1
|
Raghani N, Postwala H, Shah Y, Chorawala M, Parekh P. From Gut to Brain: Unraveling the Intricate Link Between Microbiome and Stroke. Probiotics Antimicrob Proteins 2024; 16:2039-2053. [PMID: 38831225 DOI: 10.1007/s12602-024-10295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
Stroke, a neurological disorder, is intricately linked to the gut microbiota, influencing microbial composition and elevating the risk of ischemic stroke. The neuroprotective impact of short-chain fatty acids (SCFAs) derived from dietary fiber fermentation contrasts with the neuroinflammatory effects of lipopolysaccharide (LPS) from gut bacteria. The pivotal role of the gut-brain axis, facilitating bidirectional communication between the gut and the brain, is crucial in maintaining gastrointestinal equilibrium and influencing cognitive functions. An in-depth understanding of the interplay among the gut microbiota, immune system, and neurological outcomes in stroke is imperative for devising innovative preventive and therapeutic approaches. Strategies such as dietary adjustments, probiotics, prebiotics, antibiotics, or fecal transplantation offer promise in modulating stroke outcomes. Nevertheless, comprehensive research is essential to unravel the precise mechanisms governing the gut microbiota's involvement in stroke and to establish effective therapeutic interventions. The initiation of large-scale clinical trials is warranted to assess the safety and efficacy of interventions targeting the gut microbiota in stroke management. Tailored strategies that reinstate eubiosis and foster a healthy gut microbiota hold potential for both stroke prevention and treatment. This review underscores the gut microbiota as a promising therapeutic target in stroke and underscores the need for continued research to delineate its precise role and develop microbiome-based interventions effectively.
Collapse
Affiliation(s)
- Neha Raghani
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Mehul Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India.
| | - Priyajeet Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| |
Collapse
|
2
|
Wang YH, Liao JM, Jan MS, Wang M, Su HH, Tsai WH, Liu PH, Tsuei YS, Huang SS. Prophylactic use of probiotics as an adjunctive treatment for ischemic stroke via the gut-spleen-brain axis. Brain Behav Immun 2024; 123:784-798. [PMID: 39442634 DOI: 10.1016/j.bbi.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
A growing body of research has focused on the role of spleen in orchestrating brain injury through the peripheral immune system following stroke, highlighting the brain-spleen axis as a potential target for mitigating neuronal damage during stroke. The gut microbiota plays a pivotal role in the bidirectional communication between the gut and the brain. Several studies have suggested that probiotic supplements hold promise as a strategic approach to maintaining a balanced intestinal microecology, reducing the apoptosis of intestinal epithelial cells, protecting the intestinal mucosal and blood-brain barrier (BBB), enhancing both intestinal and systemic immune functions, and thereby potentially affecting the pathogenesis and progression of ischemic stroke. In this study, we aimed to clarify the neuroprotective effects of supplementation with Lactobacillus, specifically Limosilactobacillus reuteri GMNL-89 (G89) and Lacticaseibacillus paracasei GMNL-133 (G133) on ischemic stroke and investigate how G89 and G133 modulate the communication mechanisms between the gut, brain, and spleen following ischemic stroke. We explored the neuroprotection and the underlying mechanisms of Lactobacillus supplementation in C57BL/6 mice subjected to permanent middle cerebral artery occlusion. Our results revealed that oral treatment with G89 or G133 alone, as well as oral administration combining G89 and G133, significantly decreased the infarct volume and improved the neurological function in mice with ischemic stroke. Moreover, G89 treatment alone preserved the tight junction integrity of gut barrier, while G133 alone and the combined treatment of G89 and G133 would significantly decreased the BBB permeability, and thereby significantly attenuated stroke-induced local and systemic inflammatory responses. Both G89 and G133 regulated cytotoxic T cells, and the balance between T helper 1 cells and T helper 2 cells in the spleen following ischemic stroke. Additionally, the combined administration of G89 and G133 improved the gut dysbiosis and significantly increased the concentration of short-chain fatty acids. In conclusion, our findings suggest that G89 and G133 may be used as nutrient supplements, holding promise as a prospective approach to combat ischemic stroke by modulating the gut-spleen-brain axis.
Collapse
Affiliation(s)
- Yi-Hsin Wang
- Department of Physiology, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jiuan-Miaw Liao
- Department of Physiology, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Shiou Jan
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
| | - Meilin Wang
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Hsing-Hui Su
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan
| | - Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, Tainan 741014, Taiwan
| | - Pei-Hsun Liu
- Department & Institute of Physiology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuang-Seng Tsuei
- College of Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Surgical Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Neurosurgery, Taichung Verterans General Hospital, Taichung, Taiwan
| | - Shiang-Suo Huang
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan; School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
3
|
Gu Q, Zhu C, Huang J. Risk factors for gastrointestinal bleeding in patients with intracerebral hemorrhage: A propensity score matching analysis. J Clin Neurosci 2024; 127:110772. [PMID: 39106607 DOI: 10.1016/j.jocn.2024.110772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND Gastrointestinal bleeding (GIB) is a common complication of intracerebral hemorrhage (ICH). Rate pressure product (RPP) is an objective hemodynamic index that is closely related to the prognosis of cardia-cerebrovascular disease. The purpose of this study was to investigate the relationship between RPP and GIB in ICH patients. METHODS We retrospectively analyzed data from ICH patients admitted to the neurosurgery department of Nanchang University affiliated with Ganzhou Hospital from January 2019 to December 2021. The patients were divided into a GIB group and a non-GIB group according to whether they had GIB. Propensity score matching was used to match between the two groups. Univariate analysis was used to select factors affecting GIB, and multivariate conditional logistic regression was used to analyze the independent factors associated with GIB. RESULTS There were 1232 patients included in the study, including 182 in the GIB group and 1050 in the non-GIB group, and 182 pairs of patients were successfully matched through propensity score matching. The univariate analysis showed that high RPP, low Glasgow coma score (GCS), fibrinogen, D-dimer and PPIs were factors associated with GIB. Multivariate conditional logistic regression showed that high RPP, low GCS and urokinase were independent risk factors for GIB, and PPIs was a protective factor for GIB. CONCLUSIONS High RPP, low GCS and urokinase were independent risk factors for GIB, and PPIs was a protective factor for GIB. Patients with a high risk of developing GIB should be monitored closely. Nevertheless, multicenter prospective studies with more patients are needed to further validate the results.
Collapse
Affiliation(s)
- Qiuping Gu
- Department of Gastroenterology, Nanchang University Affiliated Ganzhou Hospital, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China.
| | - Chunping Zhu
- Department of Gastroenterology, Nanchang University Affiliated Ganzhou Hospital, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China.
| | - Jiaming Huang
- Department of Gastroenterology, Nanchang University Affiliated Ganzhou Hospital, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China; Department of Gastroenterology, Xinfeng People's Hospital, Xinfeng, Jiangxi 341000, China.
| |
Collapse
|
4
|
Rahman Z, Bhale NA, Dikundwar AG, Dandekar MP. Multistrain Probiotics with Fructooligosaccharides Improve Middle Cerebral Artery Occlusion-Driven Neurological Deficits by Revamping Microbiota-Gut-Brain Axis. Probiotics Antimicrob Proteins 2024; 16:1251-1269. [PMID: 37365420 DOI: 10.1007/s12602-023-10109-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Recent burgeoning literature unveils the importance of gut microbiota in the neuropathology of post-stroke brain injury and recovery. Indeed, ingestion of prebiotics/probiotics imparts positive effects on post-stroke brain injury, neuroinflammation, gut dysbiosis, and intestinal integrity. However, information on the disease-specific preference of selective prebiotics/probiotics/synbiotics and their underlying mechanism is yet elusive. Herein, we examined the effect of a new synbiotic formulation containing multistrain probiotics (Lactobacillus reuteri UBLRu-87, Lactobacillus plantarum UBLP-40, Lactobacillus rhamnosus UBLR-58, Lactobacillus salivarius UBLS-22, and Bifidobacterium breve UBBr-01), and prebiotic fructooligosaccharides using a middle cerebral artery occlusion (MCAO) model of cerebral ischemia in female and male rats. Three weeks pre-MCAO administration of synbiotic rescinded the MCAO-induced sensorimotor and motor deficits on day 3 post-stroke in rotarod, foot-fault, adhesive removal, and paw whisker test. We also observed a decrease in infarct volume and neuronal death in the ipsilateral hemisphere of synbiotic-treated MCAO rats. The synbiotic treatment also reversed the elevated levels/mRNA expression of the glial fibrillary acidic protein (GFAP), NeuN, IL-1β, TNF-α, IL-6, matrix metalloproteinase-9, and caspase-3 and decreased levels of occludin and zonula occludens-1 in MCAO rats. 16S rRNA gene-sequencing data of intestinal contents indicated an increase in genus/species of Prevotella (Prevotella copri), Lactobacillus (Lactobacillus reuteri), Roseburia, Allobaculum, and Faecalibacterium prausnitzii, and decreased abundance of Helicobacter, Desulfovibrio, and Akkermansia (Akkermansia muciniphila) in synbiotic-treated rats compared to the MCAO surgery group. These findings confer the potential benefits of our novel synbiotic preparation for MCAO-induced neurological dysfunctions by reshaping the gut-brain-axis mediators in rats.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Nagesh A Bhale
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
5
|
Nuszkiewicz J, Kukulska-Pawluczuk B, Piec K, Jarek DJ, Motolko K, Szewczyk-Golec K, Woźniak A. Intersecting Pathways: The Role of Metabolic Dysregulation, Gastrointestinal Microbiome, and Inflammation in Acute Ischemic Stroke Pathogenesis and Outcomes. J Clin Med 2024; 13:4258. [PMID: 39064298 PMCID: PMC11278353 DOI: 10.3390/jcm13144258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Acute ischemic stroke (AIS) remains a major cause of mortality and long-term disability worldwide, driven by complex and multifaceted etiological factors. Metabolic dysregulation, gastrointestinal microbiome alterations, and systemic inflammation are emerging as significant contributors to AIS pathogenesis. This review addresses the critical need to understand how these factors interact to influence AIS risk and outcomes. We aim to elucidate the roles of dysregulated adipokines in obesity, the impact of gut microbiota disruptions, and the neuroinflammatory cascade initiated by lipopolysaccharides (LPS) in AIS. Dysregulated adipokines in obesity exacerbate inflammatory responses, increasing AIS risk and severity. Disruptions in the gut microbiota and subsequent LPS-induced neuroinflammation further link systemic inflammation to AIS. Advances in neuroimaging and biomarker development have improved diagnostic precision. Here, we highlight the need for a multifaceted approach to AIS management, integrating metabolic, microbiota, and inflammatory insights. Potential therapeutic strategies targeting these pathways could significantly improve AIS prevention and treatment. Future research should focus on further elucidating these pathways and developing targeted interventions to mitigate the impacts of metabolic dysregulation, microbiome imbalances, and inflammation on AIS.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Beata Kukulska-Pawluczuk
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Katarzyna Piec
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Dorian Julian Jarek
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Karina Motolko
- Student Research Club of Neurology, Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland;
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| |
Collapse
|
6
|
Huang Y, Li Y, Guan D, Pan Y, Yang C, Liu H, Chen C, Chen W, Liu J, Wan T, Zhuang L, Wang Q, Zhang Y. Acorus tatarinowii oils exert protective effects on microglia-mediated inflammatory injury via restoring gut microbiota composition in experimental stroke rats. Brain Res Bull 2024; 213:110990. [PMID: 38821245 DOI: 10.1016/j.brainresbull.2024.110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Growing evidence has demonstrated that gut microbiota could be developed as a therapeutic target due to its contribution to microglia activation in the pathological process of ischemic stroke. Acorus tatarinowii oils (AT oils), which is considered as the active fraction of a traditional Chinese herbal medicine Acorus tatarinowii, exerts various bioactivities and prebiotic effects. However, it remains unclear that the effect of AT oils on inflammatory response after ischemic stroke and whether its underlying mechanism is associated to gut microbiota and the intestinal barrier. In the current study, we aim to investigate the anti-microglial neuroinflammation mechanism of AT oils in a middle cerebral artery occlusion model of ischemic stroke. The compositions of AT oils were identified by GC-MS. Our results demonstrated that AT oils could effectively relieve cerebral infarction, inhibit neuronal apoptosis, degrade the release of pro-inflammatory factors (TNF-α, IL-17, IL-6 and IFN-γ), and mediate the polarization of microglia. Moreover, AT oils restored the composition and the balance of gut microbiota in stroke rats, and reduced abundance of opportunistic genera including Verrucomicrobia, Akkermansia and Tenericutes, as well as increased beneficial bacteria abundance such as Tenericutes and Prevotella_copri. To investigate the role of gut microbiota on AT oils against ischemic stroke, we conducted the fecal microbiota transplantation (FMT) experiments with gut microbiota consumption, which suggested that the depletion of gut microbiota took away the protective effect of AT oils, confirming the importance of gut microbiota in the protective effect of AT oils on ischemic stroke. FMT experiments have demonstrated that AT oils preserved the gut permeability and blood-brain barrier, as well as mediated the microglial phenotype under the intervention of gut microbiota. In summary, AT oils could efficaciously moderate neuronal damage and intervene microglial phenotype by reversing gut microbiota disorder in ischemic stroke rats.
Collapse
Affiliation(s)
- Yueyue Huang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530022, China
| | - Yongyi Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Danni Guan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Yaru Pan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Chao Yang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Huina Liu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Chaoyan Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Weitao Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Jinman Liu
- Affiliated Jiangmen TCM Hospital, Ji'nan University, Jiangmen, Guangdong 529000, China
| | - Ting Wan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Lixing Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Qi Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China.
| | - Yifan Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong 510405, China.
| |
Collapse
|
7
|
Shuai H, Wang Z, Xiao Y, Ge Y, Mao H, Gao J. Genetically supported causality between gut microbiota, immune cells, and ischemic stroke: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1402718. [PMID: 38894965 PMCID: PMC11185428 DOI: 10.3389/fmicb.2024.1402718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Background Previous studies have highlighted a robust correlation between gut microbiota/immune cells and ischemic stroke (IS). However, the precise nature of their causal relationship remains uncertain. To address this gap, our study aims to meticulously investigate the causal association between gut microbiota/immune cells and the likelihood of developing IS, employing a two-sample Mendelian randomization (MR) analysis. Methods Our comprehensive analysis utilized summary statistics from genome-wide association studies (GWAS) on gut microbiota, immune cells, and IS. The primary MR method employed was the inverse variance-weighted (IVW) approach. To address potential pleiotropy and identify outlier genetic variants, we incorporated the Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) technique, along with MR-Egger regression. Heterogeneity was assessed using Cochran's Q-test. Additionally, leave-one-out analysis was conducted to pinpoint any individual genetic variant influencing the observed causal associations. Finally, a reverse MR analysis was performed to explore the potential of reverse causation. Results Our investigation revealed four gut microbial taxa and 16 immune cells with a significant causal relationship with IS (p < 0.05). Notably, two bacterial features and five immunophenotypes were strongly associated with a lower IS risk: genus.Barnesiella.id.944 (OR: 0.907, 95% CI: 0.836-0.983, p = 0.018), genus.LachnospiraceaeNK4A136group.id.11319 (OR: 0.918, 95% CI: 0.853-0.983, p = 0.988), Activated & resting Treg % CD4++ (OR: 0.977, 95% CI: 0.956-0.998, p = 0.028). Additionally, significant associations between IS risk and two bacterial features along with eleven immunophenotypes were observed: genus.Paraprevotella.id.962 (OR: 1.106, 95% CI: 1.043-1.172, p < 0.001), genus.Streptococcus.id.1853 (OR: 1.119, 95% CI: 1.034-1.210, p = 0.005), CD127 on granulocyte (OR: 1.039, 95% CI: 1.009-1.070, p = 0.011). Our analyses did not reveal heterogeneity based on the Cochrane's Q-test (p > 0.05) nor indicate instances of horizontal pleiotropy according to MR-Egger and MR-PRESSO analyses (p > 0.05). Furthermore, the robustness of our MR results was confirmed through leave-one-out analysis. Conclusion Our study provides further evidence supporting the potential association between gut microbiota and immune cells in relation to IS, shedding light on the underlying mechanisms that may contribute to this condition. These findings lay a solid foundation for future investigations into targeted prevention strategies.
Collapse
Affiliation(s)
- Han Shuai
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
- Peking University People’s Hospital, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Zi Wang
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yinggang Xiao
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yali Ge
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hua Mao
- Peking University People’s Hospital, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Ju Gao
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Chen YZ, Huang ZY, Zhou WW, Li ZY, Li XP, Chen SS, Ma JK. Uncovering the characteristics of the gut microbiota in patients with ischemic stroke and hemorrhagic stroke. Sci Rep 2024; 14:11776. [PMID: 38782999 PMCID: PMC11116394 DOI: 10.1038/s41598-024-62606-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
This study aimed to explore the gut microbiota characteristics of ischemic and hemorrhagic stroke patients. A case-control study was conducted, and high-throughput sequencing of the V4-V5 region of 16S rRNA was used to analyze the differences in gut microbiota. The results showed that Proteobacteria was significantly increased in the ischemic stroke group compared with the healthy control group, while Fusobacteria was significantly increased in the hemorrhagic stroke group. In the ischemic stroke group, Butyricimonas, Alloprevotella, and Escherichia were significantly more abundant than in the healthy control group. In the hemorrhagic stroke group, Atopobium, Hungatella, Eisenbergiella, Butyricimonas, Odonbacter, Lachnociostridium, Alistipes, Parabacteroides, and Fusobacterium were significantly more abundant than in the healthy control group. Additionally, Alloprevotella, Ruminococcus, and Prevotella were significantly more abundant in the ischemic stroke group than in the hemorrhagic stroke group. The gut microbiota of ischemic and hemorrhagic stroke patients has significant diversity characteristics. These results provide new theoretical basis for exploring the prevention and treatment of different types of stroke through gut microbiota research.
Collapse
Affiliation(s)
- Yu-Zhu Chen
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, 530028, Guangxi, China
| | - Zhao-Yong Huang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, 530028, Guangxi, China
| | - Wei-Wen Zhou
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, 530028, Guangxi, China
| | - Zhong-You Li
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Peng Li
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, 530028, Guangxi, China
| | - Shi-Shi Chen
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Jin-Kui Ma
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, Guangdong, China.
| |
Collapse
|
9
|
Rahman Z, Padhy HP, Dandekar MP. Cell-Free Supernatant of Lactobacillus rhamnosus and Bifidobacterium breve Ameliorates Ischemic Stroke-Generated Neurological Deficits in Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10256-w. [PMID: 38656733 DOI: 10.1007/s12602-024-10256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
The beneficial effects of probiotics, postbiotics, and paraprobiotics have already been registered in managing ischemic stroke-generated neuroinflammation and gut dysbiosis. Herein, we examined the impact of cell-free supernatant (CFS) obtained from probiotics (Lactobacillus rhamnosus UBLR-58 and Bifidobacterium breve UBBr-01) in a rat transient middle cerebral artery occlusion (MCAO) model of focal cerebral injury. Pre-MCAO supplementation of probiotics (2 × 109 CFU/mL) for 21 days or CFS (1 mL/rat) for 7 days protect the MCAO-induced somatosensory and motor impairments recorded at 24 h and 72 h after reperfusion in foot-fault, rotarod, adhesive removal, and vibrissae-evoked forelimb placing tests. We also noted the reduced infarct area and neuronal degradation in the right hemisphere of probiotics- and CFS-recipient MCAO-operated animals. Moreover, MCAO-induced altered concentrations of glial-fibrillary acidic protein, NeuN, zonula occludens-1 (ZO-1), TLR4, IL-1β, IL-6, and TNF-α, as well as matrix metalloproteinase-9 (MMP9) were reversed in the treatment groups. Probiotics and CFS treatment ameliorated the elevated levels of IL-6, IL-1β, and MMP9 in the blood plasma of rats. The disrupted microbial phyla, Firmicutes-to-Bacteroides ratio, villi/crypt ratio, and decreased mucin-producing goblet cells, ZO-1, and occludin in the colon of MCAO-operated rats were recovered following probiotics and CFS treatment. NMR characterization of CFS and rat blood plasma revealed the presence of several important bacterial metabolites. These findings suggest that the CFS obtained from Lactobacillus rhamnosus UBLR-58 and Bifidobacterium breve UBBr-01 has the propensity to improve MCAO-generated neurological dysfunctions in rats by dampening neuroinflammation and modulating the gut-brain axis modulators.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, PIN 500037, Telangana, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, PIN 500037, Telangana, India.
| |
Collapse
|
10
|
Wang Z, Zhang QF, Guo M, Qi XX, Xing XH, Li G, Zhang SL. A case report of successful rescue using veno-arterial extracorporeal membrane oxygenation: managing cerebral-cardiac syndrome. Front Cardiovasc Med 2024; 11:1370696. [PMID: 38665233 PMCID: PMC11044681 DOI: 10.3389/fcvm.2024.1370696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction The presence of cerebral-cardiac syndrome, wherein brain diseases coincide with heart dysfunction, significantly impacts patient prognosis. In severe instances, circulatory failure may ensue, posing a life-threatening scenario necessitating immediate life support measures, particularly effective circulatory support methods. The application of extracorporeal membrane oxygenation (ECMO) is extensively employed as a valuable modality for delivering circulatory and respiratory support in the care of individuals experiencing life-threatening circulatory and respiratory failure. This approach facilitates a critical temporal window for subsequent interventions. Consequently, ECMO has emerged as a potentially effective life support modality for patients experiencing severe circulatory failure in the context of cerebral-cardiac syndrome. However, the existing literature on this field of study remains limited. Case description In this paper, we present a case study of a patient experiencing a critical cerebral-cardiac syndrome. The individual successfully underwent veno-arterial-ECMO (VA-ECMO) therapy, and the patient not only survived, but also received rehabilitation treatment, demonstrating its efficacy as a life support intervention. Conclusion VA-ECMO could potentially serve as an efficacious life support modality for individuals experiencing severe circulatory failure attributable to cerebral-cardiac syndrome.
Collapse
Affiliation(s)
| | | | | | | | | | - Gang Li
- Department of Critical Care Medicine, Peking University International Hospital, Beijing, China
| | - Shuang-Long Zhang
- Department of Critical Care Medicine, Peking University International Hospital, Beijing, China
| |
Collapse
|
11
|
De Rosa S, Battaglini D, Llompart-Pou JA, Godoy DA. Ten good reasons to consider gastrointestinal function after acute brain injury. J Clin Monit Comput 2024; 38:355-362. [PMID: 37418061 DOI: 10.1007/s10877-023-01050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
The brain-gut axis represents a bidirectional communication linking brain function with the gastrointestinal (GI) system. This interaction comprises a top-down communication from the brain to the gut, and a bottom-up communication from the gut to the brain, including neural, endocrine, immune, and humoral signaling. Acute brain injury (ABI) can lead to systemic complications including GI dysfunction. Techniques for monitoring GI function are currently few, neglected, and many under investigation. The use of ultrasound could provide a measure of gastric emptying, bowel peristalsis, bowel diameter, bowel wall thickness and tissue perfusion. Despite novel biomarkers represent a limitation in clinical practice, intra-abdominal pressure (IAP) is easy-to-use and measurable at bedside. Increased IAP can be both cause and consequence of GI dysfunction, and it can influence cerebral perfusion pressure and intracranial pressure via physiological mechanisms. Here, we address ten good reasons to consider GI function in patients with ABI, highlighting the importance of its assessment in neurocritical care.
Collapse
Affiliation(s)
- Silvia De Rosa
- Centre for Medical Sciences - CISMed, University of Trento, Via S. Maria Maddalena 1, 38122, Trento, Italy
- Anesthesia and Intensive Care, Santa Chiara Regional Hospital, APSS, Trento, Italy
| | - Denise Battaglini
- UO Clinica Anestesiologica e Terapia Intensiva, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Juan Antonio Llompart-Pou
- Servei de Medicina Intensiva, Hospital Universitari Son Espases, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | | |
Collapse
|
12
|
Luo Y, Chang G, Yu G, Lin Y, Zhang Q, Wang Z, Han J. Unveiling the negative association of Faecalibacterium prausnitzii with ischemic stroke severity, impaired prognosis and pro-inflammatory markers. Heliyon 2024; 10:e26651. [PMID: 38434312 PMCID: PMC10904243 DOI: 10.1016/j.heliyon.2024.e26651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Background The correlation between acute ischemic stroke (AIS) and gut microbiota has opened a promising avenue for improving stroke prognosis through the utilization of specific gut bacterial species. This study aimed to identify gut bacterial species in AIS patients and their correlation with stroke severity, 3-month prognosis, and inflammatory markers. Methods: We enrolled 59 AIS patients (from June 2021 to July 2022) and 31 age-matched controls with similar cerebrovascular risk profiles but no stroke history. Fecal samples were analyzed using 16 S rDNA V3-V4 sequencing to assess α and β diversity and identify significant microbiota differences. AIS cases were categorized based on the National Institute of Health Stroke Scale (NIHSS) scores and 3-month modified Rankin Scale (mRS) scores. Subgroup analyses were performed, and correlation analysis was used to examine associations between flora abundance, inflammatory markers and stroke outcome. Results Significant differences in β-diversity were observed between case and control groups (P < 0.01). Bacteroides dominated AIS samples, while Clostridia, Lachnospirales, Lachnospiraceae, Ruminococcaceae, Faecalibacterium, and Faecalibacterium prausnitzii were prominent in controls. Faecalibacterium and Faecalibacterium prausnitzii were significantly reduced in non-minor stroke and 3-month poor prognosis groups compared to controls, while this difference was less pronounced in patients with minor stroke and 3-month good prognosis. Both Faecalibacterium and Faecalibacterium prausnitzii were negatively correlated with the NIHSS score on admission (r = -0.48, -0.48, P < 0.01) and 3-month mRS score (r = -0.48, -0.44, P < 0.01). Additionally, they showed negative correlations with pro-inflammatory factors and positive correlations with anti-inflammatory factors (both P < 0.01). Conclusions Faecalibacterium prausnitzii is negatively associated with stroke severity, impaired prognosis, and pro-inflammatory markers, highlighting its potential application in AIS treatments.
Collapse
Affiliation(s)
- Yayin Luo
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Geng Chang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guangxiang Yu
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanan Lin
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiuyi Zhang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | | | | |
Collapse
|
13
|
Battaglini D, De Rosa S, Godoy DA. Crosstalk Between the Nervous System and Systemic Organs in Acute Brain Injury. Neurocrit Care 2024; 40:337-348. [PMID: 37081275 DOI: 10.1007/s12028-023-01725-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
Organ crosstalk is a complex biological communication between distal organs mediated via cellular, soluble, and neurohormonal actions, based on a two-way pathway. The communication between the central nervous system and peripheral organs involves nerves, endocrine, and immunity systems as well as the emotional and cognitive centers of the brain. Particularly, acute brain injury is complicated by neuroinflammation and neurodegeneration causing multiorgan inflammation, microbial dysbiosis, gastrointestinal dysfunction and dysmotility, liver dysfunction, acute kidney injury, and cardiac dysfunction. Organ crosstalk has become increasingly popular, although the information is still limited. The present narrative review provides an update on the crosstalk between the nervous system and systemic organs after acute brain injury. Future research might help to target this pathophysiological process, preventing the progression toward multiorgan dysfunction in critically ill patients with brain injury.
Collapse
Affiliation(s)
- Denise Battaglini
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia De Rosa
- Centre for Medical Sciences, University of Trento, Via S. Maria Maddalena 1, 38122, Trento, Italy.
- Anesthesia and Intensive Care, Santa Chiara Regional Hospital, APSS Trento, Trento, Italy.
| | | |
Collapse
|
14
|
Nie H, Ge J, Yang K, Peng Z, Wu H, Yang T, Mei Z. Naotaifang III Protects Against Cerebral Ischemia Injury Through LPS/TLR4 Signaling Pathway in the Microbiota-Gut-Brain Axis. Drug Des Devel Ther 2023; 17:3571-3588. [PMID: 38058793 PMCID: PMC10697094 DOI: 10.2147/dddt.s421658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023] Open
Abstract
Background Ischemic stroke (IS) is a leading cause of mortality worldwide. Naotaifang III is a new Chinese herbal formula to treat IS. Previous studies have shown that Astragali Radix, Puerariae Lobatae Radix, Chuanxiong Rhizoma, and Rhei Radix Et Rhizoma in Naotaifang III were able to regulate the imbalance of intestinal microbiota during cerebral ischemia injury. Methods Rats were randomly divided into sham operation group, normal control group, middle cerebral artery occlusion (MCAO) group, intestinal microbiota imbalance MCAO group, Naotaifang III group, and normal bacteria transplantation group, with 15 rats in each group. Then, neurological function scores and cerebral infarction volume were detected; haematoxylin and eosin staining and Golgi silver staining were used to observe morphological changes in brain tissue. Meanwhile, the lipopolysaccharide (LPS) and cerebral cortex interleukin (IL)-1β were detected by enzyme-linked immunosorbent assay (ELISA); the expressions of Toll-like receptor (TLR)-4 and nuclear factor kappa-B (NF-κB) proteins were detected by immunofluorescence and Western blot. The cecal flora was detected by 16S rDNA. The results showed that gut dysbiosis aggravated cerebral ischemic injury and significantly increased the expression of LPS, TLR4, NF-κB, and IL-1β, which could be significantly reversed by Naotaifang III or normal bacterial transplantation. Naotaifang III may exert a protective effect on neuroinflammatory injury after MCAO through the LPS/TLR4 signaling pathway in the microbe-gut-brain axis. In summary, Naotaifang III may induce anti-neuroinflammatory molecular mechanisms and signaling pathways through the microbe-gut-brain axis. Results The results showed that gut dysbiosis aggravated cerebral ischemic injury and significantly increased the expression of LPS, TLR4, NF-κB, and IL-1β, which could be significantly reversed by Naotaifang III or normal bacterial transplantation. Naotaifang III may exert a protective effect on neuroinflammatory injury after MCAO through the LPS/TLR4 signaling pathway in the microbe-gut-brain axis. Conclusion Naotaifang III may induce anti-neuroinflammatory molecular mechanisms and signaling pathways through the microbe-gut-brain axis.
Collapse
Affiliation(s)
- Huifang Nie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, 410006, People’s Republic of China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Zhuli Peng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Haihui Wu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| |
Collapse
|
15
|
Andalib S, Divani AA, Ayata C, Baig S, Arsava EM, Topcuoglu MA, Cáceres EL, Parikh V, Desai MJ, Majid A, Girolami S, Di Napoli M. Vagus Nerve Stimulation in Ischemic Stroke. Curr Neurol Neurosci Rep 2023; 23:947-962. [PMID: 38008851 PMCID: PMC10841711 DOI: 10.1007/s11910-023-01323-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
PURPOSE OF REVIEW Vagus nerve stimulation (VNS) has emerged as a potential therapeutic approach for neurological and psychiatric disorders. In recent years, there has been increasing interest in VNS for treating ischemic stroke. This review discusses the evidence supporting VNS as a treatment option for ischemic stroke and elucidates its underlying mechanisms. RECENT FINDINGS Preclinical studies investigating VNS in stroke models have shown reduced infarct volumes and improved neurological deficits. Additionally, VNS has been found to reduce reperfusion injury. VNS may promote neuroprotection by reducing inflammation, enhancing cerebral blood flow, and modulating the release of neurotransmitters. Additionally, VNS may stimulate neuroplasticity, thereby facilitating post-stroke recovery. The Food and Drug Administration has approved invasive VNS (iVNS) combined with rehabilitation for ischemic stroke patients with moderate to severe upper limb deficits. However, iVNS is not feasible in acute stroke due to its time-sensitive nature. Non-invasive VNS (nVNS) may be an alternative approach for treating ischemic stroke. While the evidence from preclinical studies and clinical trials of nVNS is promising, the mechanisms through which VNS exerts its beneficial effects on ischemic stroke are still being elucidated. Therefore, further research is needed to better understand the efficacy and underlying mechanisms of nVNS in ischemic stroke. Moreover, large-scale randomized clinical trials are necessary to determine the optimal nVNS protocols, assess its long-term effects on stroke recovery and outcomes, and identify the potential benefits of combining nVNS with other rehabilitation strategies.
Collapse
Affiliation(s)
- Sasan Andalib
- Research Unit of Neurology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Afshin A Divani
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology and Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sheharyar Baig
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Ethem Murat Arsava
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Masoom J Desai
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Arshad Majid
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Sara Girolami
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| |
Collapse
|
16
|
Mehmood Qadri H, Dar SA, Bashir RA, Khan M, Ali S, Zahid AS, Ali A, Marriam, Waheed S, Saeed M. Gastrointestinal Dysbiosis in Neuro-Critically Ill Patients: A Systematic Review of Case-Control Studies. Cureus 2023; 15:e50923. [PMID: 38259358 PMCID: PMC10803107 DOI: 10.7759/cureus.50923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
The human gastrointestinal tract (GIT) has a rich and pre-programmed microbiome. This microbiome is essential for physiological functions such as digestion, immunity, metabolism, and structural integrity, and of prime concern to us in conducting this study is the nervous system communication. This two-way communication between the GIT and central nervous system (CNS) is known as the gut-brain axis (GBA) and has implications for neurocritical disease. A change in any factor relating to this microbiome is known as gut dysbiosis; this can lead to aberrant communication through the GBA and in turn, can contribute to disease states. The primary objective of this study is to determine the cause-specific dysbiotic organisms in neuro-critically ill patients and their effects. We performed this study by searching published literature as per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Studies that defined gastrointestinal dysbiosis in neuro-critically ill patients were retrieved using Boolean search from 2000 to 2023 via PubMed and Google Scholar and narrowed the results down to five prospective case-control studies. We performed their quality assessment. The results concluded that in neurocritical illnesses such as encephalitis, brain tumors, intracerebral hemorrhage, and ischemic stroke, fluctuations in specific microbiota correlated with disease severity and prognosis. Moreover, the inhabiting population of dysbiotic organisms in neuro-critically ill patients were different in different diseases and there were no similarities in the composition of gut microbiota in these diseases. Taking stroke patients as an example; increased Enterobacteriaceae and lower Lachnospiraceae microbiome levels were found in patients with a higher stroke dysbiosis index (SDI). Those patients who developed stroke-associated pneumonia (SAP) displayed higher levels of Enterococcus species. In conclusion, dysbiosis has a major effect on neuro-critically ill patients' disease states and dysbiotic organisms can be used as a biomarker for disease. Further prospective studies on this topic are warranted for potential neurological and prognostic correlations.
Collapse
Affiliation(s)
| | | | - Raahim A Bashir
- Neurological Surgery, CMH Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Manal Khan
- Neurosurgery, Unit-I, Punjab Institute of Neurosciences, Lahore, PAK
| | - Salamat Ali
- Surgery, Nawaz Shareef Medical College, Gujrat, PAK
| | | | - Asim Ali
- General Surgery, Lahore General Hospital, Lahore, PAK
| | - Marriam
- Surgery, Independent Medical College, Faisalabad, PAK
| | - Saba Waheed
- Emergency Medicine, Akhtar Saeed Medical and Dental College, Lahore, PAK
| | - Maha Saeed
- Internal Medicine, Akhtar Saeed Medical and Dental College, Lahore, PAK
| |
Collapse
|
17
|
Torices S, Daire L, Simon S, Mendoza L, Daniels D, Joseph JA, Fattakhov N, Naranjo O, Teglas T, Toborek M. The NLRP3 inflammasome and gut dysbiosis as a putative link between HIV-1 infection and ischemic stroke. Trends Neurosci 2023; 46:682-693. [PMID: 37330380 PMCID: PMC10554647 DOI: 10.1016/j.tins.2023.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 06/19/2023]
Abstract
HIV-associated comorbidities, such as ischemic stroke, are prevalent in people with HIV (PWH). Several studies both in animal models and humans have revealed an association between activation of the inflammasome in HIV-1 infection and stroke. The gut microbiota is an important component in controlling neuroinflammation in the CNS. It has also been proposed to be involved in the pathobiology of HIV-1 infection, and has been associated with an increase in activation of the inflammasome. In this review, we provide an overview of the microbiota-gut-inflammasome-brain axis, focusing on the NLRP3 inflammasome and dysregulation of the microbiome as risk factors that may contribute to the outcome of ischemic stroke and recovery in PWH. We also focus on the potential of targeting the NLRP3 inflammasome as a novel therapeutic approach for PWH who are at risk of developing cerebrovascular diseases.
Collapse
Affiliation(s)
- Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA.
| | - Leah Daire
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Sierra Simon
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Luisa Mendoza
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Destiny Daniels
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Joelle-Ann Joseph
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA.
| |
Collapse
|
18
|
Su S, Chen M, Wu Y, Lin Q, Wang D, Sun J, Hai J. Fecal microbiota transplantation and short-chain fatty acids protected against cognitive dysfunction in a rat model of chronic cerebral hypoperfusion. CNS Neurosci Ther 2023; 29 Suppl 1:98-114. [PMID: 36627762 PMCID: PMC10314111 DOI: 10.1111/cns.14089] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023] Open
Abstract
AIMS Clear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short-chain fatty acids (SCFAs) alterations in chronic cerebral ischemic pathogenesis have yet to be explored. In this study, we investigated chronic cerebral hypoperfusion (CCH)-induced gut microbiota and metabolic profiles of SCFAs as well as the effects and mechanisms of fecal microbiota transplantation (FMT) and SCFAs treatment on CCH-induced hippocampal neuronal injury. METHODS Bilateral common carotid artery occlusion (BCCAo) was used to establish the CCH model. Gut microbiota and SCFAs profiles in feces and hippocampus were evaluated by 16S ribosomal RNA sequencing and gas chromatography-mass spectrometry. RNA sequencing analysis was performed in hippocampal tissues. The potential molecular pathways and differential genes were verified through western blot, immunoprecipitation, immunofluorescence, and ELISA. Cognitive function was assessed via the Morris water maze test. Ultrastructures of mitochondria and synapses were tested through a transmission electron microscope. RESULTS Chronic cerebral hypoperfusion induced decreased fecal acetic and propionic acid and reduced hippocampal acetic acid, which were reversed after FMT and SCFAs administration by changing fecal microbial community structure and compositions. Furthermore, in the hippocampus, FMT and SCFAs replenishment exerted anti-neuroinflammatory effects through inhibiting microglial and astrocytic activation as well as switching microglial phenotype from M1 toward M2. Moreover, FMT and SCFAs treatment alleviated neuronal loss and microglia-mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming. The above effects of FMT and SCFAs treatment led to the inhibition of CCH-induced cognitive impairment. CONCLUSION Our findings highlight FMT and SCFAs replenishment would be the feasible gut microbiota-based strategy to mitigate chronic cerebral ischemia-induced neuronal injury.
Collapse
Affiliation(s)
- Shao‐Hua Su
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Ming Chen
- Department of Neurosurgery, Xinhua hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Yi‐Fang Wu
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Da‐Peng Wang
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jun Sun
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jian Hai
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
19
|
MUHAMMAD M, MUCHIMAPURA S, WATTANATHORN J. Microbiota-gut-brain axis impairment in the pathogenesis of stroke: implication as a potent therapeutic target. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:143-151. [PMID: 37404572 PMCID: PMC10315190 DOI: 10.12938/bmfh.2022-067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/09/2023] [Indexed: 07/06/2023]
Abstract
The human microbiota-gut-brain axis has an enormous role in the maintenance of homeostasis and health. Over the last two decades, it has received concerted research attention and focus due to a rapidly emerging volume of evidence that has established that impairment within the microbiota-gut-brain axis contributes to the development and progression of various diseases. Stroke is one of the entities identified to be associated with microbiota-gut-brain axis impairment. Currently, there are still limitations in the clinical treatment of stroke, and the presence of a non-nervous factor from gut microbiota that can alter the course of stroke presents a novel strategy towards the search for a therapeutic silver bullet against stroke. Hence, the aim herein, was to focus on the involvement of microbiota-gut-brain axis impairment in the pathogenesis stroke as well as elucidate its implications as a potent therapeutic target against stroke. The findings of studies to date have revealed and extended the role microbiota-gut-brain axis impairment in the pathogenesis of stroke, and studies have identified from both clinical and pre-clinical perspectives targets within the microbiota-gut-brain axis and successfully modulated the outcome of stroke. It was concluded that the microbiota-gut-brain axis stands as potent target to salvage the neurons in the ischemic penumbra for the treatment of stroke. Assessment of the microbiota profile and its metabolites status holds enormous clinical potentials as a non-invasive indicator for the early diagnosis and prognosis of stroke.
Collapse
Affiliation(s)
- Mubarak MUHAMMAD
- Graduate School (Neuroscience Program), Faculty of Medicine,
Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen
40002, Thailand
| | - Supaporn MUCHIMAPURA
- Department of Physiology, Faculty of Medicine, Khon Kaen
University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen 40002,
Thailand
- Integrative Complementary Alternative Medicine Research and
Development Center in the Research Institute for Human High Performance and Health
Promotion, Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District,
Khon Kaen 40002, Thailand
| | - Jintanaporn WATTANATHORN
- Department of Physiology, Faculty of Medicine, Khon Kaen
University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen 40002,
Thailand
- Integrative Complementary Alternative Medicine Research and
Development Center in the Research Institute for Human High Performance and Health
Promotion, Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District,
Khon Kaen 40002, Thailand
| |
Collapse
|
20
|
Kwon C, Ediriweera MK, Kim Cho S. Interplay between Phytochemicals and the Colonic Microbiota. Nutrients 2023; 15:nu15081989. [PMID: 37111207 PMCID: PMC10145007 DOI: 10.3390/nu15081989] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Phytochemicals are natural compounds found in food ingredients with a variety of health-promoting properties. Phytochemicals improve host health through their direct systematic absorption into the circulation and modulation of the gut microbiota. The gut microbiota increases the bioactivity of phytochemicals and is a symbiotic partner whose composition and/or diversity is altered by phytochemicals and affects host health. In this review, the interactions of phytochemicals with the gut microbiota and their impact on human diseases are reviewed. We describe the role of intestinal microbial metabolites, including short-chain fatty acids, amino acid derivatives, and vitamins, from a therapeutic perspective. Next, phytochemical metabolites produced by the gut microbiota and the therapeutic effect of some selected metabolites are reviewed. Many phytochemicals are degraded by enzymes unique to the gut microbiota and act as signaling molecules in antioxidant, anti-inflammatory, anticancer, and metabolic pathways. Phytochemicals can ameliorate diseases by altering the composition and/or diversity of the gut microbiota, and they increase the abundance of some gut microbiota that produce beneficial substances. We also discuss the importance of investigating the interactions between phytochemicals and gut microbiota in controlled human studies.
Collapse
Affiliation(s)
- Chohee Kwon
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
| | - Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 008, Sri Lanka
| | - Somi Kim Cho
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
21
|
Martha SR, Levy SH, Federico E, Levitt MR, Walker M. Machine Learning Analysis of the Cerebrovascular Thrombi Lipidome in Acute Ischemic Stroke. J Neurosci Nurs 2023; 55:10-17. [PMID: 36346351 PMCID: PMC9839472 DOI: 10.1097/jnn.0000000000000682] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ABSTRACT OBJECTIVE: The aim of this study was to identify a signature lipid profile from cerebral thrombi in acute ischemic stroke (AIS) patients at the time of ictus. METHODS: We performed untargeted lipidomics analysis using liquid chromatography-mass spectrometry on cerebral thrombi taken from a nonprobability, convenience sampling of adult subjects (≥18 years old, n = 5) who underwent thrombectomy for acute cerebrovascular occlusion. The data were classified using random forest, a machine learning algorithm. RESULTS: The top 10 metabolites identified from the random forest analysis were of the glycerophospholipid species and fatty acids. CONCLUSION: Preliminary analysis demonstrates feasibility of identification of lipid metabolomic profiling in cerebral thrombi retrieved from AIS patients. Recent advances in omic methodologies enable lipidomic profiling, which may provide insight into the cellular metabolic pathophysiology caused by AIS. Understanding of lipidomic changes in AIS may illuminate specific metabolite and lipid pathways involved and further the potential to develop personalized preventive strategies.
Collapse
|
22
|
Shen J, Guo H, Liu S, Jin W, Zhang ZW, Zhang Y, Liu K, Mao S, Zhou Z, Xie L, Wang G, Hao H, Liang Y. Aberrant branched-chain amino acid accumulation along the microbiota-gut-brain axis: Crucial targets affecting the occurrence and treatment of ischaemic stroke. Br J Pharmacol 2023; 180:347-368. [PMID: 36181407 DOI: 10.1111/bph.15965] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Although increasing evidence illustrated that the bidirectional communication between the brain and the gut is closely related to the occurrence of various complex diseases. Limited effort has been made to explore the influence of intestinal flora on the risk of ischaemic stroke. The present study aims to identify microbiota and specialized microbiota metabolites related to the occurrence and treatment of ischaemic stroke. EXPERIMENTAL APPROACH The role of microbiota in the occurrence and the treatment of ischaemic stroke was evaluated on ischaemia/reperfusion (I/R), pseudo-germ-free and faecal transplantation animals. The target microbiota and specialized metabolites were identified by comparing their distribution in flora and metabolomic profiles in ischaemic stroke patients and animals with compared with healthy controls. The effects and mechanisms involved of the targeted metabolites in ischaemic stroke were explored in ischaemia/reperfusion rats, hypoxia/reoxygenation PC12 cells and LPS-induced inflammatory BV2 cells. KEY RESULTS Both ischaemic stroke patients and I/R rats had significant accumulation of branched-chain amino acids, which were closely associated with gut microflora dysbiosis and the development of ischaemic stroke. Lactobacillus helveticus (L.hel) and Lactobacillus brevis (L.bre) are identified as the microbiota most affected by ischaemia/reperfusion modelling and treatment. L.hel and L.bre colonization exhibited significant neuroprotective activity and could greatly alleviate the accumulation of branched-chain amino acids. In addition, branched-chain amino acid (BCAA) accumulation was shown to exacerbate microglia-induced neuroinflammation by activating AKT/STAT3/NF-κB signalling. CONCLUSION AND IMPLICATIONS Our findings demonstrated the crucial role of intestinal flora and microbiota metabolites in the occurrence and treatment of ischaemic stroke.
Collapse
Affiliation(s)
- Jiajia Shen
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Huimin Guo
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Shijia Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Jin
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhi-Wei Zhang
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yong Zhang
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Keanqi Liu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Shuying Mao
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhihao Zhou
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Lin Xie
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haiping Hao
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yan Liang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
23
|
Li M, Wang S, Zhang C, Chi C, Liu R, Wang T, Fu F. Escin alleviates stress-induced intestinal dysfunction to protect brain injury by regulating the gut-brain axis in ischemic stroke rats. Int Immunopharmacol 2023; 115:109659. [PMID: 36608442 DOI: 10.1016/j.intimp.2022.109659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
Hyperactivity of HPA axis results in intestinal dysfunction, which may play a role in brain injury caused by ischemic stroke (IS). Escin shows a neuroprotective effect but it may not penetrate blood brain barrier (BBB). Previous work in our laboratory showed that escin ameliorated intestinal injury in animals. The aim of this study is to investigate whether escin attenuates brain injury by improving intestinal dysfunction in middle cerebral artery occlusion (MCAO) rats, to mimic IS. MCAO rats and lipopolysaccharides (LPS)-induced Caco-2 cells were used to evaluate the effects of escin in vivo and in vitro. The results showed that escin could not penetrate BBB but reduced brain infarct volume, improved neurological function, inhibited neuroinflammation, ameliorated intestinal dysfunction and tissue integrity by increasing the expression of the tight junction protein in vivo and in vitro. Escin reduced the increased corticosterone and endotoxin level in blood of MCAO rats, regulated GR/p38 MAPK/NF-κB signaling pathway in ileal tissue and LPS/TLR4/NF-κB signaling pathway in ischemic brain tissue. These findings suggest that escin could attenuate ischemic brain injury by improving intestinal dysfunction, and it may be a promising way to protect brain injury by protecting intestine, instead of targeting the brain directly after IS.
Collapse
Affiliation(s)
- Min Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Shengguang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Ce Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Chenglin Chi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Rongxia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| |
Collapse
|
24
|
Zhou SY, Guo ZN, Yang Y, Qu Y, Jin H. Gut-brain axis: Mechanisms and potential therapeutic strategies for ischemic stroke through immune functions. Front Neurosci 2023; 17:1081347. [PMID: 36777635 PMCID: PMC9911679 DOI: 10.3389/fnins.2023.1081347] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
After an ischemic stroke (IS) occurs, immune cells begin traveling to the brain and immune system from the gut and gastrointestinal tract, where most of them typically reside. Because the majority of the body's macrophages and more than 70% of the total immune cell pool are typically found within the gut and gastrointestinal tract, inflammation and immune responses in the brain and immune organs require the mobilization of a large number of immune cells. The bidirectional communication pathway between the brain and gut is often referred to as the gut-brain axis. IS usually leads to intestinal motility disorders, dysbiosis of intestinal microbiota, and a leaky gut, which are often associated with poor prognosis in patients with IS. In recent years, several studies have suggested that intestinal inflammation and immune responses play key roles in the development of IS, and thus may become potential therapeutic targets that can drive new therapeutic strategies. However, research on gut inflammation and immune responses after stroke remains in its infancy. A better understanding of gut inflammation and immune responses after stroke may be important for developing effective therapies. This review discusses the immune-related mechanisms of the gut-brain axis after IS and compiles potential therapeutic targets to provide new ideas and strategies for the future effective treatment of IS.
Collapse
Affiliation(s)
- Sheng-Yu Zhou
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yang Qu
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China,*Correspondence: Hang Jin,
| |
Collapse
|
25
|
Chen HD, Jiang MZ, Zhao YY, Li X, Lan H, Yang WQ, Lai Y. Effects of breviscapine on cerebral ischemia-reperfusion injury and intestinal flora imbalance by regulating the TLR4/MyD88/NF-κB signaling pathway in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115691. [PMID: 36087844 DOI: 10.1016/j.jep.2022.115691] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plant Erigeron breviscapus (Vant.) Hand.-Mazz.,a Chinese herbal medicine with multiple pharmacological effects and clinical applications, has been traditionally used in the treatment of paralysis caused by stroke and joint pain from rheumatism by the Yi minority people of Southwest China for generations.However, its mechanism involves many factors and has not been fully clarified. AIM OF THE STUDY Taking intestinal flora as the target, the protective effect of extract(breviscapine) of E. breviscapus on cerebral ischemia and its possible mechanism were discussed from the perspective of brain inflammatory pathway and intestinal CYP3A4, which depends on intestinal flora. MATERIALS AND METHODS In this study, we first verified the binding ability between major active ingredient of Erigeron breviscapus and the core target TLR4 protein by molecular docking using Vina software.We established a rat model of cerebral ischemia-reperfusion injury in vivo.The neurological function of rats was scored by Bederson score table, the cerebral infarction volume was detected by TTC staining, and the serum NSE level was detected by ELASA. 16S rRNA sequencing was used to detect the intestinal flora of rats in each group.The expression levels of cerebral TLR4/MyD88/NF-κB and CYP3A4 mRNA and protein in different intestinal segments were detected by qRT-PCR and Western blot. RESULTS Compared with the model group, the neurological injury score, infarct volume and serum NSE concentration of breviscapine low, medium and high dose groups and nimodipine groups decreased significantly. Meanwhile, breviscapine could significantly reduce the expression level of the TLR4/MyD88/NF-κB in brain tissue and CYP3A4 in different intestinal segments of rats with cerebral ischemia-reperfusion injury. In addition, breviscapine also significantly ameliorated intestinal flora dysbiosis of rats with cerebral ischemia-reperfusion injury. CONCLUSIONS Breviscapine can protect rats from cerebral ischemia-reperfusion injury by regulating intestinal flora, inhibiting brain TLR4/MyD88/NF-κB inflammatory pathway and intestinal CYP3A4 expression.
Collapse
Affiliation(s)
- Hai-Dong Chen
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, People's Republic of China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan (Cultivation), Dali, People's Republic of China
| | - Ming-Zhao Jiang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, People's Republic of China
| | - Ying-Ying Zhao
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, People's Republic of China
| | - Xin Li
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, People's Republic of China
| | - Hai Lan
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, People's Republic of China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan (Cultivation), Dali, People's Republic of China
| | - Wan-Qi Yang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, People's Republic of China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan (Cultivation), Dali, People's Republic of China.
| | - Yong Lai
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, People's Republic of China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan (Cultivation), Dali, People's Republic of China.
| |
Collapse
|
26
|
Wang J, Liu X, Li Q. Interventional strategies for ischemic stroke based on the modulation of the gut microbiota. Front Neurosci 2023; 17:1158057. [PMID: 36937662 PMCID: PMC10017736 DOI: 10.3389/fnins.2023.1158057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The microbiota-gut-brain axis connects the brain and the gut in a bidirectional manner. The organism's homeostasis is disrupted during an ischemic stroke (IS). Cerebral ischemia affects the intestinal flora and microbiota metabolites. Microbiome dysbiosis, on the other hand, exacerbates the severity of IS outcomes by inducing systemic inflammation. Some studies have recently provided novel insights into the pathogenesis, efficacy, prognosis, and treatment-related adverse events of the gut microbiome in IS. In this review, we discussed the view that the gut microbiome is of clinical value in personalized therapeutic regimens for IS. Based on recent non-clinical and clinical studies on stroke, we discussed new therapeutic strategies that might be developed by modulating gut bacterial flora. These strategies include dietary intervention, fecal microbiota transplantation, probiotics, antibiotics, traditional Chinese medication, and gut-derived stem cell transplantation. Although the gut microbiota-targeted intervention is optimistic, some issues need to be addressed before clinical translation. These issues include a deeper understanding of the potential underlying mechanisms, conducting larger longitudinal cohort studies on the gut microbiome and host responses with multiple layers of data, developing standardized protocols for conducting and reporting clinical analyses, and performing a clinical assessment of multiple large-scale IS cohorts. In this review, we presented certain opportunities and challenges that might be considered for developing effective strategies by manipulating the gut microbiome to improve the treatment and prevention of ischemic stroke.
Collapse
|
27
|
Neag MA, Craciun AE, Inceu AI, Burlacu DE, Craciun CI, Buzoianu AD. Short-Chain Fatty Acids as Bacterial Enterocytes and Therapeutic Target in Diabetes Mellitus Type 2. Biomedicines 2022; 11:72. [PMID: 36672580 PMCID: PMC9855839 DOI: 10.3390/biomedicines11010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Diabetes mellitus is a disease with multiple gastrointestinal symptoms (diarrhea or constipation, abdominal pain, bloating) whose pathogenesis is multifactorial. The most important of these factors is the enteric nervous system, also known as the "second brain"; a part of the peripheral nervous system capable of functioning independently of the central nervous system. Modulation of the enteric nervous system can be done by short-chain fatty acids, which are bacterial metabolites of the intestinal microbiota. In addition, these acids provide multiple benefits in diabetes, particularly by stimulating glucagon-like peptide 1 and insulin secretion. However, it is not clear what type of nutraceuticals (probiotics, prebiotics, and alimentary supplements) can be used to increase the amount of short-chain fatty acids and achieve the beneficial effects in diabetes. Thus, even if several studies demonstrate that the gut microbiota modulates the activity of the ENS, and thus, may have a positive effect in diabetes, further studies are needed to underline this effect. This review outlines the most recent data regarding the involvement of SCFAs as a disease modifying agent in diabetes mellitus type 2. For an in-depth understanding of the modulation of gut dysbiosis with SCFAs in diabetes, we provide an overview of the interplay between gut microbiota and ENS.
Collapse
Affiliation(s)
- Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca-Elena Craciun
- Department of Diabetes and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Diana-Elena Burlacu
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cristian-Ioan Craciun
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
28
|
Kalyan M, Tousif AH, Sonali S, Vichitra C, Sunanda T, Praveenraj SS, Ray B, Gorantla VR, Rungratanawanich W, Mahalakshmi AM, Qoronfleh MW, Monaghan TM, Song BJ, Essa MM, Chidambaram SB. Role of Endogenous Lipopolysaccharides in Neurological Disorders. Cells 2022; 11:cells11244038. [PMID: 36552802 PMCID: PMC9777235 DOI: 10.3390/cells11244038] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Lipopolysaccharide (LPS) is a cell-wall immunostimulatory endotoxin component of Gram-negative bacteria. A growing body of evidence reveals that alterations in the bacterial composition of the intestinal microbiota (gut dysbiosis) disrupt host immune homeostasis and the intestinal barrier function. Microbial dysbiosis leads to a proinflammatory milieu and systemic endotoxemia, which contribute to the development of neurodegenerative diseases and metabolic disorders. Two important pathophysiological hallmarks of neurodegenerative diseases (NDDs) are oxidative/nitrative stress and inflammation, which can be initiated by elevated intestinal permeability, with increased abundance of pathobionts. These changes lead to excessive release of LPS and other bacterial products into blood, which in turn induce chronic systemic inflammation, which damages the blood-brain barrier (BBB). An impaired BBB allows the translocation of potentially harmful bacterial products, including LPS, and activated neutrophils/leucocytes into the brain, which results in neuroinflammation and apoptosis. Chronic neuroinflammation causes neuronal damage and synaptic loss, leading to memory impairment. LPS-induced inflammation causes inappropriate activation of microglia, astrocytes, and dendritic cells. Consequently, these alterations negatively affect mitochondrial function and lead to increases in oxidative/nitrative stress and neuronal senescence. These cellular changes in the brain give rise to specific clinical symptoms, such as impairment of locomotor function, muscle weakness, paralysis, learning deficits, and dementia. This review summarizes the contributing role of LPS in the development of neuroinflammation and neuronal cell death in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjunath Kalyan
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Ahmed Hediyal Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Sharma Sonali
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Chandrasekaran Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Tuladhar Sunanda
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Sankar Simla Praveenraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Vasavi Rakesh Gorantla
- Department of Anatomical sciences, School of Medicine, St. George’s University Grenada, West Indies FZ818, Grenada
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research & Policy Division, 7227 Rachel Drive, Ypsilanti, MI 48917, USA
- 21 Health Street, Consulting Services, 1 Christian Fields, London SW16 3JY, UK
| | - Tanya M. Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
- Correspondence: (B.-J.S.); (M.M.E.); (S.B.C.)
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
- Correspondence: (B.-J.S.); (M.M.E.); (S.B.C.)
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Correspondence: (B.-J.S.); (M.M.E.); (S.B.C.)
| |
Collapse
|
29
|
Neag MA, Vulturar DM, Gherman D, Burlacu CC, Todea DA, Buzoianu AD. Gastrointestinal microbiota: A predictor of COVID-19 severity? World J Gastroenterol 2022; 28:6328-6344. [PMID: 36533107 PMCID: PMC9753053 DOI: 10.3748/wjg.v28.i45.6328] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by a severe acute respiratory syndrome coronavirus 2 infection, has raised serious concerns worldwide over the past 3 years. The severity and clinical course of COVID-19 depends on many factors (e.g., associated comorbidities, age, etc) and may have various clinical and imaging findings, which raises management concerns. Gut microbiota composition is known to influence respiratory disease, and respiratory viral infection can also influence gut microbiota. Gut and lung microbiota and their relationship (gut-lung axis) can act as modulators of inflammation. Modulating the intestinal microbiota, by improving its composition and diversity through nutraceutical agents, can have a positive impact in the prophylaxis/treatment of COVID-19.
Collapse
Affiliation(s)
- Maria Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania
| | - Damiana-Maria Vulturar
- Department of Pneumology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400332, Romania
| | - Diana Gherman
- Department of Radiology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400347, Romania
| | - Codrin-Constantin Burlacu
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca 400347, Romania
| | - Doina Adina Todea
- Department of Pneumology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400332, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania
| |
Collapse
|
30
|
Kerr NA, Sanchez J, O'Connor G, Watson BD, Daunert S, Bramlett HM, Dietrich WD. Inflammasome-Regulated Pyroptotic Cell Death in Disruption of the Gut-Brain Axis After Stroke. Transl Stroke Res 2022; 13:898-912. [PMID: 35306629 DOI: 10.1007/s12975-022-01005-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Approximately 50% of stroke survivors experience gastrointestinal complications. The innate immune response plays a role in changes to the gut-brain axis after stroke. The purpose of this study is to examine the importance of inflammasome-mediated pyroptosis in disruption of the gut-brain axis after experimental stroke. B6129 mice were subjected to a closed-head photothrombotic stroke. We examined the time course of inflammasome protein expression in brain and intestinal lysate using western blot analysis at 1-, 3-, and 7-days post-injury for caspase-1, interleukin-1β, nod-like receptor protein 3 (NLRP3), and apoptosis speck-like protein containing a caspase-recruiting domain (ASC) and gasdermin-D (GSDMD) cleavage. In a separate group of mice, we processed brain tissue 24 and 72 h after thrombotic stroke for immunohistochemical analysis of neuronal and endothelial cell pyroptosis. We examined intestinal tissue for morphological changes and pyroptosis of macrophages. We performed behavioral tests and assessed gut permeability changes to confirm functional changes after stroke. Our data show that thrombotic stroke induces inflammasome activation in the brain and intestinal tissue up to 7-day post-injury as well as pyroptosis of neurons, cerebral endothelial cells, and intestinal macrophages. We found that thrombotic stroke leads to neurocognitive and motor function deficits as well as increased gut permeability. Finally, the adoptive transfer of serum-derived EVs from stroke mice into naive induced inflammasome activation in intestinal tissues. Taken together, these results provide novel information regarding possible mechanisms underlying gut complications after stroke and the identification of new therapeutic targets for reducing the widespread consequences of ischemic brain injury.
Collapse
Affiliation(s)
- Nadine A Kerr
- Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Juliana Sanchez
- Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Gregory O'Connor
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Brant D Watson
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Helen M Bramlett
- Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - W Dalton Dietrich
- Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| |
Collapse
|
31
|
The Protective Effects of Nutraceutical Components in Methotrexate-Induced Toxicity Models—An Overview. Microorganisms 2022; 10:microorganisms10102053. [PMID: 36296329 PMCID: PMC9608860 DOI: 10.3390/microorganisms10102053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
There are multiple concerns associated with methotrexate (MTX), widely recognized for anti-neoplastic and anti-inflammatory effects in life-threatening disease conditions, i.e., acute lymphoblastic leukemia, non-Hodgkin’s lymphoma, psoriasis, and rheumatoid arthritis, due to long-term side effects and associated toxicity, which limits its valuable potential. MTX acts as an inhibitor of dihydrofolate reductase, leading to suppression of purine and pyrimidine synthesis in high metabolic and turnover cells, targeting cancer and dysregulated immune cells. Due to low discrimination between neoplastic cells and naturally high turnover cells, MTX is prone to inhibiting the division of all fast-dividing cells, causing toxicity in multiple organs. Nutraceutical compounds are plant-based or food-derived compounds, used for their preventive and therapeutic role, ascertained in multiple organ dysfunctions, including cardiovascular disease, ischemic stroke, cancer, and neurodegenerative diseases. Gut microbiota and microbiota-derived metabolites take part in multiple physiological processes, their dysregulation being involved in disease pathogenesis. Modulation of gut microbiota by using nutraceutical compounds represents a promising therapeutic direction to restore intestinal dysfunction associated with MTX treatment. In this review, we address the main organ dysfunctions induced by MTX treatment, and modulations of them by using nutraceutical compounds. Moreover, we revealed the protective mechanisms of nutraceuticals in MTX-induced intestinal dysfunctions by modulation of gut microbiota.
Collapse
|
32
|
Crosstalk between the Gut and Brain in Ischemic Stroke: Mechanistic Insights and Therapeutic Options. Mediators Inflamm 2022; 2022:6508046. [PMID: 36267243 PMCID: PMC9578915 DOI: 10.1155/2022/6508046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/18/2022] Open
Abstract
There has been a significant amount of interest in the past two decades in the study of the evolution of the gut microbiota, its internal and external impacts on the gut, and risk factors for cerebrovascular disorders such as cerebral ischemic stroke. The network of bidirectional communication between gut microorganisms and their host is known as the microbiota-gut-brain axis (MGBA). There is mounting evidence that maintaining gut microbiota homeostasis can frequently enhance the effectiveness of ischemic stroke treatment by modulating immune, metabolic, and inflammatory responses through MGBA. To effectively monitor and cure ischemic stroke, restoring a healthy microbial ecology in the gut may be a critical therapeutic focus. This review highlights mechanistic insights on the MGBA in disease pathophysiology. This review summarizes the role of MGBA signaling in the development of stroke risk factors such as aging, hypertension, obesity, diabetes, and atherosclerosis, as well as changes in the microbiota in experimental or clinical populations. In addition, this review also examines dietary changes, the administration of probiotics and prebiotics, and fecal microbiota transplantation as treatment options for ischemic stroke as potential health benefits. It will become more apparent how the MGBA affects human health and disease with continuing advancements in this emerging field of biomedical sciences.
Collapse
|
33
|
Wang J, Zhong Y, Zhu H, Mahgoub OK, Jian Z, Gu L, Xiong X. Different gender-derived gut microbiota influence stroke outcomes by mitigating inflammation. J Neuroinflammation 2022; 19:245. [PMID: 36195899 PMCID: PMC9531521 DOI: 10.1186/s12974-022-02606-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background and purpose Stroke is associated with high disability and mortality rates and increases the incidence of organ-related complications. Research has revealed that the outcomes and prognosis of stroke are regulated by the state of the intestinal microbiota. However, the possibility that the manipulation of the intestinal microbiota can alter sex-related stroke outcomes remain unknown. Methods To verify the different effects of microbiota from different sexes on stroke outcomes, we performed mouse fecal microbiota transplantation (FMT) and established a model of ischemic stroke. Male and female mice received either male or female microbiota through FMT. Ischemic stroke was triggered by MCAO (middle cerebral artery occlusion), and sham surgery served as a control. Over the next few weeks, the mice underwent neurological evaluation and metabolite and inflammatory level detection, and we collected fecal samples for 16S ribosomal RNA analysis. Results We found that when the female mice were not treated with FMT, the microbiota (especially the Firmicutes-to-Bacteroidetes ratio) and the levels of three main metabolites tended to resemble those of male mice after experimental stroke, indicating that stroke can induce an ecological imbalance in the biological community. Through intragastric administration, the gut microbiota of male and female mice was altered to resemble that of the other sex. In general, in female mice after MCAO, the survival rate was increased, the infarct area was reduced, behavioral test performance was improved, the release of beneficial metabolites was promoted and the level of inflammation was mitigated. In contrast, mice that received male microbiota were much more hampered in terms of protection against brain damage and the recovery of neurological function. Conclusion A female-like biological community reduces the level of systemic proinflammatory cytokines after ischemic stroke. Poor stroke outcomes can be positively modulated following supplementation with female gut microbiota.
Collapse
Affiliation(s)
- Jinchen Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China.,Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China
| | - Omer Kamal Mahgoub
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China.
| |
Collapse
|
34
|
Jiang X, Zhou L, Chen Y, Tang Y, Jiang X. Neutrophil-to-Lymphocyte ratio on admission predicts gastrointestinal bleeding in acute basal ganglia hemorrhage. J Clin Lab Anal 2022; 36:e24679. [PMID: 36045605 PMCID: PMC9551117 DOI: 10.1002/jcla.24679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Gastrointestinal bleeding (GIB) is a potential contributing factor for poor prognosis of spontaneous basal ganglia hemorrhage (BGH). This study aimed to investigate the predictive value of new inflammatory biomarkers including neutrophil to lymphocytes (NLR) on admission and construct a nomogram for rapidly predicting GIB in acute BGH. Methods The retrospective study included all patients with acute BGH admitted from the emergency department in Huashan Hospital from July 2017 to January 2019. Multivariate analysis was conducted to evaluate the correlation between factors within 24 h and the occurrence of GIB within 7 days after BGH. The receiver operating characteristic (ROC) curve was performed to estimate the prediction ability of inflammatory biomarkers. A nomogram based on significant predictors was validated by ROC curve and calibration curve. Results A total of 122 patients were enrolled in this study, and the incidence of GIB was 23.0%. Patients with GIB had larger hematoma volume (≥30 ml), lower Glasgow Coma Scale (GCS) score (≤8) and increased inflammatory biomarkers on admission. ROC curve revealed that NLR had a high predictive value to the complication (area under the curve = 0.87). According to multivariate analysis, NLR, GCS score, and hematoma volume were main factors for nomogram, with good calibration and discrimination. Conclusions Neutrophil‐to‐lymphocyte ratio and GCS score within 24 h after the onset of acute BGH are the independent risk factors for GIB. The nomogram developed by these predictors may assist surgeons in rapidly assessing and preventing of GIB for BGH patients in earlier stage.
Collapse
Affiliation(s)
- Xuewei Jiang
- Department of Emergency Care, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Liangliang Zhou
- Department of Neurosurgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinuo Chen
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuqing Tang
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Xiaodong Jiang
- Department of Neurosurgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
35
|
Martín Giménez VM, Rukavina Mikusic NL, Lee HJ, García Menéndez S, Choi MR, Manucha W. Physiopathological mechanisms involved in the development of hypertension associated with gut dysbiosis and the effect of nutritional/pharmacological interventions. Biochem Pharmacol 2022; 204:115213. [PMID: 35985404 DOI: 10.1016/j.bcp.2022.115213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
The gut microbiota dysbiosis represents a triggering factor for cardiovascular diseases, including hypertension. In addition to the harmful impact caused by hypertension on different target organs, gut dysbiosis is capable of causing direct damage to critical organs such as the brain, heart, blood vessels, and kidneys. In this sense, it should be noted that pharmacological and nutritional interventions may influence gut microbiota composition, either inducing or preventing the development of hypertension. Some of the most important nutritional interventions at this level are represented by pro-, pre-, post- and/or syn-biotics, as well as polysaccharides, polyunsaturated fatty acids ω-3, polyphenols and fiber contained in different foods. Meanwhile, certain natural and synthetic active pharmaceutical ingredients, including antibiotics, antihypertensive and immunosuppressive drugs, vegetable extracts and vitamins, may also have a key role in the modulation of both gut microbiota and cardiovascular health. Additionally, gut microbiota may influence drugs and food-derived bioactive compounds metabolism, positively or negatively affecting their biological behavior facing established hypertension. The understanding of the complex interactions between gut microbiome and drug/food response results of great importance to developing improved pharmacological therapies for hypertension prevention and treatment. The purpose of this review is to critically outline the most relevant and recent findings on cardiovascular, renal and brain physiopathological mechanisms involved in the development of hypertension associated with changes in gut microbiota, besides the nutritional and pharmacological interventions potentially valuable for the prevention and treatment of this prevalent pathology. Finally, harmful food/drug interventions on gut microbiota are also described.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Natalia Lucía Rukavina Mikusic
- Universidad de Buenos Aires. CONICET. Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Hyun Jin Lee
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Sebastián García Menéndez
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina
| | - Marcelo Roberto Choi
- Universidad de Buenos Aires. CONICET. Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina.
| |
Collapse
|
36
|
Huston P. A Sedentary and Unhealthy Lifestyle Fuels Chronic Disease Progression by Changing Interstitial Cell Behaviour: A Network Analysis. Front Physiol 2022; 13:904107. [PMID: 35874511 PMCID: PMC9304814 DOI: 10.3389/fphys.2022.904107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Managing chronic diseases, such as heart disease, stroke, diabetes, chronic lung disease and Alzheimer’s disease, account for a large proportion of health care spending, yet they remain in the top causes of premature mortality and are preventable. It is currently accepted that an unhealthy lifestyle fosters a state of chronic low-grade inflammation that is linked to chronic disease progression. Although this is known to be related to inflammatory cytokines, how an unhealthy lifestyle causes cytokine release and how that in turn leads to chronic disease progression are not well known. This article presents a theory that an unhealthy lifestyle fosters chronic disease by changing interstitial cell behavior and is supported by a six-level hierarchical network analysis. The top three networks include the macroenvironment, social and cultural factors, and lifestyle itself. The fourth network includes the immune, autonomic and neuroendocrine systems and how they interact with lifestyle factors and with each other. The fifth network identifies the effects these systems have on the microenvironment and two types of interstitial cells: macrophages and fibroblasts. Depending on their behaviour, these cells can either help maintain and restore normal function or foster chronic disease progression. When macrophages and fibroblasts dysregulate, it leads to chronic low-grade inflammation, fibrosis, and eventually damage to parenchymal (organ-specific) cells. The sixth network considers how macrophages change phenotype. Thus, a pathway is identified through this hierarchical network to reveal how external factors and lifestyle affect interstitial cell behaviour. This theory can be tested and it needs to be tested because, if correct, it has profound implications. Not only does this theory explain how chronic low-grade inflammation causes chronic disease progression, it also provides insight into salutogenesis, or the process by which health is maintained and restored. Understanding low-grade inflammation as a stalled healing process offers a new strategy for chronic disease management. Rather than treating each chronic disease separately by a focus on parenchymal pathology, a salutogenic strategy of optimizing interstitial health could prevent and mitigate multiple chronic diseases simultaneously.
Collapse
Affiliation(s)
- Patricia Huston
- Department of Family Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Institut du Savoir Montfort (Research), University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Patricia Huston, , orcid.org/0000-0002-2927-1176
| |
Collapse
|
37
|
The Role of Vitamin D in Stroke Prevention and the Effects of Its Supplementation for Post-Stroke Rehabilitation: A Narrative Review. Nutrients 2022; 14:nu14132761. [PMID: 35807941 PMCID: PMC9268813 DOI: 10.3390/nu14132761] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/27/2023] Open
Abstract
Hypovitaminosis D is a serious public health problem, representing an independent factor in mortality among the general population. Vitamin D deficiency may affect up to one billion people worldwide. Recently, the potential association between vitamin D levels and stroke has gained increasing attention. Many studies suggest that maintaining normal serum vitamin D levels is associated with improvement of the cardiovascular system and a reduction in stroke risk. As a neurosteroid, vitamin D influences brain development and function and immunomodulation and affects brain neuroplasticity. It supports many processes that maintain homeostasis in the body. As stroke is the second most common cause of death worldwide, more studies are needed to confirm the positive effects of vitamin D supplementation, its dosage at different stages of the disease, method of determination, and effect on stroke onset and recovery. Many studies on stroke survivors indicate that serum vitamin D levels only offer insignificant benefits and are not beneficial to recovery. This review article aims to highlight recent publications that have examined the potential of vitamin D supplementation to improve rehabilitation outcomes in stroke survivors. Particular attention has been paid to stroke prevention.
Collapse
|
38
|
Zhu L, Huang L, Le A, Wang TJ, Zhang J, Chen X, Wang J, Wang J, Jiang C. Interactions between the Autonomic Nervous System and the Immune System after Stroke. Compr Physiol 2022; 12:3665-3704. [PMID: 35766834 DOI: 10.1002/cphy.c210047] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute stroke is one of the leading causes of morbidity and mortality worldwide. Stroke-induced immune-inflammatory response occurs in the perilesion areas and the periphery. Although stroke-induced immunosuppression may alleviate brain injury, it hinders brain repair as the immune-inflammatory response plays a bidirectional role after acute stroke. Furthermore, suppression of the systemic immune-inflammatory response increases the risk of life-threatening systemic bacterial infections after acute stroke. Therefore, it is essential to explore the mechanisms that underlie the stroke-induced immune-inflammatory response. Autonomic nervous system (ANS) activation is critical for regulating the local and systemic immune-inflammatory responses and may influence the prognosis of acute stroke. We review the changes in the sympathetic and parasympathetic nervous systems and their influence on the immune-inflammatory response after stroke. Importantly, this article summarizes the mechanisms on how ANS regulates the immune-inflammatory response through neurotransmitters and their receptors in immunocytes and immune organs after stroke. To facilitate translational research, we also discuss the promising therapeutic approaches modulating the activation of the ANS or the immune-inflammatory response to promote neurologic recovery after stroke. © 2022 American Physiological Society. Compr Physiol 12:3665-3704, 2022.
Collapse
Affiliation(s)
- Li Zhu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Anh Le
- Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Tom J Wang
- Winston Churchill High School, Potomac, Maryland, USA
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xuemei Chen
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.,Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
39
|
The Influence of Gut Dysbiosis in the Pathogenesis and Management of Ischemic Stroke. Cells 2022; 11:cells11071239. [PMID: 35406804 PMCID: PMC8997586 DOI: 10.3390/cells11071239] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Recent research on the gut microbiome has revealed the influence of gut microbiota (GM) on ischemic stroke pathogenesis and treatment outcomes. Alterations in the diversity, abundance, and functions of the gut microbiome, termed gut dysbiosis, results in dysregulated gut–brain signaling, which induces intestinal barrier changes, endotoxemia, systemic inflammation, and infection, affecting post-stroke outcomes. Gut–brain interactions are bidirectional, and the signals from the gut to the brain are mediated by microbially derived metabolites, such as trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFAs); bacterial components, such as lipopolysaccharide (LPS); immune cells, such as T helper cells; and bacterial translocation via hormonal, immune, and neural pathways. Ischemic stroke affects gut microbial composition via neural and hypothalamic–pituitary–adrenal (HPA) pathways, which can contribute to post-stroke outcomes. Experimental and clinical studies have demonstrated that the restoration of the gut microbiome usually improves stroke treatment outcomes by regulating metabolic, immune, and inflammatory responses via the gut–brain axis (GBA). Therefore, restoring healthy microbial ecology in the gut may be a key therapeutic target for the effective management and treatment of ischemic stroke.
Collapse
|
40
|
Yang Z, Wei F, Zhang B, Luo Y, Xing X, Wang M, Chen R, Sun G, Sun X. Cellular Immune Signal Exchange From Ischemic Stroke to Intestinal Lesions Through Brain-Gut Axis. Front Immunol 2022; 13:688619. [PMID: 35432368 PMCID: PMC9010780 DOI: 10.3389/fimmu.2022.688619] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
As a vital pivot for the human circulatory system, the brain-gut axis is now being considered as an important channel for many of the small immune molecules’ transductions, including interleukins, interferons, neurotransmitters, peptides, and the chemokines penetrating the mesentery and blood brain barrier (BBB) during the development of an ischemic stroke (IS). Hypoxia-ischemia contributes to pituitary and neurofunctional disorders by interfering with the molecular signal release and communication then providing feedback to the gut. Suffering from such a disease on a long-term basis may cause the peripheral system’s homeostasis to become imbalanced, and it can also lead to multiple intestinal complications such as gut microbiota dysbiosis (GMD), inflammatory bowel disease (IBD), necrotizing enterocolitis (NEC), and even the tumorigenesis of colorectal carcinoma (CRC). Correspondingly, these complications will deteriorate the cerebral infarctions and, in patients suffering with IS, it can even ruin the brain’s immune system. This review summarized recent studies on abnormal immunological signal exchange mediated polarization subtype changes, in both macrophages and microglial cells as well as T-lymphocytes. How gut complications modulate the immune signal transduction from the brain are also elucidated and analyzed. The conclusions drawn in this review could provide guidance and novel strategies to benefit remedies for both IS and relative gut lesions from immune-prophylaxis and immunotherapy aspects.
Collapse
Affiliation(s)
- Zizhao Yang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Fei Wei
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Luo
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Xing
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongchang Chen
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Xiaobo Sun,
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Xiaobo Sun,
| |
Collapse
|
41
|
Effect of early enteral nutrition combined with probiotics in patients with stroke: a meta-analysis of randomized controlled trials. Eur J Clin Nutr 2022; 76:592-603. [PMID: 34302128 DOI: 10.1038/s41430-021-00986-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES Whether to conduct early enteral nutrition combined with probiotics (EEN/probiotics) in stroke patients remains controversial. This study was aimed to systematically explore the efficacy and safety of EEN/probiotics in stroke patients. SUBJECT/METHODS We performed searches in EMBASE, PubMed, Medline, Cochrane Library, Chinese Biomedicine Literature Database (SinoMed), Chinese Scientific Journal Database (VIP), Chinese National Knowledge Infrastructure (CNKI) and Wanfang database. RESULTS A total of 26 randomized controlled trials (2216 patients) were included. Meta-analysis showed a significantly lower incidence of gastrointestinal complications (%) (OR, 0.29; 95% CI,0.24-0.36; P < 0.00001), a lower incidence of infection (%) (OR, 0.27; 95% CI, 0.21-0.36; P < 0.00001), a shorter length of hospital stay (d) (MD, -8.70; 95% CI, -13.24 to -4.16; P = 0.003), and a lower dysbacteriosis rate (%) (OR, 0.17; 95% CI, 0.07-0.41; P < 0.0001) in the EEN/probiotics group than EEN group. Compared with EEN group, EEN/probiotics group had lower levels of diamine oxidase (U/L) (MD, -0.78; 95% CI, -0.93 to -0.63; P < 0.00001), D-lactic acid (mmol/L) (MD, -0.06; 95% CI, -0.07 to -0.05; P < 0.00001) and higher levels of albumin (g/L) (MD, 3.38; 95% CI, 2.74-4.02; P < 0.00001), prealbumin (mg/L) (MD, 32.20; 95% CI, 24.42-39.98; P < 0.00001), total protein (g/L) (MD, 4.91; 95% CI, 3.20-6.62; P < 0.00001), hemoglobin (g/L) (MD, 9.62; 95% CI, 7.92-11.32; P < 0.00001), immunoglobulin A (g/L) (MD, 0.23; 95% CI, 0.12-0.34; P < 0.0001) and immunoglobulin G (g/L) (MD, 0.33; 95% CI, 0.21-0.45; P < 0.00001). CONCLUSION Early enteral nutrition combined with probiotics may effectively improve the nutritional status of stroke patients, regulate the intestinal flora and intestinal mucosal barrier function, improve the immune function, reduce the incidence of infectious complications and gastrointestinal motility disorders.
Collapse
|
42
|
Battaglini D, Ball L, Robba C, Maiani S, Brunetti I, Benedetti L, Castellan L, Zona G, Pesce G, Rocco PRM, Pelosi P. Patients With Suspected Severe Adverse Reactions to COVID-19 Vaccination Admitted to Intensive Care Unit: A Case Report. Front Med (Lausanne) 2022; 9:823837. [PMID: 35372434 PMCID: PMC8972056 DOI: 10.3389/fmed.2022.823837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/14/2022] [Indexed: 12/16/2022] Open
Abstract
Background Several cases of adverse reactions following vaccination for coronavirus disease 2019 (COVID-19) with adenoviral vector vaccines or mRNA-based vaccines have been reported to date. The underlying syndrome has been named “vaccine-induced immune thrombotic thrombocytopenia” (VITT) or “thrombosis with thrombocytopenia syndrome (TTS)” with different clinical manifestations. Methods We report the clinical course of five patients who had severe adverse reactions to COVID-19 vaccines, either with VITT/TTS, abdominal or pulmonary thrombosis after adenoviral vaccines, or Stevens' Johnson syndrome because of mRNA vaccination, all of whom required admission to the intensive care unit (ICU). Conclusions All patients with severe or life-threatening suspected reaction to different types of COVID-19 vaccination required ICU admission. A prompt evaluation of early symptoms and individualized clinical management is needed to improve outcomes.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Medicine, University of Barcelona, Barcelona, Spain
- *Correspondence: Denise Battaglini
| | - Lorenzo Ball
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Simona Maiani
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Iole Brunetti
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Luana Benedetti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Children (DINOGMI), University of Genoa, Genoa, Italy
- UO Clinica Neurologica, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Lucio Castellan
- Department of Radiology and Neuroradiology, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Gianluigi Zona
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Children (DINOGMI), University of Genoa, Genoa, Italy
- Department of Neurosurgery, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Giampaola Pesce
- UOSD Laboratorio Diagnostico di Autoimmunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Dipartimento di Medicina Interna e Specialità Mediche (DiMI), Università di Genova, Genoa, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| |
Collapse
|
43
|
Pluta R, Furmaga-Jabłońska W, Januszewski S, Czuczwar SJ. Post-Ischemic Brain Neurodegeneration in the Form of Alzheimer's Disease Proteinopathy: Possible Therapeutic Role of Curcumin. Nutrients 2022; 14:nu14020248. [PMID: 35057429 PMCID: PMC8779038 DOI: 10.3390/nu14020248] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
For thousands of years, mankind has been using plant extracts or plants themselves as medicinal herbs. Currently, there is a great deal of public interest in naturally occurring medicinal substances that are virtually non-toxic, readily available, and have an impact on well-being and health. It has been noted that dietary curcumin is one of the regulators that may positively influence changes in the brain after ischemia. Curcumin is a natural polyphenolic compound with pleiotropic biological properties. The observed death of pyramidal neurons in the CA1 region of the hippocampus and its atrophy are considered to be typical changes for post-ischemic brain neurodegeneration and for Alzheimer’s disease. Additionally, it has been shown that one of the potential mechanisms of severe neuronal death is the accumulation of neurotoxic amyloid and dysfunctional tau protein after cerebral ischemia. Post-ischemic studies of human and animal brains have shown the presence of amyloid plaques and neurofibrillary tangles. The significant therapeutic feature of curcumin is that it can affect the aging-related cellular proteins, i.e., amyloid and tau protein, preventing their aggregation and insolubility after ischemia. Curcumin also decreases the neurotoxicity of amyloid and tau protein by affecting their structure. Studies in animal models of cerebral ischemia have shown that curcumin reduces infarct volume, brain edema, blood-brain barrier permeability, apoptosis, neuroinflammation, glutamate neurotoxicity, inhibits autophagy and oxidative stress, and improves neurological and behavioral deficits. The available data suggest that curcumin may be a new therapeutic substance in both regenerative medicine and the treatment of neurodegenerative disorders such as post-ischemic neurodegeneration.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-6086-540
| | - Wanda Furmaga-Jabłońska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | | |
Collapse
|
44
|
Saviano A, Gayani G, Migneco A, Candelli M, Franceschi F, Ojetti V, Zanza C, Longhitano Y. The Gut Microbiota-Brain Axis in Acute Neurological Disease: Focus on Stroke. Rev Recent Clin Trials 2022; 17:240-244. [PMID: 35319389 DOI: 10.2174/1574887117666220321155508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 01/15/2023]
Abstract
The gut microbiota is one of the great innovations of modern medicine. In the modern microbiota revolution era, more comprehensive and in-depth studies have been performed regarding the microbial gut communities and their impact on acute and chronic diseases, including those of the nervous system as acute neurological diseases. The microbiota has changed our knowledge of medical conditions; in particular, considering stroke (both ischemic and hemorrhagic), literature studies, experimental and clinical researches indicate that the individual's risk and outcomes are substantially impacted by the gut microbiota. The aim of our review article is to investigate and discuss the recent insights into the emerging role of this complex "gut microbiota-brain axis" in affecting some acute neurological diseases, such as stroke, responsible for a significant number of deaths worldwide. We performed electronic research on PubMed® and collected articles published in the last ten years, finding that changes in the gut microbiota composition could affect various aspects of stroke pathophysiology and individual predisposition, risk, and outcomes. Our review article suggests that there is a strong connection between the gut microbiota and the brain, both in health and in acute neurological diseases such as stroke. Investigating and exploring this relationship can be a challenge useful to learn more about this disabling/deadly condition, and it can be a useful tool to identify novel potential therapeutic approaches, improving an individual's outcomes and life.
Collapse
Affiliation(s)
- Angela Saviano
- Department of Emergency Medicine-Fondazione Policlinico Universitario A. Gemelli, IRCCS Rome, Italy
| | - Gunawardena Gayani
- Department of Emergency Medicine-Fondazione Policlinico Universitario A. Gemelli, IRCCS Rome, Italy
| | - Alessio Migneco
- Department of Emergency Medicine-Fondazione Policlinico Universitario A. Gemelli, IRCCS Rome, Italy
| | - Marcello Candelli
- Department of Emergency Medicine-Fondazione Policlinico Universitario A. Gemelli, IRCCS Rome, Italy
| | - Francesco Franceschi
- Department of Emergency Medicine-Fondazione Policlinico Universitario A. Gemelli, IRCCS Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Veronica Ojetti
- Department of Emergency Medicine-Fondazione Policlinico Universitario A. Gemelli, IRCCS Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Christian Zanza
- Department of Emergency Medicine, Anesthesia and Critical Care Medicine, Michele and Pietro Ferrero Hospital, Foundation Ospedale Alba-Bra Onlus, Verduno (Cuneo), Italy
- Research Training Innovation Infrastructure, Research and Innovation Department, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Yaroslava Longhitano
- Research Training Innovation Infrastructure, Research and Innovation Department, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| |
Collapse
|
45
|
Recent Advances in the Impact of Infection and Inflammation on Stroke Risk and Outcomes. Curr Neurol Neurosci Rep 2022; 22:161-170. [PMID: 35235168 PMCID: PMC8889053 DOI: 10.1007/s11910-022-01179-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 11/17/2022]
Abstract
PURPOSE OF THE REVIEW Inflammation is a key component in the pathogenesis of cerebrovascular diseases. In the past few years, the role of systemic infection and gut dysbiosis in modulating inflammation and stroke risk has been increasingly acknowledged. In this review, we synthesize contemporary literature on the effects of infection and inflammation on stroke risk and outcomes, with a focus on periodontal disease, COVID-19 infection, and gut dysbiosis. RECENT FINDINGS Chronic and acute infections such as periodontitis and COVID-19 induce systemic inflammation that cause atherogenesis and increase cardiac injury and arrhythmias. These infections also directly injure the endothelium leading to worsened secondary inflammation after stroke. Gut dysbiosis engenders a pro-inflammatory state by modulating intestinal lymphocyte populations that can traffic directly to the brain. Additionally, post-stroke immune dysregulation creates a compounding feedback loop of further infections and gut dysbiosis that worsen outcomes. Recent advances in understanding the pathophysiology of how infection and dysbiosis affect the progression of stroke, as well as long-term recovery, have revealed tantalizing glimpses at potential therapeutic targets. We discuss the multidirectional relationship between stroke, infection, and gut dysbiosis, and identify areas for future research to further explore therapeutic opportunities.
Collapse
|
46
|
Lapaquette P, Bizeau JB, Acar N, Bringer MA. Reciprocal interactions between gut microbiota and autophagy. World J Gastroenterol 2021; 27:8283-8301. [PMID: 35068870 PMCID: PMC8717019 DOI: 10.3748/wjg.v27.i48.8283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/09/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
A symbiotic relationship has set up between the gut microbiota and its host in the course of evolution, forming an interkingdom consortium. The gut offers a favorable ecological niche for microbial communities, with the whole body and external factors (e.g., diet or medications) contributing to modulating this microenvironment. Reciprocally, the gut microbiota is important for maintaining health by acting not only on the gut mucosa but also on other organs. However, failure in one or another of these two partners can lead to the breakdown in their symbiotic equilibrium and contribute to disease onset and/or progression. Several microbial and host processes are devoted to facing up the stress that could alter the symbiosis, ensuring the resilience of the ecosystem. Among these processes, autophagy is a host catabolic process integrating a wide range of stress in order to maintain cell survival and homeostasis. This cytoprotective mechanism, which is ubiquitous and operates at basal level in all tissues, can be rapidly down- or up-regulated at the transcriptional, post-transcriptional, or post-translational levels, to respond to various stress conditions. Because of its sensitivity to all, metabolic-, immune-, and microbial-derived stimuli, autophagy is at the crossroad of the dialogue between changes occurring in the gut microbiota and the host responses. In this review, we first delineate the modulation of host autophagy by the gut microbiota locally in the gut and in peripheral organs. Then, we describe the autophagy-related mechanisms affecting the gut microbiota. We conclude this review with the current challenges and an outlook toward the future interventions aiming at modulating host autophagy by targeting the gut microbiota.
Collapse
Affiliation(s)
- Pierre Lapaquette
- UMR PAM A 02.102, University Bourgogne Franche-Comté, Agrosup Dijon, Dijon 21000, France
| | - Jean-Baptiste Bizeau
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Marie-Agnès Bringer
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon 21000, France
| |
Collapse
|
47
|
Distinctive Gut Microbiota Alteration Is Associated with Poststroke Functional Recovery: Results from a Prospective Cohort Study. Neural Plast 2021; 2021:1469339. [PMID: 34917142 PMCID: PMC8670901 DOI: 10.1155/2021/1469339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives Functional prognosis is potentially correlated with gut microbiota alterations following the dysregulation of the gut-microbiota-brain axis after stroke. This study was designed to explore the poststroke alterations of gut microbiota and potential correlations between gut microbiota and global functions. Methods A total of thirty-eight patients with stroke and thirty-five healthy demographics-matched controls were recruited. Their fecal DNAs were extracted, and the V3-V4 regions of the conserved bacterial 16S RNA were amplified and sequenced on the Illumina MiSeq platform. Microbial composition, diversity indices, and species cooccurrence were compared between groups. Random forest and receiver operating characteristic analysis were used to identify potential diagnostic biomarkers. Relationships between discriminant bacteria and poststroke functional outcomes were estimated. Results Higher alpha diversity of gut microbiota was observed in poststroke patients as compared to the healthy controls (p < 0.05). Beta diversity showed that microbiota composition in the poststroke group was significantly different from that in the control group. Relative abundance of nine genera increased significantly in poststroke patients, while 82 genera significantly decreased (p < 0.05). The accuracy, specificity, and susceptibility of the optimal model consisted of the top 10 discriminant species were 93%, 100%, and 86%, respectively. Subgroup analysis showed that bacterial taxa abundant between subacute and chronic stroke patients were overall different (p < 0.05). The modified Rankin scale (mRS) (r = −0.370, p < 0.05), Fugl-Meyer assessment (FMA) score (r = 0.364, p < 0.05), water swallow test (WST) (r = 0.340, p < 0.05), and Barthel index (BI) (r = 0.349, p < 0.05) were significantly associated with alterations of distinctive gut microbiota. Conclusions The gut microbiota in patients with stroke was significantly changed in terms of richness and composition. Significant associations were detected between alterations of distinctive gut microbiota and global functional prognosis. It would facilitate novel treatment target selection in the context of stroke while the causal relationships between distinctive gut microbiota alterations and functional variations need to be further verified with well-designed studies.
Collapse
|
48
|
Zarezadeh M, Musazadeh V, Faghfouri AH, Roshanravan N, Dehghan P. Probiotics act as a potent intervention in improving lipid profile: An umbrella systematic review and meta-analysis. Crit Rev Food Sci Nutr 2021; 63:145-158. [PMID: 34817299 DOI: 10.1080/10408398.2021.2004578] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Several meta-analysis studies have revealed improving effects of probiotics on lipid profile, while some studies have reported controversial findings. The purpose of present study was to evaluate the efficacy of probiotics on blood lipids. Relevant studies were searched in the international databases, including PubMed, Scopus, EMBASE, Web of Science, and Cochrane Central Library up to August 2021. The pooled results were calculated with the use of a random-effects model to assess the effects of probiotics on blood lipids. Overall, 38 meta-analyses were inclueded in the study. The results indicated that the probiotics supplementation was effective on reduction of total cholesterol (TC) (ES= -0.46 mg/dL; 95% CI: -0.61, -0.30, p < 0.001; I2= 83.8%, p < 0.001), triglycerides (TG) (ES= -0.13 mg/dl; 95% CI: -0.23, -0.04, p = 0.006; I2= 74.7%, p < 0.001), and low-density lipoprotein cholesterol (LDL-C)levels (ES= -0.29 mg/dL; 95% CI: -0.40, -0.19, p < 0.001; I2= 77.8%, p < 0.001). There was no significant effect of probiotics on high-density lipoprotein cholesterol (HDL-C) levels (ES= 0.02 mg/dl; 95% CI: -0.04, 0.08, p = 0.519; I2= 72.5%, p= <0.001). The results of present umbrella meta-analysis strongly support supplementation with probiotics as an influential intervention for improving lipid profile.
Collapse
Affiliation(s)
- Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Hossein Faghfouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Ma S, Wang N, Zhang P, Wu W, Fu L. Fecal microbiota transplantation mitigates bone loss by improving gut microbiome composition and gut barrier function in aged rats. PeerJ 2021; 9:e12293. [PMID: 34721980 PMCID: PMC8542369 DOI: 10.7717/peerj.12293] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022] Open
Abstract
Background Gut microbiota (GM) dysbiosis is closely related to bone loss and the occurrence of osteoporosis in animals and human. However, little is known about the effect and the mechanisms of fecal microbiota transplantation (FMT) on bone in the treatment of senile osteoporosis. Methods Aged female rats were randomly divided into the FMT group and the control group. 3-month-old female rats were used as fecal donors. The rats were sacrificed at 12 and 24 weeks following transplantation and the serum, intestine, bone, and feces were collected for subsequent analyses. Results The bone turnover markers of osteocalcin, procollagen type 1 N-terminal propeptide (P1NP), and carboxy-terminal peptide (CTX) decreased significantly at 12 and 24 weeks following FMT (P < 0.05). At 12 weeks following transplantation, histomorphometric parameters including the bone volume (BV), trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th) of the FMT group were comparable to the control group. However, at 24 weeks following transplantation, these parameters of the FMT group were significantly higher than those of the control group (P < 0.05). Besides, the GM aggregated at 12 and 24 weeks following FMT, and the ecological distance was close between the rats in the FMT group and the donor rats. Alpha diversity, shown by the Shannon index and Simpson index, and the Firmicutes/Bacteroidetes ratio decreased significantly after FMT at 24 weeks. Furthermore, FMT restored the GM composition in aged rats at the phylum and family level, and the intestinal microbiota of the aged rats was similar to that of the donor rats. Correlation network analysis indirectly suggested the causality of FMT on alleviating osteoporosis. FMT improved the intestinal structure and up-regulated the expression of tight junction proteins of occludin, claudin, and ZO-1, which might be associated with the protective effects of FMT on bone. Conclusions GM transplanted from young rats alleviated bone loss in aged rats with senile osteoporosis by improving gut microbiome composition and intestinal barrier function. These data might provide a scientific basis for future clinical treatment of osteoporosis through FMT.
Collapse
Affiliation(s)
- Sicong Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pu Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingjie Fu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Yin C, Qi L, Jing X. Effect of standardized nursing cooperation on intravenous thrombolysis with recombinant tissue plasminogen activator in acute ischemic stroke. Am J Transl Res 2021; 13:11925-11931. [PMID: 34786123 PMCID: PMC8581870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE This study explored the impact of standardized nursing cooperation on intravenous thrombolysis with recombinant tissue plasminogen activator (rt-PA) in acute ischemic stroke (AIS). METHODS From June 2019 to June 2020, a total of 235 AIS patients that received rt-PA intravenous thrombolysis were enrolled as the research subjects. Among them, there were 101 patients who were admitted between June 2019 and December 2019 and were placed into control-group and received traditional routine nursing collaboration procedures; and the remaining 134 subjects admitted between January 2020 to June 2020 were classified into the observation-group and received standardized care collaboration procedures. The time spent (from admission to CT examination, from completion of CT to medication and from admission to medication), the thrombolysis within 1 h, 1-2 h, 2-3 h and 3-4.5 h, the degree of damage of neurological function before and after nursing intervention, the occurrence of complications and satisfaction with nursing care were compared between the two groups. RESULTS The time spent in each procedure of thrombolytic therapy in the observation group was remarkably less than that in control group (P<0.05). The distribution of thrombolysis in the observation group was superior to that in control group (P<0.05). NIHSS score of subjects in observation group after intervention was obviously lower than that in the control group, with statistically significant difference [(3.34±0.87) points, (4.82±0.93) points, t=12.5318, P=0.0000]. The incidence of complications in the observation group was 5.97%, and that in the control group was 24.75%, with a statistically significant difference (X2 =16.8317, P=0.0000). The nursing satisfaction of the observation group was 91.04%, which was significantly higher than 73.27% in the control group, and the difference was statistically significant (X2 =13.1496, P=0.0003). CONCLUSION The standardized nursing cooperation for AIS patients with rt-PA intravenous thrombolysis is beneficial for effectively reducing the treatment delay and the incidence of complications, and improving the neurological function and satisfaction of nursing care, and as such it which is worthy of clinical promotion.
Collapse
Affiliation(s)
- Chunhong Yin
- Department of Endocrinology and Health Care, Dongping County People’s HospitalDongping County, Tai’an 271500, Shandong Province, China
| | - Li Qi
- Department of Endocrinology and Health Care, Dongping County People’s HospitalDongping County, Tai’an 271500, Shandong Province, China
| | - Xia Jing
- Second Department of Traditional Chinese Medicine and Neurology, Dongping County People’s HospitalDongping County, Tai’an 271500, Shandong Province, China
| |
Collapse
|