1
|
Lee VY, Nils AVM, Arruda BP, Xavier GF, Nogueira MI, Motta-Teixeira LC, Takada SH. Spontaneous running wheel exercise during pregnancy prevents later neonatal-anoxia-induced somatic and neurodevelopmental alterations. IBRO Neurosci Rep 2024; 17:263-279. [PMID: 39310269 PMCID: PMC11414703 DOI: 10.1016/j.ibneur.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction About 15-20 % of babies that suffer perinatal asphyxia die and around 25 % of the survivors exhibit permanent neural outcomes. Minimization of this global health problem has been warranted. This study investigated if the offspring of pregnant female rats allowed to spontaneously exercise on running wheels along a 11-day pregnancy period were protected for somatic and neurodevelopmental disturbs that usually follow neonatal anoxia. Methods spontaneous exercise was applied to female rats which were housed in cages allowing free access to running wheels along a 11-day pregnancy period. Their offspring were submitted to anoxia 24-36 h after birth. Somatic and sensory-motor development of the pups were recorded until postnatal day 21 (P21). Myelin basic protein (MBP)-stained areas of sensory and motor cortices were measured at P21. Neuronal nuclei (NeuN)-immunopositive cells and synapsin-I levels in hippocampal formation were estimated at P21 and P75. Results gestational exercise and / or neonatal anoxia increased the weight and the size of the pups. In addition, gestational exercise accelerated somatic and sensory-motor development of the pups and protected them against neonatal-anoxia-induced delay in development. Further, neonatal anoxia reduced MBP stained area in the secondary motor cortex and decreased hippocampal neuronal estimates and synapsin-I levels at P21; gestational exercise prevented these effects. Therefore, spontaneous exercise along pregnancy is a valuable strategy to prevent neonatal-anoxia-induced disturbs in the offspring. Conclusion spontaneous gestational running wheel exercise protects against neonatal anoxia-induced disturbs in the offspring, including (1) physical and neurobehavioral developmental impairments, and (2) hippocampal and cortical changes. Thus, spontaneous exercise during pregnancy may represent a valuable strategy to prevent disturbs which usually follow neonatal anoxia.
Collapse
Affiliation(s)
- Vitor Yonamine Lee
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
| | - Aline Vilar Machado Nils
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
| | - Bruna Petrucelli Arruda
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Alameda da Universidade, s/n, Bloco Delta, São Bernardo do Campo, SP 09606-070, Brazil
| | - Gilberto Fernando Xavier
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
| | - Maria Inês Nogueira
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
| | - Lívia Clemente Motta-Teixeira
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, R. Jaguaribe, 155 - Vila Buarque, Sao Paulo, SP 01224-001, Brazil
| | - Silvia Honda Takada
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Alameda da Universidade, s/n, Bloco Delta, São Bernardo do Campo, SP 09606-070, Brazil
| |
Collapse
|
2
|
Li FL, Sheih YT, Lin MH, Chen YC, Wu WT, Lin TK, Chou YC, Sun CA. The association between the fluoxetine use and the occurrence of coronary heart disease: a nationwide retrospective cohort study. BMC Cardiovasc Disord 2024; 24:628. [PMID: 39522052 PMCID: PMC11549814 DOI: 10.1186/s12872-024-04280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND We explored if the administration of fluoxetine, recognized for its potential in adipocyte browning, entails a differential risk of coronary heart disease (CHD) in comparison to other SSRI medications. METHODS Using the National Health Insurance Research Database of Taiwan from 2000 to 2013, we conducted a retrospective cohort study. The exposure cohort comprised individuals prescribed fluoxetine for over 90 days (n = 2,228). Conversely, those administered other SSRIs (excluding fluoxetine) for a duration surpassing 90 days were designated as the non-exposed cohort (n = 8,912). CHD incidence served as our primary outcome measure, and we employed Cox proportional hazards models to scrutinize the relationship between fluoxetine exposure and CHD development rates. RESULTS Compared with the non-exposed cohort, the fluoxetine use had a significantly decreased 21% risk of developing CHD in the exposed cohort (adjusted hazard ratio: 0.79%, 95% confidence interval: 0.68-0.92). Noticeably, results indicated that there was an inverse association between the fluoxetine exposure and the risk of CHD, regardless of whether men, women or other age groups. CONCLUSION Our findings suggest that clinical use of fluoxetine was associated with a 21% reduced risk of CHD relative to other SSRI prescriptions.
Collapse
Affiliation(s)
- Fang-Ling Li
- Department of Psychiatry, Tri-Service General Hospital Beitou Branch, National Defense Medical Center, Taipei, 114, Taiwan
| | - Yu-Tse Sheih
- Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, 802, Taiwan
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Ming-Hsun Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Yong-Chen Chen
- Data Science Center, College of Medicine, Fu-Jen Catholic University, New Taipei City, 242, Taiwan
- Department of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City, 242, Taiwan
| | - Wen-Tung Wu
- Department of Pharmacy, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei, 114, Taiwan
| | - Tsung-Kun Lin
- Department of Pharmacy, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei, 114, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, 114, Taiwan
| | - Chien-An Sun
- Data Science Center, College of Medicine, Fu-Jen Catholic University, New Taipei City, 242, Taiwan.
- Department of Public Health, College of Medicine, Fu-Jen Catholic University, New Taipei City, 242, Taiwan.
- , No.510, Zhongzheng Road, Xinzhuang District, New Taipei City, 24205, Taiwan, Republic of China.
| |
Collapse
|
3
|
Trotta RJ, Harmon DL, Klotz JL. Serotonin receptor-mediated vasorelaxation occurs primarily through 5-HT 4 activation in bovine lateral saphenous vein. Physiol Rep 2024; 12:e16128. [PMID: 38946059 PMCID: PMC11214916 DOI: 10.14814/phy2.16128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024] Open
Abstract
To better understand mechanisms of serotonin- (5-HT) mediated vasorelaxation, isolated lateral saphenous veins from cattle were assessed for vasoactivity using myography in response to increasing concentrations of 5-HT or selective 5-HT receptor agonists. Vessels were pre-contracted with 1 × 10-4 M phenylephrine and exposed to increasing concentrations of 5-HT or 5-HT receptor agonists that were selective for 5-HT1B, 5-HT2B, 5-HT4, and 5-HT7. Vasoactive response data were normalized as a percentage of the maximum contractile response induced by the phenylephrine pre-contraction. At 1 × 10-7 M 5-HT, a relaxation was observed with an 88.7% decrease (p < 0.01) from the phenylephrine maximum. At 1 × 10-4 M 5-HT, a contraction was observed with a 165% increase (p < 0.01) from the phenylephrine maximum. Increasing concentrations of agonists selective for 5-HT2B, 5-HT4, or 5-HT7 resulted in a 27%, 92%, or 44% (p < 0.01) decrease from the phenylephrine maximum, respectively. Of these 5-HT receptor agonists, the selective 5-HT4 receptor agonist resulted in the greatest potency (-log EC50) value (6.30) compared with 5-HT2B and 5-HT7 receptor agonists (4.21 and 4.66, respectively). To confirm the involvement of 5-HT4 in 5-HT-mediated vasorelaxation, blood vessels were exposed to either DMSO (solvent control) or a selective 5-HT4 antagonist (1 × 10-5 M) for 5-min prior to the phenylephrine pre-contraction and 5-HT additions. Antagonism of the 5-HT4 receptor attenuated the vasorelaxation caused by 5-HT. Approximately 94% of the vasorelaxation occurring in response to 5-HT could be accounted for through 5-HT4, providing strong evidence that 5-HT-mediated vasorelaxation occurs through 5-HT4 activation in bovine peripheral vasculature.
Collapse
Affiliation(s)
- Ronald J. Trotta
- Department of Animal and Food SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - David L. Harmon
- Department of Animal and Food SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - James L. Klotz
- Forage‐Animal Production Research UnitUSDA‐ARSLexingtonKentuckyUSA
| |
Collapse
|
4
|
Mavanji V, Pomonis BL, Shekels L, Kotz CM. Interactions between Lateral Hypothalamic Orexin and Dorsal Raphe Circuitry in Energy Balance. Brain Sci 2024; 14:464. [PMID: 38790443 PMCID: PMC11117928 DOI: 10.3390/brainsci14050464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Orexin/hypocretin terminals innervate the dorsal raphe nucleus (DRN), which projects to motor control areas important for spontaneous physical activity (SPA) and energy expenditure (EE). Orexin receptors are expressed in the DRN, and obesity-resistant (OR) rats show higher expression of these receptors in the DRN and elevated SPA/EE. We hypothesized that orexin-A in the DRN enhances SPA/EE and that DRN-GABA modulates the effect of orexin-A on SPA/EE. We manipulated orexin tone in the DRN either through direct injection of orexin-A or through the chemogenetic activation of lateral-hypothalamic (LH) orexin neurons. In the orexin neuron activation experiment, fifteen minutes prior to the chemogenetic activation of orexin neurons, the mice received either the GABA-agonist muscimol or antagonist bicuculline injected into the DRN, and SPA/EE was monitored for 24 h. In a separate experiment, orexin-A was injected into the DRN to study the direct effect of DRN orexin on SPA/EE. We found that the activation of orexin neurons elevates SPA/EE, and manipulation of GABA in the DRN does not alter the SPA response to orexin neuron activation. Similarly, intra-DRN orexin-A enhanced SPA and EE in the mice. These results suggest that orexin-A in the DRN facilitates negative energy balance by increasing physical activity-induced EE, and that modulation of DRN orexin-A is a potential strategy to promote SPA and EE.
Collapse
Affiliation(s)
- Vijayakumar Mavanji
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; (V.M.); (B.L.P.); (L.S.)
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brianna L. Pomonis
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; (V.M.); (B.L.P.); (L.S.)
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurie Shekels
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; (V.M.); (B.L.P.); (L.S.)
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Catherine M. Kotz
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; (V.M.); (B.L.P.); (L.S.)
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
- Geriatric Research, Education and Clinical Center, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| |
Collapse
|
5
|
Liu H, Wang G, Zhang J, Lu B, Li D, Chen J. Inhalation of diesel exhaust particulate matter accelerates weight gain via regulation of hypothalamic appetite-related genes and gut microbiota metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133570. [PMID: 38309172 DOI: 10.1016/j.jhazmat.2024.133570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Mice exposed to diesel exhaust particulate matter (DEPM) exhibited accelerated weight gain. Several hypothalamic genes, hormones (serum Hypothalamic-Pituitary-Adrenal (HPA) axis hormones and gastrointestinal peptide tyrosine tyrosine (PYY)), metabolites (intrahepatic triglyceride (IHTG) and fecal short-chain fatty acids (SCFAs)), and gut microbiota structure, which may influence obesity and appetite regulation, were examined. The result suggested that DEPM-induced accelerated weight gain may be associated with increased expression of hypothalamic Gamma-aminobutyric acid (GABA) type B receptor, tight junction protein, and orexin receptors, in addition with decreased IHTG and repressed HPA axis. Moreover, changes in the structure of intestinal microbiota are also related to weight changes, especially for phylum Firmicutes, genus Lactobacillus, and the ratio of relative abundance of Firmicutes and Bacteroidetes (F/B). DEPM exposure also caused widespread increase in the levels of intestinal SCFAs, the concentrations of propionic acid and isobutyric acid were associated with weight gain rate and the abundance of some bacteria. Although DEPM exposure caused changes in expression of hypothalamic serotonin, NPY, and melanocortin receptors, they were not associated with weight changes. Furthermore, no significant difference in gastrointestinal PYY and expression of hypothalamic receptors for leptin, insulin, and glucagon-like peptide 1 receptors was observed between DEPM-exposed and control mice.
Collapse
Affiliation(s)
- Hou Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Guicheng Wang
- Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai 200433, China
| | - Jin Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Bingjie Lu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Asselstine V, Medrano JF, Muniz MMM, Mallard BA, Karrow NA, Cánovas A. Novel lncRNA regulatory elements in milk somatic cells of Holstein dairy cows associated with mastitis. Commun Biol 2024; 7:98. [PMID: 38225372 PMCID: PMC10789785 DOI: 10.1038/s42003-024-05764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/01/2024] [Indexed: 01/17/2024] Open
Abstract
Despite regulatory elements such as long non - coding RNAs representing most of the transcriptome, the functional understanding of long non - coding RNAs in relation to major health conditions including bovine mastitis is limited. This study examined the milk somatic cell transcriptome from udder quarters of 6 Holstein dairy cows to identify differentially expressed long non - coding RNAs using RNA - Sequencing. Ninety - four differentially expressed long non - coding RNAs are identified, 5 of which are previously annotated for gene name and length, 11 are annotated for gene name and 78 are novel, having no gene name or length previously annotated. Significant inflammatory response and regulation of immune response pathways (false discovery rate < 0.05) are associated with the differentially expressed long non - coding RNAs. QTL annotation analysis revealed 31 QTL previously annotated in the genomic regions of the 94 differentially expressed long non - coding RNAs, and the majority are associated with milk traits. This research provides a better understanding of long non - coding RNAs regulatory elements in milk somatic cells, which may enhance current breeding strategies for more adaptable or high mastitis resistant cattle.
Collapse
Affiliation(s)
- Victoria Asselstine
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Juan F Medrano
- Department of Animal Science, University of California-Davis, 95616, Davis, CA, USA
| | - Malane M M Muniz
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Bonnie A Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Niel A Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada.
| |
Collapse
|
7
|
Herrera K, Maldonado-Ruiz R, Camacho-Morales A, de la Garza AL, Castro H. Maternal methyl donor supplementation regulates the effects of cafeteria diet on behavioral changes and nutritional status in male offspring. Food Nutr Res 2023; 67:9828. [PMID: 37920679 PMCID: PMC10619398 DOI: 10.29219/fnr.v67.9828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 11/04/2023] Open
Abstract
Background Nutritional status and maternal feeding during the perinatal and postnatal periods can program the offspring to develop long-term health alterations. Epidemiologic studies have demonstrated an association between maternal obesity and intellectual disability/cognitive deficits like autism spectrum disorders (ASDs) in offspring. Experimental findings have consistently been indicating that maternal supplementation with methyl donors, attenuated the social alterations and repetitive behavior in offspring. Objective This study aims to analyze the effect of maternal cafeteria diet and methyl donor-supplemented diets on social, anxiety-like, and repetitive behavior in male offspring, besides evaluating weight gain and food intake in both dams and male offspring. Design C57BL/6 female mice were randomized into four dietary formulas: control Chow (CT), cafeteria (CAF), control + methyl donor (CT+M), and cafeteria + methyl donor (CAF+M) during the pre-gestational, gestational, and lactation period. Behavioral phenotyping in the offspring was performed by 2-month-old using Three-Chamber Test, Open Field Test, and Marble Burying Test. Results We found that offspring prenatally exposed to CAF diet displayed less social interaction index when compared with subjects exposed to Chow diet (CT group). Notably, offspring exposed to CAF+M diet recovered social interaction when compared to the CAF group. Discussion These findings suggest that maternal CAF diet is efficient in promoting reduced social interaction in murine models. In our study, we hypothesized that a maternal methyl donor supplementation could improve the behavioral alterations expected in maternal CAF diet offspring. Conclusions The CAF diet also contributed to a social deficit and anxiety-like behavior in the offspring. On the other hand, a maternal methyl donor-supplemented CAF diet normalized the social interaction in the offspring although it led to an increase in anxiety-like behaviors. These findings suggest that a methyl donor supplementation could protect against aberrant social behavior probably targeting key genes related to neurotransmitter pathways.
Collapse
Affiliation(s)
- Katya Herrera
- Universidad Autonoma de Nuevo León, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública. Monterrey, Nuevo León, México
| | - Roger Maldonado-Ruiz
- Universidad Autonoma de Nuevo Leon, Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
| | - Alberto Camacho-Morales
- Universidad Autonoma de Nuevo Leon, Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
- Universidad Autonoma de Nuevo Leon, Facultad de Medicina, Departamento de Bioquímica. Monterrey, Nuevo León, México
| | - Ana Laura de la Garza
- Universidad Autonoma de Nuevo Leon, Unidad de Nutrición, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
| | - Heriberto Castro
- Universidad Autonoma de Nuevo León, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública. Monterrey, Nuevo León, México
- Universidad Autonoma de Nuevo Leon, Unidad de Nutrición, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
| |
Collapse
|
8
|
Wang Q, Yang Q, Liu X. The microbiota-gut-brain axis and neurodevelopmental disorders. Protein Cell 2023; 14:762-775. [PMID: 37166201 PMCID: PMC10599644 DOI: 10.1093/procel/pwad026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
The gut microbiota has been found to interact with the brain through the microbiota-gut-brain axis, regulating various physiological processes. In recent years, the impacts of the gut microbiota on neurodevelopment through this axis have been increasingly appreciated. The gut microbiota is commonly considered to regulate neurodevelopment through three pathways, the immune pathway, the neuronal pathway, and the endocrine/systemic pathway, with overlaps and crosstalks in between. Accumulating studies have identified the role of the microbiota-gut-brain axis in neurodevelopmental disorders including autism spectrum disorder, attention deficit hyperactivity disorder, and Rett Syndrome. Numerous researchers have examined the physiological and pathophysiological mechanisms influenced by the gut microbiota in neurodevelopmental disorders (NDDs). This review aims to provide a comprehensive overview of advancements in research pertaining to the microbiota-gut-brain axis in NDDs. Furthermore, we analyzed both the current state of research progress and discuss future perspectives in this field.
Collapse
Affiliation(s)
- Qinwen Wang
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Qianyue Yang
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
- Department of Microbiota Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
9
|
Mengoli M, Conti G, Fabbrini M, Candela M, Brigidi P, Turroni S, Barone M. Microbiota-gut-brain axis and ketogenic diet: how close are we to tackling epilepsy? MICROBIOME RESEARCH REPORTS 2023; 2:32. [PMID: 38045924 PMCID: PMC10688818 DOI: 10.20517/mrr.2023.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 12/05/2023]
Abstract
The microbiota-gut-brain axis refers to the intricate bidirectional communication between commensal microorganisms residing in the digestive tract and the central nervous system, along neuroendocrine, metabolic, immune, and inflammatory pathways. This axis has been suggested to play a role in several neurological disorders, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, and epilepsy, paving the way for microbiome-based intervention strategies for the mitigation and treatment of symptoms. Epilepsy is a multifaceted neurological condition affecting more than 50 million individuals worldwide, 30% of whom do not respond to conventional pharmacological therapies. Among the first-hand microbiota modulation strategies, nutritional interventions represent an easily applicable option in both clinical and home settings. In this narrative review, we summarize the mechanisms underlying the microbiota-gut-brain axis involvement in epilepsy, discuss the impact of antiepileptic drugs on the gut microbiome, and then the impact of a particular dietary pattern, the ketogenic diet, on the microbiota-gut-brain axis in epileptic patients. The investigation of the microbiota response to non-pharmacological therapies is an ever-expanding field with the potential to allow the design of increasingly accessible and successful intervention strategies.
Collapse
Affiliation(s)
- Mariachiara Mengoli
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Gabriele Conti
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| |
Collapse
|
10
|
Chivite M, Ceinos RM, Cerdá-Reverter JM, Soengas JL, Aldegunde M, López-Patiño MA, Míguez JM. Unraveling the periprandial changes in brain serotonergic activity and its correlation with food intake-related neuropeptides in rainbow trout Oncorhynchus mykiss. Front Endocrinol (Lausanne) 2023; 14:1241019. [PMID: 37693350 PMCID: PMC10491422 DOI: 10.3389/fendo.2023.1241019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
This study explored changes in brain serotonin content and activity together with hypothalamic neuropeptide mRNA abundance around feeding time in rainbow trout, as well as the effect of one-day fasting. Groups of trout fed at two (ZT2) and six (ZT6) hours after lights on were sampled from 90 minutes before to 240 minutes after feeding, while additional groups of non-fed trout were also included in the study. Changes in brain amine and metabolite contents were measured in hindbrain, diencephalon and telencephalon, while in the diencephalon the mRNA abundance of tryptophan hydroxylase (tph1, tph2), serotonin receptors (5htr1a, 5htr1b and 5htr2c) and several neuropeptides (npy, agrp1, cartpt, pomca1, crfb) involved in the control of food intake were also assessed. The results showed changes in the hypothalamic neuropeptides that were consistent with the expected role for each in the regulation of food intake in rainbow trout. Serotonergic activity increased rapidly at the time of food intake in the diencephalon and hindbrain and remained high for much of the postprandial period. This increase in serotonin abundance was concomitant with elevated levels of pomca1 mRNA in the diencephalon, suggesting that serotonin might act on brain neuropeptides to promote a satiety profile. Furthermore, serotonin synthesis and neuronal activity appear to increase already before the time of feeding, suggesting additional functions for this amine before and during food intake. Exploration of serotonin receptors in the diencephalon revealed only small changes for gene expression of 5htr1b and 5htr2c receptors during the postprandial phase. Therefore, the results suggest that serotonin may play a relevant role in the regulation of feeding behavior in rainbow trout during periprandial time, but a better understanding of its interaction with brain centers involved in receiving and processing food-related signals is still needed.
Collapse
Affiliation(s)
- Mauro Chivite
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Rosa M. Ceinos
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - José M. Cerdá-Reverter
- Departamento de Fisiología de Peces y Biotecnología, Instituto de Acuicultura Torre de la Sal, Instituto de Acuicultura Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| | - Jose L. Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Manuel Aldegunde
- Departamento de Fisiología, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marcos A. López-Patiño
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Jesús M. Míguez
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
11
|
Haynes RL, Trachtenberg F, Darnall R, Haas EA, Goldstein RD, Mena OJ, Krous HF, Kinney HC. Altered 5-HT2A/C receptor binding in the medulla oblongata in the sudden infant death syndrome (SIDS): Part I. Tissue-based evidence for serotonin receptor signaling abnormalities in cardiorespiratory- and arousal-related circuits. J Neuropathol Exp Neurol 2023; 82:467-482. [PMID: 37226597 PMCID: PMC10209647 DOI: 10.1093/jnen/nlad030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
The sudden infant death syndrome (SIDS), the leading cause of postneonatal infant mortality in the United States, is typically associated with a sleep period. Previously, we showed evidence of serotonergic abnormalities in the medulla (e.g. altered serotonin (5-HT)1A receptor binding), in SIDS cases. In rodents, 5-HT2A/C receptor signaling contributes to arousal and autoresuscitation, protecting brain oxygen status during sleep. Nonetheless, the role of 5-HT2A/C receptors in the pathophysiology of SIDS is unclear. We hypothesize that in SIDS, 5-HT2A/C receptor binding is altered in medullary nuclei that are key for arousal and autoresuscitation. Here, we report altered 5-HT2A/C binding in several key medullary nuclei in SIDS cases (n = 58) compared to controls (n = 12). In some nuclei the reduced 5-HT2A/C and 5-HT1A binding overlapped, suggesting abnormal 5-HT receptor interactions. The data presented here (Part 1) suggest that a subset of SIDS is due in part to abnormal 5-HT2A/C and 5-HT1A signaling across multiple medullary nuclei vital for arousal and autoresuscitation. In Part II to follow, we highlight 8 medullary subnetworks with altered 5-HT receptor binding in SIDS. We propose the existence of an integrative brainstem network that fails to facilitate arousal and/or autoresuscitation in SIDS cases.
Collapse
Affiliation(s)
- Robin L Haynes
- CJ Murphy Laboratory for SIDS Research, Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Robert’s Program on Sudden Unexpected Death in Pediatrics, Division of General Pediatrics, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| | | | - Ryan Darnall
- CJ Murphy Laboratory for SIDS Research, Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Elisabeth A Haas
- Department of Research, Rady Children’s Hospital, San Diego, California, USA
| | - Richard D Goldstein
- Robert’s Program on Sudden Unexpected Death in Pediatrics, Division of General Pediatrics, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Othon J Mena
- San Diego County Medical Examiner Office, San Diego, California, USA
| | - Henry F Krous
- University of California, San Diego, San Diego, California, USA
- Rady Children’s Hospital, San Diego, California, USA
| | - Hannah C Kinney
- CJ Murphy Laboratory for SIDS Research, Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Robert’s Program on Sudden Unexpected Death in Pediatrics, Division of General Pediatrics, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Polizel GHG, Fernandes AC, Furlan É, Prati BCT, Ferraz JBS, Santana MHDA. Impacts of Different Prenatal Supplementation Strategies on the Plasma Metabolome of Bulls in the Rearing and Finishing Phase. Metabolites 2023; 13:259. [PMID: 36837878 PMCID: PMC9960736 DOI: 10.3390/metabo13020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
This study investigated the effects of maternal nutrition on the plasma metabolome of Nellore bulls in the rearing and finishing phases, and metabolic differences between these phases. For this study, three nutritional approaches were used in 126 cows during pregnancy: NP-(control) mineral supplementation; PP-protein-energy supplementation in the final third; and FP-protein-energy supplementation during the entire pregnancy. We collected blood samples from male offspring in the rearing (450 ± 28 days old) and finishing phases (660 ± 28 days old). The blood was processed, and from plasma samples, we performed the targeted metabolome analysis (AbsoluteIDQ® p180 Kit). Multiple linear regression, principal component analysis (PCA), repeated measures analysis over time, and an enrichment analysis were performed. PCA showed an overlap of treatments and time clusters in the analyses. We identified significant metabolites among the treatments (rearing phase = six metabolites; finishing phase = three metabolites) and over time (21 metabolites). No significant metabolic pathways were found in the finishing phase, however, we found significant pathways in the rearing phase (Arginine biosynthesis and Histidine metabolism). Thus, prenatal nutrition impacted on plasma metabolome of bulls during the rearing and finishing phase and the different production stages showed an effect on the metabolic levels of bulls.
Collapse
Affiliation(s)
- Guilherme Henrique Gebim Polizel
- Department of Animal Science, Faculty of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
| | - Arícia Christofaro Fernandes
- Department of Animal Science, Faculty of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
| | - Édison Furlan
- Department of Animal Science, Faculty of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
| | - Barbara Carolina Teixeira Prati
- Department of Animal Science, Faculty of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
| | - José Bento Sterman Ferraz
- Department of Basic Sciences, Faculty of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
| | - Miguel Henrique de Almeida Santana
- Department of Animal Science, Faculty of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
| |
Collapse
|
13
|
Banu A, Gowda SBM, Salim S, Mohammad F. Serotonergic control of feeding microstructure in Drosophila. Front Behav Neurosci 2023; 16:1105579. [PMID: 36733453 PMCID: PMC9887136 DOI: 10.3389/fnbeh.2022.1105579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
To survive, animals maintain energy homeostasis by seeking out food. Compared to freely feeding animals, food-deprived animals may choose different strategies to balance both energy and nutrition demands, per the metabolic state of the animal. Serotonin mediates internal states, modifies existing neural circuits, and regulates animal feeding behavior, including in humans and fruit flies. However, an in-depth study on the neuromodulatory effects of serotonin on feeding microstructure has been held back for several technical reasons. Firstly, most feeding assays lack the precision of manipulating neuronal activity only when animals start feeding, which does not separate neuronal effects on feeding from foraging and locomotion. Secondly, despite the availability of optogenetic tools, feeding in adult fruit flies has primarily been studied using thermogenetic systems, which are confounded with heat. Thirdly, most feeding assays have used food intake as a measurement, which has a low temporal resolution to dissect feeding at the microstructure level. To circumvent these problems, we utilized OptoPAD assay, which provides the precision of optogenetics to control neural activity contingent on the ongoing feeding behavior. We show that manipulating the serotonin circuit optogenetically affects multiple feeding parameters state-dependently. Food-deprived flies with optogenetically activated and suppressed serotonin systems feed with shorter and longer sip durations and longer and shorter inter-sip intervals, respectively. We further show that serotonin suppresses and enhances feeding via 5-HT1B and 5-HT7 receptors, respectively.
Collapse
|
14
|
Trotta RJ, Harmon DL, Ji H, Klotz JL. Duration of ergovaline exposure influences serotonin-mediated vasoactivity of bovine mesenteric vasculature. J Anim Sci 2023; 101:skad100. [PMID: 37004204 PMCID: PMC10132815 DOI: 10.1093/jas/skad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Ergovaline (ERV), produced in toxic endophyte-infected tall fescue, causes potent vasoconstriction of bovine peripheral and visceral vasculature. Ergovaline acts as both an agonist and an antagonist in bovine gut blood vessels through serotonin (5-HT) receptors and it appears that the type of action could be influenced by the extent of ERV exposure. Because it was unclear how the duration of ERV exposure influences 5-HT-mediated vasoactivity, experiments were designed to evaluate how simultaneous or prior ERV exposure influenced 5-HT-mediated vasoactivity of mesenteric artery (MA) and vein (MV) segments from Holstein steers (N = 10). Vessels were incubated in Krebs-Henseleit buffer containing 0, 0.01, or 0.1 μM ERV for 24 h prior to the 5-HT dose-response or exposed to fixed concentrations of 0, 0.01, or 0.1 μM ERV simultaneously during the 5-HT dose-response. Vessels were suspended in chambers of a multimyograph containing Krebs-Henseleit buffer and equilibrated to 1 g tension for 90 min. Vessels were exposed to increasing concentrations of 5-HT (5 × 10-8 M to 1 × 10-4 M) every 15 min and contractile responses were normalized as a percentage of the maximum contractile response induced by 120 mM KCl reference addition. Two-way analysis of variance was used to separately analyze data for each vessel type and duration of exposure using the MIXED procedure of SAS. When 5-HT concentration increased from 5 × 10-8 to 1 × 10-6 M, simultaneous addition of 0.1 μM ERV increased (P < 0.01) the contractile response of MV compared with additions of 0 and 0.01 μM ERV. At 1 × 10-4 M 5-HT, the simultaneous presence of 0.01 and 0.1 μM ERV decreased (P < 0.01) the contractile response of both MA and MV compared with 0 μM ERV addition. As 5-HT concentrations increased, the contractile response increased (P < 0.01) in both MA and MV with no previous ERV exposure, but decreased in MA and MV with 24 h prior exposure to 0.01 and 0.1 μM ERV. These data demonstrate that the duration of ERV exposure influences 5-HT-mediated vasoconstriction and likely vasorelaxation in bovine mesenteric vasculature. If ERV and 5-HT exposure occur simultaneously, ERV can act as a partial agonist of 5-HT-mediated vasoconstriction. If 5-HT exposure occurs after blood vessels have had prior ERV exposure, it appears that 5-HT may induce vasorelaxation of blood vessels. More research is needed to identify cellular and molecular mechanisms involved with 5-HT-mediated vasoactivity.
Collapse
Affiliation(s)
- Ronald J Trotta
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - David L Harmon
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Huihua Ji
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - James L Klotz
- USDA-ARS, Forage-Animal Production Research Unit, Lexington, KY 40546, USA
| |
Collapse
|
15
|
Higgs MJ, Hill MJ, John RM, Isles AR. Systematic investigation of imprinted gene expression and enrichment in the mouse brain explored at single-cell resolution. BMC Genomics 2022; 23:754. [PMID: 36384442 PMCID: PMC9670596 DOI: 10.1186/s12864-022-08986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Although a number of imprinted genes are known to be highly expressed in the brain, and in certain brain regions in particular, whether they are truly over-represented in the brain has never been formally tested. Using thirteen single-cell RNA sequencing datasets we systematically investigated imprinted gene over-representation at the organ, brain region, and cell-specific levels. RESULTS We established that imprinted genes are indeed over-represented in the adult brain, and in neurons particularly compared to other brain cell-types. We then examined brain-wide datasets to test enrichment within distinct brain regions and neuron subpopulations and demonstrated over-representation of imprinted genes in the hypothalamus, ventral midbrain, pons and medulla. Finally, using datasets focusing on these regions of enrichment, we identified hypothalamic neuroendocrine populations and the monoaminergic hindbrain neurons as specific hotspots of imprinted gene expression. CONCLUSIONS These analyses provide the first robust assessment of the neural systems on which imprinted genes converge. Moreover, the unbiased approach, with each analysis informed by the findings of the previous level, permits highly informed inferences about the functions on which imprinted gene expression converges. Our findings indicate the neuronal regulation of motivated behaviours such as feeding and sleep, alongside the regulation of pituitary function, as functional hotspots for imprinting. This adds statistical rigour to prior assumptions and provides testable predictions for novel neural and behavioural phenotypes associated with specific genes and imprinted gene networks. In turn, this work sheds further light on the potential evolutionary drivers of genomic imprinting in the brain.
Collapse
Affiliation(s)
- M J Higgs
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - M J Hill
- School of Medicine, UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - R M John
- School of Biosciences, Cardiff University, Cardiff, UK
| | - A R Isles
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
16
|
Kelly AL, Baugh ME, Oster ME, DiFeliceantonio AG. The impact of caloric availability on eating behavior and ultra-processed food reward. Appetite 2022; 178:106274. [PMID: 35963586 PMCID: PMC9749763 DOI: 10.1016/j.appet.2022.106274] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/07/2022] [Accepted: 08/07/2022] [Indexed: 12/19/2022]
Abstract
The food environment has changed rapidly and dramatically in the last 50 years. While industrial food processing has increased the safety and stability of the food supply, a rapid expansion in the scope and scale of food processing in the 1980's has resulted in a market dominated by ultra-processed foods. Here, we use the NOVA definition of category 4 ultra-processed foods (UPFs) as they make up around 58% of total calories consumed in the US and 66% of calories in US children. UPFs are formulated from ingredients with no or infrequent culinary use, contain additives, and have a long shelf-life, spending long periods in contact with packaging materials, allowing for the absorption of compounds from those materials. The full implications of this dietary shift to UPFs on human health and disease outcomes are difficult, if not impossible, to quantify. However, UPF consumption is linked with various forms of cancer, increased cardiovascular disease, and increased all-cause mortality. Understanding food choice is, therefore, a critical problem in health research. Although many factors influence food choice, here we focus on the properties of the foods themselves. UPFs are generally treated as food, not as the highly refined, industrialized substances that they are, whose properties and components must be studied. Here, we examine one property of UPFs, that they deliver useable calories rapidly as a potential factor driving UPF overconsumption. First, we explore evidence that UPFs deliver calories more rapidly. Next, we examine the role of the gut-brain axis and its interplay with canonical reward systems, and last, we describe how speed affects both basic learning processes and drugs of abuse.
Collapse
Affiliation(s)
- Amber L Kelly
- Fralin Biomedical Research Institute at Virginia Tech Carilion, USA
| | | | - Mary E Oster
- Fralin Biomedical Research Institute at Virginia Tech Carilion, USA
| | - Alexandra G DiFeliceantonio
- Fralin Biomedical Research Institute at Virginia Tech Carilion, USA; Center for Health Behaviors Research; Department of Human Nutrition Foods and Exercise at Virginia Tech, USA.
| |
Collapse
|
17
|
Crosstalk between the Gut and Brain in Ischemic Stroke: Mechanistic Insights and Therapeutic Options. Mediators Inflamm 2022; 2022:6508046. [PMID: 36267243 PMCID: PMC9578915 DOI: 10.1155/2022/6508046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/18/2022] Open
Abstract
There has been a significant amount of interest in the past two decades in the study of the evolution of the gut microbiota, its internal and external impacts on the gut, and risk factors for cerebrovascular disorders such as cerebral ischemic stroke. The network of bidirectional communication between gut microorganisms and their host is known as the microbiota-gut-brain axis (MGBA). There is mounting evidence that maintaining gut microbiota homeostasis can frequently enhance the effectiveness of ischemic stroke treatment by modulating immune, metabolic, and inflammatory responses through MGBA. To effectively monitor and cure ischemic stroke, restoring a healthy microbial ecology in the gut may be a critical therapeutic focus. This review highlights mechanistic insights on the MGBA in disease pathophysiology. This review summarizes the role of MGBA signaling in the development of stroke risk factors such as aging, hypertension, obesity, diabetes, and atherosclerosis, as well as changes in the microbiota in experimental or clinical populations. In addition, this review also examines dietary changes, the administration of probiotics and prebiotics, and fecal microbiota transplantation as treatment options for ischemic stroke as potential health benefits. It will become more apparent how the MGBA affects human health and disease with continuing advancements in this emerging field of biomedical sciences.
Collapse
|
18
|
Kumar Palepu MS, Dandekar MP. Remodeling of microbiota gut-brain axis using psychobiotics in depression. Eur J Pharmacol 2022; 931:175171. [PMID: 35926568 DOI: 10.1016/j.ejphar.2022.175171] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 12/11/2022]
Abstract
Depression is a multifaceted psychiatric disorder mainly orchestrated by dysfunction of neuroendocrine, neurochemical, immune, and metabolic systems. The interconnection of gut microbiota perturbation with the central nervous system disorders has been well documented in recent times. Indeed, alteration of commensal intestinal microflora is noted in several psychiatric disorders such as anxiety and depression, which are presumed to be routed through the enteric nervous system, autonomic nervous system, endocrine, and immune system. This review summarises the new mechanisms underlying the crosstalk between gut microbiota and brain involved in the management of depression. Depression-induced changes in the commensal intestinal microbiota are majorly linked with the disruption of gut integrity, hyperinflammation, and modulation of short-chain fatty acids, neurotransmitters, kynurenine metabolites, endocannabinoids, brain-derived neurotropic factors, hypothalamic-pituitary-adrenal axis, and gut peptides. The restoration of gut microbiota with prebiotics, probiotics, postbiotics, synbiotics, and fermented foods (psychobiotics) has gained a considerable attention for the management of depression. Recent evidence also propose the role of gut microbiota in the process of treatment-resistant depression. Thus, remodeling of the microbiota-gut-brain axis using psychobiotics appears to be a promising therapeutic approach for the reversal of psychiatric disorders, and it is imperative to decipher the underlying mechanisms for gut-brain crosstalk.
Collapse
Affiliation(s)
- Mani Surya Kumar Palepu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
19
|
Barra NG, Kwon YH, Morrison KM, Steinberg GR, Wade MG, Khan WI, Vijayan MM, Schertzer JD, Holloway AC. Increased gut serotonin production in response to bisphenol A structural analogs may contribute to their obesogenic effects. Am J Physiol Endocrinol Metab 2022; 323:E80-E091. [PMID: 35575233 DOI: 10.1152/ajpendo.00049.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesogens are synthetic, environmental chemicals that can disrupt endocrine control of metabolism and contribute to the risk of obesity and metabolic disease. Bisphenol A (BPA) is one of the most studied obesogens. There is considerable evidence that BPA exposure is associated with weight gain, increased adiposity, poor blood glucose control, and nonalcoholic fatty liver disease in animal models and human populations. Increased usage of structural analogs of BPA has occurred in response to legislation banning their use in some commercial products. However, BPA analogs may also cause some of the same metabolic impairments because of common mechanisms of action. One key effector that is altered by BPA and its analogs is serotonin, however, it is unknown if BPA-induced changes in peripheral serotonin pathways underlie metabolic perturbations seen with BPA exposure. Upon ingestion, BPA and its analogs act as endocrine-disrupting chemicals in the gastrointestinal tract to influence serotonin production by the gut, where over 95% of serotonin is produced. The purpose of this review is to evaluate how BPA and its analogs alter gut serotonin regulation and then discuss how disruption of serotonergic networks influences host metabolism. We also provide evidence that BPA and its analogs enhance serotonin production in gut enterochromaffin cells. Taken together, we propose that BPA and many BPA analogs represent endocrine-disrupting chemicals that can influence host metabolism through the endogenous production of gut-derived factors, such as serotonin.
Collapse
Affiliation(s)
- Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Yun Han Kwon
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
Microbiota and Pain: Save Your Gut Feeling. Cells 2022; 11:cells11060971. [PMID: 35326422 PMCID: PMC8946251 DOI: 10.3390/cells11060971] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Recently, a growing body of evidence has emerged regarding the interplay between microbiota and the nervous system. This relationship has been associated with several pathological conditions and also with the onset and regulation of pain. Dysregulation of the axis leads to a huge variety of diseases such as visceral hypersensitivity, stress-induced hyperalgesia, allodynia, inflammatory pain and functional disorders. In pain management, probiotics have shown promising results. This narrative review describes the peripheral and central mechanisms underlying pain processing and regulation, highlighting the role of the gut-brain axis in the modulation of pain. We summarized the main findings in regard to the stress impact on microbiota’s composition and its influence on pain perception. We also focused on the relationship between gut microbiota and both visceral and inflammatory pain and we provided a summary of the main evidence regarding the mechanistic effects and probiotics use.
Collapse
|
21
|
Eacret D, Noreck J, Blendy J. Adenosine Monophosphate-activated Protein Kinase (AMPK) in serotonin neurons mediates select behaviors during protracted withdrawal from morphine in mice. Behav Brain Res 2022; 419:113688. [PMID: 34843742 PMCID: PMC8688336 DOI: 10.1016/j.bbr.2021.113688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 01/02/2023]
Abstract
Serotonin neurotransmission has been implicated in behavior deficits that occur during protracted withdrawal from opioids. In addition, studies have highlighted multiple pathways whereby serotonin (5-HT) modulates energy homeostasis, however the underlying metabolic effects of opioid withdrawal have not been investigated. A key metabolic regulator that senses the energy status of the cell and regulates fuel availability is Adenosine Monophosphate-activated Protein Kinase (AMPK). To investigate the interaction between cellular metabolism and serotonin in modulating protracted abstinence from morphine, we depleted AMPK in serotonin neurons. Morphine exposure via drinking water generates dependence in these mice, and both wildtype and serotonergic AMPK knockout mice consume similar amounts of morphine with no changes in body weight. Serotonergic AMPK contributes to baseline differences in open field and social interaction behaviors and blocks abstinence induced reductions in immobility following morphine withdrawal in the tail suspension test. Lastly, morphine locomotor sensitization is blunted in mice lacking AMPK in serotonin neurons. Taken together, our results suggest serotonergic AMPK mediates both baseline and protracted morphine withdrawal-induced behaviors.
Collapse
Affiliation(s)
- D. Eacret
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J. Noreck
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J.A. Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Corresponding author , Phone: (215) 898-0730, Fax: (215) 573-2236
| |
Collapse
|
22
|
Yao Z, Scott K. Serotonergic neurons translate taste detection into internal nutrient regulation. Neuron 2022; 110:1036-1050.e7. [PMID: 35051377 DOI: 10.1016/j.neuron.2021.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/26/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
Abstract
The nervous and endocrine systems coordinately monitor and regulate nutrient availability to maintain energy homeostasis. Sensory detection of food regulates internal nutrient availability in a manner that anticipates food intake, but sensory pathways that promote anticipatory physiological changes remain unclear. Here, we identify serotonergic (5-HT) neurons as critical mediators that transform gustatory detection by sensory neurons into the activation of insulin-producing cells and enteric neurons in Drosophila. One class of 5-HT neurons responds to gustatory detection of sugars, excites insulin-producing cells, and limits consumption, suggesting that they anticipate increased nutrient levels and prevent overconsumption. A second class of 5-HT neurons responds to gustatory detection of bitter compounds and activates enteric neurons to promote gastric motility, likely to stimulate digestion and increase circulating nutrients upon food rejection. These studies demonstrate that 5-HT neurons relay acute gustatory detection to divergent pathways for longer-term stabilization of circulating nutrients.
Collapse
Affiliation(s)
- Zepeng Yao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Kristin Scott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
23
|
Mavanji V, Pomonis B, Kotz CM. Orexin, serotonin, and energy balance. WIREs Mech Dis 2022; 14:e1536. [PMID: 35023323 PMCID: PMC9286346 DOI: 10.1002/wsbm.1536] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022]
Abstract
The lateral hypothalamus is critical for the control of ingestive behavior and spontaneous physical activity (SPA), as lesion or stimulation of this region alters these behaviors. Evidence points to lateral hypothalamic orexin neurons as modulators of feeding and SPA. These neurons affect a broad range of systems, and project to multiple brain regions such as the dorsal raphe nucleus, which contains serotoninergic neurons (DRN) important to energy homeostasis. Physical activity is comprised of intentional exercise and SPA. These are opposite ends of a continuum of physical activity intensity and structure. Non‐goal‐oriented behaviors, such as fidgeting, standing, and ambulating, constitute SPA in humans, and reflect a propensity for activity separate from intentional activity, such as high‐intensity voluntary exercise. In animals, SPA is activity not influenced by rewards such as food or a running wheel. Spontaneous physical activity in humans and animals burns calories and could theoretically be manipulated pharmacologically to expend calories and protect against obesity. The DRN neurons receive orexin inputs, and project heavily onto cortical and subcortical areas involved in movement, feeding and energy expenditure (EE). This review discusses the function of hypothalamic orexin in energy‐homeostasis, the interaction with DRN serotonin neurons, and the role of this orexin‐serotonin axis in regulating food intake, SPA, and EE. In addition, we discuss possible brain areas involved in orexin–serotonin cross‐talk; the role of serotonin receptors, transporters and uptake‐inhibitors in the pathogenesis and treatment of obesity; animal models of obesity with impaired serotonin‐function; single‐nucleotide polymorphisms in the serotonin system and obesity; and future directions in the orexin–serotonin field. This article is categorized under:Metabolic Diseases > Molecular and Cellular Physiology
Collapse
Affiliation(s)
- Vijayakumar Mavanji
- Research Service, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Brianna Pomonis
- Research Service, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Catherine M Kotz
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA.,Geriatric Research Education and Clinical Center, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| |
Collapse
|
24
|
Human loss-of-function variants in the serotonin 2C receptor associated with obesity and maladaptive behavior. Nat Med 2022; 28:2537-2546. [PMID: 36536256 PMCID: PMC9800280 DOI: 10.1038/s41591-022-02106-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/25/2022] [Indexed: 12/24/2022]
Abstract
Serotonin reuptake inhibitors and receptor agonists are used to treat obesity, anxiety and depression. Here we studied the role of the serotonin 2C receptor (5-HT2CR) in weight regulation and behavior. Using exome sequencing of 2,548 people with severe obesity and 1,117 control individuals without obesity, we identified 13 rare variants in the gene encoding 5-HT2CR (HTR2C) in 19 unrelated people (3 males and 16 females). Eleven variants caused a loss of function in HEK293 cells. All people who carried variants had hyperphagia and some degree of maladaptive behavior. Knock-in male mice harboring a human loss-of-function HTR2C variant developed obesity and reduced social exploratory behavior; female mice heterozygous for the same variant showed similar deficits with reduced severity. Using the 5-HT2CR agonist lorcaserin, we found that depolarization of appetite-suppressing proopiomelanocortin neurons was impaired in knock-in mice. In conclusion, we demonstrate that 5-HT2CR is involved in the regulation of human appetite, weight and behavior. Our findings suggest that melanocortin receptor agonists might be effective in treating severe obesity in individuals carrying HTR2C variants. We suggest that HTR2C should be included in diagnostic gene panels for severe childhood-onset obesity.
Collapse
|
25
|
van Schaik J, Welling MS, de Groot CJ, van Eck JP, Juriaans A, Burghard M, Oude Ophuis SBJ, Bakker B, Tissing WJE, Schouten-van Meeteren AYN, van den Akker ELT, van Santen HM. Dextroamphetamine Treatment in Children With Hypothalamic Obesity. Front Endocrinol (Lausanne) 2022; 13:845937. [PMID: 35355559 PMCID: PMC8959487 DOI: 10.3389/fendo.2022.845937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Hypothalamic obesity (HO) in children has severe health consequences. Lifestyle interventions are mostly insufficient and currently no drug treatment is approved for children with HO. Amphetamines are known for their stimulant side-effect on resting energy expenditure (REE) and suppressing of appetite. Earlier case series have shown positive effects of amphetamines on weight in children with acquired HO. We present our experiences with dextroamphetamine treatment in the, up to now, largest cohort of children with HO. METHODS A retrospective cohort evaluation was performed of children with HO treated with dextroamphetamine at two academic endocrine pediatric clinics. Off-label use of dextroamphetamine was initiated in patients with progressive, therapy-resistant acquired or congenital HO. Anthropometrics, REE, self-reported (hyperphagic) behavior and energy level, and side effects were assessed at start and during treatment. RESULTS Nineteen patients with a mean age of 12.3 ± 4.0 years had been treated with dextroamphetamine. In two patients, ΔBMI SDS could not be evaluated due to short treatment duration or the simultaneous start of extensive lifestyle treatment. Mean treatment duration of the 17 evaluated patients was 23.7 ± 12.7 months. Fourteen patients (n = 10 with acquired HO, n = 4 with congenital HO) responded by BMI decline or BMI stabilization (mean ΔBMI SDS of -0.6 ± 0.8, after a mean period of 22.4 ± 10.5 months). In three patients, BMI SDS increased (mean ΔBMI SDS of +0.5 ± 0.1, after a mean period of 29.7 ± 22.6 months). In 11 responders, measured REE divided by predicted REE increased with +8.9%. Thirteen patients (68.4%) reported decreased hyperphagia, improvement of energy level and/or behavior during treatment. Two patients developed hypertension during treatment, which resulted in dosage adjustment or discontinuation of treatment. Twelve children continued treatment at last moment of follow-up. CONCLUSION In addition to supportive lifestyle interventions, dextroamphetamine treatment may improve BMI in children with HO. Furthermore, dextroamphetamines have the potential to decrease hyperphagia and improve resting energy expenditure, behavior, and energy level. In patients with acquired HO, these effects seem to be more pronounced when compared to patients with congenital HO. Future studies are needed to support these results.
Collapse
Affiliation(s)
- Jiska van Schaik
- Division of Pediatric Endocrinology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- *Correspondence: Jiska van Schaik,
| | - Mila S. Welling
- Obesity Centre Centrum Gezond Gewicht (CGG), Erasmus Medical Center (MC) Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
- Division of Pediatric Endocrinology, Erasmus Medical Center (MC) Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Corjan J. de Groot
- Obesity Centre Centrum Gezond Gewicht (CGG), Erasmus Medical Center (MC) Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
- Division of Pediatric Endocrinology, Erasmus Medical Center (MC) Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Judith P. van Eck
- Obesity Centre Centrum Gezond Gewicht (CGG), Erasmus Medical Center (MC) Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
- Division of Pediatric Endocrinology, Erasmus Medical Center (MC) Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Alicia Juriaans
- Division of Pediatric Endocrinology, Erasmus Medical Center (MC) Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marcella Burghard
- Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Exercise Physiology, Child Development & Exercise Center, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sebastianus B. J. Oude Ophuis
- Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Pediatric Psychiatry, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Boudewijn Bakker
- Division of Pediatric Endocrinology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Wim J. E. Tissing
- Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Pediatric Oncology/ Hematology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | | - Erica L. T. van den Akker
- Obesity Centre Centrum Gezond Gewicht (CGG), Erasmus Medical Center (MC) Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
- Division of Pediatric Endocrinology, Erasmus Medical Center (MC) Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Hanneke M. van Santen
- Division of Pediatric Endocrinology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
26
|
Huber N, Korhonen S, Hoffmann D, Leskelä S, Rostalski H, Remes AM, Honkakoski P, Solje E, Haapasalo A. Deficient neurotransmitter systems and synaptic function in frontotemporal lobar degeneration-Insights into disease mechanisms and current therapeutic approaches. Mol Psychiatry 2022; 27:1300-1309. [PMID: 34799692 PMCID: PMC9095474 DOI: 10.1038/s41380-021-01384-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) comprises a heterogenous group of fatal neurodegenerative diseases and, to date, no validated diagnostic or prognostic biomarkers or effective disease-modifying therapies exist for the different clinical or genetic subtypes of FTLD. Current treatment strategies rely on the off-label use of medications for symptomatic treatment. Changes in several neurotransmitter systems including the glutamatergic, GABAergic, dopaminergic, and serotonergic systems have been reported in FTLD spectrum disease patients. Many FTLD-related clinical and neuropsychiatric symptoms such as aggressive and compulsive behaviour, agitation, as well as altered eating habits and hyperorality can be explained by disturbances in these neurotransmitter systems, suggesting that their targeting might possibly offer new therapeutic options for treating patients with FTLD. This review summarizes the present knowledge on neurotransmitter system deficits and synaptic dysfunction in model systems and patients harbouring the most common genetic causes of FTLD, the hexanucleotide repeat expansion in C9orf72 and mutations in the granulin (GRN) and microtubule-associated protein tau (MAPT) genes. We also describe the current pharmacological treatment options for FLTD that target different neurotransmitter systems.
Collapse
Affiliation(s)
- Nadine Huber
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Sonja Korhonen
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Dorit Hoffmann
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Stina Leskelä
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Hannah Rostalski
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Anne M. Remes
- grid.10858.340000 0001 0941 4873Unit of Clinical Neuroscience, Neurology, University of Oulu, P. O. Box 8000, University of Oulu, FI-90014 Oulu, Finland ,grid.412326.00000 0004 4685 4917MRC Oulu, Oulu University Hospital, P. O. Box 8000, University of Oulu, FI-90014 Oulu, Finland
| | - Paavo Honkakoski
- grid.9668.10000 0001 0726 2490School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland ,grid.10698.360000000122483208Department of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Eino Solje
- grid.9668.10000 0001 0726 2490Institute of Clinical Medicine—Neurology, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland ,grid.410705.70000 0004 0628 207XNeuro Center, Neurology, Kuopio University Hospital, P.O. Box 100, KYS, FI-70029 Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
27
|
A Single Dose of Ginkgo biloba Extract Induces Gene Expression of Hypothalamic Anorexigenic Effectors in Male Rats. Brain Sci 2021; 11:brainsci11121602. [PMID: 34942904 PMCID: PMC8699374 DOI: 10.3390/brainsci11121602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Previous studies have shown that Ginkgo biloba extract (GbE) reduces food intake and body mass gain and regulates proteins related to lipid metabolism in obese rats. In ovariectomized rats, GbE restored the hippocampal and hypothalamic serotonergic system activity, favoring the spontaneous feeding decrement. Considering the promising hypophagic effect of GbE, this study aimed to investigate the effect of a single acute dose on hypothalamic pathways that regulate feeding behavior in male rats. Four-month-old Wistar male rats received either a single acute oral GbE dose (500 mg/kg) or vehicle. Food intake and body mass were measured after 1, 4, 12, and 24 h. Rats were euthanized, and hypothalami were removed for mRNA quantification of anorexigenic (POMC/CART) and orexigenic (AgRP/NPY) neuropeptides, leptin/serotonin receptors (5HT1A, 5HT1B, 5HT2C), and serotonin transporters. We also investigated POMC, 5-HT1B, and 5-HT2C protein levels. A single acute GbE dose induced the hypothalamic POMC, CART, and 5-HT2C gene expression but failed to modify orexigenic effectors. No alterations in food intake, body mass, and hypothalamic protein levels were observed. In summary, the present findings demonstrate the rapid stimulation of pivotal hypothalamic anorexigenic pathways in response to a single GbE administration, reinforcing the GbE hypophagic activity. However, more studies are necessary to evaluate its potential as an appetite modulator.
Collapse
|
28
|
Lin RJ, Yen YK, Lee CH, Hsieh SL, Chang YC, Juan YS, Long CY, Shen KP, Wu BN. Eugenosedin-A improves obesity-related hyperglycemia by regulating ATP-sensitive K + channels and insulin secretion in pancreatic β cells. Biomed Pharmacother 2021; 145:112447. [PMID: 34808553 DOI: 10.1016/j.biopha.2021.112447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022] Open
Abstract
Eugenosedin-A (Eu-A) has been shown to protect against hyperglycemia- and hyperlipidemia-induced metabolic syndrome. We investigated the relationship of KATP channel activities and insulin secretion by Eu-A in vitro in pancreatic β-cells, and examined the effect of Eu-A on streptozotocin (STZ)/nicotinamide (NA)-induced type 2 diabetes mellitus (T2DM) in vivo. We isolated pancreatic islets from adult male Wistar rats (250-350 g) and identified pancreatic β-cells by the cell size, capacitance and membrane potential. Perforated patch-clamp and inside-out recordings were used to monitor the membrane potential (current-clamp mode) and channel activity (voltage-clamp mode) of β-cells. The membrane potential of β-cells was raised by Eu-A and reversed by the KATP channel activator diazoxide. Eu-A inhibited the KATP channel activity measured at - 60 mV and increased the intracellular calcium concentration ([Ca2+]i), resulting in enhanced insulin secretion. Eu-A also reduced Kir6.2 protein on the cell membrane and scattered in the cytosol under normal glucose conditions (5.6 mM). In our animal study, rats were divided into normal and STZ/NA-induced T2DM groups. Normal rats fed with regular chow were divided into control and control+Eu-A (5 mg/kg/day, i.p.) groups. The STZ/NA-induced diabetic rats fed with a high-fat diet (HFD) were divided into three groups: T2DM, T2DM+Eu-A (5 mg/kg/day, i.p.), and T2DM+glibenclamide (0.5 mg/kg/day, i.p.; a KATP channel inhibitor). Both Eu-A and glibenclamide decreased the rats' blood glucose, prevented weight gain, and enhanced insulin secretion. We found that Eu-A blocked pancreatic β-cell KATP channels, caused membrane potential depolarization, and stimulated Ca2+ influx, thus increasing insulin secretion. Furthermore, Eu-A decreased blood glucose and increased insulin levels in T2DM rats. These results suggested that Eu-A might have clinical benefits for the control of T2DM and its complications.
Collapse
Affiliation(s)
- Rong-Jyh Lin
- Department of Parasitology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yu-Kwan Yen
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Hsing Lee
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Su-Ling Hsieh
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yu-Chin Chang
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yung-Shun Juan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Cheng-Yu Long
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuo-Ping Shen
- Department of Nursing, Meiho University, Pingtung 912, Taiwan.
| | - Bin-Nan Wu
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
29
|
Ding M, Lang Y, Shu H, Shao J, Cui L. Microbiota-Gut-Brain Axis and Epilepsy: A Review on Mechanisms and Potential Therapeutics. Front Immunol 2021; 12:742449. [PMID: 34707612 PMCID: PMC8542678 DOI: 10.3389/fimmu.2021.742449] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
The gut-brain axis refers to the bidirectional communication between the gut and brain, and regulates intestinal homeostasis and the central nervous system via neural networks and neuroendocrine, immune, and inflammatory pathways. The development of sequencing technology has evidenced the key regulatory role of the gut microbiota in several neurological disorders, including Parkinson's disease, Alzheimer's disease, and multiple sclerosis. Epilepsy is a complex disease with multiple risk factors that affect more than 50 million people worldwide; nearly 30% of patients with epilepsy cannot be controlled with drugs. Interestingly, patients with inflammatory bowel disease are more susceptible to epilepsy, and a ketogenic diet is an effective treatment for patients with intractable epilepsy. Based on these clinical facts, the role of the microbiome and the gut-brain axis in epilepsy cannot be ignored. In this review, we discuss the relationship between the gut microbiota and epilepsy, summarize the possible pathogenic mechanisms of epilepsy from the perspective of the microbiota gut-brain axis, and discuss novel therapies targeting the gut microbiota. A better understanding of the role of the microbiota in the gut-brain axis, especially the intestinal one, would help investigate the mechanism, diagnosis, prognosis evaluation, and treatment of intractable epilepsy.
Collapse
Affiliation(s)
| | | | | | | | - Li Cui
- Department of Neurology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Pereira G, Gillies H, Chanda S, Corbett M, Vernon SD, Milani T, Bateman L. Acute Corticotropin-Releasing Factor Receptor Type 2 Agonism Results in Sustained Symptom Improvement in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Syst Neurosci 2021; 15:698240. [PMID: 34539356 PMCID: PMC8441022 DOI: 10.3389/fnsys.2021.698240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multi-symptom disease with widespread evidence of disrupted systems. The authors hypothesize that it is caused by the upregulation of the corticotropin-releasing factor receptor type 2 (CRFR2) in the raphé nuclei and limbic system, which impairs the ability to maintain homeostasis. The authors propose utilizing agonist-mediated receptor endocytosis to downregulate CRFR2. Materials and Methods This open-label trial tested the safety, tolerability and efficacy of an acute dose of CT38s (a short-lived, CRFR2-selective agonist, with no known off-target activity) in 14 ME/CFS patients. CT38s was subcutaneously-infused at one of four dose-levels (i.e., infusion rates of 0.01, 0.03, 0.06, and 0.20 μg/kg/h), for a maximum of 10.5 h. Effect was measured as the pre-/post-treatment change in the mean 28-day total daily symptom score (TDSS), which aggregated 13 individual patient-reported symptoms. Results ME/CFS patients were significantly more sensitive to the transient hemodynamic effects of CRFR2 stimulation than healthy subjects in a prior trial, supporting the hypothesized CRFR2 upregulation. Adverse events were generally mild, resolved without intervention, and difficult to distinguish from ME/CFS symptoms, supporting a CRFR2 role in the disease. The acute dose of CT38s was associated with an improvement in mean TDSS that was sustained (over at least 28 days post-treatment) and correlated with both total exposure and pre-treatment symptom severity. At an infusion rate of 0.03 μg/kg/h, mean TDSS improved by -7.5 ± 1.9 (or -25.7%, p = 0.009), with all monitored symptoms improving. Conclusion The trial supports the hypothesis that CRFR2 is upregulated in ME/CFS, and that acute CRFR2 agonism may be a viable treatment approach warranting further study. Clinical Trial Registration ClinicalTrials.gov, identifier NCT03613129.
Collapse
Affiliation(s)
| | | | | | | | | | - Tina Milani
- Bateman Horne Center, Salt Lake City, UT, United States
| | | |
Collapse
|
31
|
Bisogno T, Lauritano A, Piscitelli F. The Endocannabinoid System: A Bridge between Alzheimer's Disease and Gut Microbiota. Life (Basel) 2021; 11:934. [PMID: 34575083 PMCID: PMC8470731 DOI: 10.3390/life11090934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that progresses from mild cognitive impairment to severe dementia over time. The main clinical hallmarks of the disease (e.g., beta-amyloid plaques and neurofibrillary tangles) begin during preclinical AD when cognitive deficits are not yet apparent. Hence, a more profound understanding of AD pathogenesis is needed to develop new therapeutic strategies. In this context, the endocannabinoid (eCB) system and the gut microbiome are increasingly emerging as important players in maintaining the general homeostasis and the health status of the host. However, their interaction has come to light just recently with gut microbiota regulating the eCB tone at both receptor and enzyme levels in intestinal and adipose tissues. Importantly, eCB system and gut microbiome, have been suggested to play a role in AD in both animal and human studies. Therefore, the microbiome gut-brain axis and the eCB system are potential common denominators in the AD physiopathology. Hence, the aim of this review is to provide a general overview on the role of both the eCB system and the microbiome gut-brain axis in AD and to suggest possible mechanisms that underlie the potential interplay of these two systems.
Collapse
Affiliation(s)
- Tiziana Bisogno
- Endocannabinoid Research Group, Istituto di Farmacologia Traslazionale, Consiglio Nazionale Delle Ricerche, Area Della Ricerca di Roma 2 Via Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Anna Lauritano
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| |
Collapse
|
32
|
Orexin receptors 1 and 2 in serotonergic neurons differentially regulate peripheral glucose metabolism in obesity. Nat Commun 2021; 12:5249. [PMID: 34475397 PMCID: PMC8413382 DOI: 10.1038/s41467-021-25380-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/05/2021] [Indexed: 12/02/2022] Open
Abstract
The wake-active orexin system plays a central role in the dynamic regulation of glucose homeostasis. Here we show orexin receptor type 1 and 2 are predominantly expressed in dorsal raphe nucleus-dorsal and -ventral, respectively. Serotonergic neurons in ventral median raphe nucleus and raphe pallidus selectively express orexin receptor type 1. Inactivation of orexin receptor type 1 in serotonin transporter-expressing cells of mice reduced insulin sensitivity in diet-induced obesity, mainly by decreasing glucose utilization in brown adipose tissue and skeletal muscle. Selective inactivation of orexin receptor type 2 improved glucose tolerance and insulin sensitivity in obese mice, mainly through a decrease in hepatic gluconeogenesis. Optogenetic activation of orexin neurons in lateral hypothalamus or orexinergic fibers innervating raphe pallidus impaired or improved glucose tolerance, respectively. Collectively, the present study assigns orexin signaling in serotonergic neurons critical, yet differential orexin receptor type 1- and 2-dependent functions in the regulation of systemic glucose homeostasis. The wake-active orexin system plays a central role in the dynamic regulation of glucose homeostasis. Here the authors report that inactivation of the orexin receptor type 1 or 2 in serotonergic neurons differentially regulate systemic glucose homeostasis in the context of diet induced obesity.
Collapse
|
33
|
Metabolic and behavioral effects of olanzapine and fluoxetine on the model organism Caenorhabditis elegans. Saudi Pharm J 2021; 29:917-929. [PMID: 34408550 PMCID: PMC8363109 DOI: 10.1016/j.jsps.2021.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/04/2021] [Indexed: 12/29/2022] Open
Abstract
The use of many psychotropic drugs (PDs) is associated with increased caloric intake, significant weight gain, and metabolic disorders. The nematode Caenorhabditis elegans (C. elegans) has been used to study the effects of PDs on food intake. However, little is known about PDs effects on the body fat of C. elegans. In C. elegans, feeding behavior and fat metabolism are regulated through independent mechanisms. This study aims to evaluate the body fat and food intake of C. elegans in response to treatment olanzapine and fluoxetine. Here we report that, with careful consideration to the dosage used, administration of fluoxetine and olanzapine increases body fat and food intake in C. elegans.
Collapse
|
34
|
Saponara E, Chen R, Reding T, Zuellig R, Henstridge DC, Graf R, Sonda S. Single or combined ablation of peripheral serotonin and p21 limit adipose tissue expansion and metabolic alterations in early adulthood in mice fed a normocaloric diet. PLoS One 2021; 16:e0255687. [PMID: 34379673 PMCID: PMC8357085 DOI: 10.1371/journal.pone.0255687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/30/2021] [Indexed: 01/22/2023] Open
Abstract
Identifying the fundamental molecular factors that drive weight gain even in the absence of hypercaloric food intake, is crucial to enable development of novel treatments for the global pandemic of obesity. Here we investigated both adipose tissue-specific and systemic events that underlie the physiological weight gain occurring during early adulthood in mice fed a normocaloric diet. In addition, we used three different genetic models to identify molecular factors that promote physiological weight gain during normocaloric and hypercaloric diets. We demonstrated that normal physiological weight gain was accompanied by an increase in adipose tissue mass and the presence of cellular and metabolic signatures typically found during obesity, including adipocyte hypertrophy, macrophage recruitment into visceral fat and perturbed glucose metabolism. At the molecular level, this was associated with an increase in adipose tissue tryptophan hydroxylase 1 (Tph1) transcripts, the key enzyme responsible for the synthesis of peripheral serotonin. Genetic inactivation of Tph1 was sufficient to limit adipose tissue expansion and associated metabolic alterations. Mechanistically, we discovered that Tph1 inactivation resulted in down-regulation of cyclin-dependent kinase inhibitor p21Waf1/Cip1 expression. Single or double ablation of Tph1 and p21 were equally effective in preventing adipocyte expansion and systemic perturbation of glucose metabolism, upon both normocaloric and hypercaloric diets. Our results suggest that serotonin and p21 act as a central molecular determinant of weight gain and associated metabolic alterations, and highlights the potential of targeting these molecules as a pharmacologic approach to prevent the development of obesity.
Collapse
Affiliation(s)
- Enrica Saponara
- Department of Visceral and Transplantation Surgery, Swiss Hepato-Pancreato-Biliary Center, University Hospital Zurich, Zurich, Switzerland
| | - Rong Chen
- Department of Visceral and Transplantation Surgery, Swiss Hepato-Pancreato-Biliary Center, University Hospital Zurich, Zurich, Switzerland
| | - Theresia Reding
- Department of Visceral and Transplantation Surgery, Swiss Hepato-Pancreato-Biliary Center, University Hospital Zurich, Zurich, Switzerland
| | - Richard Zuellig
- Division of Endocrinology, Diabetes & Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | - Darren C. Henstridge
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Rolf Graf
- Department of Visceral and Transplantation Surgery, Swiss Hepato-Pancreato-Biliary Center, University Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Sabrina Sonda
- Department of Visceral and Transplantation Surgery, Swiss Hepato-Pancreato-Biliary Center, University Hospital Zurich, Zurich, Switzerland
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
35
|
Bini J, Norcross M, Cheung M, Duffy A. The Role of Positron Emission Tomography in Bariatric Surgery Research: a Review. Obes Surg 2021; 31:4592-4606. [PMID: 34304378 DOI: 10.1007/s11695-021-05576-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022]
Abstract
Bariatric surgery, initially understood as restricting or bypassing the amount of food that reaches the stomach to reduce food intake and/or increase malabsorption of food to promote weight loss, is now recognized to also affect incretin signaling in the gut and promote improvements in system-wide metabolism. Positron emission tomography (PET) is an imaging technique whereby patients are injected with picomolar concentrations of radioactive molecules, below the threshold of having physiological effects, to measure spatial distributions of blood flow, metabolism, receptor, and enzyme pharmacology. Recent advances in both whole-body PET imaging and radioligand development will allow for novel research that may help clarify the roles of peripheral and central receptor/enzyme systems in treating obesity with bariatric surgery.
Collapse
Affiliation(s)
- Jason Bini
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Avenue, PO Box 208048, New Haven, CT, USA.
| | | | - Maija Cheung
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew Duffy
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
36
|
Begdache L, Chen MH, McKenna CE, Witt DF. Dynamic associations between daily alternate healthy eating index, exercise, sleep, seasonal change and mental distress among young and mature men and women. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021. [DOI: 10.1016/j.jadr.2021.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
37
|
Valente EEL, Damasceno ML, Klotz JL, Harmon DL. Residual effects of abomasal 5-hydroxytryptophan administration on serotonin metabolism in cattle. Domest Anim Endocrinol 2021; 76:106627. [PMID: 33882449 DOI: 10.1016/j.domaniend.2021.106627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/06/2023]
Abstract
Studies of serotonin in animal husbandry has received growing interest. However, there is limited information about serotonin manipulation using 5-HTP administered postruminally and its residual effects in cattle. The objective of this study was to evaluate the effectiveness of 5-HTP infused into the abomasum for enhancing circulating serotonin in cattle. Four Holstein steers (487 ± 7.6 kg) fitted with ruminal cannulas were used in a 4 × 4 Latin Square design experiment. The treatments were intra-abomasal infusion of 5-HTP at 0, 0.25, 0.5, and 1 mg/kg BW. Blood was collected from the jugular vein of each steer at -60, -30, 0, 30, 60, 120, 240, and 480 min from 5-HTP infusion for basal and short term evaluation and, at 1, 2, 4, and 7 d after 5-HTP infusion for long term evaluation. Dry matter intake was not affected (P > 0.05) by intra-abomasal infusions. The half-life of 5-HTP was dose-independent (128 min). The serum 5-HTP, serotonin, and 5-hydroxyindoleacetic acid area under the curve increased (P < 0.05) linearly with an increased dose of 5-HTP. Serum 5-HTP reached peak concentration in approximately 30 min after dosing while serum and plasma serotonin peaked after 240 min postinfusion. Serotonin was greater than control for all 5-HTP doses 1 d and 2 d after infusion in serum and plasma, respectively. Intra-abomasal infusion of 5-HTP at doses up to 1 mg/ kg BW increases circulating serotonin for up 2 days.
Collapse
Affiliation(s)
- E E L Valente
- Animal Science Department, State University of Western Parana, Brazil
| | - M L Damasceno
- Animal Science Department, State University of Western Parana, Brazil
| | - J L Klotz
- USDA-ARS, Forage-Animal Production Research Unit, Lexington, KY
| | - D L Harmon
- Department of Animal and Food Science, University of Kentucky, Lexington, KY.
| |
Collapse
|
38
|
van Galen KA, Ter Horst KW, Serlie MJ. Serotonin, food intake, and obesity. Obes Rev 2021; 22:e13210. [PMID: 33559362 PMCID: PMC8243944 DOI: 10.1111/obr.13210] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
The role of serotonin in food intake has been studied for decades. Food intake is mainly regulated by two brain circuitries: (i) the homeostatic circuitry, which matches energy intake to energy expenditure, and (ii) the hedonic circuitry, which is involved in rewarding and motivational aspects of energy consumption. In the homeostatic circuitry, serotonergic signaling contributes to the integration of metabolic signals that convey the body's energy status and facilitates the ability to suppress food intake when homeostatic needs have been met. In the hedonic circuitry, serotonergic signaling may reduce reward-related, motivational food consumption. In contrast, peripherally acting serotonin promotes energy absorption and storage. Disturbed serotonergic signaling is associated with obesity, emphasizing the importance to understand the role of serotonergic signaling in food intake. However, unraveling the serotonin-mediated regulation of food intake is complex, as the effects of serotonergic signaling in different brain regions depend on the regional expression of serotonin receptor subtypes and downstream effects via connections to other brain regions. We therefore provide an overview of the effects of serotonergic signaling in brain regions of the homeostatic and hedonic regulatory systems on food intake. Furthermore, we discuss the disturbances in serotonergic signaling in obesity and its potential therapeutic implications.
Collapse
Affiliation(s)
- Katy A van Galen
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Kasper W Ter Horst
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Machado MMF, Banin RM, Thomaz FM, de Andrade IS, Boldarine VT, de Souza Figueiredo J, Hirata BKS, Oyama LM, Lago JHG, Ribeiro EB, Telles MM. Ginkgo biloba Extract (GbE) Restores Serotonin and Leptin Receptor Levels and Plays an Antioxidative Role in the Hippocampus of Ovariectomized Rats. Mol Neurobiol 2021; 58:2692-2703. [PMID: 33492645 DOI: 10.1007/s12035-021-02281-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/05/2021] [Indexed: 01/09/2023]
Abstract
Since Ginkgo biloba extract (GbE) was reported to improve the hypothalamic serotonergic system of ovariectomized (OVX) rats, the present study aimed to verify the GbE effects on hippocampal oxidative stress, inflammation, and levels of the serotonin transporter (5-HTT), and both the serotonin (5-HT1A, 5-HT1B) and leptin receptors of OVX rats. Two-month-old female Wistar rats had their ovaries surgically removed (OVX) or not (SHAM). After 60 days, OVX rats were gavaged daily with GbE 500 mg kg-1 (OVX+GbE), while SHAM and OVX groups received saline 0.9% (vehicle) for 14 days. Rats were then euthanized, and hippocampi were collected. Both 5-HT1A and 5-HT1B levels were significantly reduced in OVX rats compared to SHAM rats, while 5-HT1A was higher in OVX+GbE rats in comparison to OVX rats. Similarly, LepR levels were increased in OVX+GbE rats compared to OVX rats, reaching similar levels to SHAM rats. Superoxide dismutase activity increased in OVX rats in relation to SHAM rats, which was restored to SHAM levels by GbE treatment. Additionally, GbE significantly increased the glutathione peroxidase activity in comparison to the SHAM group. No differences were observed either in catalase activity or in the levels of 5-HTT, PKCα, TLR-4, NF-κBp50, ERK, and CREB. In summary, our results show a potential effect of GbE on hippocampal pathways involved in feeding behavior, and thus, they suggest that GbE activity might improve menopausal-related hippocampal disorders, offering an alternative therapeutic tool particularly for women to whom hormone replacement therapy may be contraindicated.
Collapse
Affiliation(s)
- Meira Maria Forcelini Machado
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Renata Mancini Banin
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Fernanda Malanconi Thomaz
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Iracema Senna de Andrade
- Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Valter Tadeu Boldarine
- Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Jéssica de Souza Figueiredo
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Bruna Kelly Sousa Hirata
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Lila Missae Oyama
- Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - João Henrique Ghilardi Lago
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo, Diadema, SP, Brazil
- Center of Natural and Human Sciences, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Eliane Beraldi Ribeiro
- Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Mônica Marques Telles
- Post-graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Universidade Federal de São Paulo, Diadema, SP, Brazil.
- Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
40
|
Hranilovic D, Stefulj J, Zill P. Editorial: Developmental Abnormalities of Serotonin Homeostasis in Behavioral and Metabolic Disorders: From Epigenetic Mechanisms to Protein Function. Front Neurosci 2021; 15:659356. [PMID: 34054414 PMCID: PMC8155299 DOI: 10.3389/fnins.2021.659356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/06/2021] [Indexed: 12/04/2022] Open
Affiliation(s)
- Dubravka Hranilovic
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Jasminka Stefulj
- Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Peter Zill
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
41
|
Histological and transcriptomic analysis of adipose and muscle of dairy calves supplemented with 5-hydroxytryptophan. Sci Rep 2021; 11:9665. [PMID: 33958639 PMCID: PMC8102591 DOI: 10.1038/s41598-021-88443-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
In mammals, peripheral serotonin is involved in regulating energy balance. Herein, we characterized the transcriptomic profile and microstructure of adipose and muscle in pre-weaned calves with increased circulating serotonin. Holstein bull calves (21 ± 2 days old) were fed milk replacer supplemented with saline (CON, 8 mL/day n = 4) or 5-hydroxytryptophan (5-HTP, 90 mg/day, n = 4) for 10 consecutive days. Calves were euthanized on d10 to harvest adipose and muscle for RNA-Sequencing and histological analyses. Twenty-two genes were differentially expressed in adipose, and 33 in muscle. Notably, Interferon gamma inducible protein-47 was highly expressed and upregulated in muscle and adipose (avg. log FC = 6.5). Enriched pathways in adipose tissue revealed serotonin’s participation in lipid metabolism and PPAR signaling. In muscle, enriched pathways were related to histone acetyltransferase binding, Jak-STAT signaling, PI3K-Akt signaling and cell proliferation. Supplementation of 5-HTP increased cell proliferation and total cell number in adipose and muscle. Adipocyte surface area was smaller and muscle fiber area was not different in the 5-HTP group. Manipulating the serotonin pathway, through oral supplementation of 5-HTP, influences signaling pathways and cellular processes in adipose and muscle related to endocrine and metabolic functions which might translate into improvements in calf growth and development.
Collapse
|
42
|
Kanova M, Kohout P. Serotonin-Its Synthesis and Roles in the Healthy and the Critically Ill. Int J Mol Sci 2021; 22:ijms22094837. [PMID: 34063611 PMCID: PMC8124334 DOI: 10.3390/ijms22094837] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) plays two important roles in humans-one central and the other peripheral-depending on the location of the 5-HT pools of on either side of the blood-brain barrier. In the central nervous system it acts as a neurotransmitter, controlling such brain functions as autonomic neural activity, stress response, body temperature, sleep, mood and appetite. This role is very important in intensive care, as in critically ill patients multiple serotoninergic agents like opioids, antiemetics and antidepressants are frequently used. High serotonin levels lead to altered mental status, deliria, rigidity and myoclonus, together recognized as serotonin syndrome. In its role as a peripheral hormone, serotonin is unique in controlling the functions of several organs. In the gastrointestinal tract it is important for regulating motor and secretory functions. Apart from intestinal motility, energy metabolism is regulated by both central and peripheral serotonin signaling. It also has fundamental effects on hemostasis, vascular tone, heart rate, respiratory drive, cell growth and immunity. Serotonin regulates almost all immune cells in response to inflammation, following the activation of platelets.
Collapse
Affiliation(s)
- Marcela Kanova
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ostrava, 70852 Ostrava-Poruba, Czech Republic
- Institute of Physiology and Pathophysiology, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300 Ostrava-Vítkovice, Czech Republic
- Correspondence: ; Tel.: +420-59737-2707
| | - Pavel Kohout
- Department of Internal Medicine, 3rd Faculty of Medicine, Charles University Prague and Teaching Thomayer Hospital, 14059 Prague, Czech Republic;
| |
Collapse
|
43
|
Valente EEL, Klotz JL, Ahn G, McLeod KR, Herzing HM, King M, Harmon DL. Ergot alkaloids reduce circulating serotonin in the bovine. J Anim Sci 2021; 98:5981672. [PMID: 33188392 DOI: 10.1093/jas/skaa362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Ergot alkaloids can interact with several serotonin (5-hydroxytryptamine [5-HT]) receptors provoking many physiological responses. However, it is unknown whether ergot alkaloid consumption influences 5-HT or its metabolites. Thus, two experiments were performed to evaluate the effect of ergot alkaloid feeding on 5-HT metabolism. In exp. 1, 12 Holstein steers (260 ± 3 kg body weight [BW]) were used in a completely randomized design. The treatments were the dietary concentration of ergovaline: 0, 0.862, and 1.282 mg/kg of diet. The steers were fed ad libitum, kept in light and temperature cycles mimicking the summer, and had blood sampled before and 15 d after receiving the treatments. The consumption of ergot alkaloids provoked a linear decrease (P = 0.004) in serum 5-HT. However, serum 5-hydroxytryptophan and 5-hydroxyindoleacetic acid did not change (P > 0.05) between treatments. In exp. 2, four ruminally cannulated Holstein steers (318 ± 3 kg BW) were used in a 4 × 4 Latin square design to examine the difference between seed sources on 5-HT metabolism. Treatments were: control-tall fescue seeds free of ergovaline, KY 32 seeds (L42-16-2K32); 5Way-endophyte-infected seeds, 5 way (L152-11-1739); KY31-endophyte-infected seeds, KY 31 (M164-16-SOS); and Millennium-endophyte-infected seeds, 3rd Millennium (L108-11-76). The endophyte-infected seed treatments were all adjusted to provide an ergovaline dosage of 15 μg/kg BW. The basal diet provided 1.5-fold the net energy requirement for maintenance. The seed treatments were dosed directly into the rumen before feeding. The experiment lasted 84 d and was divided into four periods. In each period, the steers received seeds for 7 d followed by a 14-d washout. Blood samples were collected on day 0 (baseline) and day 7 for evaluating the treatment response in each period. A 24 h urine collection was performed on day 7. Similar to exp. 1, serum 5-HT decreased (P = 0.008) with the consumption of all endophyte-infected seed treatments. However, there was no difference (P > 0.05) between the infected seeds. The urinary excretion of 5-hydroxyindoleacetic acid in the urine was not affected (P > 0.05) by the presence of ergot alkaloids. In conclusion, the consumption of ergot alkaloids decreases serum 5-HT with no difference between the source of endophyte-infected seeds in the bovine.
Collapse
Affiliation(s)
- Eriton E L Valente
- Department of Animal Science, State University of Western Parana, Marechal Cândido Rondon, PR, Brazil
| | - James L Klotz
- Forage-Animal Production Research Unit, USDA-ARS, Lexington, KY
| | - Gyuchul Ahn
- Department of Animal and Food Science, University of Kentucky, Lexington, KY
| | - Kyle R McLeod
- Department of Animal and Food Science, University of Kentucky, Lexington, KY
| | - Hannah M Herzing
- Department of Animal and Food Science, University of Kentucky, Lexington, KY
| | - Mindy King
- Department of Animal and Food Science, University of Kentucky, Lexington, KY
| | - David L Harmon
- Department of Animal and Food Science, University of Kentucky, Lexington, KY
| |
Collapse
|
44
|
Valente EEL, Klotz JL, Harmon DL. 5-Hydroxytryptophan strongly stimulates serotonin synthesis in Holstein steers. Domest Anim Endocrinol 2021; 74:106560. [PMID: 33035847 DOI: 10.1016/j.domaniend.2020.106560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 11/23/2022]
Abstract
Although serotonin has been extensively studied in many species, there is a lack of information in ruminants, and no research has been evaluated if its precursor, 5-hydroxytryptophan (5-HTP), administered into the abomasum may be used as a means to manipulate serotonin metabolism. Thus, the objective of this study was to evaluate if intra-abomasal infusion of 5-HTP increases circulating serotonin in the steer. Eight Holstein steers (471 ± 8.9 kg) were used in a replicated 4 × 4 Latin Square design experiment. The treatments were intra-abomasal infusion of 5-HTP at 0.5, 1, 2.5, and 5 mg/kg BW. Blood was collected at 0, 2, 4, 6, 8, and 24 h after infusion. The serum concentration of 5-HTP increased quadratically (P = 0.005) with a peak at 2 h after administration. The 5-HTP administration increased (P < 0.05) serum serotonin in comparison with baseline with no difference (P > 0.05) between the doses of 5-HTP. When 5-HTP was dosed at 2.5 mg/kg BW or higher, intake decreased, and there was an altered manure consistency. The serum 5-hydroxyindole acetic acid concentrations followed the same pattern as 5-HTP. Plasma glucose content was not affected (P > 0.05) by 5-HTP dosing. However, free fatty acids concentration in the plasma was lower (P > 0.05) compared with baseline for the infusion levels of 0.5 and 1 mg/kg BW. Intra-abomasal infusion of 5-HTP efficiently increases serum serotonin cattle.
Collapse
Affiliation(s)
- E E L Valente
- Animal Science Department, State University of Western Parana, Marechal Cândido, Rondon 85960-000, Brazil
| | - J L Klotz
- USDA-ARS, Forage-Animal Production Research Unit, Lexington, KY 40546, USA
| | - D L Harmon
- Department of Animal and Food Science, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
45
|
Wang W, Liu L, Tian Z, Han T, Sun C, Li Y. Dietary Tryptophan and the Risk of Metabolic Syndrome: Total Effect and Mediation Effect of Sleep Duration. Nat Sci Sleep 2021; 13:2141-2151. [PMID: 34924776 PMCID: PMC8674673 DOI: 10.2147/nss.s337171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Tryptophan affects energy homeostasis, glucose metabolism, blood pressure, and sleep. However, studies investigating the association between tryptophan and metabolic syndrome (MetSyn) are rare. We aimed to investigate the associations of dietary tryptophan with MetSyn incidence and potential mediation via sleep duration. METHODS Data of 7890 participants were obtained from the China Health and Nutrition Survey (1997-2011) (male: 49.9%; mean age=43.43 years;median follow-up=129.76 months; MetSyn incidence: 16.3%). A combination of individual 24-hour recall and household survey was used to assess dietary intake. In total, 6720 and 4474 participants who reported sleep duration and had blood samples taken, respectively, were incorporated into subgroup analyses. MetSyn was defined according to National Cholesterol Education Program Adult Treatment Panel (NCEP ATP) III criteria (2004), and tryptophan consumption and sleep duration were assessed by self-report in each survey. Multivariate Cox regression models were used to assess the associations between tertiles of tryptophan intake and MetSyn. Generalized linear regression models were used to evaluate the effect of tryptophan on sleep duration and plasma biomarkers. RESULTS Dietary tryptophan showed a protective effect on the risk of MetSyn. The hazard ratio (95% CI) of MetSyn was 0.77 (0.65-0.90) for individuals with a high tertile of tryptophan. Sleep duration was significantly higher, and HbA1c, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and apolipoprotein B (APO-B) were lower in the high tertile of tryptophan compared to the low tertile (P<0.05). In addition, mediation effects on the association between tryptophan intake and MetSyn risk were observed for sleep duration (estimated mediation percentage: 26.5%). CONCLUSION Our study demonstrated a negative association between dietary tryptophan and MetSyn incidence, and the mediation effect of sleep duration on this association, after adjusting for numerous confounders such as nutrients and food patterns. These findings may have important public health implications for the improvement of cardiometabolic health.
Collapse
Affiliation(s)
- Weiqi Wang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Lin Liu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Zhen Tian
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Tianshu Han
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Changhao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Ying Li
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
46
|
Valente EEL, Klotz JL, Ahn G, Harmon DL. Pattern of postruminal administration of l-tryptophan affects blood serotonin in cattle. Domest Anim Endocrinol 2021; 74:106574. [PMID: 33059121 DOI: 10.1016/j.domaniend.2020.106574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/19/2020] [Accepted: 09/17/2020] [Indexed: 01/06/2023]
Abstract
Serotonin (5-HT) has many important functions in both central and peripheral nervous systems. Although it has been demonstrated that manipulation of serotonin metabolism is possible in many species, there is limited information about l-tryptophan (TRP), a serotonin precursor, in cattle, and these provide conflicting results. Furthermore, there is no study evaluating how different patterns of intra-abomasal infusion of TRP impact circulating 5-HT. The objective of this study was to evaluate if intra-abomasal infusion patterns of TRP can affect circulating 5-HT and other metabolites from TRP metabolism in the plasma and serum and circulating glucose and insulin in cattle. Eight ruminally cannulated Holstein steers were used in a replicated 4 × 4 Latin square design. Each received intra-abomasal water infusion (control) or intra-abomasal TRP infusion (50 mg/kg BW) in 3 different patterns: a pulse infusion once a day (pulse once), pulse infusion twice a day (pulse twice), or continuous infusion (continuous). For continuous treatment, the TRP dose was diluted in tap water and infused by a peristaltic pump (300 mL/h). To equalize conditions, the other treatments had a water infusion (300 mL/h). The steers were fed every 2 h, and blood was collected from a jugular vein catheter every 4 h for 24 h after the initial infusion. Urine produced during the 24 h period was collected. Serum and plasma TRP, 5-HT and kynurenine, plasma glucose, and serum insulin concentrations were analyzed. Urine was analyzed for concentrations of 5-hydroxyindoleacetic acid. Both serum TRP and kynurenine were increased (P < 0.05) by all TRP infusion treatments, but concentrations in pulse dose treatments were greater than those in continuous infusion. Serum 5-HT increased (P < 0.05) with both pulse TRP infusion treatments; however, the continuous TRP infusion did not increase the serum 5-HT. Plasma 5-HT, glucose, and insulin had a tendency to increase with TRP pulse infusions. The urinary 5-hydroxyindoleacetic acid excretion was highest for pulse dose treatments. An acute supply of TRP in 1 or 2 daily doses increases serum 5-HT and increases circulating glucose and insulin in cattle. The TRP and kynurenine concentrations are similar in plasma and serum. However, the serum 5-HT concentration is more responsive to TRP administration than plasma.
Collapse
Affiliation(s)
- E E L Valente
- Agricultural Science Center, State University of Western Parana, Marechal Cândido Rondon 85960-000, Brazil
| | - J L Klotz
- USDA-ARS, Forage-Animal Production Research Unit, Lexington, KY 40546, USA
| | - G Ahn
- Department of Animal and Food Science, University of Kentucky, Lexington 40546, USA
| | - D L Harmon
- Department of Animal and Food Science, University of Kentucky, Lexington 40546, USA.
| |
Collapse
|
47
|
Liu H, Wang C, Yu M, Yang Y, He Y, Liu H, Liang C, Tu L, Zhang N, Wang L, Wang J, Liu F, Hu F, Xu Y. TPH2 in the Dorsal Raphe Nuclei Regulates Energy Balance in a Sex-Dependent Manner. Endocrinology 2021; 162:5920173. [PMID: 33034617 PMCID: PMC7685027 DOI: 10.1210/endocr/bqaa183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Indexed: 12/16/2022]
Abstract
AbstractCentral 5-hydroxytryptamine (5-HT), which is primarily synthesized by tryptophan hydroxylase 2 (TPH2) in the dorsal Raphe nuclei (DRN), plays a pivotal role in the regulation of food intake and body weight. However, the physiological functions of TPH2 on energy balance have not been consistently demonstrated. Here we systematically investigated the effects of TPH2 on energy homeostasis in adult male and female mice. We found that the DRN harbors a similar amount of TPH2+ cells in control male and female mice. Adult-onset TPH2 deletion in the DRN promotes hyperphagia and body weight gain only in male mice, but not in female mice. Ablation of TPH2 reduces hypothalamic pro-opiomelanocortin (POMC) neuronal activity robustly in males, but only to a modest degree in females. Deprivation of estrogen by ovariectomy (OVX) causes comparable food intake and weight gain in female control and DRN-specific TPH2 knockout mice. Nevertheless, disruption of TPH2 blunts the anorexigenic effects of exogenous estradiol (E2) and abolishes E2-induced activation of POMC neurons in OVX female mice, indicating that TPH2 is indispensable for E2 to activate POMC neurons and to suppress appetite. Together, our study revealed that TPH2 in the DRN contributes to energy balance regulation in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Hailan Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | - Chunmei Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | - Meng Yu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | - Yongjie Yang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | - Yang He
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | - Hesong Liu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | - Chen Liang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | - Longlong Tu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | - Nan Zhang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | - Lina Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | - Julia Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | - Feng Liu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Fang Hu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yong Xu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
- Correspondence: Yong Xu, Children’s Nutrition Research Center, Room8066, 1100 Bates Avenue, Houston, TX 77030, USA. E-mail:
| |
Collapse
|
48
|
Bistoletti M, Bosi A, Banfi D, Giaroni C, Baj A. The microbiota-gut-brain axis: Focus on the fundamental communication pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 176:43-110. [PMID: 33814115 DOI: 10.1016/bs.pmbts.2020.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
49
|
Interplay between Peripheral and Central Inflammation in Obesity-Promoted Disorders: The Impact on Synaptic Mitochondrial Functions. Int J Mol Sci 2020; 21:ijms21175964. [PMID: 32825115 PMCID: PMC7504224 DOI: 10.3390/ijms21175964] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolic dysfunctions induced by high fat diet (HFD) consumption are not limited to organs involved in energy metabolism but cause also a chronic low-grade systemic inflammation that affects the whole body including the central nervous system. The brain has been considered for a long time to be protected from systemic inflammation by the blood–brain barrier, but more recent data indicated an association between obesity and neurodegeneration. Moreover, obesity-related consequences, such as insulin and leptin resistance, mitochondrial dysfunction and reactive oxygen species (ROS) production, may anticipate and accelerate the physiological aging processes characterized by systemic inflammation and higher susceptibility to neurological disorders. Here, we discussed the link between obesity-related metabolic dysfunctions and neuroinflammation, with particular attention to molecules regulating the interplay between energetic impairment and altered synaptic plasticity, for instance AMP-activated protein kinase (AMPK) and Brain-derived neurotrophic factor (BDNF). The effects of HFD-induced neuroinflammation on neuronal plasticity may be mediated by altered brain mitochondrial functions. Since mitochondria play a key role in synaptic areas, providing energy to support synaptic plasticity and controlling ROS production, the negative effects of HFD may be more pronounced in synapses. In conclusion, it will be emphasized how HFD-induced metabolic alterations, systemic inflammation, oxidative stress, neuroinflammation and impaired brain plasticity are tightly interconnected processes, implicated in the pathogenesis of neurological diseases.
Collapse
|
50
|
Fadda M, De Fruyt N, Borghgraef C, Watteyne J, Peymen K, Vandewyer E, Naranjo Galindo FJ, Kieswetter A, Mirabeau O, Chew YL, Beets I, Schoofs L. NPY/NPF-Related Neuropeptide FLP-34 Signals from Serotonergic Neurons to Modulate Aversive Olfactory Learning in Caenorhabditis elegans. J Neurosci 2020; 40:6018-6034. [PMID: 32576621 PMCID: PMC7392509 DOI: 10.1523/jneurosci.2674-19.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/26/2020] [Accepted: 06/12/2020] [Indexed: 02/03/2023] Open
Abstract
Aversive learning is fundamental for animals to increase chances of survival. In addition to classical neurotransmitters, neuropeptides have emerged to modulate such complex behaviors. Among them, neuropeptide Y (NPY) is well known to promote aversive memory acquisition in mammals. Here we identify an NPY/neuropeptide F (NPF)-related neuropeptide system in Caenorhabditis elegans and show that this FLP-34/NPR-11 system is required for learning negative associations, a process that is reminiscent of NPY signaling in mammals. The Caenorhabditis elegans NPY/NPF ortholog FLP-34 displays conserved structural hallmarks of bilaterian-wide NPY/NPF neuropeptides. We show that it is required for aversive olfactory learning after pairing diacetyl with the absence of food, but not for appetitive olfactory learning in response to butanone. To mediate diacetyl learning and thus integrate the aversive food context with the diacetyl odor, FLP-34 is released from serotonergic neurons and signals through its evolutionarily conserved NPY/NPF GPCR, NPR-11, in downstream AIA interneurons. NPR-11 activation in the AIA integration center results in avoidance of a previously attractive stimulus. This study opens perspectives for a deeper understanding of stress conditions in which aversive learning results in excessive avoidance.SIGNIFICANCE STATEMENT Aversive learning evolved early in evolution to promote avoidance of dangerous and stressful situations. In addition to classical neurotransmitters, neuropeptides are emerging as modulators of complex behaviors, including learning and memory. Here, we identified the evolutionary ortholog of neuropeptide Y/neuropeptide F in the nematode Caenorhabditis elegans, and we discovered that it is required for olfactory aversive learning. In addition, we elucidated the neural circuit underlying this avoidance behavior, and we discovered a novel coordinated action of Caenorhabditis elegans neuropeptide Y/neuropeptide F and serotonin that could aid in our understanding of the molecular mechanisms underlying stress disorders in which excessive avoidance results in maladaptive behaviors.
Collapse
Affiliation(s)
- Melissa Fadda
- Department of Biology, KU Leuven, Leuven, 3000, Belgium
| | | | | | - Jan Watteyne
- Department of Biology, KU Leuven, Leuven, 3000, Belgium
| | | | | | | | | | - Olivier Mirabeau
- Genetics and Biology of Cancers Unit, Institut Curie, Institut National de la Santé et de la Recherche Médicale U830, Paris Sciences et Lettres Research University, Paris, 75005, France
| | - Yee Lian Chew
- Illawarra Health & Medical Research Institute School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, 2522 New South Wales, Australia
| | - Isabel Beets
- Department of Biology, KU Leuven, Leuven, 3000, Belgium
| | | |
Collapse
|