1
|
Varghese SM, Patel S, Nandan A, Jose A, Ghosh S, Sah RK, Menon B, K V A, Chakravarty S. Unraveling the Role of the Blood-Brain Barrier in the Pathophysiology of Depression: Recent Advances and Future Perspectives. Mol Neurobiol 2024; 61:10398-10447. [PMID: 38730081 DOI: 10.1007/s12035-024-04205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Depression is a highly prevalent psychological disorder characterized by persistent dysphoria, psychomotor retardation, insomnia, anhedonia, suicidal ideation, and a remarkable decrease in overall well-being. Despite the prevalence of accessible antidepressant therapies, many individuals do not achieve substantial improvement. Understanding the multifactorial pathophysiology and the heterogeneous nature of the disorder could lead the way toward better outcomes. Recent findings have elucidated the substantial impact of compromised blood-brain barrier (BBB) integrity on the manifestation of depression. BBB functions as an indispensable defense mechanism, tightly overseeing the transport of molecules from the periphery to preserve the integrity of the brain parenchyma. The dysfunction of the BBB has been implicated in a multitude of neurological disorders, and its disruption and consequent brain alterations could potentially serve as important factors in the pathogenesis and progression of depression. In this review, we extensively examine the pathophysiological relevance of the BBB and delve into the specific modifications of its components that underlie the complexities of depression. A particular focus has been placed on examining the effects of peripheral inflammation on the BBB in depression and elucidating the intricate interactions between the gut, BBB, and brain. Furthermore, this review encompasses significant updates on the assessment of BBB integrity and permeability, providing a comprehensive overview of the topic. Finally, we outline the therapeutic relevance and strategies based on BBB in depression, including COVID-19-associated BBB disruption and neuropsychiatric implications. Understanding the comprehensive pathogenic cascade of depression is crucial for shaping the trajectory of future research endeavors.
Collapse
Affiliation(s)
- Shamili Mariya Varghese
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Shashikant Patel
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Soumya Ghosh
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Bindu Menon
- Department of Psychiatry, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India.
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
2
|
Keane AM, Swartz TH. The impacts of tobacco and nicotine on HIV-1 infection, inflammation, and the blood-brain barrier in the central nervous system. Front Pharmacol 2024; 15:1477845. [PMID: 39529883 PMCID: PMC11550980 DOI: 10.3389/fphar.2024.1477845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Human immunodeficiency virus (HIV-1) remains a persistent global health crisis. Even while successfully virologically suppressed, people with HIV (PWH) experience a higher risk for inflammatory disorders such as HIV-associated neurocognitive disorder (HAND). Tobacco use puts PWH at higher risk for neurocognitive symptoms resulting from HIV-associated neuroinflammation. The NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome has been implicated as a driver of HIV-associated inflammation, including HAND. Nicotine, the psychoactive component of tobacco smoke, has also been shown to signal through the NLRP3 inflammasome and modulate inflammatory signaling in the CNS. Here, we explore the impacts of nicotine and tobacco on the complex neurobiology of HAND, including effects on cognition, inflammation, viral latency, and blood-brain barrier integrity. We outline nicotine's role in the establishment of active and latent infection in the brain and posit the NLRP3 inflammasome as a common pathway by which HIV-1 and nicotine promote neuroinflammation in PWH.
Collapse
Affiliation(s)
- Aislinn M. Keane
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Haefliger R, Dries LS, Perassolo MS, Cardoso CDO. Neuropsychological assessment after long-term omeprazole treatment. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:1007-1015. [PMID: 35930436 DOI: 10.1080/23279095.2022.2106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent studies suggest that Omeprazole, a widely used treatment for gastric acid-related disorders, may have a significant effect on human cognition. However, there is no consensus on the matter. Though some studies suggest the drug is associated with an increased risk of cognitive decline, memory impairment, and dementia, this issue has not been sufficiently studied. Therefore, the goal of this study was to investigate the cognitive impairments associated with long-term Omeprazole treatment, with a focus on memory, attention, and executive functions. Additionally, we sought to verify whether the duration of treatment was associated with the magnitude of the associated cognitive impairments. The sample consisted of 30 participants of both genders treated with Omeprazole (experimental group) and 30 participants who did not use the drug (control group). The cognitive assessment battery: Verbal Fluency, Rey Auditory-Verbal Learning, Attention Assessment Battery, Five Digit Test, Hayling Test, and NEUPSILIN Subtest. The groups were compared using Student's T-tests, and the association between treatment duration and cognitive performance was examined using Pearson's coefficients. The results showed significant group differences in verbal fluency, short-term episodic memory, selective attention, and executive functions. The duration of Omeprazole treatment was also positively associated with the magnitude of cognitive impairment.
Collapse
Affiliation(s)
| | - Larissa Selbach Dries
- Program on Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, Brazil
| | - Magda Susana Perassolo
- Program on Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, Brazil
| | | |
Collapse
|
4
|
Pandey S, Miller CA. Targeting the cytoskeleton as a therapeutic approach to substance use disorders. Pharmacol Res 2024; 202:107143. [PMID: 38499081 PMCID: PMC11034636 DOI: 10.1016/j.phrs.2024.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Substance use disorders (SUD) are chronic relapsing disorders governed by continually shifting cycles of positive drug reward experiences and drug withdrawal-induced negative experiences. A large body of research points to plasticity within systems regulating emotional, motivational, and cognitive processes as drivers of continued compulsive pursuit and consumption of substances despite negative consequences. This plasticity is observed at all levels of analysis from molecules to networks, providing multiple avenues for intervention in SUD. The cytoskeleton and its regulatory proteins within neurons and glia are fundamental to the structural and functional integrity of brain processes and are potentially the major drivers of the morphological and behavioral plasticity associated with substance use. In this review, we discuss preclinical studies that provide support for targeting the brain cytoskeleton as a therapeutic approach to SUD. We focus on the interplay between actin cytoskeleton dynamics and exposure to cocaine, methamphetamine, alcohol, opioids, and nicotine and highlight preclinical studies pointing to a wide range of potential therapeutic targets, such as nonmuscle myosin II, Rac1, cofilin, prosapip 1, and drebrin. These studies broaden our understanding of substance-induced plasticity driving behaviors associated with SUD and provide new research directions for the development of SUD therapeutics.
Collapse
Affiliation(s)
- Surya Pandey
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States; Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Courtney A Miller
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States; Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States.
| |
Collapse
|
5
|
Clare K, Park K, Pan Y, Lejuez CW, Volkow ND, Du C. Neurovascular effects of cocaine: relevance to addiction. Front Pharmacol 2024; 15:1357422. [PMID: 38455961 PMCID: PMC10917943 DOI: 10.3389/fphar.2024.1357422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
Cocaine is a highly addictive drug, and its use is associated with adverse medical consequences such as cerebrovascular accidents that result in debilitating neurological complications. Indeed, brain imaging studies have reported severe reductions in cerebral blood flow (CBF) in cocaine misusers when compared to the brains of healthy non-drug using controls. Such CBF deficits are likely to disrupt neuro-vascular interaction and contribute to changes in brain function. This review aims to provide an overview of cocaine-induced CBF changes and its implication to brain function and to cocaine addiction, including its effects on tissue metabolism and neuronal activity. Finally, we discuss implications for future research, including targeted pharmacological interventions and neuromodulation to limit cocaine use and mitigate the negative impacts.
Collapse
Affiliation(s)
- Kevin Clare
- New York Medical College, Valhalla, NY, United States
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Kicheon Park
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Carl W. Lejuez
- Department of Psychology, Stony Brook University, Stony Brook, NY, United States
| | - Nora D. Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
6
|
Colón Ortiz R, Knerler S, Fridman LB, Mercado A, Price AS, Rosado-Franco JJ, Wilkins H, Flores BR, Orsburn BC, Williams DW. Cocaine regulates antiretroviral therapy CNS access through pregnane-x receptor-mediated drug transporter and metabolizing enzyme modulation at the blood brain barrier. Fluids Barriers CNS 2024; 21:5. [PMID: 38200564 PMCID: PMC10777548 DOI: 10.1186/s12987-023-00507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Appropriate interactions between antiretroviral therapies (ART) and drug transporters and metabolizing enzymes at the blood brain barrier (BBB) are critical to ensure adequate dosing of the brain to achieve HIV suppression. These proteins are modulated by demographic and lifestyle factors, including substance use. While understudied, illicit substances share drug transport and metabolism pathways with ART, increasing the potential for adverse drug:drug interactions. This is particularly important when considering the brain as it is relatively undertreated compared to peripheral organs and is vulnerable to substance use-mediated damage. METHODS We used an in vitro model of the human BBB to determine the extravasation of three first-line ART drugs, emtricitabine (FTC), tenofovir (TFV), and dolutegravir (DTG), in the presence and absence of cocaine, which served as our illicit substance model. The impact of cocaine on BBB integrity and permeability, drug transporters, metabolizing enzymes, and their master transcriptional regulators were evaluated to determine the mechanisms by which substance use impacted ART central nervous system (CNS) availability. RESULTS We determined that cocaine had a selective impact on ART extravasation, where it increased FTC's ability to cross the BBB while decreasing TFV. DTG concentrations that passed the BBB were below quantifiable limits. Interestingly, the potent neuroinflammatory modulator, lipopolysaccharide, had no effect on ART transport, suggesting a specificity for cocaine. Unexpectedly, cocaine did not breach the BBB, as permeability to albumin and 4 kDa FITC-dextran, as well as tight junction proteins and adhesion molecules remained unchanged. Rather, cocaine selectively decreased the pregnane-x receptor (PXR), but not constitutive androstane receptor (CAR). Consequently, drug transporter expression and activity decreased in endothelial cells of the BBB, including p-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 4 (MRP4). Further, cytochrome P450 3A4 (CYP3A4) enzymatic activity increased following cocaine treatment that coincided with decreased expression. Finally, cocaine modulated adenylate kinases that are required to facilitate biotransformation of ART prodrugs to their phosphorylated, pharmacologically active counterparts. CONCLUSION Our findings indicate that additional considerations are needed in CNS HIV treatment strategies for people who use cocaine, as it may limit ART efficacy through regulation of drug transport and metabolizing pathways at the BBB.
Collapse
Affiliation(s)
- Rodnie Colón Ortiz
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Stephen Knerler
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Lisa B Fridman
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Alicia Mercado
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Amira-Storm Price
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Jose J Rosado-Franco
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Hannah Wilkins
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Bianca R Flores
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Dionna W Williams
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Molecular Microbiology & Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road NE, 30322, Atlanta, Georgia.
| |
Collapse
|
7
|
Fort TD, Cain ME. Inefficacy of N-acetylcysteine in mitigating cue-induced amphetamine-seeking. ADDICTION NEUROSCIENCE 2023; 8:100119. [PMID: 38213396 PMCID: PMC10783794 DOI: 10.1016/j.addicn.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Glutamatergic imbalances are characteristic of SUDs. Astrocytic and neuronal transporters help regulate glutamate homeostasis and disruptions in this homeostasis engender SUD. The cysteine-glutamate exchanger (xCT) is primarily localized on astrocytes and maintains glutamate concentrations. This process is disrupted by cocaine use, and the therapeutic N-acetylcysteine (NAC) lowers cue-induced relapse to cocaine by restoring xCT function. However, little research has shown how these effects extend to other psychostimulants, such as amphetamine (AMP). Here, we assessed xCT expression following relapse to AMP cues, and if NAC can attenuate relapse via changes to astrocyte and xCT expression. We administered NAC (100 mg/kg ip) daily during a 14-day abstinence period following AMP (0.1 mg/kg/infusion; 2 h sessions) self-administration. Relapse was tested following one (WD 1) or 14 days (WD 14) of withdrawal. The overall number of astrocytes was also quantified within the medial prefrontal cortex (mPFC) and nucleus accumbens (ACb). NAC failed to lower cue-induced AMP craving via cue-induced relapse and reinstatement testing. Cue-induced craving did not increase from WD 1 to WD 14. AMP-exposed rats had greater astrocyte counts in the mPFC and ACb when compared AMP-naïve rats. Repeated injection with NAC decreased xCT expression within the mPFC and ACb. Overall, these results suggest that NAC may be an ineffective treatment option for lowering cue-induced relapse to AMP. Further, the results suggest that stimulating xCT via NAC may not be an effective therapeutic approach for decreasing cue-seeking for AMP.
Collapse
|
8
|
Caobi A, Bonilla J, Gomez M, Andre M, Yndart A, Fernandez-Lima FA, Nair MP, Raymond AD. HIV-1 and opiates modulate miRNA profiles in extracellular vesicles. Front Immunol 2023; 14:1259998. [PMID: 38022533 PMCID: PMC10666642 DOI: 10.3389/fimmu.2023.1259998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Opiate abuse increases the risk of HIV transmission and exacerbates HIV neuropathology by increasing inflammation and modulating immune cell function. Exosomal EVs(xEV) contain miRNAs that may be differentially expressed due to HIV infection or opiate abuse. Here we develop a preliminary exosomal-miRNA biomarker profile of HIV-infected PBMCs in the context of opiate use. PBMCs infected with HIV were treated with increasing dosages of morphine for 72 hours, the culture supernatants were collected, and the exosomes isolated using differential centrifugation. Exosomal miRNAs were extracted, expression levels determined via Nanostring multiplexed microRNA arrays, and analyzed with Webgestalt. The effect of the exosomes on neuronal function was determined by measuring calcium. Preliminary findings show that HIV-1 infection altered the miRNA profile of PBMC-derived EVs concurrently with opiate exposure. MicroRNA, hsa-miR-1246 was up-regulated 12-fold in the presence of morphine, relative to uninfected control. PBMCs infected with HIV-1 MN, an X4-tropic HIV-1 strain and exposed to morphine, displayed a trend which suggests potential synergistic effects between HIV-1 infection and morphine exposure promoting an increase in viral replication. Dose-dependent differences were observed in miRNA expression as a result of opiate exposure. The xEVs derived from PBMCs exposed to morphine or HIV modulated neuronal cell function. SH-SY5Y cells, treated with xEVs derived from ART-treated PBMCs, exhibited increased viability while for SH-SY5Ys exposed to xEVs derived from HIV-1 infected PBMCs viability was decreased compared to the untreated control. Exposing SH-SY5Y to xEVs derived from HIV-infected PBMCs resulted in significant decrease in calcium signaling, relative to treatment with xEVs derived from uninfected PBMCs. Overall, HIV-1 and morphine induced differential miRNA expression in PBMC-derived exosomes, potentially identifying mechanisms of action or novel therapeutic targets involved in opiate use disorder, HIV neuropathology, TNF signaling pathway, NF-κB signaling pathway, autophagy, and apoptosis in context of HIV infection.
Collapse
Affiliation(s)
- Allen Caobi
- Herbert Wertheim College of Medicine at Florida International University, Department of Immunology and Nanomedicine, Miami, FL, United States
| | - Jesenia Bonilla
- Florida Memorial University, School of Arts and Sciences, Department of Health and Natural Sciences, Miami Gardens, FL, United States
| | - Mario Gomez
- College of Arts, Sciences, and Education at Florida International University, Department of Chemistry, Miami, FL, United States
| | - Mickensone Andre
- Herbert Wertheim College of Medicine at Florida International University, Department of Immunology and Nanomedicine, Miami, FL, United States
| | - Adriana Yndart
- Herbert Wertheim College of Medicine at Florida International University, Department of Immunology and Nanomedicine, Miami, FL, United States
| | - Francisco A. Fernandez-Lima
- College of Arts, Sciences, and Education at Florida International University, Department of Chemistry, Miami, FL, United States
| | - Madhavan P. Nair
- Herbert Wertheim College of Medicine at Florida International University, Department of Immunology and Nanomedicine, Miami, FL, United States
- Institute of Neuroimmune Pharmacology in Herbert Wertheim College of Medicine at Florida International University, Miami, FL, United States
| | - Andrea D. Raymond
- Herbert Wertheim College of Medicine at Florida International University, Department of Immunology and Nanomedicine, Miami, FL, United States
| |
Collapse
|
9
|
Zhao N, Chung TD, Guo Z, Jamieson JJ, Liang L, Linville RM, Pessell AF, Wang L, Searson PC. The influence of physiological and pathological perturbations on blood-brain barrier function. Front Neurosci 2023; 17:1289894. [PMID: 37937070 PMCID: PMC10626523 DOI: 10.3389/fnins.2023.1289894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
The blood-brain barrier (BBB) is located at the interface between the vascular system and the brain parenchyma, and is responsible for communication with systemic circulation and peripheral tissues. During life, the BBB can be subjected to a wide range of perturbations or stresses that may be endogenous or exogenous, pathological or therapeutic, or intended or unintended. The risk factors for many diseases of the brain are multifactorial and involve perturbations that may occur simultaneously (e.g., two-hit model for Alzheimer's disease) and result in different outcomes. Therefore, it is important to understand the influence of individual perturbations on BBB function in isolation. Here we review the effects of eight perturbations: mechanical forces, temperature, electromagnetic radiation, hypoxia, endogenous factors, exogenous factors, chemical factors, and pathogens. While some perturbations may result in acute or chronic BBB disruption, many are also exploited for diagnostic or therapeutic purposes. The resultant outcome on BBB function depends on the dose (or magnitude) and duration of the perturbation. Homeostasis may be restored by self-repair, for example, via processes such as proliferation of affected cells or angiogenesis to create new vasculature. Transient or sustained BBB dysfunction may result in acute or pathological symptoms, for example, microhemorrhages or hypoperfusion. In more extreme cases, perturbations may lead to cytotoxicity and cell death, for example, through exposure to cytotoxic plaques.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Tracy D. Chung
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
| | - John J. Jamieson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Lily Liang
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Raleigh M. Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Alex F. Pessell
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Linus Wang
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Peter C. Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
10
|
Turan Ç, Şenormancı G, Neşelioğlu S, Budak Y, Erel Ö, Şenormancı Ö. Oxidative Stress and Inflammatory Biomarkers in People with Methamphetamine Use Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:572-582. [PMID: 37424424 PMCID: PMC10335902 DOI: 10.9758/cpn.22.1047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 07/11/2023]
Abstract
Objective This study aimed to investigate the blood serum levels of biomarkers specifying oxidative stress status and systemic inflammation between people using methamphetamine (METH) and the control group (CG). Serum thiol/disulfide balance and ischemia-modified albumin levels were studied to determine oxidative stress, and serum interleukin-6 (IL-6) levels and complete blood count (CBC) were to assess inflammation. Methods Fifty patients with METH use disorder (MUD) and 36 CG participants were included in the study. Two tubes of venous blood samples were taken to measure oxidative stress, serum thiol/disulfide balance, ischemia-modified albumin, and IL-6 levels between groups. The correlation of parameters measuring oxidative stress and inflammation between groups with sociodemographic data was investigated. Results In this study, serum total thiol, free thiol levels, disulfide/native thiol percentage ratios, and serum ischemia- modified albumin levels of the patients were statistically significantly higher than the healthy controls. No difference was observed between the groups in serum disulfide levels and serum IL-6 levels. Considering the regression analysis, only the duration of substance use was a statistically significant factor in explaining serum IL-6 levels. The parameters showing inflammation in the CBC were significantly higher in the patients than in the CG. Conclusion CBC can be used to evaluate systemic inflammation in patients with MUD. Parameters measuring thiol/disulfide homeostasis and ischemia-modified albumin can be, also, used to assess oxidative stress.
Collapse
Affiliation(s)
- Çetin Turan
- Department of Psychiatry, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Güliz Şenormancı
- Department of Psychiatry, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Salim Neşelioğlu
- Clinic of Clinical Biochemistry, Yıldırım Beyazıt University, Ankara City Hospital, Ankara, Turkey
| | - Yasemin Budak
- Department of Biochemistry, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Özcan Erel
- Clinic of Clinical Biochemistry, Yıldırım Beyazıt University, Ankara City Hospital, Ankara, Turkey
| | - Ömer Şenormancı
- Department of Clinical Psychology, University of Beykent, Istanbul, Turkey
| |
Collapse
|
11
|
Fridman LB, Knerler S, Price AS, Ortiz RC, Mercado A, Wilkins H, Flores BR, Orsburn BC, Williams DW. Cocaine Regulates Antiretroviral Therapy CNS Access Through Pregnane-X Receptor-Mediated Drug Transporter and Metabolizing Enzyme Modulation at the Blood Brain Barrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551042. [PMID: 37546800 PMCID: PMC10402182 DOI: 10.1101/2023.07.28.551042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Background Appropriate interactions between antiretroviral therapies (ART) and drug transporters and metabolizing enzymes at the blood brain barrier (BBB) are critical to ensure adequate dosing of the brain to achieve HIV suppression. These proteins are modulated by demographic and lifestyle factors, including substance use. While understudied, illicit substances share drug transport and metabolism pathways with ART, increasing the potential for adverse drug:drug interactions. This is particularly important when considering the brain as it is relatively undertreated compared to peripheral organs and is vulnerable to substance use-mediated damage. Methods We used an in vitro model of the human BBB to determine the extravasation of three first-line ART drugs, emtricitabine (FTC), tenofovir (TFV), and dolutegravir (DTG), in the presence and absence of cocaine, which served as our illicit substance model. The impact of cocaine on BBB integrity and permeability, drug transporters, metabolizing enzymes, and their master transcriptional regulators were evaluated to determine the mechanisms by which substance use impacted ART central nervous system (CNS) availability. Results We determined that cocaine had a selective impact on ART extravasation, where it increased FTC's ability to cross the BBB while decreasing TFV. DTG concentrations that passed the BBB were below quantifiable limits. Interestingly, the potent neuroinflammatory modulator, lipopolysaccharide, had no effect on ART transport, suggesting a specificity for cocaine. Unexpectedly, cocaine did not breach the BBB, as permeability to albumin and tight junction proteins and adhesion molecules remained unchanged. Rather, cocaine selectively decreased the pregnane-x receptor (PXR), but not constitutive androstane receptor (CAR). Consequently, drug transporter expression and activity decreased in endothelial cells of the BBB, including p-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 4 (MRP4). Further, cytochrome P450 3A4 (CYP3A4) enzymatic activity increased following cocaine treatment that coincided with decreased expression. Finally, cocaine modulated adenylate kinases are required to facilitate biotransformation of ART prodrugs to their phosphorylated, pharmacologically active counterparts. Conclusion Our findings indicate that additional considerations are needed in CNS HIV treatment strategies for people who use cocaine, as it may limit ART efficacy through regulation of drug transport and metabolizing pathways at the BBB.
Collapse
Affiliation(s)
- Lisa B. Fridman
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Stephen Knerler
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Amira-Storm Price
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Rodnie Colón Ortiz
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Alicia Mercado
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Hannah Wilkins
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Bianca R. Flores
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Benjamin C. Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Dionna W. Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Molecular Microbiology & Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205
| |
Collapse
|
12
|
González-Portilla M, Moya M, Montagud-Romero S, de Fonseca FR, Orio L, Rodríguez-Arias M. Oleoylethanolamide attenuates the stress-mediated potentiation of rewarding properties of cocaine associated with an increased TLR4 proinflammatory response. Prog Neuropsychopharmacol Biol Psychiatry 2023; 124:110722. [PMID: 36724838 DOI: 10.1016/j.pnpbp.2023.110722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
The lipid-derived messenger oleoylethanolamide (OEA) has been involved in multiple physiological functions including metabolism and the immune response. More recently, OEA has been observed to affect reward-related behavior. Stress is a major risk factor for drug use and a predictor of drug relapse. In the laboratory, social stress has been largely studied using the social defeat (SD) model. Here, we explored the effects of different OEA administration schedules on the increased rewarding properties of cocaine induced by SD. In addition, we evaluated the anti-inflammatory action of OEA pretreatment in TLR4 expression caused by SD in the cerebellum, a novel brain structure that has been involved in the development of cocaine addiction. Adult OF1 mice were assigned to an experimental group according to the stress condition (exploration or SD) and treatment (OEA before SD, OEA before conditioning or subchronic OEA treatment). Mice were administered with OEA i.p (10 mg/kg) 10 min previously to the corresponding event. Three weeks after the last SD encounter, conditioned place preference (CPP) was induced by a subthreshold cocaine dose (1 mg/kg). As expected, socially defeated mice presented greater vulnerability to the cocaine reinforcing effects and expressed CPP. Conversely, this effect was not observed under a non-stressed condition. Most importantly, we observed that OEA pretreatment before SD or before conditioning prevented cocaine CPP in defeated mice. Biochemical analysis showed that OEA administration before SD decreased proinflammatory TLR4 upregulation in the cerebellum caused by social stress. In summary, our results suggest that OEA may have a protective effect on stress-induced increased cocaine sensitivity by exerting an anti-inflammatory action.
Collapse
Affiliation(s)
- Macarena González-Portilla
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain.
| | - Marta Moya
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Pozuelo de Alarcón, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain
| | - Fernando Rodríguez de Fonseca
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain; Atención Primaria, Cronicidad y Promoción de la Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Laura Orio
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Pozuelo de Alarcón, Spain; Atención Primaria, Cronicidad y Promoción de la Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain; Atención Primaria, Cronicidad y Promoción de la Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Spain.
| |
Collapse
|
13
|
Guo ML, Roodsari SK, Cheng Y, Dempsey RE, Hu W. Microglia NLRP3 Inflammasome and Neuroimmune Signaling in Substance Use Disorders. Biomolecules 2023; 13:922. [PMID: 37371502 DOI: 10.3390/biom13060922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
During the last decade, substance use disorders (SUDs) have been increasingly recognized as neuroinflammation-related brain diseases. Various types of abused drugs (cocaine, methamphetamine, alcohol, opiate-like drugs, marijuana, etc.) can modulate the activation status of microglia and neuroinflammation levels which are involved in the pathogenesis of SUDs. Several neuroimmune signaling pathways, including TLR/NF-кB, reactive oxygen species, mitochondria dysfunction, as well as autophagy defection, etc., have been implicated in promoting SUDs. Recently, inflammasome-mediated signaling has been identified as playing critical roles in the microglia activation induced by abused drugs. Among the family of inflammasomes, NOD-, LRR-, and pyrin-domain-containing protein 3 (NLRP3) serves the primary research target due to its abundant expression in microglia. NLRP3 has the capability of integrating multiple external and internal inputs and coordinately determining the intensity of microglia activation under various pathological conditions. Here, we summarize the effects of abused drugs on NLRP3 inflammasomes, as well as others, if any. The research on this topic is still at an infant stage; however, the readily available findings suggest that NLRP3 inflammasome could be a common downstream effector stimulated by various types of abused drugs and play critical roles in determining abused-drug-mediated biological effects through enhancing glia-neuron communications. NLRP3 inflammasome might serve as a novel target for ameliorating the development of SUDs.
Collapse
Affiliation(s)
- Ming-Lei Guo
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Soheil Kazemi Roodsari
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Yan Cheng
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Rachael Elizabeth Dempsey
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
14
|
Cameron-Burr KT, Bola RA, Kiyatkin EA. Dantrolene sodium fails to reverse robust brain hyperthermia induced by MDMA and methamphetamine in rats. Psychopharmacology (Berl) 2023; 240:785-795. [PMID: 36700960 DOI: 10.1007/s00213-023-06321-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
RATIONALE Hyperthermia induced by psychomotor stimulants may cause leakage of the blood-brain barrier, vasogenic edema, and lethality in extreme cases. Current treatments such as whole-body cooling are only symptomatic and a clear need to develop pharmacological interventions exists. Dantrolene sodium, a peripheral muscle relaxant used in the treatment of malignant hyperthermia, has been proposed as potentially effective to treat MDMA-hyperthermia in emergency rooms. However, debate around its efficacy for this indication persists. OBJECTIVES To investigate dantrolene as a treatment for illicit hyperthermia induced by psychomotor stimulant drugs, we examined how Ryanodex®, a concentrated formulation of dantrolene sodium produced by Eagle Pharmaceuticals, influences 3,4-methylenedioxymethamphetamine (MDMA)- and methamphetamine (METH)-induced hyperthermia in awake freely moving rats. We injected rats with moderate doses of MDMA (9 mg/kg) and METH (9 mg/kg) and administered Ryanodex® intravenously (6 mg/kg) after the development of robust hyperthermia (>2.5 °C) mimicking clinical acute intoxication. We conducted simultaneous temperature recordings in the brain, temporal muscle, and skin to determine the basic mechanisms underlying temperature responses. To assess the efficacy of dantrolene in attenuating severe hyperthermia, we administered MDMA to rats maintained in a warm ambient environment (29 °C), conditions which produce robust brain and body hyperthermia (>40 °C) and lethality. RESULTS Dantrolene failed to attenuate MDMA- and METH-induced hyperthermia, though locomotor activity was significantly reduced. All animals maintained at warm ambient temperatures that received dantrolene during severe drug-induced hyperthermia died within or soon after the recording session. CONCLUSIONS Our results suggest that dantrolene sodium formulations are not mechanistically suited to treat MDMA- and METH-induced hyperthermia.
Collapse
Affiliation(s)
- Keaton T Cameron-Burr
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - R Aaron Bola
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| |
Collapse
|
15
|
Namba MD, Phillips MN, Chen PJ, Blass BE, Olive MF, Neisewander JL. HIV gp120 impairs nucleus accumbens neuroimmune function and dopamine D3 receptor-mediated inhibition of cocaine seeking in male rats. ADDICTION NEUROSCIENCE 2023; 5:100062. [PMID: 36909738 PMCID: PMC9997483 DOI: 10.1016/j.addicn.2023.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cocaine Use Disorders (CUDs) are associated with an increased risk of human immunodeficiency virus (HIV) infection. Cocaine and the HIV envelope protein gp120 each induce distinct deficits to mesocorticolimbic circuit function and motivated behavior; however, little is known regarding how they interact to dysregulate these functions or how such interactions impact pharmacotherapeutic efficacy. We have previously shown that the selective, weak partial agonist of the dopamine D3 receptor (D3R), MC-25-41, attenuates cocaine-seeking behavior in male rats. Here, we sought to characterize changes in striatal neuroimmune function in gp120-exposed rats across abstinence from operant access to cocaine (0.75 mg/kg, i.v.) or sucrose (45 mg/pellet), and to examine the impact of gp120 exposure on MC-25-41-reduced cocaine seeking. After establishing a history of cocaine or sucrose self-administration, rats received intracerebroventricular gp120 infusions daily the first 5 days of abstinence and were sacrificed either on day 6 or after 21 days of forced abstinence and a cue-induced cocaine seeking test. We demonstrated that MC-25-41 treatment attenuated cue-induced cocaine seeking among control rats but not gp120-exposed rats. Moreover, postmortem analysis of nucleus accumbens (NAc) core neuroimmune function indicated cocaine abstinence- and gp120-induced impairments, and the expression of several immune factors within the NAc core significantly correlated with cocaine-seeking behavior. We conclude that cocaine abstinence dysregulates striatal neuroimmune function and interacts with gp120 to inhibit the effectiveness of a D3R partial agonist in reducing cocaine seeking. These findings highlight the need to consider comorbidities, such as immune status, when evaluating the efficacy of novel pharmacotherapeutics.
Collapse
Affiliation(s)
- Mark D Namba
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Megan N Phillips
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Peng-Jen Chen
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Benjamin E Blass
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
16
|
Gaudreault PO, King SG, Malaker P, Alia-Klein N, Goldstein RZ. Whole-brain white matter abnormalities in human cocaine and heroin use disorders: association with craving, recency, and cumulative use. Mol Psychiatry 2023; 28:780-791. [PMID: 36369361 PMCID: PMC9911401 DOI: 10.1038/s41380-022-01833-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Neuroimaging studies in substance use disorder have shown widespread impairments in white matter (WM) microstructure suggesting demyelination and axonal damage. However, substantially fewer studies explored the generalized vs. the acute and/or specific drug effects on WM. Our study assessed whole-brain WM integrity in three subgroups of individuals addicted to drugs, encompassing those with cocaine (CUD) or heroin (HUD) use disorder, compared to healthy controls (CTL). Diffusion MRI was acquired in 58 CTL, 28 current cocaine users/CUD+, 32 abstinent cocaine users/CUD-, and 30 individuals with HUD (urine was positive for cocaine in CUD+ and opiates used for treatment in HUD). Tract-Based Spatial Statistics allowed voxelwise analyses of diffusion metrics [fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD)]. Permutation statistics (p-corrected < 0.05) were used for between-group t-tests. Compared to CTL, all individuals with addiction showed widespread decreases in FA, and increases in MD, RD, and AD (19-57% of WM skeleton, p < 0.05). The HUD group showed the most impairments, followed by the CUD+, with only minor FA reductions in CUD- (<0.2% of WM skeleton, p = 0.05). Longer periods of regular use were associated with decreased FA and AD, and higher subjective craving was associated with increased MD, RD, and AD, across all individuals with drug addiction (p < 0.05). These findings demonstrate extensive WM impairments in individuals with drug addiction characterized by decreased anisotropy and increased diffusivity, thought to reflect demyelination and lower axonal packing. Extensive abnormalities in both groups with positive urine status (CUD+ and HUD), and correlations with craving, suggest greater WM impairments with more recent use. Results in CUD-, and correlations with regular use, further imply cumulative and/or persistent WM damage.
Collapse
Affiliation(s)
- Pierre-Olivier Gaudreault
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Sarah G King
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Pias Malaker
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Nelly Alia-Klein
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Rita Z Goldstein
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
17
|
Mudra Rakshasa-Loots A, Whalley HC, Vera JH, Cox SR. Neuroinflammation in HIV-associated depression: evidence and future perspectives. Mol Psychiatry 2022; 27:3619-3632. [PMID: 35618889 PMCID: PMC9708589 DOI: 10.1038/s41380-022-01619-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023]
Abstract
People living with HIV face a high risk of mental illness, especially depression. We do not yet know the precise neurobiological mechanisms underlying HIV-associated depression. Depression severity in the general population has been linked to acute and chronic markers of systemic inflammation. Given the associations between depression and peripheral inflammation, and since HIV infection in the brain elicits a neuroinflammatory response, it is possible that neuroinflammation contributes to the high prevalence of depression amongst people living with HIV. The purpose of this review was to synthesise existing evidence for associations between inflammation, depression, and HIV. While there is strong evidence for independent associations between these three conditions, few preclinical or clinical studies have attempted to characterise their interrelationship, representing a major gap in the literature. This review identifies key areas of debate in the field and offers perspectives for future investigations of the pathophysiology of HIV-associated depression. Reproducing findings across diverse populations will be crucial in obtaining robust and generalisable results to elucidate the precise role of neuroinflammation in this pathophysiology.
Collapse
Affiliation(s)
- Arish Mudra Rakshasa-Loots
- Edinburgh Neuroscience, School of Biomedical Sciences, The University of Edinburgh, Edinburgh, UK.
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK.
| | - Heather C Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, Royal Edinburgh Hospital, The University of Edinburgh, Edinburgh, UK
| | - Jaime H Vera
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Simon R Cox
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
18
|
Anier K, Somelar K, Jaako K, Alttoa M, Sikk K, Kokassaar R, Kisand K, Kalda A. Psychostimulant-induced aberrant DNA methylation in an in vitro model of human peripheral blood mononuclear cells. Clin Epigenetics 2022; 14:89. [PMID: 35842682 PMCID: PMC9288712 DOI: 10.1186/s13148-022-01303-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/30/2022] [Indexed: 11/14/2022] Open
Abstract
Background Several reports have provided crucial evidence in animal models that epigenetic modifications, such as DNA methylation, may be involved in psychostimulant-induced stable changes at the cellular level in the brain. Epigenetic editors DNA methyltransferases (DNMTs) and ten-eleven translocation enzymes (TETs) coordinate expression of gene networks, which then manifest as long-term behavioural changes. However, the extent to which aberrant DNA methylation is involved in the mechanisms of substance use disorder in humans is unclear. We previously demonstrated that cocaine modifies gene transcription, via DNA methylation, throughout the brain and in peripheral blood cells in mice. Results We treated human peripheral blood mononuclear cells (PBMCs) from healthy male donors (n = 18) in vitro with psychostimulants (amphetamine, cocaine). After treatment, we assessed mRNA levels and enzymatic activities of TETs and DNMTs, conducted genome-wide DNA methylation assays and next-generation sequencing. We found that repeated exposure to psychostimulants decreased mRNA levels and enzymatic activity of TETs and 5-hydroxymethylation levels in PBMCs. These data were in line with observed hyper- and hypomethylation and mRNA expression of marker genes (IL-10, ATP2B4). Additionally, we evaluated whether the effects of cocaine on epigenetic editors (DNMTs and TETs) and cytokines interleukin-6 (IL-6) and IL-10 could be reversed by the DNMT inhibitor decitabine. Indeed, decitabine eliminated cocaine’s effect on the activity of TETs and DNMTs and decreased cytokine levels, whereas cocaine increased IL-6 and decreased IL-10. Conclusions Our data suggest that repeated psychostimulant exposure decreases TETs’ enzymatic activity in PBMCs. Co-treatment with decitabine reversed TETs’ levels and modulated immune response after repeated cocaine exposure. Further investigation is needed to clarify if TET could represent a putative biomarker of psychostimulant use and if DNMT inhibition could have therapeutic potential. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01303-w.
Collapse
Affiliation(s)
- Kaili Anier
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Kelli Somelar
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia.
| | - Külli Jaako
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Margret Alttoa
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Kerli Sikk
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Raul Kokassaar
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Kai Kisand
- Department of Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Anti Kalda
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| |
Collapse
|
19
|
Oral Enrichment of Streptococcus and its Role in Systemic Inflammation Related to Monocyte Activation in Humans with Cocaine Use Disorder. J Neuroimmune Pharmacol 2022; 17:305-317. [PMID: 34448131 PMCID: PMC8881519 DOI: 10.1007/s11481-021-10007-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022]
Abstract
Cocaine use is commonly associated with increased chronic systemic inflammation. However, the drivers for cocaine use-mediated systemic inflammation are not fully understood. In the current study, we recruited individuals with cocaine use disorder and healthy individuals who did not use cocaine and collected paired saliva and blood samples. The saliva samples were used to assess the oral microbiome, and the plasma samples were evaluated for 33 cytokines and chemokines. Cocaine users exhibited decreased saliva microbial diversities compared to non-users. Streptococcus was the only increased genus in the saliva from cocaine users, whereas several genera were decreased in cocaine users compared to non-users. Notably, cocaine users exhibited increased plasma levels of several monocyte activation markers, including monocyte chemoattractant protein (MCP)-4, macrophage inflammatory protein (MIP)-3α, macrophage-derived chemokine (MDC), and thymus and activation-regulated chemokine (TARC), all of which were correlated with increased saliva levels of three Streptococcus species. Furthermore, treatment with Streptococcus or its lipoteichoic acid preferentially activated primary human monocytes to produce proinflammatory cytokines and chemokines, such as MIP-3α and TARC, in vitro compared to controls. However, monocytes failed to produce these chemokines after exposure to cocaine or cocaine plus bacteria compared to medium or bacteria alone. This study revealed that chronic cocaine use-associated inflammation in the blood may result from increased oral Streptococcus and its effects on myeloid cell activation, but does not result from cocaine directly.
Collapse
|
20
|
Role of Mitochondrial Dynamics in Cocaine's Neurotoxicity. Int J Mol Sci 2022; 23:ijms23105418. [PMID: 35628228 PMCID: PMC9145816 DOI: 10.3390/ijms23105418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 01/25/2023] Open
Abstract
The dynamic balance of mitochondrial fission and fusion maintains mitochondrial homeostasis and optimal function. It is indispensable for cells such as neurons, which rely on the finely tuned mitochondria to carry out their normal physiological activities. The potent psychostimulant cocaine impairs mitochondria as one way it exerts its neurotoxicity, wherein the disturbances in mitochondrial dynamics have been suggested to play an essential role. In this review, we summarize the neurotoxicity of cocaine and the role of mitochondrial dynamics in cellular physiology. Subsequently, we introduce current findings that link disturbed neuronal mitochondrial dynamics with cocaine exposure. Finally, the possible role and potential therapeutic value of mitochondrial dynamics in cocaine neurotoxicity are discussed.
Collapse
|
21
|
Zhao X, Zhang F, Kandel SR, Brau F, He JJ. HIV Tat and cocaine interactively alter genome-wide DNA methylation and gene expression and exacerbate learning and memory impairments. Cell Rep 2022; 39:110765. [PMID: 35508123 PMCID: PMC9615417 DOI: 10.1016/j.celrep.2022.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 11/03/2022] Open
Abstract
Cocaine use is a major comorbidity of HIV-associated neurocognitive disorder (HAND). In this study, we show that cocaine exposure worsens the learning and memory of doxycycline-inducible and brain-specific HIV Tat transgenic mice (iTat) and results in 14,838 hypermethylated CpG-related differentially methylated regions (DMRs) and 15,800 hypomethylated CpG-related DMRs, which are linked to 52 down- and 127 upregulated genes, respectively, in the hippocampus of iTat mice. These genes are mostly enriched at the neuronal function-, cell morphology-, and synapse formation-related extracellular matrix (ECM) receptor-ligand interaction pathway and mostly impacted in microglia. The accompanying neuropathological changes include swollen dendritic spines, increased synaptophysin expression, and diminished glial activation. We also find that sex (female) and age additively worsen the behavioral and pathological changes. These findings together indicate that chronic cocaine and long-term Tat expression interactively contribute to HAND, likely involving changes of DNA methylation and ECM receptor-ligand interactions.
Collapse
Affiliation(s)
- Xiaojie Zhao
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL 60064, USA; Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA; School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Fan Zhang
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL 60064, USA; Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Frédéric Brau
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL 60064, USA; Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA; School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA.
| |
Collapse
|
22
|
Géa LP, Wollenhaupt-Aguiar B, Watts D, Maich W, Kapczinski F, Sharma R, Mishra R, Rosa AR, Frey BN. Investigation of blood-brain barrier disruption in an animal model of mania induced by d-amphetamine. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
23
|
Impact of Electronic Cigarette Vaping on Cerebral Ischemia: What We Know So Far. Transl Stroke Res 2022; 13:923-938. [DOI: 10.1007/s12975-022-01011-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 01/09/2023]
|
24
|
Ceceli AO, Bradberry CW, Goldstein RZ. The neurobiology of drug addiction: cross-species insights into the dysfunction and recovery of the prefrontal cortex. Neuropsychopharmacology 2022; 47:276-291. [PMID: 34408275 PMCID: PMC8617203 DOI: 10.1038/s41386-021-01153-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023]
Abstract
A growing preclinical and clinical body of work on the effects of chronic drug use and drug addiction has extended the scope of inquiry from the putative reward-related subcortical mechanisms to higher-order executive functions as regulated by the prefrontal cortex. Here we review the neuroimaging evidence in humans and non-human primates to demonstrate the involvement of the prefrontal cortex in emotional, cognitive, and behavioral alterations in drug addiction, with particular attention to the impaired response inhibition and salience attribution (iRISA) framework. In support of iRISA, functional and structural neuroimaging studies document a role for the prefrontal cortex in assigning excessive salience to drug over non-drug-related processes with concomitant lapses in self-control, and deficits in reward-related decision-making and insight into illness. Importantly, converging insights from human and non-human primate studies suggest a causal relationship between drug addiction and prefrontal insult, indicating that chronic drug use causes the prefrontal cortex damage that underlies iRISA while changes with abstinence and recovery with treatment suggest plasticity of these same brain regions and functions. We further dissect the overlapping and distinct characteristics of drug classes, potential biomarkers that inform vulnerability and resilience, and advancements in cutting-edge psychological and neuromodulatory treatment strategies, providing a comprehensive landscape of the human and non-human primate drug addiction literature as it relates to the prefrontal cortex.
Collapse
Affiliation(s)
- Ahmet O Ceceli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Rita Z Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
25
|
Stafford AM, Yamamoto BK, Phillips TJ. Combined and sequential effects of alcohol and methamphetamine in animal models. Neurosci Biobehav Rev 2021; 131:248-269. [PMID: 34543650 PMCID: PMC8642292 DOI: 10.1016/j.neubiorev.2021.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022]
Abstract
Comorbid drug use, often alcohol with other drugs, poses significant health and societal concerns. Methamphetamine is among the illicit drugs most often co-used with alcohol. The current review examines the animal literature for impacts of comorbid alcohol and methamphetamine exposure. We found evidence for additive or synergistic effects of combined or sequential exposure on behavior and physiology. Dopaminergic, serotonergic, and glutamatergic systems are all impacted by combined exposure to alcohol and methamphetamine and cyclooxygenase-2 activity plays an important role in their combined neurotoxic effects. Adverse consequences of comorbid exposure include altered brain development with prenatal exposure, impaired learning and memory, motor deficits, gastrotoxicity, hepatotoxicity, and augmented intake under some conditions. Given high susceptibility to drug experimentation in adolescence, studies of co-exposure during the adolescent period and of how adolescent exposure to one drug impacts later use or sensitivity to the other drug should be a priority. Further, to gain traction on prevention and treatment, additional research to identify motivational and neurobiological drivers and consequences of comorbid use is needed.
Collapse
Affiliation(s)
- Alexandra M Stafford
- Department of Behavioral Neuroscience, Portland Alcohol Abuse Research Center and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA.
| | - Bryan K Yamamoto
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tamara J Phillips
- Department of Behavioral Neuroscience, Portland Alcohol Abuse Research Center and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA; Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
26
|
Vore AS, Deak T. Alcohol, inflammation, and blood-brain barrier function in health and disease across development. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:209-249. [PMID: 34801170 DOI: 10.1016/bs.irn.2021.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alcohol is the most commonly used drug of abuse in the world and binge drinking is especially harmful to the brain, though the mechanisms by which alcohol compromises overall brain health remain somewhat elusive. A number of brain diseases and pathological states are accompanied by perturbations in Blood-Brain Barrier (BBB) function, ultimately exacerbating disease progression. The BBB is critical for coordinating activity between the peripheral immune system and the brain. Importantly, BBB integrity is responsive to circulating cytokines and other immune-related signaling molecules, which are powerfully modulated by alcohol exposure. This review will highlight key cellular components of the BBB; discuss mechanisms by which permeability is achieved; offer insight into methodological approaches for assessing BBB integrity; and forecast how alcohol-induced changes in the peripheral and central immune systems might influence BBB function in individuals with a history of binge drinking and ultimately Alcohol Use Disorders (AUD).
Collapse
Affiliation(s)
- A S Vore
- Behavioral Neuroscience Program, Department of Psychology, Developmental Exposure Alcohol Research Center, Binghamton, NY, United States
| | - T Deak
- Behavioral Neuroscience Program, Department of Psychology, Developmental Exposure Alcohol Research Center, Binghamton, NY, United States.
| |
Collapse
|
27
|
Morissette F, Mongeau-Pérusse V, Rizkallah E, Thébault P, Lepage S, Brissette S, Bruneau J, Dubreucq S, Stip E, Cailhier JF, Jutras-Aswad D. Exploring cannabidiol effects on inflammatory markers in individuals with cocaine use disorder: a randomized controlled trial. Neuropsychopharmacology 2021; 46:2101-2111. [PMID: 34331010 PMCID: PMC8505631 DOI: 10.1038/s41386-021-01098-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 01/29/2023]
Abstract
Cocaine use disorder (CUD) is a major public health issue associated with physical, social, and psychological problems. Excessive and repeated cocaine use induces oxidative stress leading to a systemic inflammatory response. Cannabidiol (CBD) has gained substantial interest for its anti-inflammatory properties, safety, and tolerability profile. However, CBD anti-inflammatory properties have yet to be confirmed in humans. This exploratory study is based on a single-site randomized controlled trial that enrolled participants with CUD between 18 and 65 years, randomized (1:1) to daily receive either CBD (800 mg) or placebo for 92 days. The trial was divided into a 10-day detoxification (phase I) followed by a 12-week outpatient follow-up (phase II). Blood samples were collected from 48 participants at baseline, day 8, week 4, and week 12 and were analyzed to determine monocytes and lymphocytes phenotypes, and concentrations of various inflammatory markers such as cytokines. We used generalized estimating equations to detect group differences. Participants treated with CBD had lower levels of interleukin-6 (p = 0.017), vascular endothelial growth factor (p = 0.032), intermediate monocytes CD14+CD16+ (p = 0.024), and natural killer CD56negCD16hi (p = 0.000) compared with participants receiving placebo. CD25+CD4+T cells were higher in the CBD group (p = 0.007). No significant group difference was observed for B lymphocytes. This study suggests that CBD may exert anti-inflammatory effects in individuals with CUD.
Collapse
Affiliation(s)
- Florence Morissette
- grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada ,grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada
| | - Violaine Mongeau-Pérusse
- grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada ,grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada
| | - Elie Rizkallah
- grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada ,grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada
| | - Paméla Thébault
- grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,Montreal Cancer Institute, Montreal, QC Canada
| | - Stéphanie Lepage
- grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,Montreal Cancer Institute, Montreal, QC Canada
| | - Suzanne Brissette
- grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Family and Emergency Medicine, Université de Montréal, Montreal, QC Canada
| | - Julie Bruneau
- grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Family and Emergency Medicine, Université de Montréal, Montreal, QC Canada
| | - Simon Dubreucq
- grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada ,grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada
| | - Emmanuel Stip
- grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada ,grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,grid.43519.3a0000 0001 2193 6666Department of Psychiatry and Behavioral Science, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Jean-François Cailhier
- grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,Montreal Cancer Institute, Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Division of Nephrology, Department of Medicine, Université de Montréal, Montreal, QC Canada
| | - Didier Jutras-Aswad
- Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC, Canada. .,Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada. .,University Institute on Addictions, Montreal, QC, Canada.
| |
Collapse
|
28
|
Sivalingam K, Doke M, Khan MA, Samikkannu T. Influence of psychostimulants and opioids on epigenetic modification of class III histone deacetylase (HDAC)-sirtuins in glial cells. Sci Rep 2021; 11:21335. [PMID: 34716387 PMCID: PMC8556237 DOI: 10.1038/s41598-021-00836-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/24/2021] [Indexed: 01/29/2023] Open
Abstract
Substance abuse affects the central nervous system (CNS) and remains a global health problem. Psychostimulants, such as cocaine and methamphetamine (METH), and opioids affect neuronal function and lead to behavioral impairments via epigenetic modification. Epigenetic changes occur via classical pathways, especially the class III histone deacetylase (HDAC)-sirtuin (SIRT) family, that act as cellular sensors to regulate energy homeostasis and coordinate cellular responses to maintain genome integrity. However, SIRT family (1-7)-associated neurodegeneration has not been elucidated in the context of energy metabolism. The present study examined the effects of psychostimulants, such as cocaine and METH, and opioids, such as morphine, on SIRT family (1-7) [class I, II, III and IV] expression and cellular translocation-mediated dysfunction in astrocytes and microglial cells. The "nootropic" drug piracetam played a preventative role against psychostimulant- and opioid-induced SIRT (1-7) expression in astrocytes. These results indicate that cocaine, METH, and morphine affected deacetylation and cellular function, and these changes were prevented by piracetam in astrocytes.
Collapse
Affiliation(s)
- Kalaiselvi Sivalingam
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, 1010 W Avenue B, Kingsville, TX, 78363, USA
| | - Mayur Doke
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, 1010 W Avenue B, Kingsville, TX, 78363, USA
| | - Mansoor A Khan
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, 1010 W Avenue B, Kingsville, TX, 78363, USA
| | - Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, 1010 W Avenue B, Kingsville, TX, 78363, USA.
| |
Collapse
|
29
|
Montagud-Romero S, Miñarro J, Rodríguez-Arias M. Unravelling the Neuroinflammatory Mechanisms Underlying the Effects of Social Defeat Stress on Use of Drugs of Abuse. Curr Top Behav Neurosci 2021; 54:153-180. [PMID: 34628585 DOI: 10.1007/7854_2021_260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The immune system provides the first line of the organism's defenses, working to maintain homeostasis against external threats and respond also to internal danger signals. There is much evidence to suggest that modifications of inflammatory parameters are related to vulnerability to develop mental illnesses, such as depression, autism, schizophrenia, and substance use disorders. In addition, not only are inflammatory parameters related to these disorders, but stress also induces the activation of the immune system, as recent preclinical research demonstrates. Social stress activates the immune response in the central nervous system through a number of mechanisms; for example, by promoting microglial stimulation, modifying peripheral and brain cytokine levels, and altering the blood brain barrier, which allows monocytes to traffic into the brain. In this chapter, we will first deal with the most important short- and long-term consequences of social defeat (SD) stress on the neuroinflammatory response. SD experiences (brief episodes of social confrontations during adolescence and adulthood) induce functional modifications in the brain, which are accompanied by an increase in proinflammatory markers. Most importantly, inflammatory mechanisms play a significant role in mediating the process of adaptation in the face of adversity (resilience vs susceptibility), allowing us to understand individual differences in stress responses. Secondly, we will address the role of the immune system in the vulnerability and enhanced sensitivity to drugs of abuse after social stress. We will explore in depth the effects seen in the inflammatory system in response to social stress and how they enhance the rewarding effects of drugs such as alcohol or cocaine. To conclude, we will consider pharmacological and environmental interventions that seek to influence the inflammatory response to social stress and diminish increased drug intake, as well as the translational potential and future directions of this exciting new field of research.
Collapse
Affiliation(s)
- S Montagud-Romero
- Department of Psychology and Sociology, University of Zaragoza, Teruel, Spain
| | - J Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - M Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain. .,Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|
30
|
Kobeissy FH, Shakkour Z, Hayek SE, Mohamed W, Gold MS, Wang KKW. Elevation of Pro-inflammatory and Anti-inflammatory Cytokines in Rat Serum after Acute Methamphetamine Treatment and Traumatic Brain Injury. J Mol Neurosci 2021; 72:158-168. [PMID: 34542809 DOI: 10.1007/s12031-021-01886-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
The use of methamphetamine (METH) is a growing worldwide epidemic that bears grave societal implications. METH is known to exert its neurotoxic effects on the dopaminergic and serotonergic systems of the brain. In addition to this classical studied mechanism of damage, findings from our laboratory and others have shown that acute METH treatment and mechanical injury, i.e. traumatic brain injury (TBI), share common cell injury mechanism(s). Since neuro-inflammation is a signature event in TBI, we hypothesize that certain cytokine levels might also be altered in rat brain exposed to an acute METH insult. In this study, using a cytokine antibody array chip, we evaluated the serum levels of 19 cytokines in rats 24 h after exposure to a 40 mg/kg acute regimen of METH. Data were compared to rats subjected to experimental TBI using the controlled cortical impact (CCI) injury model and saline controls. Sandwich ELISA method was used to further validate some of the findings obtained from the antibody cytokine array. We confirmed that three major inflammatory-linked cytokines (IL-1β, IL-6, and IL-10) were elevated in the METH and TBI groups compared to the saline group. Such finding suggests the involvement of an inflammatory process in these brain insults, indicating that METH use is, in fact, a stressor to the immune system where systemic involvement of an altered cytokine profile may play a major role in mediating chemical brain injury after METH use.
Collapse
Affiliation(s)
- Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Gainesville, FL, USA.,Department of Emergency Medicine, University of Florida, Gainesville, FL, USA
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samer El Hayek
- Department of Psychiatry, American University of Beirut, Beirut, Lebanon
| | - Wael Mohamed
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Al Minufya, Egypt.,Basic medical science department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Mark S Gold
- Washington University School of Medicine, Department of Psychiatry, and National Council, Washington University in St. Louis, Institute for Public Health, St. Louis, MO, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Gainesville, FL, USA. .,Department of Emergency Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
31
|
Masai K, Kuroda K, Isooka N, Kikuoka R, Murakami S, Kamimai S, Wang D, Liu K, Miyazaki I, Nishibori M, Asanuma M. Neuroprotective Effects of Anti-high Mobility Group Box-1 Monoclonal Antibody Against Methamphetamine-Induced Dopaminergic Neurotoxicity. Neurotox Res 2021; 39:1511-1523. [PMID: 34417986 DOI: 10.1007/s12640-021-00402-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/08/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
High mobility group box-1 (HMGB1) is a ubiquitous non-histone nuclear protein that plays a key role as a transcriptional activator, with its extracellular release provoking inflammation. Inflammatory responses are essential in methamphetamine (METH)-induced acute dopaminergic neurotoxicity. In the present study, we examined the effects of neutralizing anti-HMGB1 monoclonal antibody (mAb) on METH-induced dopaminergic neurotoxicity in mice. BALB/c mice received a single intravenous administration of anti-HMGB1 mAb prior to intraperitoneal injections of METH (4 mg/kg × 2, at 2-h intervals). METH injections induced hyperthermia, an increase in plasma HMGB1 concentration, degeneration of dopaminergic nerve terminals, accumulation of microglia, and extracellular release of neuronal HMGB1 in the striatum. These METH-induced changes were significantly inhibited by intravenous administration of anti-HMGB1 mAb. In contrast, blood-brain barrier disruption occurred by METH injections was not suppressed. Our findings demonstrated the neuroprotective effects of anti-HMGB1 mAb against METH-induced dopaminergic neurotoxicity, suggesting that HMGB1 could play an initially important role in METH toxicity.
Collapse
Affiliation(s)
- Kaori Masai
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Keita Kuroda
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Nami Isooka
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Ryo Kikuoka
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Shinki Murakami
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Sunao Kamimai
- Department of Medical Neurobiology, Okayama University Medical School, 700-8558, Okayama, Japan
| | - Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 700-8558, Okayama, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 700-8558, Okayama, Japan
| | - Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 700-8558, Okayama, Japan
| | - Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan.
| |
Collapse
|
32
|
Apóstol Del Rosal GD, Limón ID, Martínez I, Patricio-Martínez A. The Chronic Oral Administration of Clobenzorex or Amphetamine Decreases Motor Behavior and Induces Glial Activation in the Striatum Without Dopaminergic Degeneration. Neurotox Res 2021; 39:1405-1417. [PMID: 34279823 DOI: 10.1007/s12640-021-00395-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/22/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023]
Abstract
Described as amphetamine-like due to their structural and stimulant similarities, clobenzorex is one of the five most-commonly used drugs in Mexico for the treatment of obesity. Various studies have shown that amphetamines induce dopaminergic neurotoxicity and neuroinflammation in the striatum, symptoms which are associated with motor damage. For this reason, the present study aimed to evaluate the effect of chronic clobenzorex administration on motor behaviors, TH immunoreactivity, gliosis, and the neurodegenerative process in the striatum and substantia nigra pars compacta (SNpc). The present research was conducted on three experimental groups of male Wistar rats: the vehicle group, the amphetamine group (2 mg/kg), and the clobenzorex group (30 mg/kg). All groups were subject to oral administration every 24 h for 31 days. Motor activity and motor coordination were evaluated in the open field test and the beam walking test, respectively. The animals were euthanized after the last day of treatment to enable the extraction of their brains for the evaluation of tyrosine hydroxylase (TH) levels, the immunoreactivity of the glial cells, and the neurodegeneration of both the striatum and SNpc via amino-cupric-silver stain. The results obtained show that amphetamine and clobenzorex administration decrease motor activity and motor coordination in the beam walking test and cause increased gliosis in the striatum, while no significant changes were observed in terms of immunoreactivity to TH and neurodegeneration in both the striatum and SNpc. These results suggest that the chronic administration of clobenzorex may decrease motor function in a manner similar to amphetamine, via the neuroadaptive and non-neurotoxic changes caused to the striatum under this administration scheme.
Collapse
Affiliation(s)
- Grego David Apóstol Del Rosal
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ilhuicamina Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Isabel Martínez
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Blvd. Valsequillo y Av. San Claudio Edificio BIO-1 C.U. Col. Jardines de San Manuel A.P, 72570, Puebla, Mexico.
| |
Collapse
|
33
|
Kopruszinski CM, Swiokla J, Lee YS, Navratilova E, VanderVeen L, Yang M, Liu Y, Miyazaki T, Schmidt WK, Zalevsky J, Porreca F. Preclinical Assessment of the Analgesic Pharmacology of NKTR-181 in Rodents. Cell Mol Neurobiol 2021; 41:949-960. [PMID: 32107752 DOI: 10.1007/s10571-020-00816-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/16/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Pharmacological evaluation of the mu-opioid receptor (MOR) agonist properties of NKTR-181 in rodent models. METHODS Graded noxious stimulus intensities were used in rats to establish the antinociceptive potency and efficacy of NKTR-181 relative to morphine, fentanyl, and oxycodone. Characteristics of MOR agonist actions, as measured by antinociceptive tolerance and cross-tolerance, as well as opioid-induced hyperalgesia (OIH) and naloxone-precipitated withdrawal in NKTR-181- and morphine-dependent in mice, were compared. RESULTS NKTR-181 showed dose- and time-related antinociception with similar maximal effects to morphine in the rat and mouse hot-water tail-flick test. No sex or species differences were observed in NKTR-181 or morphine antinociception. Rats treated with NKTR-181 and morphine exhibited decreases in both potency and maximal efficacy as nociceptive stimulus intensity was increased from a water temperature of 50 °C to 54 °C. Evaluation of antinociception at a high stimulus intensity revealed that oxycodone and fentanyl exhibited greater efficacy than either NKTR-181 or morphine. The relative potency difference between NKTR-181 and morphine across all tail-flick studies was determined to be 7.6-fold (90% confidence interval, 2.6, 21.5). The peak antinociceptive effect of NKTR-181 was delayed compared to that of the other opioids and cumulative drug effects were not observed. Repeated treatment with escalating, approximately equi-analgesic doses of NKTR-181 or morphine, produced antinociceptive tolerance and cross-tolerance. Under these pharmacological conditions, OIH and naloxone-precipitated physical dependence were similar for NKTR-181 and morphine. CONCLUSIONS NKTR-181 had a slower onset, but similar efficacy, to morphine in the models studied supporting reduced abuse potential while maintaining analgesic effect in comparison with current opioids.
Collapse
Affiliation(s)
| | - Juliana Swiokla
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Yeon Sun Lee
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Miao Yang
- Nektar Therapeutics, San Francisco, CA, USA
| | - Yi Liu
- Nektar Therapeutics, San Francisco, CA, USA
| | | | | | | | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
34
|
Hersey M, Bacon AK, Bailey LG, Coggiano MA, Newman AH, Leggio L, Tanda G. Psychostimulant Use Disorder, an Unmet Therapeutic Goal: Can Modafinil Narrow the Gap? Front Neurosci 2021; 15:656475. [PMID: 34121988 PMCID: PMC8187604 DOI: 10.3389/fnins.2021.656475] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The number of individuals affected by psychostimulant use disorder (PSUD) has increased rapidly over the last few decades resulting in economic, emotional, and physical burdens on our society. Further compounding this issue is the current lack of clinically approved medications to treat this disorder. The dopamine transporter (DAT) is a common target of psychostimulant actions related to their use and dependence, and the recent availability of atypical DAT inhibitors as a potential therapeutic option has garnered popularity in this research field. Modafinil (MOD), which is approved for clinical use for the treatment of narcolepsy and sleep disorders, blocks DAT just like commonly abused psychostimulants. However, preclinical and clinical studies have shown that it lacks the addictive properties (in both behavioral and neurochemical studies) associated with other abused DAT inhibitors. Clinical availability of MOD has facilitated its off-label use for several psychiatric disorders related to alteration of brain dopamine (DA) systems, including PSUD. In this review, we highlight clinical and preclinical research on MOD and its R-enantiomer, R-MOD, as potential medications for PSUD. Given the complexity of PSUD, we have also reported the effects of MOD on psychostimulant-induced appearance of several symptoms that could intensify the severity of the disease (i.e., sleep disorders and impairment of cognitive functions), besides the potential therapeutic effects of MOD on PSUD.
Collapse
Affiliation(s)
- Melinda Hersey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Amanda K. Bacon
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Lydia G. Bailey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Mark A. Coggiano
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Amy H. Newman
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Lorenzo Leggio
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
- Clinical Psychoneuroendo- crinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
- National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD, United States
| | - Gianluigi Tanda
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
35
|
Fonseca DA, Ribeiro DM, Tapadas M, Cotrim MD. Ecstasy (3,4-methylenedioxymethamphetamine): Cardiovascular effects and mechanisms. Eur J Pharmacol 2021; 903:174156. [PMID: 33971177 DOI: 10.1016/j.ejphar.2021.174156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 11/25/2022]
Abstract
3,4-methylenedioxymethamphetamine or MDMA (known as "ecstasy") is a recreational drug of abuse, popular worldwide for its distinctive psychotropic effects. Currently, the therapeutic potential of MDMA in psychotherapy has attracted a lot of interest from the scientific community, despite the multitude of effects that this drug of abuse elicits on the human body. While neuronal effects have been the most studied, cardiovascular effects have also been described, as increased blood pressure and heart rate are the most recognizable. However, other effects have also been described at the cardiac (impaired cardiac contractile function, arrhythmias, myocardial necrosis and valvular heart disease) and vascular (vasoconstriction, disruption of vascular integrity and altered haemostasis) levels. Several mechanisms have been proposed, from the interaction with monoamine transporters and receptors to the promotion of oxidative stress or the activation of matrix metalloproteinases (MMPs). This review provides an overview of the cardiovascular implications of MDMA intake and underlying mechanisms, relevant when considering its consumption as drug of abuse but also when considering its therapeutic potential in psychiatry. Moreover, the risk/benefit ratio of the therapeutic use of MDMA remains to be fully elucidated from a cardiovascular standpoint, particularly in patients with underlying cardiovascular disease.
Collapse
Affiliation(s)
- Diogo A Fonseca
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology and Pharmaceutical Care, 3000-548, Coimbra, Portugal; Univ Coimbra, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), 3000-548, Coimbra, Portugal; Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology, 3000-548, Coimbra, Portugal.
| | - Daniel M Ribeiro
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology and Pharmaceutical Care, 3000-548, Coimbra, Portugal
| | - Margarida Tapadas
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology and Pharmaceutical Care, 3000-548, Coimbra, Portugal
| | - Maria Dulce Cotrim
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology and Pharmaceutical Care, 3000-548, Coimbra, Portugal; Univ Coimbra, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), 3000-548, Coimbra, Portugal; Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology, 3000-548, Coimbra, Portugal
| |
Collapse
|
36
|
Non-coding RNA: insights into the mechanism of methamphetamine neurotoxicity. Mol Cell Biochem 2021; 476:3319-3328. [PMID: 33895910 DOI: 10.1007/s11010-021-04160-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Chronic exposure of the methamphetamine has been shown to lead to neurotoxicity in rodents and humans. The manifestations of methamphetamine neurotoxicity include methamphetamine use disorder, methamphetamine abuse, methamphetamine addiction and methamphetamine behavioral sensitization. Repeated use of methamphetamine can cause methamphetamine use disorder. The abuse and addiction of methamphetamine are growing epidemic worldwide. Repeated intermittent exposure to methamphetamine can cause behavioral sensitization. In addition, many studies have shown that changes in the expression of non-coding RNA in the ventral tegmental area and nucleus accumbens will affect the behavioral effects of methamphetamine. Non-coding RNA plays an important role in the behavioral effects of methamphetamine. Therefore, it is important to study the relationship between methamphetamine and non-coding RNA. The purpose of this review is to study the non-coding RNA associated with methamphetamine neurotoxicity to search for the possible therapeutic target of the methamphetamine neurotoxicity.
Collapse
|
37
|
Relative profiling of L-tryptophan derivatives from selected edible mushrooms as psychoactive nutraceuticals to inhibit P-glycoprotein: a paradigm to contest blood-brain barrier. BIOTECHNOLOGIA 2021; 102:55-64. [PMID: 36605716 PMCID: PMC9645570 DOI: 10.5114/bta.2021.103762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 01/09/2023] Open
Abstract
Depression is a mental illness and is considered to be a global threat. It is designated as burden of disease. There is therefore an intense need to improve the therapeutic response of antidepressants. India beholds a wide fraction (Agaricus bisporus and Pleurotus ostreatus ) as a vital source of non-hallucinogenic indole compounds. The amino acids L-tryptophan and 5-hydroxytryptophan (5-HTP) are precursors of serotonin. 5-HTP is a potential antidepressant that can cross the blood-brain barrier (BBB) at a high rate and is converted into serotonin more efficiently. Drug delivery across this blockade remains a challenge due to the stimulation of efflux pump receptors called permeability glycoprotein (P-gp). This work reports a comparative phytochemical assay and profiling of non-hallucinogenic tryptophan metabolites using HPLC from two organic extracts of edible mushrooms. The efficacy of the eluted compounds was authenticated as P-gp inhibitors with in vitro and in silico studies. The following four derivatives were obtained from the methanol and ethanol extracts of the mushrooms: 5-hydroxy-L-tryptophan (5HTR), 5-hydroxy tryptamine (5-HT), L-tryptophan (L-Trp), and tryptamine (TA). In vitro and molecular docking studies targeting P-gp (minimum energy: -64.38 and -83.93 kcal/mol, respectively) substantiated the ability of mushroom-derived metabolites to facilitate drug delivery in the brain. This study verified that mushrooms containing non-hallucinogenic metabolites can act as psychoactive nutraceuticals that are significant for enhancing mental health. The high therapeutic efficacy, these mushrooms can serve as ideal neurological drug leads to fortify treatment for mental illness.
Collapse
|
38
|
Jîtcă G, Ősz BE, Tero-Vescan A, Vari CE. Psychoactive Drugs-From Chemical Structure to Oxidative Stress Related to Dopaminergic Neurotransmission. A Review. Antioxidants (Basel) 2021; 10:381. [PMID: 33806320 PMCID: PMC8000782 DOI: 10.3390/antiox10030381] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
Nowadays, more and more young people want to experience illegal, psychoactive substances, without knowing the risks of exposure. Besides affecting social life, psychoactive substances also have an important effect on consumer health. We summarized and analyzed the published literature data with reference to the mechanism of free radical generation and the link between chemical structure and oxidative stress related to dopaminergic neurotransmission. This review presents data on the physicochemical properties, on the ability to cross the blood brain barrier, the chemical structure activity relationship (SAR), and possible mechanisms by which neuronal injuries occur due to oxidative stress as a result of drug abuse such as "bath salts", amphetamines, or cocaine. The mechanisms of action of ingested compounds or their metabolites involve intermediate steps in which free radicals are generated. The brain is strongly affected by the consumption of such substances, facilitating the induction of neurodegenerative diseases. It can be concluded that neurotoxicity is associated with drug abuse. Dependence and oxidative stress are linked to inhibition of neurogenesis and the onset of neuronal death. Understanding the pathological mechanisms following oxidative attack can be a starting point in the development of new therapeutic targets.
Collapse
Affiliation(s)
- George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| | - Bianca E. Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Camil E. Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| |
Collapse
|
39
|
Suchting R, Beard CL, Schmitz JM, Soder HE, Yoon JH, Hasan KM, Narayana PA, Lane SD. A meta-analysis of tract-based spatial statistics studies examining white matter integrity in cocaine use disorder. Addict Biol 2021; 26:e12902. [PMID: 32267062 DOI: 10.1111/adb.12902] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/18/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022]
Abstract
Tract-based spatial statistics (TBSS) of diffusion tensor imaging (DTI) studies have consistently shown diminished white matter (WM) integrity for individuals with cocaine use disorder (CUD). The present study used seed-based d mapping (SDM) to determine the extent to which a systematic difference in the WM integrity of cocaine users may exist (as compared with that of healthy controls). Articles from 2006 (when TBSS was first developed) to present were reviewed, with eight selected for inclusion. Meta-analysis found lower fractional anisotropy (FA) in the genu of the corpus callosum for cocaine users, with a small-to-moderate peak effect size (Hedge's g = -0.331). Sensitivity analyses mostly supported the robustness of the obtained difference. Differences detected at exploratory thresholds for significance suggested insult to WM integrity extending beyond the corpus callosum. The present results compliment a previous region-of-interest (ROI)-based meta-analysis of DTI studies in individuals with CUD. These findings have significant implications for the potential role of neuroprotective agents in the treatment of CUD and merit additional iteration as more studies accrue in the literature.
Collapse
Affiliation(s)
- Robert Suchting
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School University of Texas Health Science Center at Houston Houston TX USA
| | | | - Joy M. Schmitz
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School University of Texas Health Science Center at Houston Houston TX USA
| | - Heather E. Soder
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School University of Texas Health Science Center at Houston Houston TX USA
| | - Jin H. Yoon
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School University of Texas Health Science Center at Houston Houston TX USA
| | - Khader M. Hasan
- Department of Diagnostic and Interventional Imaging, McGovern Medical School University of Texas Health Science Center at Houston Houston TX USA
| | - Ponnada A. Narayana
- Department of Diagnostic and Interventional Imaging, McGovern Medical School University of Texas Health Science Center at Houston Houston TX USA
| | - Scott D. Lane
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School University of Texas Health Science Center at Houston Houston TX USA
| |
Collapse
|
40
|
Buzhdygan TP, Rodrigues CR, McGary HM, Khan JA, Andrews AM, Rawls SM, Ramirez SH. The psychoactive drug of abuse mephedrone differentially disrupts blood-brain barrier properties. J Neuroinflammation 2021; 18:63. [PMID: 33648543 PMCID: PMC7923670 DOI: 10.1186/s12974-021-02116-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background Synthetic cathinones are a category of psychostimulants belonging to the growing number of designer drugs also known as “Novel Psychoactive Substances” (NPS). In recent years, NPS have gained popularity in the recreational drug market due to their amphetamine-like stimulant effects, low cost, ease of availability, and lack of detection by conventional toxicology screening. All these factors have led to an increase in NPS substance abuse among the young adults, followed by spike of overdose-related fatalities and adverse effects, severe neurotoxicity, and cerebral vascular complications. Much remains unknown about how synthetic cathinones negatively affect the CNS and the status of the blood-brain barrier (BBB). Methods We used in vitro models of the BBB and primary human brain microvascular endothelial cells (hBMVEC) to investigate the effects of the synthetic cathinone, 4-methyl methcathinone (mephedrone), on BBB properties. Results We showed that mephedrone exposure resulted in the loss of barrier properties and endothelial dysfunction of primary hBMVEC. Increased permeability and decreased transendothelial electrical resistance of the endothelial barrier were attributed to changes in key proteins involved in the tight junction formation. Elevated expression of matrix metalloproteinases, angiogenic growth factors, and inflammatory cytokines can be explained by TLR-4-dependent activation of NF-κB signaling. Conclusions In this first characterization of the effects of a synthetic cathinone on human brain endothelial cells, it appears clear that mephedrone-induced damage of the BBB is not limited by the disruption of the barrier properties but also include endothelial activation and inflammation. This may especially be important in comorbid situations of mephedrone abuse and HIV-1 infections. In this context, mephedrone could negatively affect HIV-1 neuroinvasion and NeuroAIDS progression.
Collapse
Affiliation(s)
- Tetyana P Buzhdygan
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA.,Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Cassidy R Rodrigues
- Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hannah M McGary
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA
| | - Jana A Khan
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA
| | - Allison M Andrews
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Servio H Ramirez
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA. .,Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA. .,Shriners Hospital Pediatric Research Center, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
41
|
Assis MA, Díaz D, Ferrado R, Ávila-Zarza CA, Weruaga E, Ambrosio E. Transplantation with Lewis bone marrow induces the reinstatement of cocaine-seeking behavior in male F344 resistant rats. Brain Behav Immun 2021; 93:23-34. [PMID: 33278561 DOI: 10.1016/j.bbi.2020.11.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/27/2020] [Accepted: 11/22/2020] [Indexed: 01/14/2023] Open
Abstract
One of the main challenges to understand drug addiction is defining the biological mechanisms that underlie individual differences in recidivism. Studies of these mechanisms have mainly focused on the brain, yet we demonstrate here a significant influence of the peripheral immune system on this phenomenon. Lewis (LEW) and Fischer 344 (F344) rats have different immunological profiles and they display a distinct vulnerability to the reinforcing effects of cocaine, with F344 more resistant to reinstate cocaine-seeking behavior. Bone marrow from male LEW and F344 rats was transferred to male F344 rats (F344/LEW-BM and F344/F344-BM, respectively), and these rats were trained to self-administer cocaine over 21 days. Following extinction, these animals received a sub-threshold primer dose of cocaine to evaluate reinstatement. F344/LEW-BM but not F344/F344-BM rats reinstated cocaine-seeking behavior, in conjunction with changes in their peripheral immune cell populations to a profile that corresponded to that of the LEW donors. After cocaine exposure, higher CD4+ T-cells and lower CD4+CD25+ T-cells levels were observed in F344/LEW-BM rats referred to control, and the splenic expression of Il-17a, Tgf-β, Tlr-2, Tlr-4 and Il-1β was altered in both groups. We propose that peripheral T-cells respond to cocaine, with CD4+ T-cells in particular undergoing Th17 polarization and generating long-term memory, these cells releasing mediators that trigger central mechanisms to induce reinstatement after a second encounter. This immune response may explain the high rates of recidivism observed despite long periods of detoxification, shedding light on the mechanisms underlying the vulnerability and resilience of specific individuals, and opening new perspectives for personalized medicine in the treatment of relapse.
Collapse
Affiliation(s)
- María Amparo Assis
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina; Laboratorio de Biología Molecular, Inmunología y Microbiología, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina.
| | - David Díaz
- Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca (USAL), Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Rosa Ferrado
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Carmelo Antonio Ávila-Zarza
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Grupo de Estadística Aplicada, Departamento de Estadísticas, USAL, Salamanca, Spain
| | - Eduardo Weruaga
- Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca (USAL), Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Emilio Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| |
Collapse
|
42
|
Maier J, Niello M, Rudin D, Daws LC, Sitte HH. The Interaction of Organic Cation Transporters 1-3 and PMAT with Psychoactive Substances. Handb Exp Pharmacol 2021; 266:199-214. [PMID: 33993413 DOI: 10.1007/164_2021_469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Organic cation transporters 1-3 (OCT1-3, SLC22A1-3) and the plasma membrane monoamine transporter (PMAT, SLC29A4) play a major role in maintaining monoaminergic equilibrium in the central nervous system. With many psychoactive substances interacting with OCT1-3 and PMAT, a growing literature focuses on characterizing their properties via in vitro and in vivo studies. In vitro studies mainly aim at characterizing compounds as inhibitors or substrates of murine, rat, and human isoforms. The preponderance of studies has put emphasis on phenylalkylamine derivatives, but ketamine and opioids have also been investigated. Studies employing in vivo (knockout) models mostly concentrate on the interaction of psychoactive substances and OCT3, with an emphasis on stress and addiction, pharmacokinetics, and sensitization to psychoactive drugs. The results highlight the importance of OCT3 in the mechanism of action of psychoactive compounds. Concerning in vivo studies, a veritable research gap concerning OCT1, 2, and PMAT exists. This review provides an overview and summary of research conducted in this field of research.
Collapse
Affiliation(s)
- Julian Maier
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marco Niello
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Deborah Rudin
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lynette C Daws
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health, San Antonio, TX, USA
| | - Harald H Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
43
|
Ohene-Nyako M, Persons AL, Napier TC. Hippocampal blood-brain barrier of methamphetamine self-administering HIV-1 transgenic rats. Eur J Neurosci 2021; 53:416-429. [PMID: 32725911 PMCID: PMC9949894 DOI: 10.1111/ejn.14925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Combined antiretroviral therapy for HIV infection reduces plasma viral load and prolongs life. However, the brain is a viral reservoir, and pathologies such as cognitive decline and blood-brain barrier (BBB) disruption persist. Methamphetamine abuse is prevalent among HIV-infected individuals. Methamphetamine and HIV toxic proteins can disrupt the BBB, but it is unclear if there exists a common pathway by which HIV proteins and methamphetamine induce BBB damage. Also unknown are the BBB effects imposed by chronic exposure to HIV proteins in the comorbid context of chronic methamphetamine abuse. To evaluate these scenarios, we trained HIV-1 transgenic (Tg) and non-Tg rats to self-administer methamphetamine using a 21-day paradigm that produced an equivalency dose range at the low end of the amounts self-titrated by humans. Markers of BBB integrity were measured for the hippocampus, a brain region involved in cognitive function. Outcomes revealed that tight junction proteins, claudin-5 and occludin, were reduced in Tg rats independent of methamphetamine, and this co-occurred with increased levels of lipopolysaccharide, albumin (indicating barrier breakdown) and matrix metalloproteinase-9 (MMP-9; indicating barrier matrix disruption); reductions in GFAP (indicating astrocytic dysfunction); and microglial activation (indicating inflammation). Evaluations of markers for two signaling pathways that regulate MMP-9 transcription, NF-κB and ERK/∆FosB revealed an overall genotype effect for NF-κB. Methamphetamine did not alter measurements from Tg rats, but in non-Tg rats, methamphetamine reduced occludin and GFAP, and increased MMP-9 and NF-κB. Study outcomes suggest that BBB dysregulation resulting from chronic exposure to HIV-1 proteins or methamphetamine both involve NF-κB/MMP-9.
Collapse
Affiliation(s)
- Michael Ohene-Nyako
- Department of Pharmacology, Rush University, Chicago, IL, USA,Department of Physician Assistant Studies, Rush University, Chicago, IL, USA
| | - Amanda L. Persons
- Department of Physician Assistant Studies, Rush University, Chicago, IL, USA,Department of Psychiatry and Behavioral Sciences, Rush University, Chicago, IL, USA,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA
| | - T. Celeste Napier
- Department of Pharmacology, Rush University, Chicago, IL, USA,Department of Physician Assistant Studies, Rush University, Chicago, IL, USA,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA
| |
Collapse
|
44
|
Wang J, Lu C, Zheng L, Zhang J. Peripheral Inflammatory Biomarkers of Methamphetamine Withdrawal Patients Based on the Neuro-Inflammation Hypothesis: The Possible Improvement Effect of Exercise. Front Psychiatry 2021; 12:795073. [PMID: 35002809 PMCID: PMC8733583 DOI: 10.3389/fpsyt.2021.795073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Methamphetamine (MA) induced addiction and neuroinflammation has been implicated. Based on the neuroinflammation hypothesis, this study aims to investigate how exercise influences the craving of patients in MA withdrawal, and explore the mechanism of peripheral inflammation. A total of 90 patients in MA withdrawal were recruited. No difference was noted in the number of years of drug use and the frequency of drug use among patients, and the withdrawal time was within 2 months. The subjects were grouped based on the degree of craving induced by the cues: non-craving control group (NCC group), craving control group (CC group), and craving exercise group (CE group). The CE group was subjected to aerobic combined resistance training. Then, the ELISA method was used to detect plasma IL-6, TNF-α, and IL-1β concentrations; Visual Analog Scale (VAS) measurement of cue-induced cravings under Virtual Reality (VR) exposure (VR-VAS) and the Desires for Drug Questionnaire (DDQ) were used to assess cravings. Consequently, plasma IL-6, TNF-α, IL-1β, levels, and the VR-VAS and DDQ scores of MA withdrawal patients were significantly reduced after exercise. This study confirmed that 8 weeks of incremental load aerobic combined with resistance training reduces peripheral inflammation and significantly reduces the level of craving for MA.
Collapse
Affiliation(s)
- Jingsong Wang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Chunxia Lu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Jun Zhang
- Hunan Judicial Police Vocational College, Changsha, China
| |
Collapse
|
45
|
Clasen MM, Riley AL, Davidson TL. Hippocampal-Dependent Inhibitory Learning and Memory Processes in the Control of Eating and Drug Taking. Curr Pharm Des 2020; 26:2334-2352. [PMID: 32026771 DOI: 10.2174/1381612826666200206091447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
As manifestations of excessive and uncontrolled intake, obesity and drug addiction have generated much research aimed at identifying common neuroadaptations that could underlie both disorders. Much work has focused on changes in brain reward and motivational circuitry that can overexcite eating and drug-taking behaviors. We suggest that the regulation of both behaviors depends on balancing excitation produced by stimuli associated with food and drug rewards with the behavioral inhibition produced by physiological "satiety" and other stimuli that signal when those rewards are unavailable. Our main hypothesis is that dysregulated eating and drug use are consequences of diet- and drug-induced degradations in this inhibitory power. We first outline a learning and memory mechanism that could underlie the inhibition of both food and drug-intake, and we describe data that identifies the hippocampus as a brain substrate for this mechanism. We then present evidence that obesitypromoting western diets (WD) impair the operation of this process and generate pathophysiologies that disrupt hippocampal functioning. Next, we present parallel evidence that drugs of abuse also impair this same learning and memory process and generate similar hippocampal pathophysiologies. We also describe recent findings that prior WD intake elevates drug self-administration, and the implications of using drugs (i.e., glucagon-like peptide- 1 agonists) that enhance hippocampal functioning to treat both obesity and addiction are also considered. We conclude with a description of how both WD and drugs of abuse could initiate a "vicious-cycle" of hippocampal pathophysiology and impaired hippocampal-dependent behavioral inhibition.
Collapse
Affiliation(s)
- Matthew M Clasen
- Department of Psychology, Program in Neuroscience, Williams College, Williamstown, MA 01267, United States
| | - Anthony L Riley
- Department of Neuroscience, Center for Behavioral Neuroscience, American University, Washington, DC 20016, United States
| | - Terry L Davidson
- Department of Neuroscience, Center for Behavioral Neuroscience, American University, Washington, DC 20016, United States
| |
Collapse
|
46
|
Nickoloff-Bybel EA, Calderon TM, Gaskill PJ, Berman JW. HIV Neuropathogenesis in the Presence of a Disrupted Dopamine System. J Neuroimmune Pharmacol 2020; 15:729-742. [PMID: 32506353 PMCID: PMC7905900 DOI: 10.1007/s11481-020-09927-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/26/2020] [Indexed: 12/23/2022]
Abstract
Antiretroviral therapy (ART) has transformed HIV into a chronic condition, lengthening and improving the lives of individuals living with this virus. Despite successful suppression of HIV replication, people living with HIV (PLWH) are susceptible to a growing number of comorbidities, including neuroHIV that results from infection of the central nervous system (CNS). Alterations in the dopaminergic system have long been associated with HIV infection of the CNS. Studies indicate that changes in dopamine concentrations not only alter neurotransmission, but also significantly impact the function of immune cells, contributing to neuroinflammation and neuronal dysfunction. Monocytes/macrophages, which are a major target for HIV in the CNS, are responsive to dopamine. Therefore, defining more precisely the mechanisms by which dopamine acts on these cells, and the changes in cellular function elicited by this neurotransmitter are necessary to develop therapeutic strategies to treat neuroHIV. This is especially important for vulnerable populations of PLWH with chemically altered dopamine concentrations, such as individuals with substance use disorder (SUD), or aging individuals using dopamine-altering medications. The specific neuropathologic and neurocognitive consequences of increased CNS dopamine remain unclear. This is due to the complex nature of HIV neuropathogenesis, and logistical and technical challenges that contribute to inconsistencies among cohort studies, animal models and in vitro studies, as well as lack of demographic data and access to human CNS samples and cells. This review summarizes current understanding of the impact of dopamine on HIV neuropathogenesis, and proposes new experimental approaches to examine the role of dopamine in CNS HIV infection. Graphical abstract HIV Neuropathogenesis in the Presence of a Disrupted Dopamine System. Both substance abuse disorders and the use of dopaminergic medications for age-related diseases are associated with changes in CNS dopamine concentrations and dopaminergic neurotransmission. These changes can lead to aberrant immune function, particularly in myeloid cells, which contributes to the neuroinflammation, neuropathology and dysfunctional neurotransmission observed in dopamine-rich regions in HIV+ individuals. These changes, which are seen despite the use antiretroviral therapy (ART), in turn lead to further dysregulation of the dopamine system. Thus, in individuals with elevated dopamine, the bi-directional interaction between aberrant dopaminergic neurotransmission and HIV infection creates a feedback loop contributing to HIV associated neurocognitive dysfunction and neuroHIV. However, the distinct contributions and interactions made by HIV infection, inflammatory mediators, ART, drugs of abuse, and age-related therapeutics are poorly understood. Defining more precisely the mechanisms by which these factors influence the development of neurological disease is critical to addressing the continued presence of neuroHIV in vulnerable populations, such as HIV-infected older adults or drug abusers. Due to the complexity of this system, understanding these effects will require a combination of novel experimental modalities in the context of ART. These will include more rigorous epidemiological studies, relevant animal models, and in vitro cellular and molecular mechanistic analysis.
Collapse
Affiliation(s)
- E A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - T M Calderon
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| | - J W Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
47
|
Wei ZX, Chen L, Zhang JJ, Cheng Y. Aberrations in peripheral inflammatory cytokine levels in substance use disorders: a meta-analysis of 74 studies. Addiction 2020; 115:2257-2267. [PMID: 32533781 DOI: 10.1111/add.15160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
AIMS To characterize the peripheral inflammatory cytokine profile in people with substance use disorders (SUDs). DESIGN Systematic review and meta-analysis. SETTING Clinical studies that evaluated peripheral blood inflammatory cytokine levels in patients with SUDs and healthy controls PARTICIPANTS: SUD patients and healthy controls. MEASUREMENTS PubMed and Web of Science were systematically searched for relevant studies. Two investigators independently selected studies and extracted data. A total of 77 articles were included in the meta-analysis, containing 5649 patients with SUDs and 4643 healthy controls. Data were pooled using a random-effects model by the Comprehensive Meta-Analysis version 2 software. FINDINGS Concentrations of interleukin (IL)-6) in 32 studies, tumor necrosis factor (TNF)-α in 28 studies, IL-10 in 20 studies, IL-8 in 17 studies, C-reactive protein in 14 studies, IL-4 in 10 studies, IL-12 in seven studies, monocyte chemoattractant protein (MCP)-1 in 6 studies, TNF-receptor 2 (TNF-R2) in four studies and granulocyte-macrophage colony-stimulating factor (GM-CSF) in three studies were significantly higher in patients with SUDs compared with healthy controls, while concentrations of leptin in 14 studies were significantly lower in patients with SUDs compared with healthy controls. The findings were inconclusive for the associations between interferon-γ, IL-1β, IL-2, IL-1 receptor antagonist (IL-1RA), transforming growth factor (TGF)-β1, G-CSF, C-C motif chemokine 11, TGF-α and SUDs. CONCLUSIONS People with substance use disorders (SUDs) appear to have higher peripheral concentrations of IL-4, IL-6, IL-8, IL-10, IL-12, TNF-α, C-reactive protein, MCP-1, TNF-R2 and GM-CSF and lower peripheral concentrations of leptin than people without SUDs. This strengthens the view that SUD is accompanied by an inflammatory response.
Collapse
Affiliation(s)
- Ze-Xu Wei
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jian-Jun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
48
|
Shen M, Chen M, Liang T, Wang S, Xue Y, Bertz R, Xie XQ, Feng Z. Pain Chemogenomics Knowledgebase (Pain-CKB) for Systems Pharmacology Target Mapping and Physiologically Based Pharmacokinetic Modeling Investigation of Opioid Drug-Drug Interactions. ACS Chem Neurosci 2020; 11:3245-3258. [PMID: 32966035 DOI: 10.1021/acschemneuro.0c00372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
More than 50 million adults in America suffer from chronic pain. Opioids are commonly prescribed for their effectiveness in relieving many types of pain. However, excessive prescribing of opioids can lead to abuse, addiction, and death. Non-steroidal anti-inflammatory drugs (NSAIDs), another major class of analgesic, also have many problematic side effects including headache, dizziness, vomiting, diarrhea, nausea, constipation, reduced appetite, and drowsiness. There is an urgent need for the understanding of molecular mechanisms that underlie drug abuse and addiction to aid in the design of new preventive or therapeutic agents for pain management. To facilitate pain related small-molecule signaling pathway studies and the prediction of potential therapeutic target(s) for the treatment of pain, we have constructed a comprehensive platform of a pain domain-specific chemogenomics knowledgebase (Pain-CKB) with integrated data mining computing tools. Our new computing platform describes the chemical molecules, genes, proteins, and signaling pathways involved in pain regulation. Pain-CKB is implemented with a friendly user interface for the prediction of the relevant protein targets and analysis and visualization of the outputs, including HTDocking, TargetHunter, BBB predictor, and Spider Plot. Combining these with other novel tools, we performed three case studies to systematically demonstrate how further studies can be conducted based on the data generated from Pain-CKB and its algorithms and tools. First, systems pharmacology target mapping was carried out for four FDA approved analgesics in order to identify the known target and predict off-target interactions. Subsequently, the target mapping outcomes were applied to build physiologically based pharmacokinetic (PBPK) models for acetaminophen and fentanyl to explore the drug-drug interaction (DDI) between this pair of drugs. Finally, pharmaco-analytics was conducted to explore the detailed interaction pattern of acetaminophen reactive metabolite and its hepatotoxicity target, thioredoxin reductase.
Collapse
Affiliation(s)
- Mingzhe Shen
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Maozi Chen
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Tianjian Liang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Siyi Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ying Xue
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Richard Bertz
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, and Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
49
|
Michalicova A, Majerova P, Kovac A. Tau Protein and Its Role in Blood-Brain Barrier Dysfunction. Front Mol Neurosci 2020; 13:570045. [PMID: 33100967 PMCID: PMC7554615 DOI: 10.3389/fnmol.2020.570045] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022] Open
Abstract
The blood-brain barrier (BBB) plays a crucial role in maintaining the specialized microenvironment of the central nervous system (CNS). In aging, the stability of the BBB declines and the permeability increases. The list of CNS pathologies involving BBB dysfunction is growing. The opening of the BBB and subsequent infiltration of serum components to the brain can lead to a host of processes resulting in progressive synaptic, neuronal dysfunction, and detrimental neuroinflammatory changes. Such processes have been implicated in different diseases, including vascular dementia, stroke, Alzheimer's disease (AD), Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, hypoxia, ischemia, and diabetes mellitus. The BBB damage is also observed in tauopathies that lack amyloid-β overproduction, suggesting a role for tau in BBB damage. Tauopathies represent a heterogeneous group of around 20 different neurodegenerative diseases characterized by abnormal deposition of the MAPT in cells of the nervous system. Neuropathology of tauopathies is defined as intracellular accumulation of neurofibrillary tangles (NFTs) consisting of aggregated hyper- and abnormal phosphorylation of tau protein and neuroinflammation. Disruption of the BBB found in tauopathies is driven by chronic neuroinflammation. Production of pro-inflammatory signaling molecules such as cytokines, chemokines, and adhesion molecules by glial cells, neurons, and endothelial cells determine the integrity of the BBB and migration of immune cells into the brain. The inflammatory processes promote structural changes in capillaries such as fragmentation, thickening, atrophy of pericytes, accumulation of laminin in the basement membrane, and increased permeability of blood vessels to plasma proteins. Here, we summarize the knowledge about the role of tau protein in BBB structural and functional changes.
Collapse
Affiliation(s)
- Alena Michalicova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Pharmacology and Toxicology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| |
Collapse
|
50
|
Saloner R, Fields JA, Marcondes MCG, Iudicello JE, von Känel S, Cherner M, Letendre SL, Kaul M, Grant I. Methamphetamine and Cannabis: A Tale of Two Drugs and their Effects on HIV, Brain, and Behavior. J Neuroimmune Pharmacol 2020; 15:743-764. [PMID: 32929575 DOI: 10.1007/s11481-020-09957-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
HIV infection and drug use intersect epidemiologically, and their combination can result in complex effects on brain and behavior. The extent to which drugs affect the health of persons with HIV (PWH) depends on many factors including drug characteristics, use patterns, stage of HIV disease and its treatment, comorbid factors, and age. To consider the range of drug effects, we have selected two that are in common use by PWH: methamphetamine and cannabis. We compare the effects of methamphetamine with those of cannabis, to illustrate how substances may potentiate, worsen, or even buffer the effects of HIV on the CNS. Data from human, animal, and ex vivo studies provide insights into how these drugs have differing effects on the persistent inflammatory state that characterizes HIV infection, including effects on viral replication, immune activation, mitochondrial function, gut permeability, blood brain barrier integrity, glia and neuronal signaling. Moving forward, we consider how these mechanistic insights may inform interventions to improve brain outcomes in PWH. This review summarizes literature from clinical and preclinical studies demonstrating the adverse effects of METH, as well as the potentially beneficial effects of cannabis, on the interacting systemic (e.g., gut barrier leakage/microbial translocation, immune activation, inflammation) and CNS-specific (e.g., glial activation/neuroinflammation, neural injury, mitochondrial toxicity/oxidative stress) mechanisms underlying HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Rowan Saloner
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA. .,Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego , San Diego, CA, USA.
| | - Jerel Adam Fields
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | | | - Jennifer E Iudicello
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Sofie von Känel
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Mariana Cherner
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Scott L Letendre
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Marcus Kaul
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Igor Grant
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | | |
Collapse
|