1
|
Joshi N, Vaidya B, Sharma SS. Transient receptor potential channels as an emerging target for the treatment of Alzheimer's disease: Unravelling the potential of pharmacological interventions. Basic Clin Pharmacol Toxicol 2024; 135:375-400. [PMID: 39209323 DOI: 10.1111/bcpt.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is a devastating disorder with a multifaceted aetiology characterized by dementia, which later progresses to cognitive impairment. Significant efforts have been made to develop pharmacological interventions that slow down the pathogenesis of AD. However, conventional drugs have failed to satisfactorily treat AD and are more focussed towards symptomatic management. Thus, there is a gap in the literature regarding novel targets and modulators targeting them for the effective treatment of AD. Recent studies have demonstrated that modulation of transient receptor potential (TRP) channels has the potential to halt AD pathogenesis at an early stage and rescue hippocampal neurons from death. Amongst several members, TRP channels like TRPA1, TRPC6, TRPM2 and TRPV2 have shown promising results in the attenuation of neurobehavioural cognitive deficits as well as signalling pathways governing such cognitive decline. Furthermore, as these channels govern the ionic balance in the cell, their beneficial effects have also been known to maintain the homeostasis of Ca2+, which is the major culprit eliciting the vicious cycle of excitotoxicity, mitochondrial dysfunction, ROS generation and neurodegeneration. Despite such tremendous potential of TRP channel modulators, their clinical investigation remains elusive. Therefore, in the present review, we have discussed such agents in the light of TRP channels as molecular targets for the amelioration of AD both at the preclinical and clinical levels.
Collapse
Affiliation(s)
- Nishit Joshi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| | - Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| |
Collapse
|
2
|
Soeterboek J, Deckers K, van Boxtel MPJ, Backes WH, Eussen SJPM, van Greevenbroek MMJ, Jansen JFA, Koster A, Schram MT, Stehouwer CDA, Wesselius A, Lakerveld J, Bosma H, Köhler S. Association of ambient air pollution with cognitive functioning and markers of structural brain damage: The Maastricht study. ENVIRONMENT INTERNATIONAL 2024; 192:109048. [PMID: 39383768 DOI: 10.1016/j.envint.2024.109048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION Given the absence of curative interventions and the rising global incidence of dementia, research is increasingly focusing on lifestyle factors for prevention. However, identifying shared environmental risk for dementia, next to individual factors, is crucial for optimal risk reduction strategies. Therefore, in the present study we investigated the association between air pollution, cognitive functioning, and markers of structural brain damage. METHODS We used cross-sectional data from 4,002 participants of The Maastricht Study on volumetric markers of brain integrity (white and grey matter volume, cerebrospinal fluid volume, white matter hyperintensities volume, presence of cerebral small vessel disease) and cognitive functioning (memory, executive functioning and attention, processing speed, overall cognition). Individuals were matched by postal code of residence to nationwide data on air pollution exposure (particulate matter < 2.5 μm (PM2.5), particulate matter <10 μm (PM10), nitrogen dioxide (NO2), soot). Potentia linear and non-linear associations were investigated with linear, logistic, and restricted cubic splines regression. All analyses were adjusted for demographic characteristics and a compound score of modifiable dementia risk and protective factors. RESULTS Exposure to air pollutants was not related to cognitive functioning and most brain markers. We found curvilinear relationships between high PM2.5 exposures and grey matter and cerebrospinal fluid volume. Participants in the low and high range of exposure had lower grey matter volume. Higher cerebrospinal fluid volumes were only associated with high range of exposure, independent of demographic and individual modifiable dementia risk factors. After additional post hoc analyses, controlling for urbanicity, the associations for grey matter volume became non-significant. In men only, higher exposure to all air pollutants was associated with lower white matter volumes. No significant associations with white matter hyperintensities volume or cerebral small vessel disease were observed. DISCUSSION Our findings suggest that higher PM2.5 exposure is associated with more brain atrophy.
Collapse
Affiliation(s)
- J Soeterboek
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands.
| | - K Deckers
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - M P J van Boxtel
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - W H Backes
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - S J P M Eussen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Care and Public Health Research Institute (CAPHRI), Maastricht University, the Netherlands; Department of Epidemiology, Maastricht University, Maastricht, the Netherlands
| | - M M J van Greevenbroek
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J F A Jansen
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - A Koster
- Care and Public Health Research Institute (CAPHRI), Maastricht University, the Netherlands; Department of Social Medicine, Maastricht University, Maastricht, the Netherlands
| | - M T Schram
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Heart and Vascular Center, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - C D A Stehouwer
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Heart and Vascular Center, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - A Wesselius
- Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - J Lakerveld
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, VU University Amsterdam, Amsterdam, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - H Bosma
- Care and Public Health Research Institute (CAPHRI), Maastricht University, the Netherlands; Department of Social Medicine, Maastricht University, Maastricht, the Netherlands
| | - S Köhler
- Mental Health and Neuroscience Research Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
3
|
Polemiti E, Hese S, Schepanski K, Yuan J, Schumann G. How does the macroenvironment influence brain and behaviour-a review of current status and future perspectives. Mol Psychiatry 2024; 29:3268-3286. [PMID: 38658771 PMCID: PMC11449798 DOI: 10.1038/s41380-024-02557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
The environment influences brain and mental health, both detrimentally and beneficially. Existing research has emphasised the individual psychosocial 'microenvironment'. Less attention has been paid to 'macroenvironmental' challenges, including climate change, pollution, urbanicity, and socioeconomic disparity. Notably, the implications of climate and pollution on brain and mental health have only recently gained prominence. With the advent of large-scale big-data cohorts and an increasingly dense mapping of macroenvironmental parameters, we are now in a position to characterise the relation between macroenvironment, brain, and behaviour across different geographic and cultural locations globally. This review synthesises findings from recent epidemiological and neuroimaging studies, aiming to provide a comprehensive overview of the existing evidence between the macroenvironment and the structure and functions of the brain, with a particular emphasis on its implications for mental illness. We discuss putative underlying mechanisms and address the most common exposures of the macroenvironment. Finally, we identify critical areas for future research to enhance our understanding of the aetiology of mental illness and to inform effective interventions for healthier environments and mental health promotion.
Collapse
Affiliation(s)
- Elli Polemiti
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Sören Hese
- Institute of Geography, Friedrich Schiller University Jena, Jena, Germany
| | | | - Jiacan Yuan
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology & IRDR-ICOE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Mohammadzadeh M, Khoshakhlagh AH, Grafman J. Air pollution: a latent key driving force of dementia. BMC Public Health 2024; 24:2370. [PMID: 39223534 PMCID: PMC11367863 DOI: 10.1186/s12889-024-19918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Many researchers have studied the role of air pollutants on cognitive function, changes in brain structure, and occurrence of dementia. Due to the wide range of studies and often contradictory results, the present systematic review was conducted to try and clarify the relationship between air pollutants and dementia. To identify studies for this review, a systematic search was conducted in Scopus, PubMed, and Web of Science databases (without historical restrictions) until May 22, 2023. The PECO statement was created to clarify the research question, and articles that did not meet the criteria of this statement were excluded. In this review, animal studies, laboratory studies, books, review articles, conference papers and letters to the editors were avoided. Also, studies focused on the effect of air pollutants on cellular and biochemical changes (without investigating dementia) were also excluded. A quality assessment was done according to the type of design of each article, using the checklist developed by the Joanna Briggs Institute (JBI). Finally, selected studies were reviewed and discussed in terms of Alzheimer's dementia and non-Alzheimer's dementia. We identified 14,924 articles through a systematic search in databases, and after comprehensive reviews, 53 articles were found to be eligible for inclusion in the current systematic review. The results showed that chronic exposure to higher levels of air pollutants was associated with adverse effects on cognitive abilities and the presence of dementia. Studies strongly supported the negative effects of PM2.5 and then NO2 on the brain and the development of neurodegenerative disorders in old age. Because the onset of brain structural changes due to dementia begins decades before the onset of disease symptoms, and that exposure to air pollution is considered a modifiable risk factor, taking preventive measures to reduce air pollution and introducing behavioral interventions to reduce people's exposure to pollutants is advisable.
Collapse
Affiliation(s)
- Mahdiyeh Mohammadzadeh
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Climate Change and Health Research Center (CCHRC), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran.
| | - Jordan Grafman
- Department of Physical Medicine & Rehabilitation, Neurology, Cognitive Neurology and Alzheimer's Center, Department of Psychiatry, Feinberg School of Medicine & Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
5
|
Lin YC, Fan KC, Wu CD, Pan WC, Chen JC, Chao YP, Lai YJ, Chiu YL, Chuang YF. Yearly change in air pollution and brain aging among older adults: A community-based study in Taiwan. ENVIRONMENT INTERNATIONAL 2024; 190:108876. [PMID: 39002330 DOI: 10.1016/j.envint.2024.108876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Air pollution is recognized as a modifiable risk factor for dementia, and recent evidence suggests that improving air quality could attenuate cognitive decline and reduce dementia risk. However, studies have yet to explore the effects of improved air quality on brain structures. This study aims to investigate the impact of air pollution reduction on cognitive functions and structural brain differences among cognitively normal older adults. METHODS Four hundred and thirty-one cognitively normal older adults were from the Epidemiology of Mild Cognitive Impairment study in Taiwan (EMCIT), a community-based cohort of adults aged 60 and older, between year 2017- 2021. Annual concentrations of PM2.5, NO2, O3, and PM10 at participants' residential addresses during the 10 years before enrollment were estimated using ensemble mixed spatial models. The yearly rate of change (slope) in air pollutants was estimated for each participant. Cognitive functions and structural brain images were collected during enrollment. The relationships between the rate of air pollution change and cognitive functions were examined using linear regression models. For air pollutants with significant findings in relation to cognitive function, we further explored the association with brain structure. RESULTS Overall, all pollutant concentrations, except O3, decreased over the 10-year period. The yearly rates of change (slopes) in PM2.5 and NO2 were correlated with better attention (PM2.5: r = -0.1, p = 0.047; NO2: r = -0.1, p = 0.03) and higher white matter integrity in several brain regions. These regions included anterior thalamic radiation, superior longitudinal fasciculus, inferior longitudinal fasciculus, corticospinal tract, and inferior fronto-occipital fasciculus. CONCLUSIONS Greater rate of reduction in air pollution was associated with better attention and attention-related white matter integrity. These results provide insight into the mechanism underlying the relationship between air pollution, brain health, and cognitive aging among older adults.
Collapse
Affiliation(s)
- Ying-Cen Lin
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kang-Chen Fan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan; Research Center for Precision Environmental Medicine, Koahsiung Medical University, Koahsiung, Taiwan
| | - Wen-Chi Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiu-Chiuan Chen
- Departments of Population & Public Health Sciences and Neurology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Yi-Ping Chao
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan; Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan; Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yen-Jun Lai
- Division of Medical Imaging, Department of Radiology, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Yen-Ling Chiu
- Department of Medical Research, Far Eastern Memorial Hospital, Taipei, Taiwan; Graduate Program in Biomedical Informatics and Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Fang Chuang
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; International Health Program, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei, Taiwan; Health Innovation Center, National Yang Ming Chao Tung Univeristy, Taipei, Taiwan.
| |
Collapse
|
6
|
Puckett OK, Fennema-Notestine C, Hagler DJ, Braskie MN, Chen JC, Finch CE, Kaufman JD, Petkus AJ, Reynolds CA, Salminen LE, Thompson PM, Wang X, Kremen WS, Franz CE, Elman JA. The Association between Exposure to Fine Particulate Matter and MRI-Assessed Locus Coeruleus Integrity in the Vietnam Era Twin Study of Aging (VETSA). ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:77006. [PMID: 39028627 PMCID: PMC11259243 DOI: 10.1289/ehp14344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/18/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Increased exposure to ambient air pollution, especially fine particulate matter ≤ 2.5 μ m (PM 2.5 ) is associated with poorer brain health and increased risk for Alzheimer's disease (AD) and related dementias. The locus coeruleus (LC), located in the brainstem, is one of the earliest regions affected by tau pathology seen in AD. Its diffuse projections throughout the brain include afferents to olfactory areas that are hypothesized conduits of cerebral particle deposition. Additionally, extensive contact of the LC with the cerebrovascular system may present an additional route of exposure to environmental toxicants. OBJECTIVE Our aim was to investigate if exposure to PM 2.5 was associated with LC integrity in a nationwide sample of men in early old age, potentially representing one pathway through which air pollution can contribute to increased risk for AD dementia. METHODS We examined the relationship between PM 2.5 and in vivo magnetic resonance imaging (MRI) estimates of LC structural integrity indexed by contrast to noise ratio (LC CNR ) in 381 men [mean age = 67.3 ; standard deviation ( SD ) = 2.6 ] from the Vietnam Era Twin Study of Aging (VETSA). Exposure to PM 2.5 was taken as a 3-year average over the most recent period for which data were available (average of 5.6 years prior to the MRI scan). We focused on LC CNR in the rostral-middle portion of LC due to its stronger associations with aging and AD than the caudal LC. Associations between PM 2.5 exposures and LC integrity were tested using linear mixed effects models adjusted for age, scanner, education, household income, and interval between exposure and MRI. A co-twin control analysis was also performed to investigate whether associations remained after controlling for genetic confounding and rearing environment. RESULTS Multiple linear regressions revealed a significant association between PM 2.5 and rostral-middle LC CNR (β = - 0.16 ; p = 0.02 ), whereby higher exposure to PM 2.5 was associated with lower LC CNR . A co-twin control analysis found that, within monozygotic pairs, individuals with higher PM 2.5 exposure showed lower LC CNR (β = - 0.11 ; p = 0.02 ), indicating associations were not driven by genetic or shared environmental confounds. There were no associations between PM 2.5 and caudal LC CNR or hippocampal volume, suggesting a degree of specificity to the rostral-middle portion of the LC. DISCUSSION Given previous findings that loss of LC integrity is associated with increased accumulation of AD-related amyloid and tau pathology, impacts on LC integrity may represent a potential pathway through which exposure to air pollution increases AD risk. https://doi.org/10.1289/EHP14344.
Collapse
Affiliation(s)
- Olivia K. Puckett
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Donald J. Hagler
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Meredith N. Braskie
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, USA
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Caleb E. Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Joel D. Kaufman
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Andrew J. Petkus
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Chandra A. Reynolds
- Institute for Behavioral Genetics, University of Colorado, Boulder, Boulder, Colorado, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Boulder, Colorado, USA
| | - Lauren E. Salminen
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Paul M. Thompson
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Xinhui Wang
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - William S. Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California, USA
| | - Carol E. Franz
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California, USA
| | - Jeremy A. Elman
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Fania A, Monaco A, Amoroso N, Bellantuono L, Cazzolla Gatti R, Firza N, Lacalamita A, Pantaleo E, Tangaro S, Velichevskaya A, Bellotti R. Machine learning and XAI approaches highlight the strong connection between O 3 and N O 2 pollutants and Alzheimer's disease. Sci Rep 2024; 14:5385. [PMID: 38443419 PMCID: PMC11319812 DOI: 10.1038/s41598-024-55439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia with millions of affected patients worldwide. Currently, there is still no cure and AD is often diagnosed long time after onset because there is no clear diagnosis. Thus, it is essential to study the physiology and pathogenesis of AD, investigating the risk factors that could be strongly connected to the disease onset. Despite AD, like other complex diseases, is the result of the combination of several factors, there is emerging agreement that environmental pollution should play a pivotal role in the causes of disease. In this work, we implemented an Artificial Intelligence model to predict AD mortality, expressed as Standardized Mortality Ratio, at Italian provincial level over 5 years. We employed a set of publicly available variables concerning pollution, health, society and economy to feed a Random Forest algorithm. Using methods based on eXplainable Artificial Intelligence (XAI) we found that air pollution (mainly O 3 and N O 2 ) contribute the most to AD mortality prediction. These results could help to shed light on the etiology of Alzheimer's disease and to confirm the urgent need to further investigate the relationship between the environment and the disease.
Collapse
Affiliation(s)
- Alessandro Fania
- Dipartimento Interateneo di Fisica M. Merlin, Universitá degli Studi di Bari Aldo Moro, 70125, Bari, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, 70125, Bari, Italy
| | - Alfonso Monaco
- Dipartimento Interateneo di Fisica M. Merlin, Universitá degli Studi di Bari Aldo Moro, 70125, Bari, Italy.
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, 70125, Bari, Italy.
| | - Nicola Amoroso
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, 70125, Bari, Italy
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy
| | - Loredana Bellantuono
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, 70125, Bari, Italy
- Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN), Università degli Studi di Bari Aldo Moro, 70124, Bari, Italy
| | - Roberto Cazzolla Gatti
- Department of Biological Sciences, Geological and Environmental (BiGeA), Alma Mater Studiorum - University of Bologna, 40126, Bologna, Italy
| | - Najada Firza
- Dipartimento di Economia e Finanza, Università degli Studi di Bari Aldo Moro, 70124, Bari, Italy
- Catholic University Our Lady of Good Counsel, 1031, Tirana, Albania
| | - Antonio Lacalamita
- Dipartimento Interateneo di Fisica M. Merlin, Universitá degli Studi di Bari Aldo Moro, 70125, Bari, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, 70125, Bari, Italy
| | - Ester Pantaleo
- Dipartimento Interateneo di Fisica M. Merlin, Universitá degli Studi di Bari Aldo Moro, 70125, Bari, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, 70125, Bari, Italy
| | - Sabina Tangaro
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, 70125, Bari, Italy
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126, Bari, Italy
| | | | - Roberto Bellotti
- Dipartimento Interateneo di Fisica M. Merlin, Universitá degli Studi di Bari Aldo Moro, 70125, Bari, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, 70125, Bari, Italy
| |
Collapse
|
8
|
Wang X, Salminen LE, Petkus AJ, Driscoll I, Millstein J, Beavers DP, Espeland MA, Erus G, Braskie MN, Thompson PM, Gatz M, Chui HC, Resnick SM, Kaufman JD, Rapp SR, Shumaker S, Brown M, Younan D, Chen JC. Association between late-life air pollution exposure and medial temporal lobe atrophy in older women. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.28.23298708. [PMID: 38077091 PMCID: PMC10705610 DOI: 10.1101/2023.11.28.23298708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Background Ambient air pollution exposures increase risk for Alzheimer's disease (AD) and related dementias, possibly due to structural changes in the medial temporal lobe (MTL). However, existing MRI studies examining exposure effects on the MTL were cross-sectional and focused on the hippocampus, yielding mixed results. Method To determine whether air pollution exposures were associated with MTL atrophy over time, we conducted a longitudinal study including 653 cognitively unimpaired community-dwelling older women from the Women's Health Initiative Memory Study with two MRI brain scans (MRI-1: 2005-6; MRI-2: 2009-10; Mage at MRI-1=77.3±3.5years). Using regionalized universal kriging models, exposures at residential locations were estimated as 3-year annual averages of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) prior to MRI-1. Bilateral gray matter volumes of the hippocampus, amygdala, parahippocampal gyrus (PHG), and entorhinal cortex (ERC) were summed to operationalize the MTL. We used linear regressions to estimate exposure effects on 5-year volume changes in the MTL and its subregions, adjusting for intracranial volume, sociodemographic, lifestyle, and clinical characteristics. Results On average, MTL volume decreased by 0.53±1.00cm3 over 5 years. For each interquartile increase of PM2.5 (3.26μg/m3) and NO2 (6.77ppb), adjusted MTL volume had greater shrinkage by 0.32cm3 (95%CI=[-0.43, -0.21]) and 0.12cm3 (95%CI=[-0.22, -0.01]), respectively. The exposure effects did not differ by APOE ε4 genotype, sociodemographic, and cardiovascular risk factors, and remained among women with low-level PM2.5 exposure. Greater PHG atrophy was associated with higher PM2.5 (b=-0.24, 95%CI=[-0.29, -0.19]) and NO2 exposures (b=-0.09, 95%CI=[-0.14, -0.04]). Higher exposure to PM2.5 but not NO2 was also associated with greater ERC atrophy. Exposures were not associated with amygdala or hippocampal atrophy. Conclusion In summary, higher late-life PM2.5 and NO2 exposures were associated with greater MTL atrophy over time in cognitively unimpaired older women. The PHG and ERC - the MTL cortical subregions where AD neuropathologies likely begin, may be preferentially vulnerable to air pollution neurotoxicity.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Neurology, University of Southern California, Los Angeles, California
| | - Lauren E Salminen
- Department of Neurology, University of Southern California, Los Angeles, California
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Andrew J Petkus
- Department of Neurology, University of Southern California, Los Angeles, California
| | - Ira Driscoll
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Joshua Millstein
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California
| | - Daniel P Beavers
- Departments of Statistical Sciences, Wake Forest University, Winston-Salem, North Carolina
| | - Mark A Espeland
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Biostatistics and Data Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania
| | - Meredith N Braskie
- Department of Neurology, University of Southern California, Los Angeles, California
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Paul M Thompson
- Department of Neurology, University of Southern California, Los Angeles, California
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, California
| | - Helena C Chui
- Department of Neurology, University of Southern California, Los Angeles, California
| | - Susan M Resnick
- The Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland
| | - Joel D Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine (General Internal Medicine), and Epidemiology, University of Washington, Seattle, Washington
| | - Stephen R Rapp
- Departments of Psychiatry and Behavioral Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sally Shumaker
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mark Brown
- Department of Biostatistics and Data Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Diana Younan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California
| | - Jiu-Chiuan Chen
- Department of Neurology, University of Southern California, Los Angeles, California
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California
| |
Collapse
|
9
|
Petkus AJ, Salminen LE, Wang X, Driscoll I, Millstein J, Beavers DP, Espeland MA, Braskie MN, Thompson PM, Casanova R, Gatz M, Chui HC, Resnick SM, Kaufman JD, Rapp SR, Shumaker S, Younan D, Chen JC. Alzheimer's Related Neurodegeneration Mediates Air Pollution Effects on Medial Temporal Lobe Atrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.29.23299144. [PMID: 38076972 PMCID: PMC10705654 DOI: 10.1101/2023.11.29.23299144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Exposure to ambient air pollution, especially particulate matter with aerodynamic diameter <2.5 μm (PM2.5) and nitrogen dioxide (NO2), are environmental risk factors for Alzheimer's disease and related dementia. The medial temporal lobe (MTL) is an important brain region subserving episodic memory that atrophies with age, during the Alzheimer's disease continuum, and is vulnerable to the effects of cerebrovascular disease. Despite the importance of air pollution it is unclear whether exposure leads to atrophy of the MTL and by what pathways. Here we conducted a longitudinal study examining associations between ambient air pollution exposure and MTL atrophy and whether putative air pollution exposure effects resembled Alzheimer's disease-related neurodegeneration or cerebrovascular disease-related neurodegeneration. Participants included older women (n = 627; aged 71-87) who underwent two structural brain MRI scans (MRI-1: 2005-6; MRI-2: 2009-10) as part of the Women's Health Initiative Memory Study of Magnetic Resonance Imaging. Regionalized universal kriging was used to estimate annual concentrations of PM2.5 and NO2 at residential locations aggregated to 3-year averages prior to MRI-1. The outcome was 5-year standardized change in MTL volumes. Mediators included voxel-based MRI measures of the spatial pattern of neurodegeneration of Alzheimer's disease (Alzheimer's disease pattern similarity scores [AD-PS]) and whole-brain white matter small-vessel ischemic disease (WM-SVID) volume as a proxy of global cerebrovascular damage. Structural equation models were constructed to examine whether the associations between exposures with MTL atrophy were mediated by the initial level or concurrent change in AD-PS score or WM-SVID while adjusting for sociodemographic, lifestyle, clinical characteristics, and intracranial volume. Living in locations with higher PM2.5 (per interquartile range [IQR]=3.17μg/m3) or NO2 (per IQR=6.63ppb) was associated with greater MTL atrophy (βPM2.5 = -0.29, 95% confidence interval [CI]=[-0.41,-0.18]; βNO2 =-0.12, 95%CI=[-0.23,-0.02]). Greater PM2.5 was associated with larger increases in AD-PS (βPM2.5 = 0.23, 95%CI=[0.12,0.33]) over time, which partially mediated associations with MTL atrophy (indirect effect= -0.10; 95%CI=[-0.15, -0.05]), explaining approximately 32% of the total effect. NO2 was positively associated with AD-PS at MRI-1 (βNO2=0.13, 95%CI=[0.03,0.24]), which partially mediated the association with MTL atrophy (indirect effect= -0.01, 95% CI=[-0.03,-0.001]). Global WM-SVID at MRI-1 or concurrent change were not significant mediators between exposures and MTL atrophy. Findings support the mediating role of Alzheimer's disease-related neurodegeneration contributing to MTL atrophy associated with late-life exposures to air pollutants. Alzheimer's disease-related neurodegeneration only partially explained associations between exposure and MTL atrophy suggesting the role of multiple neuropathological processes underlying air pollution neurotoxicity on brain aging.
Collapse
Affiliation(s)
- Andrew J. Petkus
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
| | - Lauren E. Salminen
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, United States
| | - Xinhui Wang
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
| | - Ira Driscoll
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53792, United States
| | - Joshua Millstein
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, 90033, United States
| | - Daniel P. Beavers
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, United States
| | - Mark A. Espeland
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, United States
| | - Meredith N. Braskie
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, United States
| | - Paul M. Thompson
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, United States
| | - Ramon Casanova
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, United States
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, California, 90089, United States
| | - Helena C. Chui
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
| | - Susan M Resnick
- The Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, 20898, United States
| | - Joel D. Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine (General Internal Medicine), and Epidemiology, University of Washington, Seattle, Washington, 98195, United States
| | - Stephen R. Rapp
- Departments of Psychiatry and Behavioral Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina , 27101, United States
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, United States
| | - Sally Shumaker
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, United States
| | - Diana Younan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, 90033, United States
| | - Jiu-Chiuan Chen
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, 90033, United States
| |
Collapse
|
10
|
Bennett EE, Song Z, Lynch KM, Liu C, Stapp EK, Xu X, Park ES, Ying Q, Smith RL, Stewart JD, Whitsel EA, Mosley TH, Wong DF, Liao D, Yanosky JD, Szpiro AA, Kaufman JD, Gottesman RF, Power MC. The association of long-term exposure to criteria air pollutants, fine particulate matter components, and airborne trace metals with late-life brain amyloid burden in the Atherosclerosis Risk in Communities (ARIC) study. ENVIRONMENT INTERNATIONAL 2023; 180:108200. [PMID: 37774459 PMCID: PMC10620775 DOI: 10.1016/j.envint.2023.108200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/13/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Studies suggest associations between long-term ambient air pollution exposure and outcomes related to Alzheimer's disease (AD). Whether a link exists between pollutants and brain amyloid accumulation, a biomarker of AD, is unclear. We assessed whether long-term air pollutant exposures are associated with late-life brain amyloid deposition in Atherosclerosis Risk in Communities (ARIC) study participants. METHODS We used a chemical transport model with data fusion to estimate ambient concentrations of PM2.5 and its components, NO2, NOx, O3 (24-hour and 8-hour), CO, and airborne trace metals. We linked concentrations to geocoded participant addresses and calculated 10-year mean exposures (2002 to 2011). Brain amyloid deposition was measured using florbetapir amyloid positron emission tomography (PET) scans in 346 participants without dementia in 2012-2014, and we defined amyloid positivity as a global cortical standardized uptake value ratio ≥ the sample median of 1.2. We used logistic regression models to quantify the association between amyloid positivity and each air pollutant, adjusting for putative confounders. In sensitivity analyses, we considered whether use of alternate air pollution estimation approaches impacted findings for PM2.5, NO2, NOx, and 24-hour O3. RESULTS At PET imaging, eligible participants (N = 318) had a mean age of 78 years, 56% were female, 43% were Black, and 27% had mild cognitive impairment. We did not find evidence of associations between long-term exposure to any pollutant and brain amyloid positivity in adjusted models. Findings were materially unchanged in sensitivity analyses using alternate air pollution estimation approaches for PM2.5, NO2, NOx, and 24-hour O3. CONCLUSIONS Air pollution may impact cognition and dementia independent of amyloid accumulation, though whether air pollution influences AD pathogenesis later in the disease course or at higher exposure levels deserves further consideration.
Collapse
Affiliation(s)
- Erin E Bennett
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA.
| | - Ziwei Song
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Katie M Lynch
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Chelsea Liu
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Emma K Stapp
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Xiaohui Xu
- Department of Epidemiology & Biostatistics, Texas A&M Health Science Center School of Public Health, College Station, TX, USA
| | - Eun Sug Park
- Texas A&M Transportation Institute, College Station, TX, USA
| | - Qi Ying
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, TX, USA
| | - Richard L Smith
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas H Mosley
- The University of Mississippi Medical Center, Jackson, MS, USA
| | - Dean F Wong
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Duanping Liao
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jeff D Yanosky
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Adam A Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Joel D Kaufman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA; Department of Medicine, School of Medicine, University of Washington, Seattle, WA
| | - Rebecca F Gottesman
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Melinda C Power
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| |
Collapse
|
11
|
Duchesne J, Carrière I, Artero S, Brickman AM, Maller J, Meslin C, Chen J, Vienneau D, de Hoogh K, Jacquemin B, Berr C, Mortamais M. Ambient Air Pollution Exposure and Cerebral White Matter Hyperintensities in Older Adults: A Cross-Sectional Analysis in the Three-City Montpellier Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107013. [PMID: 37878794 PMCID: PMC10599635 DOI: 10.1289/ehp12231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Growing epidemiological evidence suggests an adverse relationship between exposure to air pollutants and cognitive health, and this could be related to the effect of air pollution on vascular health. OBJECTIVE We aim to evaluate the association between air pollution exposure and a magnetic resonance imaging (MRI) marker of cerebral vascular burden, white matter hyperintensities (WMH). METHODS This cross-sectional analysis used data from the French Three-City Montpellier study. Randomly selected participants 65-80 years of age underwent an MRI examination to estimate their total and regional cerebral WMH volumes. Exposure to fine particulate matter (PM 2.5 ), nitrogen dioxide (NO 2 ), and black carbon (BC) at the participants' residential address during the 5 years before the MRI examination was estimated with land use regression models. Multinomial and binomial logistic regression assessed the associations between exposure to each of the three pollutants and categories of total and lobar WMH volumes. RESULTS Participants' (n = 582 ) median age at MRI was 70.7 years [interquartile range (IQR): 6.1], and 52% (n = 300 ) were women. Median exposure to air pollution over the 5 years before MRI acquisition was 24.3 (IQR: 1.7) μ g / m 3 for PM 2.5 , 48.9 (14.6) μ g / m 3 for NO 2 , and 2.66 (0.60) 10 - 5 / m for BC. We found no significant association between exposure to the three air pollutants and total WMH volume. We found that PM 2.5 exposure was significantly associated with higher risk of temporal lobe WMH burden [odds ratio (OR) for an IQR increase = 1.82 (95% confidence interval: 1.41, 2.36) for the second volume tercile, 2.04 (1.59, 2.61) for the third volume tercile, reference: first volume tercile]. Associations for other regional WMH volumes were inconsistent. CONCLUSION In this population-based study in older adults, PM 2.5 exposure was associated with increased risk of high WMH volume in the temporal lobe, strengthening the evidence on PM 2.5 adverse effect on the brain. Further studies looking at different markers of cerebrovascular damage are still needed to document the potential vascular effects of air pollution. https://doi.org/10.1289/EHP12231.
Collapse
Affiliation(s)
- Jeanne Duchesne
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Isabelle Carrière
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Sylvaine Artero
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Adam M. Brickman
- Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, New York, USA
| | - Jerome Maller
- Monash Alfred Psychiatry Research Centre, Melbourne, Victoria, Australia
- General Electric Healthcare, Richmond, Victoria, Australia
| | - Chantal Meslin
- Centre for Mental Health Research, Australian National University, Canberra, Australia
| | - Jie Chen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Bénédicte Jacquemin
- Irset Institut de Recherche en Santé, Environnement et Travail, UMR-S 1085, Inserm, University of Rennes, EHESP, Rennes, France
| | - Claudine Berr
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Marion Mortamais
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| |
Collapse
|
12
|
Zhang D, Wang W, Xi Y, Bi J, Hang Y, Zhu Q, Pu Q, Chang H, Liu Y. Wildfire worsens population exposure to PM2.5 pollution in the Continental United States. RESEARCH SQUARE 2023:rs.3.rs-3345091. [PMID: 37790383 PMCID: PMC10543292 DOI: 10.21203/rs.3.rs-3345091/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
As wildfires become more frequent and intense, fire smoke has significantly worsened ambient air quality, posing greater health risks. To better understand the impact of wildfire smoke on air quality, we developed a modeling system to estimate daily PM2.5 concentrations attributed to both fire smoke and non-smoke sources across the Continental U.S. We found that wildfire smoke has the most significant impact on air quality in the West Coast, followed by the Southeastern U.S. Between 2007 and 2018, fire smoke affected daily PM2.5 concentrations at 40% of all regulatory air monitors in EPA's Air Quality System (AQS) for more than one month each year. People residing outside the vicinity of an EPA AQS monitor were subject to 36% more smoke impact days compared to those residing nearby. Lowering the national ambient air quality standard (NAAQS) for annual mean PM2.5 concentrations to between 9 and 10 μg/m3 would result in approximately 29% to 40% of the AQS monitors falling in nonattainment areas without taking into account the contribution from fire smoke. When fire smoke impact is considered, this percentage would rise to 35% to 49%, demonstrating the significant negative impact of wildfires on air quality.
Collapse
|
13
|
Wang L, Gao X, Wang R, Song M, Liu X, Wang X, An C. Ecological correlation between short term exposure to particulate matter and hospitalization for mental disorders in Shijiazhuang, China. Sci Rep 2023; 13:11412. [PMID: 37452053 PMCID: PMC10349047 DOI: 10.1038/s41598-023-37279-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
The associations between particulate matter (PM) and overall and specific mental disorders (MDs) are investigated using data from two general hospitals in Shijiazhuang, China, from January 2014 to December 2019. A longitudinal time series study, as one type of ecological study, is conducted using a generalized additive model to examine the relationship between short-term exposure to PM2.5, PM10, and daily hospital admissions for MDs, and further stratification by subtypes, age, and gender. A total of 10,709 cases of hospital admissions for MDs have been identified. The significant short-time effects of PM2.5 on overall MDs at lag01 and PM10 at lag05 are observed, respectively. For specific mental disorders, there are substantial associations of PM pollution with mood disorders and organic mental disorders. PM2.5 has the greatest cumulative effect on daily admissions of mood disorders and organic mental disorders in lag01, and PM 10 has the greatest cumulative effect in lag05. Moreover, the effect modification by sex or age is statistically significant, with males and the elderly (≥ 45 years) having a stronger effect. Short-term exposure to PM2.5 and PM10can be associated with an increased risk of daily hospital admissions for MDs.
Collapse
Affiliation(s)
- Lan Wang
- Mental Health Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Xian Gao
- Department of Gastrointestinal Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ran Wang
- Mental Health Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Mei Song
- Mental Health Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Xiaoli Liu
- The third Hospital of Shijiazhuang, Shijiazhuang, China
| | - Xueyi Wang
- Mental Health Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, China.
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China.
- Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China.
| | - Cuixia An
- Mental Health Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, China.
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China.
- Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China.
| |
Collapse
|
14
|
Flood-Garibay JA, Angulo-Molina A, Méndez-Rojas MÁ. Particulate matter and ultrafine particles in urban air pollution and their effect on the nervous system. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:704-726. [PMID: 36752881 DOI: 10.1039/d2em00276k] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
According to the World Health Organization, both indoor and urban air pollution are responsible for the deaths of around 3.5 million people annually. During the last few decades, the interest in understanding the composition and health consequences of the complex mixture of polluted air has steadily increased. Today, after decades of detailed research, it is well-recognized that polluted air is a complex mixture containing not only gases (CO, NOx, and SO2) and volatile organic compounds but also suspended particles such as particulate matter (PM). PM comprises particles with sizes in the range of 30 to 2.5 μm (PM30, PM10, and PM2.5) and ultrafine particles (UFPs) (less than 0.1 μm, including nanoparticles). All these constituents have different chemical compositions, origins and health consequences. It has been observed that the concentration of PM and UFPs is high in urban areas with moderate traffic and increases in heavy traffic areas. There is evidence that inhaling PM derived from fossil fuel combustion is associated with a wide variety of harmful effects on human health, which are not solely associated with the respiratory system. There is accumulating evidence that the brains of urban inhabitants contain high concentrations of nanoparticles derived from combustion and there is both epidemiological and experimental evidence that this is correlated with the appearance of neurodegenerative human diseases. Neurological disorders, such as Alzheimer's and Parkinson's disease, multiple sclerosis, and cerebrovascular accidents, are among the main debilitating disorders of our time and their epidemiology can be classified as a public health emergency. Therefore, it is crucial to understand the pathophysiology and molecular mechanisms related to PM exposure, specifically to UFPs, present as pollutants in air, as well as their correlation with the development of neurodegenerative diseases. Furthermore, PM can enhance the transmission of airborne diseases and trigger inflammatory and immune responses, increasing the risk of health complications and mortality. Therefore, understanding the different levels of this issue is important to create and promote preventive actions by both the government and civilians to construct a strategic plan to treat and cope with the current and future epidemic of these types of disorders on a global scale.
Collapse
Affiliation(s)
- Jessica Andrea Flood-Garibay
- Departamento de Ciencias Químico-Biológicas, Escuela de Ciencias, Universidad de las Américas Puebla, Ex-Hda. de Santa Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| | | | - Miguel Ángel Méndez-Rojas
- Departamento de Ciencias Químico-Biológicas, Escuela de Ciencias, Universidad de las Américas Puebla, Ex-Hda. de Santa Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| |
Collapse
|
15
|
Cho J, Jang H, Noh Y, Lee SK, Koh SB, Kim SY, Kim C. Associations of Particulate Matter Exposures With Brain Gray Matter Thickness and White Matter Hyperintensities: Effect Modification by Low-Grade Chronic Inflammation. J Korean Med Sci 2023; 38:e159. [PMID: 37096314 PMCID: PMC10125794 DOI: 10.3346/jkms.2023.38.e159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/13/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Numerous studies have shown the effect of particulate matter exposure on brain imaging markers. However, little evidence exists about whether the effect differs by the level of low-grade chronic systemic inflammation. We investigated whether the level of c-reactive protein (CRP, a marker of systemic inflammation) modifies the associations of particulate matter exposures with brain cortical gray matter thickness and white matter hyperintensities (WMH). METHODS We conducted a cross-sectional study of baseline data from a prospective cohort study including adults with no dementia or stroke. Long-term concentrations of particulate matter ≤ 10 µm in diameter (PM10) and ≤ 2.5 µm (PM2.5) at each participant's home address were estimated. Global cortical thickness (n = 874) and WMH volumes (n = 397) were estimated from brain magnetic resonance images. We built linear and logistic regression models for cortical thickness and WMH volumes (higher versus lower than median), respectively. Significance of difference in the association between the CRP group (higher versus lower than median) was expressed as P for interaction. RESULTS Particulate matter exposures were significantly associated with a reduced global cortical thickness only in the higher CRP group among men (P for interaction = 0.015 for PM10 and 0.006 for PM2.5). A 10 μg/m3 increase in PM10 was associated with the higher volumes of total WMH (odds ratio, 1.78; 95% confidence interval, 1.07-2.97) and periventricular WMH (2.00; 1.20-3.33). A 1 μg/m3 increase in PM2.5 was associated with the higher volume of periventricular WMH (odds ratio, 1.66; 95% confidence interval, 1.08-2.56). These associations did not significantly differ by the level of high sensitivity CRP. CONCLUSION Particulate matter exposures were associated with a reduced global cortical thickness in men with a high level of chronic inflammation. Men with a high level of chronic inflammation may be susceptible to cortical atrophy attributable to particulate matter exposures.
Collapse
Affiliation(s)
- Jaelim Cho
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Korea
- Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Korea
| | - Heeseon Jang
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young Noh
- Department of Neurology, Gachon University Gil Medical Center, Incheon, Korea
| | - Seung-Koo Lee
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang-Baek Koh
- Department of Occupational and Environmental Medicine, Wonju Severance Christian Hospital, Wonju College of Medicine, Yonsei University, Wonju, Korea
| | - Sun-Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Changsoo Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Korea
- Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Korea.
| |
Collapse
|
16
|
Pini L, Salvalaggio A, Wennberg AM, Dimakou A, Matteoli M, Corbetta M. The pollutome-connectome axis: a putative mechanism to explain pollution effects on neurodegeneration. Ageing Res Rev 2023; 86:101867. [PMID: 36720351 DOI: 10.1016/j.arr.2023.101867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
The study of pollutant effects is extremely important to address the epochal challenges we are facing, where world populations are increasingly moving from rural to urban centers, revolutionizing our world into an urban world. These transformations will exacerbate pollution, thus highlighting the necessity to unravel its effect on human health. Epidemiological studies have reported that pollution increases the risk of neurological diseases, with growing evidence on the risk of neurodegenerative disorders. Air pollution and water pollutants are the main chemicals driving this risk. These chemicals can promote inflammation, acting in synergy with genotype vulnerability. However, the biological underpinnings of this association are unknown. In this review, we focus on the link between pollution and brain network connectivity at the macro-scale level. We provide an updated overview of epidemiological findings and studies investigating brain network changes associated with pollution exposure, and discuss the mechanistic insights of pollution-induced brain changes through neural networks. We explain, in detail, the pollutome-connectome axis that might provide the functional substrate for pollution-induced processes leading to cognitive impairment and neurodegeneration. We describe this model within the framework of two pollutants, air pollution, a widely recognized threat, and polyfluoroalkyl substances, a large class of synthetic chemicals which are currently emerging as new neurotoxic source.
Collapse
Affiliation(s)
- Lorenzo Pini
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy; Venetian Institute of Molecular Medicine, VIMM, Padova, Italy.
| | | | - Alexandra M Wennberg
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anastasia Dimakou
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy
| | - Michela Matteoli
- Neuro Center, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milano, Italy; CNR Institute of Neuroscience, Milano, Italy
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy; Venetian Institute of Molecular Medicine, VIMM, Padova, Italy
| |
Collapse
|
17
|
Sukumaran K, Cardenas-Iniguez C, Burnor E, Bottenhorn KL, Hackman DA, McConnell R, Berhane K, Schwartz J, Chen JC, Herting MM. Ambient fine particulate exposure and subcortical gray matter microarchitecture in 9- and 10-year-old children across the United States. iScience 2023; 26:106087. [PMID: 36915692 PMCID: PMC10006642 DOI: 10.1016/j.isci.2023.106087] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Neuroimaging studies showing the adverse effects of air pollution on neurodevelopment have largely focused on smaller samples from limited geographical locations and have implemented univariant approaches to assess exposure and brain macrostructure. Herein, we implement restriction spectrum imaging and a multivariate approach to examine how one year of annual exposure to daily fine particulate matter (PM2.5), daily nitrogen dioxide (NO2), and 8-h maximum ozone (O3) at ages 9-10 years relates to subcortical gray matter microarchitecture in a geographically diverse subsample of children from the Adolescent Brain Cognitive Development (ABCD) Study℠. Adjusting for confounders, we identified a latent variable representing 66% of the variance between one year of air pollution and subcortical gray matter microarchitecture. PM2.5 was related to greater isotropic intracellular diffusion in the thalamus, brainstem, and accumbens, which related to cognition and internalizing symptoms. These findings may be indicative of previously identified air pollution-related risk for neuroinflammation and early neurodegenerative pathologies.
Collapse
Affiliation(s)
- Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Elisabeth Burnor
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Katherine L. Bottenhorn
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
- Department of Psychology, Florida International University, Miami, FL 33199, USA
| | - Daniel A. Hackman
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Kiros Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
- Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Corresponding author
| |
Collapse
|
18
|
Lamorie‐Foote K, Liu Q, Shkirkova K, Ge B, He S, Morgan TE, Mack WJ, Sioutas C, Finch CE, Mack WJ. Particulate matter exposure and chronic cerebral hypoperfusion promote oxidative stress and induce neuronal and oligodendrocyte apoptosis in male mice. J Neurosci Res 2023; 101:384-402. [PMID: 36464774 PMCID: PMC10107949 DOI: 10.1002/jnr.25153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 10/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) may amplify the neurotoxicity of nanoscale particulate matter (nPM), resulting in white matter injury. This study characterized the joint effects of nPM (diameter ≤ 200 nm) and CCH secondary to bilateral carotid artery stenosis (BCAS) exposure on neuronal and white matter injury in a murine model. nPM was collected near a highway and re-aerosolized for exposure. Ten-week-old C57BL/6 male mice were randomized into four groups: filtered air (FA), nPM, FA + BCAS, and nPM + BCAS. Mice were exposed to FA or nPM for 10 weeks. BCAS surgeries were performed. Markers of inflammation, oxidative stress, and apoptosis were examined. nPM + BCAS exposure increased brain hemisphere TNFα protein compared to FA. iNOS and HNE immunofluorescence were increased in the corpus callosum and cerebral cortex of nPM + BCAS mice compared to FA. While nPM exposure alone did not decrease cortical neuronal cell count, nPM decreased corpus callosum oligodendrocyte cell count. nPM exposure decreased mature oligodendrocyte cell count and increased oligodendrocyte precursor cell count in the corpus callosum. nPM + BCAS mice exhibited a 200% increase in cortical neuronal TUNEL staining and a 700% increase in corpus callosum oligodendrocyte TUNEL staining compared to FA. There was a supra-additive interaction between nPM and BCAS on cortical neuronal TUNEL staining (2.6× the additive effects of nPM + BCAS). nPM + BCAS exposure increased apoptosis, neuroinflammation, and oxidative stress in the cerebral cortex and corpus callosum. nPM + BCAS exposure increased neuronal apoptosis above the separate responses to each exposure. However, oligodendrocytes in the corpus callosum demonstrated a greater susceptibility to the combined neurotoxic effects of nPM + BCAS exposure.
Collapse
Affiliation(s)
- Krista Lamorie‐Foote
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Neurological Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Qinghai Liu
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kristina Shkirkova
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Brandon Ge
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Shannon He
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Todd E. Morgan
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Wendy J. Mack
- Department of Population and Public Health SciencesUniversity of Southern California, Keck School of MedicineLos AngelesCaliforniaUSA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Caleb E. Finch
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - William J. Mack
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Neurological Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
19
|
Abstract
Air pollution is a complex mixture of gases and particulate matter, with adsorbed organic and inorganic contaminants, to which exposure is lifelong. Epidemiological studies increasingly associate air pollution with multiple neurodevelopmental disorders and neurodegenerative diseases, findings supported by experimental animal models. This breadth of neurotoxicity across these central nervous system diseases and disorders likely reflects shared vulnerability of their inflammatory and oxidative stress-based mechanisms and a corresponding ability to produce brain metal dyshomeo-stasis. Future research to define the responsible contaminants of air pollution underlying this neurotoxicity is critical to understanding mechanisms of these diseases and disorders and protecting public health.
Collapse
Affiliation(s)
- Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| | - Alyssa Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| |
Collapse
|
20
|
Deng Z, Tan C, Pan J, Xiang Y, Shi G, Huang Y, Xiong Y, Xu K. Mining biomarkers from routine laboratory tests in clinical records associated with air pollution health risk assessment. ENVIRONMENTAL RESEARCH 2023; 216:114639. [PMID: 36309217 DOI: 10.1016/j.envres.2022.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Clinical laboratory in hospital can produce amounts of health data every day. The purpose of this study was to mine biomarkers from clinical laboratory big data associated with the air pollution health risk assessment using clinical records. 13, 045, 629 clinical records of all 27 routine laboratory tests in Changsha Central Hospital, including ALB, TBIL, ALT, DBIL, AST, TP, UREA, UA, CREA, GLU, CK, CKMB, LDL-C, TG, TC, HDL-C, CRP, WBC, Na, K, Ca, Cl, APTT, PT, FIB, TT, RBC and those daily air pollutants concentration monitoring data of Changsha, including PM2.5, PM10, SO2, NO2, CO, and O3 from 2014 to 2016, were retrieved. The moving average method was used to the biological reference interval was established. The tests results were converted into daily abnormal rate. After data cleaning, GAM statistical model construction and data analysis, a concentration-response relationship between air pollutants and daily abnormal rate of routine laboratory tests was observed. Our study found that PM2.5 had a stable association with TP (lag07), ALB (lag07), ALT (lag07), AST (lag07), TBIL (lag07), DBIL (lag07), UREA (lag07), CREA (lag07), UA (lag07), CK (lag 06), GLU (lag07), WBC (lag07), Cl (lag07) and Ca (lag07), (P < 0.05); O3 had a stable association with AST (lag01), CKMB (lag06), TG (lag07), TC (lag05), HDL-C (lag07), K (lag05) and RBC (lag07) (P < 0.05); CO had a stable association with UREA (lag07), Na (lag7) and PT (lag07) (P < 0.05); SO2 had a stable association with TP (lag07) and LDL-C (lag0) (P < 0.05); NO2 had a stable association with APTT (lag7) (P < 0.05). These results showed that different air pollutants affected different routine laboratory tests and presented different pedigrees. Therefore, biomarkers mined from routine laboratory tests may potentially be used to low-cost assess the health risks associated with air pollutants.
Collapse
Affiliation(s)
- Zhonghua Deng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China; Department of Medical Laboratory, Hunan Provincial People's Hospital, Changsha, 410005, PR China; The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, PR China
| | - Chaochao Tan
- Department of Medical Laboratory, Hunan Provincial People's Hospital, Changsha, 410005, PR China; The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, PR China
| | - Jianhua Pan
- Department of Medical Laboratory, Changsha Central Hospital, Changsha, 410004, PR China
| | - Yangen Xiang
- Department of Medical Laboratory, Changsha Central Hospital, Changsha, 410004, PR China
| | - Guomin Shi
- Department of Medical Laboratory, Changsha Central Hospital, Changsha, 410004, PR China
| | - Yue Huang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Yican Xiong
- Department of Gastrointestinal Pediatric Surgery, Hunan Provincial People's Hospital, Changsha, 410005, PR China
| | - Keqian Xu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China.
| |
Collapse
|
21
|
Cho J, Jang H, Park H, Noh Y, Sohn J, Koh SB, Lee SK, Kim SY, Kim C. Alzheimer's disease-like cortical atrophy mediates the effect of air pollution on global cognitive function. ENVIRONMENT INTERNATIONAL 2023; 171:107703. [PMID: 36563596 DOI: 10.1016/j.envint.2022.107703] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Little is known about the effect of air pollution on Alzheimer's disease (AD)-specific brain structural pathologies. There is also a lack of evidence on whether this effect leads to poorer cognitive function. We investigated whether, and the extent to which, AD-like cortical atrophy mediated the association between air pollution exposures and cognitive function in dementia-free adults. We used cross-sectional data from 640 participants who underwent brain magnetic resonance imaging and the Montreal Cognitive Assessment (MoCA). Mean cortical thickness (as the measure of global cortical atrophy) and machine learning-based AD-like cortical atrophy score were estimated from brain images. Concentrations of particulate matter with diameters ≤ 10 μm (PM10) and ≤ 2.5 μm (PM2.5) and nitrogen dioxide (NO2) were estimated based on each participant's residential address. Following the product method, a mediation effect was tested by conducting a series of three regression analyses (exposure to outcome; exposure to mediator; and exposure and mediator to outcome). A 10 μg/m3 increase in PM10 (β = -1.13; 95 % CI, -1.73 to -0.53) and a 10 ppb increase in NO2 (β = -1.09; 95 % CI, -1.40 to -0.78) were significantly associated with a lower MoCA score. PM10 (β = 0.27; 95 % CI, 0.06 to 0.48) and NO2 (β = 0.35; 95 % CI, 0.25 to 0.45) were significantly associated with an increased AD-like cortical atrophy score. Effects of PM10 and NO2 on MoCA scores were significantly mediated by mean cortical thickness (proportions mediated: 25 %-28 %) and AD-like cortical atrophy scores (13 %-16 %). The findings suggest that air pollution exposures may induce AD-like cortical atrophy, and that this effect may lead to poorer cognitive function in dementia-free adults.
Collapse
Affiliation(s)
- Jaelim Cho
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heeseon Jang
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunji Park
- Department of Public Health, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Noh
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Jungwoo Sohn
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sang-Baek Koh
- Department of Preventive Medicine, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Seung-Koo Lee
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun-Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Changsoo Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Republic of Korea.
| |
Collapse
|
22
|
Franz CE, Gustavson DE, Elman JA, Fennema-Notestine C, Hagler DJ, Baraff A, Tu XM, Wu TC, DeAnda J, Beck A, Kaufman JD, Whitsel N, Finch CE, Chen JC, Lyons MJ, Kremen WS. Associations Between Ambient Air Pollution and Cognitive Abilities from Midlife to Early Old Age: Modification by APOE Genotype. J Alzheimers Dis 2023; 93:193-209. [PMID: 36970897 PMCID: PMC10827529 DOI: 10.3233/jad-221054] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Fine particulate matter (PM2.5) and nitrogen dioxide (NO2) measures of ambient air pollution are associated with accelerated age-related cognitive impairment, and Alzheimer's disease and related dementias (ADRD). OBJECTIVE We examined associations between air pollution, four cognitive factors, and the moderating role of apolipoprotein E (APOE) genotype in the understudied period of midlife. METHODS Participants were ∼1,100 men in the Vietnam Era Twin Study of Aging. Baseline cognitive assessments were from 2003 to 2007. Measures included past (1993-1999) and recent (3 years prior to baseline assessment) PM2.5 and NO2 exposure, in-person assessment of episodic memory, executive function, verbal fluency, and processing speed, and APOE genotype. Average baseline age was 56 years with a 12-year follow-up. Analyses adjusted for health and lifestyle covariates. RESULTS Performance in all cognitive domains declined from age 56 to 68. Higher PM2.5 exposures were associated with worse general verbal fluency. We found significant exposure-by-APOE genotype interactions for specific cognitive domains: PM2.5 with executive function and NO2 with episodic memory. Higher PM2.5 exposure was related to worse executive function in APOE ɛ4 carriers, but not in non-carriers. There were no associations with processing speed. CONCLUSION These results indicate negative effects of ambient air pollution exposure on fluency alongside intriguing differential modifications of cognitive performance by APOE genotype. APOE ɛ4 carriers appeared more sensitive to environmental differences. The process by which air pollution and its interaction with genetic risk for ADRD affects risk for later life cognitive decline or progression to dementia may begin in midlife.
Collapse
Affiliation(s)
- Carol E. Franz
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA
| | - Daniel E. Gustavson
- Institute for Behavior Genetics, University of Colorado Boulder, Boulder, CO
| | - Jeremy A. Elman
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA
| | - Christine Fennema-Notestine
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA
- Department of Radiology, University of California, San Diego, La Jolla, CA
| | - Donald J. Hagler
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA
- Department of Radiology, University of California, San Diego, La Jolla, CA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Aaron Baraff
- Vietnam Era Twin Registry, VA Puget Sound Health Care, Seattle, WA
| | - Xin M. Tu
- Herbert Wertheim School of Public Health & Human Longevity Science, University of California San Diego, CA
| | - Tsung-Chin Wu
- Herbert Wertheim School of Public Health & Human Longevity Science, University of California San Diego, CA
| | - Jaden DeAnda
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA
- Department of Psychology, San Diego State University, San Diego, CA
| | - Asad Beck
- Graduate Program in Neuroscience, University of Washington, Seattle, WA
| | - Joel D. Kaufman
- Epidemiology, Environmental and Occupational Health Sciences, and General Internal Medicine, University of Washington, Seattle, WA
| | - Nathan Whitsel
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA
| | - Caleb E. Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Michael J. Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA
| | - William S. Kremen
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA
| |
Collapse
|
23
|
Long-term particulate matter 2.5 exposure and dementia: a systematic review and meta-analysis. Public Health 2022; 212:33-41. [DOI: 10.1016/j.puhe.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 11/11/2022]
|
24
|
Sapienza S, Tedeschi V, Apicella B, Palestra F, Russo C, Piccialli I, Pannaccione A, Loffredo S, Secondo A. Size-Based Effects of Anthropogenic Ultrafine Particles on Lysosomal TRPML1 Channel and Autophagy in Motoneuron-like Cells. Int J Mol Sci 2022; 23:ijms232113041. [PMID: 36361823 PMCID: PMC9656695 DOI: 10.3390/ijms232113041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background: An emerging body of evidence indicates an association between anthropogenic particulate matter (PM) and neurodegeneration. Although the historical focus of PM toxicity has been on the cardiopulmonary system, ultrafine PM particles can also exert detrimental effects in the brain. However, only a few studies are available on the harmful interaction between PM and CNS and on the putative pathomechanisms. Methods: Ultrafine PM particles with a diameter < 0.1 μm (PM0.1) and nanoparticles < 20 nm (NP20) were sampled in a lab-scale combustion system. Their effect on cell tracking in the space was studied by time-lapse and high-content microscopy in NSC-34 motor neurons while pHrodo™ Green conjugates were used to detect PM endocytosis. Western blotting analysis was used to quantify protein expression of lysosomal channels (i.e., TRPML1 and TPC2) and autophagy markers. Current-clamp electrophysiology and Fura2-video imaging techniques were used to measure membrane potential, intracellular Ca2+ homeostasis and TRPML1 activity in NSC-34 cells exposed to PM0.1 and NP20. Results: NP20, but not PM0.1, reduced NSC-34 motor neuron movement in the space. Furthermore, NP20 was able to shift membrane potential of motor neurons toward more depolarizing values. PM0.1 and NP20 were able to enter into the cells by endocytosis and exerted mitochondrial toxicity with the consequent stimulation of ROS production. This latter event was sufficient to determine the hyperactivation of the lysosomal channel TRPML1. Consequently, both LC3-II and p62 protein expression increased after 48 h of exposure together with AMPK activation, suggesting an engulfment of autophagy. The antioxidant molecule Trolox restored TRPML1 function and autophagy. Conclusions: Restoring TRPML1 function by an antioxidant agent may be considered a protective mechanism able to reestablish autophagy flux in motor neurons exposed to nanoparticles.
Collapse
Affiliation(s)
- Silvia Sapienza
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Valentina Tedeschi
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Barbara Apicella
- Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS)-CNR, 80125 Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University of Naples Federico II, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Carmela Russo
- Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS)-CNR, 80125 Naples, Italy
| | - Ilaria Piccialli
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Pannaccione
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University of Naples Federico II, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Agnese Secondo
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
25
|
Glaubitz L, Stumme J, Lucht S, Moebus S, Schramm S, Jockwitz C, Hoffmann B, Caspers S. Association between Long-Term Air Pollution, Chronic Traffic Noise, and Resting-State Functional Connectivity in the 1000BRAINS Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:97007. [PMID: 36154234 PMCID: PMC9512146 DOI: 10.1289/ehp9737] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND Older adults show a high variability in cognitive performance that cannot be explained by aging alone. Although research has linked air pollution and noise to cognitive impairment and structural brain alterations, the potential impact of air pollution and noise on functional brain organization is unknown. OBJECTIVE This study examined the associations between long-term air pollution and traffic noise with measures of functional brain organization in older adults. We hypothesize that exposures to high air pollution and noise levels are associated with age-like changes in functional brain organization, shown by less segregated brain networks. METHODS Data from 574 participants (44.1% female, 56-85 years of age) in the German 1000BRAINS study (2011-2015) were analyzed. Exposure to particulate matter (PM10, PM2.5, and PM2.5 absorbance), accumulation mode particle number (PNAM), and nitrogen dioxide (NO2) was estimated applying land-use regression and chemistry transport models. Noise exposures were assessed as weighted 24-h (Lden) and nighttime (Lnight) means. Functional brain organization of seven established brain networks (visual, sensorimotor, dorsal and ventral attention, limbic, frontoparietal and default network) was assessed using resting-state functional brain imaging data. To assess functional brain organization, we determined the degree of segregation between networks by comparing the strength of functional connections within and between networks. We estimated associations between air pollution and noise exposure with network segregation, applying multiple linear regression models adjusted for age, sex, socioeconomic status, and lifestyle variables. RESULTS Overall, small associations of high exposures with lesser segregated networks were visible. For the sensorimotor networks, we observed small associations between high air pollution and noise and lower network segregation, which had a similar effect size as a 1-y increase in age [e.g., in sensorimotor network, -0.006 (95% CI: -0.021, 0.009) per 0.3 ×10-5/m increase in PM2.5 absorbance and -0.004 (95% CI: -0.006, -0.002) per 1-y age increase]. CONCLUSION High exposure to air pollution and noise was associated with less segregated functional brain networks. https://doi.org/10.1289/EHP9737.
Collapse
Affiliation(s)
- Lina Glaubitz
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johanna Stumme
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Lucht
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Susanne Moebus
- Institute for Urban Public Health, University of Duisburg-Essen, Essen, Germany
| | - Sara Schramm
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Barbara Hoffmann
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
26
|
Landrigan PJ, Fisher S, Kenny ME, Gedeon B, Bryan L, Mu J, Bellinger D. A replicable strategy for mapping air pollution's community-level health impacts and catalyzing prevention. Environ Health 2022; 21:70. [PMID: 35843932 PMCID: PMC9288863 DOI: 10.1186/s12940-022-00879-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Air pollution was responsible for an estimated 6.7 million deaths globally in 2019 and 197,000 deaths in the United States. Fossil fuel combustion is the major source. HYPOTHESIS Mapping air pollution's health impacts at the community level using publicly available data and open-source software will provide a replicable strategy for catalyzing pollution prevention. METHODS Using EPA's Environmental Benefits Mapping and Analysis (BenMAP-CE) software and state data, we quantified the effects of airborne fine particulate matter (PM2.5) pollution on disease, death and children's cognitive function (IQ Loss) in each city and town in Massachusetts. To develop a first-order estimate of PM2.5 pollution's impact on child IQ, we derived a concentration-response coefficient through literature review. FINDINGS The annual mean PM2.5 concentration in Massachusetts in 2019 was 6.3 μg/M3, a level below EPA's standard of 12 μg/M3 and above WHO's guideline of 5 μg/M3. In adults, PM2.5 pollution was responsible for an estimated 2780 (Confidence Interval [CI] 2726 - 2853) deaths: 1677 (CI, 1346 - 1926) from cardiovascular disease, 2185 (CI, 941-3409) from lung cancer, 200 (CI, 66-316) from stroke, and 343 (CI, 222-458) from chronic respiratory disease. In children, PM2.5 pollution was responsible for 308 (CI, 105-471) low-weight births, 15,386 (CJ, 5433-23,483) asthma cases, and a provisionally estimated loss of nearly 2 million Performance IQ points; IQ loss impairs children's school performance, reduces graduation rates and decreases lifetime earnings. Air-pollution-related disease, death and IQ loss were most severe in low-income, minority communities, but occurred in every city and town in Massachusetts regardless of location, demographics or median family income. CONCLUSION Disease, death and IQ loss occur at air pollution exposure levels below current EPA standards. Prevention of disease and premature death and preservation of children's cognitive function will require that EPA air quality standards be tightened. Enduring prevention will require government-incentivized transition to renewable energy coupled with phase-outs of subsidies and tax breaks for fossil fuels. Highly localized information on air pollution's impacts on health and on children's cognitive function has potential to catalyze pollution prevention.
Collapse
Affiliation(s)
- Philip J Landrigan
- Global Observatory on Pollution and Health, Boston College, Boston, MA, USA.
- Centre Scientifique de Monaco, Monaco, MC, Monaco.
| | - Samantha Fisher
- Global Observatory on Pollution and Health, Boston College, Boston, MA, USA
- Environmental; Epidemiology Program, City University of New York, New York, USA
| | - Maureen E Kenny
- Lynch School of Education and Human Development, Boston College, Boston, MA, USA
| | - Brittney Gedeon
- Morrissey College of Arts and Sciences, Boston College, Boston, MA, USA
| | - Luke Bryan
- Morrissey College of Arts and Sciences, Boston College, Boston, MA, USA
| | - Jenna Mu
- Morrissey College of Arts and Sciences, Boston College, Boston, MA, USA
| | - David Bellinger
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
27
|
Chen TF, Lee SH, Zheng WR, Hsu CC, Cho KH, Kuo LW, Chou CCK, Chiu MJ, Tee BL, Cheng TJ. White matter pathology in alzheimer's transgenic mice with chronic exposure to low-level ambient fine particulate matter. Part Fibre Toxicol 2022; 19:44. [PMID: 35768852 PMCID: PMC9245233 DOI: 10.1186/s12989-022-00485-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/29/2022] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Air pollution, especially fine particulate matter (PM), can cause brain damage, cognitive decline, and an increased risk of neurodegenerative disease, especially alzheimer's disease (AD). Typical pathological findings of amyloid and tau protein accumulation have been detected in the brain after exposure in animal studies. However, these observations were based on high levels of PM exposure, which were far from the WHO guidelines and those present in our environment. In addition, white matter involvement by air pollution has been less reported. Thus, this experiment was designed to simulate the true human world and to discuss the possible white matter pathology caused by air pollution. RESULTS 6 month-old female 3xTg-AD mice were divided into exposure and control groups and housed in the Taipei Air Pollutant Exposure System (TAPES) for 5 months. The mice were subjected to the Morris water maze test after exposure and were then sacrificed with brain dissection for further analyses. The mean mass concentration of PM2.5 during the exposure period was 13.85 μg/m3. After exposure, there was no difference in spatial learning function between the two groups, but there was significant decay of memory in the exposure group. Significantly decreased total brain volume and more neuronal death in the cerebral and entorhinal cortex and demyelination of the corpus callosum were noted by histopathological staining after exposure. However, there was no difference in the accumulation of amyloid or tau on immunohistochemistry staining. For the protein analysis, amyloid was detected at significantly higher levels in the cerebral cortex, with lower expression of myelin basic protein in the white matter. A diffuse tensor image study also revealed insults in multiple white matter tracts, including the optic tract. CONCLUSIONS In conclusion, this pilot study showed that even chronic exposure to low PM2.5 concentrations still caused brain damage, such as gross brain atrophy, cortical neuron damage, and multiple white matter tract damage. Typical amyloid cascade pathology did not appear prominently in the vulnerable brain region after exposure. These findings imply that multiple pathogenic pathways induce brain injury by air pollution, and the optic nerve may be another direct invasion route in addition to olfactory nerve.
Collapse
Affiliation(s)
- Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Han Lee
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Room 720, No. 17, Xuzhou Rd, Taipei, 100, Taiwan
| | - Wan-Ru Zheng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Room 720, No. 17, Xuzhou Rd, Taipei, 100, Taiwan
| | - Ching-Chou Hsu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Room 720, No. 17, Xuzhou Rd, Taipei, 100, Taiwan
| | - Kuan-Hung Cho
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Charles C-K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Boon Lead Tee
- Department of Neurology, Memory and Aging Center, University of California at San Francisco, San Francisco, CA, USA
| | - Tsun-Jen Cheng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Room 720, No. 17, Xuzhou Rd, Taipei, 100, Taiwan.
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
28
|
Lukina AO, Burstein B, Szyszkowicz M. Urban air pollution and emergency department visits related to central nervous system diseases. PLoS One 2022; 17:e0270459. [PMID: 35759498 PMCID: PMC9236246 DOI: 10.1371/journal.pone.0270459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/12/2022] [Indexed: 11/18/2022] Open
Abstract
Ambient air pollution has been associated with adverse neurological health outcomes. Ambient pollutants are thought to trigger oxidative stress and inflammation to which vulnerable populations, such as elderly may be particularly susceptible. Our study investigated the possible association between concentrations of ambient air pollutants and the number of emergency department (ED) visits for nervous system disorders among people residing in a large Canadian city. A time-stratified case-crossover study design combining data from the National Ambulatory Care Reporting System (NACRS) and the National Air Pollution Surveillance (NAPS) between 2004 and 2015 was used. Two air quality health indices were considered in additional to specific pollutants, including carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3) and fine particulate matter (PM2.5). Weather condition data were included in the models. ED visits with a discharge diagnosis were identified using ICD-10 codes (G00-G99). The analysis was stratified by sex and age, also by seasons. The associations were investigated in arrays organized as 18 strata and 15 time lags (in days) for each pollutant. Overall, 140,511 ED visits were included for the analysis. Most ED visits were related to episodic and paroxysmal diagnoses (G40-G47, 64%), with a majority of visits for migraines (G43, 39%). Among females, an increase of 0.1ppm ambient CO was associated with an increased risk of paroxysmal diagnoses at day 1 (RR = 1.019 (95%CI 1.004–1.033)), day 6 (1.024 (1.010–1.039)) and day 7 (1.022 (1.007–1.036). PM2.5 and SO2, and air quality indices were similarly associated with ED visits for episodic and paroxysmal disorders in days 6 and 7. Findings highlight that ambient air pollution is associated with an increased number of ED visits for nervous system disorders, particularly visits for paroxysmal diagnoses.
Collapse
Affiliation(s)
- Anna O. Lukina
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Brett Burstein
- Division of Pediatric Emergency Medicine, Department of Pediatrics, Montreal Children’s Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Mieczysław Szyszkowicz
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
- * E-mail:
| |
Collapse
|
29
|
Petkus AJ, Resnick SM, Wang X, Beavers DP, Espeland MA, Gatz M, Gruenewald T, Millstein J, Chui HC, Kaufman JD, Manson JE, Wellenius GA, Whitsel EA, Widaman K, Younan D, Chen JC. Ambient air pollution exposure and increasing depressive symptoms in older women: The mediating role of the prefrontal cortex and insula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153642. [PMID: 35122843 PMCID: PMC8983488 DOI: 10.1016/j.scitotenv.2022.153642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 04/13/2023]
Abstract
Exposures to fine particulate matter (PM2.5) and nitrogen dioxide (NO2) have been associated with the emergence of depressive symptoms in older adulthood, although most studies used cross-sectional outcome measures. Elucidating the brain structures mediating the adverse effects can strengthen the causal role between air pollution and increasing depressive symptoms. We evaluated whether smaller volumes of brain structures implicated in late-life depression mediate associations between ambient air pollution exposure and changes in depressive symptoms. This prospective study included 764 community-dwelling older women (aged 81.6 ± 3.6 in 2008-2010) from the Women's Health Initiative Memory Study (WHIMS) Magnetic Resonance Imaging study (WHIMS-MRI; 2005-06) and WHIMS-Epidemiology of Cognitive Health Outcomes (WHIMS-ECHO; 2008-16). Three-year average annual mean concentrations (scaled by interquartile range [IQR]) of ambient PM2.5 (in μg/m3; IQR = 3.14 μg/m3) and NO2 (in ppb; IQR = 7.80 ppb) before WHIMS-MRI were estimated at participants' addresses via spatiotemporal models. Mediators included structural brain MRI-derived grey matter volumes of the prefrontal cortex and structures of the limbic-cortical-striatal-pallidal-thalamic circuit. Depressive symptoms were assessed annually by the 15-item Geriatric Depression Scale. Structural equation models were constructed to estimate associations between exposure, structural brain volumes, and depressive symptoms. Increased exposures (by each IQR) were associated with greater annual increases in depressive symptoms (βPM2.5 = 0.022; 95% Confidence Interval (CI) = 0.003, 0.042; βNO2 = 0.019; 95% CI = 0.001, 0.037). The smaller volume of prefrontal cortex associated with exposures partially mediated the associations of increased depressive symptoms with NO2 (8%) and PM2.5 (13%), and smaller insula volume associated with NO2 contributed modestly (13%) to the subsequent increase in depressive symptoms. We demonstrate the first evidence that the smaller volumes of the prefrontal cortex and insula may mediate the subsequent increases in depressive symptoms associated with late-life exposures to NO2 and PM2.5.
Collapse
Affiliation(s)
- Andrew J Petkus
- University of Southern California, Department of Neurology, 1520 San Pablo St. Suite 3000, Los Angeles, CA 90033, United States
| | - Susan M Resnick
- National Institute on Aging, Laboratory of Behavioral Neuroscience, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, United States
| | - Xinhui Wang
- University of Southern California, Department of Neurology, 1520 San Pablo St. Suite 3000, Los Angeles, CA 90033, United States
| | - Daniel P Beavers
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, One Medical Center Blvd, Winston-Salem, NC 27157, United States of American
| | - Mark A Espeland
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, One Medical Center Blvd, Winston-Salem, NC 27157, United States of American
| | - Margaret Gatz
- University of Southern California, Center for Economic and Social Research, 635 Downey Way, Los Angeles, CA 90089-3332, United States of America
| | - Tara Gruenewald
- Chapman University, Department of Psychology, 1 University Dr., Orange, CA 92866, United States of America
| | - Joshua Millstein
- University of Southern California, Department of Population and Public Health Sciences, 2001 North Soto Street, Los Angeles, CA 90033, United States of America
| | - Helena C Chui
- University of Southern California, Department of Neurology, 1520 San Pablo St. Suite 3000, Los Angeles, CA 90033, United States
| | - Joel D Kaufman
- University of Washington, Department of Environmental and Occupational Health Sciences, 1959 NE Pacific St., Box 257230, Seattle, WA 98105, United States of America
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 900 Commonwealth Avenue, Boston, MA 02215, United States of America
| | - Gregory A Wellenius
- Boston University, Boston, School of Public Health, Department of Environmental Health, 715 Albany St., Boston, MA 02118, United States of America
| | - Eric A Whitsel
- University of North Carolina, Gillings School of Public Health, Department of Epidemiology, 123 W. Franklin St., Suite 410, Chapel Hill, NC 27516-8050, United States of America
| | - Keith Widaman
- University of California, Riverside, Graduate School of Education, 900 University Ave, Riverside, CA 9251, United States of America
| | - Diana Younan
- University of Southern California, Department of Population and Public Health Sciences, 2001 North Soto Street, Los Angeles, CA 90033, United States of America
| | - Jiu-Chiuan Chen
- University of Southern California, Department of Neurology, 1520 San Pablo St. Suite 3000, Los Angeles, CA 90033, United States; University of Southern California, Department of Population and Public Health Sciences, 2001 North Soto Street, Los Angeles, CA 90033, United States of America.
| |
Collapse
|
30
|
Balboni E, Filippini T, Crous-Bou M, Guxens M, Erickson LD, Vinceti M. The association between air pollutants and hippocampal volume from magnetic resonance imaging: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 204:111976. [PMID: 34478724 DOI: 10.1016/j.envres.2021.111976] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/31/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Growing epidemiological evidence suggests that air pollution may increase the risk of cognitive decline and neurodegenerative disease. A hallmark of neurodegeneration and an important diagnostic biomarker is volume reduction of a key brain structure, the hippocampus. We aimed to investigate the possibility that outdoor air nitrogen dioxide (NO2) and particulate matter with diameter ≤2.5 μm (PM2.5) and ≤10 μm (PM10) adversely affect hippocampal volume, through a meta-analysis. We considered studies that assessed the relation between outdoor air pollution and hippocampal volume by structural magnetic resonance imaging in adults and children, searching in Pubmed and Scopus databases from inception through July 13, 2021. For inclusion, studies had to report the correlation coefficient along with its standard error or 95% confidence interval (CI) between air pollutant exposure and hippocampal volume, to use standard space for neuroimages, and to consider at least age, sex and intracranial volume as covariates or effect modifiers. We meta-analyzed the data with a random-effects model, considering separately adult and child populations. We retrieved four eligible studies in adults and two in children. In adults, the pooled summary β regression coefficients of the association of PM2.5, PM10 and NO2 with hippocampal volume showed respectively a stronger association (summary β -7.59, 95% CI -14.08 to -1.11), a weaker association (summary β -2.02, 95% CI -4.50 to 0.47), and no association (summary β -0.44, 95% CI -1.27 to 0.40). The two studies available for children, both carried out in preadolescents, did not show an association between PM2.5 and hippocampal volume. The inverse association between PM2.5 and hippocampal volume in adults appeared to be stronger at higher mean PM2.5 levels. Our results suggest that outdoor PM2.5 and less strongly PM10 could adversely affect hippocampal volume in adults, a phenomenon that may explain why air pollution has been related to memory loss, cognitive decline, and dementia.
Collapse
Affiliation(s)
- Erica Balboni
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN); Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Medical Physics Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN); Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marta Crous-Bou
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO) - Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Mònica Guxens
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Lance D Erickson
- Department of Sociology, Brigham Young University, Provo, UT, USA
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN); Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
31
|
Guxens M, Lubczynska MJ, Perez-Crespo L, Muetzel RL, El Marroun H, Basagana X, Hoek G, Tiemeier H. Associations of Air Pollution on the Brain in Children: A Brain Imaging Study. Res Rep Health Eff Inst 2022; 2022:1-61. [PMID: 36106707 PMCID: PMC9476146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Introduction Epidemiological studies are highlighting the negative effects of the exposure to air pollution on children's neurodevelopment. However, most studies assessed children's neurodevelopment using neuropsychological tests or questionnaires. Using magnetic resonance imaging (MRI) to precisely measure global and region-specific brain development would provide details of brain morphology and connectivity. This would help us understand the observed cognitive and behavioral changes related to air pollution exposure. Moreover, most studies assessed only a few air pollutants. This project investigates whether air pollution exposure to many pollutants during pregnancy and childhood is associated with the morphology and connectivity of the brain in school-age children and pre-adolescents. Methods We used data from the Generation R Study, a population-based birth cohort set up in Rotterdam, the Netherlands in 2002-2006 (n = 9,610). We used land-use regression (LUR) models to estimate the levels of 14 air pollutants at participant's homes during pregnancy and childhood: nitrogen oxides (NOx), nitrogen dioxide (NO2), particulate matter with aerodynamic diameter ≤10 μm (PM10) or ≤2.5 μm (PM2.5), PM between 10 μm and 2.5 μm (PMCOARSE), absorbance of the PM2.5 fraction - a measure of soot (PM2.5absorbance), the composition of PM2.5 such as polycyclic aromatic hydrocarbons (PAHs), organic carbon (OC), copper (Cu), iron (Fe), silicon (Si), zinc (Zn), and the oxidative potential of PM2.5 evaluated using two acellular methods: dithiothreitol (OPDTT) and electron spin resonance (OPESR). We performed MRI measurements of structural morphology (i.e., brain volumes, cortical thickness, and cortical surface area) using T1-weighted images in 6- to 10-year-old school-age children and 9- to 12-year-old pre-adolescents, structural connectivity (i.e., white matter microstructure) using diffusion tensor imaging (DTI) in pre-adolescents, and functional connectivity (i.e., connectivity score between brain areas) using resting-state functional MRI (rs-fMRI) in pre-adolescents. We assessed cognitive function using the Developmental Neuropsychological Assessment test (NEPSY-II) in school-age children. For each outcome, we ran regression analysis adjusted for several socioeconomic and lifestyle characteristics. We performed single-pollutant analyses followed by multipollutant analyses using the deletion/substitution/addition (DSA) approach. Results The project has air pollution and brain MRI data for 783 school-age children and 3,857 pre-adolescents. First, exposure to air pollution during pregnancy or childhood was not associated with global brain volumes (e.g., total brain, cortical gray matter, and cortical white matter) in school-age children or pre-adolescents. However, higher pregnancy or childhood exposure to several air pollutants was associated with a smaller corpus callosum and hippocampus, and a larger amygdala, nucleus accumbens, and cerebellum in pre-adolescents, but not in school-age children. Second, higher exposure to several air pollutants during pregnancy was associated with a thinner cortex in various regions of the brain in both school-age children and pre-adolescents. Higher exposure to air pollution during childhood was also associated with a thinner cortex in a single region in pre-adolescents. A thinner cortex in two regions mediated the association between higher exposure to air pollution during pregnancy and an impaired inhibitory control in school-age children. Third, higher exposure to air pollution during childhood was associated with smaller cortical surface areas in various regions of the brain except in a region where we observed a larger cortical surface area in pre-adolescents. In relation to brain structural connectivity, higher exposure to air pollution during pregnancy and childhood was associated with an alteration in white matter microstructure in pre-adolescents. In relation to brain functional connectivity, a higher exposure to air pollution, mainly during pregnancy and early childhood, was associated with a higher brain functional connectivity among several brain regions in pre-adolescents. Overall, we identified several air pollutants associated with brain structural morphology, structural connectivity, and functional connectivity, such as NOx, NO2, PM of various size fractions (i.e., PM10, PMCOARSE, and PM2.5), PM2.5absorbance, PAHs, OC, three elemental components of PM2.5 (i.e., Cu, Si, Zn), and the oxidative potential of PM2.5. Conclusions The results of this project suggest that exposure to air pollution during pregnancy and childhood play an adverse role in brain development. We observed this relationship even at levels of exposure that were below the European Union legislations. We acknowledge that identifying the independent effects of specific pollutants was particularly challenging. Most of our conclusions generally refer to traffic-related air pollutants. However, we did identify pollutants specifically originating from brake linings, tire wear, and tailpipe emissions from diesel combustion. The current direction toward innovative solutions for cleaner energy vehicles is a step in the right direction. However, our findings indicate that these measures might not be completely adequate to mitigate health problems attributable to traffic-related air pollution, as we also observed associations with markers of brake linings and tire wear.
Collapse
Affiliation(s)
- Monica Guxens
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Malgorzata J Lubczynska
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Laura Perez-Crespo
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Hanan El Marroun
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Xavier Basagana
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
32
|
English N, Zhao C, Brown KL, Catlett C, Cagney K. Making Sense of Sensor Data: How Local Environmental Conditions Add Value to Social Science Research. SOCIAL SCIENCE COMPUTER REVIEW 2022; 40:179-194. [PMID: 35400811 PMCID: PMC8991303 DOI: 10.1177/0894439320920601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent advances in computing technologies have enabled the development of low-cost, compact weather and air quality monitors. The U.S. federally funded Array of Things (AoT) project has deployed more than 140 such sensor nodes throughout the City of Chicago. This paper combines a year's worth of AoT sensor data with household data collected from 450 elderly Chicagoans in order to explore the feasibility of using previously unavailable data on local environmental conditions to improve traditional neighborhood research. Specifically, we pilot the use of AoT sensor data to overcome limitations in research linking air pollution to poor physical and mental health and find support for recent findings that exposure to pollutants contributes to both respiratory and dementia-related diseases. We expect that this support will become even stronger as sensing technologies continue to improve and more AoT nodes come online, enabling additional applications to social science research where environmental context matters.
Collapse
|
33
|
Younan D, Wang X, Millstein J, Petkus AJ, Beavers DP, Espeland MA, Chui HC, Resnick SM, Gatz M, Kaufman JD, Wellenius GA, Whitsel EA, Manson JE, Rapp SR, Chen JC. Air quality improvement and cognitive decline in community-dwelling older women in the United States: A longitudinal cohort study. PLoS Med 2022; 19:e1003893. [PMID: 35113870 PMCID: PMC8812844 DOI: 10.1371/journal.pmed.1003893] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Late-life exposure to ambient air pollution is a modifiable risk factor for dementia, but epidemiological studies have shown inconsistent evidence for cognitive decline. Air quality (AQ) improvement has been associated with improved cardiopulmonary health and decreased mortality, but to the best of our knowledge, no studies have examined the association with cognitive function. We examined whether AQ improvement was associated with slower rate of cognitive decline in older women aged 74 to 92 years. METHODS AND FINDINGS We studied a cohort of 2,232 women residing in the 48 contiguous US states that were recruited from more than 40 study sites located in 24 states and Washington, DC from the Women's Health Initiative (WHI) Memory Study (WHIMS)-Epidemiology of Cognitive Health Outcomes (WHIMS-ECHO) study. They were predominantly non-Hispanic White women and were dementia free at baseline in 2008 to 2012. Measures of annual (2008 to 2018) cognitive function included the modified Telephone Interview for Cognitive Status (TICSm) and the telephone-based California Verbal Learning Test (CVLT). We used regionalized universal kriging models to estimate annual concentrations (1996 to 2012) of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) at residential locations. Estimates were aggregated to the 3-year average immediately preceding (recent exposure) and 10 years prior to (remote exposure) WHIMS-ECHO enrollment. Individual-level improved AQ was calculated as the reduction from remote to recent exposures. Linear mixed effect models were used to examine the associations between improved AQ and the rates of cognitive declines in TICSm and CVLT trajectories, adjusting for sociodemographic (age; geographic region; race/ethnicity; education; income; and employment), lifestyle (physical activity; smoking; and alcohol), and clinical characteristics (prior hormone use; hormone therapy assignment; depression; cardiovascular disease (CVD); hypercholesterolemia; hypertension; diabetes; and body mass index [BMI]). For both PM2.5 and NO2, AQ improved significantly over the 10 years before WHIMS-ECHO enrollment. During a median of 6.2 (interquartile range [IQR] = 5.0) years of follow-up, declines in both general cognitive status (β = -0.42/year, 95% CI: -0.44, -0.40) and episodic memory (β = -0.59/year, 95% CI: -0.64, -0.54) were observed. Greater AQ improvement was associated with slower decline in TICSm (βPM2.5improvement = 0.026 per year for improved PM2.5 by each IQR = 1.79 μg/m3 reduction, 95% CI: 0.001, 0.05; βNO2improvement = 0.034 per year for improved NO2 by each IQR = 3.92 parts per billion [ppb] reduction, 95% CI: 0.01, 0.06) and CVLT (βPM2.5 improvement = 0.070 per year for improved PM2.5 by each IQR = 1.79 μg/m3 reduction, 95% CI: 0.02, 0.12; βNO2improvement = 0.060 per year for improved NO2 by each IQR = 3.97 ppb reduction, 95% CI: 0.005, 0.12) after adjusting for covariates. The respective associations with TICSm and CVLT were equivalent to the slower decline rate found with 0.9 to 1.2 and1.4 to 1.6 years of younger age and did not significantly differ by age, region, education, Apolipoprotein E (ApoE) e4 genotypes, or cardiovascular risk factors. The main limitations of this study include measurement error in exposure estimates, potential unmeasured confounding, and limited generalizability. CONCLUSIONS In this study, we found that greater improvement in long-term AQ in late life was associated with slower cognitive declines in older women. This novel observation strengthens the epidemiologic evidence of an association between air pollution and cognitive aging.
Collapse
Affiliation(s)
- Diana Younan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Xinhui Wang
- Department of Neurology, University of Southern California, Los Angeles, California, United States of America
| | - Joshua Millstein
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Andrew J. Petkus
- Department of Neurology, University of Southern California, Los Angeles, California, United States of America
| | - Daniel P. Beavers
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Mark A. Espeland
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Helena C. Chui
- Department of Neurology, University of Southern California, Los Angeles, California, United States of America
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, California, United States of America
| | - Joel D. Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Gregory A. Wellenius
- Department of Environmental Health, Boston University, Boston, Massachusetts, United States of America
| | - Eric A. Whitsel
- Departments of Epidemiology and Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - JoAnn E. Manson
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen R. Rapp
- Departments of Psychiatry and Behavioral Medicine and Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, United States of America
- Department of Neurology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
34
|
Furlong MA, Alexander GE, Klimentidis YC, Raichlen DA. Association of Air Pollution and Physical Activity With Brain Volumes. Neurology 2022; 98:e416-e426. [PMID: 34880089 PMCID: PMC8793107 DOI: 10.1212/wnl.0000000000013031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/22/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES In high-pollution areas, physical activity may have a paradoxical effect on brain health by increasing particulate deposition in the lungs. We examined whether physical activity modifies associations of air pollution (AP) with brain volumes in an epidemiologic framework. METHODS The UK Biobank enrolled >500,000 adult participants from 2006 to 2010. Wrist accelerometers, multimodal MRI with T1 images and T2 fluid-attenuated inversion recovery data, and land use regression were used to estimate vigorous physical activity (VigPA), structural brain volumes, and AP, respectively, in subsets of the full sample. We evaluated associations among AP interquartile ranges, VigPA, and brain structure volumes and assessed interactions between AP and VigPA. RESULTS Eight thousand six hundred participants were included, with an average age of 55.55 (SD 7.46) years. After correction for multiple testing, in overall models, VigPA was positively associated with gray matter volume (GMV) and negatively associated with white matter hyperintensity volume (WMHV), while NO2, PM2.5absorbance, and PM2.5 were negatively associated with GMV. NO2 and PM2.5absorbance interacted with VigPA on WMHV (false discovery rate-corrected interaction p = 0.037). Associations between these air pollutants and WMHVs were stronger among participants with high VigPA. Similarly, VigPA was negatively associated with WMHV for those in areas of low NO2 and PM2.5absorbance but was null among those living in areas of high NO2 and PM2.5absorbance. DISCUSSION: Physical activity is associated with beneficial brain outcomes, while AP is associated with detrimental brain outcomes. VigPA may exacerbate associations of AP with white matter hyperintensity lesions, and AP may attenuate the beneficial associations of physical activity with these lesions.
Collapse
Affiliation(s)
- Melissa A Furlong
- From the Department of Community, Environment, and Policy (M.A.F.), Mel and Enid Zuckerman College of Public Health, Departments of Psychology and Psychiatry (G.E.A.), Evelyn F. McKnight Brain Institute (G.E.A.), BIO5 Institute (G.E.A., Y.C.K.), Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs (G.E.A.), and Department of Epidemiology and Biostatistics (Y.C.K.), University of Arizona, Tucson; Arizona Alzheimer's Consortium (G.E.A.), Phoenix; and Human and Evolutionary Biology Section (D.A.R.), Department of Biological Sciences, University of Southern California, Los Angeles.
| | - Gene E Alexander
- From the Department of Community, Environment, and Policy (M.A.F.), Mel and Enid Zuckerman College of Public Health, Departments of Psychology and Psychiatry (G.E.A.), Evelyn F. McKnight Brain Institute (G.E.A.), BIO5 Institute (G.E.A., Y.C.K.), Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs (G.E.A.), and Department of Epidemiology and Biostatistics (Y.C.K.), University of Arizona, Tucson; Arizona Alzheimer's Consortium (G.E.A.), Phoenix; and Human and Evolutionary Biology Section (D.A.R.), Department of Biological Sciences, University of Southern California, Los Angeles
| | - Yann C Klimentidis
- From the Department of Community, Environment, and Policy (M.A.F.), Mel and Enid Zuckerman College of Public Health, Departments of Psychology and Psychiatry (G.E.A.), Evelyn F. McKnight Brain Institute (G.E.A.), BIO5 Institute (G.E.A., Y.C.K.), Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs (G.E.A.), and Department of Epidemiology and Biostatistics (Y.C.K.), University of Arizona, Tucson; Arizona Alzheimer's Consortium (G.E.A.), Phoenix; and Human and Evolutionary Biology Section (D.A.R.), Department of Biological Sciences, University of Southern California, Los Angeles
| | - David A Raichlen
- From the Department of Community, Environment, and Policy (M.A.F.), Mel and Enid Zuckerman College of Public Health, Departments of Psychology and Psychiatry (G.E.A.), Evelyn F. McKnight Brain Institute (G.E.A.), BIO5 Institute (G.E.A., Y.C.K.), Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs (G.E.A.), and Department of Epidemiology and Biostatistics (Y.C.K.), University of Arizona, Tucson; Arizona Alzheimer's Consortium (G.E.A.), Phoenix; and Human and Evolutionary Biology Section (D.A.R.), Department of Biological Sciences, University of Southern California, Los Angeles
| |
Collapse
|
35
|
Guo L, Wang H, Zhou J, Tang W, Wang R, Xiao Z, Wu L, Wang J, Li L, Lei Y, Sun X, Tang Z. Magnetic resonance imaging investigations reveal that PM 2.5 exposure triggers visual dysfunction in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112866. [PMID: 34634599 DOI: 10.1016/j.ecoenv.2021.112866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/19/2021] [Accepted: 09/30/2021] [Indexed: 05/06/2023]
Abstract
OBJECTIVES To investigate how PM2.5 exposure affects the microstructure, metabolites or functions of the visual system. METHODS C57BL/6J mice were randomly assigned to groups exposed to the filtered air (the control group) or the concentrated ambient PM2.5 (the PM2.5 group). Visual evoked potentials (VEP), electroretinograms (ERG), diffusion tensor imaging (DTI), proton magnetic resonance spectroscopy (1H-MRS) and resting-state functional MRI (rsfMRI) were performed. Parameters were obtained and compared between the two groups, including latencies and amplitudes of the P1 wave, N1 wave and P2 wave from VEP, latencies and amplitudes of the a wave and b wave from ERG, fractional anisotropy (FA), mean diffusion (MD), axial diffusivity (AD) and radial diffusivity (RD) from DTI, visual cortex (VC) metabolites from 1H-MRS, and regional homogeneity (ReHo) from rsfMRI. RESULTS Compared with the values of the control group, the PM2.5 group showed a prolonged N1 latency (43.11 ± 7.94 ms vs. 38.75 ± 4.60 ms) and lowered P1 amplitude (5.62 ± 4.38 μV vs. 8.56 ± 5.92 μV) on VEP (all p < 0.05). On ERG, the amplitude of the a wave was lowered (- 91.39 ± 56.29 μV vs. - 138.68 ± 89.05 μV), the amplitude of the b wave was lowered (194.38 ± 126.27 μV vs. 284.72 ± 170.99 μV), and the latency of the b wave was prolonged (37.78 ± 10.72 ms vs. 33.01 ± 4.34 ms) than the values of the control group (all p < 0.05). DTI indicated FA increase in the bilateral piriform cortex (Pir), FA decrease in the bilateral somatosensory cortex (S) and the bilateral striatum (Stri), AD decrease in the bilateral VC, the right S and the bilateral Pir, MD decrease in the bilateral Pir, and RD decrease in the bilateral Pir in the PM2.5 mice (all p < 0.05, Alphasim corrected). 1H-MRS showed Glutamate (Glu) increase and Phosphocholine (PCh) increase in the VC of the PM2.5 group than those of the control group (PCh 1.63 ± 0.25 vs. 1.50 ± 0.25; PCh/total creatine(tCr) 0.19 ± 0.03 vs. 0.18 ± 0.03; Glu 10.46 ± 1.50 vs. 9.60 ± 1.19; Glu/tcr 1.23 ± 0.11 vs. 1.12 ± 0.11) (all p < 0.05). rsfMRI showed higher ReHo in the PM2.5 mice in the left superior colliculus, the left motor cortex, the hippocampus, the periaqueductal gray and the right mesencephalic reticular formation (all p < 0.01, AlphaSim corrected). CONCLUSIONS This study revealed that PM2.5 exposure triggered visual dysfunction, and altered microstructure, metabolite and function in the retina and visual brain areas along the visual system.
Collapse
Affiliation(s)
- Linying Guo
- Department of Radiology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China
| | - Ji Zhou
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China; Shanghai Typhoon Institute, CMA, Shanghai 200030, China; Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200031, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Rong Wang
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Zebin Xiao
- Department of Radiology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Department of Biomedical Sciences, University of Pennsylvania, 22, Philadelphia, PA 19104, United States
| | - Lingjie Wu
- Department of Ear, Nose & Throat, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Jie Wang
- Department of Radiotherapy, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Liping Li
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Yuan Lei
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China.
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Zuohua Tang
- Department of Radiology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| |
Collapse
|
36
|
Long-term air pollution, noise, and structural measures of the Default Mode Network in the brain: Results from the 1000BRAINS cohort. Int J Hyg Environ Health 2021; 239:113867. [PMID: 34717183 DOI: 10.1016/j.ijheh.2021.113867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND While evidence suggests that long-term air pollution (AP) and noise may adversely affect cognitive function, little is known about whether environmental exposures also promote structural changes in underlying brain networks. We therefore investigated the associations between AP, traffic noise, and structural measures of the Default Mode Network (DMN), a functional brain network known to undergo specific changes with age. METHODS We analyzed data from 579 participants (mean age at imaging: 66.5 years) of the German 1000BRAINS study. Long-term residential exposure to particulate matter (diameter ≤10 μm [PM10]; diameter ≤2.5 μm [PM2.5]), PM2.5 absorbance (PM2.5abs), nitrogen dioxide (NO2), and accumulation mode particulate number concentration (PNAM) was estimated using validated land use regression and chemistry transport models. Long-term outdoor traffic noise was modeled at participants' homes based on a European Union's Environmental Noise Directive. As measures of brain structure, cortical thickness and local gyrification index (lGI) values were calculated for DMN regions from T1-weighted structural brain images collected between 2011 and 2015. Associations between environmental exposures and brain structure measures were estimated using linear regression models, adjusting for demographic and lifestyle characteristics. RESULTS AP exposures were below European Union standards but above World Health Organization guidelines (e.g., PM10 mean: 27.5 μg/m3). A third of participants experienced outdoor 24-h noise above European recommendations. Exposures were not consistently associated with lGI values in the DMN. We observed weak inverse associations between AP and cortical thickness in the right anterior DMN (e.g., -0.010 mm [-0.022, 0.002] per 0.3 unit increase in PM2.5abs) and lateral part of the posterior DMN. CONCLUSION Long-term AP and noise were not consistently associated with structural parameters of the DMN in the brain. While weak associations were present between AP exposure and cortical thinning of right hemispheric DMN regions, it remains unclear whether AP might influence DMN brain structure in a similar way as aging.
Collapse
|
37
|
Lin CH, Nicol CJB, Wan C, Chen SJ, Huang RN, Chiang MC. Exposure to PM 2.5 induces neurotoxicity, mitochondrial dysfunction, oxidative stress and inflammation in human SH-SY5Y neuronal cells. Neurotoxicology 2021; 88:25-35. [PMID: 34718062 DOI: 10.1016/j.neuro.2021.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Ambient air pollution is a global public health issue. Recent evidence suggests that exposure to fine aerosolized particulate matter (PM) as small as ≤2.5 microns (PM2.5) is neurotoxic to brain structures. Many studies also suggest exposure to PM2.5 may cause neurotoxicity and affect brain function. However, the molecular mechanisms by which PM2.5 exerts these effects are not fully understood. Thus, we evaluated the hypothesis that PM2.5 exposure exerts its neurotoxic effects via increased oxidative and inflammatory cellular damage and mitochondrial dysfunction using human SH-SY5Y neuronal cells. Here, we show PM2.5 exposure significantly decreases viability, and increases caspase 3 and 9 protein expression and activity in SH-SY5Y cells. In addition, PM2.5 exposure decreases SH-SY5Y survival, disrupts cell and mitochondrial morphology, and significantly decreases ATP levels, D-loop levels, and mitochondrial mass and function (maximal respiratory function, COX activity, and mitochondrial membrane potential) in SH-SY5Y cells. Moreover, SH-SY5Y cells exposed to PM2.5 have significantly decreased mRNA and protein expression levels of survival genes (CREB and Bcl-2) and neuroprotective genes (PPARγ and AMPK). We further show SH-SY5Y cells exposure to PM2.5 induces significant increases in the levels of oxidative stress, and expression levels of the inflammatory mediator's TNF-α, IL-1β, and NF-κB. Taken together, these results provide the first evidence of the biochemical, molecular and morphological effects of PM2.5 on human neuronal SH-SY5Y cells, and support our hypothesis that increased mitochondrial disruption, oxidative stress and inflammation are critical mediators of its neurotoxic effects. These findings further improve our understanding of the neuronal cell impact of PM2.5 exposure, and may be useful in the design of strategies for the treatment and prevention of human neurodegenerative disorders.
Collapse
Affiliation(s)
- Chien-Hung Lin
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Pediatrics, Taipei City Hospital, Zhongxing Branch, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Science and Engineering, Fu Jen Catholic University, New Taipei, Taiwan
| | - Christopher J B Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, and Cancer Biology and Genetics Division, Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Chuan Wan
- Department of Pediatrics, Taipei City Hospital, Zhongxing Branch, Taipei, Taiwan
| | - Shiang-Jiuun Chen
- Department of Life Science and Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Rong-Nan Huang
- Department of Entomology and Research Center for Plant-Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City, 242, Taiwan.
| |
Collapse
|
38
|
Weuve J, Bennett EE, Ranker L, Gianattasio KZ, Pedde M, Adar SD, Yanosky JD, Power MC. Exposure to Air Pollution in Relation to Risk of Dementia and Related Outcomes: An Updated Systematic Review of the Epidemiological Literature. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:96001. [PMID: 34558969 PMCID: PMC8462495 DOI: 10.1289/ehp8716] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Dementia is a devastating neurologic condition that is common in older adults. We previously reviewed the epidemiological evidence examining the hypothesis that long-term exposure to air pollution affects dementia risk. Since then, the evidence base has expanded rapidly. OBJECTIVES With this update, we collectively review new and previously identified epidemiological studies on air pollution and late-life cognitive health, highlighting new developments and critically discussing the merits of the evidence. METHODS Using a registered protocol (PROSPERO 2020 CRD42020152943), we updated our literature review to capture studies published through 31 December 2020, extracted data, and conducted a bias assessment. RESULTS We identified 66 papers (49 new) for inclusion in this review. Cognitive level remained the most commonly considered outcome, and particulate matter (PM) remained the most commonly considered air pollutant. Since our prior review, exposure estimation methods in this research have improved, and more papers have looked at cognitive change, neuroimaging, and incident cognitive impairment/dementia, though methodological concerns remain common. Many studies continue to rely on administrative records to ascertain dementia, have high potential for selection bias, and adjust for putative mediating factors in primary models. A subset of 35 studies met strict quality criteria. Although high-quality studies of fine particulate matter with aerodynamic diameter ≤ 2.5 μ m (PM 2.5 ) and cognitive decline generally supported an adverse association, other findings related to PM 2.5 and findings related to particulate matter with aerodynamic diameter ≤ 10 μ m (PM 10 , NO 2 , and NO x ) were inconclusive, and too few papers reported findings with ozone to comment on the likely direction of association. Notably, only a few findings on dementia were included for consideration on the basis of quality criteria. DISCUSSION Strong conclusions remain elusive, although the weight of the evidence suggests an adverse association between PM 2.5 and cognitive decline. However, we note a continued need to confront methodological challenges in this line of research. https://doi.org/10.1289/EHP8716.
Collapse
Affiliation(s)
- Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Erin E. Bennett
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Lynsie Ranker
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Kan Z. Gianattasio
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Meredith Pedde
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Sara D. Adar
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Jeff D. Yanosky
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Melinda C. Power
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| |
Collapse
|
39
|
Min KD, Kim JS, Park YH, Shin HY, Kim C, Seo SW, Kim SY. New assessment for residential greenness and the association with cortical thickness in cognitively healthy adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146129. [PMID: 33714817 DOI: 10.1016/j.scitotenv.2021.146129] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/26/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Recent evidence suggests that neurological health could be improved with the intervention of local green space. A few studies adopted cortical thickness, as an effective biomarker for neurodegenerative disorder, to investigate the association with residential greenness. However, they relied on limited data sources, definitions or applications to assess residential greenness. Our cross-sectional study assessed individual residential greenness using an alternative measure, which provides a more realistic definition of local impact and application based on the type of area, and investigated the association with cortical thickness. METHODS The study population included 2542 subjects who participated in the medical check-up program at the Health Promotion Center of the Samsung Medical Center in Seoul, Korea, from 2008 to 2014. The cortical thickness was calculated by each of the four and global lobes from brain MRI. For greenness, we used the enhanced vegetation index (EVI) that detects canopy structural variation by adjusting background noise based on satellite imagery data. To assess individual exposure to residential greenness, we computed the maximum annual EVI before the date of a medical check-up and averaged it within 750 m from subjects' homes to represent an average walking distance. Finally, we assessed the association with cortical thickness by urban and non-urban populations using multiple linear regression adjusting for individual characteristics. RESULTS The average global cortical thickness and EVI were 3.05 mm (standard deviation = 0.1 mm) and 0.31 (0.1), respectively. An interquartile range increase in EVI was associated with 11 μm (95% confidence interval = 3-20) and 9 μm (1-16) increases in cortical thickness of the parietal and occipital regions among the urban population. We did not find associations in non-urban subjects. CONCLUSIONS Our findings confirm the association between residential greenness and neurological health using alternative exposure assessments, indicating that high exposure to residential greenness can prevent neurological disorders.
Collapse
Affiliation(s)
- Kyung-Duk Min
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Ji Sun Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yu Hyun Park
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hee Young Shin
- Health Promotion Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Changsoo Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Sun-Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
40
|
Falcón C, Gascon M, Molinuevo JL, Operto G, Cirach M, Gotsens X, Fauria K, Arenaza‐Urquijo EM, Pujol J, Sunyer J, Nieuwenhuijsen MJ, Gispert JD, Crous‐Bou M. Brain correlates of urban environmental exposures in cognitively unimpaired individuals at increased risk for Alzheimer's disease: A study on Barcelona's population. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12205. [PMID: 34258378 PMCID: PMC8256622 DOI: 10.1002/dad2.12205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/09/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Urban environmental exposures might contribute to the incidence of Alzheimer's disease (AD). Our aim was to identify structural brain imaging correlates of urban environmental exposures in cognitively unimpaired individuals at increased risk of AD. METHODS Two hundred twelve participants with brain scans and residing in Barcelona, Spain, were included. Land use regression models were used to estimate residential exposure to air pollutants. The daily average noise level was obtained from noise maps. Residential green exposure indicators were also generated. A cerebral 3D-T1 was acquired to obtain information on brain morphology. Voxel-based morphometry statistical analyses were conducted to determine the areas of the brain in which regional gray matter (GM) and white matter (WM) volumes were associated with environmental exposures. RESULTS Exposure to nitrogen dioxide was associated with lower GM volume in the precuneus and greater WM volume in the splenium of the corpus callosum and inferior longitudinal fasciculus. In contrast, exposure to fine particulate matter was associated with greater GM in cerebellum and WM in the splenium of corpus callosum, the superior longitudinal fasciculus, and cingulum cingulate gyrus. Noise was positively associated with WM volume in the body of the corpus callosum. Exposure to greenness was associated with greater GM volume in the middle frontal, precentral, and the temporal pole. DISCUSSION In cognitively unimpaired adults with increased risk of AD, exposure to air pollution, noise, and green areas are associated with GM and WM volumes of specific brain areas known to be affected in AD, thus potentially conferring a higher vulnerability to the disease.
Collapse
Affiliation(s)
- Carles Falcón
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN)MadridSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
| | - Mireia Gascon
- ISGlobalBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Marta Cirach
- ISGlobalBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
| | - Xavier Gotsens
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Eider M. Arenaza‐Urquijo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Jesús Pujol
- MRI Research Unit, Department of RadiologyHospital del MarBarcelonaSpain
- CIBER Salud Mental (CIBERSAM G21)MadridSpain
| | - Jordi Sunyer
- ISGlobalBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
| | - Mark J. Nieuwenhuijsen
- ISGlobalBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN)MadridSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Marta Crous‐Bou
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Unit of Nutrition and Cancer, Cancer Epidemiology Research ProgramCatalan Institute of Oncology (ICO)–Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de LlobregatBarcelonaSpain
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | | |
Collapse
|
41
|
Connor M, Lamorie-Foote K, Liu Q, Shkirkova K, Baertsch H, Sioutas C, Morgan TE, Finch CE, Mack WJ. Nanoparticulate matter exposure results in white matter damage and an inflammatory microglial response in an experimental murine model. PLoS One 2021; 16:e0253766. [PMID: 34214084 PMCID: PMC8253444 DOI: 10.1371/journal.pone.0253766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/14/2021] [Indexed: 01/25/2023] Open
Abstract
Exposure to ambient air pollution has been associated with white matter damage and neurocognitive decline. However, the mechanisms of this injury are not well understood and remain largely uncharacterized in experimental models. Prior studies have shown that exposure to particulate matter (PM), a sub-fraction of air pollution, results in neuroinflammation, specifically the upregulation of inflammatory microglia. This study examines white matter and axonal injury, and characterizes microglial reactivity in the corpus callosum of mice exposed to 10 weeks (150 hours) of PM. Nanoscale particulate matter (nPM, aerodynamic diameter ≤200 nm) consisting primarily of traffic-related emissions was collected from an urban area in Los Angeles. Male C57BL/6J mice were exposed to either re-aerosolized nPM or filtered air for 5 hours/day, 3 days/week, for 10 weeks (150 hours; n = 18/group). Microglia were characterized by immunohistochemical double staining of ionized calcium-binding protein-1 (Iba-1) with inducible nitric oxide synthase (iNOS) to identify pro-inflammatory cells, and Iba-1 with arginase-1 (Arg) to identify anti-inflammatory/ homeostatic cells. Myelin injury was assessed by degraded myelin basic protein (dMBP). Oligodendrocyte cell counts were evaluated by oligodendrocyte transcription factor 2 (Olig2). Axonal injury was assessed by axonal neurofilament marker SMI-312. iNOS-expressing microglia were significantly increased in the corpus callosum of mice exposed to nPM when compared to those exposed to filtered air (2.2 fold increase; p<0.05). This was accompanied by an increase in dMBP (1.4 fold increase; p<0.05) immunofluorescent density, a decrease in oligodendrocyte cell counts (1.16 fold decrease; p<0.05), and a decrease in neurofilament SMI-312 (1.13 fold decrease; p<0.05) immunofluorescent density. Exposure to nPM results in increased inflammatory microglia, white matter injury, and axonal degradation in the corpus callosum of adult male mice. iNOS-expressing microglia release cytokines and reactive oxygen/ nitrogen species which may further contribute to the white matter damage observed in this model.
Collapse
Affiliation(s)
- Michelle Connor
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Krista Lamorie-Foote
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| | - Qinghai Liu
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, United States of America
| | - Kristina Shkirkova
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, United States of America
| | - Hans Baertsch
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, United States of America
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Todd E. Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Caleb E. Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - William J. Mack
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, United States of America
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
42
|
Lubczyńska MJ, Muetzel RL, El Marroun H, Hoek G, Kooter IM, Thomson EM, Hillegers M, Vernooij MW, White T, Tiemeier H, Guxens M. Air pollution exposure during pregnancy and childhood and brain morphology in preadolescents. ENVIRONMENTAL RESEARCH 2021; 198:110446. [PMID: 33221303 DOI: 10.1016/j.envres.2020.110446] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Studies investigating the relationship between exposure to air pollution and brain development using magnetic resonance images are emerging. However, most studies have focused only on prenatal exposures, and have included a limited selection of pollutants. Here, we aim to expand the current knowledge by studying pregnancy and childhood exposure to a wide selection of pollutants, and brain morphology in preadolescents. METHODS We used data from 3133 preadolescents from a birth cohort from Rotterdam, the Netherlands (enrollment: 2002-2006). Concentrations of nitrogen oxides, coarse, fine, and ultrafine particles, and composition of fine particles were estimated for participant's home addresses in pregnancy and childhood, using land use regression models. Structural brain images were obtained at age 9-12 years. We assessed the relationships of air pollution exposure, with brain volumes, and surface-based morphometric data, adjusting for socioeconomic and life-style characteristics, using single as well as multi-pollutant approach. RESULTS No associations were observed between air pollution exposures and global volumes of total brain, and cortical and subcortical grey matter. However, we found associations between higher pregnancy and childhood air pollution exposures with smaller corpus callosum, smaller hippocampus, larger amygdala, smaller nucleus accumbens, and larger cerebellum (e.g. -69.2mm3 hippocampal volume [95%CI -129.1 to -9.3] per 1ng/m3 increase in pregnancy exposure to polycyclic aromatic hydrocarbons). Higher pregnancy exposure to air pollution was associated with smaller cortical thickness while higher childhood exposure was associated with predominantly larger cortical surface area. CONCLUSION Higher pregnancy or childhood exposure to several air pollutants was associated with altered volume of several brain structures, as well as with cortical thickness and surface area. Associations showed some similarity to delayed maturation and effects of early-life stress.
Collapse
Affiliation(s)
- Małgorzata J Lubczyńska
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Spain
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Hanan El Marroun
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands; Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioural Sciences, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ingeborg M Kooter
- Department of Circular Economy & Environment, Netherlands Organisation for Applied Scientific Research, Utrecht, the Netherlands
| | - Errol M Thomson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada; Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Manon Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands; Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands.
| |
Collapse
|
43
|
Sullivan KJ, Ran X, Wu F, Chang CCH, Sharma R, Jacobsen E, Berman S, Snitz BE, Sekikawa A, Talbott EO, Ganguli M. Ambient fine particulate matter exposure and incident mild cognitive impairment and dementia. J Am Geriatr Soc 2021; 69:2185-2194. [PMID: 33904156 DOI: 10.1111/jgs.17188] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND/OBJECTIVE Poor air quality is implicated as a risk factor for cognitive impairment and dementia. Few studies have examined these associations longitudinally in well-characterized population-based cohorts with standardized annual assessment of both mild cognitive impairment (MCI) and dementia. We investigated the association between estimated ambient fine particulate matter (PM2.5 ) and risk of incident MCI and dementia in a post-industrial region known for historically poor air quality. SETTING/PARTICIPANTS Adults aged 65+ years in a population-based cohort (n = 1572). MEASUREMENTS Census tract level PM2.5 from Environmental Protection Agency (EPA) air quality monitors; Clinical Dementia Rating (CDR)®. DESIGN We estimated ambient PM2.5 exposure (μg/m3 , single-year and 5-year averages) by geocoding participants' residential addresses to census tracts with daily EPA PM2.5 measurements from 2002 to 2014. Using Bayesian spatial regression modeling adjusted for age, sex, education, smoking history, and household income, we examined the association between estimated PM2.5 exposure and risk of incident MCI (CDR = 0.5) and incident dementia (CDR ≥ 1.0). RESULTS Modeling estimated single-year exposure, each 1 μg/m3 higher ambient PM2.5 was associated with 67% higher adjusted risk of incident dementia (hazard ratio [HR] = 1.669, 95% credible interval [CI]: 1.298, 2.136) and 75% higher adjusted risk of incident MCI (HR = 1.746, 95% CI: 1.518, 2.032). Estimates were higher when modeling 5-year ambient PM2.5 exposure for incident dementia (HR = 2.082, 95% CI: 1.528, 3.015) and incident MCI (HR = 3.419, 95% CI: 2.806, 4.164). CONCLUSIONS Higher estimated ambient PM2.5 was associated with higher risk of incident MCI and dementia, particularly when considering longer-term exposure, and independent of demographic characteristics and smoking history. Targeting poor air quality may be a reasonable population-wide intervention to reduce the risk of cognitive impairment in older adults, particularly in regions exceeding current recommendations for safe exposure to PM2.5 .
Collapse
Affiliation(s)
- Kevin J Sullivan
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Xinhui Ran
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fan Wu
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chung-Chou H Chang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ravi Sharma
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Erin Jacobsen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Beth E Snitz
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Akira Sekikawa
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evelyn O Talbott
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary Ganguli
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
44
|
Wu J, Ning Y, Gao Y, Shan R, Wang B, Lv J, Li L. Association between Ambient Air Pollution and MRI-Defined Brain Infarcts in Health Examinations in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084325. [PMID: 33921763 PMCID: PMC8072670 DOI: 10.3390/ijerph18084325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022]
Abstract
The study aimed to evaluate the relationships between air pollutants and risk of magnetic resonance imaging (MRI)-defined brain infarcts (BI). We used data from routine health examinations of 1,400,503 participants aged ≥18 years who underwent brain MRI scans in 174 cities in 30 provinces in China in 2018. We assessed exposures to particulate matter (PM)2.5, PM10, nitrogen dioxide (NO2), and carbon monoxide (CO) from 2015 to 2017. MRI-defined BI was defined as lesions ≥3 mm in diameter. Air pollutants were associated with a higher risk of MRI-defined BI. The odds ratio (OR) (95% CI) for MRI-defined BI comparing the highest with the lowest tertiles of air pollutant concentrations was 2.00 (1.96–2.03) for PM2.5, 1.68 (1.65–1.71) for PM10, 1.58 (1.55–1.61) for NO2, and 1.57 (1.54–1.60) for CO. Each SD increase in air pollutants was associated with 16–42% increases in the risk of MRI-defined BI. The associations were stronger in the elderly subgroup. This is the largest survey to evaluate the association between air pollution and MRI-defined BI. Our findings indicate that ambient air pollution was significantly associated with a higher risk of MRI-defined BI.
Collapse
Affiliation(s)
- Jing Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (J.W.); (R.S.); (J.L.)
| | - Yi Ning
- Meinian Public Health Institute, Peking University Health Science Center, Beijing 100191, China;
- Meinian Institute of Health, Beijing 100191, China;
- Correspondence: (Y.N.); (L.L.); Tel.: +86-0089-3791 (Y.N.); +86-10-828-01528 (ext. 321) (L.L.)
| | | | - Ruiqi Shan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (J.W.); (R.S.); (J.L.)
| | - Bo Wang
- Meinian Public Health Institute, Peking University Health Science Center, Beijing 100191, China;
- Meinian Institute of Health, Beijing 100191, China;
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (J.W.); (R.S.); (J.L.)
- Meinian Public Health Institute, Peking University Health Science Center, Beijing 100191, China;
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (J.W.); (R.S.); (J.L.)
- Meinian Public Health Institute, Peking University Health Science Center, Beijing 100191, China;
- Correspondence: (Y.N.); (L.L.); Tel.: +86-0089-3791 (Y.N.); +86-10-828-01528 (ext. 321) (L.L.)
| |
Collapse
|
45
|
Delgado-Saborit JM, Guercio V, Gowers AM, Shaddick G, Fox NC, Love S. A critical review of the epidemiological evidence of effects of air pollution on dementia, cognitive function and cognitive decline in adult population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143734. [PMID: 33340865 DOI: 10.1016/j.scitotenv.2020.143734] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 05/24/2023]
Abstract
Dementia is arguably the most pressing public health challenge of our age. Since dementia does not have a cure, identifying risk factors that can be controlled has become paramount to reduce the personal, societal and economic burden of dementia. The relationship between exposure to air pollution and effects on cognitive function, cognitive decline and dementia has stimulated increasing scientific interest in the past few years. This review of the literature critically examines the available epidemiological evidence of associations between exposure to ambient air pollutants, cognitive performance, acceleration of cognitive decline, risk of developing dementia, neuroimaging and neurological biomarker studies, following Bradford Hill guidelines for causality. The evidence reviewed has been consistent in reporting associations between chronic exposure to air pollution and reduced global cognition, as well as impairment in specific cognitive domains including visuo-spatial abilities. Cognitive decline and dementia incidence have also been consistently associated with exposure to air pollution. The neuro-imaging studies reviewed report associations between exposure to air pollution and white matter volume reduction. Other reported effects include reduction in gray matter, larger ventricular volume, and smaller corpus callosum. Findings relating to ischemic (white matter hyperintensities/silent cerebral infarcts) and hemorrhagic (cerebral microbleeds) markers of cerebral small vessel disease have been heterogeneous, as have observations on hippocampal volume and air pollution. The few studies available on neuro-inflammation tend to report associations with exposure to air pollution. Several effect modifiers have been suggested in the literature, but more replication studies are required. Traditional confounding factors have been controlled or adjusted for in most of the reviewed studies. Additional confounding factors have also been considered, but the inclusion of these has varied among the different studies. Despite all the efforts to adjust for confounding factors, residual confounding cannot be completely ruled out, especially since the factors affecting cognition and dementia are not yet fully understood. The available evidence meets many of the Bradford Hill guidelines for causality. The reported associations between a range of air pollutants and effects on cognitive function in older people, including the acceleration of cognitive decline and the induction of dementia, are likely to be causal in nature. However, the diversity of study designs, air pollutants and endpoints examined precludes the attribution of these adverse effects to a single class of pollutant and makes meta-analysis inappropriate.
Collapse
Affiliation(s)
- Juana Maria Delgado-Saborit
- Universitat Jaume I, Perinatal Epidemiology, Environmental Health and Clinical Research, School of Medicine, Castellon, Spain; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, UK; ISGlobal Barcelona Institute for Global Health, Barcelona Biomedical Research Park, Barcelona, Spain; Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK.
| | - Valentina Guercio
- Air Quality and Public Health Group, Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, UK
| | - Alison M Gowers
- Air Quality and Public Health Group, Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, UK
| | | | - Nick C Fox
- Department of Neurodegenerative Disease, Dementia Research Centre, University College London, Institute of Neurology, London, UK
| | - Seth Love
- Institute of Clinical Neurosciences, University of Bristol, School of Medicine, Level 2 Learning and Research, Southmead Hospital, Bristol, UK
| |
Collapse
|
46
|
Younan D, Wang X, Casanova R, Barnard R, Gaussoin SA, Saldana S, Petkus AJ, Beavers DP, Resnick SM, Manson JE, Serre ML, Vizuete W, Henderson VW, Sachs BC, Salinas J, Gatz M, Espeland MA, Chui HC, Shumaker SA, Rapp SR, Chen JC. PM 2.5 Associated With Gray Matter Atrophy Reflecting Increased Alzheimer Risk in Older Women. Neurology 2021; 96:e1190-e1201. [PMID: 33208540 PMCID: PMC8055348 DOI: 10.1212/wnl.0000000000011149] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/20/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To examine whether late-life exposure to PM2.5 (particulate matter with aerodynamic diameters <2.5 µm) contributes to progressive brain atrophy predictive of Alzheimer disease (AD) using a community-dwelling cohort of women (age 70-89 years) with up to 2 brain MRI scans (MRI-1, 2005-2006; MRI-2, 2010-2011). METHODS AD pattern similarity (AD-PS) scores, developed by supervised machine learning and validated with MRI data from the Alzheimer's Disease Neuroimaging Initiative, were used to capture high-dimensional gray matter atrophy in brain areas vulnerable to AD (e.g., amygdala, hippocampus, parahippocampal gyrus, thalamus, inferior temporal lobe areas, and midbrain). Using participants' addresses and air monitoring data, we implemented a spatiotemporal model to estimate 3-year average exposure to PM2.5 preceding MRI-1. General linear models were used to examine the association between PM2.5 and AD-PS scores (baseline and 5-year standardized change), accounting for potential confounders and white matter lesion volumes. RESULTS For 1,365 women 77.9 ± 3.7 years of age in 2005 to 2006, there was no association between PM2.5 and baseline AD-PS score in cross-sectional analyses (β = -0.004; 95% confidence interval [CI] -0.019 to 0.011). Longitudinally, each interquartile range increase of PM2.5 (2.82 µg/m3) was associated with increased AD-PS scores during the follow-up, equivalent to a 24% (hazard ratio 1.24, 95% CI 1.14-1.34) increase in AD risk over 5 years (n = 712, age 77.4 ± 3.5 years). This association remained after adjustment for sociodemographics, intracranial volume, lifestyle, clinical characteristics, and white matter lesions and was present with levels below US regulatory standards (<12 µg/m3). CONCLUSIONS Late-life exposure to PM2.5 is associated with increased neuroanatomic risk of AD, which may not be explained by available indicators of cerebrovascular damage.
Collapse
Affiliation(s)
- Diana Younan
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York.
| | - Xinhui Wang
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Ramon Casanova
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Ryan Barnard
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Sarah A Gaussoin
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Santiago Saldana
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Andrew J Petkus
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Daniel P Beavers
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Susan M Resnick
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - JoAnn E Manson
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Marc L Serre
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - William Vizuete
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Victor W Henderson
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Bonnie C Sachs
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Joel Salinas
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Margaret Gatz
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Mark A Espeland
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Helena C Chui
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Sally A Shumaker
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Stephen R Rapp
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Jiu-Chiuan Chen
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| |
Collapse
|
47
|
Cho J, Noh Y, Kim SY, Sohn J, Noh J, Kim W, Cho SK, Seo H, Seo G, Lee SK, Seo S, Koh SB, Oh SS, Kim HJ, Seo SW, Shin DS, Kim N, Kim HH, Lee JI, Kim C. Long-Term Ambient Air Pollution Exposures and Brain Imaging Markers in Korean Adults: The Environmental Pollution-Induced Neurological EFfects (EPINEF) Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:117006. [PMID: 33215932 PMCID: PMC7678746 DOI: 10.1289/ehp7133] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Only a limited number of neuroimaging studies have explored the effects of ambient air pollution in adults. The prior studies have investigated only cortical volume, and they have reported mixed findings, particularly for gray matter. Furthermore, the association between nitrogen dioxide (NO2) and neuroimaging markers has been little studied in adults. OBJECTIVES We investigated the association between long-term exposure to air pollutants (NO2, particulate matter (PM) with aerodynamic diameters of ≤10μm (PM10) and ≤2.5μm (PM2.5), and neuroimaging markers. METHODS The study included 427 men and 530 women dwelling in four cities in the Republic of Korea. Long-term concentrations of PM10, NO2, and PM2.5 at residential addresses were estimated. Neuroimaging markers (cortical thickness and subcortical volume) were obtained from brain magnetic resonance images. A generalized linear model was used, adjusting for potential confounders. RESULTS A 10-μg/m3 increase in PM10 was associated with reduced thicknesses in the frontal [-0.02mm (95% CI: -0.03, -0.01)] and temporal lobes [-0.06mm (95% CI: -0.07, -0.04)]. A 10-μg/m3 increase in PM2.5 was associated with a thinner temporal cortex [-0.18mm (95% CI: -0.27, -0.08)]. A 10-ppb increase in NO2 was associated with reduced thicknesses in the global [-0.01mm (95% CI: -0.01, 0.00)], frontal [-0.02mm (95% CI: -0.03, -0.01)], parietal [-0.02mm (95% CI: -0.03, -0.01)], temporal [-0.04mm (95% CI: -0.05, -0.03)], and insular lobes [-0.01mm (95% CI: -0.02, 0.00)]. The air pollutants were also associated with increased thicknesses in the occipital and cingulate lobes. Subcortical structures associated with the air pollutants included the thalamus, caudate, pallidum, hippocampus, amygdala, and nucleus accumbens. DISCUSSION The findings suggest that long-term exposure to high ambient air pollution may lead to cortical thinning and reduced subcortical volume in adults. https://doi.org/10.1289/EHP7133.
Collapse
Affiliation(s)
- Jaelim Cho
- School of Medicine, University of Auckland, Auckland, New Zealand
- Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Republic of Korea
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Noh
- Department of Neurology, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Sun Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Jungwoo Sohn
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Juhwan Noh
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woojin Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong-Kyung Cho
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hwasun Seo
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gayoung Seo
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Koo Lee
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seongho Seo
- Department of Neuroscience, Gachon University College of Medicine, Incheon, Republic of Korea
- Department of Electronic Engineering, Pai Chai University, Daejeon, Republic of Korea
| | - Sang-Baek Koh
- Department of Occupational and Environmental Medicine, Wonju Severance Christian Hospital, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Sung Soo Oh
- Department of Occupational and Environmental Medicine, Wonju Severance Christian Hospital, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dae-Seock Shin
- MIDAS Information Technology Co., Ltd., Seongnam, Republic of Korea
| | - Nakyoung Kim
- MIDAS Information Technology Co., Ltd., Seongnam, Republic of Korea
| | - Ho Hyun Kim
- Department of Integrated Environmental Systems, Pyeongtaek University, Pyeongtaek, Republic of Korea
| | - Jung Il Lee
- Korea Testing & Research Institute, Gwacheon, Republic of Korea
| | - Changsoo Kim
- Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Republic of Korea
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
48
|
Cho J, Sohn J, Noh J, Jang H, Kim W, Cho SK, Seo H, Seo G, Lee SK, Noh Y, Seo S, Koh SB, Oh SS, Kim HJ, Seo SW, Shin DS, Kim N, Kim HH, Lee JI, Kim SY, Kim C. Association between exposure to polycyclic aromatic hydrocarbons and brain cortical thinning: The Environmental Pollution-Induced Neurological EFfects (EPINEF) study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:140097. [PMID: 32783831 DOI: 10.1016/j.scitotenv.2020.140097] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Although some studies have suggested that exposure to polycyclic aromatic hydrocarbons (PAHs) induces neurodevelopmental disturbances in children and neurodegeneration in animals, the neurotoxic effect of PAH exposure is unclear in adults. The aim was to examine the associations of PAH exposure with brain structure and neuropsychological function in adults without known neurological diseases. METHODS This study included 421 men and 528 women dwelling in four cities in the Republic of Korea. Urinary concentrations of four PAH metabolites (1-hydroxypyrene, 2-naphthol, 1-hydroxyphenanthrene, and 2-hydroxyfluorene) were obtained. Participants underwent brain 3 T magnetic resonance imaging and neuropsychological tests. Cortical thickness and volume were estimated using the region-of-interest method. Separate generalized linear models were constructed for each sex, adjusting for age, years of education, cohabitation status, income, tobacco use, alcohol consumption, and vascular risk factors. RESULTS The mean (standard deviation) age was 68.3 (6.6) years in men and 66.4 (6.1) years in women. In men, those in quartile 4 (versus quartile 1, the lowest) of urinary 2-naphthol concentration had cortical thinning in the global (β = -0.03, P = .02), parietal (β = -0.04, P = .01), temporal (β = -0.06, P < .001), and insular lobes (β = -0.05, P = .02). Higher quartiles of urinary 2-naphthol concentration were associated with cortical thinning in the global (P = .01), parietal (P = .004), temporal (P < .001), and insular lobes (P = .01). In women, those in quartile 4 (versus quartile 1) of urinary 1-hydroxypyrene concentration had cortical thinning in the frontal (β = -0.03, P = .006) and parietal lobes (β = -0.03, P = .003). Higher quartiles of urinary 1-hydroxypyrene concentration were associated with cortical thinning in the frontal (P = .006) and parietal lobes (P = .001). In both sexes, verbal learning and memory scores significantly declined with an increase in quartile of urinary 1-hydroxypyrene concentration. CONCLUSIONS PAH exposure was associated with cortical thinning and decline in verbal learning and memory function in cognitively healthy adults. This suggests PAHs as an environmental risk factor for neurodegeneration.
Collapse
Affiliation(s)
- Jaelim Cho
- School of Medicine, University of Auckland, Auckland, New Zealand; Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea; Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jungwoo Sohn
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Juhwan Noh
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heeseon Jang
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woojin Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong-Kyung Cho
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hwasun Seo
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gayoung Seo
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Koo Lee
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Noh
- Department of Neurology, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Seongho Seo
- Department of Neuroscience, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Sang-Baek Koh
- Department of Occupational and Environmental Medicine, Wonju Severance Christian Hospital, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Sung Soo Oh
- Department of Occupational and Environmental Medicine, Wonju Severance Christian Hospital, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dae-Seock Shin
- MIDAS Information Technology Co., Ltd., Seongnam, Republic of Korea
| | - Nakyoung Kim
- MIDAS Information Technology Co., Ltd., Seongnam, Republic of Korea
| | - Ho Hyun Kim
- Department of Integrated Environmental Systems, Pyeongtaek University, Pyeongtaek, Republic of Korea
| | - Jung Il Lee
- Korea Testing & Research Institute, Gwacheon, Republic of Korea
| | - Sun Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Changsoo Kim
- Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea; Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Shi JQ, Wang BR, Jiang T, Gao L, Zhang YD, Xu J. NLRP3 Inflammasome: A Potential Therapeutic Target in Fine Particulate Matter-Induced Neuroinflammation in Alzheimer's Disease. J Alzheimers Dis 2020; 77:923-934. [PMID: 32804134 DOI: 10.3233/jad-200359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
As one of the most harmful air pollutants, fine particulate matter (PM2.5) has been implicated as a risk factor for multiple diseases, which has generated widespread public concern. Accordingly, a growing literature links PM2.5 exposure with Alzheimer's disease (AD). A critical gap in our understanding of the adverse effects of PM2.5 on AD is the mechanism triggered by PM2.5 that contributes to disease progression. Recent evidence has demonstrated that PM2.5 can activate NLRP3 inflammasome-mediated neuroinflammation. In this review, we highlight the novel evidence between PM2.5 exposure and AD incidence, which is collected and summarized from neuropathological, epidemiological, and neuroimaging studies to in-depth deciphering molecular mechanisms. First, neuropathological, epidemiological, and neuroimaging studies will be summarized. Then, the transport pathway for central nervous system delivery of PM2.5 will be presented. Finally, the role of NLRP3 inflammasome-mediated neuroinflammation in PM2.5 induced-effects on AD will be recapitulated.
Collapse
Affiliation(s)
- Jian-Quan Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Bian-Rong Wang
- Department of Neurology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Li Gao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Jun Xu
- Department of Cognitive Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
50
|
Power MC. Growing evidence links air pollution exposure to risk of Alzheimer's disease and related dementia. Brain 2020; 143:8-10. [PMID: 31886492 DOI: 10.1093/brain/awz396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This scientific commentary refers to ‘Particulate matter and episodic memory decline mediated by early neuroanatomic biomarkers of Alzheimer’s disease’, by Younan et al. (doi: 10.1093/brain/awz348).
Collapse
Affiliation(s)
- Melinda C Power
- George Washington University Milken Institute School of Public Health, Washington, DC, USA
| |
Collapse
|