1
|
Ranzau B, Robinson TD, Scully JM, Kapelczak ED, Dean TS, TeSlaa T, Schmitt DL. A Genetically Encoded Fluorescent Biosensor for Intracellular Measurement of Malonyl-CoA. ACS BIO & MED CHEM AU 2025; 5:184-193. [PMID: 39990938 PMCID: PMC11843332 DOI: 10.1021/acsbiomedchemau.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 02/25/2025]
Abstract
Malonyl-CoA is the essential building block of fatty acids and regulates cell function through protein malonylation and allosteric regulation of signaling networks. Accordingly, the production and use of malonyl-CoA is finely tuned by the cellular energy status. Most studies of malonyl-CoA dynamics rely on bulk approaches that take only a snapshot of the average metabolic state of a population of cells, missing out on heterogeneous differences in malonyl-CoA and fatty acid biosynthesis that could be occurring among a cell population. To overcome this limitation, we have developed a genetically encoded fluorescent protein-based biosensor for malonyl-CoA that can be used to capture malonyl-CoA dynamics in single cells. This biosensor, termed Malibu (malonyl-CoA intracellular biosensor to understand dynamics), exhibits an excitation-ratiometric change in response to malonyl-CoA binding. We first used Malibu to monitor malonyl-CoA dynamics during inhibition of fatty acid biosynthesis using cerulenin in Escherichia coli, observing an increase in Malibu response in a time- and dose-dependent manner. In HeLa cells, we used Malibu to monitor the impact of fatty acid biosynthesis inhibition on malonyl-CoA dynamics in single cells, finding that two inhibitors of fatty acid biosynthesis, cerulenin and orlistat, which inhibit different steps of fatty acid biosynthesis, increase malonyl-CoA levels. Altogether, we have developed a new genetically encoded biosensor for malonyl-CoA, which can be used to study malonyl-CoA dynamics in single cells, providing an unparalleled view into fatty acid biosynthesis.
Collapse
Affiliation(s)
- Brodie
L. Ranzau
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tiffany D. Robinson
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jack M. Scully
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Edmund D. Kapelczak
- Department
of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Teagan S. Dean
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tara TeSlaa
- Department
of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Molecular
Biology Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Danielle L. Schmitt
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Molecular
Biology Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Institute
for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Moreno-García A, Serrat R, Julio-Kalajzic F, Bernal-Chico A, Baraibar AM, Matute C, Marsicano G, Mato S. In Vivo Assessment of Cortical Astrocyte Network Dysfunction During Autoimmune Demyelination: Correlation With Disease Severity. J Neurochem 2025; 169:e16305. [PMID: 39957272 DOI: 10.1111/jnc.16305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 02/18/2025]
Abstract
Cortical damage and dysfunction is a pathological hallmark of multiple sclerosis (MS) that correlates with the severity of physical and cognitive disability. Astrocytes participate in MS pathobiology through a variety of mechanisms, and abnormal astrocytic calcium signaling has been pointed as a pathogenic mechanism of cortical dysfunction in MS. However, in vivo evidence supporting deregulation of astrocyte calcium-dependent mechanisms in cortical MS is still limited. Here, we applied fiber photometry to the longitudinal analysis of spontaneous and sensory-evoked astrocyte network activity in the somatosensory cortex of mice in an experimental autoimmune encephalomyelitis (EAE). We found that freely moving EAE mice exhibit spontaneously occurring astrocyte calcium signals of increased duration and reduced amplitude. Concomitantly, cortical astrocytes in EAE mice responded to sensory stimulation with calcium events of decreased amplitude. The emergence of aberrant astrocyte calcium signals in the somatosensory cortex paralleled the onset of neurological symptomatology, and changes in the amplitude of both spontaneous and evoked responses were selectively correlated to the severity of neurological deficits. These results highlight the imbalance of astrocyte network activity in the brain cortex during autoimmune inflammation and further support the relevance of astrocyte-based pathobiology as an underlying mechanism of cortical dysfunction in MS.
Collapse
Affiliation(s)
- A Moreno-García
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Neuroinmunology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - R Serrat
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France
| | - F Julio-Kalajzic
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France
| | - A Bernal-Chico
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Neuroinmunology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - A M Baraibar
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Neuroinmunology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - C Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- University of Bordeaux, Bordeaux, France
| | - G Marsicano
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France
| | - S Mato
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Neuroinmunology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
3
|
Cartes-Saavedra B, Ghosh A, Hajnóczky G. The roles of mitochondria in global and local intracellular calcium signalling. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00820-1. [PMID: 39870977 DOI: 10.1038/s41580-024-00820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/29/2025]
Abstract
Activation of Ca2+ channels in Ca2+ stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca2+]c) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca2+ uptake and chelation, alongside efficient Ca2+ release mechanisms. Still, mitochondria do not store Ca2+ in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca2+]c signals. However, mitochondria take up Ca2+ at high local [Ca2+]c signals that originate from neighbouring organelles, and also during sustained global elevations of [Ca2+]c. Accumulated Ca2+ in the mitochondria stimulates oxidative metabolism and upon return to the cytoplasm, can produce spatially confined rises in [Ca2+]c to exert control over processes that are sensitive to Ca2+. Thus, the mitochondrial handling of [Ca2+]c is of physiological relevance. Furthermore, dysregulation of mitochondrial Ca2+ handling can contribute to debilitating diseases. We discuss the mechanisms and relevance of mitochondria in local and global calcium signals.
Collapse
Affiliation(s)
- Benjamín Cartes-Saavedra
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Arijita Ghosh
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Berksoz M, Atilgan C. Ranking Single Fluorescent Protein-Based Calcium Biosensor Performance by Molecular Dynamics Simulations. J Chem Inf Model 2025; 65:338-350. [PMID: 39726324 PMCID: PMC11733952 DOI: 10.1021/acs.jcim.4c01478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Genetically encoded fluorescent biosensors (GEFBs) have become indispensable tools for visualizing biological processes in vivo. A typical GEFB is composed of a sensory domain (SD) that undergoes a conformational change upon ligand binding or enzymatic reaction; the SD is genetically fused with a fluorescent protein (FP). The changes in the SD allosterically modulate the chromophore environment whose spectral properties are changed. Single fluorescent (FP)-based biosensors, a subclass of GEFBs, offer a simple experimental setup; they are easy to produce in living cells, structurally stable, and simple to use due to their single-wavelength operation. However, they pose a significant challenge for structure optimization, especially concerning the length and residue content of linkers between the FP and SD, which affect how well the chromophore responds to conformational change in the SD. In this work, we use all-atom molecular dynamics simulations to analyze the dynamic properties of a series of calmodulin-based calcium biosensors, all with different FP-SD interaction interfaces and varying degrees of calcium binding-dependent fluorescence change. Our results indicate that biosensor performance can be predicted based on distribution of water molecules around the chromophore and shifts in hydrogen bond occupancies between the ligand-bound and ligand-free sensor structures.
Collapse
Affiliation(s)
- Melike Berksoz
- Faculty of Engineering and
Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Canan Atilgan
- Faculty of Engineering and
Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
5
|
Sangeetha B, Leroy KI, Udaya Kumar B. Harnessing Bioluminescence: A Comprehensive Review of In Vivo Imaging for Disease Monitoring and Therapeutic Intervention. Cell Biochem Funct 2024; 42:e70020. [PMID: 39673353 DOI: 10.1002/cbf.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/16/2024]
Abstract
The technique of using naturally occurring light-emitting reactants (photoproteins and luciferases] that have been extracted from a wide range of animals is known as bioluminescence imaging, or BLI. This imaging offers important details on the location and functional state of regenerative cells inserted into various disease-modeling animals. Reports on gene expression patterns, cell motions, and even the actions of individual biomolecules in whole tissues and live animals have all been made possible by bioluminescence. Generally speaking, bioluminescent light in animals may be found down to a few centimetres, while the precise limit depends on the signal's brightness and the detector's sensitivity. We can now spatiotemporally visualize cell behaviors in any body region of a living animal in a time frame process, including proliferation, apoptosis, migration, and immunological responses, thanks to BLI. The biological applications of in vivo BLI in nondestructively monitoring biological processes in intact small animal models are reviewed in this work, along with some of the advancements that will make BLI a more versatile molecular imaging tool.
Collapse
Affiliation(s)
- B Sangeetha
- Department of Biotechnology, St Joseph's College of Engineering, Chennai, Tamilnadu, India
| | - K I Leroy
- Department of Biotechnology, St Joseph's College of Engineering, Chennai, Tamilnadu, India
| | - B Udaya Kumar
- Department of Biotechnology, St Joseph's College of Engineering, Chennai, Tamilnadu, India
| |
Collapse
|
6
|
Ko B, Bacon ME, Zaki Y, Cai DJ. Chemotagging: a chemogenetic approach for identifying cell types with in vivo calcium imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625756. [PMID: 39651295 PMCID: PMC11623656 DOI: 10.1101/2024.11.27.625756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The ability to monitor the activity of specific cell types in vivo is critical for understanding the complex interplay between various neuronal populations driving freely moving behavior. Existing methods, such as optogenetic tagging (i.e., Optotagging 1 ), have proven useful for identifying cell types in in vivo electrophysiological recordings during freely moving behavior. However, electrophysiological recordings are limited in their capacity to track the same neuronal populations across long periods of time (days to weeks). Single-photon miniscope imaging offers the advantage of tracking the same cells across weeks to months; however, it is difficult to distinguish different cell types within the recorded population. Here, we present "chemotagging," a technique that allows for the identification of specific cell types in in vivo calcium imaging recordings. This protocol offers a method for tagging cell types with chemogenetic tools like Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) 2 , while simultaneously recording calcium activity from a pan-neuronal population with calcium indicators. We highlight the key advantages and limitations of chemotagging and its potential implications for neuroscience research.
Collapse
|
7
|
Gest AM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024; 124:12573-12660. [PMID: 39535501 PMCID: PMC11613326 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese
M. M. Gest
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Ayse Z. Sahan
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Shu
Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Zhong C, Arai S, Okada Y. Development of fluorescence lifetime biosensors for ATP, cAMP, citrate, and glucose using the mTurquoise2-based platform. CELL REPORTS METHODS 2024; 4:100902. [PMID: 39561716 PMCID: PMC11705765 DOI: 10.1016/j.crmeth.2024.100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024]
Abstract
Single-fluorescent protein (FP)-based FLIM (fluorescence lifetime imaging microscopy) biosensors can visualize intracellular processes quantitatively. They require a single wavelength for detection, which facilitates multi-color imaging. However, their development has been limited by the absence of a general design framework and complex screening processes. In this study, we engineered FLIM biosensors for ATP (adenosine triphosphate), cAMP (cyclic adenosine monophosphate), citrate, and glucose by inserting each sensing domain into mTurquoise2 (mTQ2) between Tyr-145 and Phe-146 using peptide linkers. Fluorescence intensity-based screening yielded FLIM biosensors with a 0.5 to 1.0 ns dynamic range upon analyte binding, demonstrating that the mTQ2(1-145)-GT-X-EF-mTQ2(146-238) backbone is a versatile platform for FLIM biosensors, allowing for simple intensity-based screening while providing dual-functional biosensors for both FLIM and intensity-based imaging. As a proof of concept, we monitored cAMP and Ca2+ dynamics simultaneously in living cells by dual-color imaging. Our results complement recent studies, establishing mTQ2 as a valuable framework for developing FLIM biosensors.
Collapse
Affiliation(s)
- Chongxia Zhong
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka 565-0874, Japan
| | - Satoshi Arai
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka 565-0874, Japan; Department of Cell Biology, Graduate School of Medicine, the University of Tokyo, Hongo, Tokyo 113-0033, Japan; Department of Physics, Graduate School of Science, the University of Tokyo, Hongo, Tokyo 113-0033, Japan; Universal Biology Institute (UBI), the University of Tokyo, Hongo, Tokyo 113-0033, Japan; Internatinonal Research Center for Neurointelligence (WPI-IRCN), the University of Tokyo, Hongo, Tokyo 113-0033, Japan.
| |
Collapse
|
9
|
Sitaraman D, Vecsey CG, Koochagian C. Activity Monitoring for Analysis of Sleep in Drosophila melanogaster. Cold Spring Harb Protoc 2024; 2024:pdb.top108095. [PMID: 38336390 PMCID: PMC11827337 DOI: 10.1101/pdb.top108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Sleep is important for survival, and the need for sleep is conserved across species. In the past two decades, the fruit fly Drosophila melanogaster has emerged as a promising system in which to study the genetic, neural, and physiological bases of sleep. Through significant advances in our understanding of the regulation of sleep in flies, the field is poised to address several open questions about sleep, such as how the need for sleep is encoded, how molecular regulators of sleep are situated within brain networks, and what the functions of sleep are. Here, we describe key findings, open questions, and commonly used methods that have been used to inform existing theories and develop new ways of thinking about the function, regulation, and adaptability of sleep behavior.
Collapse
Affiliation(s)
- Divya Sitaraman
- Department of Psychology, College of Science, California State University, Hayward, California 94542, USA
| | | | - Casey Koochagian
- Neuroscience Program, Skidmore College, Saratoga Springs, New York 12866, USA
| |
Collapse
|
10
|
Baraibar AM, Colomer T, Moreno-García A, Bernal-Chico A, Sánchez-Martín E, Utrilla C, Serrat R, Soria-Gómez E, Rodríguez-Antigüedad A, Araque A, Matute C, Marsicano G, Mato S. Autoimmune inflammation triggers aberrant astrocytic calcium signaling to impair synaptic plasticity. Brain Behav Immun 2024; 121:192-210. [PMID: 39032542 PMCID: PMC11415231 DOI: 10.1016/j.bbi.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Cortical pathology involving inflammatory and neurodegenerative mechanisms is a hallmark of multiple sclerosis and a correlate of disease progression and cognitive decline. Astrocytes play a pivotal role in multiple sclerosis initiation and progression but astrocyte-neuronal network alterations contributing to gray matter pathology remain undefined. Here we unveil deregulation of astrocytic calcium signaling and astrocyte-to-neuron communication as key pathophysiological mechanisms of cortical dysfunction in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Using two-photon imaging ex vivo and fiber photometry in freely behaving mice, we found that acute EAE was associated with the emergence of spontaneously hyperactive cortical astrocytes exhibiting dysfunctional responses to cannabinoid, glutamate and purinoreceptor agonists. Abnormal astrocyte signaling by Gi and Gq protein coupled receptors was observed in the inflamed cortex. This was mirrored by treatments with pro-inflammatory factors both in vitro and ex vivo, suggesting cell-autonomous effects of the cortical neuroinflammatory environment. Finally, deregulated astrocyte calcium activity was associated with an enhancement of glutamatergic gliotransmission and a shift of astrocyte-mediated short-term and long-term plasticity mechanisms towards synaptic potentiation. Overall, our data identify astrocyte-neuronal network dysfunctions as key pathological features of gray matter inflammation in multiple sclerosis and potentially additional neuroimmunological disorders.
Collapse
Affiliation(s)
- A M Baraibar
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - T Colomer
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - A Moreno-García
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - A Bernal-Chico
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - E Sánchez-Martín
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - C Utrilla
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - R Serrat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - E Soria-Gómez
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain
| | - A Rodríguez-Antigüedad
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - A Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, 55455 MN, USA
| | - C Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - G Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France.
| | - S Mato
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Neuroinmunology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain.
| |
Collapse
|
11
|
Ranzau BL, Robinson TD, Scully JM, Kapelczack ED, Dean TS, TeSlaa T, Schmitt DL. A Genetically Encoded Fluorescent Biosensor for Intracellular Measurement of Malonyl-CoA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615526. [PMID: 39386450 PMCID: PMC11463626 DOI: 10.1101/2024.09.27.615526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Malonyl-CoA is the essential building block of fatty acids and regulates cell function through protein malonylation and allosteric regulation of signaling networks. Accordingly, the production and use of malonyl-CoA is finely tuned by the cellular energy status. Most studies of malonyl-CoA dynamics rely on bulk approaches that take only a snapshot of the average metabolic state of a population of cells, missing out on dynamic changes in malonyl-CoA and fatty acid biosynthesis that could be occurring within a single cell. To overcome this limitation, we have developed a genetically encoded fluorescent protein-based biosensor for malonyl-CoA that can be used to capture malonyl-CoA dynamics in single cells. This biosensor, termed Malibu (malonyl-CoA intracellular biosensor to understand dynamics), exhibits an excitation-ratiometric change in response to malonyl-CoA binding. We first used Malibu to monitor malonyl-CoA dynamics during inhibition of fatty acid biosynthesis using cerulenin in E. coli, observing an increase in Malibu response in a time- and dose-dependent manner. In HeLa cells, we used Malibu to monitor the impact of fatty acid biosynthesis inhibition on malonyl-CoA dynamics in single cells, finding that two inhibitors of fatty acid biosynthesis, cerulenin and orlistat, which inhibit different steps of fatty acid biosynthesis, increase malonyl-CoA levels. Altogether, we have developed a new genetically encoded biosensor for malonyl-CoA, which can be used to sensitively study malonyl-CoA dynamics in single cells, providing an unparalleled view into fatty acid biosynthesis.
Collapse
Affiliation(s)
- Brodie L. Ranzau
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- These authors contributed equally
| | - Tiffany D. Robinson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- These authors contributed equally
| | - Jack M. Scully
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Edmund D. Kapelczack
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Teagan S. Dean
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tara TeSlaa
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Danielle L. Schmitt
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
12
|
Barykina NV, Carey EM, Oliinyk OS, Nimmerjahn A, Verkhusha VV. Destabilized near-infrared fluorescent nanobodies enable background-free targeting of GFP-based biosensors for imaging and manipulation. Nat Commun 2024; 15:7788. [PMID: 39242569 PMCID: PMC11379940 DOI: 10.1038/s41467-024-51857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
Near-infrared (NIR) probes are highly sought after as fluorescent tags for multicolor cellular and in vivo imaging. Here we develop small NIR fluorescent nanobodies, termed NIR-FbLAG16 and NIR-FbLAG30, enabling background-free visualization of various GFP-derived probes and biosensors. We also design a red-shifted variant, NIR-Fb(718), to simultaneously target several antigens within the NIR spectral range. Leveraging the antigen-stabilizing property of the developed NIR-Fbs, we then create two modular systems for precise control of gene expression in GFP-labeled cells. Applying the NIR-Fbs in vivo, we target cells expressing GFP and the calcium biosensor GCaMP6 in the somatosensory cortex of transgenic mice. Simultaneously tracking calcium activity and the reference signal from NIR-FbLAGs bound to GCaMP6 enables ratiometric deep-brain in vivo imaging. Altogether, NIR-FbLAGs present a promising approach for imaging and manipulating various processes in live cells and behaving animals expressing GFP-based probes.
Collapse
Affiliation(s)
- Natalia V Barykina
- Department of Genetics, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY, 10461, USA
| | - Erin M Carey
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Olena S Oliinyk
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Vladislav V Verkhusha
- Department of Genetics, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY, 10461, USA.
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland.
| |
Collapse
|
13
|
Bremshey S, Groß J, Renken K, Masseck OA. The role of serotonin in depression-A historical roundup and future directions. J Neurochem 2024; 168:1751-1779. [PMID: 38477031 DOI: 10.1111/jnc.16097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Depression is one of the most common psychiatric disorders worldwide, affecting approximately 280 million people, with probably much higher unrecorded cases. Depression is associated with symptoms such as anhedonia, feelings of hopelessness, sleep disturbances, and even suicidal thoughts. Tragically, more than 700 000 people commit suicide each year. Although depression has been studied for many decades, the exact mechanisms that lead to depression are still unknown, and available treatments only help a fraction of patients. In the late 1960s, the serotonin hypothesis was published, suggesting that serotonin is the key player in depressive disorders. However, this hypothesis is being increasingly doubted as there is evidence for the influence of other neurotransmitters, such as noradrenaline, glutamate, and dopamine, as well as larger systemic causes such as altered activity in the limbic network or inflammatory processes. In this narrative review, we aim to contribute to the ongoing debate on the involvement of serotonin in depression. We will review the evolution of antidepressant treatments, systemic research on depression over the years, and future research applications that will help to bridge the gap between systemic research and neurotransmitter dynamics using biosensors. These new tools in combination with systemic applications, will in the future provide a deeper understanding of the serotonergic dynamics in depression.
Collapse
Affiliation(s)
- Svenja Bremshey
- Synthetic Biology, University of Bremen, Bremen, Germany
- Neuropharmacology, University of Bremen, Bremen, Germany
| | - Juliana Groß
- Synthetic Biology, University of Bremen, Bremen, Germany
| | - Kim Renken
- Synthetic Biology, University of Bremen, Bremen, Germany
| | | |
Collapse
|
14
|
Ding M, Zhou Y, Becker D, Yang S, Krischke M, Scherzer S, Yu-Strzelczyk J, Mueller MJ, Hedrich R, Nagel G, Gao S, Konrad KR. Probing plant signal processing optogenetically by two channelrhodopsins. Nature 2024; 633:872-877. [PMID: 39198644 PMCID: PMC11424491 DOI: 10.1038/s41586-024-07884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Early plant responses to different stress situations often encompass cytosolic Ca2+ increases, plasma membrane depolarization and the generation of reactive oxygen species1-3. However, the mechanisms by which these signalling elements are translated into defined physiological outcomes are poorly understood. Here, to study the basis for encoding of specificity in plant signal processing, we used light-gated ion channels (channelrhodopsins). We developed a genetically engineered channelrhodopsin variant called XXM 2.0 with high Ca2+ conductance that enabled triggering cytosolic Ca2+ elevations in planta. Plant responses to light-induced Ca2+ influx through XXM 2.0 were studied side by side with effects caused by an anion efflux through the light-gated anion channelrhodopsin ACR1 2.04. Although both tools triggered membrane depolarizations, their activation led to distinct plant stress responses: XXM 2.0-induced Ca2+ signals stimulated production of reactive oxygen species and defence mechanisms; ACR1 2.0-mediated anion efflux triggered drought stress responses. Our findings imply that discrete Ca2+ signals and anion efflux serve as triggers for specific metabolic and transcriptional reprogramming enabling plants to adapt to particular stress situations. Our optogenetics approach unveiled that within plant leaves, distinct physiological responses are triggered by specific ion fluxes, which are accompanied by similar electrical signals.
Collapse
Affiliation(s)
- Meiqi Ding
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Yang Zhou
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Dirk Becker
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Shang Yang
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany
| | - Markus Krischke
- Pharmaceutical Biology, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Sönke Scherzer
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Jing Yu-Strzelczyk
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany
| | - Martin J Mueller
- Pharmaceutical Biology, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany.
| | - Georg Nagel
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany.
| | - Shiqiang Gao
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany.
| | - Kai R Konrad
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany.
| |
Collapse
|
15
|
Boudries R, Williams H, Paquereau-Gaboreau S, Bashir S, Hojjat Jodaylami M, Chisanga M, Trudeau LÉ, Masson JF. Surface-Enhanced Raman Scattering Nanosensing and Imaging in Neuroscience. ACS NANO 2024; 18:22620-22647. [PMID: 39088751 DOI: 10.1021/acsnano.4c05200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Monitoring neurochemicals and imaging the molecular content of brain tissues in vitro, ex vivo, and in vivo is essential for enhancing our understanding of neurochemistry and the causes of brain disorders. This review explores the potential applications of surface-enhanced Raman scattering (SERS) nanosensors in neurosciences, where their adoption could lead to significant progress in the field. These applications encompass detecting neurotransmitters or brain disorders biomarkers in biofluids with SERS nanosensors, and imaging normal and pathological brain tissues with SERS labeling. Specific studies highlighting in vitro, ex vivo, and in vivo analysis of brain disorders using fit-for-purpose SERS nanosensors will be detailed, with an emphasis on the ability of SERS to detect clinically pertinent levels of neurochemicals. Recent advancements in designing SERS-active nanomaterials, improving experimentation in biofluids, and increasing the usage of machine learning for interpreting SERS spectra will also be discussed. Furthermore, we will address the tagging of tissues presenting pathologies with nanoparticles for SERS imaging, a burgeoning domain of neuroscience that has been demonstrated to be effective in guiding tumor removal during brain surgery. The review also explores future research applications for SERS nanosensors in neuroscience, including monitoring neurochemistry in vivo with greater penetration using surface-enhanced spatially offset Raman scattering (SESORS), near-infrared lasers, and 2-photon techniques. The article concludes by discussing the potential of SERS for investigating the effectiveness of therapies for brain disorders and for integrating conventional neurochemistry techniques with SERS sensing.
Collapse
Affiliation(s)
- Ryma Boudries
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Hannah Williams
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Soraya Paquereau-Gaboreau
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Saba Bashir
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Maryam Hojjat Jodaylami
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Malama Chisanga
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-Francois Masson
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
16
|
Bao Y, Gong Y. Accurate neuron segmentation method for one-photon calcium imaging videos combining convolutional neural networks and clustering. Commun Biol 2024; 7:970. [PMID: 39122882 PMCID: PMC11316101 DOI: 10.1038/s42003-024-06668-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
One-photon fluorescent calcium imaging helps understand brain functions by recording large-scale neural activities in freely moving animals. Automatic, fast, and accurate active neuron segmentation algorithms are essential to extract and interpret information from these videos. One-photon imaging videos' low resolution, high noise, and high background fluctuation pose significant challenges. Here, we develop a software pipeline to address the challenges of processing one-photon calcium imaging videos. We extend our previous two-photon active neuron segmentation algorithm, Shallow U-Net Neuron Segmentation (SUNS), to better suppress background fluctuations in one-photon videos. We also develop additional neuron extraction (ANE) to locate small or dim neurons missed by SUNS. To train our segmentation method, we create ground truth neurons by developing a manual labeling pipeline assisted with semi-automatic refinement. Our method is more accurate and faster than state-of-the-art techniques when processing simulated videos and multiple experimental datasets acquired over various brain regions with different imaging conditions.
Collapse
Affiliation(s)
- Yijun Bao
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| | - Yiyang Gong
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
- Department of Neurobiology, Duke University, Durham, NC, 27708, USA.
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
17
|
Medeiros D, Polepalli L, Li W, Pozzo-Miller L. Altered activity of mPFC pyramidal neurons and parvalbumin-expressing interneurons during social interactions in a Mecp2 mouse model for Rett syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606882. [PMID: 39149275 PMCID: PMC11326302 DOI: 10.1101/2024.08.06.606882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Social memory impairments in Mecp2 knockout (KO) mice result from altered neuronal activity in the monosynaptic projection from the ventral hippocampus (vHIP) to the medial prefrontal cortex (mPFC). The hippocampal network is hyperactive in this model for Rett syndrome, and such atypically heightened neuronal activity propagates to the mPFC through this monosynaptic projection, resulting in altered mPFC network activity and social memory deficits. However, the underlying mechanism of cellular dysfunction within this projection between vHIP pyramidal neurons (PYR) and mPFC PYRs and parvalbumin interneurons (PV-IN) resulting in social memory impairments in Mecp2 KO mice has yet to be elucidated. We confirmed social memory (but not sociability) deficits in Mecp2 KO mice using a new 4-chamber social memory arena, designed to minimize the impact of the tethering to optical fibers required for simultaneous in vivo fiber photometry of Ca2+-sensor signals during social interactions. mPFC PYRs of wildtype (WT) mice showed increases in Ca2+ signal amplitude during explorations of a novel toy mouse and interactions with both familiar and novel mice, while PYRs of Mecp2 KO mice showed smaller Ca2+ signals during interactions only with live mice. On the other hand, mPFC PV-INs of Mecp2 KO mice showed larger Ca2+ signals during interactions with a familiar cage-mate compared to those signals in PYRs, a difference absent in the WT mice. These observations suggest atypically heightened inhibition and impaired excitation in the mPFC network of Mecp2 KO mice during social interactions, potentially driving their deficit in social memory.
Collapse
Affiliation(s)
- Destynie Medeiros
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Likhitha Polepalli
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei Li
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
18
|
Berksoz M, Atilgan C. Allosteric modulation of fluorescence revealed by hydrogen bond dynamics in a genetically encoded maltose biosensor. Proteins 2024; 92:923-932. [PMID: 38572606 DOI: 10.1002/prot.26688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/02/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Genetically encoded fluorescent biosensors (GEFBs) proved to be reliable tracers for many metabolites and cellular processes. In the simplest case, a fluorescent protein (FP) is genetically fused to a sensing protein which undergoes a conformational change upon ligand binding. This drives a rearrangement in the chromophore environment and changes the spectral properties of the FP. Structural determinants of successful biosensors are revealed only in hindsight when the crystal structures of both ligand-bound and ligand-free forms are available. This makes the development of new biosensors for desired analytes a long trial-and-error process. In the current study, we conducted μs-long all atom molecular dynamics (MD) simulations of a maltose biosensor in both the apo (dark) and holo (bright) forms. We performed detailed hydrogen bond occupancy analyses to shed light on the mechanism of ligand induced conformational change in the sensor protein and its allosteric effect on the chromophore environment. We find that two strong indicators for distinguishing bright and dark states of biosensors are due to substantial changes in hydrogen bond dynamics in the system and solvent accessibility of the chromophore.
Collapse
Affiliation(s)
- Melike Berksoz
- Faculty of Engineering and Natural Sciences, Sabanci University, Turkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, Turkey
| |
Collapse
|
19
|
Boto T, Tomchik SM. Functional Imaging of Learning-Induced Plasticity in the Central Nervous System with Genetically Encoded Reporters in Drosophila. Cold Spring Harb Protoc 2024; 2024:pdb.top107799. [PMID: 37197830 DOI: 10.1101/pdb.top107799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Learning and memory allow animals to adjust their behavior based on the predictive value of their past experiences. Memories often exist in complex representations, spread across numerous cells and synapses in the brain. Studying relatively simple forms of memory provides insights into the fundamental processes that underlie multiple forms of memory. Associative learning occurs when an animal learns the relationship between two previously unrelated sensory stimuli, such as when a hungry animal learns that a particular odor is followed by a tasty reward. Drosophila is a particularly powerful model to study how this type of memory works. The fundamental principles are widely shared among animals, and there is a wide range of genetic tools available to study circuit function in flies. In addition, the olfactory structures that mediate associative learning in flies, such as the mushroom body and its associated neurons, are anatomically organized, relatively well-characterized, and readily accessible to imaging. Here, we review the olfactory anatomy and physiology of the olfactory system, describe how plasticity in the olfactory pathway mediates learning and memory, and explain the general principles underlying calcium imaging approaches.
Collapse
Affiliation(s)
- Tamara Boto
- Department of Physiology, Trinity College Dublin, Dublin 2, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Seth M Tomchik
- Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| |
Collapse
|
20
|
Eom Y, Kim SR, Kim YK, Lee SH. Mitochondrial Calcium Waves by Electrical Stimulation in Cultured Hippocampal Neurons. Mol Neurobiol 2024; 61:3477-3489. [PMID: 37995079 DOI: 10.1007/s12035-023-03795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Mitochondria are critical to cellular Ca2+ homeostasis via the sequestering of cytosolic Ca2+ in the mitochondrial matrix. Mitochondrial Ca2+ buffering regulates neuronal activity and neuronal death by shaping cytosolic and presynaptic Ca2+ or controlling energy metabolism. Dysfunction in mitochondrial Ca2+ buffering has been implicated in psychological and neurological disorders. Ca2+ wave propagation refers to the spreading of Ca2+ for buffering and maintaining the associated rise in Ca2+ concentration. We investigated mitochondrial Ca2+ waves in hippocampal neurons using genetically encoded Ca2+ indicators. Neurons transfected with mito-GCaMP5G, mito-RCaMP1h, and CEPIA3mt exhibited evidence of mitochondrial Ca2+ waves with electrical stimulation. These waves were observed with 200 action potentials at 40 Hz or 20 Hz but not with lower frequencies or fewer action potentials. The application of inhibitors of mitochondrial calcium uniporter and oxidative phosphorylation suppressed mitochondrial Ca2+ waves. However, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and N-methyl-d-aspartate receptor blockade had no effect on mitochondrial Ca2+ wave were propagation. The Ca2+ waves were not observed in endoplasmic reticula, presynaptic terminals, or cytosol in association with electrical stimulation of 200 action potentials at 40 Hz. These results offer novel insights into the mechanisms underlying mitochondrial Ca2+ buffering and the molecular basis of mitochondrial Ca2+ waves in neurons in response to electrical stimulation.
Collapse
Affiliation(s)
- Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung Rae Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
- Brain Research Core Facilities of Korea Brain Research Institute (KBRI), Daegu, 41068, Republic of Korea
| | - Yeong-Kyeong Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
21
|
Taniguchi J, Melani R, Chantranupong L, Wen MJ, Mohebi A, Berke JD, Sabatini BL, Tritsch NX. Comment on 'Accumbens cholinergic interneurons dynamically promote dopamine release and enable motivation'. eLife 2024; 13:e95694. [PMID: 38748470 PMCID: PMC11095934 DOI: 10.7554/elife.95694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Acetylcholine is widely believed to modulate the release of dopamine in the striatum of mammals. Experiments in brain slices clearly show that synchronous activation of striatal cholinergic interneurons is sufficient to drive dopamine release via axo-axonal stimulation of nicotinic acetylcholine receptors. However, evidence for this mechanism in vivo has been less forthcoming. Mohebi, Collins and Berke recently reported that, in awake behaving rats, optogenetic activation of striatal cholinergic interneurons with blue light readily evokes dopamine release measured with the red fluorescent sensor RdLight1 (Mohebi et al., 2023). Here, we show that blue light alone alters the fluorescent properties of RdLight1 in a manner that may be misconstrued as phasic dopamine release, and that this artefactual photoactivation can account for the effects attributed to cholinergic interneurons. Our findings indicate that measurements of dopamine using the red-shifted fluorescent sensor RdLight1 should be interpreted with caution when combined with optogenetics. In light of this and other publications that did not observe large acetylcholine-evoked dopamine transients in vivo, the conditions under which such release occurs in behaving animals remain unknown.
Collapse
Affiliation(s)
- James Taniguchi
- Neuroscience Institute and Fresco Institute for Parkinson's and Movement Disorders, University Grossman School of MedicineNew YorkUnited States
| | - Riccardo Melani
- Neuroscience Institute and Fresco Institute for Parkinson's and Movement Disorders, University Grossman School of MedicineNew YorkUnited States
| | - Lynne Chantranupong
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| | - Michelle J Wen
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| | - Ali Mohebi
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Joshua D Berke
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| | - Nicolas X Tritsch
- Neuroscience Institute and Fresco Institute for Parkinson's and Movement Disorders, University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
22
|
Deepa SS, Thadathil N, Corral J, Mohammed S, Pham S, Rose H, Kinter MT, Richardson A, Díaz-García CM. MLKL overexpression leads to Ca 2+ and metabolic dyshomeostasis in a neuronal cell model. Cell Calcium 2024; 119:102854. [PMID: 38430790 PMCID: PMC10990772 DOI: 10.1016/j.ceca.2024.102854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
The necroptotic effector molecule MLKL accumulates in neurons over the lifespan of mice, and its downregulation has the potential to improve cognition through neuroinflammation, and changes in the abundance of synaptic proteins and enzymes in the central nervous system. Notwithstanding, direct evidence of cell-autonomous effects of MLKL expression on neuronal physiology and metabolism are lacking. Here, we tested whether the overexpression of MLKL in the absence of cell death in the neuronal cell line Neuro-2a recapitulates some of the hallmarks of aging at the cellular level. Using genetically-encoded fluorescent biosensors, we monitored the cytosolic and mitochondrial Ca2+ levels, along with the cytosolic concentrations of several metabolites involved in energy metabolism (lactate, glucose, ATP) and oxidative stress (oxidized/reduced glutathione). We found that MLKL overexpression marginally decreased cell viability, however, it led to reduced cytosolic and mitochondrial Ca2+ elevations in response to Ca2+ influx from the extracellular space. On the contrary, Ca2+ signals were elevated after mobilizing Ca2+ from the endoplasmic reticulum. Transient elevations in cytosolic Ca2+, mimicking neuronal stimulation, lead to higher lactate levels and lower glucose concentrations in Neuro-2a cells when overexpressing MLKL, which suggest enhanced neuronal glycolysis. Despite these alterations, energy levels and glutathione redox state in the cell bodies remained largely preserved after inducing MLKL overexpression for 24-48 h. Taken together, our proof-of-concept experiments are consistent with the hypothesis that MLKL overexpression in the absence of cell death contributes to both Ca2+ and metabolic dyshomeostasis, which are cellular hallmarks of brain aging.
Collapse
Affiliation(s)
- Sathyaseelan S Deepa
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Nidheesh Thadathil
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA
| | - Jorge Corral
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA
| | - Sabira Mohammed
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sophia Pham
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA
| | - Hadyn Rose
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA
| | - Michael T Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Arlan Richardson
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, OK, USA.
| |
Collapse
|
23
|
Koveal D. Functional principles of genetically encoded fluorescent biosensors for metabolism and their quantitative use. J Neurochem 2024; 168:496-505. [PMID: 37314388 DOI: 10.1111/jnc.15878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Genetically encoded fluorescent biosensors provide an attractive means of measuring chemical changes in single cells on fast timescales (milliseconds to seconds). While their most prominent application has been in tracking neural activity and neurotransmitter release, there has been growing interest in developing and deploying new versions of these tools to study brain metabolism. However, the careful use of these tools and the interpretation of the data they provide remain challenging. Many biosensors are subject to interferences that can alter sensor responses within a single cell or between cells, producing ambiguous results. This presents a challenge for quantitation and for our ability to accurately interpret sensor responses. This review describes current methods of sensor quantitation, with a focus on cellular interferences that commonly affect sensor performance, ways to avoid false inferences, and recent advances in sensor optimization to make them more robust.
Collapse
Affiliation(s)
- Dorothy Koveal
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Jensen GC, Janis MK, Nguyen HN, David OW, Zastrow ML. Fluorescent Protein-Based Sensors for Detecting Essential Metal Ions across the Tree of Life. ACS Sens 2024; 9:1622-1643. [PMID: 38587931 PMCID: PMC11073808 DOI: 10.1021/acssensors.3c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Genetically encoded fluorescent metal ion sensors are powerful tools for elucidating metal dynamics in living systems. Over the last 25 years since the first examples of genetically encoded fluorescent protein-based calcium indicators, this toolbox of probes has expanded to include other essential and non-essential metal ions. Collectively, these tools have illuminated fundamental aspects of metal homeostasis and trafficking that are crucial to fields ranging from neurobiology to human nutrition. Despite these advances, much of the application of metal ion sensors remains limited to mammalian cells and tissues and a limited number of essential metals. Applications beyond mammalian systems and in vivo applications in living organisms have primarily used genetically encoded calcium ion sensors. The aim of this Perspective is to provide, with the support of historical and recent literature, an updated and critical view of the design and use of fluorescent protein-based sensors for detecting essential metal ions in various organisms. We highlight the historical progress and achievements with calcium sensors and discuss more recent advances and opportunities for the detection of other essential metal ions. We also discuss outstanding challenges in the field and directions for future studies, including detecting a wider variety of metal ions, developing and implementing a broader spectral range of sensors for multiplexing experiments, and applying sensors to a wider range of single- and multi-species biological systems.
Collapse
Affiliation(s)
- Gary C Jensen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Makena K Janis
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Ogonna W David
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
25
|
Cho B, Shin M, Chang E, Son S, Shin I, Shim J. S-nitrosylation-triggered unfolded protein response maintains hematopoietic progenitors in Drosophila. Dev Cell 2024; 59:1075-1090.e6. [PMID: 38521056 DOI: 10.1016/j.devcel.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/27/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
The Drosophila lymph gland houses blood progenitors that give rise to myeloid-like blood cells. Initially, blood progenitors proliferate, but later, they become quiescent to maintain multipotency before differentiation. Despite the identification of various factors involved in multipotency maintenance, the cellular mechanism controlling blood progenitor quiescence remains elusive. Here, we identify the expression of nitric oxide synthase in blood progenitors, generating nitric oxide for post-translational S-nitrosylation of protein cysteine residues. S-nitrosylation activates the Ire1-Xbp1-mediated unfolded protein response, leading to G2 cell-cycle arrest. Specifically, we identify the epidermal growth factor receptor as a target of S-nitrosylation, resulting in its retention within the endoplasmic reticulum and blockade of its receptor function. Overall, our findings highlight developmentally programmed S-nitrosylation as a critical mechanism that induces protein quality control in blood progenitors, maintaining their undifferentiated state by inhibiting cell-cycle progression and rendering them unresponsive to paracrine factors.
Collapse
Affiliation(s)
- Bumsik Cho
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Mingyu Shin
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunji Chang
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Seogho Son
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Incheol Shin
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
26
|
Zhang Y, Looger LL. Fast and sensitive GCaMP calcium indicators for neuronal imaging. J Physiol 2024; 602:1595-1604. [PMID: 36811153 DOI: 10.1113/jp283832] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
We review the principles of development and deployment of genetically encoded calcium indicators (GECIs) for the detection of neural activity. Our focus is on the popular GCaMP family of green GECIs, culminating in the recent release of the jGCaMP8 sensors, with dramatically improved kinetics relative to previous generations. We summarize the properties of GECIs in multiple colour channels (blue, cyan, green, yellow, red, far-red) and highlight areas for further improvement. With their low-millisecond rise-times, the jGCaMP8 indicators allow new classes of experiments following neural activity in time frames approaching the underlying computations.
Collapse
Affiliation(s)
- Yan Zhang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
27
|
Aggarwal A, Sunil S, Bendifallah I, Moon M, Drobizhev M, Zarowny L, Zheng J, Wu SY, Lohman AW, Tebo AG, Emiliani V, Podgorski K, Shen Y, Campbell RE. Blue-shifted genetically encoded Ca 2+ indicator with enhanced two-photon absorption. NEUROPHOTONICS 2024; 11:024207. [PMID: 38577628 PMCID: PMC10993905 DOI: 10.1117/1.nph.11.2.024207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Abstract
Significance Genetically encoded calcium ion (Ca 2 + ) indicators (GECIs) are powerful tools for monitoring intracellular Ca 2 + concentration changes in living cells and model organisms. In particular, GECIs have found particular utility for monitoring the transient increase of Ca 2 + concentration that is associated with the neuronal action potential. However, the palette of highly optimized GECIs for imaging of neuronal activity remains relatively limited. Expanding the selection of available GECIs to include new colors and distinct photophysical properties could create new opportunities for in vitro and in vivo fluorescence imaging of neuronal activity. In particular, blue-shifted variants of GECIs are expected to have enhanced two-photon brightness, which would facilitate multiphoton microscopy. Aim We describe the development and applications of T-GECO1-a high-performance blue-shifted GECI based on the Clavularia sp.-derived mTFP1. Approach We use protein engineering and extensive directed evolution to develop T-GECO1. We characterize the purified protein and assess its performance in vitro using one-photon excitation in cultured rat hippocampal neurons, in vivo using one-photon excitation fiber photometry in mice, and ex vivo using two-photon Ca 2 + imaging in hippocampal slices. Results The Ca 2 + -bound state of T-GECO1 has an excitation peak maximum of 468 nm, an emission peak maximum of 500 nm, an extinction coefficient of 49,300 M - 1 cm - 1 , a quantum yield of 0.83, and two-photon brightness approximately double that of EGFP. The Ca 2 + -dependent fluorescence increase is 15-fold, and the apparent K d for Ca 2 + is 82 nM. With two-photon excitation conditions at 850 nm, T-GECO1 consistently enabled the detection of action potentials with higher signal-to-noise (SNR) than a late generation GCaMP variant. Conclusions T-GECO1 is a high-performance blue-shifted GECI that, under two-photon excitation conditions, provides advantages relative to late generation GCaMP variants.
Collapse
Affiliation(s)
- Abhi Aggarwal
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
- Allen Institute for Neural Dynamics, Seattle, Washington, United States
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, United States
- University of Calgary, Hotchkiss Brain Institute, Department of Cell Biology and Anatomy Calgary, Alberta, Canada
| | - Smrithi Sunil
- Allen Institute for Neural Dynamics, Seattle, Washington, United States
| | | | - Michael Moon
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Mikhail Drobizhev
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, Montana, United States
| | - Landon Zarowny
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Jihong Zheng
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, United States
| | - Sheng-Yi Wu
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Alexander W. Lohman
- University of Calgary, Hotchkiss Brain Institute, Department of Cell Biology and Anatomy Calgary, Alberta, Canada
| | - Alison G. Tebo
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, United States
| | | | - Kaspar Podgorski
- Allen Institute for Neural Dynamics, Seattle, Washington, United States
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, United States
| | - Yi Shen
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Robert E. Campbell
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
- Université Laval, CERVO Brain Research Center, Department of Biochemistry, Microbiology, and Bioinformatics, Québec, Québec, Canada
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| |
Collapse
|
28
|
Su Q, Zhang J, Lin W, Zhang JF, Newton AC, Mehta S, Yang J, Zhang J. Sensitive Fluorescent Biosensor Reveals Differential Subcellular Regulation of PKC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587373. [PMID: 38586003 PMCID: PMC10996667 DOI: 10.1101/2024.03.29.587373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The protein kinase C (PKC) family of serine/threonine kinases, which consist of three distinctly regulated subfamilies, have long been established as critical for a variety of cellular functions. However, how PKC enzymes are regulated at different subcellular locations, particularly at emerging signaling hubs such as the ER, lysosome, and Par signaling complexes, is unclear. Here, we present a sensitive Excitation Ratiometric (ExRai) C Kinase Activity Reporter (ExRai-CKAR2) that enables the detection of minute changes in subcellular PKC activity. Using ExRai-CKAR2 in conjunction with an enhanced diacylglycerol (DAG) biosensor capable of detecting intracellular DAG dynamics, we uncover the differential regulation of PKC isoforms at distinct subcellular locations. We find that G-protein coupled receptor (GPCR) stimulation triggers sustained PKC activity at the ER and lysosomes, primarily mediated by Ca2+ sensitive conventional PKC (cPKC) and novel PKC (nPKC), respectively, with nPKC showing high basal activity due to elevated basal DAG levels on lysosome membranes. The high sensitivity of ExRai-CKAR2, targeted to either the cytosol or Par-complexes, further enabled us to detect previously inaccessible endogenous atypical PKC (aPKC) activity in 3D organoids. Taken together, ExRai-CKAR2 is a powerful tool for interrogating PKC regulation in response to physiological stimuli.
Collapse
Affiliation(s)
- Qi Su
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jing Zhang
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Wei Lin
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jin-Fan Zhang
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Alexandra C Newton
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jing Yang
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
29
|
Kubitschke M, Masseck OA. Illuminating the brain-genetically encoded single wavelength fluorescent biosensors to unravel neurotransmitter dynamics. Biol Chem 2024; 405:55-65. [PMID: 37246368 DOI: 10.1515/hsz-2023-0175] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Understanding how neuronal networks generate complex behavior is one of the major goals of Neuroscience. Neurotransmitter and Neuromodulators are crucial for information flow between neurons and understanding their dynamics is the key to unravel their role in behavior. To understand how the brain transmits information and how brain states arise, it is essential to visualize the dynamics of neurotransmitters, neuromodulators and neurochemicals. In the last five years, an increasing number of single-wavelength biosensors either based on periplasmic binding proteins (PBPs) or on G-protein-coupled receptors (GPCR) have been published that are able to detect neurotransmitter release in vitro and in vivo with high spatial and temporal resolution. Here we review and discuss recent progress in the development of these sensors, their limitations and future directions.
Collapse
|
30
|
Zhang H, Tian X, Zhang J, Ai HW. Engineering and Characterization of 3-Aminotyrosine-Derived Red Fluorescent Variants of Circularly Permutated Green Fluorescent Protein. BIOSENSORS 2024; 14:54. [PMID: 38275307 PMCID: PMC10813706 DOI: 10.3390/bios14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Introducing 3-aminotyrosine (aY), a noncanonical amino acid (ncAA), into green fluorescent protein (GFP)-like chromophores shows promise for achieving red-shifted fluorescence. However, inconsistent results, including undesired green fluorescent species, hinder the effectiveness of this approach. In this study, we optimized expression conditions for an aY-derived cpGFP (aY-cpGFP). Key factors like rich culture media and oxygen restriction pre- and post-induction enabled high-yield, high-purity production of the red-shifted protein. We also engineered two variants of aY-cpGFP with enhanced brightness by mutating a few amino acid residues surrounding the chromophore. We further investigated the sensitivity of the aY-derived protein to metal ions, reactive oxygen species (ROS), and reactive nitrogen species (RNS). Incorporating aY into cpGFP had minimal impact on metal ion reactivity but increased the response to RNS. Expanding on these findings, we examined aY-cpGFP expression in mammalian cells and found that reductants in the culture media significantly increased the red-emitting product. Our study indicates that optimizing expression conditions to promote a reduced cellular state proved effective in producing the desired red-emitting product in both E. coli and mammalian cells, while targeted mutagenesis-based protein engineering can further enhance brightness and increase method robustness.
Collapse
Affiliation(s)
- Hao Zhang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA; (H.Z.); (X.T.); (J.Z.)
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Xiaodong Tian
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA; (H.Z.); (X.T.); (J.Z.)
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Jing Zhang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA; (H.Z.); (X.T.); (J.Z.)
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui-wang Ai
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA; (H.Z.); (X.T.); (J.Z.)
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
- The UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
31
|
Jeong J, Lee J, Talaia G, Kim W, Song J, Hong J, Yoo K, Gonzalez DG, Athonvarangkul D, Shin J, Dann P, Haberman AM, Kim LK, Ferguson SM, Choi J, Wysolmerski J. Intracellular calcium links milk stasis to lysosome-dependent cell death during early mammary gland involution. Cell Mol Life Sci 2024; 81:29. [PMID: 38212474 PMCID: PMC10784359 DOI: 10.1007/s00018-023-05044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/17/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024]
Abstract
Involution of the mammary gland after lactation is a dramatic example of coordinated cell death. Weaning causes distension of the alveolar structures due to the accumulation of milk, which, in turn, activates STAT3 and initiates a caspase-independent but lysosome-dependent cell death (LDCD) pathway. Although the importance of STAT3 and LDCD in early mammary involution is well established, it has not been entirely clear how milk stasis activates STAT3. In this report, we demonstrate that protein levels of the PMCA2 calcium pump are significantly downregulated within 2-4 h of experimental milk stasis. Reductions in PMCA2 expression correlate with an increase in cytoplasmic calcium in vivo as measured by multiphoton intravital imaging of GCaMP6f fluorescence. These events occur concomitant with the appearance of nuclear pSTAT3 expression but prior to significant activation of LDCD or its previously implicated mediators such as LIF, IL6, and TGFβ3, all of which appear to be upregulated by increased intracellular calcium. We further demonstrate that increased intracellular calcium activates STAT3 by inducing degradation of its negative regulator, SOCS3. We also observed that milk stasis, loss of PMCA2 expression and increased intracellular calcium levels activate TFEB, an important regulator of lysosome biogenesis through a process involving inhibition of CDK4/6 and cell cycle progression. In summary, these data suggest that intracellular calcium serves as an important proximal biochemical signal linking milk stasis to STAT3 activation, increased lysosomal biogenesis, and lysosome-mediated cell death.
Collapse
Affiliation(s)
- Jaekwang Jeong
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Jongwon Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Gabriel Talaia
- Departments of Cell Biology and of Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Wonnam Kim
- Division of Phamacology, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Junho Song
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Juhyeon Hong
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kwangmin Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - David G Gonzalez
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Diana Athonvarangkul
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jaehun Shin
- Integrated Science Engineering Division, Underwood International College, Yonsei University, Seoul, Republic of Korea
| | - Pamela Dann
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ann M Haberman
- Departments of Immunobiology and Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Lark Kyun Kim
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, Republic of Korea
| | - Shawn M Ferguson
- Departments of Cell Biology and of Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - John Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
32
|
Taniguchi J, Melani R, Chantranupong L, Wen MJ, Mohebi A, Berke J, Sabatini B, Tritsch N. Comment on 'Accumbens cholinergic interneurons dynamically promote dopamine release and enable motivation'. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573485. [PMID: 38260459 PMCID: PMC10802245 DOI: 10.1101/2023.12.27.573485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Acetylcholine is widely believed to modulate the release of dopamine in the striatum of mammals. Experiments in brain slices clearly show that synchronous activation of striatal cholinergic interneurons is sufficient to drive dopamine release via axo-axonal stimulation of nicotinic acetylcholine receptors. However, evidence for this mechanism in vivo has been less forthcoming. A recent paper in eLife (Mohebi et al., 2023) reported that, in awake behaving rats, optogenetic activation of striatal cholinergic interneurons with blue light readily evokes dopamine release measured with the red fluorescent sensor RdLight1. Here, we show that blue light alone alters the fluorescent properties of RdLight1 in a manner that may be misconstrued as phasic dopamine release, and that this artefactual photoactivation can account for the effects attributed to cholinergic interneurons. Our findings indicate that measurements of dopamine using the red-shifted fluorescent sensor RdLight1 should be interpreted with caution when combined with optogenetics. In light of this and other publications that did not observe large acetylcholine-evoked dopamine transients in vivo, the conditions under which such release occurs in behaving animals remain unknown.
Collapse
Affiliation(s)
- James Taniguchi
- Neuroscience Institute and Fresco Institute for Parkinson's and Movement Disorders, New York University Grossman School of Medicine, New York, USA
| | - Riccardo Melani
- Neuroscience Institute and Fresco Institute for Parkinson's and Movement Disorders, New York University Grossman School of Medicine, New York, USA
| | - Lynne Chantranupong
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, USA
| | - Michelle J Wen
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, USA
| | - Ali Mohebi
- Department of Neurology, University of California, San Francisco, San Francisco, USA
| | - Joshua Berke
- Department of Neurology, University of California, San Francisco, San Francisco, USA
| | - Bernardo Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, USA
| | - Nicolas Tritsch
- Neuroscience Institute and Fresco Institute for Parkinson's and Movement Disorders, New York University Grossman School of Medicine, New York, USA
- Lead contact
| |
Collapse
|
33
|
Csordás G, Weaver D, Várnai P, Hajnóczky G. Supralinear Dependence of the IP 3 Receptor-to-Mitochondria Local Ca 2+ Transfer on the Endoplasmic Reticulum Ca 2+ Loading. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241229273. [PMID: 38362008 PMCID: PMC10868505 DOI: 10.1177/25152564241229273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Calcium signal propagation from endoplasmic reticulum (ER) to mitochondria regulates a multitude of mitochondrial and cell functions, including oxidative ATP production and cell fate decisions. Ca2+ transfer is optimal at the ER-mitochondrial contacts, where inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) can locally expose the mitochondrial Ca2+ uniporter (mtCU) to high [Ca2+] nanodomains. The Ca2+ loading state of the ER (Ca2 + ER) can vary broadly in physiological and pathological scenarios, however, the correlation between Ca2 + ER and the local Ca2+ transfer is unclear. Here, we studied IP3-induced Ca2+ transfer to mitochondria at different Ca2 + ER in intact and permeabilized RBL-2H3 cells via fluorescence measurements of cytoplasmic [Ca2+] ([Ca2+]c) and mitochondrial matrix [Ca2+] ([Ca2+]m). Preincubation of intact cells in high versus low extracellular [Ca2+] caused disproportionally greater increase in [Ca2+]m than [Ca2+]c responses to IP3-mobilizing agonist. Increasing Ca2 + ER by small Ca2+ boluses in suspensions of permeabilized cells supralinearly enhanced the mitochondrial Ca2+ uptake from IP3-induced Ca2+ release. The IP3-induced local [Ca2+] spikes exposing the mitochondrial surface measured using a genetically targeted sensor appeared to linearly correlate with Ca2 + ER, indicating that amplification happened in the mitochondria. Indeed, overexpression of an EF-hand deficient mutant of the mtCU gatekeeper MICU1 reduced the cooperativity of mitochondrial Ca2+ uptake. Interestingly, the IP3-induced [Ca2+]m signal plateaued at high Ca2 + ER, indicating activation of a matrix Ca2+ binding/chelating species. Mitochondria thus seem to maintain a "working [Ca2+]m range" via a low-affinity and high-capacity buffer species, and the ER loading steeply enhances the IP3R-linked [Ca2+]m signals in this working range.
Collapse
Affiliation(s)
- György Csordás
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - David Weaver
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Péter Várnai
- Department of Physiology, Semmelweis Medical University, Budapest, Hungary
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
34
|
Zhou ZC, Gordon-Fennell A, Piantadosi SC, Ji N, Smith SL, Bruchas MR, Stuber GD. Deep-brain optical recording of neural dynamics during behavior. Neuron 2023; 111:3716-3738. [PMID: 37804833 PMCID: PMC10843303 DOI: 10.1016/j.neuron.2023.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
In vivo fluorescence recording techniques have produced landmark discoveries in neuroscience, providing insight into how single cell and circuit-level computations mediate sensory processing and generate complex behaviors. While much attention has been given to recording from cortical brain regions, deep-brain fluorescence recording is more complex because it requires additional measures to gain optical access to harder to reach brain nuclei. Here we discuss detailed considerations and tradeoffs regarding deep-brain fluorescence recording techniques and provide a comprehensive guide for all major steps involved, from project planning to data analysis. The goal is to impart guidance for new and experienced investigators seeking to use in vivo deep fluorescence optical recordings in awake, behaving rodent models.
Collapse
Affiliation(s)
- Zhe Charles Zhou
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Adam Gordon-Fennell
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Sean C Piantadosi
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Spencer LaVere Smith
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - Garret D Stuber
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
35
|
Davis LC, Morgan AJ, Galione A. Optical profiling of autonomous Ca 2+ nanodomains generated by lysosomal TPC2 and TRPML1. Cell Calcium 2023; 116:102801. [PMID: 37742482 DOI: 10.1016/j.ceca.2023.102801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Multiple families of Ca2+-permeable channels co-exist on lysosomal Ca2+ stores but how each family couples to its own unique downstream physiology is unclear. We have therefore investigated the Ca2+-signalling architecture underpinning different channels on the same vesicle that drive separate pathways, using phagocytosis as a physiological stimulus. Lysosomal Ca2+-channels are a major Ca2+ source driving particle uptake in macrophages, but different channels drive different aspects of Fc-receptor-mediated phagocytosis: TPC2 couples to dynamin activation, whilst TRPML1 couples to lysosomal exocytosis. We hypothesised that they are driven by discrete local plumes of Ca2+ around open channels (Ca2+ nanodomains). To test this, we optimized Ca2+-nanodomain recordings by screening panels of genetically encoded Ca2+ indicators (GECIs) fused to TPC2 to monitor the [Ca2+] next to the channel. Signal calibration accounting for the distance of the GECI from the channel mouth reveals that, during phagocytosis, TPC2 generates local Ca2+ nanodomains around itself of up to 42 µM, nearly a hundred-fold greater than the global cytosolic [Ca2+] rise. We further show that TPC2 and TRPML1, though on the same lysosomes, generate autonomous Ca2+ nanodomains of high [Ca2+] that are largely insulated from one another, a platform allowing their discrete Ca2+-decoding to promote unique respective physiologies.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
36
|
Junge S, Ricci Signorini ME, Al Masri M, Gülink J, Brüning H, Kasperek L, Szepes M, Bakar M, Gruh I, Heisterkamp A, Torres-Mapa ML. A micro-LED array based platform for spatio-temporal optogenetic control of various cardiac models. Sci Rep 2023; 13:19490. [PMID: 37945622 PMCID: PMC10636122 DOI: 10.1038/s41598-023-46149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Optogenetics relies on dynamic spatial and temporal control of light to address emerging fundamental and therapeutic questions in cardiac research. In this work, a compact micro-LED array, consisting of 16 × 16 pixels, is incorporated in a widefield fluorescence microscope for controlled light stimulation. We describe the optical design of the system that allows the micro-LED array to fully cover the field of view regardless of the imaging objective used. Various multicellular cardiac models are used in the experiments such as channelrhodopsin-2 expressing aggregates of cardiomyocytes, termed cardiac bodies, and bioartificial cardiac tissues derived from human induced pluripotent stem cells. The pacing efficiencies of the cardiac bodies and bioartificial cardiac tissues were characterized as a function of illumination time, number of switched-on pixels and frequency of stimulation. To demonstrate dynamic stimulation, steering of calcium waves in HL-1 cell monolayer expressing channelrhodopsin-2 was performed by applying different configurations of patterned light. This work shows that micro-LED arrays are powerful light sources for optogenetic control of contraction and calcium waves in cardiac monolayers, multicellular bodies as well as three-dimensional artificial cardiac tissues.
Collapse
Affiliation(s)
- Sebastian Junge
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, 30167, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany
| | - Maria Elena Ricci Signorini
- Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625, Hannover, Germany
| | - Masa Al Masri
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, 30167, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany
| | - Jan Gülink
- QubeDot GmbH, Wilhelmsgarten 3, 38100, Brunswick, Germany
| | - Heiko Brüning
- QubeDot GmbH, Wilhelmsgarten 3, 38100, Brunswick, Germany
| | - Leon Kasperek
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, 30167, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany
| | - Monika Szepes
- Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625, Hannover, Germany
| | - Mine Bakar
- Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625, Hannover, Germany
| | - Ina Gruh
- Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625, Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, 30167, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany
| | - Maria Leilani Torres-Mapa
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, 30167, Hannover, Germany.
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany.
| |
Collapse
|
37
|
Chen Y, Pang S, Li J, Lu Y, Gao C, Xiao Y, Chen M, Wang M, Ren X. Genetically encoded protein sensors for metal ion detection in biological systems: a review and bibliometric analysis. Analyst 2023; 148:5564-5581. [PMID: 37872814 DOI: 10.1039/d3an01412f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Metal ions are indispensable elements in living organisms and are associated with regulating various biological processes. An imbalance in metal ion content can lead to disorders in normal physiological functions of the human body and cause various diseases. Genetically encoded fluorescent protein sensors have the advantages of low biotoxicity, high specificity, and a long imaging time in vivo and have become a powerful tool to visualize or quantify the concentration level of biomolecules in vivo and in vitro, temporal and spatial distribution, and life activity process. This review analyzes the development status and current research hotspots in the field of genetically encoded fluorescent protein sensors by bibliometric analysis. Based on the results of bibliometric analysis, the research progress of genetically encoded fluorescent protein sensors for metal ion detection is reviewed, and the construction strategies, physicochemical properties, and applications of such sensors in biological imaging are summarized.
Collapse
Affiliation(s)
- Yuxueyuan Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - ShuChao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Jingya Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yun Lu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chenxia Gao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanyu Xiao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meiling Chen
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Meng Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, China
| | - Xiaoliang Ren
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
38
|
Nasu Y, Aggarwal A, Le GNT, Vo CT, Kambe Y, Wang X, Beinlich FRM, Lee AB, Ram TR, Wang F, Gorzo KA, Kamijo Y, Boisvert M, Nishinami S, Kawamura G, Ozawa T, Toda H, Gordon GR, Ge S, Hirase H, Nedergaard M, Paquet ME, Drobizhev M, Podgorski K, Campbell RE. Lactate biosensors for spectrally and spatially multiplexed fluorescence imaging. Nat Commun 2023; 14:6598. [PMID: 37891202 PMCID: PMC10611801 DOI: 10.1038/s41467-023-42230-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
L-Lactate is increasingly appreciated as a key metabolite and signaling molecule in mammals. However, investigations of the inter- and intra-cellular dynamics of L-lactate are currently hampered by the limited selection and performance of L-lactate-specific genetically encoded biosensors. Here we now report a spectrally and functionally orthogonal pair of high-performance genetically encoded biosensors: a green fluorescent extracellular L-lactate biosensor, designated eLACCO2.1, and a red fluorescent intracellular L-lactate biosensor, designated R-iLACCO1. eLACCO2.1 exhibits excellent membrane localization and robust fluorescence response. To the best of our knowledge, R-iLACCO1 and its affinity variants exhibit larger fluorescence responses than any previously reported intracellular L-lactate biosensor. We demonstrate spectrally and spatially multiplexed imaging of L-lactate dynamics by coexpression of eLACCO2.1 and R-iLACCO1 in cultured cells, and in vivo imaging of extracellular and intracellular L-lactate dynamics in mice.
Collapse
Affiliation(s)
- Yusuke Nasu
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, 102-0075, Japan.
| | - Abhi Aggarwal
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
- Allen Institute for Neural Dynamics, Seattle, WA, 98109, USA
| | - Giang N T Le
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Camilla Trang Vo
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Yuki Kambe
- Department of Pharmacology, Graduate School of Medical and Dental Science, Kagoshima University, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Xinxing Wang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Felix R M Beinlich
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Ashley Bomin Lee
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Tina R Ram
- Hotchkiss Brain Institute, Cumming School of Medicine, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Fangying Wang
- Hotchkiss Brain Institute, Cumming School of Medicine, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Kelsea A Gorzo
- Hotchkiss Brain Institute, Cumming School of Medicine, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Yuki Kamijo
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Marc Boisvert
- CERVO Brain Research Centre, Québec, QC, G1J 2G3, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Québec, QC, G1E 1T2, Canada
| | - Suguru Nishinami
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Genki Kawamura
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hirofumi Toda
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Grant R Gordon
- Hotchkiss Brain Institute, Cumming School of Medicine, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Hajime Hirase
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Marie-Eve Paquet
- CERVO Brain Research Centre, Québec, QC, G1J 2G3, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Québec, QC, G1E 1T2, Canada
| | - Mikhail Drobizhev
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Kaspar Podgorski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
- Allen Institute for Neural Dynamics, Seattle, WA, 98109, USA
| | - Robert E Campbell
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- CERVO Brain Research Centre, Québec, QC, G1J 2G3, Canada.
- Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Québec, QC, G1E 1T2, Canada.
| |
Collapse
|
39
|
Xu S, Momin M, Ahmed S, Hossain A, Veeramuthu L, Pandiyan A, Kuo CC, Zhou T. Illuminating the Brain: Advances and Perspectives in Optoelectronics for Neural Activity Monitoring and Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303267. [PMID: 37726261 DOI: 10.1002/adma.202303267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/30/2023] [Indexed: 09/21/2023]
Abstract
Optogenetic modulation of brain neural activity that combines optical and electrical modes in a unitary neural system has recently gained robust momentum. Controlling illumination spatial coverage, designing light-activated modulators, and developing wireless light delivery and data transmission are crucial for maximizing the use of optical neuromodulation. To this end, biocompatible electrodes with enhanced optoelectrical performance, device integration for multiplexed addressing, wireless transmission, and multimodal operation in soft systems have been developed. This review provides an outlook for uniformly illuminating large brain areas while spatiotemporally imaging the neural responses upon optoelectrical stimulation with little artifacts. Representative concepts and important breakthroughs, such as head-mounted illumination, multiple implanted optical fibers, and micro-light-delivery devices, are discussed. Examples of techniques that incorporate electrophysiological monitoring and optoelectrical stimulation are presented. Challenges and perspectives are posed for further research efforts toward high-density optoelectrical neural interface modulation, with the potential for nonpharmacological neurological disease treatments and wireless optoelectrical stimulation.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Marzia Momin
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Salahuddin Ahmed
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Arafat Hossain
- Department of Electrical Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Loganathan Veeramuthu
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Archana Pandiyan
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Chi-Ching Kuo
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Tao Zhou
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| |
Collapse
|
40
|
Miller MR, Lee YF, Kastanenka KV. Calcium sensor Yellow Cameleon 3.6 as a tool to support the calcium hypothesis of Alzheimer's disease. Alzheimers Dement 2023; 19:4196-4203. [PMID: 37154246 PMCID: PMC10524576 DOI: 10.1002/alz.13111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disease with increasing relevance as dementia cases rise. The etiology of AD is widely debated. The Calcium Hypothesis of Alzheimer's disease and brain aging states that the dysfunction of calcium signaling is the final common pathway leading to neurodegeneration. When the Calcium Hypothesis was originally coined, the technology did not exist to test it, but with the advent of Yellow Cameleon 3.6 (YC3.6) we are able to test its validity. METHODS Here we review use of YC3.6 in studying Alzheimer's disease using mouse models and discuss whether these studies support or refute the Calcium Hypothesis. RESULTS YC3.6 studies showed that amyloidosis preceded dysfunction in neuronal calcium signaling and changes in synapse structure. This evidence supports the Calcium Hypothesis. DISCUSSION In vivo YC3.6 studies point to calcium signaling as a promising therapeutic target; however, additional work is necessary to translate these findings to humans.
Collapse
Affiliation(s)
- Morgan R. Miller
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ksenia V. Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| |
Collapse
|
41
|
Moran J, Feltham L, Bagnall J, Goldrick M, Lord E, Nettleton C, Spiller DG, Roberts I, Paszek P. Live-cell imaging reveals single-cell and population-level infection strategies of Listeria monocytogenes in macrophages. Front Immunol 2023; 14:1235675. [PMID: 37675103 PMCID: PMC10478088 DOI: 10.3389/fimmu.2023.1235675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/01/2023] [Indexed: 09/08/2023] Open
Abstract
Pathogens have developed intricate strategies to overcome the host's innate immune responses. In this paper we use live-cell microscopy with a single bacterium resolution to follow in real time interactions between the food-borne pathogen L. monocytogenes and host macrophages, a key event controlling the infection in vivo. We demonstrate that infection results in heterogeneous outcomes, with only a subset of bacteria able to establish a replicative invasion of macrophages. The fate of individual bacteria in the same host cell was independent from the host cell and non-cooperative, being independent from co-infecting bacteria. A higher multiplicity of infection resulted in a reduced probability of replication of the overall bacterial population. By use of internalisation assays and conditional probabilities to mathematically describe the two-stage invasion process, we demonstrate that the higher MOI compromises the ability of macrophages to phagocytose bacteria. We found that the rate of phagocytosis is mediated via the secreted Listeriolysin toxin (LLO), while the probability of replication of intracellular bacteria remained constant. Using strains expressing fluorescent reporters to follow transcription of either the LLO-encoding hly or actA genes, we show that replicative bacteria exhibited higher PrfA regulon expression in comparison to those bacteria that did not replicate, however elevated PrfA expression per se was not sufficient to increase the probability of replication. Overall, this demonstrates a new role for the population-level, but not single cell, PrfA-mediated activity to regulate outcomes of host pathogen interactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ian Roberts
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Pawel Paszek
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
42
|
Enck JR, Olson EC. Calcium Signaling during Cortical Apical Dendrite Initiation: A Role for Cajal-Retzius Neurons. Int J Mol Sci 2023; 24:12965. [PMID: 37629145 PMCID: PMC10455361 DOI: 10.3390/ijms241612965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The apical dendrite of a cortical projection neuron (CPN) is generated from the leading process of the migrating neuron as the neuron completes migration. This transformation occurs in the cortical marginal zone (MZ), a layer that contains the Cajal-Retzius neurons and their axonal projections. Cajal-Retzius neurons (CRNs) are well known for their critical role in secreting Reelin, a glycoprotein that controls dendritogenesis and cell positioning in many regions of the developing brain. In this study, we examine the possibility that CRNs in the MZ may provide additional signals to arriving CPNs, that may promote the maturation of CPNs and thus shape the development of the cortex. We use whole embryonic hemisphere explants and multiphoton microscopy to confirm that CRNs display intracellular calcium transients of <1-min duration and high amplitude during early corticogenesis. In contrast, developing CPNs do not show high-amplitude calcium transients, but instead show a steady increase in intracellular calcium that begins at the time of dendritic initiation, when the leading process of the migrating CPN is encountering the MZ. The possible existence of CRN to CPN communication was revealed by the application of veratridine, a sodium channel activator, which has been shown to preferentially stimulate more mature cells in the MZ at an early developmental time. Surprisingly, veratridine application also triggers large calcium transients in CPNs, which can be partially blocked by a cocktail of antagonists that block glutamate and glycine receptor activation. These findings outline a model in which CRN spontaneous activity triggers the release of glutamate and glycine, neurotransmitters that can trigger intracellular calcium elevations in CPNs. These elevations begin as CPNs initiate dendritogenesis and continue as waves in the post-migratory cells. Moreover, we show that the pharmacological blockade of glutamatergic signaling disrupts migration, while forced expression of a bacterial voltage-gated calcium channel (CavMr) in the migrating neurons promotes dendritic growth and migration arrest. The identification of CRN to CPN signaling during early development provides insight into the observation that many autism-linked genes encode synaptic proteins that, paradoxically, are expressed in the developing cortex well before the appearance of synapses and the establishment of functional circuits.
Collapse
Affiliation(s)
| | - Eric C. Olson
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, 505 Irving Ave., Syracuse, NY 13210, USA;
| |
Collapse
|
43
|
Zhang SX, Kim A, Madara JC, Zhu PK, Christenson LF, Lutas A, Kalugin PN, Jin Y, Pal A, Tian L, Lowell BB, Andermann ML. Competition between stochastic neuropeptide signals calibrates the rate of satiation. RESEARCH SQUARE 2023:rs.3.rs-3185572. [PMID: 37546985 PMCID: PMC10402269 DOI: 10.21203/rs.3.rs-3185572/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
We investigated how transmission of hunger- and satiety-promoting neuropeptides, NPY and αMSH, is integrated at the level of intracellular signaling to control feeding. Receptors for these peptides use the second messenger cAMP. How cAMP integrates opposing peptide signals to regulate energy balance, and the in vivo spatiotemporal dynamics of endogenous peptidergic signaling, remain largely unknown. We show that AgRP axon stimulation in the paraventricular hypothalamus evokes probabilistic NPY release that triggers stochastic cAMP decrements in downstream MC4R-expressing neurons (PVHMC4R). Meanwhile, POMC axon stimulation triggers stochastic, αMSH-dependent cAMP increments. Release of either peptide impacts a ~100 μm diameter region, and when these peptide signals overlap, they compete to control cAMP. The competition is reflected by hunger-state-dependent differences in the amplitude and persistence of cAMP transients: hunger peptides are more efficacious in the fasted state, satiety peptides in the fed state. Feeding resolves the competition by simultaneously elevating αMSH release and suppressing NPY release, thereby sustaining elevated cAMP in PVHMC4R neurons. In turn, cAMP potentiates feeding-related excitatory inputs and promotes satiation across minutes. Our findings highlight how biochemical integration of opposing, quantal peptide signals during energy intake orchestrates a gradual transition between stable states of hunger and satiety.
Collapse
Affiliation(s)
- Stephen X Zhang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Co-corresponding authors
| | - Angela Kim
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Paula K Zhu
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lauren F Christenson
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew Lutas
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Present address: Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter N Kalugin
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA
| | - Yihan Jin
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Akash Pal
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Co-corresponding authors
| |
Collapse
|
44
|
Petersen CE, Sun J, Silva K, Kosmach A, Balaban RS, Murphy E. Increased mitochondrial free Ca 2+ during ischemia is suppressed, but not eliminated by, germline deletion of the mitochondrial Ca 2+ uniporter. Cell Rep 2023; 42:112735. [PMID: 37421627 PMCID: PMC10529381 DOI: 10.1016/j.celrep.2023.112735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/20/2023] [Accepted: 06/18/2023] [Indexed: 07/10/2023] Open
Abstract
Mitochondrial Ca2+ overload is proposed to regulate cell death via opening of the mitochondrial permeability transition pore. It is hypothesized that inhibition of the mitochondrial Ca2+ uniporter (MCU) will prevent Ca2+ accumulation during ischemia/reperfusion and thereby reduce cell death. To address this, we evaluate mitochondrial Ca2+ in ex-vivo-perfused hearts from germline MCU-knockout (KO) and wild-type (WT) mice using transmural spectroscopy. Matrix Ca2+ levels are measured with a genetically encoded, red fluorescent Ca2+ indicator (R-GECO1) using an adeno-associated viral vector (AAV9) for delivery. Due to the pH sensitivity of R-GECO1 and the known fall in pH during ischemia, hearts are glycogen depleted to decrease the ischemic fall in pH. At 20 min of ischemia, there is significantly less mitochondrial Ca2+ in MCU-KO hearts compared with MCU-WT controls. However, an increase in mitochondrial Ca2+ is present in MCU-KO hearts, suggesting that mitochondrial Ca2+ overload during ischemia is not solely dependent on MCU.
Collapse
Affiliation(s)
- Courtney E Petersen
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Junhui Sun
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kavisha Silva
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Kosmach
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert S Balaban
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth Murphy
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Zhang SX, Kim A, Madara JC, Zhu PK, Christenson LF, Lutas A, Kalugin PN, Jin Y, Pal A, Tian L, Lowell BB, Andermann ML. Competition between stochastic neuropeptide signals calibrates the rate of satiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548551. [PMID: 37503012 PMCID: PMC10369917 DOI: 10.1101/2023.07.11.548551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We investigated how transmission of hunger- and satiety-promoting neuropeptides, NPY and αMSH, is integrated at the level of intracellular signaling to control feeding. Receptors for these peptides use the second messenger cAMP, but the messenger's spatiotemporal dynamics and role in energy balance are controversial. We show that AgRP axon stimulation in the paraventricular hypothalamus evokes probabilistic and spatially restricted NPY release that triggers stochastic cAMP decrements in downstream MC4R-expressing neurons (PVH MC4R ). Meanwhile, POMC axon stimulation triggers stochastic, αMSH-dependent cAMP increments. NPY and αMSH competitively control cAMP, as reflected by hunger-state-dependent differences in the amplitude and persistence of cAMP transients evoked by each peptide. During feeding bouts, elevated αMSH release and suppressed NPY release cooperatively sustain elevated cAMP in PVH MC4R neurons, thereby potentiating feeding-related excitatory inputs and promoting satiation across minutes. Our findings highlight how state-dependent integration of opposing, quantal peptidergic events by a common biochemical target calibrates energy intake.
Collapse
|
46
|
Pang Y, Huang M, Fan Y, Yeh HW, Xiong Y, Ng HL, Ai HW. Development, Characterization, and Structural Analysis of a Genetically Encoded Red Fluorescent Peroxynitrite Biosensor. ACS Chem Biol 2023; 18:1388-1397. [PMID: 37185019 PMCID: PMC10330634 DOI: 10.1021/acschembio.3c00139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Boronic acid-containing fluorescent molecules have been widely used to sense hydrogen peroxide and peroxynitrite, which are important reactive oxygen and nitrogen species in biological systems. However, it has been challenging to gain specificity. Our previous studies developed genetically encoded, green fluorescent peroxynitrite biosensors by genetically incorporating a boronic acid-containing noncanonical amino acid (ncAA), p-boronophenylalanine (pBoF), into the chromophore of circularly permuted green fluorescent proteins (cpGFPs). In this work, we introduced pBoF to amino acid residues spatially close to the chromophore of an enhanced circularly permuted red fluorescent protein (ecpApple). Our effort has resulted in two responsive ecpApple mutants: one bestows reactivity toward both peroxynitrite and hydrogen peroxide, while the other, namely, pnRFP, is a selective red fluorescent peroxynitrite biosensor. We characterized pnRFP in vitro and in live mammalian cells. We further studied the structure and sensing mechanism of pnRFP using X-ray crystallography, 11B-NMR, and computational methods. The boron atom in pnRFP adopts an sp2-hybridization geometry in a hydrophobic pocket, and the reaction of pnRFP with peroxynitrite generates a product with a twisted chromophore, corroborating the observed "turn-off" fluorescence response. Thus, this study extends the color palette of genetically encoded peroxynitrite biosensors, provides insight into the response mechanism of the new biosensor, and demonstrates the versatility of using protein scaffolds to modulate chemoreactivity.
Collapse
Affiliation(s)
- Yu Pang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Mian Huang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Yichong Fan
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Hsien-Wei Yeh
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Ying Xiong
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ho Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Hui-wang Ai
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- The UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
47
|
Jeong J, Lee J, Talaia G, Kim W, Song J, Hong J, Yoo K, Gonzalez D, Athonvarangkul D, Shin J, Dann P, Haberman A, Kim LK, Ferguson S, Choi J, Wysolmerski J. Intracellular Calcium links Milk Stasis to Lysosome Dependent Cell Death by Activating a TGFβ3/TFEB/STAT3 Pathway Early during Mammary Gland Involution. RESEARCH SQUARE 2023:rs.3.rs-3030763. [PMID: 37398309 PMCID: PMC10312953 DOI: 10.21203/rs.3.rs-3030763/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Involution of the mammary gland after lactation is a dramatic example of coordinated cell death. Weaning causes distension of the alveolar structures due to the accumulation of milk, which, in turn, activates STAT3 and initiates a caspase-independent but lysosome-dependent cell death (LDCD) pathway. Although the importance of STAT3 and LDCD in early mammary involution is well established, it has not been entirely clear how milk stasis activates STAT3. In this report, we demonstrate that protein levels of the PMCA2 calcium pump are significantly downregulated within 2-4 hours of experimental milk stasis. Reductions in PMCA2 expression correlate with an increase in cytoplasmic calcium in vivo as measured by multiphoton intravital imaging of GCaMP6f fluorescence. These events occur concomitant with the appearance of nuclear pSTAT3 expression but prior to significant activation of LDCD or its previously implicated mediators such as LIF, IL6 and TGFβ3, all of which appear to be upregulated by increased intracellular calcium. We also observed that milk stasis, loss of PMCA2 expression and increased intracellular calcium levels activate TFEB, an important regulator of lysosome biogenesis. This is the result of increased TGFβ signaling and inhibition of cell cycle progression. Finally, we demonstrate that increased intracellular calcium activates STAT3 by inducing degradation of its negative regulator, SOCS3, a process which also appears to be mediated by TGFβ signaling. In summary, these data suggest that intracellular calcium serves as an important proximal biochemical signal linking milk stasis to STAT3 activation, increased lysosomal biogenesis, and lysosome-mediated cell death.
Collapse
Affiliation(s)
- Jaekwang Jeong
- Yale School of Medicine: Yale University School of Medicine
| | | | - Gabriel Talaia
- Yale School of Medicine: Yale University School of Medicine
| | | | | | | | | | - David Gonzalez
- Yale School of Medicine: Yale University School of Medicine
| | | | | | - Pamela Dann
- Yale School of Medicine: Yale University School of Medicine
| | - Ann Haberman
- Yale School of Medicine: Yale University School of Medicine
| | | | - Shawn Ferguson
- Yale School of Medicine: Yale University School of Medicine
| | | | | |
Collapse
|
48
|
Chen C, Zhang H, Zhang J, Ai HW, Fang C. Structural origin and rational development of bright red noncanonical variants of green fluorescent protein. Phys Chem Chem Phys 2023; 25:15624-15634. [PMID: 37211909 PMCID: PMC10330862 DOI: 10.1039/d3cp01315d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The incorporation of noncanonical amino acids (ncAAs) into fluorescent proteins is promising for red-shifting their fluorescence and benefiting tissue imaging with deep penetration and low phototoxicity. However, ncAA-based red fluorescent proteins (RFPs) have been rare. The 3-aminotyrosine modified superfolder green fluorescent protein (aY-sfGFP) represents a recent advance, yet the molecular mechanism for its red-shifted fluorescence remains elusive while its dim fluorescence hinders applications. Herein, we implement femtosecond stimulated Raman spectroscopy to obtain structural fingerprints in the electronic ground state and reveal that aY-sfGFP possesses a GFP-like instead of RFP-like chromophore. Red color of aY-sfGFP intrinsically arises from a unique "double-donor" chromophore structure that raises ground-state energy and enhances charge transfer, notably differing from the conventional conjugation mechanism. We further developed two aY-sfGFP mutants (E222H and T203H) with significantly improved (∼12-fold higher) brightness by rationally restraining the chromophore's nonradiative decay through electronic and steric effects, aided by solvatochromic and fluorogenic studies of the model chromophore in solution. This study thus provides functional mechanisms and generalizable insights into ncAA-RFPs with an efficient route for engineering redder and brighter fluorescent proteins.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - Hao Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Jing Zhang
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Hui-Wang Ai
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- The UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| |
Collapse
|
49
|
Liu Y, Ma Y, Xu J, Zhang G, Zhao X, He Z, Wang L, Yin N, Peng M. VMP1 prevents Ca2+ overload in endoplasmic reticulum and maintains naive T cell survival. J Exp Med 2023; 220:e20221068. [PMID: 36971758 PMCID: PMC10060355 DOI: 10.1084/jem.20221068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/11/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Ca2+ in endoplasmic reticulum (ER) dictates T cell activation, proliferation, and function via store-operated Ca2+ entry. How naive T cells maintain an appropriate level of Ca2+ in ER remains poorly understood. Here, we show that the ER transmembrane protein VMP1 is essential for maintaining ER Ca2+ homeostasis in naive T cells. VMP1 promotes Ca2+ release from ER under steady state, and its deficiency leads to ER Ca2+ overload, ER stress, and secondary Ca2+ overload in mitochondria, resulting in massive apoptosis of naive T cells and defective T cell response. Aspartic acid 272 (D272) of VMP1 is critical for its ER Ca2+ releasing activity, and a knockin mouse strain with D272 mutated to asparagine (D272N) demonstrates all functions of VMP1 in T cells in vivo depend on its regulation of ER Ca2+. These data uncover an indispensable role of VMP1 in preventing ER Ca2+ overload and maintaining naive T cell survival.
Collapse
Affiliation(s)
- Ying Liu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Yuying Ma
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Jing Xu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Guangyue Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute for Immunology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiaocui Zhao
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute for Immunology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zihao He
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Lixia Wang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute for Immunology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Na Yin
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Min Peng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute for Immunology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
50
|
Boskind M, Nelapudi N, Williamson G, Mendez B, Juarez R, Zhang L, Blood AB, Wilson CG, Puglisi JL, Wilson SM. Improved Workflow for Analysis of Vascular Myocyte Time-Series and Line-Scan Ca 2+ Imaging Datasets. Int J Mol Sci 2023; 24:9729. [PMID: 37298681 PMCID: PMC10253939 DOI: 10.3390/ijms24119729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Intracellular Ca2+ signals are key for the regulation of cellular processes ranging from myocyte contraction, hormonal secretion, neural transmission, cellular metabolism, transcriptional regulation, and cell proliferation. Measurement of cellular Ca2+ is routinely performed using fluorescence microscopy with biological indicators. Analysis of deterministic signals is reasonably straightforward as relevant data can be discriminated based on the timing of cellular responses. However, analysis of stochastic, slower oscillatory events, as well as rapid subcellular Ca2+ responses, takes considerable time and effort which often includes visual analysis by trained investigators, especially when studying signals arising from cells embedded in complex tissues. The purpose of the current study was to determine if full-frame time-series and line-scan image analysis workflow of Fluo-4 generated Ca2+ fluorescence data from vascular myocytes could be automated without introducing errors. This evaluation was addressed by re-analyzing a published "gold standard" full-frame time-series dataset through visual analysis of Ca2+ signals from recordings made in pulmonary arterial myocytes of en face arterial preparations. We applied a combination of data driven and statistical approaches with comparisons to our published data to assess the fidelity of the various approaches. Regions of interest with Ca2+ oscillations were detected automatically post hoc using the LCPro plug-in for ImageJ. Oscillatory signals were separated based on event durations between 4 and 40 s. These data were filtered based on cutoffs obtained from multiple methods and compared to the published manually curated "gold standard" dataset. Subcellular focal and rapid Ca2+ "spark" events from line-scan recordings were examined using SparkLab 5.8, which is a custom automated detection and analysis program. After filtering, the number of true positives, false positives, and false negatives were calculated through comparisons to visually derived "gold standard" datasets. Positive predictive value, sensitivity, and false discovery rates were calculated. There were very few significant differences between the automated and manually curated results with respect to quality of the oscillatory and Ca2+ spark events, and there were no systematic biases in the data curation or filtering techniques. The lack of statistical difference in event quality between manual data curation and statistically derived critical cutoff techniques leads us to believe that automated analysis techniques can be reliably used to analyze spatial and temporal aspects to Ca2+ imaging data, which will improve experiment workflow.
Collapse
Affiliation(s)
- Madison Boskind
- Lawrence D Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92373, USA; (M.B.); (N.N.); (G.W.); (B.M.); (L.Z.); (C.G.W.)
| | - Nikitha Nelapudi
- Lawrence D Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92373, USA; (M.B.); (N.N.); (G.W.); (B.M.); (L.Z.); (C.G.W.)
| | - Grace Williamson
- Lawrence D Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92373, USA; (M.B.); (N.N.); (G.W.); (B.M.); (L.Z.); (C.G.W.)
| | - Bobby Mendez
- Lawrence D Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92373, USA; (M.B.); (N.N.); (G.W.); (B.M.); (L.Z.); (C.G.W.)
| | - Rucha Juarez
- Advanced Imaging and Microscopy Core, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Lubo Zhang
- Lawrence D Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92373, USA; (M.B.); (N.N.); (G.W.); (B.M.); (L.Z.); (C.G.W.)
| | - Arlin B. Blood
- Lawrence D Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92373, USA; (M.B.); (N.N.); (G.W.); (B.M.); (L.Z.); (C.G.W.)
| | - Christopher G. Wilson
- Lawrence D Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92373, USA; (M.B.); (N.N.); (G.W.); (B.M.); (L.Z.); (C.G.W.)
| | - Jose Luis Puglisi
- Department of Biostatistics, School of Medicine, California Northstate University, Elk Grove, CA 95757, USA;
| | - Sean M. Wilson
- Lawrence D Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92373, USA; (M.B.); (N.N.); (G.W.); (B.M.); (L.Z.); (C.G.W.)
- Advanced Imaging and Microscopy Core, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| |
Collapse
|