1
|
Pepi C, Mercier M, Salimbene L, Galati C, Specchio N, de Palma L. Post-Traumatic Stress-Disorder in Epilepsy: Meta-analysis of current evidence. Epilepsy Behav 2024; 157:109833. [PMID: 38820681 DOI: 10.1016/j.yebeh.2024.109833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Epilepsy, a chronic neurological condition characterized by unpredictable seizures, poses considerable challenges, including disability, stigma, and increased mortality. Psychiatric comorbidities are prevalent in 20-30% of epilepsy patients, notably mood or anxiety disorders, psychotic symptoms, and personality disorders. Trauma and childhood adversities are pivotal risk factors for psychopathology, yet the link between Post-Traumatic Stress Disorder (PTSD) and epilepsy remains underexplored. This meta-analysis is aimed to establish updated estimates of PTSD prevalence among individuals with epilepsy. Fifteen studies, comprising 996 epilepsy patients, were included. The overall pooled prevalence of PTSD in epilepsy patients was 18%. Notably, patients with epilepsy exhibited a three-fold increased risk of developing PTSD compared to the general population. Subgroup analysis revealed a higher PTSD prevalence in uncontrolled studies (25%) compared to controlled studies (14%). Additionally, patients with Psychogenic Non-Epileptic Seizures (PNES) demonstrated higher PTSD prevalence than epilepsy patients, with a threefold higher risk in healthy controls compared to PNES controls. While gender prevalence did not significantly affect PTSD occurrence, drug resistant epilepsy did not correlate with PTSD prevalence. Moreover, age of epilepsy onset showed no significant correlation with PTSD prevalence. This meta-analysis underscores the substantial burden of PTSD among epilepsy patients, potentially attributable to the traumatic nature of seizures and the chronic stigma associated with epilepsy. Improved recognition and management of psychiatric conditions, particularly PTSD, are crucial in epilepsy care pathways to enhance patients' quality of life. Further research and comprehensive diagnostic tools are imperative to better understand and address the prevalence of PTSD in epilepsy patients.
Collapse
Affiliation(s)
- Chiara Pepi
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies, EpiCARE, Rome, Italy
| | - Mattia Mercier
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies, EpiCARE, Rome, Italy
| | - Licia Salimbene
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies, EpiCARE, Rome, Italy
| | - Cristina Galati
- Psychiatry Unit, Provincial Health Service of Catania, Catania, Italy
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies, EpiCARE, Rome, Italy.
| | - Luca de Palma
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies, EpiCARE, Rome, Italy
| |
Collapse
|
2
|
Bian X, Yang W, Lin J, Jiang B, Shao X. Hypothalamic-Pituitary-Adrenal Axis and Epilepsy. J Clin Neurol 2024; 20:131-139. [PMID: 38330420 PMCID: PMC10921057 DOI: 10.3988/jcn.2023.0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 02/10/2024] Open
Abstract
Epilepsy is a recurrent, transient seizure disorder of the nervous system that affects the intellectual development, life and work, and psychological health of patients. People with epilepsy worldwide experience great suffering. Stressful stimuli such as infection, mental stress, and sleep deprivation are important triggers of epilepsy, and chronic stressful stimuli can lead to frequent seizures and comorbidities. The hypothalamic-pituitary-adrenal (HPA) axis is the most important system involved in the body's stress response, and dysfunction thereof is thought to be associated with core epilepsy symptoms and related psychopathology. This article explores the intrinsic relationships of corticotropin-releasing hormone, adrenocorticotropic hormone, and glucocorticoids with epilepsy in order to reveal the role of the HPA axis in the pathogenesis of epilepsy. We hope that this information will yield future possible directions and ideas for fully understanding the pathogenesis of epilepsy and developing antiepileptic drugs.
Collapse
Affiliation(s)
- Xueying Bian
- Department of Pediatrics, Shaoxing Peoples' Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Wenxian Yang
- Department of Pediatrics, Yiwu Central Hospital, Yiwu, China
| | - Jiannan Lin
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Biao Jiang
- Department of Pediatrics, Shaoxing Peoples' Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Xiaoli Shao
- Department of Pediatrics, Shaoxing Peoples' Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, China.
| |
Collapse
|
3
|
Shiadeh SMJ, Goretta F, Svedin P, Jansson T, Mallard C, Ardalan M. Long-term impact of maternal obesity on the gliovascular unit and ephrin signaling in the hippocampus of adult offspring. J Neuroinflammation 2024; 21:39. [PMID: 38308309 PMCID: PMC10837922 DOI: 10.1186/s12974-024-03030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Children born to obese mothers are at increased risk of developing mood disorders and cognitive impairment. Experimental studies have reported structural changes in the brain such as the gliovascular unit as well as activation of neuroinflammatory cells as a part of neuroinflammation processing in aged offspring of obese mothers. However, the molecular mechanisms linking maternal obesity to poor neurodevelopmental outcomes are not well established. The ephrin system plays a major role in a variety of cellular processes including cell-cell interaction, synaptic plasticity, and long-term potentiation. Therefore, in this study we determined the impact of maternal obesity in pregnancy on cortical, hippocampal development, vasculature and ephrin-A3/EphA4-signaling, in the adult offspring in mice. METHODS Maternal obesity was induced in mice by a high fat/high sugar Western type of diet (HF/HS). We collected brain tissue (prefrontal cortex and hippocampus) from 6-month-old offspring of obese and lean (control) dams. Hippocampal volume, cortical thickness, myelination of white matter, density of astrocytes and microglia in relation to their activity were analyzed using 3-D stereological quantification. mRNA expression of ephrin-A3, EphA4 and synaptic markers were measured by qPCR in the brain tissue. Moreover, expression of gap junction protein connexin-43, lipocalin-2, and vascular CD31/Aquaporin 4 were determined in the hippocampus by immunohistochemistry. RESULTS Volume of hippocampus and cortical thickness were significantly smaller, and myelination impaired, while mRNA levels of hippocampal EphA4 and post-synaptic density (PSD) 95 were significantly lower in the hippocampus in the offspring of obese dams as compared to offspring of controls. Further analysis of the hippocampal gliovascular unit indicated higher coverage of capillaries by astrocytic end-feet, expression of connexin-43 and lipocalin-2 in endothelial cells in the offspring of obese dams. In addition, offspring of obese dams demonstrated activation of microglia together with higher density of cells, while astrocyte cell density was lower. CONCLUSION Maternal obesity affects brain size, impairs myelination, disrupts the hippocampal gliovascular unit and decreases the mRNA expression of EphA4 and PSD-95 in the hippocampus of adult offspring. These results indicate that the vasculature-glia cross-talk may be an important mediator of altered synaptic plasticity, which could be a link between maternal obesity and neurodevelopmental/neuropsychiatric disorders in the offspring.
Collapse
Affiliation(s)
- Seyedeh Marziyeh Jabbari Shiadeh
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Fanny Goretta
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Svedin
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of OB/GYN, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maryam Ardalan
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
4
|
Löscher W. On hidden factors and design-associated errors that may lead to data misinterpretation: An example from preclinical research on the potential seasonality of neonatal seizures. Epilepsia 2024; 65:287-292. [PMID: 38037258 DOI: 10.1111/epi.17840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Unintentional misinterpretation of research in published biomedical reports that is not based on statistical flaws is often underrecognized, despite its possible impact on science, clinical practice, and public health. Important causes of such misinterpretation of scientific data, resulting in either false positive or false negative conclusions, include design-associated errors and hidden (or latent) variables that are not easily recognized during data analysis. Furthermore, cognitive biases, such as the inclination to seek patterns in data whether they exist or not, may lead to misinterpretation of data. Here, we give an example of these problems from hypothesis-driven research on the potential seasonality of neonatal seizures in a rat model of birth asphyxia. This commentary aims to raise awareness among the general scientific audience about the issues related to the presence of unintentional misinterpretation in published reports.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Schmidt R, Welzel B, Löscher W. Effects of season, daytime, sex, and stress on the incidence, latency, frequency, severity, and duration of neonatal seizures in a rat model of birth asphyxia. Epilepsy Behav 2023; 147:109415. [PMID: 37729684 DOI: 10.1016/j.yebeh.2023.109415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/22/2023]
Abstract
Neonatal seizures are common in newborn infants after birth asphyxia. They occur more frequently in male than female neonates, but it is not known whether sex also affects seizure severity or duration. Furthermore, although stress and diurnal, ultradian, circadian, or multidien cycles are known to affect epileptic seizures in adults, their potential impact on neonatal seizures is not understood. This prompted us to examine the effects of season, daytime, sex, and stress on neonatal seizures in a rat model of birth asphyxia. Seizures monitored in 176 rat pups exposed to asphyxia on 40 experimental days performed over 3 years were evaluated. All rat pups exhibited seizures when exposed to asphyxia at postnatal day 11 (P11), which in terms of cortical development corresponds to term human babies. A first examination of these data indicated a seasonal variation, with the highest seizure severity in the spring. Sex and daytime did not affect seizure characteristics. However, when rat pups were subdivided into animals that were exposed to acute (short-term) stress after asphyxia (restraint and i.p. injection of vehicle) and animals that were not exposed to this stress, the seizures in stress-exposed rats were more severe but less frequent. Acute stress induced an increase in hippocampal microglia density in sham-exposed rat pups, which may have an additive effect on microglia activation induced by asphyxia. When seasonal data were separately analyzed for stress-exposed vs. non-stress-exposed rat pups, no significant seasonal variation was observed. This study illustrates that without a detailed analysis of all factors, the data would have erroneously indicated significant seasonal variability in the severity of neonatal seizures. Instead, the study demonstrates that even mild, short-lasting postnatal stress has a profound effect on asphyxia-induced seizures, most likely by increasing the activity of the hypothalamic-pituitary-adrenal axis. It will be interesting to examine how postnatal stress affects the treatment and adverse outcomes of birth asphyxia and neonatal seizures in the rat model used here.
Collapse
Affiliation(s)
- Ricardo Schmidt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Björn Welzel
- Center for Systems Neuroscience Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
6
|
Sarkisova K, van Luijtelaar G. The impact of early-life environment on absence epilepsy and neuropsychiatric comorbidities. IBRO Neurosci Rep 2022; 13:436-468. [PMID: 36386598 PMCID: PMC9649966 DOI: 10.1016/j.ibneur.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
This review discusses the long-term effects of early-life environment on epileptogenesis, epilepsy, and neuropsychiatric comorbidities with an emphasis on the absence epilepsy. The WAG/Rij rat strain is a well-validated genetic model of absence epilepsy with mild depression-like (dysthymia) comorbidity. Although pathologic phenotype in WAG/Rij rats is genetically determined, convincing evidence presented in this review suggests that the absence epilepsy and depression-like comorbidity in WAG/Rij rats may be governed by early-life events, such as prenatal drug exposure, early-life stress, neonatal maternal separation, neonatal handling, maternal care, environmental enrichment, neonatal sensory impairments, neonatal tactile stimulation, and maternal diet. The data, as presented here, indicate that some early environmental events can promote and accelerate the development of absence seizures and their neuropsychiatric comorbidities, while others may exert anti-epileptogenic and disease-modifying effects. The early environment can lead to phenotypic alterations in offspring due to epigenetic modifications of gene expression, which may have maladaptive consequences or represent a therapeutic value. Targeting DNA methylation with a maternal methyl-enriched diet during the perinatal period appears to be a new preventive epigenetic anti-absence therapy. A number of caveats related to the maternal methyl-enriched diet and prospects for future research are discussed.
Collapse
Affiliation(s)
- Karine Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova str. 5a, Moscow 117485, Russia
| | - Gilles van Luijtelaar
- Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognition, Radboud University, Nijmegen, PO Box 9104, 6500 HE Nijmegen, the Netherlands
| |
Collapse
|
7
|
Sanchez EO, Bangasser DA. The effects of early life stress on impulsivity. Neurosci Biobehav Rev 2022; 137:104638. [PMID: 35341796 DOI: 10.1016/j.neubiorev.2022.104638] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023]
Abstract
Elevated impulsivity is a symptom shared by various psychiatric disorders such as substance use disorder, bipolar disorder, and attention-deficit/hyperactivity disorder. However, impulsivity is not a unitary construct and impulsive behaviors fall into two subcategories: impulsive action and impulsive choice. Impulsive choice refers to the tendency to prefer immediate, small rewards over delayed, large rewards, whereas impulsive action involves difficulty inhibiting rash, premature, or mistimed behaviors. These behaviors are mediated by the mesocorticolimbic dopamine (DA) system, which consists of projections from the ventral tegmental area to the nucleus accumbens and prefrontal cortex. Early life stress (ELS) alters both impulsive choice and impulsive action in rodents. ELS also changes DA receptor expression, transmission, and activity within the mesocorticolimbic system. This review integrates the dopamine, impulsivity, and ELS literature to provide evidence that ELS alters impulsivity via inducing changes in the mesocorticolimbic DA system. Understanding how ELS affects brain circuits associated with impulsivity can help advance treatments aimed towards reducing impulsivity symptoms in a variety of psychiatric disorders.
Collapse
Affiliation(s)
- Evelyn Ordoñes Sanchez
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA.
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
8
|
Barbosa MDOR, de Paulo MEFDV, Nencioni ALA. Scorpion Envenomation of Lactating Rats Decreases the Seizure Threshold in Offspring. Toxins (Basel) 2021; 13:853. [PMID: 34941691 PMCID: PMC8707262 DOI: 10.3390/toxins13120853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Few data are available in the literature describing the long-term effects of envenoming in the perinatal period. In this study, the relationship between envenoming of lactating rats and possible behavioral changes in the mother and in her offspring were investigated. Lactating Wistar rats received a single dose of T. serrulatus crude venom on postnatal days 2 (V2), 10 (V10) or 16 (V16), and had their maternal behavior evaluated. The seizure threshold was evaluated in adulthood offspring. A decrease in maternal care during envenoming was observed in V2 and V10 groups. The retrieval behavior was absent in the V2 group, and a lower seizure threshold in the adult offspring of all groups was observed. During envenoming, mothers stayed away from their offspring for a relatively long time. Maternal deprivation during the early postnatal period is one of the most potent stressors for pups and could be responsible, at least in part, for the decrease in the convulsive threshold of the offspring since stress is pointed to as a risk factor for epileptogenesis. Furthermore, the scorpionic accident generates an intense immune response, and inflammation in neonates increases the susceptibility to seizures in adulthood. Therefore, maternal envenoming during lactation can have adverse effects on offspring in adulthood.
Collapse
Affiliation(s)
| | | | - Ana Leonor Abrahão Nencioni
- Laboratory of Pharmacology, Butantan Institute, Av. Dr. Vital Brazil 1500, São Paulo 05503-900, Brazil; (M.d.O.R.B.); (M.E.F.d.V.d.P.)
| |
Collapse
|
9
|
Symonds JD, Elliott KS, Shetty J, Armstrong M, Brunklaus A, Cutcutache I, Diver LA, Dorris L, Gardiner S, Jollands A, Joss S, Kirkpatrick M, McLellan A, MacLeod S, O'Regan M, Page M, Pilley E, Pilz DT, Stephen E, Stewart K, Ashrafian H, Knight JC, Zuberi SM. Early childhood epilepsies: epidemiology, classification, aetiology, and socio-economic determinants. Brain 2021; 144:2879-2891. [PMID: 34687210 PMCID: PMC8557326 DOI: 10.1093/brain/awab162] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/22/2021] [Accepted: 03/24/2021] [Indexed: 11/14/2022] Open
Abstract
Epilepsies of early childhood are frequently resistant to therapy and often associated with cognitive and behavioural comorbidity. Aetiology focused precision medicine, notably gene-based therapies, may prevent seizures and comorbidities. Epidemiological data utilizing modern diagnostic techniques including whole genome sequencing and neuroimaging can inform diagnostic strategies and therapeutic trials. We present a 3-year, multicentre prospective cohort study, involving all children under 3 years of age in Scotland presenting with epilepsies. We used two independent sources for case identification: clinical reporting and EEG record review. Capture-recapture methodology was then used to improve the accuracy of incidence estimates. Socio-demographic and clinical details were obtained at presentation, and 24 months later. Children were extensively investigated for aetiology. Whole genome sequencing was offered for all patients with drug-resistant epilepsy for whom no aetiology could yet be identified. Multivariate logistic regression modelling was used to determine associations between clinical features, aetiology, and outcome. Three hundred and ninety children were recruited over 3 years. The adjusted incidence of epilepsies presenting in the first 3 years of life was 239 per 100 000 live births [95% confidence interval (CI) 216-263]. There was a socio-economic gradient to incidence, with a significantly higher incidence in the most deprived quintile (301 per 100 000 live births, 95% CI 251-357) compared with the least deprived quintile (182 per 100 000 live births, 95% CI 139-233), χ2 odds ratio = 1.7 (95% CI 1.3-2.2). The relationship between deprivation and incidence was only observed in the group without identified aetiology, suggesting that populations living in higher deprivation areas have greater multifactorial risk for epilepsy. Aetiology was determined in 54% of children, and epilepsy syndrome was classified in 54%. Thirty-one per cent had an identified genetic cause for their epilepsy. We present novel data on the aetiological spectrum of the most commonly presenting epilepsies of early childhood. Twenty-four months after presentation, 36% of children had drug-resistant epilepsy (DRE), and 49% had global developmental delay (GDD). Identification of an aetiology was the strongest determinant of both DRE and GDD. Aetiology was determined in 82% of those with DRE, and 75% of those with GDD. In young children with epilepsy, genetic testing should be prioritized as it has the highest yield of any investigation and is most likely to inform precision therapy and prognosis. Epilepsies in early childhood are 30% more common than previously reported. Epilepsies of undetermined aetiology present more frequently in deprived communities. This likely reflects increased multifactorial risk within these populations.
Collapse
Affiliation(s)
- Joseph D Symonds
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow G51 4TF, UK.,Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8QQ, UK
| | - Katherine S Elliott
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Jay Shetty
- Department of Paediatric Neurosciences, Royal Hospital for Sick Children, Sciennes Road, Edinburgh EH9 1LF, UK
| | | | - Andreas Brunklaus
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow G51 4TF, UK.,Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Louise A Diver
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospitals, Glasgow G51 4TF, UK
| | - Liam Dorris
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow G51 4TF, UK.,Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sarah Gardiner
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospitals, Glasgow G51 4TF, UK
| | - Alice Jollands
- Paediatric Neurology, Tayside Children's Hospital, Dundee DD1 9SY, UK
| | - Shelagh Joss
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospitals, Glasgow G51 4TF, UK
| | - Martin Kirkpatrick
- Paediatric Neurology, Tayside Children's Hospital, Dundee DD1 9SY, UK.,School of Medicine, University of Dundee DD1 9SY, UK
| | - Ailsa McLellan
- Department of Paediatric Neurosciences, Royal Hospital for Sick Children, Sciennes Road, Edinburgh EH9 1LF, UK
| | - Stewart MacLeod
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow G51 4TF, UK
| | - Mary O'Regan
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow G51 4TF, UK.,Paediatric Neurology, Crumlin Children's Hospital, Cooley Rd, Crumlin, Dublin D12 N512, Ireland
| | | | - Elizabeth Pilley
- Department of Paediatric Neurosciences, Royal Hospital for Sick Children, Sciennes Road, Edinburgh EH9 1LF, UK.,Paediatric Neurology, Tayside Children's Hospital, Dundee DD1 9SY, UK
| | - Daniela T Pilz
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospitals, Glasgow G51 4TF, UK
| | - Elma Stephen
- Paediatric Neurology, Royal Aberdeen Children's Hospital, Aberdeen AB25 2ZG, UK
| | - Kirsty Stewart
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospitals, Glasgow G51 4TF, UK
| | - Houman Ashrafian
- Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK.,Department of Experimental Therapeutics, Radcliffe Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow G51 4TF, UK.,Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
10
|
Thébault-Dagher F, Robles M, Herba CM, St-Pierre J, Brochen C, Muckle G, Lupien SJ, Séguin JR, Fraser WD, Vaillancourt C, Lippé S. Febrile seizure incidence and age at first occurrence are associated with changes in placental normalized gene expression: the '3D' pregnancy cohort study. J Neuroendocrinol 2021; 33:e13046. [PMID: 34648210 DOI: 10.1111/jne.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022]
Abstract
Self-reported maternal prenatal stress (MPS) has been associated with earlier febrile seizure (FS) age of onset in offspring. Studies are needed to understand how the biological systems associated with exposure to psychological MPS are linked to seizure disorders in children. The present study aimed to investigate whether placental markers of MPS are linked to FS incidence and age at first occurrence. A subsample of children with FS (n = 28) and matched controls (n = 84), were drawn from the longitudinal 3D pregnancy cohort (N = 2366 mother-child dyads). Expression of placental genes associated with glucocorticoids, serotonin and fetal/placental growth were analysed from placental tissues, compared between groups and associated with age at first FS. Overall placental normalized gene expression was statistically different (p < .001). Children with FS showed overexpression of the serotonin transporter (mean difference = 0.61, 95% confidence interval [CI] = 0.9-1.13), connexin 43 (mean difference = 0.69, 95% CI = 0.30-1.09), zonula occludens-1 (mean difference = 0.84, 95% CI = 0.42-1.26) and underexpression of glucocorticoid receptor β (mean difference = 0.84, 95% CI = -1.49 to 0.19) and serotonin receptor 2B (mean difference = 1.57, 95% CI = -2.35 to 0.78) compared to controls. Increased expression of the serotonin transporter predicted 37.2% in variation of age at first FS. The correlation matrix showed pregnancy-specific anxiety during the second trimester was moderately associated with age at first FS (r = -0.38) but was not a significant predictor in the regression model. Although our current results do not display a significant effect of self-reported MPS on FS, the present study is the first to show that placental gene biomarkers usually known to be associated with MPS display different expressions in children with FS. Specifically, our results suggest that placental genes associated with the glucocorticoid, serotonergic and fetal/placental growth systems may be candidate mechanisms leading to increased vulnerability offspring in FS. Because self-reported MPS was not found as a significant predictor in our statistical models, future studies are needed to investigate the mechanisms causing the observed changes in placental genes and their association with seizure disorders.
Collapse
Affiliation(s)
- Fanny Thébault-Dagher
- Department of Psychology, University of Montreal, Montreal, QC, Canada
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Morgane Robles
- INRS Armand-Frappier Santé Biotechnologique Research Center, Laval, QC, Canada
- Réseau intersectoriel de recherche en santé de l'Université du Québec, Québec, QC, Canada
| | - Catherine M Herba
- INRS Armand-Frappier Santé Biotechnologique Research Center, Laval, QC, Canada
- Réseau intersectoriel de recherche en santé de l'Université du Québec, Québec, QC, Canada
- Psychiatry and Addictology Department, University of Montreal, Montreal, QC, Canada
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
| | - Joey St-Pierre
- INRS Armand-Frappier Santé Biotechnologique Research Center, Laval, QC, Canada
- Réseau intersectoriel de recherche en santé de l'Université du Québec, Québec, QC, Canada
| | - Celia Brochen
- INRS Armand-Frappier Santé Biotechnologique Research Center, Laval, QC, Canada
| | - Gina Muckle
- School of Psychology, Université Laval, Laval, QC, Canada
- CHU de Québec-Université Laval Research Center, Québec, QC, Canada
| | - Sonia J Lupien
- Department of Psychology, University of Montreal, Montreal, QC, Canada
- Psychiatry and Addictology Department, University of Montreal, Montreal, QC, Canada
- Center for Studies on Human Stress, Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| | - Jean R Séguin
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- Psychiatry and Addictology Department, University of Montreal, Montreal, QC, Canada
| | - William D Fraser
- Centre de recherche du CHU de Sherbrooke, Sherbrooke, QC, Canada
| | - Cathy Vaillancourt
- INRS Armand-Frappier Santé Biotechnologique Research Center, Laval, QC, Canada
- Réseau intersectoriel de recherche en santé de l'Université du Québec, Québec, QC, Canada
| | - Sarah Lippé
- Department of Psychology, University of Montreal, Montreal, QC, Canada
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
11
|
Early Life Stress and Metabolic Plasticity of Brain Cells: Impact on Neurogenesis and Angiogenesis. Biomedicines 2021; 9:biomedicines9091092. [PMID: 34572278 PMCID: PMC8470044 DOI: 10.3390/biomedicines9091092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Early life stress (ELS) causes long-lasting changes in brain plasticity induced by the exposure to stress factors acting prenatally or in the early postnatal ontogenesis due to hyperactivation of hypothalamic-pituitary-adrenal axis and sympathetic nervous system, development of neuroinflammation, aberrant neurogenesis and angiogenesis, and significant alterations in brain metabolism that lead to neurological deficits and higher susceptibility to development of brain disorders later in the life. As a key component of complex pathogenesis, ELS-mediated changes in brain metabolism associate with development of mitochondrial dysfunction, loss of appropriate mitochondria quality control and mitochondrial dynamics, deregulation of metabolic reprogramming. These mechanisms are particularly critical for maintaining the pool and development of brain cells within neurogenic and angiogenic niches. In this review, we focus on brain mitochondria and energy metabolism related to tightly coupled neurogenic and angiogenic events in healthy and ELS-affected brain, and new opportunities to develop efficient therapeutic strategies aimed to restore brain metabolism and reduce ELS-induced impairments of brain plasticity.
Collapse
|
12
|
Mariotti S, Valentin D, Ertan D, Maillard L, Tarrada A, Chrusciel J, Sanchez S, Schwan R, Vignal JP, Tyvaert L, El-Hage W, Hingray C. Past Trauma Is Associated With a Higher Risk of Experiencing an Epileptic Seizure as Traumatic in Patients With Pharmacoresistant Focal Epilepsy. Front Neurol 2021; 12:669411. [PMID: 34305784 PMCID: PMC8296979 DOI: 10.3389/fneur.2021.669411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Objective: The present study aimed to evaluate the prevalence of traumatic experienced seizures (TES) and of postepileptic seizure PTSD (PS-PTSD) in patients with pharmacoresistant focal epilepsy and to explore the determining factors of TES. Methods: We conducted an observational study enrolling 107 adult refractory epilepsy patients. We used the DSM-5 criteria of traumatic events and PTSD to define TES and PS-PTSD. We assessed all traumatic life events unrelated to epilepsy, general and specific psychiatric comorbidities, and quality of life. Results: Nearly half (n = 48) of the 107 participants reported at least one TES (44.85%). Among these, one-third (n = 16) developed PS-PTSD. The TES group was more likely to experience traumatic events unrelated to epilepsy (p < 0.001), to have generalized anxiety disorder (p = 0.019), and to have specific psychiatric comorbidities [e.g., interictal dysphoric disorder (p = 0.024) or anticipatory anxiety of seizures (p = 0.005)]. They reported a severe impact of epilepsy on their life (p = 0.01). The determining factors of TES according to the multifactorial model were the experience of trauma (p = 0.008), a history of at least one psychiatric disorder (p = 0.03), and a strong tendency toward dissociation (p = 0.03). Significance: Epileptic seizures may be a traumatic experience in some patients who suffer from pharmacoresistant epilepsy and may be the source of the development of PS-PTSD. Previous trauma unrelated to epilepsy and psychiatric history are determining factors of TES. These clinical entities should be explored systematically.
Collapse
Affiliation(s)
- Sara Mariotti
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France.,Université de Lorraine, Faculté de Médecine, Vandœuvre-lès-Nancy, France
| | - Damien Valentin
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France.,Université de Lorraine, Faculté de Médecine, Vandœuvre-lès-Nancy, France
| | - Deniz Ertan
- Université de Lorraine, CNRS, CRAN, UMR 7039, Nancy, France.,Etablissement la Teppe Tain l'Hermitage, Tain-l'Hermitage, France
| | - Louis Maillard
- Université de Lorraine, Faculté de Médecine, Vandœuvre-lès-Nancy, France.,Université de Lorraine, CNRS, CRAN, UMR 7039, Nancy, France.,CHRU de Nancy, Département de Neurologie, Nancy, France
| | - Alexis Tarrada
- Université de Lorraine, CNRS, CRAN, UMR 7039, Nancy, France.,CHRU de Nancy, Département de Neurologie, Nancy, France
| | - Jan Chrusciel
- Pôle Information Médicale Évaluation Performance, CH de Troyes, Troyes, France
| | - Stéphane Sanchez
- Pôle Information Médicale Évaluation Performance, CH de Troyes, Troyes, France
| | - Raymund Schwan
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France.,Université de Lorraine, Faculté de Médecine, Vandœuvre-lès-Nancy, France.,INSERM U1114, Université de Strasbourg, Strasbourg, France
| | - Jean-Pierre Vignal
- Université de Lorraine, CNRS, CRAN, UMR 7039, Nancy, France.,CHRU de Nancy, Département de Neurologie, Nancy, France
| | - Louise Tyvaert
- Université de Lorraine, Faculté de Médecine, Vandœuvre-lès-Nancy, France.,Université de Lorraine, CNRS, CRAN, UMR 7039, Nancy, France.,CHRU de Nancy, Département de Neurologie, Nancy, France
| | - Wissam El-Hage
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France.,CHU de Tours, Tours, France
| | - Coraline Hingray
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France.,Université de Lorraine, CNRS, CRAN, UMR 7039, Nancy, France.,CHRU de Nancy, Département de Neurologie, Nancy, France
| |
Collapse
|
13
|
Godoy LD, Garcia-Cairasco N. Maternal behavior and the neonatal HPA axis in the Wistar Audiogenic Rat (WAR) strain: Early-life implications for a genetic animal model in epilepsy. Epilepsy Behav 2021; 117:107877. [PMID: 33714185 DOI: 10.1016/j.yebeh.2021.107877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/28/2020] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
Epileptogenesis is a multistage process and seizure susceptibility can be influenced by stress early in life. Wistar Audiogenic Rat (WAR) strain is an interesting model to study the association between stress and epilepsy, since it is naturally susceptible to seizures and present changes in the hypothalamus-pituitary-adrenal (HPA) axis activity. All these features are related to the pathogenic mechanisms usually associated with psychiatric comorbidities present in epilepsy. Therefore, the current study aimed to evaluate the neonate HPA axis function and maternal care under control and stress conditions in the WAR strain. Maternal behavior and neonate HPA axis were evaluated in Wistar and WAR strains under rest and after the presence of stressors. We observed that WAR pups present higher plasmatic corticosterone concentration as compared to Wistar pups. Although WAR dams do not show significant altered maternal behavior at rest, there is a higher latency to recover the litter in the pup retrieval test, while some did not recover all the litter. Wistar Audiogenic Rat dams presented similar behaviors to Wistar dams to a female intruder and maternal care with the pups in the maternal defense test. Taken together, these findings indicate that the WAR strain could show HPA axis disruption early in life and dams present altered maternal behavior under stressful events. Those alterations make the WAR strain an interesting model to evaluate vulnerability to epilepsy and its associated neuropsychiatric comorbidities.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
14
|
Singh T, Goel RK. Epilepsy Associated Depression: An Update on Current Scenario, Suggested Mechanisms, and Opportunities. Neurochem Res 2021; 46:1305-1321. [PMID: 33665775 DOI: 10.1007/s11064-021-03274-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022]
Abstract
Depression is one of the most frequent psychiatric comorbidities associated with epilepsy having a major impact on the patient's quality of life. Several screening tools are available to identify and follow up psychiatric disorders in epilepsy. Out of various psychiatric disorders, people with epilepsy (PWE) are at greater risk of developing depression. This bidirectional relationship further hinders pharmacotherapy of comorbid depression in PWE as some antiepileptic drugs (AEDs) worsen associated depression and coadministration of existing antidepressants (ADs) to alleviate comorbid depression has been reported to worsen seizures. Selective serotonin reuptake inhibitors (SSRIs) and selective serotonin and norepinephrine reuptake inhibitors (SNRIs) are first choice of ADs and are considered safe in PWE, but there are no high-quality evidences. Similar to observations in people with depression, PWE also showed pharmacoresistant to available SSRI/SNRIs, which further complicates the disease prognosis. Randomized double-blind placebo-controlled clinical trials are necessary to report efficacy and safety of available ADs in PWE. We should also move beyond ADs, and therefore, we reviewed common pathological mechanisms such as neuroinflammation, dysregulated hypothalamus pituitary adrenal (HPA) axis, altered neurogenesis, and altered tryptophan metabolism responsible for coexistent relationship of epilepsy and depression. Based on these common pertinent pathways involved in the genesis of epilepsy and depression, we suggested novel targets and therapeutic approaches for safe management of comorbid depression in epilepsy.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
15
|
Taboada MJ. The first encounter with death: A physical experience. EUROPEAN JOURNAL OF TRAUMA & DISSOCIATION 2021. [DOI: 10.1016/j.ejtd.2020.100173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Soga T, Teo CH, Parhar I. Genetic and Epigenetic Consequence of Early-Life Social Stress on Depression: Role of Serotonin-Associated Genes. Front Genet 2021; 11:601868. [PMID: 33584798 PMCID: PMC7874148 DOI: 10.3389/fgene.2020.601868] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
Early-life adversity caused by poor social bonding and deprived maternal care is known to affect mental wellbeing and physical health. It is a form of chronic social stress that persists because of a negative environment, and the consequences are long-lasting on mental health. The presence of social stress during early life can have an epigenetic effect on the body, possibly resulting in many complex mental disorders, including depression in later life. Here, we review the evidence for early-life social stress-induced epigenetic changes that modulate juvenile and adult social behavior (depression and anxiety). This review has a particular emphasis on the interaction between early-life social stress and genetic variation of serotonin associate genes including the serotonin transporter gene (5-HTT; also known as SLC6A4), which are key molecules involved in depression.
Collapse
Affiliation(s)
- Tomoko Soga
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | | | | |
Collapse
|
17
|
Oyeyinka BO, Afolayan AJ. Potentials of Musa Species Fruits against Oxidative Stress-Induced and Diet-Linked Chronic Diseases: In Vitro and In Vivo Implications of Micronutritional Factors and Dietary Secondary Metabolite Compounds. Molecules 2020; 25:E5036. [PMID: 33142997 PMCID: PMC7663138 DOI: 10.3390/molecules25215036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Nutritional quality and the well-being of the body system are directly linked aspects of human survival. From the unborn foetus to adulthood, the need for sustainable access to micronutrient-rich foods is pertinent and the global consumption of banana and plantain fruits, in effect, contributes to the alleviation of the scourge of malnutrition. This review is particularly aimed at evaluating the pharmacological dimensions through the biological mechanisms of Musa fruits in the body, which represent correlations with their constituent micronutrient factors and dietary polyphenolic constituents such as minerals, vitamin members, anthocyanins, lutein, α-,β- carotenes, neoxanthins and cryptoxanthins, epi- and gallo catechins, catecholamines, 3-carboxycoumarin, β-sitosterol, monoterpenoids, with series of analytical approaches for the various identified compounds being highlighted therein. Derivative value-products from the compartments (flesh and peel) of Musa fruits are equally highlighted, bringing forth the biomedicinal and nutritional relevance, including the potentials of Musa species in dietary diversification approaches.
Collapse
Affiliation(s)
| | - Anthony Jide Afolayan
- Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice 5700, South Africa;
| |
Collapse
|
18
|
Environmental regulation of the chloride transporter KCC2: switching inflammation off to switch the GABA on? Transl Psychiatry 2020; 10:349. [PMID: 33060559 PMCID: PMC7562743 DOI: 10.1038/s41398-020-01027-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Chloride homeostasis, the main determinant factor for the dynamic tuning of GABAergic inhibition during development, has emerged as a key element altered in a wide variety of brain disorders. Accordingly, developmental disorders such as schizophrenia, Autism Spectrum Disorder, Down syndrome, epilepsy, and tuberous sclerosis complex (TSC) have been associated with alterations in the expression of genes codifying for either of the two cotransporters involved in the excitatory-to-inhibitory GABA switch, KCC2 and NKCC1. These alterations can result from environmental insults, including prenatal stress and maternal separation which share, as common molecular denominator, the elevation of pro-inflammatory cytokines. In this review we report and systemize recent research articles indicating that different perinatal environmental perturbations affect the expression of chloride transporters, delaying the developmental switch of GABA signaling, and that inflammatory cytokines, in particular interleukin 1β, may represent a key causal factor for this phenomenon. Based on literature data, we provide therefore a unifying conceptual framework, linking environmental hits with the excitatory-to-inhibitory GABA switch in the context of brain developmental disorders.
Collapse
|
19
|
Long-term effects of pre-gestational stress and perinatal venlafaxine treatment on neurobehavioral development of female offspring. Behav Brain Res 2020; 398:112944. [PMID: 33017639 DOI: 10.1016/j.bbr.2020.112944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 02/08/2023]
Abstract
Preclinical studies suggest that stress-related disorders even prior gestation can cause long-term changes at the level of neurobehavioral adaptations. Therefore, it is critical to consider undergoing antidepressant therapy which could reverse the negative consequences in the offspring. Venlafaxine is widely used in clinical practice; however insufficient amount of well-controlled studies verified the safety of venlafaxine therapy during gestation and lactation. The aim of this work was to investigate the effects of perinatal venlafaxine therapy on selected neurobehavioral variables in mothers and their female offspring using a model of maternal adversity. Pre-gestational stressed and non-stressed Wistar rat dams were treated with either venlafaxine (10 mg/kg/day) or vehicle during pregnancy and lactation. We have shown that pre-gestational stress decreased the number of pups with a significant reduction in the number of males but not females. Furthermore, we found that offspring of stressed and treated mothers exhibited anxiogenic behavior in juvenile and adolescent age. However, during adulthood pre-gestational stress significantly increased anxiety-like behavior of female, with venlafaxine treatment normalizing the state to control levels. Additionally, we found that even maternal stress prior gestation can have long-term impact on adult number of hippocampal immature neurons of the female offspring. A number of questions related to the best treatment options for maternal depression still remains, however present data may provide greater insight into the possible outcomes associated with perinatal venlafaxine therapy.
Collapse
|
20
|
Allebone J, Kanaan RA, Maller JJ, O'Brien T, Mullen S, Cook M, Adams S, Vogrin S, Vaughan D, Connelly A, Kwan P, Berkovic SF, D'Souza W, Jackson G, Velakoulis D, Wilson SJ. Enlarged hippocampal fissure in psychosis of epilepsy. Epilepsy Behav 2020; 111:107290. [PMID: 32759068 DOI: 10.1016/j.yebeh.2020.107290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022]
Abstract
Psychosis of epilepsy (POE) can be a devastating condition, and its neurobiological basis remains unclear. In a previous study, we identified reduced posterior hippocampal volumes in patients with POE. The hippocampus can be further subdivided into anatomically and functionally distinct subfields that, along with the hippocampal fissure, have been shown to be selectively affected in other psychotic disorders and are not captured by gross measures of hippocampal volume. Therefore, in this study, we compared the volume of selected hippocampal subfields and the hippocampal fissure in 31 patients with POE with 31 patients with epilepsy without psychosis. Cortical reconstruction, volumetric segmentation, and calculation of hippocampal subfields and the hippocampal fissure were performed using FreeSurfer. The group with POE had larger hippocampal fissures bilaterally compared with controls with epilepsy, which was significant on the right. There were no significant differences in the volumes of the hippocampal subfields between the two groups. Our findings suggest abnormal development of the hippocampus in POE. They support and expand the neurodevelopmental model of psychosis, which holds that early life stressors lead to abnormal neurodevelopmental processes, which underpin the onset of psychosis in later life. In line with this model, the findings of the present study suggest that enlarged hippocampal fissures may be a biomarker of abnormal neurodevelopment and risk for psychosis in patients with epilepsy.
Collapse
Affiliation(s)
- James Allebone
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, Australia.
| | - Richard A Kanaan
- The Florey Institute of Neuroscience and Mental Health, Australia; Department of Psychiatry, Austin Health, University of Melbourne, Australia
| | - Jerome J Maller
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Melbourne, Australia; Centre for Research on Ageing, Health and Wellbeing, ANU College of Health and Medicine, Australian National University, Canberra, Australia
| | | | - Saul Mullen
- Comprehensive Epilepsy Program, Austin Health, Melbourne, Australia
| | - Mark Cook
- St Vincent's Hospital Melbourne, Australia
| | | | | | - David Vaughan
- Comprehensive Epilepsy Program, Austin Health, Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, Australia
| | - Alan Connelly
- Comprehensive Epilepsy Program, Austin Health, Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, Australia
| | | | | | | | - Graeme Jackson
- Comprehensive Epilepsy Program, Austin Health, Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, Australia
| | | | - Sarah J Wilson
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia; Comprehensive Epilepsy Program, Austin Health, Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, Australia
| |
Collapse
|
21
|
Sarkar T, Patro N, Patro IK. Neuronal changes and cognitive deficits in a multi-hit rat model following cumulative impact of early life stressors. Biol Open 2020; 9:bio054130. [PMID: 32878878 PMCID: PMC7522020 DOI: 10.1242/bio.054130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023] Open
Abstract
Perinatal protein malnourishment (LP) is a leading cause for mental and physical retardation in children from poor socioeconomic conditions. Such malnourished children are vulnerable to additional stressors that may synergistically act to cause neurological disorders in adulthood. In this study, the above mentioned condition was mimicked via a multi-hit rat model in which pups born to LP mothers were co-injected with polyinosinic:polycytidylic acid (Poly I:C; viral mimetic) at postnatal day (PND) 3 and lipopolysaccharide (LPS; bacterial mimetic) at PND 9. Individual exposure of Poly I:C and LPS was also given to LP pups to correlate chronicity of stress. Similar treatments were also given to control pups. Hippocampal cellular apoptosis, β III tubulin catastrophe, altered neuronal profiling and spatial memory impairments were assessed at PND 180, using specific immunohistochemical markers (active caspase 3, β III tubulin, doublecortin), golgi studies and cognitive mazes (Morris water maze and T maze). Increase in cellular apoptosis, loss of dendritic arborization and spatial memory impairments were higher in the multi-hit group, than the single-hit groups. Such impairments observed due to multi-hit stress mimicked conditions similar to many neurological disorders and hence, it is hypothesized that later life neurological disorders might be an outcome of multiple early life hits.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tiyasha Sarkar
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India
| | - Ishan Kumar Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India
| |
Collapse
|
22
|
Lima MN, Oliveira HA, Fagundes PM, Estato V, Silva AYO, Freitas RJRX, Passos BABR, Oliveira KS, Batista CN, Vallochi AL, Rocco PRM, Castro-Faria-Neto HC, Maron-Gutierrez T. Mesenchymal stromal cells protect against vascular damage and depression-like behavior in mice surviving cerebral malaria. Stem Cell Res Ther 2020; 11:367. [PMID: 32843073 PMCID: PMC7448996 DOI: 10.1186/s13287-020-01874-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/16/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Malaria is one of the most critical global infectious diseases. Severe systemic inflammatory diseases, such as cerebral malaria, lead to the development of cognitive and behavioral alterations, such as learning disabilities and loss of memory capacity, as well as increased anxiety and depression. The consequences are profound and usually contribute to reduce the patient's quality of life. There are no therapies to treat the neurological sequelae of cerebral malaria. Mesenchymal stromal cells (MSCs) may be an alternative, since they have been used as therapy for neurodegenerative diseases and traumatic lesions of the central nervous system. So far, no study has investigated the effects of MSC therapy on the blood-brain barrier, leukocyte rolling and adherence in the brain, and depression like-behavior in experimental cerebral malaria. METHODS Male C57BL/6 mice were infected with Plasmodium berghei ANKA (PbA, 1 × 106 PbA-parasitized red blood cells, intraperitoneally). At day 6, PbA-infected animals received chloroquine (25 mg/kg orally for seven consecutive days) as the antimalarial treatment and were then randomized to receive MSCs (1 × 105 cells in 0.05 ml of saline/mouse) or saline (0.05 ml) intravenously. Parasitemia, clinical score, and survival rate were analyzed throughout the experiments. Evans blue assay was performed at 6, 7, and 15 days post-infection (dpi). Behavioral tests were performed at 5 and 15 dpi. Intravital microscopy experiments and brain-derived neurotrophic factor (BDNF) protein expression analyses were performed at 7 dpi, whereas inflammatory mediators were measured at 15 dpi. In vitro, endothelial cells were used to evaluate the effects of conditioned media derived from MSCs (CMMSC) on cell viability by lactate dehydrogenase (LDH) release. RESULTS PbA-infected mice presented increased parasitemia, adherent leukocytes, blood-brain barrier permeability, and reduced BDNF protein levels, as well as depression-like behavior. MSCs mitigated behavioral alterations, restored BDNF and transforming growth factor (TGF)-β protein levels, and reduced blood-brain barrier dysfunction and leukocyte adhesion in the brain microvasculature. In a cultured endothelial cell line stimulated with heme, CMMSC reduced LDH release, suggesting a paracrine mechanism of action. CONCLUSION A single dose of MSCs as adjuvant therapy protected against vascular damage and improved depression-like behavior in mice that survived experimental cerebral malaria.
Collapse
Affiliation(s)
- Maiara N Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Helena A Oliveira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Paula M Fagundes
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Vanessa Estato
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Adriano Y O Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Rodrigo J R X Freitas
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Beatriz A B R Passos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Karina S Oliveira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Camila N Batista
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Adriana L Vallochi
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Hugo C Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, RJ, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
23
|
Malcon LMC, Wearick-Silva LE, Zaparte A, Orso R, Luft C, Tractenberg SG, Donadio MVF, de Oliveira JR, Grassi-Oliveira R. Maternal separation induces long-term oxidative stress alterations and increases anxiety-like behavior of male Balb/cJ mice. Exp Brain Res 2020; 238:2097-2107. [PMID: 32656651 DOI: 10.1007/s00221-020-05859-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/20/2020] [Indexed: 01/23/2023]
Abstract
Early life stress (ELS) exposure is a well-known risk factor for the development of psychiatric conditions, including anxiety disorder. Preclinical studies show that maternal separation (MS), a classical model of ELS, causes hypothalamic-pituitary-adrenal (HPA) axis alterations, a key contributor to the stress response modulation. Given that HPA axis activation has been shown to induce oxidative stress, it is possible to hypothesize that oxidative stress mediates the relationship between chronic ELS exposure and the development of several disorders. Here, we investigate the effects of MS in the oxidative status [plasma and brain reduced glutathione, catalase and thiobarbituric acid reactive substances (TBARS)], metabolism (glucose, triglycerides and cholesterol) and anxiety-like behaviors in adult Balb/cJ mice. In short, we found that MS increased anxiety-like behaviors in the open field, light/dark test but not in the elevated-plus maze. Animals also presented increased circulating cholesterol, increased TBARS in the plasma and decreased catalase in the hippocampus. Our findings suggest that MS induces long-term alterations in oxidative stress and increased anxiety-like behaviors.
Collapse
Affiliation(s)
- Luiza Martins Costa Malcon
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Luis Eduardo Wearick-Silva
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Aline Zaparte
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rodrigo Orso
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Carolina Luft
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Saulo Gantes Tractenberg
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Márcio Vinicius Fagundes Donadio
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil. .,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| |
Collapse
|
24
|
Abstract
The hippocampus is central to spatial learning and stress responsiveness, both of which differ in form and function in males versus females, yet precisely how the hippocampus contributes to these sex differences is largely unknown. In reproductively mature individuals, sex differences in the steroid hormone milieu undergirds many sex differences in hippocampal-related endpoints. However, there is also evidence for developmental programming of adult hippocampal function, with a central role for androgens as well as their aromatized byproduct, estrogens. These include sex differences in cell genesis, synapse formation, dendritic arborization, and excitatory/inhibitory balance. Enduring effects of steroid hormone modulation occur during two developmental epochs, the first being the classic perinatal critical period of sexual differentiation of the brain and the other being adolescence and the associated hormonal changes of puberty. The cellular mechanisms by which steroid hormones enduringly modify hippocampal form and function are poorly understood, but we here review what is known and highlight where attention should be focused.
Collapse
|
25
|
Liening AN, Epps SA. In Up to My Ears and Temporal Lobes: Effects of Early Life Stress on Epilepsy Development. Curr Top Behav Neurosci 2020; 55:17-40. [PMID: 33454921 DOI: 10.1007/7854_2020_190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Epilepsy and stress are each significant concerns in today's society, bearing heavy impacts on mental and physical health and overall quality of life. Unfortunately, the intersection between these is potentially even more concerning, as stress is a frequent trigger of seizures and may contribute to neural hyperexcitability. A growing body of research suggests a connection between early life stress (occurring in the prenatal or postnatal stage) and later development of epilepsy. While the larger part of this literature suggests that early life stress increases vulnerability for epilepsy development, there are a number of interacting factors influencing this relationship. These factors include developmental stage at which both stressor and seizure assessment occur, type of stressor, sex effects, and type of seizure (convulsive or non-convulsive). Additionally, a number of potential mechanisms have been identified, including activation of the hypothalamic-pituitary-adrenal axis, neuroinflammation, altered inhibitory/excitatory balance, and temporal lobe structures. Developing a clearer understanding of this relationship between early life stress and epilepsy, the factors that influence it, and underlying mechanisms that may serve as targets for intervention is crucial to improving quality of life for persons with epilepsy.
Collapse
Affiliation(s)
- Avery N Liening
- Department of Psychology, Whitworth University, Spokane, WA, USA
| | - S Alisha Epps
- Department of Psychology, Whitworth University, Spokane, WA, USA.
| |
Collapse
|
26
|
Isac S, Panaitescu AM, Iesanu MI, Zeca V, Cucu N, Zagrean L, Peltecu G, Zagrean AM. Maternal Citicoline-Supplemented Diet Improves the Response of the Immature Hippocampus to Perinatal Asphyxia in Rats. Neonatology 2020; 117:729-735. [PMID: 33326978 DOI: 10.1159/000512145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/08/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Citicoline represents a dietary source of choline, an essential nutrient, and precursor of cell membrane components, highly required during development and post-injury recovery. OBJECTIVES We previously showed that perinatal asphyxia (PA) induces hippocampal neuroinflammation and injury that are subject to epigenetic change by maternal diet. The present study investigates maternal citicoline-supplemented diet (CSD) impact on offspring hippocampal response to PA. METHODS Six-day-old Wistar rats from mothers with standard-diet or CSD were exposed to PA. The hippocampal inflammation and injury were assessed by interleukin-1 beta (IL-1b), tumor necrosis factor-alpha (TNFα), and S-100B protein (S-100B), 24-48 h post-asphyxia. The microRNAs species miR124, miR132, miR134, miR146, and miR15a were measured from the hippocampus 24 h post-asphyxia, to investigate its epigenetic response to PA and maternal diet. At maturity, the offspring's behavior was analyzed using open field (OFT), T-maze (TMT), and forced swimming (FST) tests. RESULTS Our data show that the maternal CSD decreased IL-1b (p = 0.02), TNFα (p = 0.007), and S100B (p = 0.01) at 24 h postexposure, upregulated miR124 (p = 0.03), downregulated miR132 (p = 0.002) and miR134 (p = 0.001), shortened the immobility period in FST (p = 0.01), and increased the percentage of passed trials in TMT (p = 0.01) compared to standard-diet. CONCLUSIONS Maternal CSD reduces hippocampal inflammation and S100B level, triggers epigenetic changes related to homeostatic synaptic plasticity, memory formation, and neuronal tolerance to asphyxia, decreases the depressive-like behavior, and improves the lucrative memory in offspring subjected to PA. Thus, citicoline could be valuable as a maternal dietary strategy in improving the brain response to PA.
Collapse
Affiliation(s)
- Sebastian Isac
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Department of Anesthesiology and Intensive Care I, Fundeni Clinical Institute, Bucharest, Romania
| | - Anca Maria Panaitescu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mara Ioana Iesanu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Department of Pediatric Gastroenterology, Marie Curie Children's Clinical Hospital, Bucharest, Romania
| | - Vlad Zeca
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Natalia Cucu
- Association for Epigenetics and Metabolomics, Bucharest, Romania
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Gheorghe Peltecu
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,
| |
Collapse
|
27
|
Bögi E, Belovičová K, Moravčíková L, Csatlósová K, Dremencov E, Lacinova L, Dubovicky M. Pre-gestational stress impacts excitability of hippocampal cells in vitro and is associated with neurobehavioral alterations during adulthood. Behav Brain Res 2019; 375:112131. [DOI: 10.1016/j.bbr.2019.112131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
|
28
|
Saboory E, Mohammadi S, Dindarian S, Mohammadi H. Prenatal stress and elevated seizure susceptibility: Molecular inheritable changes. Epilepsy Behav 2019; 96:122-131. [PMID: 31132613 DOI: 10.1016/j.yebeh.2019.04.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
Stressful episodes are common during early-life and may have a wide range of negative effects on both physical and mental status of the offspring. In addition to various neurobehavioral complications induced by prenatal stress (PS), seizure is a common complication with no fully explained cause. In this study, the association between PS and seizure susceptibility was reviewed focusing on sex differences and various underlying mechanisms. The role of drugs in the initiation of seizure and the effects of PS on the nervous system that prone the brain for seizure, especially the hypothalamic-pituitary-adrenal (HPA) axis, are also discussed in detail by reviewing the papers studying the effect of PS on glutamatergic, gamma-aminobutyric acid (GABA)ergic, and adrenergic systems in the context of seizure and epilepsy. Finally, epigenetic changes in epilepsy are described, and the underlying mechanisms of this change are expanded. As the effects of PS may be life-lasting, it is possible to prevent future psychiatric and behavioral disorders including epilepsy by preventing avoidable PS risk factors.
Collapse
Affiliation(s)
- Ehsan Saboory
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Sedra Mohammadi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| | - Sina Dindarian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hozan Mohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Kipnis PA, Sullivan BJ, Kadam SD. Sex-Dependent Signaling Pathways Underlying Seizure Susceptibility and the Role of Chloride Cotransporters. Cells 2019; 8:cells8050448. [PMID: 31085988 PMCID: PMC6562404 DOI: 10.3390/cells8050448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/04/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022] Open
Abstract
Seizure incidence, severity, and antiseizure medication (ASM) efficacy varies between males and females. Differences in sex-dependent signaling pathways that determine network excitability may be responsible. The identification and validation of sex-dependent molecular mechanisms that influence seizure susceptibility is an emerging focus of neuroscience research. The electroneutral cation-chloride cotransporters (CCCs) of the SLC12A gene family utilize Na+-K+-ATPase generated electrochemical gradients to transport chloride into or out of neurons. CCCs regulate neuronal chloride gradients, cell volume, and have a strong influence over the electrical response to the inhibitory neurotransmitter GABA. Acquired or genetic causes of CCCs dysfunction have been linked to seizures during early postnatal development, epileptogenesis, and refractoriness to ASMs. A growing number of studies suggest that the developmental expression of CCCs, such as KCC2, is sex-dependent. This review will summarize the reports of sexual dimorphism in epileptology while focusing on the role of chloride cotransporters and their associated modulators that can influence seizure susceptibility.
Collapse
Affiliation(s)
- Pavel A Kipnis
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
| | - Brennan J Sullivan
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
| | - Shilpa D Kadam
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
30
|
Sarkar T, Patro N, Patro IK. Cumulative multiple early life hits- a potent threat leading to neurological disorders. Brain Res Bull 2019; 147:58-68. [DOI: 10.1016/j.brainresbull.2019.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022]
|
31
|
Gandhi K, Montoya‐Uribe V, Martinez S, David S, Jain B, Shim G, Li C, Jenkins S, Nathanielsz P, Schlabritz‐Loutsevitch N. Ontogeny and programming of the fetal temporal cortical endocannabinoid system by moderate maternal nutrient reduction in baboons (Papio spp.). Physiol Rep 2019; 7:e14024. [PMID: 30912236 PMCID: PMC6434170 DOI: 10.14814/phy2.14024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/24/2022] Open
Abstract
Poor nutrition during pregnancy is a worldwide public health problem. Maternal nutrient reduction (MNR) is associated with maternal and fetal stress and a sex-dependent decrease in nonhuman primate (NHP) cognitive performance. Early life stress potentiates epileptogenesis in a sex-specific manner, and temporal lobe (TL) epilepsy is associated with neurocognitive disorders. The endogenous cannabinoid system (ECS) demonstrates remarkable developmental changes and plays a key role in aging-related diseases (e.g., dementia). Baboons have been studied as a natural model of epilepsy and express all ECS system components. We therefore evaluated baboon fetal temporal cortex ECS ontogenic and MNR-dependent changes. At 120 days gestational age (dGA) (term 185 days), maternal, fetal, and placental morphometry were similar between control and MNR pregnancies. MNR maternal weight gain was decreased compared with controls at 165 dGA independent of fetal sex. In male fetuses, expression of ECS synthesizing and degrading enzymes was gestational age-dependent, with the exception of fatty acid amide hydrolase (FAAH). MNR had a sex-specific effect on the protein expression of CB1R during development: CB1R protein expression was decreased in fetal temporal cortex of male fetuses at 120 and 140 dGA. Our data reveal that the MNR has sex-specific effects on temporal cortical expression of the ECS in baboon offspring and shows vulnerability of ECS in male fetuses during gestation.
Collapse
MESH Headings
- Amidohydrolases/genetics
- Amidohydrolases/metabolism
- Animal Nutritional Physiological Phenomena
- Animals
- Caloric Restriction
- Endocannabinoids/genetics
- Endocannabinoids/metabolism
- Female
- Fetal Development
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Gestational Age
- Male
- Maternal Nutritional Physiological Phenomena
- Papio
- Pregnancy
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Sex Factors
- Signal Transduction
- Temporal Lobe/growth & development
- Temporal Lobe/metabolism
Collapse
Affiliation(s)
- Kushal Gandhi
- Department of Obstetrics and GynecologyTexas Tech University Health sciences Center at the Permian BasinOdessaTexas
| | | | - Stacy Martinez
- Department of Obstetrics and GynecologyTexas Tech University Health sciences Center at the Permian BasinOdessaTexas
| | - Samuel David
- Department of ChemistryUniversity of Texas at the Permian BasinOdessaTexas
| | - Bobby Jain
- Department of PsychiatryTexas Tech University Health Sciences Center at the Permian BasinOdessaTexas
| | - Grace Shim
- Department of Obstetrics and GynecologyTexas Tech University Health sciences Center at the Permian BasinOdessaTexas
| | - Cun Li
- University of WyomingLaramieWyoming
- Texas Biomedical Research InstituteSan AntonioTexas
| | - Susan Jenkins
- University of WyomingLaramieWyoming
- Texas Biomedical Research InstituteSan AntonioTexas
| | - Peter Nathanielsz
- University of WyomingLaramieWyoming
- Texas Biomedical Research InstituteSan AntonioTexas
| | - Natalia Schlabritz‐Loutsevitch
- Department of Obstetrics and GynecologyTexas Tech University Health sciences Center at the Permian BasinOdessaTexas
- Department of BiologyUniversity of Texas at the Permian BasinOdessaTexas
- Department of Neurobiology and PharmacologyTexas Tech University Health Sciences CenterLubbockTexas
| |
Collapse
|
32
|
McNally MA, Chavez-Valdez R, Felling RJ, Flock DL, Northington FJ, Stafstrom CE. Seizure Susceptibility Correlates with Brain Injury in Male Mice Treated with Hypothermia after Neonatal Hypoxia-Ischemia. Dev Neurosci 2019; 40:1-10. [PMID: 30820019 PMCID: PMC9109068 DOI: 10.1159/000496468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022] Open
Abstract
Hypoxic-ischemic encephalopathy is a common neonatal brain injury associated with significant morbidity and mortality despite the administration of therapeutic hypothermia (TH). Neonatal seizures and subsequent chronic epilepsy are frequent in this patient population and current treatments are partially effective. We used a neonatal murine hypoxia-ischemia (HI) model to test whether the severity of hippocampal and cortical injury predicts seizure susceptibility 8 days after HI and whether TH mitigates this susceptibility. HI at postnatal day 10 (P10) caused hippocampal injury not mitigated by TH in male or female pups. TH did not confer protection against flurothyl seizure susceptibility at P18 in this model. Hippocampal (R2 = 0.33, p = 0.001) and cortical (R2 = 0.33, p = 0.003) injury directly correlated with seizure susceptibility in male but not female pups. Thus, there are sex-specific consequences of neonatal HI on flurothyl seizure susceptibility in a murine neonatal HI model. Further studies are necessary to elucidate the underlying mechanisms of sex dimorphism in seizure susceptibility after neonatal HI.
Collapse
Affiliation(s)
- Melanie A McNally
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA,
| | - Raul Chavez-Valdez
- Department of Pediatrics (Neonatology), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan J Felling
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Debra L Flock
- Department of Pediatrics (Neonatology), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Frances J Northington
- Department of Pediatrics (Neonatology), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carl E Stafstrom
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A Comprehensive Overview on Stress Neurobiology: Basic Concepts and Clinical Implications. Front Behav Neurosci 2018; 12:127. [PMID: 30034327 PMCID: PMC6043787 DOI: 10.3389/fnbeh.2018.00127] [Citation(s) in RCA: 358] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
Stress is recognized as an important issue in basic and clinical neuroscience research, based upon the founding historical studies by Walter Canon and Hans Selye in the past century, when the concept of stress emerged in a biological and adaptive perspective. A lot of research after that period has expanded the knowledge in the stress field. Since then, it was discovered that the response to stressful stimuli is elaborated and triggered by the, now known, stress system, which integrates a wide diversity of brain structures that, collectively, are able to detect events and interpret them as real or potential threats. However, different types of stressors engage different brain networks, requiring a fine-tuned functional neuroanatomical processing. This integration of information from the stressor itself may result in a rapid activation of the Sympathetic-Adreno-Medullar (SAM) axis and the Hypothalamus-Pituitary-Adrenal (HPA) axis, the two major components involved in the stress response. The complexity of the stress response is not restricted to neuroanatomy or to SAM and HPA axes mediators, but also diverge according to timing and duration of stressor exposure, as well as its short- and/or long-term consequences. The identification of neuronal circuits of stress, as well as their interaction with mediator molecules over time is critical, not only for understanding the physiological stress responses, but also to understand their implications on mental health.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Polianna Delfino-Pereira
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
|
35
|
Antidepressant administration modulates stress-induced DNA methylation and DNA methyltransferase expression in rat prefrontal cortex and hippocampus. Behav Brain Res 2018; 343:8-15. [PMID: 29378290 DOI: 10.1016/j.bbr.2018.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/23/2022]
Abstract
Stress and antidepressant treatment can modulate DNA methylation in promoter region of genes related to neuroplasticity and mood regulation, thus implicating this epigenetic mechanism in depression neurobiology and treatment. Accordingly, systemic administration of DNA methyltransferase (DNMT) inhibitors induces antidepressant-like effects in rodents. DNA methylation is conveyed by DNMT 1, 3a and 3b isoforms, which are differentially expressed in the brain. In order to investigate if the behavioral effects of antidepressants could be associated with changes in DNA methylation and DNMT expression, we investigated the effects induced by acute and repeated antidepressant treatment on DNA methylation and DNMT expression (1, 3a and 3b isoforms) in different brain regions of rats exposed to a stress model of depression, the learned helplessness (LH). Therefore, rats were exposed to pretest and treated with one or seven injections of vehicle or imipramine (15 mg kg-1), with test session performed one hour after the last injection. Chronic, but not acute, imipramine administration attenuated escape failures during the test, a well described antidepressant-like effect in this model. DNA methylation and DNMT (1, 3a and 3b) levels were measured in the dorsal and ventral hippocampus (dHPC, vHPC) and in the prefrontal cortex (PFC) of rats exposed to stress and treatment. Stress increased DNA methylation, DNMT3a and DNMT3b expression in the dHPC and PFC. Chronic, but not acute, imipramine administration attenuated stress effects only in the PFC. These results suggest the regulation of DNA methylation in the PFC may be an important mechanism for antidepressant-like effects in the LH model.
Collapse
|
36
|
Yang S, Li J, Han L, Zhu G. Early maternal separation promotes apoptosis in dentate gyrus and alters neurological behaviors in adolescent rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:10812-10820. [PMID: 31966424 PMCID: PMC6965815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/24/2017] [Indexed: 06/10/2023]
Abstract
Adverse early-life experience such as maternal separation (MS) affects the behavior of adult, and may also aggravate the outcome of neurological insults. In this study, we aimed to investigate the effects of early MS on hippocampus-related behaviors, and to assess the mechanisms. Newborn rats were randomly divided into normal control and MS groups. Our data showed that MS (P3-P21) impaired learning ability as well as memory retrieval, and caused depression-like activity, but decreased anxiety-like activity. Glutamate receptor 1 (GluR1) expression in the dentate gyrus (DG) region was significantly reduced in the adults (P60). Mechanically, MS promoted apoptosis, and reduced protein kinase B (AKT) phosphorylation in the DG region in the early phase (P21). By contrast, MS did not affect ERK phosphorylation. Our data implicate that the inactivation of AKT pathway and apoptosis of DG cells might contribute to MS-induced behavioral changes. This study would provide useful evidence implicating the pathological changes for MS.
Collapse
Affiliation(s)
- Sanjuan Yang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese MedicineHefei 230038, China
| | - Junyao Li
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese MedicineHefei 230038, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese MedicineHefei 230038, China
| | - Guoqi Zhu
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese MedicineHefei 230038, China
| |
Collapse
|
37
|
Bennett GA, Palliser HK, Shaw JC, Palazzi KL, Walker DW, Hirst JJ. Maternal stress in pregnancy affects myelination and neurosteroid regulatory pathways in the guinea pig cerebellum. Stress 2017; 20:580-588. [PMID: 28969480 DOI: 10.1080/10253890.2017.1378637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Prenatal stress predisposes offspring to behavioral pathologies. These may be attributed to effects on cerebellar neurosteroids and GABAergic inhibitory signaling, which can be linked to hyperactivity disorders. The aims were to determine the effect of prenatal stress on markers of cerebellar development, a key enzyme in neurosteroid synthesis and the expression of GABAA receptor (GABAAR) subunits involved in neurosteroid signaling. We used a model of prenatal stress (strobe light exposure, 2 h on gestational day 50, 55, 60 and 65) in guinea pigs, in which we have characterized anxiety and neophobic behavioral outcomes. The cerebellum and plasma were collected from control and prenatally stressed offspring at term (control fetus: n = 9 male, n = 7 female; stressed fetus: n = 7 male, n = 8 female) and postnatal day (PND) 21 (control: n = 8 male, n = 8 female; stressed: n = 9 male, n = 6 female). We found that term female offspring exposed to prenatal stress showed decreased expression of mature oligodendrocytes (∼40% reduction) and these deficits improved to control levels by PND21. Reactive astrocyte expression was lower (∼40% reduction) following prenatal stress. GABAAR subunit (δ and α6) expression and circulating allopregnanolone concentrations were not affected by prenatal stress. Prenatal stress increased expression (∼150-250% increase) of 5α-reductase type-1 mRNA in the cerebellum, which may be a neuroprotective response to promote GABAergic inhibition and aid in repair. These observations indicate that prenatal stress exposure has marked effects on the development of the cerebellum. These findings suggest cerebellar changes after prenatal stress may contribute to adverse behavioral outcomes after exposure to these stresses.
Collapse
Affiliation(s)
- Greer A Bennett
- a Mothers and Babies Research Centre , Hunter Medical Research Institute , Newcastle , New South Wales , Australia
- b School of Biomedical Sciences and Pharmacy , University of Newcastle , New South Wales , Australia
| | - Hannah K Palliser
- a Mothers and Babies Research Centre , Hunter Medical Research Institute , Newcastle , New South Wales , Australia
- b School of Biomedical Sciences and Pharmacy , University of Newcastle , New South Wales , Australia
| | - Julia C Shaw
- a Mothers and Babies Research Centre , Hunter Medical Research Institute , Newcastle , New South Wales , Australia
- b School of Biomedical Sciences and Pharmacy , University of Newcastle , New South Wales , Australia
| | - Kerrin L Palazzi
- c Clinical Research Design , Information Technology and Statistical Support (CReDITSS), Hunter Medical Research Institute (HMRI) , Newcastle , New South Wales , Australia
| | - David W Walker
- d School of Health and Biomedical Sciences , RMIT University , Bundoora , Victoria , Australia
| | - Jonathan J Hirst
- a Mothers and Babies Research Centre , Hunter Medical Research Institute , Newcastle , New South Wales , Australia
- b School of Biomedical Sciences and Pharmacy , University of Newcastle , New South Wales , Australia
| |
Collapse
|
38
|
Thébault-Dagher F, Herba CM, Séguin JR, Muckle G, Lupien SJ, Carmant L, Simard MN, Shapiro GD, Fraser WD, Lippé S. Age at first febrile seizure correlates with perinatal maternal emotional symptoms. Epilepsy Res 2017. [DOI: 10.1016/j.eplepsyres.2017.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Grammatopoulos DK. Regulation of G-protein coupled receptor signalling underpinning neurobiology of mood disorders and depression. Mol Cell Endocrinol 2017; 449:82-89. [PMID: 28229904 DOI: 10.1016/j.mce.2017.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 02/08/2023]
Abstract
G-protein coupled receptors (GPCRs) have long been at the center of investigations of the neurobiology of depression and mood disorders. Different facets of GPCR signalling pathways, including those controlling monoaminergic and neuropeptidergic hormonal systems are believed to be dysregulated in major depressive and bipolar disorders. Although these receptors are key molecular targets for a variety of therapeutic agents and continue to be the focus of intense pharmaceutical development, the molecular mechanisms activated by these GPCRs and underpin the pathological basis of mood disorders remain poorly understood. This review will discuss some of the emerging regulatory mechanisms of GPCR signaling in the central nervous system (CNS) involving protein-protein interactions, downstream effectors and cross-talk with other signaling molecules and their potential involvement in the neurobiology of psychiatric disease.
Collapse
Affiliation(s)
- Dimitris K Grammatopoulos
- Translational Medicine, Warwick Medical School & Clinical Biochemistry, Coventry and Warwickshire Pathology Service, United Kingdom.
| |
Collapse
|
40
|
Knop J, Joëls M, van der Veen R. The added value of rodent models in studying parental influence on offspring development: opportunities, limitations and future perspectives. Curr Opin Psychol 2017; 15:174-181. [DOI: 10.1016/j.copsyc.2017.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 01/13/2023]
|
41
|
Kotwas I, McGonigal A, Bastien-Toniazzo M, Bartolomei F, Micoulaud-Franchi JA. Stress regulation in drug-resistant epilepsy. Epilepsy Behav 2017; 71:39-50. [PMID: 28494323 DOI: 10.1016/j.yebeh.2017.01.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/29/2016] [Accepted: 01/25/2017] [Indexed: 12/17/2022]
Abstract
The prevalence of psychological distress, especially depressive and anxiety disorders, is higher in epilepsy than in other chronic health conditions. These comorbid conditions contribute even more than epileptic seizures themselves to impaired quality of life in patients with epilepsy (PWE). The link between these comorbidities and epilepsy appears to have a neurobiological basis, which is at least partly mediated by stress through psychological and pathophysiological pathways. The impact of stress in PWE is also particularly important because it is the most frequently reported seizure trigger. It is therefore crucial for clinicians to take stress-related conditions and psychiatric comorbidities into account when managing PWE and to propose clinical support to enhance self-control of stress. Screening tools have been specially designed and validated in PWE for depressive disorders and anxiety disorders (e.g. NDDI-E, GAD-7). Other instruments are useful for measuring stress-related variables (e.g. SRRS, PSS, SCS, MHLCS, DSR-15, ERP-R, QOLIE-31) in order to help characterize the individual "stress profile" and thus orientate patients towards the most appropriate treatment. Management includes both pharmacological treatment and nonpharmacological methods for enhancing self-management of stress (e.g. mindfulness-based therapies, yoga, cognitive-behavioral therapies, biofeedback), which may not only protect against psychiatric comorbidities but also reduce seizure frequency.
Collapse
Affiliation(s)
- Iliana Kotwas
- Laboratoire Parole et Langage UMR 7309, Aix-Marseille Université, Marseille, France.
| | - Aileen McGonigal
- Service de Neurophysiologie Clinique, Centre Hospitalo Universitaire de la Timone, 264, rue Saint-Pierre, 13005 Marseille, France; Unité mixte INSERM Epilepsie et Cognition UMR 751, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France
| | | | - Fabrice Bartolomei
- Service de Neurophysiologie Clinique, Centre Hospitalo Universitaire de la Timone, 264, rue Saint-Pierre, 13005 Marseille, France; Unité mixte INSERM Epilepsie et Cognition UMR 751, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France
| | - Jean-Arthur Micoulaud-Franchi
- Service d'explorations fonctionnelles du système nerveux, Clinique du sommeil, CHU de, Bordeaux, Place Amélie Raba-Léon, 33076 Bordeaux, France; USR CNRS 3413 SANPSY, CHU Pellegrin, Université de Bordeaux, France
| |
Collapse
|
42
|
Scher M. Training in Fetal-Neonatal Neurology: Principles to Guide Practice for Career-Long Learning. Pediatr Neurol 2017; 67:1-2. [PMID: 27894817 DOI: 10.1016/j.pediatrneurol.2016.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/10/2016] [Accepted: 09/15/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Mark Scher
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
43
|
Lateral hypothalamus orexinergic system modulates the stress effect on pentylenetetrazol induced seizures through corticotropin releasing hormone receptor type 1. Neuropharmacology 2016; 110:15-24. [PMID: 27395784 DOI: 10.1016/j.neuropharm.2016.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/22/2016] [Accepted: 07/05/2016] [Indexed: 01/06/2023]
Abstract
Stress is a trigger factor for seizure initiation which activates hypothalamic pituitary adrenal (HPA) axis as well other brain areas. In this respect, corticotropin releasing hormone (CRH) and lateral hypothalamus (LH) orexinergic system are involved in seizure occurrence. In this study, we investigated the role of LH area and orexin expression in (mediation of) stress effect on pentylenetetrazol (PTZ) -induced seizures with hippocampal involvement. Two mild foot shock stresses were applied to intact and adrenalectomized animals; with or without CRHr1 blocking (NBI 27914) in the LH area. Then, changes in orexin production were evaluated by RT-PCR. Intravenous PTZ infusion (25 mg/ml) -induced convulsions were scored upon modified Racine scale. Finally, hippocampal glutamate and GABA were evaluated to study excitability changes. We demonstrated that the duration and severity of convulsions in stress-induced as well as adrenalectomized group were increased. Plasma corticosterone (CRT) level and orexin mRNA expression were built up in the stress and/or seizure groups. Furthermore, glutamate and GABA content was increased and decreased respectively due to stress and seizures. In contrast, rats receiving CRHr1 inhibitor showed reduced severity and duration of seizures, increased GABA, decreased glutamate and corticosterone and also orexin mRNA compared to the inhibitor free rats. Stress and adrenalectomy induced augmenting effect on seizure severity and duration and the subsequent reduction due to CRHr1 blocking with parallel orexin mRNA changes, indicated the likely involvement of CRH1r induced orexin expression of the LH in gating stress effect on convulsions.
Collapse
|
44
|
Baek H, Yi MH, Pandit S, Park JB, Kwon HH, Zhang E, Kim S, Shin N, Kim E, Lee YH, Kim Y, Kim DW, Kang JW. Altered expression of KCC2 in GABAergic interneuron contributes prenatal stress-induced epileptic spasms in infant rat. Neurochem Int 2016; 97:57-64. [PMID: 27180051 DOI: 10.1016/j.neuint.2016.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/25/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023]
Abstract
Long-term stress during pregnancy causes neurologic deficits to offspring with altered gamma-aminobutyric acid (GABA) system in the brain. However, it is not clear how prenatal stress affects the maturing GABAergic interneurons and the resulting abnormalities in infantile seizures. Here, we showed that prenatal stress alters the maturation of GABA inhibitory system using a seizure model induced by prenatal stress. Prenatal stress with betamethasone or acute immobilization stress (AIS) on gestational day 15 increased the seizure susceptibility to N-methyl-d-aspartate-triggered spasms on postnatal day 15. The expression of GABA was lower in the prenatally stressed group, which compromise the decrease of glutamate decarboxylase 67-immunopositive cells. Prenatal stress markedly decreased the expression of K(+)/Cl(-) co-transporter (KCC2) in the cortex. GABA induced membrane depolarization demonstrated prenatal stress models had significant higher membrane depolarization compared to control. GABA increased KCC2 expression in cultured cortex-containing slices. Taken together, our results showed that prenatal stress with betamethasone or AIS altered the maturation of GABAergic progenitors and resulted in the lack of GABA input, which in turn, decreased KCC2 expression and lowered seizure threshold. We conclude that delayed GABA excitatory/inhibitory shift would render the cortical neuronal circuit more susceptible to excitatory input in prenatal stress induced seizure.
Collapse
Affiliation(s)
- Hyunjung Baek
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Munwha-ro 266, Jung-gu, Daejeon, 301-747, Republic of Korea; Department of Pediatrics, Chungnam National University Hospital, Brain Research Institute, Chungnam National University School of Medicine, Munwha-ro 282, Jung-gu, Daejeon, 301-721, Republic of Korea
| | - Min-Hee Yi
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Munwha-ro 266, Jung-gu, Daejeon, 301-747, Republic of Korea
| | - Sudip Pandit
- Department of Physiology, Brain Research Institute, Chungnam National University School of Medicine, Munwha-ro 266, Jung-gu, Daejeon, 301-747, Republic of Korea
| | - Jin Bong Park
- Department of Physiology, Brain Research Institute, Chungnam National University School of Medicine, Munwha-ro 266, Jung-gu, Daejeon, 301-747, Republic of Korea
| | - Hyeok Hee Kwon
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Munwha-ro 266, Jung-gu, Daejeon, 301-747, Republic of Korea; Department of Pediatrics, Chungnam National University Hospital, Brain Research Institute, Chungnam National University School of Medicine, Munwha-ro 282, Jung-gu, Daejeon, 301-721, Republic of Korea
| | - Enji Zhang
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Munwha-ro 266, Jung-gu, Daejeon, 301-747, Republic of Korea
| | - Sena Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Munwha-ro 266, Jung-gu, Daejeon, 301-747, Republic of Korea; Department of Plastic Surgery, Chungnam National University Hospital, Munwha-ro 282, Jung-gu, Daejeon, 301-721, Republic of Korea
| | - Nara Shin
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Munwha-ro 266, Jung-gu, Daejeon, 301-747, Republic of Korea; Anesthesia and Pain Medicine, Chungnam National University Hospital, Munwha-ro 282, Jung-gu, Daejeon, 301-721, Republic of Korea
| | - Eunjee Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Munwha-ro 266, Jung-gu, Daejeon, 301-747, Republic of Korea
| | - Young Ho Lee
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Munwha-ro 266, Jung-gu, Daejeon, 301-747, Republic of Korea
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Dong Woon Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Munwha-ro 266, Jung-gu, Daejeon, 301-747, Republic of Korea.
| | - Joon Won Kang
- Department of Pediatrics, Chungnam National University Hospital, Brain Research Institute, Chungnam National University School of Medicine, Munwha-ro 282, Jung-gu, Daejeon, 301-721, Republic of Korea.
| |
Collapse
|
45
|
Lesuis SL, Maurin H, Borghgraef P, Lucassen PJ, Leuven FV, Krugers HJ. Positive and negative early life experiences differentially modulate long term survival and amyloid protein levels in a mouse model of Alzheimer's disease. Oncotarget 2016; 7:39118-39135. [PMID: 27259247 PMCID: PMC5129918 DOI: 10.18632/oncotarget.9776] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/12/2016] [Indexed: 11/25/2022] Open
Abstract
Stress has been implicated as a risk factor for the severity and progression of sporadic Alzheimer's disease (AD). Early life experiences determine stress responsivity in later life, and modulate age-dependent cognitive decline. Therefore, we examined whether early life experiences influence AD outcome in a bigenic mouse model which progressively develops combined tau and amyloid pathology (biAT mice).Mice were subjected to either early life stress (ELS) or to 'positive' early handling (EH) postnatally (from day 2 to 9). In biAT mice, ELS significantly compromised long term survival, in contrast to EH which increased life expectancy. In 4 month old mice, ELS-reared biAT mice displayed increased hippocampal Aβ levels, while these levels were reduced in EH-reared biAT mice. No effects of ELS or EH were observed on the brain levels of APP, protein tau, or PSD-95. Dendritic morphology was moderately affected after ELS and EH in the amygdala and medial prefrontal cortex, while object recognition memory and open field performance were not affected. We conclude that despite the strong transgenic background, early life experiences significantly modulate the life expectancy of biAT mice. Parallel changes in hippocampal Aβ levels were evident, without affecting cognition of young adult biAT mice.
Collapse
Affiliation(s)
- Sylvie L. Lesuis
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Herve Maurin
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Peter Borghgraef
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Fred Van Leuven
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Harm J. Krugers
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Williams LM, Debattista C, Duchemin AM, Schatzberg AF, Nemeroff CB. Childhood trauma predicts antidepressant response in adults with major depression: data from the randomized international study to predict optimized treatment for depression. Transl Psychiatry 2016; 6:e799. [PMID: 27138798 PMCID: PMC5070060 DOI: 10.1038/tp.2016.61] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 12/30/2015] [Accepted: 03/05/2016] [Indexed: 12/11/2022] Open
Abstract
Few reliable predictors indicate which depressed individuals respond to antidepressants. Several studies suggest that a history of early-life trauma predicts poorer response to antidepressant therapy but results are variable and limited in adults. The major goal of the present study was to evaluate the role of early-life trauma in predicting acute response outcomes to antidepressants in a large sample of well-characterized patients with major depressive disorder (MDD). The international Study to Predict Optimized Treatment for Depression (iSPOT-D) is a randomized clinical trial with enrollment from December 2008 to January 2012 at eight academic and nine private clinical settings in five countries. Patients (n=1008) meeting DSM-IV criteria for MDD and 336 matched healthy controls comprised the study sample. Six participants withdrew due to serious adverse events. Randomization was to 8 weeks of treatment with escitalopram, sertraline or venlafaxine with dosage adjusted by the participant's treating clinician per routine clinical practice. Exposure to 18 types of traumatic events before the age of 18 was assessed using the Early-Life Stress Questionnaire. Impact of early-life stressors-overall trauma 'load' and specific type of abuse-on treatment outcomes measures: response: (⩾50% improvement on the 17-item Hamilton Rating Scale for Depression, HRSD17 or on the 16-item Quick Inventory of Depressive Symptomatology-Self-Rated, QIDS_SR16) and remission (score ⩽7 on the HRSD17 and ⩽5 on the QIDS_SR16). Trauma prevalence in MDD was compared with controls. Depressed participants were significantly more likely to report early-life stress than controls; 62.5% of MDD participants reported more than two traumatic events compared with 28.4% of controls. The higher rate of early-life trauma was most apparent for experiences of interpersonal violation (emotional, sexual and physical abuses). Abuse and notably abuse occurring at ⩽7 years of age predicted poorer outcomes after 8 weeks of antidepressants, across the three treatment arms. In addition, the abuses occurring between ages 4 and 7 years differentially predicted the poorest outcome following the treatment with sertraline. Specific types of early-life trauma, particularly physical, emotional and sexual abuse, especially when occurring at ⩽7 years of age are important moderators of subsequent response to antidepressant therapy for MDD.
Collapse
Affiliation(s)
- L M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA,Sierra-Pacific Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road Stanford, Stanford, CA 94305, USA. E-mail:
| | - C Debattista
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - A-M Duchemin
- Department of Psychiatry, The Ohio State University College of Medicine, Columbus, OH, USA
| | - A F Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - C B Nemeroff
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
47
|
Amiri S, Haj-Mirzaian A, Amini-khoei H, Momeny M, Shirzadian A, Rahimi-Balaei M, Zarrinrad G, Ghazi-Khansari M, Azizi R, Dehpour AR, Mehr SE. NMDA receptor antagonists attenuate the proconvulsant effect of juvenile social isolation in male mice. Brain Res Bull 2016; 121:158-68. [PMID: 26836272 DOI: 10.1016/j.brainresbull.2016.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 01/12/2023]
Abstract
Experiencing psychosocial stress in early life, such as social isolation stress (SIS), is known to have negative enduring effects on the development of the brain and behavior. In addition to anxiety and depressive-like behaviors, we previously showed that juvenile SIS increases susceptibility to pentylenetetrazole (PTZ)-induced seizures in mice through enhancing the nitrergic system activity in the hippocampus. In this study, we investigated the possible involvement of N-methyl-D-aspartate (NMDA) receptors in proconvulsant effects of juvenile SIS. Applying 4 weeks of SIS to juvenile male mice at postnatal day 21-23, we observed an increased susceptibility to PTZ as well as anxiety and depressive-like behaviors in adult mice. Intraperitoneal (i.p.) administration of NMDA receptor antagonists, MK-801 (0.05 mg/kg) and ketamine (0.5mg/kg), reversed the proconvulsant effects of SIS in Isolated (and not social) housed animals. Co-administration of non-effective doses of nitric oxide synthase (NOS) inhibitors, 7NI (25mg/kg) and L-NAME (10mg/kg), with NMDA receptor antagonists, MK-801 (0.01 mg/kg) and ketamine (0.1mg/kg) attenuated the proconvulsant effects of juvenile SIS only in isolated housed mice. Also, using real time RT-PCR, we showed that hippocampal upregulation of NR2B subunit of NMDA receptor may play a critical role in proconvulsant effects of juvenile SIS by dysregulation of NMDA/NO pathway. In conclusion, results of present study revealed that experiencing SIS during adolescence predisposes the co-occurrence of seizure disorders with psychiatric comorbidities and also, alteration of NMDA receptor structure and function in hippocampus plays a role in proconvulsant effects of juvenile SIS through enhancing the NMDA/NO pathway.
Collapse
Affiliation(s)
- Shayan Amiri
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Arya Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hossein Amini-khoei
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Majid Momeny
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Armin Shirzadian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Ghazaleh Zarrinrad
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahmoud Ghazi-Khansari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Romina Azizi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Shahram Ejtemaei Mehr
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Chen Y, Baram TZ. Toward Understanding How Early-Life Stress Reprograms Cognitive and Emotional Brain Networks. Neuropsychopharmacology 2016; 41:197-206. [PMID: 26105143 PMCID: PMC4677123 DOI: 10.1038/npp.2015.181] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/26/2015] [Accepted: 06/19/2015] [Indexed: 01/19/2023]
Abstract
Vulnerability to emotional disorders including depression derives from interactions between genes and environment, especially during sensitive developmental periods. Adverse early-life experiences provoke the release and modify the expression of several stress mediators and neurotransmitters within specific brain regions. The interaction of these mediators with developing neurons and neuronal networks may lead to long-lasting structural and functional alterations associated with cognitive and emotional consequences. Although a vast body of work has linked quantitative and qualitative aspects of stress to adolescent and adult outcomes, a number of questions are unclear. What distinguishes 'normal' from pathologic or toxic stress? How are the effects of stress transformed into structural and functional changes in individual neurons and neuronal networks? Which ones are affected? We review these questions in the context of established and emerging studies. We introduce a novel concept regarding the origin of toxic early-life stress, stating that it may derive from specific patterns of environmental signals, especially those derived from the mother or caretaker. Fragmented and unpredictable patterns of maternal care behaviors induce a profound chronic stress. The aberrant patterns and rhythms of early-life sensory input might also directly and adversely influence the maturation of cognitive and emotional brain circuits, in analogy to visual and auditory brain systems. Thus, unpredictable, stress-provoking early-life experiences may influence adolescent cognitive and emotional outcomes by disrupting the maturation of the underlying brain networks. Comprehensive approaches and multiple levels of analysis are required to probe the protean consequences of early-life adversity on the developing brain. These involve integrated human and animal-model studies, and approaches ranging from in vivo imaging to novel neuroanatomical, molecular, epigenomic, and computational methodologies. Because early-life adversity is a powerful determinant of subsequent vulnerabilities to emotional and cognitive pathologies, understanding the underlying processes will have profound implications for the world's current and future children.
Collapse
Affiliation(s)
- Yuncai Chen
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Pediatrics, University of California, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, CA, USA
| |
Collapse
|
49
|
Repeated Three-Hour Maternal Separation Induces Depression-Like Behavior and Affects the Expression of Hippocampal Plasticity-Related Proteins in C57BL/6N Mice. Neural Plast 2015; 2015:627837. [PMID: 26798520 PMCID: PMC4700195 DOI: 10.1155/2015/627837] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 08/12/2015] [Accepted: 08/19/2015] [Indexed: 11/17/2022] Open
Abstract
Adverse early life experiences can negatively affect behaviors later in life. Maternal separation (MS) has been extensively investigated in animal models in the adult phase of MS. The study aimed to explore the mechanism by which MS negatively affects C57BL/6N mice, especially the effects caused by MS in the early phase. Early life adversity especially can alter plasticity functions. To determine whether adverse early life experiences induce changes in plasticity in the brain hippocampus, we established an MS paradigm. In this research, the mice were treated with mild (15 min, MS15) or prolonged (180 min, MS180) maternal separation from postnatal day 2 to postnatal day 21. The mice underwent a forced swimming test, a tail suspension test, and an open field test, respectively. Afterward, the mice were sacrificed on postnatal day 31 to determine the effects of MS on early life stages. Results implied that MS induces depression-like behavior and the effects may be mediated partly by interfering with the hippocampal GSK-3β-CREB signaling pathway and by reducing the levels of some plasticity-related proteins.
Collapse
|
50
|
Mela V, Díaz F, Borcel E, Argente J, Chowen JA, Viveros MP. Long Term Hippocampal and Cortical Changes Induced by Maternal Deprivation and Neonatal Leptin Treatment in Male and Female Rats. PLoS One 2015; 10:e0137283. [PMID: 26382238 PMCID: PMC4575204 DOI: 10.1371/journal.pone.0137283] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/14/2015] [Indexed: 01/17/2023] Open
Abstract
Maternal deprivation (MD) during neonatal life has diverse long-term behavioral effects and alters the development of the hippocampus and frontal cortex, with several of these effects being sexually dimorphic. MD animals show a marked reduction in their circulating leptin levels, not only during the MD period, but also several days later (PND 13). A neonatal leptin surge occurs in rodents (beginning around PND 5 and peaking between PND 9 and 10) that has an important neurotrophic role. We hypothesized that the deficient neonatal leptin signaling of MD rats could be involved in the altered development of their hippocampus and frontal cortex. Accordingly, a neonatal leptin treatment in MD rats would at least in part counteract their neurobehavioural alterations. MD was carried out in Wistar rats for 24 h on PND 9. Male and female MD and control rats were treated from PND 9 to 13 with rat leptin (3 mg/kg/day sc) or vehicle. In adulthood, the animals were submitted to the open field, novel object memory test and the elevated plus maze test of anxiety. Neuronal and glial population markers, components of the glutamatergic and cannabinoid systems and diverse synaptic plasticity markers were evaluated by PCR and/or western blotting. Main results include: 1) In some of the parameters analyzed, neonatal leptin treatment reversed the effects of MD (eg., mRNA expression of hippocampal IGF1 and protein expression of GFAP and vimentin) partially confirming our hypothesis; 2) The neonatal leptin treatment, per se, exerted a number of behavioral (increased anxiety) and neural effects (eg., expression of the following proteins: NG2, NeuN, PSD95, NCAM, synaptophysin). Most of these effects were sex dependent. An adequate neonatal leptin level (avoiding excess and deficiency) appears to be necessary for its correct neuro-programing effect.
Collapse
Affiliation(s)
- Virginia Mela
- Department of Physiology (Anim Physiol II), Faculty of Biology, Complutense University Madrid, Madrid, Spain
| | - Francisca Díaz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa & CIBEROBN Instituto Carlos III, Madrid, Spain
| | - Erika Borcel
- Brain Mind Institute and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa & CIBEROBN Instituto Carlos III, Madrid, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa & CIBEROBN Instituto Carlos III, Madrid, Spain
| | - Maria-Paz Viveros
- Department of Physiology (Anim Physiol II), Faculty of Biology, Complutense University Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|