1
|
Hui R, Xu J, Zhou M, Xie B, Zhou M, Zhang L, Cong B, Ma C, Wen D. Betaine improves METH-induced depressive-like behavior and cognitive impairment by alleviating neuroinflammation via NLRP3 inflammasome inhibition. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111093. [PMID: 39029648 DOI: 10.1016/j.pnpbp.2024.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Methamphetamine abuse has been associated with central nervous system damage, contributing to the development of neuropsychiatric disorders such as depressive-like behavior and cognitive impairment. With the escalating prevalence of METH abuse, there is a pressing need to explore effective therapeutic interventions. Thus, the objective of this research was to investigate whether betaine can protect against depressive-like behavior and cognitive impairment induced by METH. Following intraperitoneal injections of METH in mice, varying doses of betaine were administered. Subsequently, the behavioral responses of mice and the impact of betaine intervention on METH-induced neural damage, synaptic plasticity, microglial activation, and NLRP3 inflammatory pathway activation were assessed. Administration 30 mg/kg and 100 mg/kg of betaine ameliorated METH-induced depressive-like behaviors in the open field test, tail suspension test, forced swimming test, and sucrose preference test and cognitive impairment in the novel object recognition test and Barnes maze test. Moreover, betaine exerted protective effects against METH-induced neural damage and reversed the reduced synaptic plasticity, including the decline in dendritic spine density, as well as alterations in the expression of hippocampal PSD95 and Synapsin-1. Additionally, betaine treatment suppressed hippocampal microglial activation induced by METH. Likewise, it also inhibited the activation of the hippocampal NLRP3 inflammasome pathway and reduced IL-1β and TNF-α release. These results collectively suggest that betaine's significant role in mitigating depressive-like behavior and cognitive impairment resulting from METH abuse, presenting potential applications in the prevention and treatment of substance addiction.
Collapse
Affiliation(s)
- Rongji Hui
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Jiabao Xu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Maijie Zhou
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Meiqi Zhou
- College of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei Province 050017, PR China
| | - Ludi Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China.
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China.
| |
Collapse
|
2
|
Oei JL. Improving neurological and mental health outcomes for children with prenatal drug exposure. Semin Fetal Neonatal Med 2024; 29:101557. [PMID: 39537449 DOI: 10.1016/j.siny.2024.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Prenatal drug exposure is a global public health problem that will never be completely eliminated. Some drugs are essential for maternal health but many others are used recreationally and for non-medical reasons. Both legal and illegal drugs of addiction and dependency have the potential to cause permanent and even intergenerational harm to the developing child and understanding the direct impact of drugs of addiction on child neurodevelopmental and mental health is difficult and confounded by many social, environmental and possibly, genetic factors. Furthermore, many drugs are not clear neuroteratogens and their impact on the child may be indolent and not appreciated for a long time after exposure has occurred. Despite this, there are numerous windows of opportunity to improve the eventual outcomes of the child including utilising the enormous benefits of neuroplasticity and general principles of basic health care and support. This chapter will discuss current understanding of the impact of drugs of addiction on the growing child and offer possible mitigation strategies to improve outcomes.
Collapse
Affiliation(s)
- Ju Lee Oei
- Department of Newborn Care, the Royal Hospital for Women, Randwick, NSW, Australia; School of Paediatrics, Faculty of Medicine, University of New South Wales, NSW, Australia.
| |
Collapse
|
3
|
Rashidi SK, Khodagholi F, Rafie S, Kashipazha D, Safarian H, Khoshnam SE, Dezfouli MA. Methamphetamine and the brain: Emerging molecular targets and signaling pathways involved in neurotoxicity. TOXIN REV 2024; 43:553-571. [DOI: 10.1080/15569543.2024.2360425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/19/2024] [Accepted: 05/21/2024] [Indexed: 01/03/2025]
Affiliation(s)
- Seyed Khalil Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rafie
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Davood Kashipazha
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Haleh Safarian
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Ballester J, Marchand WR, Philip NS. Transcranial magnetic stimulation for methamphetamine use disorder: A scoping review within the neurocircuitry model of addiction. Psychiatry Res 2024; 338:115995. [PMID: 38852478 PMCID: PMC11209858 DOI: 10.1016/j.psychres.2024.115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The use of methamphetamine in the United States is increasing, contributing now to the "fourth wave" in the national opioid epidemic crisis. People who suffer from methamphetamine use disorder (MUD) have a higher risk of death. No pharmacological interventions are approved by the FDA and psychosocial interventions are only moderately effective. Transcranial Magnetic Stimulation (TMS) is a relatively novel FDA-cleared intervention for the treatment of Major Depressive Disorder (MDD) and other neuropsychiatric conditions. Several lines of research suggest that TMS could be useful for the treatment of addictive disorders, including MUD. We will review those published clinical trials that show potential effects on craving reduction of TMS when applied over the dorsolateral prefrontal cortex (DLPFC) also highlighting some limitations that affect their generalizability and applicability. We propose the use of the Koob and Volkow's neurocircuitry model of addiction as a frame to explain the brain effects of TMS in patients with MUD. We will finally discuss new venues that could lead to a more individualized and effective treatment of this complex disorder including the use of neuroimaging, the exploration of different areas of the brain such as the frontopolar cortex or the salience network and the use of biomarkers.
Collapse
Affiliation(s)
- J Ballester
- Substance Abuse Residential Rehabilitation Treatment Program, VA Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148, USA; Department of Psychiatry, School of Medicine, University of Utah, 501 Chipeta Way, Salt Lake City, UT 84108, USA.
| | - W R Marchand
- Department of Psychiatry, School of Medicine, University of Utah, 501 Chipeta Way, Salt Lake City, UT 84108, USA; VISN-19 Whole Health Flagship Site, VA Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148, USA; Animal, Dairy and Veterinary Sciences, Utah State University, 4815 Old Main Hill, Logan, UT 84322, USA
| | - N S Philip
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA; VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
| |
Collapse
|
5
|
Silva AI, Socodato R, Pinto C, Terceiro AF, Canedo T, Relvas JB, Saraiva M, Summavielle T. IL-10 and Cdc42 modulate astrocyte-mediated microglia activation in methamphetamine-induced neuroinflammation. Glia 2024; 72:1501-1517. [PMID: 38780232 DOI: 10.1002/glia.24542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Methamphetamine (Meth) use is known to induce complex neuroinflammatory responses, particularly involving astrocytes and microglia. Building upon our previous research, which demonstrated that Meth stimulates astrocytes to release tumor necrosis factor (TNF) and glutamate, leading to microglial activation, this study investigates the role of the anti-inflammatory cytokine interleukin-10 (IL-10) in this process. Our findings reveal that the presence of recombinant IL-10 (rIL-10) counteracts Meth-induced excessive glutamate release in astrocyte cultures, which significantly reduces microglial activation. This reduction is associated with the modulation of astrocytic intracellular calcium (Ca2+) dynamics, particularly by restricting the release of Ca2+ from the endoplasmic reticulum to the cytoplasm. Furthermore, we identify the small Rho GTPase Cdc42 as a crucial intermediary in the astrocyte-to-microglia communication pathway under Meth exposure. By employing a transgenic mouse model that overexpresses IL-10 (pMT-10), we also demonstrate in vivo that IL-10 prevents Meth-induced neuroinflammation. These findings not only enhance our understanding of Meth-related neuroinflammatory mechanisms, but also suggest IL-10 and Cdc42 as putative therapeutic targets for treating Meth-induced neuroinflammation.
Collapse
Affiliation(s)
- Ana Isabel Silva
- Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Renato Socodato
- Glia Cell Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Carolina Pinto
- Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ana Filipa Terceiro
- Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Teresa Canedo
- Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - João Bettencourt Relvas
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Glia Cell Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Margarida Saraiva
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Immune Regulation Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Teresa Summavielle
- Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ESS.PP, Escola Superior de Saúde do Politécnico do Porto, Porto, Portugal
| |
Collapse
|
6
|
Vilca SJ, Margetts AV, Höglund L, Fleites I, Bystrom LL, Pollock TA, Bourgain-Guglielmetti F, Wahlestedt C, Tuesta LM. Microglia contribute to methamphetamine reinforcement and reflect persistent transcriptional and morphological adaptations to the drug. Brain Behav Immun 2024; 120:339-351. [PMID: 38838836 PMCID: PMC11269013 DOI: 10.1016/j.bbi.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Methamphetamine use disorder (MUD) is a chronic, relapsing disease that is characterized by repeated drug use despite negative consequences and for which there are currently no FDA-approved cessation therapeutics. Repeated methamphetamine (METH) use induces long-term gene expression changes in brain regions associated with reward processing and drug-seeking behavior, and recent evidence suggests that methamphetamine-induced neuroinflammation may also shape behavioral and molecular responses to the drug. Microglia, the resident immune cells in the brain, are principal drivers of neuroinflammatory responses and contribute to the pathophysiology of substance use disorders. Here, we investigated transcriptional and morphological changes in dorsal striatal microglia in response to methamphetamine-taking and during methamphetamine abstinence, as well as their functional contribution to drug-taking behavior. We show that methamphetamine self-administration induces transcriptional changes associated with protein folding, mRNA processing, immune signaling, and neurotransmission in dorsal striatal microglia. Importantly, many of these transcriptional changes persist through abstinence, a finding supported by morphological analyses. Functionally, we report that microglial ablation increases methamphetamine-taking, possibly involving neuroimmune and neurotransmitter regulation. In contrast, microglial depletion during abstinence does not alter methamphetamine-seeking. Taken together, these results suggest that methamphetamine induces both short and long-term changes in dorsal striatal microglia that contribute to altered drug-taking behavior and may provide valuable insights into the pathophysiology of MUD.
Collapse
Affiliation(s)
- Samara J Vilca
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Alexander V Margetts
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Leon Höglund
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Isabella Fleites
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Lauren L Bystrom
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Tate A Pollock
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Florence Bourgain-Guglielmetti
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Claes Wahlestedt
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Luis M Tuesta
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| |
Collapse
|
7
|
Neumann J, Dhein S, Kirchhefer U, Hofmann B, Gergs U. Effects of congeners of amphetamine on the human heart. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4615-4642. [PMID: 38340182 PMCID: PMC11166837 DOI: 10.1007/s00210-024-02983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Central stimulatory and hallucinogenic drugs of abuse like amphetamine and most congeners of amphetamine can have cardiac harmful effects. These cardiac side effects can lead to morbidities and death. In this paper, we review current knowledge on the direct and indirect effects of these amphetamine congeners on the mammalian heart-more specifically, the isolated human heart muscle preparation. In detail, we address the question of whether and how these drugs affect cardiac contractility and their mechanisms of action. Based on this information, further research areas are defined, and further research efforts are proposed.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, 06112, D-06097, Halle, Germany.
| | - Stefan Dhein
- Rudolf-Boehm Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, D-04107, Leipzig, Germany
| | | | - Britt Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, 06112, D-06097, Halle, Germany
| |
Collapse
|
8
|
Tian Q, Zhou J, Xu Z, Wang B, Liao J, Duan K, Li X, Huang E, Xie WB. STIM1 Mediates Methamphetamine-Induced Neuronal Autophagy and Apoptosis. Neurotoxicology 2024; 103:S0161-813X(24)00061-5. [PMID: 38901802 DOI: 10.1016/j.neuro.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Methamphetamine (METH) is a widely abused amphetamine-type psychoactive drug that causes serious health problems. Previous studies have demonstrated that METH can induce neuron autophagy and apoptosis in vivo and in vitro. However, the molecular mechanisms underlying METH-induced neuron autophagy and apoptosis remain poorly understood. Stromal interacting molecule 1 (STIM1) was hypothesized to be involved in METH-induced neuron autophagy and apoptosis. Therefore, the expression of STIM1 protein was measured and the effect of blocking STIM1 expression with siRNA was investigated in cultured neuronal cells, and the hippocampus and striatum of mice exposed to METH. Furthermore, intracellular calcium concentration and endoplasmic reticulum (ER) stress-related proteins were determined in vitro and in vivo in cells treated with METH. The results suggested that STIM1 mediates METH-induced neuron autophagy by activating the p-Akt/p-mTOR pathway. METH exposure also resulted in increased expression of Orai1, which was reversed after STIM1 silencing. Moreover, the disruption of intracellular calcium homeostasis induced ER stress and up-regulated the expression of pro-apoptotic protein CCAAT/enhancer-binding protein homologous protein (CHOP), resulting in classic mitochondria apoptosis. METH exposure can cause neuronal autophagy and apoptosis by increasing the expression of STIM1 protein; thus, STIM1 may be a potential gene target for therapeutics in METH-caused neurotoxicity.
Collapse
Affiliation(s)
- Qin Tian
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Jie Zhou
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Zhenzhen Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Bin Wang
- Forensic Science Institute of Ganzhou Public Security Bureau, Ganzhou 341000, PR China
| | - Jiashun Liao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Ke Duan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Xiaoting Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Enping Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Wei-Bing Xie
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
9
|
Rawani NS, Chan AW, Dursun SM, Baker GB. The Underlying Neurobiological Mechanisms of Psychosis: Focus on Neurotransmission Dysregulation, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction. Antioxidants (Basel) 2024; 13:709. [PMID: 38929148 PMCID: PMC11200831 DOI: 10.3390/antiox13060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Psychosis, defined as a set of symptoms that results in a distorted sense of reality, is observed in several psychiatric disorders in addition to schizophrenia. This paper reviews the literature relevant to the underlying neurobiology of psychosis. The dopamine hypothesis has been a major influence in the study of the neurochemistry of psychosis and in development of antipsychotic drugs. However, it became clear early on that other factors must be involved in the dysfunction involved in psychosis. In the current review, it is reported how several of these factors, namely dysregulation of neurotransmitters [dopamine, serotonin, glutamate, and γ-aminobutyric acid (GABA)], neuroinflammation, glia (microglia, astrocytes, and oligodendrocytes), the hypothalamic-pituitary-adrenal axis, the gut microbiome, oxidative stress, and mitochondrial dysfunction contribute to psychosis and interact with one another. Research on psychosis has increased knowledge of the complexity of psychotic disorders. Potential new pharmacotherapies, including combinations of drugs (with pre- and probiotics in some cases) affecting several of the factors mentioned above, have been suggested. Similarly, several putative biomarkers, particularly those related to the immune system, have been proposed. Future research on both pharmacotherapy and biomarkers will require better-designed studies conducted on an all stages of psychotic disorders and must consider confounders such as sex differences and comorbidity.
Collapse
Affiliation(s)
| | | | | | - Glen B. Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada; (N.S.R.); (A.W.C.); (S.M.D.)
| |
Collapse
|
10
|
Wang KC, Ojeda NB, Wang H, Chiang HS, Tucci MA, Lee JW, Wei HC, Kaizaki-Mitsumoto A, Tanaka S, Dankhara N, Tien LT, Fan LW. Neonatal brain inflammation enhances methamphetamine-induced reinstated behavioral sensitization in adult rats analyzed with explainable machine learning. Neurochem Int 2024; 176:105743. [PMID: 38641026 PMCID: PMC11102812 DOI: 10.1016/j.neuint.2024.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Neonatal brain inflammation produced by intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) results in long-lasting brain dopaminergic injury and motor disturbances in adult rats. The goal of the present work is to investigate the effect of neonatal systemic LPS exposure (1 or 2 mg/kg, i.p. injection in postnatal day 5, P5, male rats)-induced dopaminergic injury to examine methamphetamine (METH)-induced behavioral sensitization as an indicator of drug addiction. On P70, subjects underwent a treatment schedule of 5 once daily subcutaneous (s.c.) administrations of METH (0.5 mg/kg) (P70-P74) to induce behavioral sensitization. Ninety-six hours following the 5th treatment of METH (P78), the rats received one dose of 0.5 mg/kg METH (s.c.) to reintroduce behavioral sensitization. Hyperlocomotion is a critical index caused by drug abuse, and METH administration has been shown to produce remarkable locomotor-enhancing effects. Therefore, a random forest model was used as the detector to extract the feature interaction patterns among the collected high-dimensional locomotor data. Our approaches identified neonatal systemic LPS exposure dose and METH-treated dates as features significantly associated with METH-induced behavioral sensitization, reinstated behavioral sensitization, and perinatal inflammation in this experimental model of drug addiction. Overall, the analysis suggests that the implementation of machine learning strategies is sensitive enough to detect interaction patterns in locomotor activity. Neonatal LPS exposure also enhanced METH-induced reduction of dopamine transporter expression and [3H]dopamine uptake, reduced mitochondrial complex I activity, and elevated interleukin-1β and cyclooxygenase-2 concentrations in the P78 rat striatum. These results indicate that neonatal systemic LPS exposure produces a persistent dopaminergic lesion leading to a long-lasting change in the brain reward system as indicated by the enhanced METH-induced behavioral sensitization and reinstated behavioral sensitization later in life. These findings indicate that early-life brain inflammation may enhance susceptibility to drug addiction development later in life, which provides new insights for developing potential therapeutic treatments for drug addiction.
Collapse
Affiliation(s)
- Kuo-Ching Wang
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
| | - Norma B Ojeda
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA; Department of Advanced Biomedical Education, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Haifeng Wang
- Department of Industrial and Systems Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Han-Sun Chiang
- School of Medicine, Fu Jen Catholic University, Xinzhuang Dist, New Taipei City, 24205, Taiwan
| | - Michelle A Tucci
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Jonathan W Lee
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Han-Chi Wei
- School of Medicine, Fu Jen Catholic University, Xinzhuang Dist, New Taipei City, 24205, Taiwan
| | - Asuka Kaizaki-Mitsumoto
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA; Department of Toxicology, Showa University Graduate School of Pharmacy, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Sachiko Tanaka
- Center for Research and Development in Pharmacy Education, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Nilesh Dankhara
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Lu-Tai Tien
- School of Medicine, Fu Jen Catholic University, Xinzhuang Dist, New Taipei City, 24205, Taiwan.
| | - Lir-Wan Fan
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
11
|
Zhang J, Yan J, Li S, Chen Q, Lin J, Peng Y, Liu Y, Wang B, Wei X, Sun C, Niu S. GPR55 activation improves anxiety- and depression-like behaviors of mice during methamphetamine withdrawal. Heliyon 2024; 10:e30462. [PMID: 38720745 PMCID: PMC11077030 DOI: 10.1016/j.heliyon.2024.e30462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Methamphetamine is a potent and highly addictive neurotoxic psychostimulant that triggers a spectrum of adverse emotional responses during withdrawal. G-protein coupled receptor 55 (GPR55), a novel endocannabinoid receptor, is closely associated with mood regulation. Herein, we developed a murine model of methamphetamine-induced anxiety- and depressive-like behavior during abstinence which showed a decreased GPR55 expression in the hippocampus. Activation of GPR55 mitigated these behavioral symptoms, concomitantly ameliorating impairments in hippocampal neurogenesis and reducing neuroinflammation. These findings underscore the pivotal role of GPR55 in mediating the neuropsychological consequences of methamphetamine withdrawal, potentially via mechanisms involving the modulation of hippocampal neurogenesis and inflammation.
Collapse
Affiliation(s)
- Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Shuyue Li
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
| | - Qianqian Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Jiang Lin
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Yilin Peng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Yuhang Liu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Binbin Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Xinrong Wei
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
| | - Chen Sun
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - Shuliang Niu
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
- Department of Human Anatomy, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830011, China
| |
Collapse
|
12
|
Alqarni H, Aldghim A, Alkahtani R, Alshahrani N, Altoman MS, Alfaifi MA, Helmi M, Alzaid AA. Crystal methamphetamine and its effects on mental and oral health: A narrative review. Saudi Dent J 2024; 36:665-673. [PMID: 38766295 PMCID: PMC11096620 DOI: 10.1016/j.sdentj.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 05/22/2024] Open
Abstract
The purpose of this comprehensive literature review is to present the available evidence on the effects of methamphetamine on mental and oral health, as well as provide an overview of the most widely used medical and dental care strategies in the management of meth mouth. For this purpose, PubMed and Google Scholar electronic databases were searched for relevant articles, yielding 115 search results, which were further scrutinized for their relevance, leaving 55 for a detailed review. The analysis of the gathered data indicates that a comprehensive patient-centered approach that takes into consideration the physical, mental, and social aspects is crucial for mitigating the detrimental effects of increasing methamphetamine use.
Collapse
Affiliation(s)
- Hatem Alqarni
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Adhwaa Aldghim
- Dental Intern, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Rose Alkahtani
- Dental Intern, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Nasser Alshahrani
- Dental Intern, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Majed S. Altoman
- Department of Prosthetic Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A. Alfaifi
- Department of Prosthetic Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Helmi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz A. Alzaid
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Gürbüzer N, Güler MC, Tör İH. Methamphetamine Use Disorder and Inflammation: A Case-Control Study. Psychiatry Investig 2024; 21:513-520. [PMID: 38811000 PMCID: PMC11136578 DOI: 10.30773/pi.2023.0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/14/2023] [Accepted: 02/27/2024] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVE Methamphetamine use disorder (MUD) is a global health condition that impairs a person's health which may result in morbidity and mortality. Inflammation is a crucial process playing a vital role in MUD. For this reason, it is necessary to examine biochemical parameters for follow-up and treatment alternatives. METHODS We aimed to reveal the relationship between inflammatory response and MUD by evaluating peripheral hemogram parameters, leukocyte count, subtypes, and their ratios to each other, systemic immune inflammation index (SII), monocyte/high-density lipoprotein (HDL) ratio, and human C-reactive protein (CRP) in adult men with MUD. We included 76 adult male participants in the patient group and 70 adult male participants in the control group. We calculated the neutrophil/lymphocyte rate (NLR), monocyte/lymphocyte rate (MLR), platelet/lymphocyte rate (PLR), and basophil/lymphocyte rate (BLR). In addition, we obtained the SII and the monocyte/HDL rate. RESULTS The patients' leukocyte (p<0.001), platelet (p<0.001), plateletcrit (PCT) (p=0.002), neutrophil (p<0.001), monocyte (p=0.002), CRP (p<0.001), NLR (p=0.001), PLR (p=0.004), MLR (p=0.009), SII (p<0.001) and monocyte/HDL ratio (p<0.001) were higher than the control group. We observed a significant and positive relationship between the daily methamphetamine intake, and methamphetamine use duration (p=0.002), PCT (p=0.044), neutrophil (p=0.021), NLR (p=0.001), PLR (p=0.004), MLR (p=0.029), and SII (p<0.001). Daily methamphetamine intake had a significant and positive effect on SII. A one-unit increase in daily methamphetamine intake elevated SII by 165.53 units. CONCLUSION The results confirm the presence of peripheral subclinical inflammation and systemic immune inflammation in adult men with MUD.
Collapse
Affiliation(s)
- Nilifer Gürbüzer
- Department of Psychiatry, Regional Training and Research Hospital, University of Health Sciences, Erzurum, Turkey
| | - Mustafa Can Güler
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - İbrahim Hakkı Tör
- Department of Anesthesiology and Reanimation, Regional Training and Research Hospital, University of Health Sciences, Erzurum, Turkey
| |
Collapse
|
14
|
Mamat R, Rashid RA, Sim MS, Ibrahim B, Wahab S, Ahmad A. Psychosocial Risk Factors Associated with Lifetime Amphetamine-Type Stimulants (ATS) Dependence in Drug Detention Centres: Perspectives from the Multiethnicity Study. J Psychoactive Drugs 2024; 56:279-287. [PMID: 36940284 DOI: 10.1080/02791072.2023.2190331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/22/2023] [Indexed: 03/22/2023]
Abstract
ATS dependence in Malaysia is growing tremendously across multiracial Malaysian groups, increasing concerns among public health experts and the community. This study highlighted the chronicity of ATS dependence and factors associated with ATS use. Interviewer-administered questionnaires were administered using ASSIST 3.0. A total of N = 327 multiracial people who use ATS were enrolled in this study. The study findings show that 190/327 (58.1%) respondents were ATS dependent. Malays reported the highest number of ATS-dependent (55.8%), followed by Bajau (21.6%) and Kadazan-Dusun (16.8%) ethnic. Across all races, three factors were significantly associated with the ATS dependence: respondents who had a lifetime history of needle sharing aOR = 0.023 (95% CI: 0.003, 0.183) and a lifetime history of heroin use aOR = 0.192 (95% CI: 0.093, 0.396) were at a reduced odd of ATS dependent. Meanwhile, being married reduced the likelihood of becoming dependent on ATS with aOR = 0.378 (95% CI: 0.206, 0.693) compared to being single or divorced. This study revealed that the use of ATS among multiracial Malaysians is alarmingly high, including those in detention centers. Comprehensive harm reduction strategies are urgently needed to prevent the spreading of infectious diseases and other negative health consequences associated with ATS use.
Collapse
Affiliation(s)
- Ruzmayuddin Mamat
- Department of Pharmaceutical Life Science, Faculty of Pharmacy, University Malaya, Kuala Lumpur, Malaysia
- Department of Clinical Pharmacy and Pharmacy Practices, Faculty of Pharmacy, University Malaya, Kuala Lumpur, Malaysia
- Department of Psychological Medicine, University Malaya Centre for Addiction Science (UMCAS), Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
- Ministry of Health Malaysia, Wilayah Persekutuan Putrajaya, Malaysia
| | - Rusdi Abd Rashid
- Department of Psychological Medicine, University Malaya Centre for Addiction Science (UMCAS), Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Maw Shin Sim
- Department of Pharmaceutical Life Science, Faculty of Pharmacy, University Malaya, Kuala Lumpur, Malaysia
| | - Baharuddin Ibrahim
- Department of Clinical Pharmacy and Pharmacy Practices, Faculty of Pharmacy, University Malaya, Kuala Lumpur, Malaysia
| | - Suzaily Wahab
- Department of Psychiatry, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Azmir Ahmad
- Kuliyyah of Nursing, International Islamic University of Malaysia (IIUM), Kuantan, Malaysia
| |
Collapse
|
15
|
Seyed Aliyan SM, Roohbakhsh A, Jafari Fakhrabad M, Salmasi Z, Moshiri M, Shahbazi N, Etemad L. Evaluating the Protective Effects of Thymoquinone on Methamphetamine-induced Toxicity in an In Vitro Model Based on Differentiated PC12 Cells. Altern Lab Anim 2024; 52:94-106. [PMID: 38445454 DOI: 10.1177/02611929241237409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Methamphetamine (Meth) is a highly addictive stimulant. Its potential neurotoxic effects are mediated through various mechanisms, including oxidative stress and the initiation of the apoptotic process. Thymoquinone (TQ), obtained from Nigella sativa seed oil, has extensive antioxidant and anti-apoptotic properties. This study aimed to investigate the potential protective effects of TQ against Meth-induced toxicity by using an in vitro model based on nerve growth factor-differentiated PC12 cells. Cell differentiation was assessed by detecting the presence of a neuronal marker with flow cytometry. The effects of Meth exposure were evaluated in the in vitro neuronal cell-based model via the determination of cell viability (in an MTT assay) and apoptosis (by annexin/propidium iodide staining). The generation of reactive oxygen species (ROS), as well as the levels of glutathione (GSH) and dopamine, were also determined. The model was used to determine the protective effects of 0.5, 1 and 2 μM TQ against Meth-induced toxicity (at 1 mM). The results showed that TQ reduced Meth-induced neurotoxicity, possibly through the inhibition of ROS generation and apoptosis, and by helping to maintain GSH and dopamine levels. Thus, the impact of TQ treatment on Meth-induced neurotoxicity could warrant further investigation.
Collapse
Affiliation(s)
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Jafari Fakhrabad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahar Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Toxicology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niosha Shahbazi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Lu G, Fang T, Li X, Zhang X, Li H, Wu N, Liu F, Hao W, Ye QN, Cheng L, Li J, Li F. Methamphetamine use shortens telomere length in male adults and rats. Drug Alcohol Depend 2024; 256:111094. [PMID: 38262198 DOI: 10.1016/j.drugalcdep.2024.111094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Methamphetamine (MA) use increases the risk of age-related diseases. However, it remains uncertain whether MA use exhibits accelerated biological aging, as indicated by telomere length (TL), a proposed marker of aging. Here we conducted studies in both humans and rats to investigate the association between MA use and TL. METHODS We recruited 125 male MA users and 66 healthy controls, aged 30-40 years. MA users were diagnosed using DSM-5 criteria and categorized into two groups: non-severe (n = 78) and severe (n = 47) MA use disorder (MUD). MA-treated conditioned place preference (CPP) rats were utilized to validate our clinical investigations. TL was assessed using real-time polymerase chain reaction. RESULTS At clinical levels, MA users exhibited significantly shorter leukocyte TL compared to healthy controls. Among MA users, individuals with severe MUD had significantly shorter leukocyte TL than those with non-severe MUD. Importantly, both univariate and multivariate linear regression analyses demonstrated a negative association between the severity of MA use and leukocyte TL. In a rat model of MA-induced CPP, leukocyte TL was also significantly shortened after MA administration, especially in rats with higher CPP expression or reinstatement scores. CONCLUSION MA use shortened TL, and the severity of MA use was negatively correlated with TL. These findings provide new insights into the pathophysiology of accelerated aging caused by MA use and may have implications for identifying biomarkers and developing novel treatment strategies for MUD.
Collapse
Affiliation(s)
- Guanyi Lu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ting Fang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinyue Li
- Beijing Institute of Biotechnology, Beijing, China
| | - XiaoJie Zhang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hong Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ning Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Feng Liu
- Compulsory Detoxification Center of Changsha Public Security Bureau, Changsha, Hunan, China
| | - Wei Hao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qi-Nong Ye
- Beijing Institute of Biotechnology, Beijing, China
| | - Long Cheng
- Beijing Institute of Biotechnology, Beijing, China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China.
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Fei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
17
|
Petzold J, Pochon JBF, Ghahremani DG, London ED. Structural indices of brain aging in methamphetamine use disorder. Drug Alcohol Depend 2024; 256:111107. [PMID: 38330525 DOI: 10.1016/j.drugalcdep.2024.111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Methamphetamine use is surging globally. It has been linked to premature stroke, Parkinsonism, and dementia, suggesting that it may accelerate brain aging. METHODS We performed a retrospective study to determine if structural indices of brain aging were more prevalent prior to old age (26 - 54 years) in individuals with Methamphetamine Use Disorder (MUD), who were in early abstinence (M ± SD = 22.1 ± 25.6 days) than in healthy control (HC) participants. We compared T1-weighted MRI brain scans in age- and sex-matched groups (n = 89/group) on three structural features of brain aging: the brain volume/cerebrospinal fluid (BV/CSF) index, volume of white matter hypointensities/lesions, and choroid plexus volume. RESULTS The MUD group had a lower mean BV/CSF index and larger volumes of white matter hypointensities and choroid plexus (p-values < 0.01). Regression analyses showed significant age-by-group effects, indicating different age trajectories of the BV/CSF index and choroid plexus volume, consistent with abnormal global brain atrophy and choroid plexus pathology in the MUD group. Significant age and group main effects reflected a larger volume of white matter hypointensities for older participants across groups and for the MUD group irrespective of age. None of the three measures of brain aging correlated significantly with recent use or duration of recent abstinence from methamphetamine. CONCLUSIONS Premature brain pathology, which may reflect cerebrovascular damage and dysfunction of the choroid plexus, occurs in people with MUD. Such pathology may affect cognition and thereby efficacy of behavioral treatments for MUD.
Collapse
Affiliation(s)
- Johannes Petzold
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, and Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Psychotherapy, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jean-Baptiste F Pochon
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, and Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Dara G Ghahremani
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, and Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Edythe D London
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, and Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA; The Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Vilca SJ, Margetts AV, Fleites I, Wahlestedt C, Tuesta LM. Microglia contribute to methamphetamine reinforcement and reflect persistent transcriptional and morphological adaptations to the drug. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.19.563168. [PMID: 37961443 PMCID: PMC10634674 DOI: 10.1101/2023.10.19.563168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Methamphetamine use disorder (MUD) is a chronic, relapsing disease that is characterized by repeated drug use despite negative consequences and for which there are currently no FDA-approved cessation therapeutics. Repeated methamphetamine (METH) use induces long-term gene expression changes in brain regions associated with reward processing and drug-seeking behavior, and recent evidence suggests that methamphetamine-induced neuroinflammation may also shape behavioral and molecular responses to the drug. Microglia, the resident immune cells in the brain, are principal drivers of neuroinflammatory responses and contribute to the pathophysiology of substance use disorders. Here, we investigated transcriptional and morphological changes in dorsal striatal microglia in response to methamphetamine-taking and during methamphetamine abstinence, as well as their functional contribution to drug-taking behavior. We show that methamphetamine self-administration induces transcriptional changes associated with protein folding, mRNA processing, immune signaling, and neurotransmission in dorsal striatal microglia. Importantly, many of these transcriptional changes persist through abstinence, a finding supported by morphological analyses. Functionally, we report that microglial ablation increases methamphetamine-taking, possibly involving neuroimmune and neurotransmitter regulation, and that post-methamphetamine microglial repopulation attenuates drug-seeking following a 21-day period of abstinence. In contrast, microglial depletion during abstinence did not alter methamphetamine-seeking. Taken together, these results suggest that methamphetamine induces both short and long-term changes in dorsal striatal microglia that contribute to altered drug-taking behavior and may provide valuable insights into the pathophysiology of MUD.
Collapse
Affiliation(s)
- Samara J. Vilca
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Alexander V. Margetts
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Isabella Fleites
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Claes Wahlestedt
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Luis M. Tuesta
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
19
|
Li K, Ling H, Wang X, Xie Q, Gu C, Luo W, Qiu P. The role of NF-κB signaling pathway in reactive astrocytes among neurodegeneration after methamphetamine exposure by integrated bioinformatics. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110909. [PMID: 38061485 DOI: 10.1016/j.pnpbp.2023.110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Methamphetamine (METH) is a highly addictive stimulant that has become one of the top five risk substances cause deaths from substance abuse. METH exposure increases the risk of neurodegenerative disease (ND), such as Parkinson's disease (PD), leading to disability and death. Activation of reactive astrocytes is an essential factor in neurodegeneration, and their complex role in METH exposure remains unclear. This study explored the role of reactive astrocyte overactivation in neurodegeneration after METH exposure. METHODS METH bulk RNA sequencing data (GSE107015 and GSE98793) and single-cell RNA sequencing data (GSE119861) were obtained from the GEO database. We performed immune infiltration analysis on the bulk RNA data. After cell clustering using the single-cell RNA data, astrocytes were extracted for downstream analysis. Differentially expressed genes (DEGs) were identified from the bulk and single-cell RNA sequencing datasets, and GO, KEGG, and GSEA pathway analyses were performed. The PPI network and random forest methods were performed on the overlapping genes of the DEGs to screen hub genes. To explore the common ground between METH exposure and neurodegenerative diseases, we applied a random forest algorithm to PD chip data (GSE99039 and GSE72267) to establish a diagnostic model using the hub genes in METH. New object recognition and the Morris water maze were used to examine cognitive function in mice exposed to METH for 14 days in vivo. Astrocytes were cocultured with neurons for the detection of intercellular crosstalk. RESULTS DEGs in the METH group significantly enriched pathways related to NDs, inflammation, and the NF-κB signaling pathway. Immune infiltration analysis revealed significantly increased infiltration of monocytes, T cells, and NK cells and decreased infiltration of neutrophils in the METH group. An intersection of 44 hub genes was screened based on the PPI network and random forest algorithm. These genes suggest that there might be similar pathogenesis between METH exposure and PD. METH exposure resulted in learning memory impairment, hippocampal astrocyte activation, and upregulation of NF-κB expression in mice. Activation of reactive astrocytes cocultured with neurons causes neural damage. CONCLUSIONS This study explored the crosstalk between astrocytes and neurons in METH exposure, providing a potential pathogenesis to explore the altered immune microenvironment involving reactive astrocytes after METH exposure.
Collapse
Affiliation(s)
- Kuan Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Haosen Ling
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaohan Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qiqian Xie
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cihang Gu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wenyu Luo
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Pingming Qiu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.; Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
20
|
Kargar HMP, Noshiri H. Protective effects of alpha-lipoic acid on anxiety-like behavior, memory and prevention of hippocampal oxidative stress in methamphetamine-treated rats. Psychopharmacology (Berl) 2024; 241:315-326. [PMID: 37882813 DOI: 10.1007/s00213-023-06487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
RATIONALE Alpha-lipoic acid is an essential cofactor for aerobic metabolism and acts as a potent antioxidant in the body. It has been shown that acute exposure to methamphetamine induces oxidative stress, which is responsible for severe cognitive deficits in animals. The hippocampus plays a crucial role in the processing of memory and anxiety-like behavior. OBJECTIVES In this study, preventive effect of the alpha-lipoic acid on memory impairment in methamphetamine-induced neurotoxicity was investigated. METHODS Wistar male rats (200-220 g) were allocated to five groups (seven rats in each group): (1) saline + saline, (2) saline + vehicle (sunflower oil as alpha-lipoic acid solvent), (3) methamphetamine + vehicle, (4) methamphetamine + alpha-lipoic acid 10 mg/kg, and (5) methamphetamine + alpha-lipoic acid 40 mg/kg. Rats received intraperitoneal methamphetamine repeatedly (2 × 20 mg/kg, 2 h interval). Alpha-lipoic acid was injected 30 min, 24 h, and 48 h after the last injection of methamphetamine. The passive avoidance test and open field were used for evaluation of memory retrieval and anxiety, respectively. After behavioral test, rats were anesthetized, their brains were extracted, and after preparing hippocampal homogenates, malondialdehyde (MDA) level, catalase, and superoxide dismutase (SOD) activities were evaluated. RESULTS Statistical analysis showed that injection of saline or sunflower oil had no significant effect on anxiety, memory, or oxidative stress markers. Methamphetamine induced memory impairment, increased anxiety-like behavior and MDA level, but it reduced catalase and SOD activity. Treatment with alpha-lipoic acid decreased MDA, increased catalase and SOD activity, and also prevented memory impairment and anxiety-like behavior. Our results showed that alpha-lipoic acid protected the hippocampus from oxidative stress by elevating SOD and CAT activities and reduced memory impairment following acute methamphetamine injection. These findings suggest that alpha-lipoic acid may have a protective effect against the adverse effects of methamphetamine exposure on the hippocampus. Therefore, the current data indicated that ALA can reduce oxidative stress predominantly by its antioxidant property.
Collapse
Affiliation(s)
- Hossein Mohammad Pour Kargar
- Department of Biology, Islamic Azad University, Damghan, Iran.
- Faculty of Pharmacy, Islamic Azad University, Damghan Branch, Damghan, Iran.
| | - Hamid Noshiri
- Department of Biology, Islamic Azad University, Damghan, Iran
| |
Collapse
|
21
|
Ng M, Lu M, Chen VC, Ting H, Huang C, Gossop M. Lymphocyte-related ratios in methamphetamine-induced psychotic disorder in Taiwan, comparing with patients with schizophrenia. Addict Biol 2024; 29:e13363. [PMID: 38380726 PMCID: PMC10898829 DOI: 10.1111/adb.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 11/17/2023] [Indexed: 02/22/2024]
Abstract
The lymphocyte-related ratios, neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR) and platelet-to-lymphocyte ratio (PLR) are new measures of inflammation within the body. Few studies have investigated the inflammatory response of patients with methamphetamine-induced psychotic disorder. Clinically, the psychotic symptoms and behavioural manifestation of methamphetamine-induced psychotic disorder are often indistinguishable from paranoid schizophrenia. We aimed to determine the differences in these inflammatory markers between patients with methamphetamine-induced psychotic disorder, patients with schizophrenia and healthy individuals. A total of 905 individuals were recruited. The NLR and MLR were found to be higher in both patients with methamphetamine-induced psychotic disorders and patients with schizophrenia compared with healthy controls. There was no significant difference between the three groups in PLR. When compared with the control group, the methamphetamine-induced psychotic disorder group was significantly higher in NLR 27% (95%CI = 11 to 46%, p = 0.001), MLR 16% (95%CI = 3% to 31%, p = 0.013) and PLR 16% (95%CI = 5% to 28%, p = 0.005). NLR of the group with methamphetamine-induced psychotic disorder was 17% (95%CI = 73% to 94%, p = 0.004) less than the group with schizophrenia, while MLR and PLR did not differ significantly between the two groups. This is the first study that investigated the lymphocyte-related ratios in methamphetamine-induced psychotic disorder when compared with patients with schizophrenia and healthy individuals. The results showed that both patients with methamphetamine-induced psychotic disorder and patients with schizophrenia had stronger inflammatory responses than the healthy control. Our finding also indicated that the inflammatory response of methamphetamine-induced psychotic disorder was between those of patients with schizophrenia and healthy individuals.
Collapse
Affiliation(s)
- Mei‐Hing Ng
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
- Tsaotun Psychiatric CenterMinistry of Health and WelfareNantou CountyTaiwan
| | - Mong‐Liang Lu
- Department of PsychiatryWan‐Fang Hospital & School of MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Vincent Chin‐Hung Chen
- Department of PsychiatryChang Gung Medical FoundationChiayi Chang Gung Memorial HospitalChiayi CountyTaiwan
- Department of PsychiatrySchool of MedicineChang Gung UniversityTaiwan
| | - Hua Ting
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of Physical Medicine and RehabilitationChung‐Shan Medical, University HospitalChung‐Shan Medical UniversityTaichungTaiwan
| | - Chieh‐Liang Huang
- Tsaotun Psychiatric CenterMinistry of Health and WelfareNantou CountyTaiwan
| | - Michael Gossop
- National Addiction CentreInstitute of PsychiatryKing's College LondonLondonUK
| |
Collapse
|
22
|
Newton K, De Biase L. Substance Use and Addiction. ADVANCES IN NEUROBIOLOGY 2024; 37:343-355. [PMID: 39207701 DOI: 10.1007/978-3-031-55529-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Efforts to reveal the molecular, cellular, and circuit mechanisms of addiction have largely focused on neurons. Yet accumulating data regarding the ability of glial cells to impact synaptic function, circuit activity, and behavior demands that we explore how these nonneuronal cells contribute to substance use disorders and addiction. Important work has shown that glial cells, including microglia, exhibit changes in phenotype following exposure to drugs of abuse and that modification of glial responses can impact behaviors related to drug seeking and drug taking. While these are critical first steps to understanding how microglia can impact addiction, there are still substantial gaps in knowledge that need to be addressed. This chapter reviews some of the key studies that have shown how microglia are affected by and can contribute to addiction. It also discusses areas where more knowledge is urgently needed to reveal new therapeutic and preventative approaches.
Collapse
Affiliation(s)
- Keionna Newton
- Neuroscience Interdepartmental Graduate Program, University of California, Los Angeles, CA, USA
| | - Lindsay De Biase
- Department of Physiology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Elhadi K, Daiwile AP, Cadet JL. Modeling methamphetamine use disorder and relapse in animals: short- and long-term epigenetic, transcriptional., and biochemical consequences in the rat brain. Neurosci Biobehav Rev 2023; 155:105440. [PMID: 38707245 PMCID: PMC11068368 DOI: 10.1016/j.neubiorev.2023.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 05/07/2024]
Abstract
Methamphetamine use disorder (MUD) is a neuropsychiatric disorder characterized by binge drug taking episodes, intervals of abstinence, and relapses to drug use even during treatment. MUD has been modeled in rodents and investigators are attempting to identify its molecular bases. Preclinical experiments have shown that different schedules of methamphetamine self-administration can cause diverse transcriptional changes in the dorsal striatum of Sprague-Dawley rats. In the present review, we present data on differentially expressed genes (DEGs) identified in the rat striatum following methamphetamine intake. These include genes involved in transcription regulation, potassium channel function, and neuroinflammation. We then use the striatal data to discuss the potential significance of the molecular changes induced by methamphetamine by reviewing concordant or discordant data from the literature. This review identified potential molecular targets for pharmacological interventions. Nevertheless, there is a need for more research on methamphetamine-induced transcriptional consequences in various brain regions. These data should provide a more detailed neuroanatomical map of methamphetamine-induced changes and should better inform therapeutic interventions against MUD.
Collapse
Affiliation(s)
- Khalid Elhadi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Atul P. Daiwile
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| |
Collapse
|
24
|
Zeng K, Yu X, Wei Z, Wu Y, Wang J, Liu R, Li Y, Wang X. Single-nucleus transcriptome profiling of prefrontal cortex induced by chronic methamphetamine treatment. Gen Psychiatr 2023; 36:e101057. [PMID: 37936947 PMCID: PMC10626793 DOI: 10.1136/gpsych-2023-101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/01/2023] [Indexed: 11/09/2023] Open
Abstract
Background Methamphetamine (METH) addiction causes a huge burden on society. The prefrontal cortex (PFC), associated with emotion and cognitive behaviours, is also involved in addiction neurocircuitry. Although bulk RNA sequencing has shown METH-induced gene alterations in the mouse PFC, the impact on different cell types remains unknown. Aims To clarify the effects of METH treatment on different cell types of the PFC and the potential pathways involved in METH-related disorders. Methods We performed single-nucleus RNA sequencing (snRNA-seq) to examine the transcriptomes of 20 465 nuclei isolated from the PFC of chronic METH-treated and control mice. Main cell types and differentially expressed genes (DEGs) were identified and confirmed by RNA fluorescence in situ hybridization(FISH). Results Six main cell types were identified depending on the single-cell nucleus sequencing; of particular interest were the mature oligodendrocytes in the PFC. The DEGs of mature oligodendrocytes were enriched in the myelin sheath, adenosine triphosphate (ATP) metabolic process, mitochondrial function and components, and so on. The messenger RNA levels of Aldoc and Atp5l (FISH) and the protein level of the mitochondrial membrane pore subunit TOM40 (immunofluorescence) decreased in the mature oligodendrocytes. Fast blue staining and transmission electron microscopy image indicated myelin damage, and the myelin thickness decreased in METH brains. Conclusions snRNA-seq reveals altered transcriptomes of different cell types in mouse PFC induced by chronic METH treatment, underscoring potential relationships with psychiatric disorders.
Collapse
Affiliation(s)
- Kuan Zeng
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Xuan Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Zhen Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
- Department of Pathology, Maternal and Child Hospital of Hubei Province, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Yong Wu
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Jianzhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Yi Li
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
25
|
Tanrıkulu AB, Kaya H, Çatak Z. Elevated C-reactive protein/albumin ratio in patients with methamphetamine use disorder. Int J Psychiatry Clin Pract 2023; 27:351-358. [PMID: 37477597 DOI: 10.1080/13651501.2023.2237557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Methamphetamine use disorder causes significant crises, which have individual, familial, and social consequences. Identifying inflammatory biomarkers for methamphetamine use disorder may be useful for following the inflammatory status of patients in clinical assessment. In this study, we aimed to investigate whether neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), monocyte/lymphocyte ratio (MLR), C-reactive protein/albumin ratio (CAR) and neutrophil/albumin ratio (NAR) levels can be used as inflammatory biomarkers in methamphetamine use disorder. METHODS The sample comprised 139 treatment-seeking participants who met the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria for methamphetamine use disorder and 139 sociodemographically matched controls. Only hospitalised patients were included. An independent sample t-test, Pearson's correlation test, and binominal logistic regression analysis were performed. RESULTS CAR (p = 0.016) and NAR (p = 0.048) levels were significantly higher in individuals with methamphetamine use disorder when compared with healthy controls. The CAR level was found to be a significant predictor of group membership in regression analysis for methamphetamine use disorder. CONCLUSION CAR may be a potential inflammatory biomarker for patients with methamphetamine use disorder. CAR as a relatively easier-to-measure biomarker could be beneficial to follow the inflammatory status and treatment response of patients.
Collapse
Affiliation(s)
- Ali Baran Tanrıkulu
- Psychiatry, Elazığ Mental Health and Diseases Hospital, Turkey Elazığ, Turkey
| | - Hilal Kaya
- Psychiatry, Elazığ Mental Health and Diseases Hospital, Turkey Elazığ, Turkey
| | - Zekiye Çatak
- Department of Biochemistry, Health Sciences University Elazığ Fethi Sekin City Hospital, Central Laboratory, Elazig, Turkey
| |
Collapse
|
26
|
Filošević Vujnović A, Saftić Martinović L, Medija M, Andretić Waldowski R. Distinct and Dynamic Changes in the Temporal Profiles of Neurotransmitters in Drosophila melanogaster Brain following Volatilized Cocaine or Methamphetamine Administrations. Pharmaceuticals (Basel) 2023; 16:1489. [PMID: 37895961 PMCID: PMC10609923 DOI: 10.3390/ph16101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Due to similarities in genetics, cellular response, and behavior, Drosophila is used as a model organism in addiction research. A well-described behavioral response examined in flies is the induced increase in locomotor activity after a single dose of volatilized cocaine (vCOC) and volatilized methamphetamine (vMETH), the sensitivity, and the escalation of the locomotor response after the repeated dose, the locomotor sensitization. However, knowledge about how vCOC and vMETH affect different neurotransmitter systems over time is scarce. We used LC-MS/MS to systematically examine changes in the concentration of neurotransmitters, metabolites and non-metabolized COC and METH in the whole head homogenates of male flies one to seven hours after single and double vCOC or vMETH administrations. vMETH leads to complex changes in the levels of examined substances over time, while vCOC strongly and briefly increases concentrations of dopamine, tyramine and octopamine followed by a delayed degradation into N-acetyl dopamine and N-acetyl tyramine. The first exposure to psychostimulants leads to significant and dynamic changes in the concentrations relative to the second administration when they are more stable over several hours. Further investigations are needed to understand neurochemical and molecular changes post-psychostimulant administration.
Collapse
Affiliation(s)
- Ana Filošević Vujnović
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (L.S.M.); (M.M.); (R.A.W.)
| | - Lara Saftić Martinović
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (L.S.M.); (M.M.); (R.A.W.)
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Marta Medija
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (L.S.M.); (M.M.); (R.A.W.)
| | - Rozi Andretić Waldowski
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (L.S.M.); (M.M.); (R.A.W.)
| |
Collapse
|
27
|
Seyedhosseini Tamijani SM, Beirami E, Ghazvini H, Rafaiee R, Nazeri M, Razavinasab M. A Review on the Disruption of Novel Object Recognition Induced by Methamphetamine. ADDICTION & HEALTH 2023; 15:289-297. [PMID: 38322487 PMCID: PMC10843358 DOI: 10.34172/ahj.2023.1307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/07/2021] [Indexed: 02/08/2024]
Abstract
Background Methamphetamine (MA), is a widely abused synthetic psychostimulant that leads to irreversible brain damage manifested as cognitive impairments in humans and animals. The novel object recognition (NOR) task is a commonly used behavioral assay for the investigation of non-spatial memory in rodents. This test is based on the natural tendency of rodents to spend more time exploring a novel object than a familiar one. NOR test has been used in many studies investigating cognitive deficits caused by MA in rodents. The objective of the present study was to review neurobiological mechanisms that might be responsible for MA-induced NOR alterations. Methods A PubMed search showed 83 publications using novel object recognition and methamphetamine as keywords in the past 10 years. Findings The present study revealed different MA regimens cause recognition memory impairment in rodents. In addition, it was found that the main neurobiological mechanism involved in MA-induced recognition deficits is the dysfunction of monoaminergic systems. Conclusion NOR is a useful test to assess the cognitive functions following MA administration and evaluate the efficacy of new therapeutic agents in MA-addicted individuals.
Collapse
Affiliation(s)
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hamed Ghazvini
- Department of Neuroscience, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Raheleh Rafaiee
- Department of Neuroscience, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoud Nazeri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Moazamehosadat Razavinasab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
28
|
Song H, Lu X, Du D, Peng Y, Pan W, Xu X, Fan Y, Yang X, Ge F, Guan X. Gegen-Qinlian decoction-A traditional Chinese medicine formula-Alleviates methamphetamine withdrawal induced anxiety by targeting GABAergic interneuron-pyramidal neuron pathway in mPFC. Addict Biol 2023; 28:e13314. [PMID: 37644891 DOI: 10.1111/adb.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 08/31/2023]
Abstract
Methamphetamine (Meth) withdrawal elicits anxiety, which is a public health concern with limited therapeutic options. Previous studies implied a strong correlation between mPFC and Meth withdrawal. Here, we examined the role of Gegen-Qinlian decoction (GQD) in Meth withdrawal anxiety and explored potential therapeutic targets in mPFC. We found that intra-gastric administration of GQD during the withdrawal period efficiently alleviated anxiety-like behaviours in Meth-withdrawn mice. Further, GQD could restore Meth withdrawal-triggered pathway of GABAergic interneurons (GABA IN)-pyramidal neurons (PN) in the mPFC of Meth-withdrawn mice, especially the prelimbic cortex (PrL) sub-region and PV-positive GABA IN. While, GQD had no obvious effects on the glial cells in the mPFC of Meth-withdrawn mice. By transcriptomic analysis and validation of several gene candidates, we found that genes in the MAPK signalling pathway, especially those related to heat shock proteins, including Hspa1a, Hspa1b and Hspb1, might be GQD-targeting genes in mPFC to treat Meth withdrawal anxiety, as indicated that these genes were up-regulated by Meth withdrawal but rescued by GQD in mPFC. Collectively, our findings identified for the first time that GQD could efficiently alleviate Meth withdrawal anxiety, partially through regulating the local GABA IN-PN pathway and transcriptomic profile of mPFC. The present study confirms that TCM, such as GQD, will be a desirable therapeutic approach in the treatment of drug addiction and related emotional deficits.
Collapse
Affiliation(s)
- Hongxiu Song
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xue Lu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Demin Du
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yaqin Peng
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weichao Pan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xing Xu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Yang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
29
|
Cheng YJ, Deng YZ, Deng D, Wu MQ, Chai JR, Wang YJ, Liu JG, Zhao M. Prelimbic cortex dynorphin/κ opioid receptor system modulates methamphetamine-induced cognitive impairment. Addict Biol 2023; 28:e13323. [PMID: 37644896 DOI: 10.1111/adb.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
Chronic exposure to methamphetamine (METH) causes severe and persistent cognitive impairment. The present study aimed to investigate the role of dynorphin/κ opioid receptor (KOR) system in the development of METH-induced cognitive impairment. We found that mice showed significant cognitive impairment in the novel object recognition test (NOR) following daily injections of METH (10 mg/kg) for seven consecutive days. Systemic blockade of KOR prevented METH-induced cognitive impairment by pretreatment of the selective KOR antagonist norBNI (10 mg/kg, i.p.) or KOR deletion. Then, significant increased dynorphin and KOR mRNA were observed exclusively in prelimbic cortex (PL) other than infralimbic cortex. Finally, microinjection with norBNI into PL also improved cognitive memory in METH-treated mice using NOR and spontaneous alternation behaviour test. Our results demonstrated that dynorphin/KOR system activation in PL may be a possible mechanism for METH-induced cognitive impairment and shed light on KOR antagonists as a potential neuroprotective agent against the cognitive deficits induced by drug abuse.
Collapse
Affiliation(s)
- Ying-Jie Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Zhi Deng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Deng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man-Qing Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Rui Chai
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Jun Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Gen Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
30
|
Schifano F, Vento A, Scherbaum N, Guirguis A. Stimulant and hallucinogenic novel psychoactive substances; an update. Expert Rev Clin Pharmacol 2023; 16:1109-1123. [PMID: 37968919 DOI: 10.1080/17512433.2023.2279192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023]
Abstract
INTRODUCTION The renewed interest in considering a range of stimulants, psychedelics and dissociatives as therapeutics emphasizes the need to draft an updated overview of these drugs' clinical and pharmacological issues. AREAS COVERED The focus here was on: stimulants (e.g. amphetamines, methamphetamine, and pseudoephedrine; phenethylamines; synthetic cathinones; benzofurans; piperazines; aminoindanes; aminorex derivatives; phenmetrazine derivatives; phenidates); classical (e.g. ergolines; tryptamines; psychedelic phenethylamines), and atypical (e.g. PCP/ketamine-like dissociatives) psychedelics.Stimulant and psychedelics are associated with: a) increased central DA levels (psychedelic phenethylamines, synthetic cathinones and stimulants); b) 5-HT receptor subtypes' activation (psychedelic phenethylamines; recent tryptamine and lysergamide derivatives); and c) antagonist activity at NMDA receptors, (phencyclidine-like dissociatives). EXPERT OPINION Clinicians should be regularly informed about the range of NPS and their medical, psychobiological and psychopathological risks both in the acute and long term. Future research should focus on an integrative model in which pro-drug websites' analyses are combined with advanced research approaches, including computational chemistry studies so that in vitro and in vivo preclinical studies of index novel psychoactives can be organized. The future of psychedelic research should focus on identifying robust study designs to convincingly assess the potential therapeutic benefits of psychedelics, molecules likely to present with limited dependence liability levels.
Collapse
Affiliation(s)
- F Schifano
- Psychopharmacology Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Herts (UK)
| | - A Vento
- Mental Health Department, Addiction Observatory (Osservatorio sulle dipendenze)- NonProfit Association - Rome, Rome, Italy
| | - N Scherbaum
- LVR-University Hospital, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - A Guirguis
- Psychopharmacology Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Herts (UK)
- Pharmacy, Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University, Wales, UK
| |
Collapse
|
31
|
Neumann J, Hußler W, Azatsian K, Hofmann B, Gergs U. Methamphetamine increases force of contraction in isolated human atrial preparations through the release of noradrenaline. Toxicol Lett 2023:S0378-4274(23)00212-6. [PMID: 37394154 DOI: 10.1016/j.toxlet.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
We measured the cardiac contractile effects of the sympathomimetic amphetamine-like drug methamphetamine alone and in the presence of cocaine or propranolol in human atrial preparations. For a more comprehensive analysis, we also examined the effects of methamphetamine in preparations from the left and right atria of mice and, for comparison, analyzed the cardiac effects of amphetamine itself. In human atrial preparations, methamphetamine and amphetamine increased the contractile force, the relaxation rate, and the rate of tension development, and shortened the time to maximum tension and the time to relaxation. Likewise, in mice preparations, methamphetamine and amphetamine increased the contractile force in the left atrium and increased the beating rate in the right atrium. The effect in human atrial preparations started at 1µM, therefore methamphetamine was less effective and potent than isoproterenol in increasing contractile force. These positive inotropic effects of methamphetamine were greatly attenuated by 10µM cocaine and abolished by 10µM propranolol. The inotropic effects of methamphetamine in human atrial preparations were associated with, and are believed to be mediated at least in part by, an increase in the phosphorylation state of the inhibitory subunit of troponin. In conclusion, the sympathomimetic central stimulant drug methamphetamine (as well as amphetamine) increased contractile force and protein phosphorylation, presumably through a release of noradrenaline in isolated human atrial preparations. Thus, methamphetamine acts as an indirect sympathomimetic in the human atrium.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097 Halle, Germany
| | - Wilhelm Hußler
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097 Halle, Germany
| | - Karyna Azatsian
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097 Halle, Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, D-06097 Halle, Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097 Halle, Germany.
| |
Collapse
|
32
|
Belcher AM, Rorabaugh BR. Maternal use of methamphetamine alters cardiovascular function in the adult offspring. Biochem Cell Biol 2023; 101:198-203. [PMID: 36763967 PMCID: PMC10563036 DOI: 10.1139/bcb-2022-0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Methamphetamine is one of the most commonly used illicit drugs during pregnancy. Most studies investigating the impact of maternal use of methamphetamine on children have focused on neurological outcomes. In contrast, cardiovascular outcomes in these children have not been characterized. Recent studies in rodents provide evidence that prenatal exposure to methamphetamine induces changes in cardiac gene expression, changes in the heart's susceptibility to ischemic injury, and changes in vascular function that may increase the risk of developing cardiovascular disorders later in life. Importantly, these changes are sex-dependent. This review summarizes our current understanding of how methamphetamine use during pregnancy impacts the cardiovascular function of adult offspring and highlights gaps in our knowledge of the potential cardiovascular risks associated with prenatal exposure to methamphetamine.
Collapse
Affiliation(s)
- Adam M. Belcher
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, USA
| | - Boyd R. Rorabaugh
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, USA
- Department of Biomedical Sciences, Marshall University School of Medicine, Huntingotn, WV, USA
| |
Collapse
|
33
|
Cheng J, He Z, Chen Q, Lin J, Peng Y, Zhang J, Yan X, Yan J, Niu S. Histone modifications in cocaine, methamphetamine and opioids. Heliyon 2023; 9:e16407. [PMID: 37265630 PMCID: PMC10230207 DOI: 10.1016/j.heliyon.2023.e16407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Cocaine, methamphetamine and opioids are leading causes of drug abuse-related deaths worldwide. In recent decades, several studies revealed the connection between and epigenetics. Neural cells acquire epigenetic alterations that drive the onset and progress of the SUD by modifying the histone residues in brain reward circuitry. Histone modifications, especially acetylation and methylation, participate in the regulation of gene expression. These alterations, as well as other host and microenvironment factors, are associated with a serious of negative neurocognitive disfunctions in various patient populations. In this review, we highlight the evidence that substantially increase the field's ability to understand the molecular actions underlying SUD and summarize the potential approaches for SUD pharmacotherapy.
Collapse
Affiliation(s)
- Junzhe Cheng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ziping He
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianqian Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Jiang Lin
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Yilin Peng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Xisheng Yan
- Department of Cardiovascular Medicine, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, Hubei Province, 430074, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Shuliang Niu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| |
Collapse
|
34
|
Davis DL, Metzger DB, Vann PH, Wong JM, Shetty RA, Forster MJ, Sumien N. Effects of chronic methamphetamine exposure on rewarding behavior and neurodegeneration markers in adult mice. Psychopharmacology (Berl) 2023; 240:1343-1358. [PMID: 37127834 DOI: 10.1007/s00213-023-06374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Recreational and medical use of stimulants among young adults have gained popularity in the United States over the last decade and their use may increase vulnerability to brain biochemical changes and addictive behaviors. The long-term effects of chronic stimulant exposure in later adulthood have not been fully elucidated.Our study investigated whether chronic exposure to methamphetamine (METH), at a dose designed to emulate human therapeutic dosing for ADHD, would promote biochemical alterations and affect sensitivity to the rewarding effects of subsequent METH dosing.Groups of 3.5-month-old male and female C57BL/6J mice were administered non-contingent intraperitoneal injections of either saline or METH (1.4 mg/kg) twice a day for 1 month (5 days/week). METH (0.5 mg/kg)-induced conditioned place preference (CPP) was tested in mice to determine the effects of previous METH exposure on reward-related behavior. Mice were randomly assigned to Experiment I (males and females) or Experiment II (females only) in which CPP testing was respectively performed either 0.5 or 5 months after the end of METH injections, at ~5 or 10 months old respectively. The midbrain and striatum, regions involved in reward circuit, were assessed for markers associated with neurotoxicity, dopaminergic function, neuroinflammation and epigenetic changes after behavioral testing.Previous exposure to chronic METH did not have significant short-term effects on CPP response but led to a decreased CPP response in 10-month-old females. Previous exposure to METH induced some short-term changes to biochemical markers measured in a brain region and sex-dependent manner, while long-term changes were only observed with GFAP and KDM5C.In conclusion, our data suggest sex- and post-exposure duration-dependent outcomes and warrant further exploration of the long-term neurobehavioral consequences of psychostimulant use in both sexes.
Collapse
Affiliation(s)
- Delaney L Davis
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, Texas, USA
| | - Daniel B Metzger
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, Texas, USA
| | - Philip H Vann
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, Texas, USA
| | - Jessica M Wong
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, Texas, USA
| | - Ritu A Shetty
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, Texas, USA
| | - Michael J Forster
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, Texas, USA
| | - Nathalie Sumien
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, Texas, USA.
| |
Collapse
|
35
|
Pang L, Wang Y. Overview of blood-brain barrier dysfunction in methamphetamine abuse. Biomed Pharmacother 2023; 161:114478. [PMID: 37002574 DOI: 10.1016/j.biopha.2023.114478] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Methamphetamine (METH) is one of the psychostimulants most widely abused in the world. METH abuse can lead to severe neurotoxicity. The blood-brain barrier (BBB) is a natural barrier separating the central nervous system (CNS) from the peripheral blood circulation, which can limit or regulate the exchange of toxic substances, molecules, ions, etc., to maintain the homeostasis of CNS. Long-term or high dose abuse of METH can cause structural or functional abnormalities of the BBB and increase the risk of neurodegenerative diseases. In this review, we discussed the mechanisms of METH-induced BBB dysfunction, summarized the risk factors that could exacerbate METH-induced BBB dysfunction, and introduced some potential therapeutic agents. It would provide an important basis and direction for the prevention and treatment of BBB dysfunction induced by METH.
Collapse
Affiliation(s)
- Lu Pang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
36
|
Wang L, Wei Q, Xu R, Chen Y, Li S, Bu Q, Zhao Y, Li H, Zhao Y, Jiang L, Chen Y, Dai Y, Zhao Y, Cen X. Cardiolipin and OPA1 Team up for Methamphetamine-Induced Locomotor Activity by Promoting Neuronal Mitochondrial Fusion in the Nucleus Accumbens of Mice. ACS Chem Neurosci 2023; 14:1585-1601. [PMID: 37043723 DOI: 10.1021/acschemneuro.2c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Mitochondria are highly dynamic organelles with coordinated cycles of fission and fusion occurring continuously to satisfy the energy demands in the complex architecture of neurons. How mitochondria contribute to addicted drug-induced adaptable mitochondrial networks and neuroplasticity remains largely unknown. Through liquid chromatography-mass spectrometry-based lipidomics, we first analyzed the alteration of the mitochondrial lipidome of three mouse brain areas in methamphetamine (METH)-induced locomotor activity and conditioned place preference. The results showed that METH remodeled the mitochondrial lipidome of the hippocampus, nucleus accumbens (NAc), and striatum in both models. Notably, mitochondrial hallmark lipid cardiolipin (CL) was specifically increased in the NAc in METH-induced hyperlocomotor activity, which was accompanied by an elongated giant mitochondrial morphology. Moreover, METH significantly boosted mitochondrial respiration and ATP generation as well as the copy number of mitochondrial genome DNA in the NAc. By screening the expressions of mitochondrial dynamin-related proteins, we found that repeated METH significantly upregulated the expression of long-form optic atrophy type 1 (L-OPA1) and enhanced the interaction of L-OPA1 with CL, which may promote mitochondrial fusion in the NAc. On the contrary, neuronal OPA1 depletion in the NAc not only recovered the dysregulated mitochondrial morphology and synaptic vesicle distribution induced by METH but also attenuated the psychomotor effect of METH. Collectively, upregulated CL and OPA1 cooperate to mediate METH-induced adaptation of neuronal mitochondrial dynamics in the NAc, which correlates with the psychomotor effect of METH. These findings propose a potential therapeutic approach for METH addiction by inhibiting neuronal mitochondrial fusion.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Qingfan Wei
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Rui Xu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yaxing Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Shu Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Ying Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yue Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yuanyuan Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yanping Dai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| |
Collapse
|
37
|
Dominguez-Lopez S, Ahn B, Sataranatarajan K, Ranjit R, Premkumar P, Van Remmen H, Beckstead MJ. Long-term methamphetamine self-administration increases mesolimbic mitochondrial oxygen consumption and decreases striatal glutathione. Neuropharmacology 2023; 227:109436. [PMID: 36693561 PMCID: PMC10080784 DOI: 10.1016/j.neuropharm.2023.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/26/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Neurotoxic regimens of methamphetamine (METH) are known to increase reactive oxygen species (ROS), affect redox homeostasis, and lead to damage in dopamine neurons. Functional changes induced by long-term METH self-administration on mitochondrial respiratory metabolism and redox homeostasis are less known. To fill this gap, we implanted a jugular catheter into adult male mice and trained them to nose poke for METH infusions. After several weeks of METH exposure, we collected samples of the ventral striatum (vST) and the ventral midbrain (vMB). We used HPLC to determine the levels of the ROS scavenger glutathione in its reduced (GSH) and oxidized forms. Then, we used high-resolution respirometry to determine the oxygen consumption rate (OCR) of mitochondrial complexes. Finally, using in vivo electrophysiology, we assessed changes in dopamine neuron firing activity in the VTA. METH self-administration produced a decrease of the GSH pool in vST, correlating with lifetime METH intake. We observed increased mitochondrial respiration across the two mesolimbic regions. METH self-administration decreases firing rate and burst activity but increases the number of spontaneously active dopamine neurons per track. We conclude that METH self-administration progressively decreased the antioxidant pool in sites of higher dopamine release and produced an increase in mitochondrial metabolism in the mesolimbic areas, probably derived from the increased number of dopamine neurons actively firing. However, dopamine neuron firing activity is decreased by METH self-administration, reflecting a new basal level of dopamine neurotransmission.
Collapse
Affiliation(s)
- Sergio Dominguez-Lopez
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA; Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - Bumsoo Ahn
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | | | - Rojina Ranjit
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Pavithra Premkumar
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Holly Van Remmen
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
| | - Michael J Beckstead
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
38
|
Hosseini MJ, Arabiyan A, Mobassem S, Ghavimi H. Metformin attenuates depressive-like behaviour of methamphetamine withdrawal in mice: A mechanistic approach. World J Biol Psychiatry 2023; 24:209-222. [PMID: 35673936 DOI: 10.1080/15622975.2022.2086294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Methamphetamine (METH) as a potent psychostimulant drug with a high potency of dependence rate that results in neurotoxicity has become a major drug of abuse in many parts of the world. Unfortunately, there is limited evidence regarding treatment of METH withdrawal syndrome. Therefore, we aimed to investigate whether metformin mitigate the methamphetamine (METH) withdrawal syndrome in male mice. Based on the literature, depression and anxiety are the major METH withdrawal symptoms. METHODS Here, METH (2 mg/kg) was administered to mice twice a day for 14 constitutive days to induce animal model of METH-induced withdrawal syndrome. To do this, mice in control group and those with METH withdrawal syndrome were divided into treatment (receiving metformin in 3 doses of 50, 100 and 200 mg/kg for 10 days) and non-treatment sub-groups. Following the behavioural test, the animals were sacrificed; their hippocampus was dissected to measure oxidative stress parameters and expression of cellular energy homeostasis and immune-inflammatory genes. RESULTS Our data revealed that metformin provoked antidepressant effects in behavioural tests through AMPK overexpression as an important mitochondrial energetic sensor and inhibition of Tlr4 overexpression in the immune system gene expression. In addition, metformin was able to improve oxidative stress biomarkers and neuronal damage in the hippocampus and restore cellular energy homeostasis and immune system gene expression. CONCLUSIONS The data suggested that metformin can influence the hippocampus through targeting mitochondria and their performance, and consequently, neuroinflammation responses and brain metabolic changes. It is supposed to be a new therapeutic option in clinical trials of depression and anxiety following METH withdrawal treatment.
Collapse
Affiliation(s)
- Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Aisan Arabiyan
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sina Mobassem
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Ghavimi
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
39
|
Chaidee N, Kraiwattanapirom N, Pannengpetch S, Nopparat C, Govitrapong P, Siripornpanich V, Suwanjang W, Nudmamud-Thanoi S, Chetsawang B. Cognitive impairment and changes of red blood cell components and serum levels of IL-6, IL-18, and L-tryptophan in methamphetamine abusers. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2023; 12:1-15. [PMID: 36937109 PMCID: PMC10018000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED The deficit in cognitive function is more concerning in methamphetamine (MA) users. The cognitive deficit was suspected to be the consequence of neuroinflammation-induced neurological dysregulation. In addition, activating the key enzyme in the tryptophan metabolic pathway by pro-inflammatory cytokines results in metabolite toxicity, further generating cognitive impairments. However, the evidence for the role of neuroinflammation and tryptophan metabolites involved in MA-induced cognitive deficit needs more conclusive study. OBJECTIVES This retrospective study aimed to determine blood-inflammatory markers, tryptophan metabolite-related molecules, and cognitive function in MA abusers compared to healthy control (HC) participants. METHODS The cognitive functions were evaluated using Stroop, Go/No-Go, One Back Task (OBT), and Wisconsin Card Sorting Test-64 (WCST-64). Blood samples were analyzed for complete blood count (CBC) analysis, serum inflammatory cytokines interleukin (IL)-6 and IL-18 and tryptophan metabolites. RESULTS MA group exhibited poor cognitive performance in selective attention, inhibition, working memory, cognitive flexibility, concept formation and processing speed compared to HC. Reduction in red blood cell (RBC) components but induction in white blood cells (WBCs) and IL-6 were observed in MA abusers, which might indicate anemia of (systemic chronic low-grade) inflammation. In addition, the depletion of precursor in the tryptophan metabolic pathway, L-tryptophan was also observed in MA users, which might represent induction in tryptophan metabolites. CONCLUSION These findings emphasize that blood biomarkers might be a surrogate marker to predict the role of neuroinflammation and abnormal tryptophan metabolite in MA-induced cognitive impairments.
Collapse
Affiliation(s)
- Nutthika Chaidee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol UniversitySalaya, Nakhon Pathom, Thailand
| | - Natcharee Kraiwattanapirom
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol UniversitySalaya, Nakhon Pathom, Thailand
| | - Supitcha Pannengpetch
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol UniversitySalaya, Nakhon Pathom, Thailand
| | - Chutikorn Nopparat
- Innovative Learning Center, Srinakharinwirot UniversityBangkok, Thailand
| | | | - Vorasith Siripornpanich
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol UniversitySalaya, Nakhon Pathom, Thailand
| | - Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol UniversitySalaya, Nakhon Pathom, Thailand
| | - Sutisa Nudmamud-Thanoi
- Department of Anatomy and Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan UniversityPhitsanulok, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol UniversitySalaya, Nakhon Pathom, Thailand
| |
Collapse
|
40
|
Hámor PU, Knackstedt LA, Schwendt M. The role of metabotropic glutamate receptors in neurobehavioral effects associated with methamphetamine use. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:177-219. [PMID: 36868629 DOI: 10.1016/bs.irn.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are expressed throughout the central nervous system and act as important regulators of drug-induced neuroplasticity and behavior. Preclinical research suggests that mGlu receptors play a critical role in a spectrum of neural and behavioral consequences arising from methamphetamine (meth) exposure. However, an overview of mGlu-dependent mechanisms linked to neurochemical, synaptic, and behavioral changes produced by meth has been lacking. This chapter provides a comprehensive review of the role of mGlu receptor subtypes (mGlu1-8) in meth-induced neural effects, such as neurotoxicity, as well as meth-associated behaviors, such as psychomotor activation, reward, reinforcement, and meth-seeking. Additionally, evidence linking altered mGlu receptor function to post-meth learning and cognitive deficits is critically evaluated. The chapter also considers the role of receptor-receptor interactions involving mGlu receptors and other neurotransmitter receptors in meth-induced neural and behavioral changes. Taken together, the literature indicates that mGlu5 regulates the neurotoxic effects of meth by attenuating hyperthermia and possibly through altering meth-induced phosphorylation of the dopamine transporter. A cohesive body of work also shows that mGlu5 antagonism (and mGlu2/3 agonism) reduce meth-seeking, though some mGlu5-blocking drugs also attenuate food-seeking. Further, evidence suggests that mGlu5 plays an important role in extinction of meth-seeking behavior. In the context of a history of meth intake, mGlu5 also co-regulates aspects of episodic memory, with mGlu5 stimulation restoring impaired memory. Based on these findings, we propose several avenues for the development of novel pharmacotherapies for Methamphetamine Use Disorder based on the selective modulation mGlu receptor subtype activity.
Collapse
Affiliation(s)
- Peter U Hámor
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States; Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Lori A Knackstedt
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| | - Marek Schwendt
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
41
|
Noninvasive Vagus Nerve Stimulation in the Treatment of Methamphetamine Use Disorder: A Review Article. IRANIAN JOURNAL OF PSYCHIATRY AND BEHAVIORAL SCIENCES 2022. [DOI: 10.5812/ijpbs-123423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
: Methamphetamine (MA) use and the mortality it causes are increasing worldwide. The neurobiological mechanisms underlying the destructive effects of MA use are complex; however, there is much evidence that MA induces the dysfunction of monoaminergic transmission and causes oxidative stress, neuroinflammation, gliosis, and apoptosis. These toxic effects are associated with cardiotoxicity and neurotoxicity and with an imbalance in the autonomic nervous system, which altogether manifest themselves in clinical symptoms, such as neuropsychiatric disorders and cardiovascular diseases. There is no approved treatment for methamphetamine use disorder (MUD) despite all efforts made to date. The behavioral and pharmacological approaches currently used for the treatment of MUD are not completely effective. In this study, it is hypothesized that the stimulation of the vagus nerve and biological pathways underlying the processes of this stimulation might be effective as adjunctive therapy. Despite the potential effects of vagus nerve stimulation (VNS) to improve MUD, no study has yet examined the clinical potential effects of VNS in patients with the disorder. Therefore, further studies, including experimental and clinical trials, are needed to examine the effects of VNS on MUD.
Collapse
|
42
|
Sheng W, Sun R, Zhang R, Xu P, Wang Y, Xu H, Aa J, Wang G, Xie Y. Identification of Biomarkers for Methamphetamine Exposure Time Prediction in Mice Using Metabolomics and Machine Learning Approaches. Metabolites 2022; 12:metabo12121250. [PMID: 36557288 PMCID: PMC9780981 DOI: 10.3390/metabo12121250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Methamphetamine (METH) abuse has become a global public health and safety problem. More information is needed to identify the time of drug abuse. In this study, methamphetamine was administered to male C57BL/6J mice with increasing doses from 5 to 30 mg kg-1 (once a day, i.p.) for 20 days. Serum and urine samples were collected for metabolomics studies using gas chromatography-mass spectrometry (GC-MS). Six machine learning models were used to infer the time of drug abuse and the best model was selected to predict administration time preliminarily. The metabolic changes caused by methamphetamine were explored. As results, the metabolic patterns of methamphetamine exposure mice were quite different from the control group and changed over time. Specifically, serum metabolomics showed enhanced amino acid metabolism and increased fatty acid consumption, while urine metabolomics showed slowed metabolism of the tricarboxylic acid (TCA) cycle, increased organic acid excretion, and abnormal purine metabolism. Phenylalanine in serum and glutamine in urine increased, while palmitic acid, 5-HT, and monopalmitin in serum and gamma-aminobutyric acid in urine decreased significantly. Among the six machine learning models, the random forest model was the best to predict the exposure time (serum: MAE = 1.482, RMSE = 1.69, R squared = 0.981; urine: MAE = 2.369, RMSE = 1.926, R squared = 0.946). The potential biomarker set containing four metabolites in the serum (palmitic acid, 5-hydroxytryptamine, monopalmitin, and phenylalanine) facilitated the identification of methamphetamine exposure. The random forest model helped predict the methamphetamine exposure time based on these potential biomarkers.
Collapse
Affiliation(s)
- Wei Sheng
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210000, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Runbin Sun
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210000, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ran Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Xu
- China National Narcotics Control Commission—China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China Pharmaceutical University, Nanjing 210009, China
| | - Youmei Wang
- China National Narcotics Control Commission—China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (G.W.); (Y.X.)
| | - Yuan Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (G.W.); (Y.X.)
| |
Collapse
|
43
|
Kim OH, Jeon KO, Jang EY. Alpha-pyrrolidinopentiothiophenone (α-PVT) activates the TLR-NF-κB-MAPK signaling pathway and proinflammatory cytokine production and induces behavioral sensitization in mice. Pharmacol Biochem Behav 2022; 221:173484. [PMID: 36272636 DOI: 10.1016/j.pbb.2022.173484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022]
Abstract
Synthetic cathinones are chemical derivatives of cathinone, a structural analog to amphetamine. It has been shown that synthetic cathinones have abuse potentials similar to psychomotor stimulants such as amphetamine and induce neuroinflammation. Among the novel synthetic cathinones, α-pyrrolidinopentiothiophenone (α-PVT) has been known to produce rewarding and reinforcing effects in rodent models. However, it has not yet been determined whether α-PVT induces neuroinflammation in vivo. In the present study, mice were exposed to repeated saline or α-PVT (20 mg/kg, intraperitoneally) for 7 days to test changes in locomotor activity and neuroinflammation-related factors in the striatum of mice. Repeated administration of α-PVT significantly induced locomotor sensitization. In addition, repeated α-PVT administration significantly increased the number of microglial cells, accompanied by marked increases in TLR1, TLR4, TLR6, and TLR7 mRNA levels in the striatum of mice. Furthermore, acute or repeated α-PVT administration increased the levels of phosphorylated NF-κB, ERK, p38, and JNK MAPK activation and repeated α-PVT, but not acute, increased the levels of TNF-α and IL-6 mRNA in the striatum of mice. Finally, systemic administration of TAK-242 (5 mg/kg, i.p.) or MPLA (50 μg/kg, i.p.), each an inhibitor or activator of TLR4, did not change α-PVT-induced behavioral sensitization in mice. These results suggest that the activation of TLR4 by repeated α-PVT administration may lead to neuroinflammation via TLR-mediated NF-κB and MAPK signaling pathways and the production of TNF-α and IL-6 in the striatum of mice, at least without the regulation of behavioral sensitization.
Collapse
Affiliation(s)
- Oc-Hee Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Kyung Oh Jeon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Young Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
44
|
Zare N, Maghsoudi N, Mirbehbahani SH, Foolad F, Khakpour S, Mansouri Z, Khodagholi F, Ghorbani Yekta B. Prenatal Methamphetamine Hydrochloride Exposure Leads to Signal Transduction Alteration and Cell Death in the Prefrontal Cortex and Amygdala of Male and Female Rats' Offspring. J Mol Neurosci 2022; 72:2233-2241. [PMID: 36056281 DOI: 10.1007/s12031-022-02062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
In the last decade, there has been a great increase in methamphetamine hydrochloride (METH) abuse by pregnant women that exposes fetus and human offspring to a wide variety of developmental impairments that may be the underlying causes of future psychosocial issues. Herein, we investigated whether prenatal METH exposure with different doses (2 and 5 mg/kg) could influence neuronal cell death and antioxidant level in the different brain regions of adult male and female offspring. Adult male and female Wistar rats prenatally exposed to METH (2 or 5 mg/kg) and/or saline was used in this study. At week 12, adult rats' offspring were decapitated to collect different brain region tissues including amygdala (AMY) and prefrontal cortices (PFC). Western blot analysis was performed to evaluate the apoptosis- and autophagy-related markers, and enzymatic assay was used to measure the level of catalase and also reduced glutathione (GSH). Our results showed that METH exposure during pregnancy increased the level of apoptosis (BAX/Bcl-2 and Caspase-3) and autophagy (Beclin-1 and LC3II/LC3I) in the PFC and AMY areas of both male and female offspring's brain. Also, we found an elevation in the GSH content of all both mentioned brain areas and catalase activity of PFC in the offspring's brain. These changes were more significant in female offspring. Being prenatally exposed to METH increased cell death at least partly via apoptosis and autophagy in AMY and PFC of male and female offspring's brain, while the antioxidant system tried to protect cells in these regions.
Collapse
Affiliation(s)
- Nayereh Zare
- Department of Anatomical Sciences and Cognitive Neuroscience, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nader Maghsoudi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hamidreza Mirbehbahani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forough Foolad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahrzad Khakpour
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Mansouri
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Batool Ghorbani Yekta
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran. .,Herbal Pharmacology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
45
|
Huang J, Ding J, Wang X, Gu C, He Y, Li Y, Fan H, Xie Q, Qi X, Wang Z, Qiu P. Transfer of neuron-derived α-synuclein to astrocytes induces neuroinflammation and blood-brain barrier damage after methamphetamine exposure: Involving the regulation of nuclear receptor-associated protein 1. Brain Behav Immun 2022; 106:247-261. [PMID: 36089218 DOI: 10.1016/j.bbi.2022.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 10/31/2022] Open
Abstract
The α-synuclein (α-syn) is involved in methamphetamine (METH)-induced neurotoxicity. Neurons can transfer excessive α-syn to neighboring neurons and glial cells. The effects of α-syn aggregation in astrocytes after METH exposure on the blood-brain barrier (BBB) remains unclear. Our previous study demonstrated that nuclear receptor-related protein 1 (Nurr1), a member of the nuclear receptor family widely expressed in the brain, was involved in the process of METH-induced α-syn accumulated in astrocytes to activate neuroinflammation. The role Nurr1 plays in astrocyte-mediated neuroinflammation, which results in BBB injury induced by METH, remains uncertain. This study found that METH up-regulated α-syn expression in neurons extended to astrocytes, thereby eliciting astrocyte activation, increasing and decreasing IL-1β, IL-6, TNF-α, and GDNF levels by down-regulating Nurr1 expression, and ultimately damaging the BBB. Specifically, the permeability of BBB to Evans blue and sodium fluorescein (NaF) increased; IgG deposits in the brain parenchyma increased; the Claudin5, Occludin, and PDGFRβ levels decreased. Several ultrastructural pathological changes occurred in the BBB, such as abnormal cerebral microvascular diameter, astrocyte end-foot swelling, decreased pericyte coverage, and loss of tight junctions. However, knockout or inhibition of α-syn or astrocyte-specific overexpression of Nurr1 partially alleviated these symptoms and BBB injury. Moreover, the in vitro experiments confirmed that METH increased α-syn level in the primary cultured neurons, which could be further transferred to primary cultured astrocytes, resulting in decreased Nurr1 levels. The decreased Nurr1 levels mediated the increase of IL-1β, IL-6, and TNF-α, and the decrease of GDNF, thereby changing the permeability to NaF, transendothelial electrical resistance, and Claudin5 and Occludin levels of primary cultured brain microvascular endothelial cells. Based on our findings, we proposed a new mechanism to elucidate METH-induced BBB injury and presented α-syn and Nurr1 as promising drug intervention targets to reduce BBB injury and resulting neurotoxicity in METH abusers.
Collapse
Affiliation(s)
- Jian Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China; Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Xiaohan Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Cihang Gu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yitong He
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yanning Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Haoliang Fan
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qiqian Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Zhuo Wang
- School of Medicine, South China University of Technology, Guangzhou, China; Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
46
|
Aggregation-prone A53T mutant of α-synuclein exaggerates methamphetamine neurotoxicity in SH-SY5Y cells: protective role of cellular cholesterol. Toxicol Rep 2022; 9:2020-2029. [DOI: 10.1016/j.toxrep.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
|
47
|
Effect of the Sargassum angustifolium Extract on Methamphetamine-Induced Cytotoxicity in SH-SY5Y Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9978235. [PMID: 36164401 PMCID: PMC9509264 DOI: 10.1155/2022/9978235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/04/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to assess the effect of the Sargassum angustifolium extract in methamphetamine-induced SH-SY5Y cells death. The brown algae S. angustifolium was extracted with 80% ethanol. The SH-SY5Y cells were treated with different concentrations of methamphetamine to measure IC50
The MTT test was used to assess the toxic effect of the S. angustifolium extract in SH-SY5Y cells. SH-SY5Y cells’ survival was measured while cells were treated with different concentrations of methamphetamine and S. angustifolium extract simultaneously. A specific kit measured intracellular ROS levels. Western blot analysis evaluated the expression of cytochrome C and Bax/Bcl2 ratio. The results showed that 5 mM methamphetamine approximately killed 50% of the cells, so it is considered IC50. The MTT test showed no toxicity effect for the S. angustifolium extract. 80, 160, 320, and 640 μg/ml of S. angustifolium extract prevented the occurrence of methamphetamine toxic effects in SH-SY5Y cells after 24 hours. Moreover, the S. angustifolium extract decreased ROS levels and cytochrome C release and reduced BaX/Bcl2 ratio in cells treated by methamphetamine. On the whole, it seems that the S. angustifolium hydroalcoholic extract has the potential to increase cell survival through in vitro antioxidant and antiapoptotic activities.
Collapse
|
48
|
Kholghi A, Hatami H, Khajehnasiri N, Sadeghian R. Intraperitoneal injection of buprenorphine on anxiety-like behavior and alteration in expression of Gfap and Nrf2 in methamphetamine treated rats. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2022; 13:417-422. [PMID: 36320298 PMCID: PMC9548217 DOI: 10.30466/vrf.2021.140211.3111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 09/13/2021] [Indexed: 06/16/2023]
Abstract
The effects of buprenorphine (BUP) on anxiety-like behavior and the expression of the glial fibrillary acidic protein (Gfap) and nuclear factor erythroid 2-related factor 2 (Nrf2) in methamphetamine (METH)-treated rats were investigated in this study. Twenty-eight male Wistar rats were randomly divided into four groups including control (saline), METH (10.00 mg kg-1), BUP (10.00 mg kg-1), and BUP+METH groups and treated for five days. On the final day of treatment, gene expression levels and anxiety were evaluated using elevated plus-maze (EPM). According to the results, five days of METH injection reduced open arm exploration in the EPM. In contrast, the open arm entries and the time spent in the open arms were increased in the BUP+METH group compared to the METH group. The expression levels of Gfap and Nrf2 were lower in METH-treated rats compared to controls, whereas Gfap and Nrf2 expression levels were higher in the METH+BUP-treated rats compared to the METH-treated rats, however, it was similar to the controls. These findings suggested that co-administration of BUP+METH could decrease anxiety-like behavior through increasing the activity of the antioxidant protection system and might have therapeutic potential for preventing anxiety in METH users.
Collapse
Affiliation(s)
- Akram Kholghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Homeira Hatami
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Nazli Khajehnasiri
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Reihaneh Sadeghian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
49
|
Chilunda V, Weiselberg J, Martinez-Meza S, Mhamilawa LE, Cheney L, Berman JW. Methamphetamine induces transcriptional changes in cultured HIV-infected mature monocytes that may contribute to HIV neuropathogenesis. Front Immunol 2022; 13:952183. [PMID: 36059515 PMCID: PMC9433802 DOI: 10.3389/fimmu.2022.952183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
HIV-associated neurocognitive impairment (HIV-NCI) persists in 15-40% of people with HIV (PWH) despite effective antiretroviral therapy. HIV-NCI significantly impacts quality of life, and there is currently no effective treatment for it. The development of HIV-NCI is complex and is mediated, in part, by the entry of HIV-infected mature monocytes into the central nervous system (CNS). Once in the CNS, these cells release inflammatory mediators that lead to neuroinflammation, and subsequent neuronal damage. Infected monocytes may infect other CNS cells as well as differentiate into macrophages, thus contributing to viral reservoirs and chronic neuroinflammation. Substance use disorders in PWH, including the use of methamphetamine (meth), can exacerbate HIV neuropathogenesis. We characterized the effects of meth on the transcriptional profile of HIV-infected mature monocytes using RNA-sequencing. We found that meth mediated an upregulation of gene transcripts related to viral infection, cell adhesion, cytoskeletal arrangement, and extracellular matrix remodeling. We also identified downregulation of several gene transcripts involved in pathogen recognition, antigen presentation, and oxidative phosphorylation pathways. These transcriptomic changes suggest that meth increases the infiltration of mature monocytes that have a migratory phenotype into the CNS, contributing to dysregulated inflammatory responses and viral reservoir establishment and persistence, both of which contribute to neuronal damage. Overall, our results highlight potential molecules that may be targeted for therapy to limit the effects of meth on HIV neuropathogenesis.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jessica Weiselberg
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Samuel Martinez-Meza
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lwidiko E. Mhamilawa
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Women’s and Children’s Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Laura Cheney
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine, Division of Infectious Diseases, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
50
|
Guo D, Huang X, Xiong T, Wang X, Zhang J, Wang Y, Liang J. Molecular mechanisms of programmed cell death in methamphetamine-induced neuronal damage. Front Pharmacol 2022; 13:980340. [PMID: 36059947 PMCID: PMC9428134 DOI: 10.3389/fphar.2022.980340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Methamphetamine, commonly referred to as METH, is a highly addictive psychostimulant and one of the most commonly misused drugs on the planet. Using METH continuously can increase your risk for drug addiction, along with other health complications like attention deficit disorder, memory loss, and cognitive decline. Neurotoxicity caused by METH is thought to play a significant role in the onset of these neurological complications. The molecular mechanisms responsible for METH-caused neuronal damage are discussed in this review. According to our analysis, METH is closely associated with programmed cell death (PCD) in the process that causes neuronal impairment, such as apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. In reviewing this article, some insights are gained into how METH addiction is accompanied by cell death and may help to identify potential therapeutic targets for the neurological impairment caused by METH abuse.
Collapse
Affiliation(s)
- Dongming Guo
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Xinlei Huang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Tianqing Xiong
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Xingyi Wang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Jingwen Zhang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Yingge Wang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
- *Correspondence: Jingyan Liang,
| |
Collapse
|