized. We suggest prospects and future directions for research on immunomodulatory mechanisms of acupuncture treatment for IS based on current progress, and we hope that these will provide inspiration for researchers. Additionally, acupuncture has shown favorable outcomes in the treatment of immune-based nervous system diseases, generating new directions for research on possible targets and treatments for immune-based nervous system diseases.
Collapse
Affiliation(s)
- Hongjun Kuang
- Department of Acupuncture and Moxibustion, Shanghai University of Traditional Chinese Medicine, Shenzhen Hospital, Shenzhen, China
- Department of Acupuncture and Moxibustion, Luohu District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xinzhou Zhu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Huan Chen
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| | - Han Tang
- Department of Acupuncture and Moxibustion, Shanghai University of Traditional Chinese Medicine, Shenzhen Hospital, Shenzhen, China
- Department of Acupuncture and Moxibustion, Luohu District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Hong Zhao
- Department of Acupuncture and Moxibustion, Luohu District Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
11
|
Nong J, Glassman PM, Shuvaev VV, Reyes-Esteves S, Descamps HC, Kiseleva RY, Papp TE, Alameh MG, Tam YK, Mui BL, Omo-Lamai S, Zamora ME, Shuvaeva T, Arguiri E, Gong X, Brysgel TV, Tan AW, Woolfork AG, Weljie A, Thaiss CA, Myerson JW, Weissman D, Kasner SE, Parhiz H, Muzykantov VR, Brenner JS, Marcos-Contreras OA. Targeting lipid nanoparticles to the blood-brain barrier to ameliorate acute ischemic stroke. Mol Ther 2024; 32:1344-1358. [PMID: 38454606 PMCID: PMC11081939 DOI: 10.1016/j.ymthe.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
Effective delivery of mRNA or small molecule drugs to the brain is a significant challenge in developing treatment for acute ischemic stroke (AIS). To address the problem, we have developed targeted nanomedicine to increase drug concentrations in endothelial cells of the blood-brain barrier (BBB) of the injured brain. Inflammation during ischemic stroke causes continuous neuronal death and an increase in the infarct volume. To enable targeted delivery to the inflamed BBB, we conjugated lipid nanocarriers (NCs) with antibodies that bind cell adhesion molecules expressed at the BBB. In the transient middle cerebral artery occlusion mouse model, NCs targeted to vascular cellular adhesion molecule-1 (VCAM) achieved the highest level of brain delivery, nearly two orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles with luciferase-encoding mRNA and Cre-recombinase showed selective expression in the ischemic brain. Anti-inflammatory drugs administered intravenously after ischemic stroke reduced cerebral infarct volume by 62% (interleukin-10 mRNA) or 35% (dexamethasone) only when they were encapsulated in VCAM-targeted NCs. Thus, VCAM-targeted lipid NCs represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS.
Collapse
Affiliation(s)
- Jia Nong
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sahily Reyes-Esteves
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Helene C Descamps
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Raisa Y Kiseleva
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tyler E Papp
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohamad-Gabriel Alameh
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying K Tam
- Acuitas Therapeutics, Vancouver, British Columbia V6T 1Z3, Canada
| | - Barbara L Mui
- Acuitas Therapeutics, Vancouver, British Columbia V6T 1Z3, Canada
| | - Serena Omo-Lamai
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco E Zamora
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tea Shuvaeva
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evguenia Arguiri
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xijing Gong
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Taylor V Brysgel
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ai Wen Tan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashley G Woolfork
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aalim Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob W Myerson
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott E Kasner
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hamideh Parhiz
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Oscar A Marcos-Contreras
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Carnwath TP, Demel SL, Prestigiacomo CJ. Genetics of ischemic stroke functional outcome. J Neurol 2024; 271:2345-2369. [PMID: 38502340 PMCID: PMC11055934 DOI: 10.1007/s00415-024-12263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Ischemic stroke, which accounts for 87% of cerebrovascular accidents, is responsible for massive global burden both in terms of economic cost and personal hardship. Many stroke survivors face long-term disability-a phenotype associated with an increasing number of genetic variants. While clinical variables such as stroke severity greatly impact recovery, genetic polymorphisms linked to functional outcome may offer physicians a unique opportunity to deliver personalized care based on their patient's genetic makeup, leading to improved outcomes. A comprehensive catalogue of the variants at play is required for such an approach. In this review, we compile and describe the polymorphisms associated with outcome scores such as modified Rankin Scale and Barthel Index. Our search identified 74 known genetic polymorphisms spread across 48 features associated with various poststroke disability metrics. The known variants span diverse biological systems and are related to inflammation, vascular homeostasis, growth factors, metabolism, the p53 regulatory pathway, and mitochondrial variation. Understanding how these variants influence functional outcome may be helpful in maximizing poststroke recovery.
Collapse
Affiliation(s)
- Troy P Carnwath
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Stacie L Demel
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles J Prestigiacomo
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
13
|
Saleh RO, Majeed AA, Margiana R, Alkadir OKA, Almalki SG, Ghildiyal P, Samusenkov V, Jabber NK, Mustafa YF, Elawady A. Therapeutic gene delivery by mesenchymal stem cell for brain ischemia damage: Focus on molecular mechanisms in ischemic stroke. Cell Biochem Funct 2024; 42:e3957. [PMID: 38468129 DOI: 10.1002/cbf.3957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024]
Abstract
Cerebral ischemic damage is prevalent and the second highest cause of death globally across patient populations; it is as a substantial reason of morbidity and mortality. Mesenchymal stromal cells (MSCs) have garnered significant interest as a potential treatment for cerebral ischemic damage, as shown in ischemic stroke, because of their potent intrinsic features, which include self-regeneration, immunomodulation, and multi-potency. Additionally, MSCs are easily obtained, isolated, and cultured. Despite this, there are a number of obstacles that hinder the effectiveness of MSC-based treatment, such as adverse microenvironmental conditions both in vivo and in vitro. To overcome these obstacles, the naïve MSC has undergone a number of modification processes to enhance its innate therapeutic qualities. Genetic modification and preconditioning modification (with medications, growth factors, and other substances) are the two main categories into which these modification techniques can be separated. This field has advanced significantly and is still attracting attention and innovation. We examine these cutting-edge methods for preserving and even improving the natural biological functions and therapeutic potential of MSCs in relation to adhesion, migration, homing to the target site, survival, and delayed premature senescence. We address the use of genetically altered MSC in stroke-induced damage. Future strategies for improving the therapeutic result and addressing the difficulties associated with MSC modification are also discussed.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Ali A Majeed
- Department of Pathological Analyses, Faculty of Science, University of Kufa, Najaf, Iraq
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ola Kamal A Alkadir
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Vadim Samusenkov
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
14
|
Lu W, Wen J. Neuroinflammation and Post-Stroke Depression: Focus on the Microglia and Astrocytes. Aging Dis 2024:AD.2024.0214-1. [PMID: 38421829 DOI: 10.14336/ad.2024.0214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Post-stroke depression (PSD), a frequent and disabling complication of stroke, has a strong impact on almost thirty percent of stroke survivors. The pathogenesis of PSD is not completely clear so far. Neuroinflammation following stroke is one of underlying mechanisms that involves in the pathophysiology of PSD and plays an important function in the development of depression and is regarded as a sign of depression. During the neuroinflammation after ischemic stroke onset, both astrocytes and microglia undergo a series of morphological and functional changes and play pro-inflammatory or anti-inflammatory effect in the pathological process of stroke. Importantly, astrocytes and microglia exert dual roles in the pathological process of PSD due to the phenotypic transformation. We summarize the latest evidence of neuroinflammation involving in PSD in this review, focus on the phenotypic transformation of microglia and astrocytes following ischemic stroke and reveal the dual roles of both microglia and astrocytes in the PSD via modulating the neuroinflammation.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Cadenhead KS, Mirzakhanian H, Achim C, Reyes-Madrigal F, de la Fuente-Sandoval C. Peripheral and central biomarkers associated with inflammation in antipsychotic naïve first episode psychosis: Pilot studies. Schizophr Res 2024; 264:39-48. [PMID: 38091871 DOI: 10.1016/j.schres.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND Elevated serum pro-inflammatory molecules have been reported in early psychosis. What is not known is whether peripheral inflammatory biomarkers are associated with CNS biomarkers. In the brain, release of pro-inflammatory molecules by microglial hyperactivity may lead to neuronal apoptosis seen in neurodegenerative disorders and account for loss of brain tissue observed in psychotic disorders. Neurochemical changes, including elevated glutamate levels, are also associated with neuroinflammation, present in early psychosis and change with antipsychotic treatment. METHODS Antipsychotic naïve patients with first episode psychosis (FEP) were studied as part of a collaborative project of neuroinflammation. In Study 1 we explored associations between plasma inflammatory molecules and neurometabolites in the dorsal caudate using magnetic resonance spectroscopy (1H-MRS) in N = 13 FEP participants. Study 2 examined the relationship between inflammatory molecules in the Plasma and CSF in N = 20 FEP participants. RESULTS In Study 1, the proinflammatory chemokine MDC/CCL22 and IL10 were significantly positively correlated with Glutamate and Glx (glutamate + glutamine) levels in the dorsal caudate. In Study 2, plasma inflammatory molecules (MIP1β/CCL4, MCP1/CCL2, Eotaxin-1/CCL11 and TNFα) were significantly correlated with CSF MIP1β/CCL4, IL10, MCP1/CCL2 and Fractalkine/CX3CL1 and symptoms ratings. DISCUSSION Plasma inflammatory biomarkers are elevated in early psychosis, associated with neurochemical markers as well as CSF inflammatory molecules found in neurodegenerative disorders. Future studies are needed that combine both peripheral and central biomarkers in both FEP and HC to better understand a potential neuroinflammatory subtype of psychosis likely to respond to targeted interventions.
Collapse
Affiliation(s)
- Kristin S Cadenhead
- University of California San Diego (UCSD), 9500 Gilman Dr, La Jolla, CA 92093-0810, United States of America.
| | - Heline Mirzakhanian
- University of California San Diego (UCSD), 9500 Gilman Dr, La Jolla, CA 92093-0810, United States of America.
| | - Cristian Achim
- University of California San Diego (UCSD), 9500 Gilman Dr, La Jolla, CA 92093-0810, United States of America.
| | - Francisco Reyes-Madrigal
- Instituto Nacional de Neurología y Neurocirugía (INNN), Insurgentes Sur 3877, Tlalpan, 14269 Mexico City, Mexico.
| | - Camilo de la Fuente-Sandoval
- Instituto Nacional de Neurología y Neurocirugía (INNN), Insurgentes Sur 3877, Tlalpan, 14269 Mexico City, Mexico.
| |
Collapse
|
16
|
Mavroudis I, Ciobica A, Balmus IM, Burlui V, Romila L, Iordache A. A Systematic Review and Meta-Analysis of the Inflammatory Biomarkers in Mild Traumatic Brain Injury. Biomedicines 2024; 12:293. [PMID: 38397895 PMCID: PMC10887204 DOI: 10.3390/biomedicines12020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Mild traumatic brain injury (mTBI) accounts for most TBI cases, the leading cause of morbidity and mortality worldwide. Despite its high incidence, mTBI pathophysiology remains largely unknown. Recent studies have shown that the inflammatory response is activated early after mTBI and can persist for several weeks or months. However, limited evidence on the utility of inflammatory biomarkers as predictors of clinical outcomes in mTBI has been previously provided. Thus, this systematic review and meta-analysis aims to provide an overview of the current knowledge on the role of inflammation in the pathogenesis of mTBI and the potential of some inflammatory biomolecules as biomarkers of mTBI. In this regard, eight studies comprising 1184 individuals were selected. Thus, it was shown that the increase in IL-6, TNF-α, and IL-1β plasma levels could be implicated in the development of early post-concussion symptoms. On the other hand, the persistence of the increased plasmatic concentrations of IL-10 and IL-8 for as long as six months following the brain injury event could suggest chronic inflammation leading to neuroinflammation and late or persistent symptoms. In this context, our findings showed that inflammatory biomarkers could be relevant in diagnosing or predicting recovery or long-term outcomes of mTBI.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neurology, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 700506 Iasi, Romania
| | - Ioana Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iași, 700057 Iasi, Romania
| | - Vasile Burlui
- Preclinical Department, Apollonia University, Păcurari Street 11, 700511 Iasi, Romania
| | - Laura Romila
- Preclinical Department, Apollonia University, Păcurari Street 11, 700511 Iasi, Romania
| | - Alin Iordache
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| |
Collapse
|
17
|
Gržeta Krpan N, Harej Hrkać A, Janković T, Dolenec P, Bekyarova E, Parpura V, Pilipović K. Chemically Functionalized Single-Walled Carbon Nanotubes Prevent the Reduction in Plasmalemmal Glutamate Transporter EAAT1 Expression in, and Increase the Release of Selected Cytokines from, Stretch-Injured Astrocytes in Vitro. Cells 2024; 13:225. [PMID: 38334617 PMCID: PMC10854924 DOI: 10.3390/cells13030225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
We tested the effects of water-soluble single-walled carbon nanotubes, chemically functionalized with polyethylene glycol (SWCNT-PEG), on primary mouse astrocytes exposed to a severe in vitro simulated traumatic brain injury (TBI). The application of SWCNT-PEG in the culture media of injured astrocytes did not affect cell damage levels, when compared to those obtained from injured, functionalization agent (PEG)-treated cells. Furthermore, SWCNT-PEG did not change the levels of oxidatively damaged proteins in astrocytes. However, this nanomaterial prevented the reduction in plasmalemmal glutamate transporter EAAT1 expression caused by the injury, rendering the level of EAAT1 on par with that of control, uninjured PEG-treated astrocytes; in parallel, there was no significant change in the levels of GFAP. Additionally, SWCNT-PEG increased the release of selected cytokines that are generally considered to be involved in recovery processes following injuries. As a loss of EAATs has been implicated as a culprit in the suffering of human patients from TBI, the application of SWCNT-PEG could have valuable effects at the injury site, by preventing the loss of astrocytic EAAT1 and consequently allowing for a much-needed uptake of glutamate from the extracellular space, the accumulation of which leads to unwanted excitotoxicity. Additional potential therapeutic benefits could be reaped from the fact that SWCNT-PEG stimulated the release of selected cytokines from injured astrocytes, which would promote recovery after injury and thus counteract the excess of proinflammatory cytokines present in TBI.
Collapse
Affiliation(s)
- Nika Gržeta Krpan
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Anja Harej Hrkać
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Petra Dolenec
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Elena Bekyarova
- Department of Chemistry, University of California, Riverside, CA 92521, USA;
| | - Vladimir Parpura
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| |
Collapse
|
18
|
Gu T, Pan J, Chen L, Li K, Wang L, Zou Z, Shi Q. Association of inflammatory cytokines expression in cerebrospinal fluid with the severity and prognosis of spontaneous intracerebral hemorrhage. BMC Neurol 2024; 24:7. [PMID: 38167007 PMCID: PMC10759732 DOI: 10.1186/s12883-023-03487-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE To investigate the potential diagnostic and prognostic implications of inflammatory cytokine levels in the cerebrospinal fluid (CSF) of patients with spontaneous intracerebral hemorrhage (SICH) upon their initial hospital admission. METHODS Our cohort included 100 patients diagnosed with acute SICH, presenting to the Department of Neurosurgery. Additionally, we recruited 50 individuals without central nervous system (CNS) pathology, treated concurrently at our facility, as controls. CSF samples, collected upon hospital entry, were quantitatively assessed for 10 inflammatory cytokines using the Mesoscale Discovery Platform (MSD, Rockville, MD, USA) electrochemiluminescence technology, followed by validation through enzyme-linked immunosorbent assay (ELISA). RESULTS We observed a marked elevation of IL-6, IL-8, IL-10, and TNF-α in the CSF of the SICH subgroup compared to controls. Higher Glasgow Coma Scale (GCS) scores in SICH patients corresponded with lower CSF concentrations of IL-6, IL-8, IL-10, and TNF-α, indicating an inverse relationship. Notably, CSF inflammatory cytokine levels were consistently higher in SICH patients with hydrocephalus than in those without. Increases in IL-6, IL-8, IL-10, and TNF-α in the CSF were notably more pronounced in the poor prognosis group (Glasgow Outcome Scale, GOS 1-3) compared to those with a favorable prognosis (GOS 4-5). The AUC values for these cytokines in predicting SICH prognosis were 0.750, 0.728, 0.717, and 0.743, respectively. CONCLUSIONS Initial CSF levels of IL-6, IL-8, IL-10, and TNF-α upon admission provide significant insights into the severity of neural damage and are robust indicators for prognosis in SICH patients.
Collapse
Affiliation(s)
- Tianyan Gu
- Graduate School of Xinjiang Medical University, Urumqi, Xinjiang, 830000, China
| | - Jingyu Pan
- Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Ling Chen
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, 830000, China
| | - Kai Li
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, 830000, China
| | - Li Wang
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, 830000, China
| | - Zhihao Zou
- Department of Neurosurgery, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, 830000, China.
| | - Qinghai Shi
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, 830000, China.
| |
Collapse
|
19
|
Chen KS, Noureldein MH, McGinley LM, Hayes JM, Rigan DM, Kwentus JF, Mason SN, Mendelson FE, Savelieff MG, Feldman EL. Human neural stem cells restore spatial memory in a transgenic Alzheimer's disease mouse model by an immunomodulating mechanism. Front Aging Neurosci 2023; 15:1306004. [PMID: 38155736 PMCID: PMC10753006 DOI: 10.3389/fnagi.2023.1306004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Stem cells are a promising therapeutic in Alzheimer's disease (AD) given the complex pathophysiologic pathways involved. However, the therapeutic mechanisms of stem cells remain unclear. Here, we used spatial transcriptomics to elucidate therapeutic mechanisms of human neural stem cells (hNSCs) in an animal model of AD. Methods hNSCs were transplanted into the fimbria fornix of the hippocampus using the 5XFAD mouse model. Spatial memory was assessed by Morris water maze. Amyloid plaque burden was quantified. Spatial transcriptomics was performed and differentially expressed genes (DEGs) identified both globally and within the hippocampus. Subsequent pathway enrichment and ligand-receptor network analysis was performed. Results hNSC transplantation restored learning curves of 5XFAD mice. However, there were no changes in amyloid plaque burden. Spatial transcriptomics showed 1,061 DEGs normalized in hippocampal subregions. Plaque induced genes in microglia, along with populations of stage 1 and stage 2 disease associated microglia (DAM), were normalized upon hNSC transplantation. Pathologic signaling between hippocampus and DAM was also restored. Discussion hNSCs normalized many dysregulated genes, although this was not mediated by a change in amyloid plaque levels. Rather, hNSCs appear to exert beneficial effects in part by modulating microglia-mediated neuroinflammation and signaling in AD.
Collapse
Affiliation(s)
- Kevin S. Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Mohamed H. Noureldein
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Lisa M. McGinley
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Diana M. Rigan
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Jacquelin F. Kwentus
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Shayna N. Mason
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Masha G. Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
20
|
Mayer AR, Meier TB, Ling JM, Dodd AB, Brett BL, Robertson-Benta CR, Huber DL, Van der Horn HJ, Broglio SP, McCrea MA, McAllister T. Increased brain age and relationships with blood-based biomarkers following concussion in younger populations. J Neurol 2023; 270:5835-5848. [PMID: 37594499 PMCID: PMC10632216 DOI: 10.1007/s00415-023-11931-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Brain age is increasingly being applied to the spectrum of brain injury to define neuropathological changes in conjunction with blood-based biomarkers. However, data from the acute/sub-acute stages of concussion are lacking, especially among younger cohorts. METHODS Predicted brain age differences were independently calculated in large, prospectively recruited cohorts of pediatric concussion and matched healthy controls (total N = 446), as well as collegiate athletes with sport-related concussion and matched non-contact sport controls (total N = 184). Effects of repetitive head injury (i.e., exposure) were examined in a separate cohort of contact sport athletes (N = 82), as well as by quantifying concussion history through semi-structured interviews and years of contact sport participation. RESULTS Findings of increased brain age during acute and sub-acute concussion were independently replicated across both cohorts, with stronger evidence of recovery for pediatric (4 months) relative to concussed athletes (6 months). Mixed evidence existed for effects of repetitive head injury, as brain age was increased in contact sport athletes, but was not associated with concussion history or years of contact sport exposure. There was no difference in brain age between concussed and contact sport athletes. Total tau decreased immediately (~ 1.5 days) post-concussion relative to the non-contact group, whereas pro-inflammatory markers were increased in both concussed and contact sport athletes. Anti-inflammatory markers were inversely related to brain age, whereas markers of axonal injury (neurofilament light) exhibited a trend positive association. CONCLUSION Current and previous findings collectively suggest that the chronicity of brain age differences may be mediated by age at injury (adults > children), with preliminary findings suggesting that exposure to contact sports may also increase brain age.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA.
- Neurology and Psychiatry Departments, University of New Mexico School of Medicine, Albuquerque, NM, USA.
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA.
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Josef M Ling
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cidney R Robertson-Benta
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Daniel L Huber
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Harm J Van der Horn
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI, USA
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thomas McAllister
- Department of Psychiatry, Indiana University School of Medicine, Bloomington, IN, USA
| |
Collapse
|
21
|
Eagle SR, Puccio AM, Nelson LD, McCrea M, Giacino J, Diaz-Arrastia R, Conkright W, Jain S, Sun X, Manley G, Okonkwo DO. Association of obesity with mild traumatic brain injury symptoms, inflammatory profile, quality of life and functional outcomes: a TRACK-TBI Study. J Neurol Neurosurg Psychiatry 2023; 94:1012-1017. [PMID: 37369556 DOI: 10.1136/jnnp-2023-331562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVES Obesity is associated with chronic inflammation, which may impact recovery from mild traumatic brain injury (mTBI). The objective was to assess the role of obesity in recovery of symptoms, functional outcome and inflammatory blood biomarkers after mTBI. METHODS TRACK-TBI is a prospective study of patients with acute mTBI (Glasgow Coma Scale=13-15) who were enrolled ≤24 hours of injury at an emergency department of level 1 trauma centres and followed for 12 months. A total of 770 hospitalised patients who were either obese (body mass index (BMI) >30.0) or healthy mass (BMI=18.5-24.9) were enrolled. Blood concentrations of high-sensitivity C reactive protein (hsCRP), interleukin (IL) 6, IL-10, tumour necrosis factor alpha; Rivermead Post-Concussion Symptoms Questionnaire (RPQ), Quality of Life After Brain Injury and Glasgow Outcome Score-Extended reflecting injury-related functional limitations at 6 and 12 months were collected. RESULTS After adjusting for age and gender, obese participants had higher concentrations of hsCRP 1 day after injury (mean difference (MD)=0.65; 95% CI: 0.44 to 0.87, p<0.001), at 2 weeks (MD=0.99; 95% CI: 0.74 to 1.25, p<0.001) and at 6 months (MD=1.08; 95% CI: 0.79 to 1.37, p<0.001) compared with healthy mass participants. Obese participants had higher concentrations of IL-6 at 2 weeks (MD=0.37; 95% CI: 0.11 to 0.64, p=0.006) and 6 months (MD=0.42; 95% CI: 0.12 to 0.72, p=0.006). Obese participants had higher RPQ total score at 6 months (MD=2.79; p=0.02) and 12 months (MD=2.37; p=0.049). CONCLUSIONS Obesity is associated with higher symptomatology at 6 and 12 months and higher concentrations of blood inflammatory markers throughout recovery following mTBI.
Collapse
Affiliation(s)
- Shawn R Eagle
- Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ava M Puccio
- Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lindsay D Nelson
- Neurosurgery & Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael McCrea
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Joseph Giacino
- Physical Medicine and Rehabilitation, Harvard University, Cambridge, Massachusetts, USA
| | | | | | - Sonia Jain
- Family Medicine and Public Health, University of California San Diego, La Jolla, California, USA
| | - Xiaoying Sun
- Family Medicine and Public Health, University of California San Diego, La Jolla, California, USA
| | - Geoffrey Manley
- Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - David O Okonkwo
- Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Gao Q, Gao Z, Su M, Huang Y, Zhang C, Li C, Zhan H, Liu B, Zhou X. Umbilical Cord Mesenchymal Stem Cells Overexpressing Heme Oxygenase-1 Promotes Symptoms Recovery in Cystitis Rats by Alleviating Neuroinflammation. Stem Cells Int 2023; 2023:8887091. [PMID: 38020203 PMCID: PMC10663085 DOI: 10.1155/2023/8887091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) seriously reduces the patient's quality of life, yet current therapies only provide partial relief. In the spinal dorsal horn (SDH), neuroinflammation plays a pivotal role in the development of IC. Injection of human umbilical cord mesenchymal stem cells (hUMSCs) to reduce inflammation is an effective strategy, and heme oxygenase-1 (HO-1) exhibits anti-nociceptive effect in neuroinflammatory pain. This study aimed to test the therapeutic effects of hUMSCs overexpressing HO-1 on cyclophosphamide-induced cystitis rat model. Cystitis rats were transplanted with altered cells and then assessed for 3 weeks. A series of behavioral measurements would be trial including suprapubic mechanical allodynia, depressive-like behaviors, micturition frequency, and short-term memory function. Additionally, western blot, immunofluorescence staining, and ELISA kit test for anti-inflammation effect. HUMSCs were capable of being transduced to overexpress HO-1. Injection of hUMSCs overexpressing HO-1 was more effective than hUMSCs alone in alleviating behavioral symptoms in rats. Furthermore, hUMSCs overexpressing HO-1 inhibited the activation of glial and TLR4/p65/NLRP3 pathway, decreased the levels of pro-inflammatory cytokines in the SDH region. Surprisingly, it markedly increased anti-inflammatory cytokine IL-10, reduced MDA content, and protected GSH concentrations in local environment. Our results suggest that injecting hUMSCs overexpressing HO-1 intrathecally can significantly promote functional outcomes in cystitis rats by reducing neuroinflammation, at least, partly through downregulating TLR4/p65/NLRP3 signaling pathway in the SDH region. This cell therapy affords a new strategy for IC/BPS treatment.
Collapse
Affiliation(s)
- Qiongqiong Gao
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Zhentao Gao
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Minzhi Su
- Department of Rehabilitation, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Yong Huang
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Chi Zhang
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Cuiping Li
- Department of Biotherapy Center, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Hailun Zhan
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Bolong Liu
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Xiangfu Zhou
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| |
Collapse
|
23
|
Tao W, Zhang G, Liu C, Jin L, Li X, Yang S. Low-dose LPS alleviates early brain injury after SAH by modulating microglial M1/M2 polarization via USP19/FOXO1/IL-10/IL-10R1 signaling. Redox Biol 2023; 66:102863. [PMID: 37672892 PMCID: PMC10494318 DOI: 10.1016/j.redox.2023.102863] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/03/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Low-dose lipopolysaccharide (LPS) protects against early brain injury (EBI) after subarachnoid hemorrhage (SAH). However, the mechanism underlying the neuroprotective roles of low-dose LPS remain largely undefined. METHODS A SAH mice model was established and the pathological changes of brain were evaluated by wet-dry weight method, HE and Nissl staining, and blood-brain barrier (BBB) permeability assay. Cell apoptosis and inflammation were monitored by TUNEL, flow cytometry and ELISA assays. qRT-PCR, immunofluorescence and Western blot were used to detect the expression of microglial polarization-related or oxidative stress-associated markers. Bioinformatics analysis, luciferase and ChIP assays were employed to detect the direct association between FOXO1 and IL-10 promoter. The ubiquitination of FOXO1 in the in vitro SAH model was detected by co-IP. RESULTS Low-dose LPS alleviated SAH-induced neurological dysfunction, brain edema, BBB disruption, damage in the hippocampus, neuronal apoptosis and inflammation via modulating microglial M1/M2 polarization by IL-10/IL-10R1 signaling. Mechanistic studies showed that FOXO1 acted as a transcriptional activator of IL-10. USP19 mediated the deubiquitination of FOXO1 to activate IL-10/IL-10R1 signaling, thereby regulating microglial M1/M2 polarization. Functional experiments revealed that low-dose LPS upregulated USP19 to modulate microglial M1/M2 polarization via FOXO1/IL-10/IL-10R1 signaling in SAH mice. CONCLUSION Low-dose LPS protected against EBI after SAH by modulating microglial M1/M2 polarization via USP19/FOXO1/IL-10/IL-10R1 signaling.
Collapse
Affiliation(s)
- Weihua Tao
- Department of Neurosurgery, The First People's Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, China
| | - Guibo Zhang
- Department of Neurosurgery, The First People's Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, China
| | - Chengyuan Liu
- Department of Neurosurgery, The First People's Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, China
| | - Lide Jin
- Department of Neurosurgery, The First People's Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, China
| | - Xuehua Li
- Center for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan, China.
| | - Shuaifeng Yang
- Department of Neurosurgery, The First People's Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, China.
| |
Collapse
|
24
|
Dominguez JH, Xie D, Kelly KJ. Renal, but not platelet or skin, extracellular vesicles decrease oxidative stress, enhance nascent peptide synthesis, and protect from ischemic renal injury. Am J Physiol Renal Physiol 2023; 325:F164-F176. [PMID: 37318988 PMCID: PMC10393335 DOI: 10.1152/ajprenal.00321.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023] Open
Abstract
Acute kidney injury (AKI) is deadly and expensive, and specific, effective therapy remains a large unmet need. We have demonstrated the beneficial effects of transplanted adult tubular cells and extracellular vesicles (EVs; exosomes) derived from those renal cells on experimental ischemic AKI, even when administered after renal failure is established. To further examine the mechanisms of benefit with renal EVs, we tested the hypothesis that EVs from other epithelia or platelets (a rich source of EVs) might be protective, using a well-characterized ischemia-reperfusion model. When given after renal failure was present, renal EVs, but not those from skin or platelets, markedly improved renal function and histology. The differential effects allowed us to examine the mechanisms of benefit with renal EVs. We found significant decreases in oxidative stress postischemia in the renal EV-treated group with preservation of renal superoxide dismutase and catalase as well as increases in anti-inflammatory interleukin-10. In addition, we propose a novel mechanism of benefit: renal EVs enhanced nascent peptide synthesis following hypoxia in cells and in postischemic kidneys. Although EVs have been used therapeutically, these results serve as "proof of principle" to examine the mechanisms of injury and protection.NEW & NOTEWORTHY Acute kidney injury is common and deadly, yet the only approved treatment is dialysis. Thus, a better understanding of injury mechanisms and potential therapies is needed. We found that organ-specific, but not extrarenal, extracellular vesicles improved renal function and structure postischemia when given after renal failure occurred. Oxidative stress was decreased and anti-inflammatory interleukin-10 increased with renal, but not skin or platelet, exosomes. We also propose enhanced nascent peptide synthesis as a novel protective mechanism.
Collapse
Affiliation(s)
- Jesus H. Dominguez
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, United States
| | - Danhui Xie
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - K. J. Kelly
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, United States
| |
Collapse
|
25
|
Alsbrook DL, Di Napoli M, Bhatia K, Biller J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY, Selim M, Farahabadi MH, Jafarli A, Divani AA. Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke. Curr Neurol Neurosci Rep 2023; 23:407-431. [PMID: 37395873 PMCID: PMC10544736 DOI: 10.1007/s11910-023-01282-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of neuroinflammation in ischemic and hemorrhagic stroke, including recent findings on the mechanisms and cellular players involved in the inflammatory response to brain injury. RECENT FINDINGS Neuroinflammation is a crucial process following acute ischemic stroke (AIS) and hemorrhagic stroke (HS). In AIS, neuroinflammation is initiated within minutes of the ischemia onset and continues for several days. In HS, neuroinflammation is initiated by blood byproducts in the subarachnoid space and/or brain parenchyma. In both cases, neuroinflammation is characterized by the activation of resident immune cells, such as microglia and astrocytes, and infiltration of peripheral immune cells, leading to the release of pro-inflammatory cytokines, chemokines, and reactive oxygen species. These inflammatory mediators contribute to blood-brain barrier disruption, neuronal damage, and cerebral edema, promoting neuronal apoptosis and impairing neuroplasticity, ultimately exacerbating the neurologic deficit. However, neuroinflammation can also have beneficial effects by clearing cellular debris and promoting tissue repair. The role of neuroinflammation in AIS and ICH is complex and multifaceted, and further research is necessary to develop effective therapies that target this process. Intracerebral hemorrhage (ICH) will be the HS subtype addressed in this review. Neuroinflammation is a significant contributor to brain tissue damage following AIS and HS. Understanding the mechanisms and cellular players involved in neuroinflammation is essential for developing effective therapies to reduce secondary injury and improve stroke outcomes. Recent findings have provided new insights into the pathophysiology of neuroinflammation, highlighting the potential for targeting specific cytokines, chemokines, and glial cells as therapeutic strategies.
Collapse
Affiliation(s)
- Diana L Alsbrook
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Kunal Bhatia
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - José Biller
- Department of Neurology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Sasan Andalib
- Research Unit of Neurology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Archana Hinduja
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Roysten Rodrigues
- Department of Neurology, University of Louisville, Louisville, KY, USA
| | - Miguel Rodriguez
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sara Y Sabbagh
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Alibay Jafarli
- Department of Neurology, Tufts Medical Center, Boston, MA, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
26
|
Tsitsipanis C, Miliaraki M, Paflioti E, Lazarioti S, Moustakis N, Ntotsikas K, Theofanopoulos A, Ilia S, Vakis A, Simos P, Venihaki M. Inflammation biomarkers IL‑6 and IL‑10 may improve the diagnostic and prognostic accuracy of currently authorized traumatic brain injury tools. Exp Ther Med 2023; 26:364. [PMID: 37408863 PMCID: PMC10318605 DOI: 10.3892/etm.2023.12063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 07/07/2023] Open
Abstract
Traumatic brain injury (TBI) is currently one of the leading causes of mortality and disability worldwide. At present, no reliable inflammatory or specific molecular neurobiomarker exists in any of the standard models proposed for TBI classification or prognostication. Therefore, the present study was designed to assess the value of a group of inflammatory mediators for evaluating acute TBI, in combination with clinical, laboratory and radiological indices and prognostic clinical scales. In the present single-centre, prospective observational study, 109 adult patients with TBI, 20 adult healthy controls and a pilot group of 17 paediatric patients with TBI from a Neurosurgical Department and two intensive care units of University General Hospital of Heraklion, Greece were recruited. Blood measurements using the ELISA method, of cytokines IL-6, IL-8 and IL-10, ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein, were performed. Compared with those in healthy control individuals, elevated IL-6 and IL-10 but reduced levels of IL-8 were found on day 1 in adult patients with TBI. In terms of TBI severity classifications, higher levels of IL-6 (P=0.001) and IL-10 (P=0.009) on day 1 in the adult group were found to be associated with more severe TBI according to widely used clinical and functional scales. Moreover, elevated IL-6 and IL-10 in adults were found to be associated with more serious brain imaging findings (rs<0.442; P<0.007). Subsequent multivariate logistic regression analysis in adults revealed that early-measured (day 1) IL-6 [odds ratio (OR)=0.987; P=0.025] and UCH-L1 (OR=0.993; P=0.032) are significant independent predictors of an unfavourable outcome. In conclusion, results from the present study suggest that inflammatory molecular biomarkers may prove to be valuable diagnostic and prognostic tools for TBI.
Collapse
Affiliation(s)
- Christos Tsitsipanis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Marianna Miliaraki
- Pediatric Intensive Care Unit, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Elina Paflioti
- Department of Clinical Chemistry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Sofia Lazarioti
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Nikolaos Moustakis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Konstantinos Ntotsikas
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | | | - Stavroula Ilia
- Pediatric Intensive Care Unit, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Antonis Vakis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Panagiotis Simos
- Department of Psychiatry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Maria Venihaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| |
Collapse
|
27
|
Mohan M, Mannan A, Singh TG. Therapeutic implication of Sonic Hedgehog as a potential modulator in ischemic injury. Pharmacol Rep 2023:10.1007/s43440-023-00505-0. [PMID: 37347388 DOI: 10.1007/s43440-023-00505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Sonic Hedgehog (SHh) is a homology protein that is involved in the modeling and development of embryonic tissues. As SHh plays both protective and harmful roles in ischemia, any disruption in the transduction and regulation of the SHh signaling pathway causes ischemia to worsen. The SHh signal activation occurs when SHh binds to the receptor complex of Ptc-mediated Smoothened (Smo) (Ptc-smo), which initiates the downstream signaling cascade. This article will shed light on how pharmacological modifications to the SHh signaling pathway transduction mechanism alter ischemic conditions via canonical and non-canonical pathways by activating certain downstream signaling cascades with respect to protein kinase pathways, angiogenic cytokines, inflammatory mediators, oxidative parameters, and apoptotic pathways. The canonical pathway includes direct activation of interleukins (ILs), angiogenic cytokines like hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and hypoxia-inducible factor alpha (HIF-), which modulate ischemia. The non-canonical pathway includes indirect activation of certain pathways like mTOR, PI3K/Akt, MAPK, RhoA/ROCK, Wnt/-catenin, NOTCH, Forkhead box protein (FOXF), Toll-like receptors (TLR), oxidative parameters such as GSH, SOD, and CAT, and some apoptotic parameters such as Bcl2. This review provides comprehensive insights that contribute to our knowledge of how SHh impacts the progression and outcomes of ischemic injuries.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
28
|
Nong J, Glassman PM, Reyes-Esteves S, Descamps HC, Shuvaev VV, Kiseleva RY, Papp TE, Alameh MG, Tam YK, Mui BL, Omo-Lamai S, Zamora ME, Shuvaeva T, Arguiri E, Thaiss CA, Myerson JW, Weissman D, Kasner SE, Parhiz H, Muzykantov VR, Brenner JS, Marcos-Contreras OA. Targeting lipid nanoparticles to the blood brain barrier to ameliorate acute ischemic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544645. [PMID: 37398465 PMCID: PMC10312645 DOI: 10.1101/2023.06.12.544645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
After more than 100 failed drug trials for acute ischemic stroke (AIS), one of the most commonly cited reasons for the failure has been that drugs achieve very low concentrations in the at-risk penumbra. To address this problem, here we employ nanotechnology to significantly enhance drug concentration in the penumbra's blood-brain barrier (BBB), whose increased permeability in AIS has long been hypothesized to kill neurons by exposing them to toxic plasma proteins. To devise drug-loaded nanocarriers targeted to the BBB, we conjugated them with antibodies that bind to various cell adhesion molecules on the BBB endothelium. In the transient middle cerebral artery occlusion (tMCAO) mouse model, nanocarriers targeted with VCAM antibodies achieved the highest level of brain delivery, nearly 2 orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles loaded with either a small molecule drug (dexamethasone) or mRNA (encoding IL-10) reduced cerebral infarct volume by 35% or 73%, respectively, and both significantly lowered mortality rates. In contrast, the drugs delivered without the nanocarriers had no effect on AIS outcomes. Thus, VCAM-targeted lipid nanoparticles represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS. Graphical abstract Acute ischemic stroke induces upregulation of VCAM. We specifically targeted upregulated VCAM in the injured region of the brain with drug- or mRNA-loaded targeted nanocarriers. Nanocarriers targeted with VCAM antibodies achieved the highest brain delivery, nearly orders of magnitude higher than untargeted ones. VCAM-targeted nanocarriers loaded with dexamethasone and mRNA encoding IL-10 reduced infarct volume by 35% and 73%, respectively, and improved survival rates.
Collapse
|
29
|
Niiranen TJU, Chiollaz AC, Takala RSK, Voutilainen M, Tenovuo O, Newcombe VFJ, Maanpää HR, Tallus J, Mohammadian M, Hossain I, van Gils M, Menon DK, Hutchinson PJ, Sanchez JC, Posti JP. Trajectories of interleukin 10 and heart fatty acid-binding protein levels in traumatic brain injury patients with or without extracranial injuries. Front Neurol 2023; 14:1133764. [PMID: 37082447 PMCID: PMC10111051 DOI: 10.3389/fneur.2023.1133764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
BackgroundInterleukin 10 (IL-10) and heart fatty acid-binding protein (H-FABP) have gained interest as diagnostic biomarkers of traumatic brain injury (TBI), but factors affecting their blood levels in patients with moderate-to-severe TBI are largely unknown.ObjectiveTo investigate the trajectories of IL-10 and H-FABP between TBI patients with and without extracranial injuries (ECI); to investigate if there is a correlation between the levels of IL-10 and H-FABP with the levels of inflammation/infection markers C-reactive protein (CRP) and leukocytes; and to investigate if there is a correlation between the admission level of H-FABP with admission levels of cardiac injury markers, troponin (TnT), creatine kinase (CK), and creatine kinase MB isoenzyme mass (CK-MBm).Materials and methodsThe admission levels of IL-10, H-FABP, CRP, and leukocytes were measured within 24 h post-TBI and on days 1, 2, 3, and 7 after TBI. The admission levels of TnT, CK, and CK-MBm were measured within 24 h post-TBI.ResultsThere was a significant difference in the concentration of H-FABP between TBI patients with and without ECI on day 0 (48.2 ± 20.5 and 12.4 ± 14.7 ng/ml, p = 0.02, respectively). There was no significant difference in the levels of IL-10 between these groups at any timepoints. There was a statistically significant positive correlation between IL-10 and CRP on days 2 (R = 0.43, p < 0.01) and 7 (R = 0.46, p = 0.03) after injury, and a negative correlation between H-FABP and CRP on day 0 (R = -0.45, p = 0.01). The levels of IL-10 or H-FABP did not correlate with leukocyte counts at any timepoint. The admission levels of H-FABP correlated with CK (R = 0.70, p < 0.001) and CK-MBm (R = 0.61, p < 0.001), but not with TnT.ConclusionInflammatory reactions during the early days after a TBI do not significantly confound the use of IL-10 and H-FABP as TBI biomarkers. Extracranial injuries and cardiac sources may influence the levels of H-FABP in patients with moderate-to-severe TBI.
Collapse
Affiliation(s)
- Toni J. U. Niiranen
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
- *Correspondence: Toni J. U. Niiranen,
| | - Anne-Cécile Chiollaz
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Riikka S. K. Takala
- Perioperative Services, Intensive Care Medicine, and Pain Management, Turku University Hospital and University of Turku, Turku, Finland
- Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland
| | - Miko Voutilainen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Olli Tenovuo
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
| | - Virginia F. J. Newcombe
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | | | - Jussi Tallus
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, Turku, Finland
| | | | - Iftakher Hossain
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Turku, Finland
| | - Mark van Gils
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - David K. Menon
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Peter J. Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Jean-Charles Sanchez
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jussi P. Posti
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Turku, Finland
- Jussi P. Posti,
| |
Collapse
|
30
|
Santibáñez A, Herrera-Ruiz M, González-Cortazar M, Nicasio-Torres P, Sharma A, Jiménez-Ferrer E. Dose-Effect Determination of a Neuroprotector Fraction Standardized in Coumarins of Tagetes lucida and Bioavailability. Pharmaceutics 2023; 15:967. [PMID: 36986828 PMCID: PMC10051064 DOI: 10.3390/pharmaceutics15030967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Neurodegeneration has been associated with chronic inflammation states in the brain. For this reason, attention has been directed to drugs indicated as anti-inflammatory as possible therapies for the treatment of said conditions. Tagetes lucida has been widely used as a folk remedy in illnesses associated with the central nervous system and inflammatory ailments. Among the compounds that stand out in the plant against these conditions are coumarins, such as 7-O-prenyl scopoletin, scoparone, dimethylfraxetin, herniarin, and 7-O-prenylumbelliferone. Therefore, the relationship between the therapeutic effect and the concentration was evaluated through pharmacokinetic and pharmacodynamic studies, including vascular permeability evaluation by blue Evans and pro- and anti-inflammatory cytokines quantification, under a neuroinflammation model induced by lipopolysaccharide by the oral administration of three different doses (5, 10, and 20 mg/kg) of a bioactive fraction of T. lucida. In the present study, it was found that all doses showed a neuroprotective and immunomodulatory effect, although the doses of 10 and 20 mg/kg were able to exert their effect for a longer time and to a greater extent. The protective effects of the fraction may be mainly associated with the DR, HR, and SC coumarins due to their structural profile and plasmatic and brain tissue bioavailability.
Collapse
Affiliation(s)
- Anislada Santibáñez
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1 Col Centro, Xochitepec 62790, Morelos, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Plant Innovation Lab, Av. Epigmenio González No. 500, San Pablo 76130, Queretaro, Mexico
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1 Col Centro, Xochitepec 62790, Morelos, Mexico
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1 Col Centro, Xochitepec 62790, Morelos, Mexico
| | - Pilar Nicasio-Torres
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1 Col Centro, Xochitepec 62790, Morelos, Mexico
| | - Ashutosh Sharma
- School of Engineering and Sciences, Tecnologico de Monterrey, Plant Innovation Lab, Av. Epigmenio González No. 500, San Pablo 76130, Queretaro, Mexico
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1 Col Centro, Xochitepec 62790, Morelos, Mexico
| |
Collapse
|
31
|
Baranoglu Kilinc Y, Dilek M, Kilinc E, Torun IE, Saylan A, Erdogan Duzcu S. Capsaicin attenuates excitotoxic-induced neonatal brain injury and brain mast cell-mediated neuroinflammation in newborn rats. Chem Biol Interact 2023; 376:110450. [PMID: 36925032 DOI: 10.1016/j.cbi.2023.110450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Excitotoxicity and neuroinflammation are key contributors to perinatal brain injuries. Capsaicin, an active ingredient of chili peppers, is a potent exogenous agonist for transient receptor potential vanilloid 1 receptors. Although the neuroprotective and anti-inflammatory effects of capsaicin are well-documented, its effects on excitotoxic-induced neonatal brain injury and neuroinflammation have not previously been investigated. The aim of this study was to investigate the effects of capsaicin on brain damage, brain mast cells, and inflammatory mediators in a model of ibotenate-induced excitotoxic brain injury in neonatal rats. P5 rat-pups were intraperitoneally injected with vehicle, 0.2-, 1-, and 5-mg/kg doses of capsaicin, or the NMDA (N-methyl-d-aspartate) receptor antagonist MK-801 (dizocilpine), 30 min before intracerebral injection of 10 μg ibotenate. The naive-control group received no substance administration. The rat pups were sacrificed one or five days after ibotenate injection. Levels of activin A and interleukin (IL)-1β, IL-6, and IL-10 in brain tissue were measured using the enzyme-linked immunosorbent assay method. Cortex and white matter thicknesses, white matter lesion size, and mast cells were evaluated in brain sections stained with cresyl-violet or toluidine-blue. Capsaicin improved ibotenate-induced white matter lesions and cerebral white and gray matter thicknesses in a dose-dependent manner. In addition, it suppressed the degranulation and increased number of brain mast cells induced by ibotenate. Capsaicin also reduced the excitotoxic-induced production of neuronal survival factor activin A and of the pro-inflammatory cytokines IL-1β, and IL-6 in brain tissue. However, IL-10 levels were not altered by the treatments. MK-801, as a positive control, reversed all these ibotenate-induced changes, further confirming the success of the model. Our findings provide, for the first time, evidence for the therapeutic effects of capsaicin against excitotoxic-induced neonatal brain injury and brain mast cell-mediated neuroinflammation. Capsaicin may therefore be a promising candidate in the prevention and/or reduction of neonatal brain damage.
Collapse
Affiliation(s)
| | - Mustafa Dilek
- Department of Pediatrics, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Erkan Kilinc
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey.
| | - Ibrahim Ethem Torun
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Aslihan Saylan
- Department of Histology and Embryology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Selma Erdogan Duzcu
- Department of Medical Pathology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
32
|
Tirandi A, Sgura C, Carbone F, Montecucco F, Liberale L. Inflammatory biomarkers of ischemic stroke. Intern Emerg Med 2023; 18:723-732. [PMID: 36745280 PMCID: PMC10082112 DOI: 10.1007/s11739-023-03201-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/09/2023] [Indexed: 02/07/2023]
Abstract
Ischemic stroke remains the second leading cause of death and among the major causes of morbidity worldwide. Therapeutic options are currently limited to early reperfusion strategies, while pharmacological neuroprotective strategies despite showing promising results in the experimental setting constantly failed to enter the clinical arena. Inflammation plays an important role in the pathophysiology of ischemic stroke and mediators of inflammation have been longtime investigated as possible prognostic marker and therapeutic target for stroke patients. Here, we summarized available evidence on the role of cytokines, soluble adhesion molecules and adipokines in the pathophysiology, prognosis and therapy of ischemic stroke.
Collapse
Affiliation(s)
- Amedeo Tirandi
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132, Genoa, Italy
| | - Cosimo Sgura
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132, Genoa, Italy
| | - Federico Carbone
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| |
Collapse
|
33
|
Xie M, Hao Y, Feng L, Wang T, Yao M, Li H, Ma D, Feng J. Neutrophil Heterogeneity and its Roles in the Inflammatory Network after Ischemic Stroke. Curr Neuropharmacol 2023; 21:621-650. [PMID: 35794770 PMCID: PMC10207908 DOI: 10.2174/1570159x20666220706115957] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
As the first peripheral immune cells to enter the brain after ischemic stroke, neutrophils are important participants in stroke-related neuroinflammation. Neutrophils are quickly mobilized from the periphery in response to a stroke episode and cross the blood-brain barrier to reach the ischemic brain parenchyma. This process involves the mobilization and activation of neutrophils from peripheral immune organs (including the bone marrow and spleen), their chemotaxis in the peripheral blood, and their infiltration into the brain parenchyma (including disruption of the blood-brain barrier, inflammatory effects on brain tissue, and interactions with other immune cell types). In the past, it was believed that neutrophils aggravated brain injuries through the massive release of proteases, reactive oxygen species, pro-inflammatory factors, and extracellular structures known as neutrophil extracellular traps (NETs). With the failure of early clinical trials targeting neutrophils and uncovering their underlying heterogeneity, our view of their role in ischemic stroke has become more complex and multifaceted. As neutrophils can be divided into N1 and N2 phenotypes in tumors, neutrophils have also been found to have similar phenotypes after ischemic stroke, and play different roles in the development and prognosis of ischemic stroke. N1 neutrophils are dominant during the acute phase of stroke (within three days) and are responsible for the damage to neural structures via the aforementioned mechanisms. However, the proportion of N2 neutrophils gradually increases in later phases, and this has a beneficial effect through the release of anti-inflammatory factors and other neuroprotective mediators. Moreover, the N1 and N2 phenotypes are highly plastic and can be transformed into each other under certain conditions. The pronounced differences in their function and their high degree of plasticity make these neutrophil subpopulations promising targets for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Meizhen Xie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Liangshu Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Tian Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Mengyue Yao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Hui Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| |
Collapse
|
34
|
Li W, Yang X, Ding M, Shi W, Huang Y, An Q, Qi Z, Zhao Y. Zinc accumulation aggravates cerebral ischemia/reperfusion injury by promoting inflammation. Front Cell Neurosci 2023; 17:1065873. [PMID: 36970418 PMCID: PMC10030816 DOI: 10.3389/fncel.2023.1065873] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/15/2023] [Indexed: 03/29/2023] Open
Abstract
Intracellular zinc accumulation has been shown to be associated with neuronal death after cerebral ischemia. However, the mechanism of zinc accumulation leading to neuronal death in ischemia/reperfusion (I/R) is still unclear. Intracellular zinc signals are required for the production of proinflammatory cytokines. The present study investigated whether intracellular accumulated zinc aggravates I/R injury through inflammatory response, and inflammation-mediated neuronal apoptosis. Male Sprague-Dawley rats were treated with vehicle or zinc chelator TPEN 15 mg/kg before a 90-min middle cerebral artery occlusion (MCAO). The expressions of proinflammatory cytokines TNF-α, IL-6, NF-κB p65, and NF-κB inhibitory protein IκB-α, as well as anti-inflammatory cytokine IL-10 were assessed at 6 or 24 h after reperfusion. Our results demonstrated that the expression of TNF-α, IL-6, and NF-κB p65 increased after reperfusion, while the expression of IκB-α and IL-10 decreased, suggesting that cerebral ischemia triggers inflammatory response. Furthermore, TNF-α, NF-κB p65, and IL-10 were all colocalized with the neuron-specific nuclear protein (NeuN), suggesting that the ischemia-induced inflammatory response occurs in neurons. Moreover, TNF-α was also colocalized with the zinc-specific dyes Newport Green (NG), suggesting that intracellular accumulated zinc might be associated with neuronal inflammation following cerebral I/R. Chelating zinc with TPEN reversed the expression of TNF-α, NF-κB p65, IκB-α, IL-6, and IL-10 in ischemic rats. Besides, IL-6-positive cells were colocalized with TUNEL-positive cells in the ischemic penumbra of MCAO rats at 24 h after reperfusion, indicating that zinc accumulation following I/R might induce inflammation and inflammation-associated neuronal apoptosis. Taken together, this study demonstrates that excessive zinc activates inflammation and that the brain injury caused by zinc accumulation is at least partially due to specific neuronal apoptosis induced by inflammation, which may provide an important mechanism of cerebral I/R injury.
Collapse
Affiliation(s)
- Wei Li
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Xueqi Yang
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Mao Ding
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wenjuan Shi
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Yuyou Huang
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qi An
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Zhifeng Qi
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
- *Correspondence: Zhifeng Qi Yongmei Zhao
| | - Yongmei Zhao
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
- *Correspondence: Zhifeng Qi Yongmei Zhao
| |
Collapse
|
35
|
Puchowicz MA, Parveen K, Sethuraman A, Ishrat T, Xu K, LaManna J. Pro-survival Phenotype of HIF-1α: Neuroprotection Through Inflammatory Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1438:33-36. [PMID: 37845436 DOI: 10.1007/978-3-031-42003-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a major player in the oxygen sensor system as well as a transcription factor. HIF-1 is also associated in the pathogenesis of many brain diseases including Alzheimer's disease (AD), epilepsy and stroke. HIF-1 regulates the expression of many genes such as those involved in glycolysis, erythropoiesis, angiogenesis and proliferation in hypoxic condition. Despite several studies, the mechanism through which HIF-1 confers neuroprotection remains unclear, one of them is modulating metabolic profiles and inflammatory pathways. Characterization of the neuroprotective role of HIF-1 may be through its stabilization and the regulation of target genes that aid in the early adaptation to the oxidative stressors. It is interesting to note that mounting data from recent years point to an additional crucial regulatory role for hypoxia-inducible factors (HIFs) in inflammation. HIFs in immune cells regulate the production of glycolytic energy as well as innate immunity, pro-inflammatory gene expression, and mediates activation of pro-survival pathways. The present review highlights the contribution of HIF-1 to neuroprotection where inflammation is the crucial factor in the pathogenesis contributing to neural death. The potential mechanisms that contribute to neuroprotection as a result of the downstream targets of HIF-1α are discussed. Such mechanisms include those mediated through IL-10, an anti-inflammatory molecule involved in activating pro-survival signaling mechanisms via AKT/ERK and JAK/STAT pathways.
Collapse
Affiliation(s)
- Michelle A Puchowicz
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, USA.
| | - Kehkashan Parveen
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Aarti Sethuraman
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kui Xu
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Joseph LaManna
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
36
|
Ying ZJ, Huang YY, Shao MM, Chi CH, Jiang MX, Yu-Chen YHC, Sun MX, Zhu YY, Li X. Relationships of Low Serum Levels of Interleukin-10 With Poststroke Anxiety and Cognitive Impairment in Patients With Clinical Acute Stroke. J Clin Neurol 2023; 19:242-250. [PMID: 37151141 PMCID: PMC10169919 DOI: 10.3988/jcn.2022.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND AND PURPOSE The relationships among interleukin (IL)-10 levels, anxiety, and cognitive status after stroke remain controversial. We aimed to determine the associations of serum IL-10 levels with poststroke anxiety (PSA) and poststroke cognitive impairment (PSCI). METHODS We recruited 350 patients with stroke, of whom only 151 completed a 1-month follow-up assessment. The Mini Mental State Examination (MMSE) and Hamilton Anxiety Scale (HAMA) were used to assess the cognitive status and anxiety, respectively. Serum IL-10 levels were measured within 24 hours of admission. RESULTS IL-10 levels were significantly lower in the PSA group than in the non-PSA group, and they were negatively associated with HAMA scores (r=-0.371, p<0.001). After adjusting for all potential confounders, IL-10 levels remained an independent predictor of PSA (odds ratio=0.471, 95% confidence interval=0.237-0.936, p=0.032). IL-10 levels were strongly correlated with behavior during interviews, psychic anxiety, and somatic anxiety. Patients without PSCI had higher IL-10 levels were higher in non-PSCI patients than in PSCI patients, and they were positively associated with MMSE scores in the bivariate correlation analysis (r=0.169, p=0.038), and also with memory capacity, naming ability, and copying capacity. However, IL-10 did not predict PSCI in the univariable or multivariable logistic regression. CONCLUSIONS Low IL-10 levels were associated with increased risks of PSA and PSCI at a 1-month follow-up after stroke. Serum IL-10 levels may therefore be helpful in predicting PSA.
Collapse
Affiliation(s)
- Zhao-jian Ying
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan-Yuan Huang
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meng-Meng Shao
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chu-Huai Chi
- Department of Hepatological Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming-Xia Jiang
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Hui Chenb Yu-Chen
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Miao-Xuan Sun
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan-Yan Zhu
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xianmei Li
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
37
|
Yuan M, Jin X, Qin F, Zhang X, Wang X, Yuan E, Shi Y, Xu F. The association of γδT lymphocytes with cystic leukomalacia in premature infants. Front Neurol 2022; 13:1043142. [PMID: 36530609 PMCID: PMC9755680 DOI: 10.3389/fneur.2022.1043142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 09/19/2023] Open
Abstract
Background Periventricular leukomalacia (PVL) is an essential cause of cerebral palsy in preterm infants, and cystic PVL (cPVL) is the most severe form of the disease. The pathogenesis of cPVL is complex, and immune imbalances and inflammatory responses may play an essential role in it. Objective This study aimed to investigate the correlation between peripheral blood lymphocyte subsets, especially γδT cells with the pathogenesis of cPVL in preterm infants. Methods Peripheral blood from preterm infants with GA < 32 weeks and BW < 1,500 g was used in this study and was collected at 34 weeks corrected gestational age and within 24 h after the diagnosis with cranial MRI or cranial ultrasound. The infants were divided into cPVL groups and control groups. Flow cytometry was used to detect peripheral blood γδT, CD3+, CD4+, CD8+, and the proportion of total lymphocytes. Multiplex cell assays were used to detect the concentration of extracellular serum cytokines IL-6, IL-2, IL-8, IL-17A, IL-10, IL-1RA, eotaxin (CCL11), MCP-1 (CCL2), CXCL1, G-CSF, and IFNγ. A follow-up visit was carried out when the patient was 3 years old. Results After correcting for confounding factors, the proportion of peripheral blood γδT in the cPVL group was significantly lower than that in the control group (β: 0.216; 95% CI: 0.058-0.800, P < 0.022). Peripheral blood γδT (AUC: 0.722, P=0.006) and multivariate binary regression model (AUC: 0.865, P < 0.000) have good diagnostic values for cPVL. Peripheral blood γδT has some predictive power for neurodevelopmental outcomes in preterm infants (AUC: 0.743, P = 0.002). Conclusion It seems that peripheral blood γδT cells are inversely correlated with cPVL, which is not only a risk factor for cPVL disease but also neurodevelopmental outcomes in preterm infants. However, the causality of cPVL and various lymphocytes is unclear and needs further study.
Collapse
Affiliation(s)
- Mengjie Yuan
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Xinyun Jin
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Fanyue Qin
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Enwu Yuan
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Falin Xu
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
38
|
Godoy G, Antunes MM, Fernandes IDL, Manin LP, Zappielo C, Masi LN, Perles JVCM, Visentainer JV, Curi R, Bazotte RB. Linseed Oil Attenuates Liver Inflammation, Fatty Acid Accumulation, and Lipid Distribution in Periportal and Perivenous Hepatocytes Induced by a High-Carbohydrate Diet in Mice. J Med Food 2022; 25:1133-1145. [PMID: 36450115 DOI: 10.1089/jmf.2022.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We evaluated whether linseed oil (LO) modulates the effects of a high-carbohydrate diet (HCD) on liver inflammation, fatty acid (FA) accumulation, and lipid distribution in periportal and perivenous hepatocytes. The control group (control high-carbohydrate diet [HCD-C]) received an HCD with lard and soybean oil as the lipid source. The L10 and L100 groups received the HCD with 10% and 100% of LO as the lipid source, respectively. The animals were killed by decapitation before (day 0) and after receiving the diets. Liver FA composition, inflammation, and fibrogenesis gene expression were evaluated. Also, the percentage of lipid-occupied area in periportal end perivenous hepatocytes were measured. The L100 group exhibited a higher (P < .05) liver amount of omega-3 polyunsaturated FA (n-3 PUFA) and lower (P < .05) amounts of saturated FA (SFA), monounsaturated FA (MUFA), and omega-6 polyunsaturated FA (n-6 PUFA) compared with L10 or HCD-C mice. On day 56, interleukin 10 and type IV collagen gene expression were significantly upregulated and downregulated, respectively in L100. Also, the L100 group showed lower (P < .05) FA accumulation (i.e., total FA, SFA, MUFA, and n-6 PUFA). Also, L10 and L100 presented lower (P < .05) percentage of high lipid-containing portion in periportal and perivenous hepatocytes. We concluded that LO attenuation of liver inflammation promoted by an HCD is associated with increased liver n-3 PUFA levels, so modulating FA composition, deposition, and distribution in periportal and perivenous hepatocytes.
Collapse
Affiliation(s)
- Guilherme Godoy
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná State, Brazil
| | - Marina Masetto Antunes
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná State, Brazil
| | - Ingrid de Lima Fernandes
- Postgraduate Program in Pharmaceutical Sciences, Department of Chemistry, State University of Maringá, Maringá, Paraná State, Brazil
| | - Luciana Pelissari Manin
- Postgraduate Program in Pharmaceutical Sciences, Department of Chemistry, State University of Maringá, Maringá, Paraná State, Brazil
| | - Caroline Zappielo
- Postgraduate Program in Pharmaceutical Sciences, Department of Chemistry, State University of Maringá, Maringá, Paraná State, Brazil
| | - Laureane Nunes Masi
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, São Paulo State, Brazil
| | - Juliana Vanessa Colombo Martins Perles
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná State, Brazil
| | - Jesuí Vergílio Visentainer
- Postgraduate Program in Pharmaceutical Sciences, Department of Chemistry, State University of Maringá, Maringá, Paraná State, Brazil
| | - Rui Curi
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, São Paulo State, Brazil
| | - Roberto Barbosa Bazotte
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná State, Brazil
| |
Collapse
|
39
|
The Crosstalk between the Blood–Brain Barrier Dysfunction and Neuroinflammation after General Anaesthesia. Curr Issues Mol Biol 2022; 44:5700-5717. [PMID: 36421670 PMCID: PMC9689502 DOI: 10.3390/cimb44110386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
As we know, with continuous medical progress, the treatment of many diseases can be conducted via surgery, which often relies on general anaesthesia for its satisfactory performance. With the widespread use of general anaesthetics, people are beginning to question the safety of general anaesthesia and there is a growing interest in central nervous system (CNS) complications associated with anaesthetics. Recently, abundant evidence has suggested that both blood–brain barrier (BBB) dysfunction and neuroinflammation play roles in the development of CNS complications after anaesthesia. Whether there is a crosstalk between BBB dysfunction and neuroinflammation after general anaesthesia, and whether this possible crosstalk could be a therapeutic target for CNS complications after general anaesthesia needs to be clarified by further studies.
Collapse
|
40
|
Malone K, Shearer JA, Williams JM, Moore AC, Moore T, Waeber C. Recombinant pregnancy-specific glycoprotein-1-Fc reduces functional deficit in a mouse model of permanent brain ischaemia. Brain Behav Immun Health 2022; 25:100497. [PMID: 36120102 PMCID: PMC9475273 DOI: 10.1016/j.bbih.2022.100497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background The well-characterised role of the immune system in acute ischaemic stroke has prompted the search for immunomodulatory therapies. Pregnancy-specific glycoproteins (PSGs) are a group of proteins synthesised by placental trophoblasts which show immunomodulatory properties. The aim of this study was to determine whether a proposed PSG1-based therapeutic enhanced recovery in a mouse model of brain ischaemia and to explore possible immunomodulatory effects. Methods Mice underwent permanent electrocoagulation of the left middle cerebral artery (pMCAO). They received saline (n = 20) or recombinant pregnancy-specific glycoprotein-1-alpha “fused” to the Fc domain of IgG1 (rPSG1-Fc) (100 μg) (n = 22) at 1 h post-ischaemia. At 3 and 5 days post-ischaemia, neurobehavioural recovery was assessed by the grid-walking test. At 5 days post-ischaemia, lesion size was determined by NeuN staining. Peripheral T cell populations were quantified via flow cytometry. Immunohistochemistry was used to quantify ICAM-1 expression and FoxP3+ cell infiltration in the ischaemic brain. Immunofluorescence was employed to determine microglial activation status via Iba-1 staining. Results: rPSG1-Fc significantly enhanced performance in the grid-walking test at 3 and 5 days post-ischaemia. No effect on infarct size was observed. A significant increase in circulating CD4+ FoxP3+ cells and brain-infiltrating FoxP3+ cells was noted in rPSG1-Fc-treated mice. Among CD4+ cells, rPSG1-Fc enhanced the expression of IL-10 in spleen, blood, draining lymph nodes, and non-draining lymph nodes, while downregulating IFN-γ and IL-17 in spleen and blood. A similar cytokine expression pattern was observed in CD8+ cells. rPSG1-Fc reduced activated microglia in the infarct core. Conclusion The administration of rPSG1-Fc improved functional recovery in post-ischaemic mice without impacting infarct size. Improved outcome was associated with a modulation of the cytokine-secreting phenotype of CD4+ and CD8+ T cells towards a more regulatory phenotype, as well as reduced activation of microglia. This establishes proof-of-concept of rPSG1-Fc as a potential stroke immunotherapy. rPSG1-Fc enhances functional recovery in a mouse model of permanent brain ischaemia. rPSG1-Fc increases circulating CD4+ FoxP3+ cells and brain-infiltrating FoxP3+ cells. rPSG1-Fc increases the expression of IL-10 among CD4+ cells in spleen, blood, and lymph nodes.
Collapse
|
41
|
McCrary MR, Jiang MQ, Jesson K, Gu X, Logun MT, Wu A, Gonsalves N, Karumbaiah L, Yu SP, Wei L. Glycosaminoglycan scaffolding and neural progenitor cell transplantation promotes regenerative immunomodulation in the mouse ischemic brain. Exp Neurol 2022; 357:114177. [PMID: 35868359 PMCID: PMC10066865 DOI: 10.1016/j.expneurol.2022.114177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 02/08/2023]
Abstract
Ischemic stroke is a leading cause of morbidity and mortality, with limited treatments that can facilitate brain regeneration. Neural progenitor cells (NPCs) hold promise for replacing tissue lost to stroke, and biomaterial approaches may improve their efficacy to overcome hurdles in clinical translation. The immune response and its role in stroke pathogenesis and regeneration may interplay with critical mechanisms of stem cell and biomaterial therapies. Cellular therapy can modulate the immune response to reduce toxic neuroinflammation early after ischemia. However, few studies have attempted to harness the regenerative effects of neuroinflammation to augment recovery. Our previous studies demonstrated that intracerebrally transplanted NPCs encapsulated in a chondroitin sulfate-A hydrogel (CS-A + NPCs) can improve vascular regeneration after stroke. In this paper, we found that CS-A + NPCs affect the microglia/macrophage response to promote a regenerative phenotype following stroke in mice. Following transplantation, PPARγ-expressing microglia/macrophages, and MCP-1 and IL-10 protein levels are enhanced. Secreted immunomodulatory factor expression of other factors was altered compared to NPC transplantation alone. Post-stroke depression-like behavior was reduced following cellular and material transplantation. Furthermore, we showed in cultures that microglia/macrophages encapsulated in CS-A had increased expression of angiogenic and arteriogenic mediators. Neutralization with anti-IL-10 antibody negated these effects in vitro. Cumulatively, this work provides a framework for understanding the mechanisms by which immunomodulatory biomaterials can enhance the regenerative effects of cellular therapy for ischemic stroke and other brain injuries.
Collapse
Affiliation(s)
- Myles R McCrary
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Kaleena Jesson
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Meghan T Logun
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA; Division of Neuroscience, Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA, USA
| | - Anika Wu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nathan Gonsalves
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA; Division of Neuroscience, Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA; Division of Neuroscience, Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA, USA; Department of Animal and Dairy Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
42
|
Cerebrolysin Alleviating Effect on Glutamate-Mediated Neuroinflammation Via Glutamate Transporters and Oxidative Stress. J Mol Neurosci 2022; 72:2292-2302. [PMID: 36333611 DOI: 10.1007/s12031-022-02078-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Glutamate, one of the most important excitatory neurotransmitters, acts as a signal transducer in peripheral tissues and endocrine cells. Excessive glutamate secretion has been shown to cause excitotoxicity and neurodegenerative disease. Cerebrolysin is a mixture of enzymatically treated peptides derived from pig brain including neurotrophic factors, like brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and ciliary neurotrophic factor (CNTF). The present study investigated the protective effects of cerebrolysin on glutamate transporters (EAAT 1, EAAT 2) and cytokines (IL-1β and IL-10) activity in glutamate-mediated neurotoxicity. Primary cortex neuron culture was exposed to glutamate and successively treated with various cerebrolysin concentrations for 24 and 48 h. Our data showed that cerebrolysin primarily protects neurons by decreasing glutamate concentration in the synaptic cleft. In addition, Cerebrolysin can decrease oxidative stress and neuron cell damage by increasing antioxidant activity and decreasing inflammation cytokine levels.
Collapse
|
43
|
Alvarez M, Trent E, Goncalves BDS, Pereira DG, Puri R, Frazier NA, Sodhi K, Pillai SS. Cognitive dysfunction associated with COVID-19: Prognostic role of circulating biomarkers and microRNAs. Front Aging Neurosci 2022; 14:1020092. [PMID: 36268187 PMCID: PMC9577202 DOI: 10.3389/fnagi.2022.1020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is renowned as a multi-organ disease having subacute and long-term effects with a broad spectrum of clinical manifestations. The evolving scientific and clinical evidence demonstrates that the frequency of cognitive impairment after COVID-19 is high and it is crucial to explore more clinical research and implement proper diagnostic and treatment strategies. Several central nervous system complications have been reported as comorbidities of COVID-19. The changes in cognitive function associated with neurodegenerative diseases develop slowly over time and are only diagnosed at an already advanced stage of molecular pathology. Hence, understanding the common links between COVID-19 and neurodegenerative diseases will broaden our knowledge and help in strategizing prognostic and therapeutic approaches. The present review focuses on the diverse neurodegenerative changes associated with COVID-19 and will highlight the importance of major circulating biomarkers and microRNAs (miRNAs) associated with the disease progression and severity. The literature analysis showed that major proteins associated with central nervous system function, such as Glial fibrillary acidic protein, neurofilament light chain, p-tau 181, Ubiquitin C-terminal hydrolase L1, S100 calcium-binding protein B, Neuron-specific enolase and various inflammatory cytokines, were significantly altered in COVID-19 patients. Furthermore, among various miRNAs that are having pivotal roles in various neurodegenerative diseases, miR-146a, miR-155, Let-7b, miR-31, miR-16 and miR-21 have shown significant dysregulation in COVID-19 patients. Thus the review consolidates the important findings from the numerous studies to unravel the underlying mechanism of neurological sequelae in COVID-19 and the possible association of circulatory biomarkers, which may serve as prognostic predictors and therapeutic targets in future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sneha S. Pillai
- Department of Surgery, Biomedical Sciences and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
44
|
Lu J, Huang X, Deng A, Yao H, Wu G, Wang N, Gui H, Ren M, Guo S. miR-452-3p Targets HDAC3 to Inhibit p65 Deacetylation and Activate the NF-κB Signaling Pathway in Early Brain Injury after Subarachnoid Hemorrhage. Neurocrit Care 2022; 37:558-571. [PMID: 35641805 DOI: 10.1007/s12028-022-01509-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Subarachnoid hemorrhage (SAH) is a subtype of stroke, and early brain injury (EBI) is a contributor to its unfavorable outcome. microRNA (miRNA) is abundantly expressed in the brain and participates in brain injury. This study investigated the effect of miR-452-3p on EBI after SAH. METHODS The murine model of SAH was established. miR-452-3p expression was detected 48 h after the model establishment. Neurobehavioral function, blood-brain barrier permeability, brain water content, neuronal apoptosis, and inflammatory factors were evaluated. The cell model of SAH was induced by oxygen hemoglobin. Apoptosis rate, lactate dehydrogenase, and reactive oxygen species were detected. The targeting relationship between miR-452-3p and histone deacetylase 3 (HDAC3) was verified. The acetylation of p65 and the binding of HDAC3 to p65 were detected. The inhibitory protein of the nuclear factor κB pathway (IκBα) was detected. Suberoylanilide hydroxamic acid was injected into the SAH mice treated with miR-452-3p inhibitor. RESULTS SAH mice showed upregulated miR-452-3p expression; reduced the neurological score; increased blood-brain barrier permeability, brain water content, and neuronal apoptosis; elevated pro-inflammatory factors; and reduced anti-inflammatory factors. SAH increased the apoptosis rate, lactate dehydrogenase release, and reactive oxygen species levels in oxygen-hemoglobin-treated neuron cells. Inhibition of miR-452-3p reversed the above trends. miR-452-3p targeted HDAC3. SAH upregulated p65 acetylation. miR-452-3p inhibitor promoted the binding of HDAC3 to p65, decreased p65 acetylation, and upregulated IκBα. Suberoylanilide hydroxamic acid reversed the protective effect of miR-452-3p inhibitor on SAH mice and aggravated brain injury. CONCLUSIONS miR-452-3p targeted HDAC3 to inhibit the deacetylation of p65 and activate the nuclear factor κB pathway, thus aggravating EBI after SAH.
Collapse
Affiliation(s)
- Junti Lu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Xiaodong Huang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Aiping Deng
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Hong Yao
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Gao Wu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Na Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Hui Gui
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Mojie Ren
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Shiwen Guo
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
45
|
Neurovascular Unit-Derived Extracellular Vesicles: From Their Physiopathological Roles to Their Clinical Applications in Acute Brain Injuries. Biomedicines 2022; 10:biomedicines10092147. [PMID: 36140248 PMCID: PMC9495841 DOI: 10.3390/biomedicines10092147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) form a heterogeneous group of membrane-enclosed structures secreted by all cell types. EVs export encapsulated materials composed of proteins, lipids, and nucleic acids, making them a key mediator in cell–cell communication. In the context of the neurovascular unit (NVU), a tightly interacting multicellular brain complex, EVs play a role in intercellular communication and in maintaining NVU functionality. In addition, NVU-derived EVs can also impact peripheral tissues by crossing the blood–brain barrier (BBB) to reach the blood stream. As such, EVs have been shown to be involved in the physiopathology of numerous neurological diseases. The presence of NVU-released EVs in the systemic circulation offers an opportunity to discover new diagnostic and prognostic markers for those diseases. This review outlines the most recent studies reporting the role of NVU-derived EVs in physiological and pathological mechanisms of the NVU, focusing on neuroinflammation and neurodegenerative diseases. Then, the clinical application of EVs-containing molecules as biomarkers in acute brain injuries, such as stroke and traumatic brain injuries (TBI), is discussed.
Collapse
|
46
|
Salem M, Shaheen M, Borjac J. Crocin suppresses inflammation-induced apoptosis in rmTBI mouse model via modulation of Nrf2 transcriptional activity. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Wang Y, Leak RK, Cao G. Microglia-mediated neuroinflammation and neuroplasticity after stroke. Front Cell Neurosci 2022; 16:980722. [PMID: 36052339 PMCID: PMC9426757 DOI: 10.3389/fncel.2022.980722] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke remains a major cause of long-term disability and mortality worldwide. The immune system plays an important role in determining the condition of the brain following stroke. As the resident innate immune cells of the central nervous system, microglia are the primary responders in a defense network covering the entire brain parenchyma, and exert various functions depending on dynamic communications with neurons, astrocytes, and other neighboring cells under both physiological or pathological conditions. Microglia activation and polarization is crucial for brain damage and repair following ischemic stroke, and is considered a double-edged sword for neurological recovery. Microglia can exist in pro-inflammatory states and promote secondary brain damage, but they can also secrete anti-inflammatory cytokines and neurotrophic factors and facilitate recovery following stroke. In this review, we focus on the role and mechanisms of microglia-mediated neuroinflammation and neuroplasticity after ischemia and relevant potential microglia-based interventions for stroke therapy.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Guodong Cao Yuan Wang
| | - Rehana K. Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- *Correspondence: Guodong Cao Yuan Wang
| |
Collapse
|
48
|
Klepper S, Jung S, Dittmann L, Geppert CI, Hartmann A, Beier N, Trollmann R. Further Evidence of Neuroprotective Effects of Recombinant Human Erythropoietin and Growth Hormone in Hypoxic Brain Injury in Neonatal Mice. Int J Mol Sci 2022; 23:ijms23158693. [PMID: 35955834 PMCID: PMC9368903 DOI: 10.3390/ijms23158693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Experimental in vivo data have recently shown complementary neuroprotective actions of rhEPO and growth hormone (rhGH) in a neonatal murine model of hypoxic brain injury. Here, we hypothesized that rhGH and rhEPO mediate stabilization of the blood−brain barrier (BBB) and regenerative vascular effects in hypoxic injury to the developing brain. Using an established model of neonatal hypoxia, neonatal mice (P7) were treated i.p. with rhGH (4000 µg/kg) or rhEPO (5000 IU/kg) 0/12/24 h after hypoxic exposure. After a regeneration period of 48 h or 7 d, cerebral mRNA expression of Vegf-A, its receptors and co-receptors, and selected tight junction proteins were determined using qRT-PCR and ELISA. Vessel structures were assessed by Pecam-1 and occludin (Ocln) IHC. While Vegf-A expression increased significantly with rhGH treatment (p < 0.01), expression of the Vegfr and TEK receptor tyrosine kinase (Tie-2) system remained unchanged. RhEPO increased Vegf-A (p < 0.05) and Angpt-2 (p < 0.05) expression. While hypoxia reduced the mean vessel area in the parietal cortex compared to controls (p < 0.05), rhGH and rhEPO prevented this reduction after 48 h of regeneration. Hypoxia significantly reduced the Ocln+ fraction of cortical vascular endothelial cells. Ocln signal intensity increased in the cortex in response to rhGH (p < 0.05) and in the cortex and hippocampus in response to rhEPO (p < 0.05). Our data indicate that rhGH and rhEPO have protective effects on hypoxia-induced BBB disruption and regenerative vascular effects during the post-hypoxic period in the developing brain.
Collapse
Affiliation(s)
- Simon Klepper
- Division of Pediatric Neurology, Department of Pediatrics, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestr. 15, 91054 Erlangen, Germany
| | - Susan Jung
- Division of Pediatric Neurology, Department of Pediatrics, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestr. 15, 91054 Erlangen, Germany
| | - Lara Dittmann
- Division of Pediatric Neurology, Department of Pediatrics, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestr. 15, 91054 Erlangen, Germany
| | - Carol I. Geppert
- Institute of Pathology, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstr. 8, 91054 Erlangen, Germany
| | - Arnd Hartmann
- Institute of Pathology, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstr. 8, 91054 Erlangen, Germany
| | - Nicole Beier
- Division of Pediatric Neurology, Department of Pediatrics, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestr. 15, 91054 Erlangen, Germany
| | - Regina Trollmann
- Division of Pediatric Neurology, Department of Pediatrics, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestr. 15, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8533753; Fax: +49-9131-8533389
| |
Collapse
|
49
|
Doğanyiğit Z, Erbakan K, Akyuz E, Polat AK, Arulsamy A, Shaikh MF. The Role of Neuroinflammatory Mediators in the Pathogenesis of Traumatic Brain Injury: A Narrative Review. ACS Chem Neurosci 2022; 13:1835-1848. [PMID: 35732021 DOI: 10.1021/acschemneuro.2c00196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Traumatic brain injury (TBI) is a debilitating acquired neurological disorder that afflicts nearly 74 million people worldwide annually. TBI has been classified as more than just a single insult because of its associated risk toward various long-term neurological and neurodegenerative disorders. This risk may be triggered by a series of postinjury secondary molecular and cellular pathology, which may be dependent on the severity of the TBI. Among the secondary injury mechanisms, neuroinflammation may be the most crucial as it may exacerbate brain damage and lead to fatal consequences when prolonged. This Review aimed to elucidate the influence of neuroinflammatory mediators on the TBI functional and pathological outcomes, particularly focusing on inflammatory cytokines which were associated with neuronal dysfunctions in the acute and chronic stages of TBI. These cytokines include interleukins (IL) such as IL-1(beta)β, IL-4, IL-6, IL8, IL-10, IL-18, IL-33 and tumor necrosis factor alpha (TNF-α), which have been extensively studied. Apart from these, IL-2, interferon gamma (IFN-γ), and transforming growth factor-beta (TGF-β) may also play a significant role in the pathogenesis of TBI. These neuroinflammatory mediators may trigger a series of pathological events such as cell death, microglial suppression, and increased catecholaminergic activity. Interestingly, in the acute phase of TBI, most of these mediators may also play a neuroprotective role by displaying anti-inflammatory properties, which may convert to a pro-inflammatory action in the chronic stages post TBI. Early identification and treatment of these mediators may help the development of more effective treatment options for TBI.
Collapse
Affiliation(s)
- Züleyha Doğanyiğit
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey
| | - Kaan Erbakan
- Ordu University, Faculty of Medicine, Ordu 52200, Turkey
| | - Enes Akyuz
- University of Health Sciences, Hamidiye International Faculty of Medicine, Department of Biophysics, Istanbul 34668, Turkey
| | | | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| |
Collapse
|
50
|
Zhang Y, Wang Y, Wu W, Liu P, Sun S, Hong M, Yuan Y, Xia Q, Chen Z. Elevation of neutrophil carcinoembryonic antigen-related cell adhesion molecule 1 associated with multiple inflammatory mediators was related to different clinical stages in ischemic stroke patients. J Clin Lab Anal 2022; 36:e24526. [PMID: 35657334 PMCID: PMC9279952 DOI: 10.1002/jcla.24526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND We aimed to analyze the level of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in neutrophils of ischemic stroke (IS) patients at different stages, together with its roles in neutrophils. PATIENTS AND METHODS Sixty-seven patients were classified into acute phase group (n = 19), subacute phase group (n = 28), and stable phase group (n = 20), and 20 healthy individuals who had received physical examination at the same time period as healthy control. We then analyzed the expression level of CEACAM1 and cell viability in CEACAM1 positive and CEACAM1 negative neutrophils by flow cytometry and the content of plasma CEACAM1, neutrophil gelatinase-associated lipocalin (NGAL), matrix metalloproteinases-9 (MMP-9) was measured using enzyme-linked immunosorbent assay (ELISA), while that of interleukin-10 (IL-10) and tumor necrosis factor (TNF) was determined using a Human Enhanced Sensitivity Flex set. RESULTS Compared with healthy control, the percentage of CEACAM1 positive neutrophils in IS patients showed a significant increase, and a significant increase was also noticed in the content of plasma CEACAM1 at the subacute stage. Reduction in cell viability was observed in CEACAM1 positive neutrophils compared with CEACAM1 negative counterparts. There was a positive correlation between CEACAM1 expression rate in neutrophils and plasma CEACAM1 and IL-10 content in the subacute group. Compared with acute group and healthy control group, there was an instinct increase in the level of plasma MMP-9 and NGAL in subacute group. CONCLUSIONS Our data showed that there was a rapid increase of CEACAM1 in neutrophils at the acute stage of IS. We speculated that CEACAM1 may serve as an inhibitory regulator involving in the progression of IS.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Laboratory MedicineThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang ProvinceHangzhouChina
| | - Yijie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Ping Liu
- Department of NeurologyThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Shanshan Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Meng Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yuan Yuan
- Department of NeurologyThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Qi Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|