1
|
Lee JC, Chen CM, Sun CK, Tsai IT, Cheng YS, Chiu HJ, Wang MY, Tang YH, Hung KC. The therapeutic effects of probiotics on core and associated behavioral symptoms of autism spectrum disorders: a systematic review and meta-analysis. Child Adolesc Psychiatry Ment Health 2024; 18:161. [PMID: 39702309 DOI: 10.1186/s13034-024-00848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND We aimed at investigating the efficacies of probiotics in alleviating the core and associated symptoms of autism spectrum disorder (ASD). METHODS Randomized placebo-controlled trials were identified from major electronic databases from inception to Nov 2023. The outcomes of interests including improvements in the total and associated symptoms of ASD were quantitatively expressed as effect size (ES) based on standardized mean difference (SMD) with 95% confidence interval (CI). RESULTS Ten studies with 522 participants (mean age = 8.11) were included in this meta-analysis. The primary results revealed significant improvement in total symptoms in the probiotics group compared with the controls (SMD = - 0.19, p = 0.03, ten studies, n = 522) but not the core symptoms (i.e., repetitive restricted behaviors, As affiliations 3 and 5 are same, we have deleted the duplicate affiliations and renumbered accordingly. Please check and confirm.problems with social behaviors/communication). Subgroup analyses demonstrated improvement in total symptoms in probiotics users relative to their controls only in studies using multiple-strain probiotics (SMD = - 0.26, p = 0.03, five studies, n = 288) but not studies using single-strain regimens. Secondary results showed improvement in adaptation (SMD = 0.37, p = 0.03, three studies, n = 139) and an improvement trend in anxiety symptoms in the probiotics group compared with controls (SMD = - 0.29, 95% CI - 0.60 to 0.02, p = 0.07, three studies, n = 163) but failed to demonstrate greater improvement in the former regarding symptoms of irritability/aggression, hyperactivity/impulsivity, inattention, and parental stress. CONCLUSIONS Our study supported probiotics use against the overall behavioral symptoms of ASD, mainly in individuals receiving multiple-strain probiotics as supplements. However, our results showed that probiotics use was only associated with improvement in adaptation and perhaps anxiety, but not core symptoms, highlighting the impact of adaptation on quality of life rather than just the core symptoms. Nevertheless, the limited number of included trials warrants further large-scale clinical investigations.
Collapse
Affiliation(s)
- Jen-Chin Lee
- Department of General Psychiatry, Taoyuan Psychiatric Center, Ministry of Health and Welfare, Taoyuan City, Taiwan
| | - Chia-Min Chen
- Department of Natural Biotechnology, Nanhua University, Chiayi, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - I-Ting Tsai
- Department of Emergency Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Yu-Shian Cheng
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home, Kaohsiung City, Taiwan
| | - Hsien-Jane Chiu
- Department of General Psychiatry, Taoyuan Psychiatric Center, Ministry of Health and Welfare, Taoyuan City, Taiwan
- Institute of Hospital and Health Care Administration, National Yang-Ming Chiao Tung University, Taipei City, Taiwan
| | - Ming Yu Wang
- Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Hsinchu, Taiwan
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Yen-Hsiang Tang
- Department of Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, No.901, ChungHwa Road, YungKung Dist, Tainan, 71004, Taiwan.
| |
Collapse
|
2
|
Rykalo N, Riehl L, Kress M. The gut microbiome and the brain. Curr Opin Support Palliat Care 2024; 18:282-291. [PMID: 39250732 DOI: 10.1097/spc.0000000000000717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW The importance of the gut microbiome for human health and well-being is generally accepted, and elucidating the signaling pathways between the gut microbiome and the host offers novel mechanistic insight into the (patho)physiology and multifaceted aspects of healthy aging and human brain functions. RECENT FINDINGS The gut microbiome is tightly linked with the nervous system, and gut microbiota are increasingly emerging as important regulators of emotional and cognitive performance. They send and receive signals for the bidirectional communication between gut and brain via immunological, neuroanatomical, and humoral pathways. The composition of the gut microbiota and the spectrum of metabolites and neurotransmitters that they release changes with increasing age, nutrition, hypoxia, and other pathological conditions. Changes in gut microbiota (dysbiosis) are associated with critical illnesses such as cancer, cardiovascular, and chronic kidney disease but also neurological, mental, and pain disorders, as well as chemotherapies and antibiotics affecting brain development and function. SUMMARY Dysbiosis and a concomitant imbalance of mediators are increasingly emerging both as causes and consequences of diseases affecting the brain. Understanding the microbiota's role in the pathogenesis of these disorders will have major clinical implications and offer new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Nadiia Rykalo
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University Innsbruck, Austria
| | | | | |
Collapse
|
3
|
Kim HJ, Jeong JW, Kim JY, Shim JJ, Lee JH. Lactobacillus helveticus HY7801 Improves Premenstrual Syndrome Symptoms by Regulating Sex Hormones and Inflammatory Cytokines in a Mouse Model of Metoclopramide-Induced Hyperprolactinemia. Nutrients 2024; 16:3889. [PMID: 39599674 PMCID: PMC11597175 DOI: 10.3390/nu16223889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Premenstrual syndrome (PMS), a clinical condition that manifests in the form of various physical and psychological symptoms, occurs periodically during the luteal phase of the menstrual cycle and reduces quality of life. METHODS Here, we conducted in vitro and in vivo experiments to investigate the effects of Lactobacillus helveticus HY7801 (HY7801) on PMS symptoms. RESULTS Data from the in vitro experiments showed that HY7801 inhibits prolactin secretion by estradiol-induced GH3 cells, as well as the secretion of pro-inflammatory cytokines by LPS-induced Raw 264.7 cells. Additionally, the oral administration of HY7801 (109 colony-forming units/kg/day) to mice with metoclopramide-induced hyperprolactinemia reduced uterine tissue mass and endometrial thickness, both of which were increased excessively in the presence of prolactin. HY7801 also regulated the serum levels of follicle-stimulating hormone and prostaglandin E1/E2, as well as recovering the progesterone/estradiol ratio. HY7801 also downregulated the serum levels of prolactin and pro-inflammatory cytokines such as interleukin (Il)-6, tumor necrosis factor-alpha (Tnf), and IL-1β. Finally, HY7801 reduced the expression of genes encoding inflammatory cytokines (i.e., Tnf and Il-6), cyclooxygenase-2 (Cox-2), and inducible nitric oxide synthase (iNOS) in mice with hyperprolactinemia. CONCLUSION In summary, HY7801 may be a functional bacterium that alleviates PMS symptoms by modulating hormones and inflammatory markers.
Collapse
Affiliation(s)
| | | | - Joo-Yun Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.-J.K.); (J.-W.J.); (J.-J.S.); (J.-H.L.)
| | | | | |
Collapse
|
4
|
Chen CM, Liang SC, Sun CK, Cheng YS, Tang YH, Liu C, Hung KC. Therapeutic effects of probiotics on symptoms of depression in children and adolescents: a systematic review and meta-analysis. Ital J Pediatr 2024; 50:239. [PMID: 39511589 PMCID: PMC11545225 DOI: 10.1186/s13052-024-01807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024] Open
Abstract
This meta-analysis aimed at investigating the therapeutic effects of probiotics against the symptoms of depression in children and adolescents as well as to identify the potential confounders. Following PRISMA guidelines, major databases were searched for randomized controlled trials focusing on effects of probiotics against the symptoms of depression in children and adolescents to analyze the effect size (ES) for primary outcomes (i.e., improvement in depressive symptoms) expressed as standardized mean difference (SMD) and odds ratios (ORs) for continuous and categorical variables, respectively, with 95% confidence interval (CI). Meta-analysis of five studies (692 participants, mean age = 7.33 years, treatment duration 8-104 weeks) demonstrated no significant improvement in depressive symptoms in subjects receiving probiotics (SMD = 0.04, 95% CI: -0.33 to 0.41, p = 0.84, five studies, 692 participants). Subgroup analysis also showed no significant improvement associated with probiotic use relative to controls in the subgroup of studies focusing on individuals diagnosed with neurodevelopmental disorders (SMD = -0.11, 95% CI: -0.73 to 0.51, p = 0.72, three studies, 452 participants) and that recruiting the general population (SMD = 0.24, 95% CI: -0.43 to 0.91, p = 0.48, two studies, 240 participants). However, high levels of heterogeneity were found in both our primary results (I2 = 77%, p = 0.001) and subgroup analyses for those with neurodevelopmental disorders (I2 = 84%, p = 0.002) and the general population (I2 = 79%, p = 0.03). The results did not support the use of probiotics for relieving depressive symptoms compared with controls in children and adolescents diagnosed with neurodevelopmental disorders or in the general population. Nevertheless, given the high level of heterogeneity across the included trials and a lack of studies focusing on those with diagnoses of anxiety or depression in the current meta-analysis, further large-scale clinical investigations are required to elucidate the therapeutic potential of probiotics against depressive symptoms in these populations, especially in those diagnosed with neurodevelopmental disorders or depression.
Collapse
Affiliation(s)
- Chia-Min Chen
- Department of Natural Biotechnology, Nanhua University, Chiayi, Taiwan
| | - Shun-Chin Liang
- Department of Psychiatry, Jianan Psychiatric Center, Ministry of Health and Welfare, Tainan, Taiwan
- Department of Center for General Education, University of Kun Shan, Tainan, Taiwan
- Department of Optometry, University of Chung Hwa of Medical Technology, Tainan, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Yu-Shian Cheng
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home, Kaohsiung City, Taiwan
| | - Yen-Hsiang Tang
- Department of Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Cheng Liu
- Department of Physical Education, Huazhong University of Science and Technology, Wuhan, China
| | - Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, Chi Mei Medical Center, No.901, ChungHwa Road, YungKung Dist, Tainan, 71004, Taiwan.
| |
Collapse
|
5
|
Tirani SA, Khorvash F, Saneei P, Moradmand Z, Askari G. Effects of probiotic and vitamin D co-supplementation on clinical symptoms, mental health, and inflammation in adult patients with migraine headache: a randomized, triple-blinded, placebo-controlled trial. BMC Med 2024; 22:457. [PMID: 39394141 PMCID: PMC11470646 DOI: 10.1186/s12916-024-03684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Migraine headache is a major public health problem. Routine medications for migraine treatment are not useful in treating all patients and may have some side effects. The present study aimed to investigate the effect of vitamin D and probiotic co-supplementation on clinical characteristics of migraine, daily functioning, mental health outcomes, and serum levels of high-sensitivity C-reactive protein (hs-CRP). METHODS In this randomized, triple-blinded, placebo-controlled trial, patients aged 18 to 55 years diagnosed with migraine based on the International Classification of Headache Disorders-3 (ICHD-3) were randomized to either vitamin D (50,000 IU every 2 weeks) plus probiotic (4.5 × 1011 CFU per day) or placebo for 12 weeks. The Headache Impact Test (HIT-6) and Depression, Anxiety, and Stress Scale (DASS) questionnaires were administered to patients at baseline and after 12 weeks. In addition, the frequency, duration, and severity of migraine headaches per month were assessed using a self-administered 30-day headache diary at baseline and the end of the intervention. Anthropometric indices, blood pressure, and serum levels of 25-hydroxy vitamin D and hs-CRP were also examined at first and the end of the study. RESULTS Seventy-two migraine patients with a mean age of 37.46 ± 8.32 years were included in this trial. Probiotic and vitamin D co-supplementation compared to placebo resulted in a significant increase in serum levels of vitamin D (+ 12.86 ± 1.64 vs. + 1.12 ± 0.80 ng/mL, P < 0.001). The between-group analysis in the adjusted model showed a significantly greater reduction in migraine headache frequency (- 3.17 ± 0.84 vs. - 1.25 ± 0.34; P = 0.031) and severity (- 1.55 ± 0.35 vs. + 0.67 ± 0.29; P = 0.017) in the probiotic and vitamin D group than the placebo group. No significant difference was found between the two arms of the intervention regarding the change in headache duration, hs-CRP, scores of DASS, and HIT-6 questionnaires (P > 0.05). CONCLUSIONS This trial showed that probiotic and vitamin D co-supplementation for 12 weeks has beneficial effects on migraine headache characteristics. Further research is needed to confirm this finding.
Collapse
Affiliation(s)
- Shahnaz Amani Tirani
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, PO Box 81745-151, Isfahan, Iran
- Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Isfahan Neurosciences Research Center, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvane Saneei
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, PO Box 81745-151, Isfahan, Iran
| | - Zahra Moradmand
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, PO Box 81745-151, Isfahan, Iran
- Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, PO Box 81745-151, Isfahan, Iran.
| |
Collapse
|
6
|
Verma A, Inslicht SS, Bhargava A. Gut-Brain Axis: Role of Microbiome, Metabolomics, Hormones, and Stress in Mental Health Disorders. Cells 2024; 13:1436. [PMID: 39273008 PMCID: PMC11394554 DOI: 10.3390/cells13171436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The influence of gut microbiome, metabolites, omics, hormones, and stress on general and mental health is increasingly being recognized. Ancient cultures recognized the importance of diet and gut health on the overall health of an individual. Western science and modern scientific methods are beginning to unravel the foundations and mechanisms behind some of the ancient beliefs and customs. The gut microbiome, an organ itself, is now thought to influence almost all other organs, ranging from the brain to the reproductive systems. Gut microbiome, metabolites, hormones, and biological sex also influence a myriad of health conditions that range from mental health disorders, obesity, gastrointestinal disorders, and cardiovascular diseases to reproductive health. Here, we review the history and current understanding of the gut-brain axis bidirectional talk in various mental health disorders with special emphasis on anxiety and depressive disorders, whose prevalence has increased by over 50% in the past three decades with COVID-19 pandemic being the biggest risk factor in the last few years. The vagal nerve is an important contributor to this bidirectional talk, but other pathways also contribute, and most remain understudied. Probiotics containing Lactobacillus and Bifidobacterium species seem to have the most impact on improvement in mental health symptoms, but the challenge appears to be maintaining sustained levels, especially since neither Lactobacillus nor Bifidobacterium can permanently colonize the gut. Ancient endogenous retroviral DNA in the human genome is also linked to several psychiatric disorders, including depression. These discoveries reveal the complex and intricately intertwined nature of gut health with mental health disorders.
Collapse
Affiliation(s)
- Ankita Verma
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Sabra S Inslicht
- San Francisco VA Health Care System, San Francisco, CA 94121, USA
- Department of Psychiatry and Behavioral Sciences, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Aditi Bhargava
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
7
|
Frost R, Mathew S, Thomas V, Uddin S, Salame A, Vial C, Cohen T, Bhamra SK, Alvarez JCB, Bhanu C, Heinrich M, Walters K. A scoping review of over-the-counter products for depression, anxiety and insomnia in older people. BMC Complement Med Ther 2024; 24:275. [PMID: 39033116 PMCID: PMC11264918 DOI: 10.1186/s12906-024-04585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Depression, anxiety, and insomnia are prevalent in older people and are associated with increased risk of mortality, dependency, falls and reduced quality of life. Prior to or whilst seeking treatment, older people often manage these symptoms or conditions using products purchased over the counter (OTC), such as medication or herbal products. This review aims to map the evidence available for OTC medications, herbal medicines and dietary supplements for depression, anxiety and insomnia in older adults. METHODOLOGY We carried out a scoping review, including searches of five databases to identify relevant randomised controlled trials (inception-Dec 2022). We took an inclusive approach to products to represent the wide range that may be available online. Trials were summarised according to condition and product. RESULTS We included 47 trials and 10 ongoing trial protocols. Most targeted insomnia (n = 25), followed by depression (n = 20), and mixed conditions (n = 2). None evaluated products targeted at anxiety alone. Where reported, most products appeared to be safe for use, but studies rarely included people with multiple comorbidities or taking concomitant medication. Some types of melatonin for insomnia (n = 19) and omega-3 fatty acids for depression (n = 7) had more substantive evidence compared to the other products. CONCLUSION There is a substantial gap in evidence for OTC products for anxiety in older people. This should be addressed in future trials. Research should also focus on products that are widely used, and these need to be tested in older populations that are similar to those who would use them in practice.
Collapse
Affiliation(s)
- Rachael Frost
- Department of Primary Care and Population Health, University College London, London, UK.
- School of Public and Allied Health, Faculty of Health, Liverpool John Moores University, 312 Tithebarn Building, Tithebarn Street, Liverpool, L2 2ER, UK.
| | - Silvy Mathew
- Department of Primary Care and Population Health, University College London, London, UK
| | - Verity Thomas
- Department of Primary Care and Population Health, University College London, London, UK
| | - Sayem Uddin
- UCL Medical School, University College London, London, UK
| | - Adriana Salame
- Division of Medicine, University College London, London, UK
| | | | | | | | | | - Cini Bhanu
- Department of Primary Care and Population Health, University College London, London, UK
| | - Michael Heinrich
- School of Pharmacy, University College London, London, UK
- China Medical University, Taichung, Taiwan
| | - Kate Walters
- Department of Primary Care and Population Health, University College London, London, UK
| |
Collapse
|
8
|
Li X, Cheng X, Shi Y, Jian C, Zhu W, Bao H, Jiang M, Peng Z, Hu Y, Chen J, Shu X. Mixed probiotics reduce the severity of stress-induced depressive-like behaviors. J Affect Disord 2024; 355:450-458. [PMID: 38537751 DOI: 10.1016/j.jad.2024.03.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024]
Abstract
In recent years, the gut microbiome has gained significant attention in the spheres of research and public health. As a result, studies have increasingly explored the potential of probiotic dietary supplements as treatment interventions for conditions such as anxiety and depression. The present study examined the effect of mixed probiotics (Lacticaseibacillus rhamnosus and Enterococcus faecium) on inflammation, microbiome composition, and depressive-like behaviors in a macaque monkey model. The mixed probiotics effectively reduced the severity of depressive-like behaviors in macaque monkeys. Further, treatment with mixed probiotics gradually increased the abundance of beneficial bacteria in the gut, improving the balance of the gut microbiota. Additionally, macaques treated with the mixed probiotics showed decreased serum levels of inflammatory factors (P < 0.05), an increased rate of L-tryptophan metabolism (P < 0.05), and the restoration of 5-HT and 5-HTP levels (P < 0.05). Correlation analysis confirmed that Lacticaseibacillus and other beneficial bacteria exhibited a negative correlation with inflammation in the body (P < 0.05), and a positive correlation with tryptophan metabolism (P < 0.05). In conclusion, the mixed probiotics effectively restored intestinal homeostasis in macaques and enhanced tryptophan metabolism, ultimately alleviating inflammation and depressive-like behaviors.
Collapse
Affiliation(s)
- Xianguo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xukai Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongping Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenxing Jian
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou 350004, Fujian, China
| | - Wenzhong Zhu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haijun Bao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mi Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zuojie Peng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuan Hu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinhuang Chen
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaogang Shu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
9
|
Panati D, Timmapuram J, Puthalapattu S, Sudhakar TP, Chaudhuri S. Therapeutic benefit of probiotic in alcohol dependence syndrome: Evidence from a tertiary care centre of India. Clin Res Hepatol Gastroenterol 2024; 48:102338. [PMID: 38604291 DOI: 10.1016/j.clinre.2024.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Probiotic adjuvant has promising effects in treating alcohol induced hepatitis, depression, and anxiety. This study aimed to assess the effectiveness of adjuvant probiotic use in improving the liver functions, anxiety, and depression among patients with alcohol dependence syndrome (ADS) in a tertiary care hospital in Andhra Pradesh, India. In this prospective observational design, ADS patients with or without probiotics were followed-up at one and three months after initiation of treatment. They were assessed for liver function test (LFT), anxiety by HAM-A and depression by HAM-D scale. A total of 120 patients complied with the treatment, 60 in each group, mean age being 35.0 years (SD 9.5 years). The baseline socio-demographic and clinical characteristics were similar in both the groups. Significant reduction was noted in the probiotic group for total bilirubin (Mean difference (MD) 0.18; 95 % CI: 0.04, 0.31), AST (MD 5.0; 95 % CI: 0.5, 9.5), and ALT (MD 8.6; 95 % CI: 1.4, 15.7) at one month after treatment. Both the groups showed a considerable change in anxiety and depression scores (HAM-A and HAM-D) till three months. At three months of treatment initiation, proportional improvement of severity grade to mild form in anxiety was more in the probiotic group (35 %) than the non-probiotic group (13.3 %) (p < 0.05). Hence, probiotic supplementation can significantly reduce the hepatic enzymes and depression severity in patients with alcohol dependence syndrome but demands additional robust evidence on the causal inference.
Collapse
Affiliation(s)
- Dinesh Panati
- Department of Psychiatry, Apollo Institute of Medical Sciences and Research, Chittoor, India.
| | - Jayapriya Timmapuram
- Department of Psychiatry, Apollo Institute of Medical Sciences and Research, Chittoor, India
| | - Swetha Puthalapattu
- Department of Anaesthesia, Apollo Institute of Medical Sciences and Research, Chittoor, India
| | | | - Sirshendu Chaudhuri
- Department of Epidemiology, Indian Institute of Public Health, Hyderabad, India
| |
Collapse
|
10
|
Averina OV, Poluektova EU, Zorkina YA, Kovtun AS, Danilenko VN. Human Gut Microbiota for Diagnosis and Treatment of Depression. Int J Mol Sci 2024; 25:5782. [PMID: 38891970 PMCID: PMC11171505 DOI: 10.3390/ijms25115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Nowadays, depressive disorder is spreading rapidly all over the world. Therefore, attention to the studies of the pathogenesis of the disease in order to find novel ways of early diagnosis and treatment is increasing among the scientific and medical communities. Special attention is drawn to a biomarker and therapeutic strategy through the microbiota-gut-brain axis. It is known that the symbiotic interactions between the gut microbes and the host can affect mental health. The review analyzes the mechanisms and ways of action of the gut microbiota on the pathophysiology of depression. The possibility of using knowledge about the taxonomic composition and metabolic profile of the microbiota of patients with depression to select gene compositions (metagenomic signature) as biomarkers of the disease is evaluated. The use of in silico technologies (machine learning) for the diagnosis of depression based on the biomarkers of the gut microbiota is given. Alternative approaches to the treatment of depression are being considered by balancing the microbial composition through dietary modifications and the use of additives, namely probiotics, postbiotics (including vesicles) and prebiotics as psychobiotics, and fecal transplantation. The bacterium Faecalibacterium prausnitzii is under consideration as a promising new-generation probiotic and auxiliary diagnostic biomarker of depression. The analysis conducted in this review may be useful for clinical practice and pharmacology.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Yana A. Zorkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Alexey S. Kovtun
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| |
Collapse
|
11
|
Ayed L, M’hir S, Nuzzolese D, Di Cagno R, Filannino P. Harnessing the Health and Techno-Functional Potential of Lactic Acid Bacteria: A Comprehensive Review. Foods 2024; 13:1538. [PMID: 38790838 PMCID: PMC11120132 DOI: 10.3390/foods13101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
This review examines the techno-functional properties of lactic acid bacteria (LABs) in the food industry, focusing on their potential health benefits. We discuss current findings related to the techno-functionality of LAB, which includes acidification, proteolytic and lipolytic features, and a variety of other biochemical activities. These activities include the production of antimicrobial compounds and the synthesis of exopolysaccharides that improve food safety and consumer sensory experience. LABs are also known for their antioxidant abilities, which help reduce oxidative reactions in foods and improve their functional properties. In addition, LABs' role as probiotics is known for their promising effects on gut health, immune system modulation, cholesterol control, and general wellbeing. Despite these advantages, several challenges hinder the effective production and use of probiotic LABs, such as maintaining strain viability during storage and transport as well as ensuring their efficacy in the gastrointestinal tract. Our review identifies these critical barriers and suggests avenues for future research.
Collapse
Affiliation(s)
- Lamia Ayed
- Laboratory of Microbial Ecology and Technology (LETMI), LR05ES08, National Institute of Applied Sciences and Technology (INSAT), University of Carthage, BP 676, Tunis 1080, Tunisia;
| | - Sana M’hir
- Laboratory of Microbial Ecology and Technology (LETMI), LR05ES08, National Institute of Applied Sciences and Technology (INSAT), University of Carthage, BP 676, Tunis 1080, Tunisia;
- Department of Animal Biotechnology, Higher Institute of Biotechnology of Beja, University of Jendouba, BP 382, Beja 9000, Tunisia
| | - Domenico Nuzzolese
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (D.N.); (P.F.)
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, 39100 Bolzano, Italy;
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (D.N.); (P.F.)
| |
Collapse
|
12
|
Riehl L, Fürst J, Kress M, Rykalo N. The importance of the gut microbiome and its signals for a healthy nervous system and the multifaceted mechanisms of neuropsychiatric disorders. Front Neurosci 2024; 17:1302957. [PMID: 38249593 PMCID: PMC10797776 DOI: 10.3389/fnins.2023.1302957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Increasing evidence links the gut microbiome and the nervous system in health and disease. This narrative review discusses current views on the interaction between the gut microbiota, the intestinal epithelium, and the brain, and provides an overview of the communication routes and signals of the bidirectional interactions between gut microbiota and the brain, including circulatory, immunological, neuroanatomical, and neuroendocrine pathways. Similarities and differences in healthy gut microbiota in humans and mice exist that are relevant for the translational gap between non-human model systems and patients. There is an increasing spectrum of metabolites and neurotransmitters that are released and/or modulated by the gut microbiota in both homeostatic and pathological conditions. Dysbiotic disruptions occur as consequences of critical illnesses such as cancer, cardiovascular and chronic kidney disease but also neurological, mental, and pain disorders, as well as ischemic and traumatic brain injury. Changes in the gut microbiota (dysbiosis) and a concomitant imbalance in the release of mediators may be cause or consequence of diseases of the central nervous system and are increasingly emerging as critical links to the disruption of healthy physiological function, alterations in nutrition intake, exposure to hypoxic conditions and others, observed in brain disorders. Despite the generally accepted importance of the gut microbiome, the bidirectional communication routes between brain and gut are not fully understood. Elucidating these routes and signaling pathways in more detail offers novel mechanistic insight into the pathophysiology and multifaceted aspects of brain disorders.
Collapse
Affiliation(s)
| | | | | | - Nadiia Rykalo
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
MacKay M, Yang BH, Dursun SM, Baker GB. The Gut-Brain Axis and the Microbiome in Anxiety Disorders, Post-Traumatic Stress Disorder and Obsessive-Compulsive Disorder. Curr Neuropharmacol 2024; 22:866-883. [PMID: 36815632 PMCID: PMC10845093 DOI: 10.2174/1570159x21666230222092029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 02/24/2023] Open
Abstract
A large body of research supports the role of stress in several psychiatric disorders in which anxiety is a prominent symptom. Other research has indicated that the gut microbiome-immune system- brain axis is involved in a large number of disorders and that this axis is affected by various stressors. The focus of the current review is on the following stress-related disorders: generalized anxiety disorder, panic disorder, social anxiety disorder, post-traumatic stress disorder and obsessivecompulsive disorder. Descriptions of systems interacting in the gut-brain axis, microbiome-derived molecules and of pro- and prebiotics are given. Preclinical and clinical studies on the relationship of the gut microbiome to the psychiatric disorders mentioned above are reviewed. Many studies support the role of the gut microbiome in the production of symptoms in these disorders and suggest the potential for pro- and prebiotics for their treatment, but there are also contradictory findings and concerns about the limitations of some of the research that has been done. Matters to be considered in future research include longer-term studies with factors such as sex of the subjects, drug use, comorbidity, ethnicity/ race, environmental effects, diet, and exercise taken into account; appropriate compositions of pro- and prebiotics; the translatability of studies on animal models to clinical situations; and the effects on the gut microbiome of drugs currently used to treat these disorders. Despite these challenges, this is a very active area of research that holds promise for more effective, precision treatment of these stressrelated disorders in the future.
Collapse
Affiliation(s)
- Marnie MacKay
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, AB, Canada
| | - Bohan H. Yang
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, AB, Canada
| | - Serdar M. Dursun
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen B. Baker
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Mäkelä SM, Griffin SM, Reimari J, Evans KC, Hibberd AA, Yeung N, Ibarra A, Junnila J, Turunen J, Beboso R, Chhokar B, Dinan TG, Cryan J, Patterson E. Efficacy and safety of Lacticaseibacillus paracasei Lpc-37® in students facing examination stress: A randomized, triple-blind, placebo-controlled clinical trial (the ChillEx study). Brain Behav Immun Health 2023; 32:100673. [PMID: 37662485 PMCID: PMC10474370 DOI: 10.1016/j.bbih.2023.100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/27/2023] [Accepted: 07/30/2023] [Indexed: 09/05/2023] Open
Abstract
Lacticaseibacillus paracasei Lpc-37 (Lpc-37) has previously shown to reduce perceived stress in healthy adults. The ChillEx study investigated whether Lpc-37 reduces stress in a model of chronic examination stress in healthy students. One hundred ninety university students (18-40 y) were randomized to take 1.56 × 1010 colony-forming units of Lpc-37 or placebo (1:1) each day for 10 weeks, in a triple-blind, parallel, multicenter clinical trial consisting of six visits: two screening visits, a baseline visit, and visits at 4, 8, and 10 weeks after baseline. The primary objective was to demonstrate that Lpc-37 reduces stress, as measured by the change in state anxiety from baseline to just before the first examination, after 8 weeks using the State Trait Anxiety Inventory (STAI-state). Secondary objectives aimed to demonstrate that Lpc-37 modulates psychological stress-induced symptoms and biomarkers related to mood and sleep. An exploratory analysis of fecal microbiota composition was also conducted. There was no difference between Lpc-37 and placebo groups in the change of STAI-state score (estimate 1.03; 95% confidence interval [CI]: -1.62, 3.67; p = 0.446). None of the secondary outcomes resulted in significant results when corrected for multiplicity, but exploratory results were notable. Results showed an improvement in sleep-disturbance scores (odds ratio 0.30; 95% CI: 0.11, 0.82; p = 0.020) and reduction in duration of sleep (odds ratio 3.52; 95% CI: 1.46, 8.54; p = 0.005) on the Pittsburgh Sleep Quality Index questionnaire after 8 weeks in the Lpc-37 group compared to placebo. A reduction in Bond Lader VAS-alertness was also demonstrated in the Lpc-37 group compared to placebo (estimate -3.97; 95% CI: -7.78, -0.15; p = 0.042) just prior to the examination. Analysis of fecal microbiota found no differences between study groups for alpha and beta diversity or microbiota abundance. Adverse events were similar between groups. Vital signs, safety-related laboratory measures, and gastrointestinal parameters were stable during the trial. In conclusion, probiotic Lpc-37 was safe but had no effect on stress, mood, or anxiety in healthy university students in this model of chronic academic stress. ClinicalTrials.gov: NCT04125810.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ronnie Beboso
- MeDiNova North London Dedicated Research Center, London, UK
| | - Balgit Chhokar
- MeDiNova East London Dedicated Research Center, London, UK
| | | | - John Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | |
Collapse
|
15
|
Bahari Z, Jangravi Z, Hatef B, Valipour H, Meftahi GH. Creatine supplementation protects spatial memory and long-term potentiation against chronic restraint stress. Behav Pharmacol 2023; 34:330-339. [PMID: 37462147 DOI: 10.1097/fbp.0000000000000739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Stress contributes to numerous psychopathologies, including memory impairment, and threatens one's well-being. It has been reported that creatine supplementation potentially influences cognitive processing. Hence, in this study, we examined the effects of creatine supplementation on memory, synaptic plasticity, and neuronal arborization in the CA1 region of the hippocampus in rats under chronic restraint stress (CRS). Thirty-two adult male Wistar rats (8 weeks old) weighing 200-250 g were randomly divided into four groups (n = 8/per group): control, stress, creatine, and stress + creatine. CRS was induced for 6 h per day for 14 days, and creatine supplementation was carried out by dissolving creatine (2 g/kg body weight per day) in the animals' drinking water for 14 days. We used the Barnes maze and shuttle box for spatial and passive avoidance memory examination. The in-vivo field potential recording and Golgi-Cox staining were also used to investigate long-term potentiation (LTP) and dendrite arborization in the CA1 pyramidal neurons. Chronic stress impaired spatial memory, dysregulated LTP parameters, and decreased the number of dendrites in the CA1 pyramidal neurons of stressed rats, and creatine supplementation modified these effects in stressed rats. It seems that creatine supplementation can improve spatial memory deficits and synaptic plasticity loss induced by CRS in hippocampal CA1 neurons, possibly by reducing the dendrite arborization damages. However, understanding its mechanism needs further investigation.
Collapse
Affiliation(s)
- Zahra Bahari
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences
| | - Zohreh Jangravi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Boshra Hatef
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences
| | - Habib Valipour
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences
| | | |
Collapse
|
16
|
Bleibel L, Dziomba S, Waleron KF, Kowalczyk E, Karbownik MS. Deciphering psychobiotics' mechanism of action: bacterial extracellular vesicles in the spotlight. Front Microbiol 2023; 14:1211447. [PMID: 37396391 PMCID: PMC10309211 DOI: 10.3389/fmicb.2023.1211447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023] Open
Abstract
The intake of psychobiotic bacteria appears to be a promising adjunct to neuropsychiatric treatment, and their consumption may even be beneficial for healthy people in terms of mental functioning. The psychobiotics' mechanism of action is largely outlined by the gut-brain axis; however, it is not fully understood. Based on very recent studies, we provide compelling evidence to suggest a novel understanding of this mechanism: bacterial extracellular vesicles appear to mediate many known effects that psychobiotic bacteria exert on the brain. In this mini-review paper, we characterize the extracellular vesicles derived from psychobiotic bacteria to demonstrate that they can be absorbed from the gastrointestinal tract, penetrate to the brain, and carry the intracellular content to exert beneficial multidirectional action. Specifically, by regulating epigenetic factors, extracellular vesicles from psychobiotics appear to enhance expression of neurotrophic molecules, improve serotonergic neurotransmission, and likely supply astrocytes with glycolytic enzymes to favor neuroprotective mechanisms. As a result, some data suggest an antidepressant action of extracellular vesicles that originate even from taxonomically remote psychobiotic bacteria. As such, these extracellular vesicles may be regarded as postbiotics of potentially therapeutic application. The mini-review is enriched with illustrations to better introduce the complex nature of brain signaling mediated by bacterial extracellular vesicles and indicates knowledge gaps that require scientific exploration before further progress is made. In conclusion, bacterial extracellular vesicles appear to represent the missing piece of the puzzle in the mechanism of action of psychobiotics.
Collapse
Affiliation(s)
- Layla Bleibel
- Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
| | - Szymon Dziomba
- Department of Toxicology, Medical University of Gdansk, Gdańsk, Poland
| | | | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
| | | |
Collapse
|
17
|
Medina-Rodriguez EM, Cruz AA, De Abreu JC, Beurel E. Stress, inflammation, microbiome and depression. Pharmacol Biochem Behav 2023:173561. [PMID: 37148918 DOI: 10.1016/j.pbb.2023.173561] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 09/13/2022] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
Psychiatric disorders are mental illnesses involving changes in mood, cognition and behavior. Their prevalence has rapidly increased in the last decades. One of the most prevalent psychiatric disorders is major depressive disorder (MDD), a debilitating disease lacking efficient treatments. Increasing evidence shows that microbial and immunological changes contribute to the pathophysiology of depression and both are modulated by stress. This bidirectional relationship constitutes the brain-gut axis involving various neuroendocrine, immunological, neuroenterocrine and autonomic pathways. The present review covers the most recent findings on the relationships between stress, the gut microbiome and the inflammatory response and their contribution to depression.
Collapse
Affiliation(s)
- Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences, United States of America; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33125, United States of America.
| | - Alyssa A Cruz
- Department of Psychiatry and Behavioral Sciences, United States of America
| | | | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, United States of America; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States of America
| |
Collapse
|
18
|
Gao J, Zhao L, Cheng Y, Lei W, Wang Y, Liu X, Zheng N, Shao L, Chen X, Sun Y, Ling Z, Xu W. Probiotics for the treatment of depression and its comorbidities: A systemic review. Front Cell Infect Microbiol 2023; 13:1167116. [PMID: 37139495 PMCID: PMC10149938 DOI: 10.3389/fcimb.2023.1167116] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
Depression is one of the most common psychiatric conditions, characterized by significant and persistent depressed mood and diminished interest, and often coexists with various comorbidities. The underlying mechanism of depression remain elusive, evidenced by the lack of an appreciate therapy. Recent abundant clinical trials and animal studies support the new notion that the gut microbiota has emerged as a novel actor in the pathophysiology of depression, which partakes in bidirectional communication between the gut and the brain through the neuroendocrine, nervous, and immune signaling pathways, collectively known as the microbiota-gut-brain (MGB) axis. Alterations in the gut microbiota can trigger the changes in neurotransmitters, neuroinflammation, and behaviors. With the transition of human microbiome research from studying associations to investigating mechanistic causality, the MGB axis has emerged as a novel therapeutic target in depression and its comorbidities. These novel insights have fueled idea that targeting on the gut microbiota may open new windows for efficient treatment of depression and its comorbidities. Probiotics, live beneficial microorganisms, can be used to modulate gut dysbiosis into a new eubiosis and modify the occurrence and development of depression and its comorbidities. In present review, we summarize recent findings regarding the MGB axis in depression and discuss the potential therapeutic effects of probiotics on depression and its comorbidities.
Collapse
Affiliation(s)
- Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yu Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nengneng Zheng
- Department of Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xulei Chen
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Yilai Sun
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Weijie Xu
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| |
Collapse
|
19
|
Akbulut S, Kucukakcali Z, Saritas H, Bozkir C, Tamer M, Akyuz M, Bagci N, Unsal S, Akbulut MS, Sahin TT, Colak C, Yilmaz S. Effect of the COVID-19 Pandemic on the Psychological Health of Patients Who Underwent Liver Transplantation Due to Hepatocellular Carcinoma. Diagnostics (Basel) 2023; 13:diagnostics13081410. [PMID: 37189511 DOI: 10.3390/diagnostics13081410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND The primary aim of this study was to compare liver transplant (LT) recipients with and without hepatocellular carcinoma (HCC) in terms of COVID-19-related depression, anxiety, and stress. METHOD A total of 504 LT recipients with (HCC group; n = 252) and without HCC (non-HCC group; n = 252) were included in the present case-control study. Depression Anxiety Stress Scales (DASS-21) and Coronavirus Anxiety Scale (CAS) were used to evaluate the depression, stress, and anxiety levels of LT patients. DASS-21 total and CAS-SF scores were determined as the primary outcomes of the study. Poisson regression and negative binomial regression models were used to predict the DASS and CAS scores. The incidence rate ratio (IRR) was used as a coefficient. Both groups were also compared in terms of awareness of the COVID-19 vaccine. RESULTS Poisson regression and negative binomial regression analyses for DASS-21 total and CAS-SF scales showed that the negative binomial regression method was the appropriate model for both scales. According to this model, it was determined that the following independent variables increased the DASS-21 total score: non-HCC (IRR: 1.26; p = 0.031), female gender (IRR: 1.29; p = 0.036), presence of chronic disease (IRR: 1.65; p < 0.001), exposure to COVID-19 (IRR: 1.63; p < 0.001), and nonvaccination (IRR: 1.50; p = 0.002). On the other hand, it was determined that the following independent variables increased the CAS score: female gender (IRR:1.75; p = 0.014) and exposure to COVID-19 (IRR: 1.51; p = 0.048). Significant differences were found between the HCC and non-HCC groups in terms of median DASS-21 total (p < 0.001) and CAS-SF (p = 0.002) scores. Cronbach's alpha internal consistency coefficients of DASS-21 total and CAS-SF scales were calculated to be 0.823 and 0.783, respectively. CONCLUSION This study showed that the variables including patients without HCC, female gender, having a chronic disease, being exposed to COVID-19, and not being vaccinated against COVID-19 increased anxiety, depression, and stress. High internal consistency coefficients obtained from both scales indicate that these results are reliable.
Collapse
Affiliation(s)
- Sami Akbulut
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, 44280 Malatya, Turkey
- Department of Public Health, Inonu University Faculty of Medicine, 44280 Malatya, Turkey
- Department of Biostatistics, Bioinformatics and Medical Informatics, Inonu University Faculty of Medicine, 44280 Malatya, Turkey
| | - Zeynep Kucukakcali
- Department of Biostatistics, Bioinformatics and Medical Informatics, Inonu University Faculty of Medicine, 44280 Malatya, Turkey
| | - Hasan Saritas
- Department of Surgical Nursing, Siirt University Faculty of Health Science, 56100 Siirt, Turkey
| | - Cigdem Bozkir
- Department of Nutrition and Dietetics, Inonu University Faculty of Health Science, 44280 Malatya, Turkey
| | - Murat Tamer
- Department of Surgical Nursing, Inonu University Faculty of Nursing, 44280 Malatya, Turkey
| | - Musap Akyuz
- Department of Surgical Nursing, Inonu University Faculty of Nursing, 44280 Malatya, Turkey
| | - Nazlican Bagci
- Department of Surgical Nursing, Inonu University Faculty of Nursing, 44280 Malatya, Turkey
| | - Selver Unsal
- Department of Nursing Service, Inonu University Faculty of Medicine, 44280 Malatya, Turkey
| | | | - Tevfik Tolga Sahin
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, 44280 Malatya, Turkey
| | - Cemil Colak
- Department of Biostatistics, Bioinformatics and Medical Informatics, Inonu University Faculty of Medicine, 44280 Malatya, Turkey
| | - Sezai Yilmaz
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, 44280 Malatya, Turkey
| |
Collapse
|
20
|
Jach ME, Serefko A, Szopa A, Sajnaga E, Golczyk H, Santos LS, Borowicz-Reutt K, Sieniawska E. The Role of Probiotics and Their Metabolites in the Treatment of Depression. Molecules 2023; 28:molecules28073213. [PMID: 37049975 PMCID: PMC10096791 DOI: 10.3390/molecules28073213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
Depression is a common and complex mental and emotional disorder that causes disability, morbidity, and quite often mortality around the world. Depression is closely related to several physical and metabolic conditions causing metabolic depression. Studies have indicated that there is a relationship between the intestinal microbiota and the brain, known as the gut–brain axis. While this microbiota–gut–brain connection is disturbed, dysfunctions of the brain, immune system, endocrine system, and gastrointestinal tract occur. Numerous studies show that intestinal dysbiosis characterized by abnormal microbiota and dysfunction of the microbiota–gut–brain axis could be a direct cause of mental and emotional disorders. Traditional treatment of depression includes psychotherapy and pharmacotherapy, and it mainly targets the brain. However, restoration of the intestinal microbiota and functions of the gut–brain axis via using probiotics, their metabolites, prebiotics, and healthy diet may alleviate depressive symptoms. Administration of probiotics labeled as psychobiotics and their metabolites as metabiotics, especially as an adjuvant to antidepressants, improves mental disorders. It is a new approach to the prevention, management, and treatment of mental and emotional illnesses, particularly major depressive disorder and metabolic depression. For the effectiveness of antidepressant therapy, psychobiotics should be administered at a dose higher than 1 billion CFU/day for at least 8 weeks.
Collapse
Affiliation(s)
- Monika Elżbieta Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland
| | - Ewa Sajnaga
- Department of Biomedicine and Environmental Research, The John Paul II Catholic University of Lublin, Konstantynów Street 1J, 20-708 Lublin, Poland
| | - Hieronim Golczyk
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland
| | - Leandro Soares Santos
- Department of Animal and Rural Technology, State University of Southwest Bahia, Itapetinga 45700-000, BA, Brazil
| | - Kinga Borowicz-Reutt
- Independent Unit of Experimental Neuropathophysiology, Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland
| |
Collapse
|
21
|
Morales-Torres R, Carrasco-Gubernatis C, Grasso-Cladera A, Cosmelli D, Parada FJ, Palacios-García I. Psychobiotic Effects on Anxiety Are Modulated by Lifestyle Behaviors: A Randomized Placebo-Controlled Trial on Healthy Adults. Nutrients 2023; 15:nu15071706. [PMID: 37049546 PMCID: PMC10096963 DOI: 10.3390/nu15071706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Psychobiotics are modulators of the Microbiota-Gut-Brain Axis (MGBA) with promising benefits to mental health. Lifestyle behaviors are established modulators of both mental health and the MGBA. This randomized placebo-controlled clinical trial (NCT04823533) on healthy adults (N = 135) tested 4 weeks of probiotic supplementation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175). We assessed effects on wellbeing, quality of life, emotional regulation, anxiety, mindfulness and interoceptive awareness. We then analyzed if lifestyle behaviors modulated probiotic effectiveness. Results showed no significant effects of probiotic intake in whole sample outcomes. Correlational analyses revealed Healthy Behaviors were significantly correlated with wellbeing across scales. Moreover, the linear mixed-effects model showed that the interaction between high scores in Healthy Behaviors and probiotic intake was the single significant predictor of positive effects on anxiety, emotional regulation, and mindfulness in post-treatment outcomes. These findings highlight the relevance of controlling for lifestyle behaviors in psychobiotic and mental health research.
Collapse
|
22
|
Nabeh OA. New insights on the impact of gut microbiota on premenstrual disorders. Will probiotics solve this mystery? Life Sci 2023; 321:121606. [PMID: 36948390 DOI: 10.1016/j.lfs.2023.121606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
Premenstrual disorders (PMDs) refer to premenstrual syndrome (PMS) and premenstrual dysphoric disorder (PMDD), where both are characterized by physical and psychological changes occurring in the luteal phase of menstrual cycle. According to the available theories, there is no single accusation succeeded to explain the pathophysiology of PMDs. However, there is emerging evidence for the role of gut microbiota (GM) in PMDs, supported by the diverging impact of GM on our body systems. The direct secretory function of GM and their integration in hormonal, neurotransmitters and bioactive compounds secretion and activity reinforce this speculation. Moreover, the bidirectional relation between GM and steroid hormones and the impact of diet, drugs, and inflammation on both, GM and PMDs incidence and severity justify the need for more studies to determine the actual role of GM in PMDs and the possible potential of probiotics and prebiotics as therapeutic options.
Collapse
Affiliation(s)
- Omnia Azmy Nabeh
- Department of Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt; Cardiovascular Medicine, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
23
|
The microbiota-gut-brain axis in pathogenesis of depression: A narrative review. Physiol Behav 2023; 260:114056. [PMID: 36528127 DOI: 10.1016/j.physbeh.2022.114056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The microbiota-gut-brain axis is a bidirectional regulatory pathway between the brain and the gastrointestinal tract, which plays an important role in maintain homeostasis. Gut microbiota could influence the behavior, cognition, stress response and others via the axis. Depression is a complex psychiatric disease, giving rise to heavy social health and economic burden. In recent years, studies have shown that the gut microbiota are closely linked to the pathophysiological processes of depression. In this article, the interaction and its underlying mechanisms between depression and gut microbiota were summarized.
Collapse
|
24
|
Freijy TM, Cribb L, Oliver G, Metri NJ, Opie RS, Jacka FN, Hawrelak JA, Rucklidge JJ, Ng CH, Sarris J. Effects of a high-prebiotic diet versus probiotic supplements versus synbiotics on adult mental health: The "Gut Feelings" randomised controlled trial. Front Neurosci 2023; 16:1097278. [PMID: 36815026 PMCID: PMC9940791 DOI: 10.3389/fnins.2022.1097278] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/15/2022] [Indexed: 02/09/2023] Open
Abstract
Background Preliminary evidence supports the use of dietary interventions and gut microbiota-targeted interventions such as probiotic or prebiotic supplementation for improving mental health. We report on the first randomised controlled trial (RCT) to examine the effects of a high-prebiotic dietary intervention and probiotic supplements on mental health. Methods "Gut Feelings" was an 8-week, 2 × 2 factorial RCT of 119 adults with moderate psychological distress and low prebiotic food intake. Treatment arms: (1) probiotic supplement and diet-as-usual (probiotic group); (2) high-prebiotic diet and placebo supplement (prebiotic diet group); (3) probiotic supplement and high-prebiotic diet (synbiotic group); and (4) placebo supplement and diet-as-usual (placebo group). The primary outcome was assessment of total mood disturbance (TMD; Profile of Mood States Short Form) from baseline to 8 weeks. Secondary outcomes included anxiety, depression, stress, sleep, and wellbeing measures. Results A modified intention-to-treat analysis using linear mixed effects models revealed that the prebiotic diet reduced TMD relative to placebo at 8 weeks [Cohen's d = -0.60, 95% confidence interval (CI) = -1.18, -0.03; p = 0.039]. There was no evidence of symptom improvement from the probiotic (d = -0.19, 95% CI = -0.75, 0.38; p = 0.51) or synbiotic treatments (d = -0.03, 95% CI = -0.59, 0.53; p = 0.92). Improved anxiety, stress, and sleep were noted in response to the prebiotic diet while the probiotic tentatively improved wellbeing, relative to placebo. No benefit was found in response to the synbiotic intervention. All treatments were well tolerated with few adverse events. Conclusion A high-prebiotic dietary intervention may improve mood, anxiety, stress, and sleep in adults with moderate psychological distress and low prebiotic intake. A synbiotic combination of high-prebiotic diet and probiotic supplement does not appear to have a beneficial effect on mental health outcomes, though further evidence is required. Results are limited by the relatively small sample size. Clinical trial registration https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=372753, identifier ACTRN12617000795392.
Collapse
Affiliation(s)
- Tanya M. Freijy
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia,Faculty of Medicine, Dentistry and Health Sciences, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Lachlan Cribb
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Georgina Oliver
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Najwa-Joelle Metri
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Rachelle S. Opie
- IPAN, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, VIC, Australia
| | - Felice N. Jacka
- School of Medicine, Food and Mood Centre, IMPACT Strategic Research Centre, Deakin University, Melbourne, VIC, Australia,Centre for Adolescent Health, Murdoch Children’s Research Institute, Melbourne, VIC, Australia,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, OLD, Australia
| | - Jason A. Hawrelak
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS, Australia,Human Nutrition and Functional Medicine Department, University of Western States, Portland, OR, United States
| | - Julia J. Rucklidge
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Chee H. Ng
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Jerome Sarris
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia,Faculty of Medicine, Dentistry and Health Sciences, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia,NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia,*Correspondence: Jerome Sarris,
| |
Collapse
|
25
|
Ekinci GN, Sanlier N. The relationship between nutrition and depression in the life process: A mini-review. Exp Gerontol 2023; 172:112072. [PMID: 36565729 DOI: 10.1016/j.exger.2022.112072] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Depression is one of the leading health problems, and >300 million people have a major depressive disorder and this number is getting increasing. Depression complicates the management of existing chronic diseases and the management of complications that may arise. A person's mental state can affect their food preferences, and food preferences can also affect their mental state. In this paper, depression and eating behavior, diet quality, folic acid, vitamin B12, vitamin B6, vitamin D, omega-3 fatty acids, magnesium, selenium, zinc and copper, prebiotics and probiotics are discussed. Research on the subject emphasizes that diet quality may also affect the occurrence of depression. However, studies also indicated that dietary nutrients such as folic acid, vitamin B12, vitamin B6, omega-3 fatty acids, zinc, selenium, and magnesium might be associated with the risk of depression.
Collapse
Affiliation(s)
- Gülseren Nur Ekinci
- Ankara Medipol University, School of Health Science, Department of Nutrition and Dietetics, Ankara, Turkey
| | - Nevin Sanlier
- Ankara Medipol University, School of Health Science, Department of Nutrition and Dietetics, Ankara, Turkey.
| |
Collapse
|
26
|
Kassis A, Fichot MC, Horcajada MN, Horstman AMH, Duncan P, Bergonzelli G, Preitner N, Zimmermann D, Bosco N, Vidal K, Donato-Capel L. Nutritional and lifestyle management of the aging journey: A narrative review. Front Nutr 2023; 9:1087505. [PMID: 36761987 PMCID: PMC9903079 DOI: 10.3389/fnut.2022.1087505] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
With age, the physiological responses to occasional or regular stressors from a broad range of functions tend to change and adjust at a different pace and restoring these functions in the normal healthy range becomes increasingly challenging. Even if this natural decline is somehow unavoidable, opportunities exist to slow down and attenuate the impact of advancing age on major physiological processes which, when weakened, constitute the hallmarks of aging. This narrative review revisits the current knowledge related to the aging process and its impact on key metabolic functions including immune, digestive, nervous, musculoskeletal, and cardiovascular functions; and revisits insights into the important biological targets that could inspire effective strategies to promote healthy aging.
Collapse
Affiliation(s)
- Amira Kassis
- Whiteboard Nutrition Science, Beaconsfield, QC, Canada,Amira Kassis,
| | | | | | | | - Peter Duncan
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | | | - Nicolas Preitner
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Diane Zimmermann
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Nabil Bosco
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Karine Vidal
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Laurence Donato-Capel
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland,*Correspondence: Laurence Donato-Capel,
| |
Collapse
|
27
|
Green JE, McGuinness AJ, Berk M, Castle D, Athan E, Hair C, Strandwitz P, Loughman A, Nierenberg AA, Cryan JF, Mohebbi M, Jacka F. Safety and feasibility of faecal microbiota transplant for major depressive disorder: study protocol for a pilot randomised controlled trial. Pilot Feasibility Stud 2023; 9:5. [PMID: 36624505 PMCID: PMC9827014 DOI: 10.1186/s40814-023-01235-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mental disorders, including major depressive disorder (MDD), are a leading cause of non-fatal burden of disease globally. Current conventional treatments for depression have significant limitations, and there have been few new treatments in decades. The microbiota-gut-brain-axis is now recognised as playing a role in mental and brain health, and promising preclinical and clinical data suggest Faecal Microbiota Transplants (FMT) may be efficacious for treating a range of mental illnesses. However, there are no existing published studies in humans evaluating the efficacy of FMT for MDD. METHODS AND DESIGN This protocol describes an 8-week, triple-blind, 2:1 parallel group, randomised controlled pilot trial (n = 15), of enema-delivered FMT treatment (n = 10) compared with a placebo enema (n = 5) in adults with moderate-to-severe MDD. There will be a further 26-week follow-up to monitor longer-term safety. Participants will receive four FMT or placebo enemas over four consecutive days. The primary aims of the study are to evaluate feasibility and safety of FMT as an adjunctive treatment for MDD in adults. Changes in gut microbiota will be assessed as a secondary outcome. Other data will be collected, including changes in depression and anxiety symptoms, and safety parameters. DISCUSSION Modification of the microbiota-gut-brain axis via FMT is a promising potential treatment for MDD, but there are no published rigorous clinical trials evaluating its use. If this study finds that our FMT strategy is safe and feasible, a larger fully powered RCT is planned. Further high-quality research in this field is urgently needed to address unmet need. TRIAL REGISTRATION Australian and New Zealand Clinical Trials Registry: ACTRN12621000932864.
Collapse
Affiliation(s)
- Jessica E. Green
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia ,grid.1002.30000 0004 1936 7857Monash Alfred Psychiatry Research Centre (MAPrc), Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia ,grid.466993.70000 0004 0436 2893Department of Psychiatry, Peninsula Health, Frankston, Australia
| | - Amelia J. McGuinness
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia ,grid.1008.90000 0001 2179 088XDepartment of Psychiatry, University of Melbourne, Parkville, Australia ,grid.488596.e0000 0004 0408 1792Orygen Youth Health Research Centre and the Centre of Youth Mental Health, Melbourne, Australia ,grid.418025.a0000 0004 0606 5526The Florey Institute for Neuroscience and Mental Health, Parkville, Australia ,grid.414257.10000 0004 0540 0062Barwon Health, Geelong, Australia
| | - David Castle
- grid.17063.330000 0001 2157 2938Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Eugene Athan
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia ,grid.414257.10000 0004 0540 0062Barwon Health, Geelong, Australia ,grid.1021.20000 0001 0526 7079School of Medicine, Deakin University, Geelong, Australia
| | - Christopher Hair
- grid.414257.10000 0004 0540 0062Barwon Health, Geelong, Australia
| | | | - Amy Loughman
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Andrew A. Nierenberg
- grid.32224.350000 0004 0386 9924Dauten Family Center for Bipolar Treatment Innovation, Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - John F. Cryan
- grid.7872.a0000000123318773Department of Anatomy and Neuroscience, University College Cork and APC Microbiome, Cork, Ireland
| | - Mohammadreza Mohebbi
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice Jacka
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia ,grid.416107.50000 0004 0614 0346Centre for Adolescent Health, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Australia ,grid.418393.40000 0001 0640 7766Black Dog Institute, Melbourne, Australia ,grid.1011.10000 0004 0474 1797James Cook University, Townsville, Australia
| |
Collapse
|
28
|
Turco F, Brugnatelli V, Abalo R. Neuro-Gastro-Cannabinology: A Novel Paradigm for Regulating Mood and Digestive Health. Med Cannabis Cannabinoids 2023; 6:130-137. [PMID: 37920559 PMCID: PMC10618907 DOI: 10.1159/000534007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/30/2023] [Indexed: 11/04/2023] Open
Abstract
The maintenance of homeostasis in the gastrointestinal (GI) tract is ensured by the presence of the endocannabinoid system (ECS), which regulates important physiological activities, such as motility, permeability, fluid secretion, immunity, and visceral pain sensation. Beside its direct effects on the GI system, the ECS in the central nervous system indirectly regulates GI functions, such as food intake and energy balance. Mounting evidence suggests that the ECS may play an important role in modulating central neurotransmission which affects GI functioning. It has also been found that the interaction between the ECS and microbiota affects brain and gut activity in a bidirectional manner, and a number of studies demonstrate that there is a strong relationship between GI dysfunctions and mood disorders. Thus, microbiota can regulate the tone of the ECS. Conversely, changes in intestinal ECS tone may influence microbiota composition. In this mini-review, we propose the concept of neuro-gastro-cannabinology as a novel and alternative paradigm for studying and treating GI disorders that affect mood, as well as mood disorders that imbalance GI physiology. This concept suggests the use of prebiotics or probiotics for improving the tone of the ECS, as well as the use of phytocannabinoids or endocannabinoid-like molecules, such as palmitoylethanolamide, to restore the normal intestinal microbiota. This approach may be effective in ameliorating the negative effects of GI dysfunctions on mood and/or the effects of mood disorders on digestive health.
Collapse
Affiliation(s)
| | | | - Raquel Abalo
- Depar High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC, Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), Madrid, Spain
- R & D & I Unit Associated with the Institute of Medicinal Chemistry (IQM), Spanish National Research-Council (CSIC), Madrid, Spain
- Spanish Pain Society Working Groups on Basic Sciences in Pain and Analgesia and on Cannabinoids, Madrid, Spain
| |
Collapse
|
29
|
Santiago-López L, Almada-Corral A, García HS, Mata-Haro V, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. Antidepressant and Anxiolytic Effects of Fermented Huauzontle, a Prehispanic Mexican Pseudocereal. Foods 2022; 12:foods12010053. [PMID: 36613269 PMCID: PMC9818389 DOI: 10.3390/foods12010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
This study aimed to assess the potential antidepressant- and anxiolytic-like effects of huauzontle fermented by Lactiplantibacillus plantarum Lp22. The possible association between oxidative stress/inflammation biomarkers and unconditional behavioural tests was also evaluated. Red light-induced stress mice C57Bl/6 (n = 5 per group) received orally either fermented or unfermented huauzontle, diazepam or fluoxetine. A non-stressed group which received saline solution was also included. Then, anxiety-related and depression-related behaviour tests were performed; after that, blood and tissues samples were collected to determine oxidative stress/inflammation biomarkers. The mice receiving both fermented and unfermented huauzontle spent more time (94 s) in open arms in the elevated plus maze test p < 0.05; besides, travelled longer distance (p < 0.05) and increased by more than 50% the exploration time for the open field, as well as the time spent in the illuminated zone (197 s) in the light/dark test. Furthermore, reduced immobility time in the tail suspension and forced swim tests (23.1 and 15.85, respectively), and anhedonia was no detected in the sucrose preference test. The oxidative stress index was lower in the liver of fermented huauzontle-treated mice, while enhanced levels of IL-10, MCP-1 and BDNF in plasma, and lipoxygenase (LOX) activity in the hippocampus were found. Finally, PCA revealed a positive correlation among LOX and BDNF and parameters determined in the anxiety tests, as between catalase activity and immobility time in the depression test. These findings indicate the novel potential therapeutic applications of fermented huauzontle on depression and anxiety-like behaviours possibly mediated by antioxidant and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Lourdes Santiago-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo 83304, Sonora, Mexico
| | - Arantxa Almada-Corral
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo 83304, Sonora, Mexico
| | - Hugo S. García
- Unidad de Investigación y Desarrollo de Alimentos, Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Veracruz, Mexico
| | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico
| | - Aarón F. González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo 83304, Sonora, Mexico
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo 83304, Sonora, Mexico
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo 83304, Sonora, Mexico
- Correspondence:
| |
Collapse
|
30
|
Application of Weizmannia coagulans in the medical and livestock industry. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Products enriched with probiotics have always been fashionable. Weizmannia coagulans has become a hot research topic in the academic community due to their multiple functional properties and high resistance to stress, which can retain their activity in a variety of harsh environments. This review aims to evaluate the probiotic effects of different strains of Weizmannia coagulans in animals and humans and to inspire better exploitation of the value of this strain.
Methods
This review summarizes the latest research progress of Weizmannia coagulans from two major applications in animal breeding and human health.
Results
The functional properties of Weizmannia coagulans are extensively recognized. In animals, the strain can promote nutrient absorption, reduce mortality, and enhance the slaughter rate in livestock and poultry. In humans, the strain can be used to treat gastrointestinal disorders, immunomodulation, depressive symptoms, and non-alcoholic fatty liver. Weizmannia coagulans is projected as an ideal substitute for antibiotics and other chemical drugs.
Conclusion
Despite the outstanding functional properties of Weizmannia coagulans, there are numerous strains of Weizmannia coagulans and significant differences between strains in functional and physiological properties. Currently, there are few literature reports on the probiotic mechanism and functional gene identification of Weizmannia coagulans, which is crucial for the commercialization of Weizmannia coagulans and the benefit of human society.
Collapse
|
31
|
Șchiopu CG, Ștefănescu C, Boloș A, Diaconescu S, Gilca-Blanariu GE, Ștefănescu G. Functional Gastrointestinal Disorders with Psychiatric Symptoms: Involvement of the Microbiome-Gut-Brain Axis in the Pathophysiology and Case Management. Microorganisms 2022; 10:2199. [PMID: 36363791 PMCID: PMC9694215 DOI: 10.3390/microorganisms10112199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Functional Gastrointestinal Disorders have been an important cause of poor life quality in affected populations. The unclear etiology and pathophysiological mechanism alter the clinical evolution of the patient. Although a strong connection with psychological stress has been observed, it was not until recently that the gut-brain axis involvement has been revealed. Furthermore, the current literature not only promotes the gut-brain axis modulation as a therapeutical target for functional digestive disorders but also states that the gut microbiome has a main role in this bi-directional mechanism. Psychiatric symptoms are currently recognized as an equally important aspect of the clinical manifestation and modulation of both the digestive and central nervous systems and could be the best approach in restoring the balance. As such, this article proposes a detailed description of the physiology of the microbiome-gut-brain axis, the pathophysiology of the functional gastrointestinal disorders with psychiatric symptoms and current perspectives for therapeutical management, as revealed by the latest studies in the scientific literature.
Collapse
Affiliation(s)
- Cristina Gabriela Șchiopu
- Department of Psychiatry, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
| | - Cristinel Ștefănescu
- Department of Psychiatry, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
| | - Alexandra Boloș
- Department of Psychiatry, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
| | - Smaranda Diaconescu
- Medical-Surgical Department, Faculty of Medicine, University “Titu Maiorescu”, 040441 Bucuresti, Romania
| | | | - Gabriela Ștefănescu
- Department of Gastroentereology, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
| |
Collapse
|
32
|
Maybee J, Pearson T, Elliott L. The Gut-Brain-Microbiome Connection: Can Probiotics Decrease Anxiety and Depression? Issues Ment Health Nurs 2022; 43:996-1003. [PMID: 35930417 DOI: 10.1080/01612840.2022.2106525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Anxiety and depression are highly prevalent mood disorders worldwide. Complete remission of symptoms is often difficult to achieve, despite following recommended treatment guidelines. Numerous antidepressants and anxiolytics exist, and new drugs are being developed constantly, yet the incidence of common mood disorders continues to rise. Despite the prevalence of these issues, mental health treatment has not evolved much in recent years. An exciting area of research uncovered in the past decade is the gut-brain-microbiome axis, a bi-directional communication pathway. Because the human microbiome is closely related to mood, research is being done to investigate whether probiotic supplementation could potentially affect symptoms of anxiety and depression.
Collapse
Affiliation(s)
- Jennifer Maybee
- MSN Program, Western Carolina University, Cullowhee, North Carolina, USA
| | - Tamera Pearson
- MSN Program, Western Carolina University, Cullowhee, North Carolina, USA
| | - Lydia Elliott
- MSN Program, Western Carolina University, Cullowhee, North Carolina, USA
| |
Collapse
|
33
|
Lin TL, Lu CC, Chen TW, Huang CW, Lu JJ, Lai WF, Wu TS, Lai CH, Lai HC, Chen YL. Amelioration of Maternal Immune Activation-Induced Autism Relevant Behaviors by Gut Commensal Parabacteroides goldsteinii. Int J Mol Sci 2022; 23:13070. [PMID: 36361859 PMCID: PMC9657948 DOI: 10.3390/ijms232113070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by cognitive inflexibility and social deficits. Probiotics have been demonstrated to play a promising role in managing the severity of ASD. However, there are no effective probiotics for clinical use. Identifying new probiotic strains for ameliorating ASD is therefore essential. Using the maternal immune activation (MIA)-based offspring ASD-like mouse model, a probiotic-based intervention strategy was examined in female mice. The gut commensal microbe Parabacteroides goldsteinii MTS01, which was previously demonstrated to exert multiple beneficial effects on chronic inflammation-related-diseases, was evaluated. Prenatal lipopolysaccharide (LPS) exposure induced leaky gut-related inflammatory phenotypes in the colon, increased LPS activity in sera, and induced autistic-like behaviors in offspring mice. By contrast, P. goldsteinii MTS01 treatment significantly reduced intestinal and systemic inflammation and ameliorated disease development. Transcriptomic analyses of MIA offspring indicated that in the intestine, P. goldsteinii MTS01 enhanced neuropeptide-related signaling and suppressed aberrant cell proliferation and inflammatory responses. In the hippocampus, P. goldsteinii MTS01 increased ribosomal/mitochondrial and antioxidant activities and decreased glutamate receptor signaling. Together, significant ameliorative effects of P. goldsteinii MTS01 on ASD relevant behaviors in MIA offspring were identified. Therefore, P. goldsteinii MTS01 could be developed as a next-generation probiotic for ameliorating ASD.
Collapse
Affiliation(s)
- Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Cha-Chen Lu
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Chest Medicine, Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chih-Wei Huang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine and Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Wei-Fan Lai
- Department of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ting-Shu Wu
- Department of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pediatrics, Molecular Infectious Disease Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Microbiology, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Nursing, Asia University, Taichung 41354, Taiwan
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Laboratory Medicine and Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Medical Research Center, Xiamen Chang Gung Hospital, Xiamen 361028, China
| | - Ya-Lei Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung 82446, Taiwan
| |
Collapse
|
34
|
Zielińska D, Karbowiak M, Brzezicka A. The Role of Psychobiotics to Ensure Mental Health during the COVID-19 Pandemic-A Current State of Knowledge. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11022. [PMID: 36078738 PMCID: PMC9518511 DOI: 10.3390/ijerph191711022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Psychobiotics are defined as probiotics, mainly of the genus Lactobacillus and Bifidobacterium, that confer mental health benefits to the host when consumed in a particular quantity through the interaction with commensal gut microbiota. The gut microbiota, which means a diverse and dynamic population of microorganisms harboring the gastrointestinal tract, communicates with the brain and vice versa through the brain-gut axis. The mechanisms of action of psychobiotics may be divided into four groups: synthesis of neurotransmitters and neurochemicals, regulation of the HPA axis, influence on the immune system, and synthesis of metabolites. Recent years showed that the COVID-19 pandemic affected not only physical, but also mental health. Social isolation, fear of infection, the lack of adequate vaccine, disinformation, increased number of deaths, financial loss, quarantine, and lockdown are all factors can cause psychiatric problems. The aim of this review was to discuss the potential role of psychobiotic in light of the current problems, based on in vitro and in vivo studies, meta-analyses, clinical trials evidence, and registered studies assessing probiotics' therapeutic administration in the prevention or treatment of symptoms or side effects of COVID-19.
Collapse
Affiliation(s)
- Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159C Str., (Building No. 32), 02-776 Warsaw, Poland
| | - Marcelina Karbowiak
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159C Str., (Building No. 32), 02-776 Warsaw, Poland
| | - Aneta Brzezicka
- Neurocognitive Research Center, SWPS University of Social Sciences and Humanities, Chodakowska Str. 19/31, 03-815 Warsaw, Poland
| |
Collapse
|
35
|
Pedroso I, Kumbhare SV, Joshi B, Saravanan SK, Mongad DS, Singh-Rambiritch S, Uday T, Muthukumar KM, Irudayanathan C, Reddy-Sinha C, Dulai PS, Sinha R, Almonacid DE. Mental Health Symptom Reduction Using Digital Therapeutics Care Informed by Genomic SNPs and Gut Microbiome Signatures. J Pers Med 2022; 12:1237. [PMID: 36013186 PMCID: PMC9409755 DOI: 10.3390/jpm12081237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropsychiatric diseases and obesity are major components of morbidity and health care costs, with genetic, lifestyle, and gut microbiome factors linked to their etiology. Dietary and weight-loss interventions can help improve mental health, but there is conflicting evidence regarding their efficacy; and moreover, there is substantial interindividual heterogeneity that needs to be understood. We aimed to identify genetic and gut microbiome factors that explain interindividual differences in mental health improvement after a dietary and lifestyle intervention for weight loss. We recruited 369 individuals participating in Digbi Health’s personalized digital therapeutics care program and evaluated the association of 23 genetic scores, the abundance of 178 gut microbial genera, and 42 bacterial pathways with mental health. We studied the presence/absence of anxiety or depression, or sleep problems at baseline and improvement on anxiety, depression, and insomnia after losing at least 2% body weight. Participants lost on average 5.4% body weight and >95% reported improving mental health symptom intensity. There were statistically significant correlations between: (a) genetic scores with anxiety or depression at baseline, gut microbial functions with sleep problems at baseline, and (b) genetic scores and gut microbial taxa and functions with anxiety, depression, and insomnia improvement. Our results are concordant with previous findings, including the association between anxiety or depression at baseline with genetic scores for alcohol use disorder and major depressive disorder. As well, our results uncovered new associations in line with previous epidemiological literature. As evident from previous literature, we also observed associations of gut microbial signatures with mental health including short-chain fatty acids and bacterial neurotoxic metabolites specifically with depression. Our results also show that microbiome and genetic factors explain self-reported mental health status and improvement better than demographic variables independently. The genetic and microbiome factors identified in this study provide the basis for designing and personalizing dietary interventions to improve mental health.
Collapse
Affiliation(s)
- Inti Pedroso
- Digbi Health, Mountain View, CA 94040, USA; (I.P.); (S.V.K.); (B.J.); (S.K.S.); (S.S.-R.); (T.U.); (K.M.M.); (C.I.); (C.R.-S.); (R.S.)
| | - Shreyas Vivek Kumbhare
- Digbi Health, Mountain View, CA 94040, USA; (I.P.); (S.V.K.); (B.J.); (S.K.S.); (S.S.-R.); (T.U.); (K.M.M.); (C.I.); (C.R.-S.); (R.S.)
| | - Bharat Joshi
- Digbi Health, Mountain View, CA 94040, USA; (I.P.); (S.V.K.); (B.J.); (S.K.S.); (S.S.-R.); (T.U.); (K.M.M.); (C.I.); (C.R.-S.); (R.S.)
| | - Santosh K. Saravanan
- Digbi Health, Mountain View, CA 94040, USA; (I.P.); (S.V.K.); (B.J.); (S.K.S.); (S.S.-R.); (T.U.); (K.M.M.); (C.I.); (C.R.-S.); (R.S.)
| | | | - Simitha Singh-Rambiritch
- Digbi Health, Mountain View, CA 94040, USA; (I.P.); (S.V.K.); (B.J.); (S.K.S.); (S.S.-R.); (T.U.); (K.M.M.); (C.I.); (C.R.-S.); (R.S.)
| | - Tejaswini Uday
- Digbi Health, Mountain View, CA 94040, USA; (I.P.); (S.V.K.); (B.J.); (S.K.S.); (S.S.-R.); (T.U.); (K.M.M.); (C.I.); (C.R.-S.); (R.S.)
| | - Karthik Marimuthu Muthukumar
- Digbi Health, Mountain View, CA 94040, USA; (I.P.); (S.V.K.); (B.J.); (S.K.S.); (S.S.-R.); (T.U.); (K.M.M.); (C.I.); (C.R.-S.); (R.S.)
| | - Carmel Irudayanathan
- Digbi Health, Mountain View, CA 94040, USA; (I.P.); (S.V.K.); (B.J.); (S.K.S.); (S.S.-R.); (T.U.); (K.M.M.); (C.I.); (C.R.-S.); (R.S.)
| | - Chandana Reddy-Sinha
- Digbi Health, Mountain View, CA 94040, USA; (I.P.); (S.V.K.); (B.J.); (S.K.S.); (S.S.-R.); (T.U.); (K.M.M.); (C.I.); (C.R.-S.); (R.S.)
| | - Parambir S. Dulai
- Division of Gastroenterology, Northwestern University, Chicago, IL 60208, USA;
| | - Ranjan Sinha
- Digbi Health, Mountain View, CA 94040, USA; (I.P.); (S.V.K.); (B.J.); (S.K.S.); (S.S.-R.); (T.U.); (K.M.M.); (C.I.); (C.R.-S.); (R.S.)
| | - Daniel Eduardo Almonacid
- Digbi Health, Mountain View, CA 94040, USA; (I.P.); (S.V.K.); (B.J.); (S.K.S.); (S.S.-R.); (T.U.); (K.M.M.); (C.I.); (C.R.-S.); (R.S.)
| |
Collapse
|
36
|
Ascone L, Garcia Forlim C, Gallinat J, Kühn S. Effects of a multi-strain probiotic on hippocampal structure and function, cognition, and emotional well-being in healthy individuals: a double-blind randomised-controlled trial. Psychol Med 2022; 52:1-11. [PMID: 35513910 DOI: 10.1017/s0033291722000988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Animal studies have shown beneficial effects of probiotic supplementation on the hippocampus (HC) and cognitive performance. Evidence in humans is scarce. It was hypothesised that probiotic supplementation is associated with enhanced hippocampal (HC) regional grey matter volume (rGMV), as well as HC functional connectivity (FC). Relatedly improvements in mnestic and navigational performance, or emotional well-being, were expected to be observed in healthy human volunteers. METHODS A randomised-controlled, double-blind trial (RCT) was conducted in N = 59 volunteers (age Mean = 27.1, s.d. = 6.7), applying a multi-strain probiotic (Vivomixx®) v. non-probiotic milk-powder placebo, each with 4.4 g/day, for 4 weeks. Volumetric data was extracted from 3T structural magnetic resonance images of total HC and -subfields. Voxel-based morphometry (VBM) and FreeSurfer-based analyses were performed. Potential neuroplastic change beyond HC was explored using whole-brain-VBM for white- and GMV. Seed-based FC was calculated based on HC. Cognitive tests included visual, map-based, object-location, and verbal memory, and spatial navigation. Mental health status (stress, anxiety, depression, and emotion-regulation) was assessed using self-reports. RESULTS There were no changes in HC-total, -subfield GMV, or FC, through probiotics. VBM revealed no changes at a whole-brain-level. There were no effects on cognitive performance or mental health. Evidence in favor of the null-hypothesis, using Bayesian statistics, was consistent. CONCLUSIONS The applied multi-strain probiotic did not elicit any effects concerning hippocampal structural plasticity, cognition, or mental well-being in young, healthy adults. For future studies, longer application/observation RCTs, perhaps in stressed, otherwise psychologically/ cognitively vulnerable, or ageing groups, with well-founded strain selection and investigation of mechanism, are advised.
Collapse
Affiliation(s)
- Leonie Ascone
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Caroline Garcia Forlim
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Simone Kühn
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Max Planck Institute for Human Development, Lise Meitner Group for Environmental Neuroscience, Lentzeallee 94, 14195 Berlin, Germany
| |
Collapse
|
37
|
Lee SHF, Ahmad SR, Lim YC, Zulkipli IN. The Use of Probiotic Therapy in Metabolic and Neurological Diseases. Front Nutr 2022; 9:887019. [PMID: 35592636 PMCID: PMC9110960 DOI: 10.3389/fnut.2022.887019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
The human gut is home to trillions of microbes that interact with host cells to influence and contribute to body functions. The number of scientific studies focusing on the gut microbiome has exponentially increased in recent years. Studies investigating factors that may potentially affect the gut microbiome and may be used for therapeutic purposes in diseases where dysbioses in the gut microbiome have been shown are of particular interest. This review compiles current evidence available in the scientific literature on the use of probiotics to treat metabolic diseases and autism spectrum disorders (ASDs) to analyze the efficacy of probiotics in these diseases. To do this, we must first define the healthy gut microbiome before looking at the interplay between the gut microbiome and diseases, and how probiotics affect this interaction. In metabolic diseases, such as obesity and diabetes, probiotic supplementation positively impacts pathological parameters. Conversely, the gut–brain axis significantly impacts neurodevelopmental disorders such as ASDs. However, manipulating the gut microbiome and disease symptoms using probiotics has less pronounced effects on neurodevelopmental diseases. This may be due to a more complex interplay between genetics and the environment in these diseases. In conclusion, the use of microbe-based probiotic therapy may potentially have beneficial effects in ameliorating the pathology of various diseases. Validation of available data for the development of personalized treatment regimens for affected patients is still required.
Collapse
|
38
|
Thurfah JN, Christine , Bagaskhara PP, Alfian SD, Puspitasari IM. Dietary Supplementations and Depression. J Multidiscip Healthc 2022; 15:1121-1141. [PMID: 35607362 PMCID: PMC9123934 DOI: 10.2147/jmdh.s360029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
Depression is a mood disturbance condition that occurs for more than two weeks in a row, leading to suicide. Due to adverse effects of depression, antidepressants and adjunctive therapies, such as dietary supplementation, are used for treatment. Therefore, this review explored and summarized dietary supplements’ types, dosages, and effectiveness in preventing and treating depression. A literature search of the PubMed database was conducted in August 2021 to identify studies assessing depression, after which scale measurements based on dietary supplements were identified. From the obtained 221 studies, we selected 63 papers. Results showed PUFA (EPA and DHA combination), vitamin D, and probiotics as the most common supplementation used in clinical studies to reduce depressive symptoms. We also observed that although the total daily PUFA dosage that exhibited beneficial effects was in the range of 0.7–2 g EPA and 0.4–0.8 g DHA daily, with an administration period of three weeks to four months, positive vitamin D-based supplementation effects were observed after administering doses of 2000 IU/day or 50,000 IU/week between 8 weeks and 24 months. Alternatively, microbes from the genus Lactobacillus and Bifidobacterium in the probiotic group with a minimum dose of 108 CFU in various dose forms effectively treated depression. Besides, a depression scale was helpful to assess the effect of an intervention on depression. Hence, PUFA, vitamin D, and probiotics were proposed as adjunctive therapies for depression treatment based on the results from this study.
Collapse
|
39
|
Tarutani S, Omori M, Ido Y, Yano M, Komatsu T, Okamura T. Effects of 4G-beta-D-Galactosylsucrose in patients with depression: A randomized, double-blinded, placebo-controlled, parallel-group comparative study. J Psychiatr Res 2022; 148:110-120. [PMID: 35123322 DOI: 10.1016/j.jpsychires.2022.01.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/24/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
Abstract
Advances in genetic research on microbiome have led to several trials on the effectiveness of synbiotics or probiotics in patients with depression; however, none have evaluated the efficacy of prebiotics. 4G-beta-D-Galactosylsucrose (Lactosucrose, LS) is selectively assimilated by Bifidobacterium as a prebiotic and improves microbiome diversity. However, as it is not clear if LS consumption can improve symptoms of depression, we investigated whether LS intake can improve depressive symptoms, quality of life (QOL), and self-efficacy by conducting a single cite, double-blinded, randomized controlled trial in 20 outpatients with depressive episodes (F32, ICD-10) for 24 weeks. Participants (age range, 36-72 years) were randomized to the LS (n = 9) or placebo groups (n = 11). Primary outcome was improvement in total Montgomery Asberg Depression Rating Scale (MADRS) score, and the secondary outcomes were MADRS subscores, global self-efficacy scale (GSES) score, World Health Organization QOL (WHO/QOL-26) score, and 16S rRNA analysis of the fecal microbiome. LS consumption did not significantly improve total MADRS scores (-2 (-16 to 16) vs 0 (-6 to 10), p = 0.552), but GSES tended to improve in the LS group (2.00 ± 4.24 vs -1.36 ± 4.15, p = 0.091) with a large effect size (Cohen's d = 0.802). Sequencing of 16S rRNA revealed individual-level differences in microbiome diversity changes due to the intervention. Thus, we show that LS intake can improve self-efficacy, but not depressive symptoms, even in a small sample. Additional studies that also regulate diet and ensure adherence may help determine a correlation between depression and the gut microbiome.
Collapse
Affiliation(s)
- Seiichiro Tarutani
- Department of Psychiatry, Shin-Abuyama Hospital, Osaka Institute of Clinical Psychiatry, 4-10-1, Nasahara, Takatsuki, Osaka, 569-1041, Japan.
| | - Maiko Omori
- Faculty of Human Life and Science, Doshisha Women's College, Teramachi Nishiiru, Imadegawa-dori, Kamigyo-ku, Kyoto, 602-0893, Japan; Department of Food Science and Nutrition, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara, Nara, 631-8505, Japan.
| | - Yumiko Ido
- Faculty of Health and Nutrition Baika Women's University, 2-19-5, Shukunosho, Ibaraki, Osaka, 567-0051, Japan; Department of Food and Nutrition, Faculty of Home Economies, Kyoto Women's University, 35 Kitahiyoshi-cho, Imakumano, Higashiyama-ku, Kyoto, 605-8501, Japan.
| | - Megumu Yano
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki, Nishinomiya, Hyogo, 663-8558, Japan.
| | - Tatsushi Komatsu
- Faculty of Human Life and Science, Doshisha Women's College, Teramachi Nishiiru, Imadegawa-dori, Kamigyo-ku, Kyoto, 602-0893, Japan.
| | - Takehiko Okamura
- Department of Psychiatry, Shin-Abuyama Hospital, Osaka Institute of Clinical Psychiatry, 4-10-1, Nasahara, Takatsuki, Osaka, 569-1041, Japan.
| |
Collapse
|
40
|
Musazadeh V, Zarezadeh M, Faghfouri AH, Keramati M, Jamilian P, Jamilian P, Mohagheghi A, Farnam A. Probiotics as an effective therapeutic approach in alleviating depression symptoms: an umbrella meta-analysis. Crit Rev Food Sci Nutr 2022; 63:8292-8300. [PMID: 35348020 DOI: 10.1080/10408398.2022.2051164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Growing evidence has suggested that the consumption of probiotics can decrease depressive symptoms. However, even the results of meta-analyses are conflicting. In this regard, we performed an umbrella meta-analysis and proposed the decisive impacts of probiotics on depressive symptoms. The following international databases were searched up to July 2021: PubMed/Medline, Web of Science, Scopus, EMBASE, and Google Scholar. Meta-analyses investigating the impact of supplementation of probiotics on depression symptoms in adults were included. According to the studies, random-effects model was used to perform the analysis. Subgroup analysis was performed by dosage of probiotics, duration of supplementation and total sample size. Publication bias was assessed using Egger's, Begg's and visual inspection of funnel plot. Ten meta-analyses (n = 8886 participants) were included in study. The pooled data indicated that probiotic supplementation significantly reduced depression symptoms (ES= -1.41; 95% CI: -2.53, -0.30, p = 0.016; I2 = 99.4, p = <0.001). Subgroup analysis of studies with intervention duration >8 weeks and dosage >10 × 109 CFU demonstrated a more robust effect of probiotics on decreasing depression symptoms. There was also significant between-study heterogeneity in which dosage was identified as source of it. The results of present umbrella meta-analysis suggest administration of probiotics for relieving depression symptoms for >8 weeks with dosage of >10 × 109 CFU.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2051164.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Community Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Hossein Faghfouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Community Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Keramati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Community Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parmida Jamilian
- School of Pharmacy and Bio Engineering, Keele University, Staffordshire, UK
| | - Parsa Jamilian
- Keele University School of Medicine, Keele University, Staffordshire, UK
| | - Arash Mohagheghi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Farnam
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Karbownik MS, Mokros Ł, Kowalczyk E. Who Benefits from Fermented Food Consumption? A Comparative Analysis between Psychiatrically Ill and Psychiatrically Healthy Medical Students. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3861. [PMID: 35409544 PMCID: PMC8997937 DOI: 10.3390/ijerph19073861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022]
Abstract
Probiotic therapies and fermented food diets hold promise for improving mental health. Although in this regard psychiatric patients appear to benefit more than healthy individuals, no research has been performed to directly evaluate this hypothesis. The present study examined a cohort of medical students facing a stressful event, and some of the students reported suffering from chronic psychiatric diseases. The amount of fermented food consumption was calculated with the use of seven-day dietary records, while depressive and anxiety symptoms were assessed with the use of the Patient Health Questionnaire-9 and Generalized Anxiety Disorder-7, respectively. In psychiatrically healthy medical students under psychological stress (n = 372), higher fermented food consumption was associated with more depressive and anxiety symptoms. In contrast, psychiatrically ill medical students (n = 25, 6.3% of all the participants) were found to present a negative association between the amount of fermented food consumed and the severity of depressive symptoms (adjusted β -0.52, 95% CI -0.85 to -0.19, p = 0.0042); however, this relationship was insignificant for anxiety symptoms (adjusted β -0.22, 95% CI -0.59 to 0.15, p = 0.22). A significant interaction was found between the consumption of fermented food and psychiatric diagnosis in predicting depressive symptoms (p = 0.0001), and a borderline significant interaction for anxiety symptoms (p = 0.053). In conclusion, psychiatrically ill people, but not healthy ones, may benefit from fermented food consumption in terms of alleviation of depressive symptoms. Our findings require cautious interpretation and further investigation.
Collapse
Affiliation(s)
- Michał Seweryn Karbownik
- Department of Pharmacology and Toxicology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Łukasz Mokros
- Department of Clinical Pharmacology, Medical University of Lodz, Kopcińskiego 22, 90-153 Lodz, Poland;
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland;
| |
Collapse
|
42
|
Karbownik MS, Mokros Ł, Dobielska M, Kowalczyk M, Kowalczyk E. Association Between Consumption of Fermented Food and Food-Derived Prebiotics With Cognitive Performance, Depressive, and Anxiety Symptoms in Psychiatrically Healthy Medical Students Under Psychological Stress: A Prospective Cohort Study. Front Nutr 2022; 9:850249. [PMID: 35308282 PMCID: PMC8929173 DOI: 10.3389/fnut.2022.850249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 12/22/2022] Open
Abstract
Background Gut microbiota-based therapeutic strategies, such as probiotic and prebiotic preparations, may benefit mental health. However, commonly consumed fermented and prebiotic-containing foods have not been well-tested. The aim of the present study was to determine whether consumption of fermented food and food-derived prebiotics is associated with cognitive performance, depressive, and anxiety symptoms in psychiatrically healthy medical students under psychological stress. Methods The study protocol with data analysis plan was prospectively registered. Food consumption was evaluated with a 7-day dietary record. Cognitive performance was modeled with academic examination performance in relation to subject knowledge. Pre-exam depressive and anxiety symptoms were assessed with the Patient Health Questionnaire-9 and Generalized Anxiety Disorder-7, respectively. Results In total, 372 medical students (22.7 ± 1.1 years of age, 66% female) completed the study. No relationship was observed between cognitive performance under stress and either fermented food (adjusted β 0.02, 95% CI −0.07–0.11, p = 0.63) or food-derived prebiotics consumption (adjusted β −0.00, 95% CI −0.09–0.09, p = 0.99). High intake of fermented food was associated with more severe depressive (adjusted β 0.11, 95% CI 0.01–0.20, p = 0.032) and anxiety symptoms under stress (adjusted β 0.13, 95% CI 0.04–0.22, p = 0.0065); however, no such link was observed for food-derived prebiotics (adjusted β 0.03, 95% CI −0.07–0.13, p = 0.50 and −0.01, 95% CI −0.11–0.08, p = 0.83, for depression and anxiety, respectively). Conclusions Under psychological stress in medical students, consumption of fermented food and food-derived prebiotics appears to be not associated with cognitive performance. High intake of fermented food, but not food-derived prebiotics, may be associated with severity of depressive and anxiety symptoms. The safety of fermented food in this regard therefore requires further clarification.
Collapse
Affiliation(s)
- Michał Seweryn Karbownik
- Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
- *Correspondence: Michał Seweryn Karbownik
| | - Łukasz Mokros
- Department of Clinical Pharmacology, Medical University of Lodz, Łódź, Poland
| | - Maria Dobielska
- Students' Research Club, Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
| | | | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
43
|
Chakrabarti A, Geurts L, Hoyles L, Iozzo P, Kraneveld AD, La Fata G, Miani M, Patterson E, Pot B, Shortt C, Vauzour D. The microbiota-gut-brain axis: pathways to better brain health. Perspectives on what we know, what we need to investigate and how to put knowledge into practice. Cell Mol Life Sci 2022; 79:80. [PMID: 35044528 PMCID: PMC8770392 DOI: 10.1007/s00018-021-04060-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
The gut and brain link via various metabolic and signalling pathways, each with the potential to influence mental, brain and cognitive health. Over the past decade, the involvement of the gut microbiota in gut-brain communication has become the focus of increased scientific interest, establishing the microbiota-gut-brain axis as a field of research. There is a growing number of association studies exploring the gut microbiota's possible role in memory, learning, anxiety, stress, neurodevelopmental and neurodegenerative disorders. Consequently, attention is now turning to how the microbiota can become the target of nutritional and therapeutic strategies for improved brain health and well-being. However, while such strategies that target the gut microbiota to influence brain health and function are currently under development with varying levels of success, still very little is yet known about the triggers and mechanisms underlying the gut microbiota's apparent influence on cognitive or brain function and most evidence comes from pre-clinical studies rather than well controlled clinical trials/investigations. Filling the knowledge gaps requires establishing a standardised methodology for human studies, including strong guidance for specific focus areas of the microbiota-gut-brain axis, the need for more extensive biological sample analyses, and identification of relevant biomarkers. Other urgent requirements are new advanced models for in vitro and in vivo studies of relevant mechanisms, and a greater focus on omics technologies with supporting bioinformatics resources (training, tools) to efficiently translate study findings, as well as the identification of relevant targets in study populations. The key to building a validated evidence base rely on increasing knowledge sharing and multi-disciplinary collaborations, along with continued public-private funding support. This will allow microbiota-gut-brain axis research to move to its next phase so we can identify realistic opportunities to modulate the microbiota for better brain health.
Collapse
Affiliation(s)
| | - Lucie Geurts
- International Life Sciences Institute, European Branch, Brussels, Belgium.
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | - Michela Miani
- International Life Sciences Institute, European Branch, Brussels, Belgium
| | | | - Bruno Pot
- Yakult Europe BV, Almere, The Netherlands
| | | | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
44
|
Pogačar MŠ, Mičetić-Turk D, Fijan S. Probiotics: current regulatory aspects of probiotics for use in different disease conditions. PROBIOTICS IN THE PREVENTION AND MANAGEMENT OF HUMAN DISEASES 2022:465-499. [DOI: 10.1016/b978-0-12-823733-5.00021-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Molavi N, Rasouli-Azad M, Mirzaei H, Matini AH, Banafshe HR, Valiollahzadeh M, Hassanzadeh M, Saghazade AR, Abbaszadeh-Mashkani S, Mamsharifi P, Ghaderi A. The Effects of Probiotic Supplementation on Opioid-Related Disorder in Patients under Methadone Maintenance Treatment Programs. Int J Clin Pract 2022; 2022:1206914. [PMID: 35685534 PMCID: PMC9159114 DOI: 10.1155/2022/1206914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/11/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Patients under methadone maintenance treatment programs (MMTPs) are susceptible to numerous complications (e.g., mental and metabolic disorders). This study evaluated the effects of probiotics on clinical symptoms, biomarkers of oxidative stress, inflammation, insulin resistance, and serum lipid content in patients receiving MMTPs. MATERIALS AND METHODS A randomized, double-blind, placebo-controlled trial was conducted among 70 patients receiving MMTPs to receive either 1.8 × 109 CFU/day probiotics (n = 35) or placebo (n = 35) for 12 weeks. Clinical symptoms and metabolic profiles were measured before and after the intervention in patients receiving MMTPs. RESULTS Compared with the placebo group, probiotic supplementation resulted in a significant improvement in the severity of depression (P < 0.05). In addition, probiotic administration significantly decreased fasting plasma glucose (FPG), total cholesterol, and low-density lipoprotein cholesterol (LDL cholesterol) (P < 0.05). Furthermore, probiotics resulted in a significant reduction in high-sensitivity C-reactive protein (hs-CRP) and a significant elevation in total antioxidant capacity (TAC) and total glutathione (GSH) levels (P < 0.05). CONCLUSION Treatment with probiotics for 12 weeks to patients receiving MMTPs had beneficial effects on symptoms of depression, as well as several metabolic profiles. Clinical Trial Registration: this study was registered in the Iranian website (https://www.irct.ir) for clinical trials registration (https://fa.irct.ir/trial/46363/IRCT20170420033551N9). The registration date is March 22, 2020.
Collapse
Affiliation(s)
- Nader Molavi
- Department of Addiction Studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran
| | - Morad Rasouli-Azad
- International Center for Comparative Criminology, University of Montreal, Montreal, Canada
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hassan Matini
- Department of Clinical Pathology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Department of Addiction Studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Majid Hassanzadeh
- Department of Addiction Studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Reza Saghazade
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Abbaszadeh-Mashkani
- Trauma Nursing Research Center, Faculty of Nursing and Midwifery, Kashan University of Medical Sciences, Kashan, Iran
| | - Peyman Mamsharifi
- Department of Psychology, Allameh Tabataba'i University, Tehran, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran
- Clinical Research Development Unit-Matini/Kargarnejad Hospital, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
46
|
So SY, Savidge TC. Gut feelings: the microbiota-gut-brain axis on steroids. Am J Physiol Gastrointest Liver Physiol 2022; 322:G1-G20. [PMID: 34730020 PMCID: PMC8698538 DOI: 10.1152/ajpgi.00294.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/31/2023]
Abstract
The intricate connection between central and enteric nervous systems is well established with emerging evidence linking gut microbiota function as a significant new contributor to gut-brain axis signaling. Several microbial signals contribute to altered gut-brain communications, with steroids representing an important biological class that impacts central and enteric nervous system function. Neuroactive steroids contribute pathologically to neurological disorders, including dementia and depression, by modulating the activity of neuroreceptors. However, limited information is available on the influence of neuroactive steroids on the enteric nervous system and gastrointestinal function. In this review, we outline how steroids can modulate enteric nervous system function by focusing on their influence on different receptors that are present in the intestine in health and disease. We also highlight the potential role of the gut microbiota in modulating neuroactive steroid signaling along the gut-brain axis.
Collapse
Affiliation(s)
- Sik Yu So
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Tor C Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
47
|
McGuinness AJ, Davis JA, Dawson SL, Loughman A, Collier F, O’Hely M, Simpson CA, Green J, Marx W, Hair C, Guest G, Mohebbi M, Berk M, Stupart D, Watters D, Jacka FN. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol Psychiatry 2022; 27:1920-1935. [PMID: 35194166 PMCID: PMC9126816 DOI: 10.1038/s41380-022-01456-3] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
The emerging understanding of gut microbiota as 'metabolic machinery' influencing many aspects of physiology has gained substantial attention in the field of psychiatry. This is largely due to the many overlapping pathophysiological mechanisms associated with both the potential functionality of the gut microbiota and the biological mechanisms thought to be underpinning mental disorders. In this systematic review, we synthesised the current literature investigating differences in gut microbiota composition in people with the major psychiatric disorders, major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ), compared to 'healthy' controls. We also explored gut microbiota composition across disorders in an attempt to elucidate potential commonalities in the microbial signatures associated with these mental disorders. Following the PRISMA guidelines, databases were searched from inception through to December 2021. We identified 44 studies (including a total of 2510 psychiatric cases and 2407 controls) that met inclusion criteria, of which 24 investigated gut microbiota composition in MDD, seven investigated gut microbiota composition in BD, and 15 investigated gut microbiota composition in SZ. Our syntheses provide no strong evidence for a difference in the number or distribution (α-diversity) of bacteria in those with a mental disorder compared to controls. However, studies were relatively consistent in reporting differences in overall community composition (β-diversity) in people with and without mental disorders. Our syntheses also identified specific bacterial taxa commonly associated with mental disorders, including lower levels of bacterial genera that produce short-chain fatty acids (e.g. butyrate), higher levels of lactic acid-producing bacteria, and higher levels of bacteria associated with glutamate and GABA metabolism. We also observed substantial heterogeneity across studies with regards to methodologies and reporting. Further prospective and experimental research using new tools and robust guidelines hold promise for improving our understanding of the role of the gut microbiota in mental and brain health and the development of interventions based on modification of gut microbiota.
Collapse
Affiliation(s)
- A. J. McGuinness
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia
| | - J. A. Davis
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia
| | - S. L. Dawson
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia ,grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Parkville, VIC Australia
| | - A. Loughman
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia
| | - F. Collier
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia
| | - M. O’Hely
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia ,grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Parkville, VIC Australia
| | - C. A. Simpson
- grid.1008.90000 0001 2179 088XMelbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XMelbourne Neuropsychiatry Centre, Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne and Melbourne Health, Melbourne, VIC Australia
| | - J. Green
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia ,grid.1002.30000 0004 1936 7857Monash Alfred Psychiatry Research Centre (MAPcr), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Parkville, VIC Australia ,grid.466993.70000 0004 0436 2893Department of Psychiatry, Peninsula Health, Frankston, VIC Australia
| | - W. Marx
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia
| | - C. Hair
- grid.1021.20000 0001 0526 7079Deakin University, School of Medicine, Geelong, VIC Australia ,grid.414257.10000 0004 0540 0062Department of Gastroenterology, Barwon Health, Geelong, VIC Australia
| | - G. Guest
- grid.1021.20000 0001 0526 7079Deakin University, School of Medicine, Geelong, VIC Australia ,grid.415335.50000 0000 8560 4604Department of Surgery, University Hospital Geelong, Barwon Health, Geelong, VIC Australia
| | - M. Mohebbi
- grid.1021.20000 0001 0526 7079Biostatistics Unit, Faculty of Health, Deakin University, Melbourne, VIC Australia
| | - M. Berk
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia ,grid.1021.20000 0001 0526 7079Deakin University, School of Medicine, Geelong, VIC Australia ,grid.1008.90000 0001 2179 088XOrygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - D. Stupart
- grid.1021.20000 0001 0526 7079Deakin University, School of Medicine, Geelong, VIC Australia ,grid.415335.50000 0000 8560 4604Department of Surgery, University Hospital Geelong, Barwon Health, Geelong, VIC Australia
| | - D. Watters
- grid.1021.20000 0001 0526 7079Deakin University, School of Medicine, Geelong, VIC Australia ,grid.415335.50000 0000 8560 4604Department of Surgery, University Hospital Geelong, Barwon Health, Geelong, VIC Australia
| | - F. N. Jacka
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia ,grid.1058.c0000 0000 9442 535XCentre for Adolescent Health, Murdoch Children’s Research Institute, Melbourne, VIC Australia ,grid.418393.40000 0001 0640 7766Black Dog Institute, Sydney, NSW Australia ,grid.1011.10000 0004 0474 1797College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD Australia
| |
Collapse
|
48
|
Foster JA, Baker GB, Dursun SM. The Relationship Between the Gut Microbiome-Immune System-Brain Axis and Major Depressive Disorder. Front Neurol 2021; 12:721126. [PMID: 34650506 PMCID: PMC8508781 DOI: 10.3389/fneur.2021.721126] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Major depressive disorder (MDD) is a prominent cause of disability worldwide. Current antidepressant drugs produce full remission in only about one-third of MDD patients and there are no biomarkers to guide physicians in selecting the best treatment for individuals. There is an urgency to learn more about the etiology of MDD and to identify new targets that will lead to improved therapy and hopefully aid in predicting and preventing MDD. There has been extensive interest in the roles of the immune system and the gut microbiome in MDD and in how these systems interact. Gut microbes can contribute to the nature of immune responses, and a chronic inflammatory state may lead to increased responsiveness to stress and to development of MDD. The gut microbiome-immune system-brain axis is bidirectional, is sensitive to stress and is important in development of stress-related disorders such as MDD. Communication between the gut and brain involves the enteric nervous system (ENS), the autonomic nervous system (ANS), neuroendocrine signaling systems and the immune system, and all of these can interact with the gut microbiota. Preclinical studies and preliminary clinical investigations have reported improved mood with administration of probiotics and prebiotics, but large, carefully controlled clinical trials are now necessary to evaluate their effectiveness in treating MDD. The roles that several gut microbe-derived molecules such as neurotransmitters, short chain fatty acids and tryptophan play in MDD are reviewed briefly. Challenges and potential future directions associated with studying this important axis as it relates to MDD are discussed.
Collapse
Affiliation(s)
- Jane A. Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Glen B. Baker
- Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Serdar M. Dursun
- Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
49
|
Tanaka Y, Shimizu S, Shirotani M, Yorozu K, Kitamura K, Oehorumu M, Kawai Y, Fukuzawa Y. Nutrition and Cancer Risk from the Viewpoint of the Intestinal Microbiome. Nutrients 2021; 13:nu13103326. [PMID: 34684330 PMCID: PMC8541425 DOI: 10.3390/nu13103326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022] Open
Abstract
There are various important factors in reducing the risk of cancer development and progression; these factors may correct an unbalanced intake of nutrients to maintain the living body’s homeostasis, detoxify toxic materials, acting as an external factor, and maintain and strengthen the body’s immune function. In a normal cell environment, nutrients, such as carbohydrates, lipids, proteins, vitamins, and minerals, are properly digested and absorbed into the body, and, as a result, an environment in which cancer can develop and progress is prevented. It is necessary to prevent toxic materials from entering the body and to detoxify poisons in the body. If these processes occur correctly, cells work normally, and genes cannot be damaged. The most important factor in the fight against cancer and prevention of the development and progression of cancer is the immune system. This requires a nutritional state in which the immune system works well, allowing the intestinal microbiome to carry out all of its roles. In order to grow intestinal microbiota, the consumption of prebiotics, such as organic vegetables, fruits, and dietary fiber, and probiotics of effective intestinal microbiota, such as fermented foods and supplements, is required. Symbiosis, in which these organisms work together, is an effective means of reducing the risk of cancer. In addition, fecal microbiota transplantation (FMT) using ultrafine bubble water, produced specially by the Association for Clinical Research of Fecal Microbiota Transplantation Japan, is also useful for improving the nutritional condition and reducing the risk of cancer.
Collapse
Affiliation(s)
- Yoshimu Tanaka
- Jinzenkai Tanaka Clinic, 2-3-8, Ikunonishi, Ikuno-ku, Osaka 544-0024, Japan
- The Association for Clinical Research of Fecal Microbiota Transplantation Japan, 2-1-40, Katamachi, Miyakojima-ku, Osaka 534-0025, Japan; (S.S.); (M.S.); (K.Y.); (K.K.); (M.O.); (Y.K.); (Y.F.)
- Correspondence:
| | - Shin Shimizu
- The Association for Clinical Research of Fecal Microbiota Transplantation Japan, 2-1-40, Katamachi, Miyakojima-ku, Osaka 534-0025, Japan; (S.S.); (M.S.); (K.Y.); (K.K.); (M.O.); (Y.K.); (Y.F.)
- Symbiosis Research Institute, 6-7-4-106, Minatojimaminami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masahiko Shirotani
- The Association for Clinical Research of Fecal Microbiota Transplantation Japan, 2-1-40, Katamachi, Miyakojima-ku, Osaka 534-0025, Japan; (S.S.); (M.S.); (K.Y.); (K.K.); (M.O.); (Y.K.); (Y.F.)
- Luke’s Ashiya Clinic, 8-2, Ohara-cho, Ashiya, Hyogo 659-0092, Japan
| | - Kensho Yorozu
- The Association for Clinical Research of Fecal Microbiota Transplantation Japan, 2-1-40, Katamachi, Miyakojima-ku, Osaka 534-0025, Japan; (S.S.); (M.S.); (K.Y.); (K.K.); (M.O.); (Y.K.); (Y.F.)
- Ishinkai Yorozu Clinic, 1-118-4, Mihagino, Tottori 689-0202, Japan
| | - Kunihiro Kitamura
- The Association for Clinical Research of Fecal Microbiota Transplantation Japan, 2-1-40, Katamachi, Miyakojima-ku, Osaka 534-0025, Japan; (S.S.); (M.S.); (K.Y.); (K.K.); (M.O.); (Y.K.); (Y.F.)
- Kitamura Clinic, 4-3-8, Nishiki-machi, Onojo, Fukuoka 816-0935, Japan
| | - Masayuki Oehorumu
- The Association for Clinical Research of Fecal Microbiota Transplantation Japan, 2-1-40, Katamachi, Miyakojima-ku, Osaka 534-0025, Japan; (S.S.); (M.S.); (K.Y.); (K.K.); (M.O.); (Y.K.); (Y.F.)
- LIFE Clinic Tateshina, 3317-1, Toyohira, Chino, Nagano 391-0213, Japan
| | - Yuichi Kawai
- The Association for Clinical Research of Fecal Microbiota Transplantation Japan, 2-1-40, Katamachi, Miyakojima-ku, Osaka 534-0025, Japan; (S.S.); (M.S.); (K.Y.); (K.K.); (M.O.); (Y.K.); (Y.F.)
- Yuakai Kawai Clinic for Internal Medicine, 3-7-14, Higashi-Nakahama, Joto-ku, Osaka 536-0023, Japan
| | - Yoshitaka Fukuzawa
- The Association for Clinical Research of Fecal Microbiota Transplantation Japan, 2-1-40, Katamachi, Miyakojima-ku, Osaka 534-0025, Japan; (S.S.); (M.S.); (K.Y.); (K.K.); (M.O.); (Y.K.); (Y.F.)
- Aichi Medical Preemptive and Integrative Medicine Center, Aichi Medical University Hospital, Yazakokarimata, Nagakute, Aichi 480-1103, Japan
| |
Collapse
|
50
|
Poluektova EU, Danilenko VN. Probiotic Bacteria in the Correction of Depression Symptoms, Their Active Genes and Proteins. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542109009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|