1
|
Dimitrijević MG, Roschger C, Lang K, Zierer A, Paunović MG, Obradović AD, Matić MM, Pocrnić M, Galić N, Ćirić A, Joksović MD. Discovery of a new class of potent pyrrolo[3,4-c]quinoline-1,3-diones based inhibitors of human dihydroorotate dehydrogenase: Synthesis, pharmacological and toxicological evaluation. Bioorg Chem 2024; 147:107359. [PMID: 38613925 DOI: 10.1016/j.bioorg.2024.107359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/28/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Twenty N-substituted pyrrolo[3,4-c]quinoline-1,3-diones 3a-t were synthesized by a cyclization reaction of Pfitzinger's quinoline ester precursor with the selected aromatic, heteroaromatic and aliphatic amines. The structures of all derivatives were confirmed by IR, 1H NMR, 13C NMR and HRMS spectra, while their purity was determined using HPLC techniques. Almost all compounds were identified as a new class ofpotent inhibitors against hDHODH among which 3a and 3t were the most active ones with the same IC50 values of 0.11 μM, about seven times better than reference drug leflunomide. These two derivatives also exhibited very low cytotoxic effects toward healthy HaCaT cells and the optimal lipophilic properties with logP value of 1.12 and 2.07 respectively, obtained experimentally at physiological pH. We further evaluated the comparative differences in toxicological impact of the three most active compounds 3a, 3n and 3t and reference drug leflunomide. The rats were divided into five groups and were treated intraperitoneally, control group (group I) with a single dose of leflunomide (20 mg/kg) group II and the other three groups, III, IV and V were treated with 3a, 3n and 3t (20 mg/kg bw) separately. The investigation was performed in liver, kidney and blood by examining serum biochemical parameters and parameters of oxidative stress.
Collapse
Affiliation(s)
- Marina G Dimitrijević
- University of Kragujevac, Faculty of Sciences, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Cornelia Roschger
- University Clinic for Cardiac-, Vascular- and Thoracic Surgery, Medical Faculty, Johannes Kepler University Linz, Krankenhausstraße 7a, 4020 Linz, Austria
| | - Kevin Lang
- University Clinic for Cardiac-, Vascular- and Thoracic Surgery, Medical Faculty, Johannes Kepler University Linz, Krankenhausstraße 7a, 4020 Linz, Austria
| | - Andreas Zierer
- University Clinic for Cardiac-, Vascular- and Thoracic Surgery, Medical Faculty, Johannes Kepler University Linz, Krankenhausstraße 7a, 4020 Linz, Austria
| | - Milica G Paunović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, P.O. Box 60, Kragujevac 34000, Serbia
| | - Ana D Obradović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, P.O. Box 60, Kragujevac 34000, Serbia
| | - Miloš M Matić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, P.O. Box 60, Kragujevac 34000, Serbia
| | - Marijana Pocrnić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Nives Galić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Andrija Ćirić
- University of Kragujevac, Faculty of Sciences, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Milan D Joksović
- University of Kragujevac, Faculty of Sciences, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
2
|
Kaimal R, Dube A, Souwaileh AA, Wu JJ, Anandan S. A copper metal-organic framework-based electrochemical sensor for identification of glutathione in pharmaceutical samples. Analyst 2024; 149:947-957. [PMID: 38197180 DOI: 10.1039/d3an01714a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The construction of a new electrochemical sensing platform based on a copper metal-organic framework (Cu-MOF) heterostructure is described in this paper. Drop-casting Cu-MOF suspension onto the electrode surface primed the sensor for glutathione detection. The composition and morphology of the Cu-MOF heterostructure were investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FT-IR), and UV-visible spectroscopy. The Cu-MOF heterostructure can identify glutathione (GSH) with an enhanced sensitivity of 0.0437 μA μM-1 at the detection limit (LOD; 0.1 ± 0.005 μM) and a large dynamic range of 0.1-20 μM. Boosting the conductivity and surface area enhances electron transport and promotes redox processes. The constructed sensors were also adequately selective against interference from other contaminants in a similar potential window. Furthermore, the Cu-MOF heterostructure has outstanding selectivity, long-term stability, and repeatability, and the given sensors have demonstrated their capacity to detect GSH with high accuracy (recovery range = 98.2-100.8%) in pharmaceutical samples.
Collapse
Affiliation(s)
- Reshma Kaimal
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India.
| | - Aashutosh Dube
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India.
| | - Abdullah Al Souwaileh
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jerry J Wu
- Department of Environmental Engineering & Science, Feng Chia University, Taichung-407, Taiwan
| | - Sambandam Anandan
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India.
| |
Collapse
|
3
|
Zhou J, Hao J, Wang D, Wu J, Wang Z, Lin P, Hou J. Ligand reaction-based fluorescent peptide probes for the detection of Cu 2+ and glutathione. LUMINESCENCE 2024; 39:e4671. [PMID: 38286599 DOI: 10.1002/bio.4671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 01/31/2024]
Abstract
Copper is a critical element in both human and animal metabolic processes. Its role includes supporting connective tissue cross-linking, as well as iron and lipid metabolism; at the same time, copper is also a toxic heavy metal that can cause harm to both the environment and human health. Glutathione (GSH) is a tripeptide composed of glutamic acid, cysteine, and glycine combined with sulfhydryl groups. Its properties include acting as an antioxidant and facilitating integrative detoxification. GSH is present in both plant and animal cells and has a fundamental role in maintaining living organisms. GSH is the most abundant thiol antioxidant in the human body. It exists in reduced and oxidized forms within cells and provides significant biochemical functions, such as regulating vitamins such as vitamins D, E, and C, and facilitating detoxification. A fluorescent probe has been developed to detect copper ions selectively, sensitively, and rapidly. This report outlines the successful work on creating a peptide probe, TGN (TPE-Trp-Pro-Gly-Cln-His-NH2 ), with specific Cu2+ detection capabilities, and a significant fluorescence recovery occurred with the addition of GSH. This indicates that the probe can detect Cu2+ and GSH concurrently. The detection limit for Cu2+ in the buffer solution was 264 nM (R2 = 0.9992), and the detection limit for GSH using the TGN-Cu2+ complex was 919 nM (R2 = 0.9917). The probe exhibits high cell permeability and low biotoxicity that make it ideal for live cell imaging in biological conditions. This peptide probe has the capability to detect Cu2+ and GSH in biological cells.
Collapse
Affiliation(s)
- Jiang Zhou
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, China
| | - Junlei Hao
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, China
| | - Dajiang Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Wu
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, China
| | - Zhongchang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Artificial Intelligence Biomedicine, Engineering Research Center of Protein and Peptide Medicine, Nanjing University, Nanjing, China
| | - Pengcheng Lin
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, China
| | - Jingcheng Hou
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, China
| |
Collapse
|
4
|
Folorunso OM, Bocca B, Ruggieri F, Frazzoli C, Chijioke-Nwauche I, Orisakwe OE. Heavy metals and inflammatory, oxidative/antioxidant and DNA damage biomarkers among people living with HIV/AIDS (PLWHA) in Niger Delta, Nigeria. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:295-313. [PMID: 36876887 DOI: 10.1080/10934529.2023.2185004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
This study evaluated the association of heavy metals (HMs) and effect biomarkers (inflammation, oxidative stress/antioxidant capacity and DNA damage) among people living with HIV/AIDS (PHWHA) in Niger Delta area, Nigeria. Blood levels of lead (BPb), cadmium (BCd), copper (BCu), zinc (BZn), iron (BFe), C-reactive protein (CRP), Interleukin-6 (IL-6), Tumor necrosis factor-α (TNF-α), Interferon-γ (IFN-γ), Malondialdehyde (MDA), Glutathione (GSH) and 8-hydroxy-2-deoxyguanosine (8-OHdG) were determined in a total of 185 participants, 104 HIV-positive and 81 HIV-negative sampled in both Niger Delta and non-Niger Delta regions. BCd (p < 0.001) and BPb (p = 0.139) were higher in HIV-positive subjects compared to HIV-negative controls; on the contrary, BCu, BZn and BFe levels were lower (p < 0.001) in HIV-positive subjects compared to HIV-negative controls. The Niger Delta population had higher levels of heavy metals (p < 0.01) compared to non-Niger Delta residents. CRP and 8-OHdG were higher (p < 0.001) in HIV-positive than in HIV-negative subjects and in Niger-Delta than in non-Niger Delta residents. BCu had significant positive dose-response relationship with CRP (61.9%, p = 0.063) and GSH (1.64%, p = 0.035) levels in HIV-positive subjects, and negative response with MDA levels (26.6%, p < 0.001). Periodic assessment of HMs levels among PLWHA is recommended.
Collapse
Affiliation(s)
- Opeyemi M Folorunso
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Rivers State, Nigeria
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Frazzoli
- Department for Cardiovascular, Endocrine-Metabolic Diseas, and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Ifeyinwa Chijioke-Nwauche
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Rivers State, Nigeria
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
5
|
Li S, Wan Y, Li Y, Liu J, Pi F, Liu L. A Competitive "On-Off-Enhanced On" AIE Fluorescence Switch for Detecting Biothiols Based on Hg 2+ Ions and Gold Nanoclusters. BIOSENSORS 2022; 13:35. [PMID: 36671870 PMCID: PMC9856123 DOI: 10.3390/bios13010035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 05/31/2023]
Abstract
In this study, a novel "on-off-enhanced on" approach to highly sensitive rapid sensing of biothiols was developed, based on competitive modulation of gold nanoclusters (AuNCs) and Hg2+ ions. In our approach, the AuNCs were encapsulated into a zeolite imidazole framework (ZIF) for predesigned competitive aggregation-induced luminescence (AIE) emission. To readily operate this approach, the Hg2+ ions were selected as mediators to quench the fluorescence of AuNCs. Then, due to the stronger affinities between the interactions of Hg2+ ions with -SH groups in comparison to the AuNCs with -SH groups, the quenched probe of AuNCs@ZIF-8/Hg2+ displayed enhanced fluorescence after the Hg2+ ions were competitively interacted with -SH groups. Based on enhanced fluorescence, the probe for AuNCs@ZIF-8/Hg2+ had a sensitive and specific response to trace amounts of biothiols. The developed fluorescence strategy had limit of quantification (LOQ) values of 1.0 μM and 1.5 μM for Cys and GSH molecules in serum, respectively. This competitive AIE strategy provided a new direction for developing biological probes and a promising method for quantifying trace amounts of biothiols in serum. It could promote progress in disease diagnosis.
Collapse
Affiliation(s)
- Shuqi Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuqi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jinghan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Ling Liu
- Wuxi Institute of Technology, Wuxi 214122, China
| |
Collapse
|
6
|
Hristov BD. The Role of Glutathione Metabolism in Chronic Illness Development and Its Potential Use as a Novel Therapeutic Target. Cureus 2022; 14:e29696. [DOI: 10.7759/cureus.29696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
|
7
|
Liposomal Glutathione Helps to Mitigate Mycobacterium tuberculosis Infection in the Lungs. Antioxidants (Basel) 2022; 11:antiox11040673. [PMID: 35453358 PMCID: PMC9031130 DOI: 10.3390/antiox11040673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb), the causative agent of tuberculosis (TB), is responsible for causing significant morbidity and mortality, especially among individuals with compromised immune systems. We have previously shown that the supplementation of liposomal glutathione (L-GSH) reduces M. tb viability and enhances a Th-1 cytokine response, promoting granuloma formation in human peripheral blood mononuclear cells in vitro. However, the effects of L-GSH supplementation in modulating the immune responses in the lungs during an active M. tb infection have yet to be explored. In this article, we report the effects of L-GSH supplementation during an active M. tb infection in a mouse model of pulmonary infection. We determine the total GSH levels, malondialdehyde (MDA) levels, cytokine profiles, granuloma formation, and M. tb burden in untreated and L-GSH-treated mice over time. In 40 mM L-GSH-supplemented mice, an increase in the total GSH levels was observed in the lungs. When compared to untreated mice, the treatment of M. tb-infected mice with 40 mM and 80 mM L-GSH resulted in a reduction in MDA levels in the lungs. L-GSH treatment also resulted in a significant increase in the levels of IL-12, IFN-γ, IL-2, IL-17, and TNF-α in the lungs, while down-regulating the production of IL-6, IL-10, and TGF-β in the lungs. A reduction in M. tb survival along with a decrease in granuloma size in the lungs of M. tb-infected mice was observed after L-GSH treatment. Our results show that the supplementation of mice with L-GSH led to increased levels of total GSH, which is associated with reduced oxidative stress, increased levels of granuloma-promoting cytokines, and decreased M. tb burden in the lung. These results illustrate how GSH can help mitigate M. tb infection and provide an insight into future therapeutic interventions.
Collapse
|
8
|
Basaki M, Hashemvand A, Tayefi-Nasrabadi H, Panahi Y, Dolatyari M. Artemisinin and l-carnitine combination therapy alters the erythrocytes redox status. Cell Biol Int 2022; 46:1137-1143. [PMID: 35293664 DOI: 10.1002/cbin.11793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/09/2022] [Accepted: 03/13/2022] [Indexed: 11/10/2022]
Abstract
Hematopoiesis is a sensitive target of artemisinin (ART) and its derivatives, and hemolysis is one of their commonly reported side effects. L-carnitine (LC), an amino acid derivative involved in lipid metabolism, is beneficial for hematological parameters. Sixty adult laboratory mice were randomly divided into six groups. Group I (control) received saline and corn oil; groups II and III received therapeutic (50 mg/kg) and toxic (250 mg/kg) doses of ART, respectively; groups IV and V received 370 mg/kg LC along with the 50 and 250 mg/kg ART, respectively; and group VI received 370 mg/kg LC. Drugs were administered orally for seven consecutive days. The erythrocyte glucose 6-phosphate dehydrogenase (G6PD), catalase (CAT), and peroxidase (POX) activity, and the reduced glutathione (GSH) level were assessed by colorimetric methods. ART reduced the G6PD activity both at therapeutic and toxic doses. The therapeutic dose of ART reduced the CAT activity and the GSH level, non-significantly. The toxic dose of ART reduced the CAT activity and increased the POX activity. LC reduced the G6PD, CAT, and POX activities and increased GSH level. The therapeutic dose of ART and LC showed synergy in reducing the G6PD activity. LC and ART combination reduced POX activity and increased GSH level without any significant effect on the CAT activity. Inhibition of G6PD may be a potentially new mechanism of ART action. Co-administration of LC with ART or following treatment with ART may have protective effects on erythrocytes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mehdi Basaki
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Akbar Hashemvand
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hossein Tayefi-Nasrabadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Yousef Panahi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mahdi Dolatyari
- DVM Student, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
9
|
Glutathione reductase system changes in HTLV-1 infected patients. Virusdisease 2022; 33:32-38. [PMID: 35493755 PMCID: PMC9005565 DOI: 10.1007/s13337-022-00758-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 01/28/2022] [Indexed: 10/18/2022] Open
Abstract
During chronic HTLV-1 infections oxidative stress occurs and contributes in viral pathogenesis. Glutaredoxin (Grx) system is one of the most effective antioxidant components. The system maintains the cellular redox and scavenges reactive oxygen species through the function of glutathione reductase (GR) enzyme, NADPH and reduced glutathione (GSH). This study was performed to investigate potential changes in GR gene expression and activity as well as GSH level, and their association with the viral load in HTLV-1 infection. Forty HTLV-1 seropositive patients divided into two groups: asymptomatic carriers (N = 20) and HAM/TSP (N = 20) with the same number of age and sex-matched healthy controls were recruited in this study. GR cellular gene expression and viral load in PBMCs were determined using Real-time PCR Technique. Enzyme activity and GSH level in sera were measured by commercial kits based on manufacturer's provided protocols. GR gene expression and GR enzyme activity, as well as GSH level, were significantly lower in HTLV-1 patients. A negative correlation between viral load and GR gene expression/enzyme activity was observed in HAM/TSP group. Similarly, a negative relationship between viral load and GSH levels was observed in both carrier and HAM/TSP groups. We also found that in profound complicated condition of HTLV-1 infection, HAM/TSP, Grx system components activity was significantly decreased compared to the controls. Such observation was not the case in clinically healthy HTLV-1 carriers. These findings may shed a light on the conditions contributing in pathogenesis of the complications and exacerbation of the disease in the HAM/TSP cases. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-022-00758-y.
Collapse
|
10
|
Abyadeh M, Gupta V, Paulo JA, Gupta V, Chitranshi N, Godinez A, Saks D, Hasan M, Amirkhani A, McKay M, Salekdeh GH, Haynes PA, Graham SL, Mirzaei M. A Proteomic View of Cellular and Molecular Effects of Cannabis. Biomolecules 2021; 11:1411. [PMID: 34680044 PMCID: PMC8533448 DOI: 10.3390/biom11101411] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022] Open
Abstract
Cannabis (Cannabis sativa), popularly known as marijuana, is the most commonly used psychoactive substance and is considered illicit in most countries worldwide. However, a growing body of research has provided evidence of the therapeutic properties of chemical components of cannabis known as cannabinoids against several diseases including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease, schizophrenia and glaucoma; these have prompted changes in medicinal cannabis legislation. The relaxation of legal restrictions and increased socio-cultural acceptance has led to its increase in both medicinal and recreational usage. Several biochemically active components of cannabis have a range of effects on the biological system. There is an urgent need for more research to better understand the molecular and biochemical effects of cannabis at a cellular level, to understand fully its implications as a pharmaceutical drug. Proteomics technology is an efficient tool to rigorously elucidate the mechanistic effects of cannabis on the human body in a cell and tissue-specific manner, drawing conclusions associated with its toxicity as well as therapeutic benefits, safety and efficacy profiles. This review provides a comprehensive overview of both in vitro and in vivo proteomic studies involving the cellular and molecular effects of cannabis and cannabis-derived compounds.
Collapse
Affiliation(s)
- Morteza Abyadeh
- ProGene Technologies Pty Ltd., Macquarie Park, Sydney, NSW 2113, Australia;
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA;
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC 2600, Australia;
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| | - Angela Godinez
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| | - Danit Saks
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| | - Mafruha Hasan
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia;
| | - Ardeshir Amirkhani
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia;
| | - Matthew McKay
- Bowel Cancer and Biomarker Laboratory, Kolling Institute, Northern Clinical School, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Ghasem H. Salekdeh
- Department of Molecular Sciences, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia; (G.H.S.); (P.A.H.)
| | - Paul A. Haynes
- Department of Molecular Sciences, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia; (G.H.S.); (P.A.H.)
| | - Stuart L. Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| |
Collapse
|
11
|
Du P, Arpadi SM, Muscat J, Richie JP. Glutathione Deficiency in HIV-1-Infected Children with Short Stature. J PEDIAT INF DIS-GER 2021. [DOI: 10.1055/s-0041-1722973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Objective This study was aimed to determine if glutathione (GSH) deficiency occurs in children with HIV infection and whether GSH deficiency is associated with HIV-related short stature.
Methods We conducted a cross-sectional study with two age-matched comparison groups in an inner city hospital-based pediatric AIDS/HIV outpatient clinic. Ten perinatally HIV-infected children aged 6 to 49 months with short stature (height–age percentile ≤5) were studied together with age-matched 10 HIV-infected children with normal height and 10 HIV-seronegative children with normal height. Total erythrocyte GSH (GSH and GSH disulfide) levels were determined by a modification of the 5,5′-dithiobis-2-nitrobenzoic acid glutathione disulfide reductase method. Other measures included complete blood counts, lymphocyte subset analysis, plasma albumin, cholesterol, vitamins A and E, and determination of HIV disease stage.
Discussion Erythrocyte GSH levels were lower in HIV-infected children with short stature (mean ± standard deviation [SD]: 0.639 µmol/mL ± 0.189) compared with HIV-infected children with normal height (mean ± SD: 0.860 µmol/mL ± 0.358; p < 0.05) and HIV-negative controls (mean ± SD: 0.990 µmol/mL ± 0.343; p < 0.05). Plasma levels of cholesterol, albumin, and vitamins A and E did not differ between the short-stature group and either the HIV-infected normal-height group or HIV-negative controls.
Conclusion These results demonstrate a GSH deficiency in HIV-infected children with short stature and support the hypothesis that GSH balance is important in growth among HIV-infected children.
Collapse
Affiliation(s)
- Ping Du
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, United States
| | - Stephen M. Arpadi
- Department of Pediatrics, Mailman School of Public Health, Columbia University, New York, New York, United States
| | - Joshua Muscat
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, United States
| | - John P. Richie
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|
12
|
Wong K, Nguyen J, Blair L, Banjanin M, Grewal B, Bowman S, Boyd H, Gerstner G, Cho HJ, Panfilov D, Tam CK, Aguilar D, Venketaraman V. Pathogenesis of Human Immunodeficiency Virus- Mycobacterium tuberculosis Co-Infection. J Clin Med 2020; 9:E3575. [PMID: 33172001 PMCID: PMC7694603 DOI: 10.3390/jcm9113575] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
Given that infection with Mycobacterium tuberculosis (Mtb) is the leading cause of death amongst individuals living with HIV, understanding the complex mechanisms by which Mtb exacerbates HIV infection may lead to improved treatment options or adjuvant therapies. While it is well-understood how HIV compromises the immune system and leaves the host vulnerable to opportunistic infections such as Mtb, less is known about the interplay of disease once active Mtb is established. This review explores how glutathione (GSH) depletion, T cell exhaustion, granuloma formation, and TNF-α upregulation, as a result of Mtb infection, leads to an increase in HIV disease severity. This review also examines the difficulties of treating coinfected patients and suggests further research on the clinical use of GSH supplementation.
Collapse
Affiliation(s)
- Kevin Wong
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - James Nguyen
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Lillie Blair
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Marina Banjanin
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Bunraj Grewal
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Shane Bowman
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Hailey Boyd
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Grant Gerstner
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Hyun Jun Cho
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - David Panfilov
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Cho Ki Tam
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Delaney Aguilar
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
13
|
Arshad A, Dayal S, Gadhe R, Mawley A, Shin K, Tellez D, Phan P, Venketaraman V. Analysis of Tuberculosis Meningitis Pathogenesis, Diagnosis, and Treatment. J Clin Med 2020; 9:E2962. [PMID: 32937808 PMCID: PMC7565176 DOI: 10.3390/jcm9092962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/30/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) is the most prevalent infectious disease in the world. In recent years there has been a significant increase in the incidence of TB due to the emergence of multidrug resistant strains of Mycobacterium tuberculosis (M. tuberculosis) and the increased numbers of highly susceptible immuno-compromised individuals. Central nervous system TB, includes TB meningitis (TBM-the most common presentation), intracranial tuberculomas, and spinal tuberculous arachnoiditis. Individuals with TBM have an initial phase of malaise, headache, fever, or personality change, followed by protracted headache, stroke, meningismus, vomiting, confusion, and focal neurologic findings in two to three weeks. If untreated, mental status deteriorates into stupor or coma. Delay in the treatment of TBM results in, either death or substantial neurological morbidity. This review provides latest developments in the biomedical research on TB meningitis mainly in the areas of host immune responses, pathogenesis, diagnosis, and treatment of this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (A.A.); (S.D.); (R.G.); (A.M.); (K.S.); (D.T.); (P.P.)
| |
Collapse
|
14
|
Immunological Evaluation for Personalized Interventions in Children with Tuberculosis: Should It Be Routinely Performed? J Immunol Res 2020; 2020:8235149. [PMID: 33005692 PMCID: PMC7509549 DOI: 10.1155/2020/8235149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/03/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Childhood tuberculosis (TB) is a significant public health problem and the ninth leading cause of death worldwide. Progression of Mycobacterium tuberculosis infection to active disease depends on mycobacterial virulence, environmental diversity, and host susceptibility and immune response. In children, malnutrition and immaturity of the immune system contribute to an inadequate immune response. Coinfections, though rarely described in TB, might be associated with host immune deficiencies. Here, we describe the immunological evaluation of eight pediatric patients infected with a member of the M. tuberculosis complex, most of them with concomitant pulmonary infections (bacteria, viruses, or fungi). We assessed the functionality of several innate immunity receptors, IL-12 receptor, and IFN-γ receptor, as well as the antioxidant levels (glutathione), which are essential mechanisms for fighting intracellular pathogens such as M. tuberculosis. This study is aimed at developing a thorough immunological evaluation of patients with TB and a coinfection.
Collapse
|
15
|
Singh M, Vaughn C, Sasaninia K, Yeh C, Mehta D, Khieran I, Venketaraman V. Understanding the Relationship between Glutathione, TGF-β, and Vitamin D in Combating Mycobacterium tuberculosis Infections. J Clin Med 2020; 9:jcm9092757. [PMID: 32858837 PMCID: PMC7563738 DOI: 10.3390/jcm9092757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) remains a pervasive global health threat. A significant proportion of the world's population that is affected by latent tuberculosis infection (LTBI) is at risk for reactivation and subsequent transmission to close contacts. Despite sustained efforts in eradication, the rise of multidrug-resistant strains of Mycobacteriumtuberculosis (M. tb) has rendered traditional antibiotic therapy less effective at mitigating the morbidity and mortality of the disease. Management of TB is further complicated by medications with various off-target effects and poor compliance. Immunocompromised patients are the most at-risk in reactivation of a LTBI, due to impairment in effector immune responses. Our laboratory has previously reported that individuals suffering from Type 2 Diabetes Mellitus (T2DM) and HIV exhibited compromised levels of the antioxidant glutathione (GSH). Restoring the levels of GSH resulted in improved control of M. tb infection. The goal of this review is to provide insights on the diverse roles of TGF- β and vitamin D in altering the levels of GSH, granuloma formation, and clearance of M. tb infection. We propose that these pathways represent a potential avenue for future investigation and development of new TB treatment modalities.
Collapse
Affiliation(s)
- Mohkam Singh
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (M.S.); (C.V.); (K.S.)
| | - Charles Vaughn
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (M.S.); (C.V.); (K.S.)
| | - Kayvan Sasaninia
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (M.S.); (C.V.); (K.S.)
| | - Christopher Yeh
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (C.Y.); (D.M.); (I.K.)
| | - Devanshi Mehta
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (C.Y.); (D.M.); (I.K.)
| | - Ibrahim Khieran
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (C.Y.); (D.M.); (I.K.)
| | - Vishwanath Venketaraman
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (M.S.); (C.V.); (K.S.)
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (C.Y.); (D.M.); (I.K.)
- Correspondence: ; Tel.: +1-909-706-3736
| |
Collapse
|
16
|
Abrahem R, Chiang E, Haquang J, Nham A, Ting YS, Venketaraman V. The Role of Dendritic Cells in TB and HIV Infection. J Clin Med 2020; 9:jcm9082661. [PMID: 32824563 PMCID: PMC7465216 DOI: 10.3390/jcm9082661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells are the principal antigen-presenting cells (APCs) in the host defense mechanism. An altered dendritic cell response increases the risk of susceptibility of infections, such as Mycobacterium tuberculosis (M. tb), and the survival of the human immunodeficiency virus (HIV). The altered response of dendritic cells leads to decreased activity of T-helper-1 (Th1), Th2, Regulatory T cells (Tregs), and Th17 cells in tuberculosis (TB) infections due to a diminishment of cytokine release from these APCs, while HIV infection leads to DC maturation, allowing DCs to migrate to lymph nodes and the sub-mucosa where they then transfer HIV to CD4 T cells, although there is controversy around this topic. Increases in the levels of the antioxidant glutathione (GSH) plays a critical role in maintaining dendritic cell redox homeostasis, leading to an adequate immune response with sufficient cytokine release and a subsequent robust immune response. Thus, an understanding of the intricate pathways involved in the dendritic cell response are needed to prevent co-infections and co-morbidities in individuals with TB and HIV.
Collapse
Affiliation(s)
- Rachel Abrahem
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (R.A.); (E.C.); (J.H.); (A.N.); (Y.-S.T.)
| | - Emerald Chiang
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (R.A.); (E.C.); (J.H.); (A.N.); (Y.-S.T.)
| | - Joseph Haquang
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (R.A.); (E.C.); (J.H.); (A.N.); (Y.-S.T.)
| | - Amy Nham
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (R.A.); (E.C.); (J.H.); (A.N.); (Y.-S.T.)
| | - Yu-Sam Ting
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (R.A.); (E.C.); (J.H.); (A.N.); (Y.-S.T.)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (R.A.); (E.C.); (J.H.); (A.N.); (Y.-S.T.)
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
- Correspondence: ; Tel.: +1-909-706-3736; Fax: +1-909-469-5698
| |
Collapse
|
17
|
Coco-Bassey SB, Asemota EA, Okoroiwu HU, Etura JE, Efiong EE, Inyang IJ, Uko EK. Glutathione, glutathione peroxidase and some hematological parameters of HIV-seropositive subjects attending clinic in University of Calabar teaching hospital, Calabar, Nigeria. BMC Infect Dis 2019; 19:944. [PMID: 31703562 PMCID: PMC6842150 DOI: 10.1186/s12879-019-4562-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/15/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Despite the numerous intervention programmes, HIV still remains a public health concern with a high impact in Sub-Saharan Africa region. Oxidative stress has been documented in HIV subjects as viral infection promotes prolonged activation of immune system, hence, production of increased reactive oxygen species. METHODS We studied 180 subjects. Of these, 60 were HIV-infected on antiretroviral therapy (ART), 40 were ART naïve HIV-infected and 80 were apparent healthy non HIV-infected subjects. The complete blood count was performed by automated hemoanalyzer, the CD4+ T-cell count was performed by cyflow cytometer, while the antioxidant assay was performed using ELISA technique. RESULT All evaluated parameters; glutathione (GSH), glutathione peroxidase (GPX), CD4+ T-cell count, haemoglobin (Hb), total white blood cell count (WBC) and platelet count were significantly (P < 0.05) reduced in the HIV-infected subjects. All assessed parameters were found to be significantly (P < 0.5) reduced in the HIV-infected subjects that are ART naive when compared with those on ART. HIV-infected subjects with CD4+ T-cell count < 200 cells/mm3 had significantly (P < 0.05) reduced values in all assessed parameters when compared to those with CD4+ T-cell count ≥200 cells/mm3. GSH and WBC were found to be significantly (P < 0.05) increased in the female HIV-infected subjects when compared with the male counterpart. Anemia prevalence of 74 and 33% were recorded for the HIV-infected and control subjects, respectively. Gender and ART treatment were found to be associated with anemia in HIV. Male HIV-infected subjects on ART were found to be more likely to have anemia. CONCLUSION Antioxidants; GSH and GPX were found to be significantly reduced in HIV infection. Further probe showed that the antioxidant status was improved in the HIV-infected group on ART.
Collapse
Affiliation(s)
| | - Enosakhare A Asemota
- Haematology Unit, Department of Medical Laboratory Science, University of Calabar, Calabar, Nigeria
| | - Henshaw Uchechi Okoroiwu
- Haematology Unit, Department of Medical Laboratory Science, University of Calabar, Calabar, Nigeria.
| | - Joyce E Etura
- Haematology Unit, Department of Medical Laboratory Science, University of Calabar, Calabar, Nigeria
| | | | - Imeobong J Inyang
- Haematology Unit, Department of Medical Laboratory Science, University of Calabar, Calabar, Nigeria
| | - Emmanuel K Uko
- Haematology Unit, Department of Medical Laboratory Science, University of Calabar, Calabar, Nigeria
| |
Collapse
|
18
|
Ignatieva EV, Yurchenko AA, Voevoda MI, Yudin NS. Exome-wide search and functional annotation of genes associated in patients with severe tick-borne encephalitis in a Russian population. BMC Med Genomics 2019; 12:61. [PMID: 31122248 PMCID: PMC6533173 DOI: 10.1186/s12920-019-0503-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Tick-borne encephalitis (TBE) is a viral infectious disease caused by tick-borne encephalitis virus (TBEV). TBEV infection is responsible for a variety of clinical manifestations ranging from mild fever to severe neurological illness. Genetic factors involved in the host response to TBEV that may potentially play a role in the severity of the disease are still poorly understood. In this study, using whole-exome sequencing, we aimed to identify genetic variants and genes associated with severe forms of TBE as well as biological pathways through which the identified variants may influence the severity of the disease. Results Whole-exome sequencing data analysis was performed on 22 Russian patients with severe forms of TBE and 17 Russian individuals from the control group. We identified 2407 candidate genes harboring rare, potentially pathogenic variants in exomes of patients with TBE and not containing any rare, potentially pathogenic variants in exomes of individuals from the control group. According to DAVID tool, this set of 2407 genes was enriched with genes involved in extracellular matrix proteoglycans pathway and genes encoding proteins located at the cell periphery. A total of 154 genes/proteins from these functional groups have been shown to be involved in protein-protein interactions (PPIs) with the known candidate genes/proteins extracted from TBEVHostDB database. By ranking these genes according to the number of rare harmful minor alleles, we identified two genes (MSR1 and LMO7), harboring five minor alleles, and three genes (FLNA, PALLD, PKD1) harboring four minor alleles. When considering genes harboring genetic variants associated with severe forms of TBE at the suggestive P-value < 0.01, 46 genes containing harmful variants were identified. Out of these 46 genes, eight (MAP4, WDFY4, ACTRT2, KLHL25, MAP2K3, MBD1, OR10J1, and OR2T34) were additionally found among genes containing rare pathogenic variants identified in patients with TBE; and five genes (WDFY4,ALK, MAP4, BNIPL, EPPK1) were found to encode proteins that are involved in PPIs with proteins encoded by genes from TBEVHostDB. Three genes out of five (MAP4, EPPK1, ALK) were found to encode proteins located at cell periphery. Conclusions Whole-exome sequencing followed by systems biology approach enabled to identify eight candidate genes (MAP4, WDFY4, ACTRT2, KLHL25, MAP2K3, MBD1, OR10J1, and OR2T34) that can potentially determine predisposition to severe forms of TBE. Analyses of the genetic risk factors for severe forms of TBE revealed a significant enrichment with genes controlling extracellular matrix proteoglycans pathway as well as genes encoding components of cell periphery. Electronic supplementary material The online version of this article (10.1186/s12920-019-0503-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena V Ignatieva
- Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Andrey A Yurchenko
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Mikhail I Voevoda
- Novosibirsk State University, Novosibirsk, 630090, Russia.,Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630004, Russia
| | - Nikolay S Yudin
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
19
|
Limongi D, Baldelli S, Checconi P, Marcocci ME, De Chiara G, Fraternale A, Magnani M, Ciriolo MR, Palamara AT. GSH-C4 Acts as Anti-inflammatory Drug in Different Models of Canonical and Cell Autonomous Inflammation Through NFκB Inhibition. Front Immunol 2019; 10:155. [PMID: 30787932 PMCID: PMC6372722 DOI: 10.3389/fimmu.2019.00155] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 01/17/2019] [Indexed: 01/06/2023] Open
Abstract
An imbalance in GSH/GSSG ratio represents a triggering event in pro-inflammatory cytokine production and inflammatory response. However, the molecular mechanism(s) through which GSH regulates macrophage and cell autonomous inflammation remains not deeply understood. Here, we investigated the effects of a derivative of GSH, the N-butanoyl glutathione (GSH-C4), a cell permeable compound, on lipopolisaccharide (LPS)-stimulated murine RAW 264.7 macrophages, and human macrophages. LPS alone induces a significant production of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α and a significant decrement of GSH content. Such events were significantly abrogated by treatment with GSH-C4. Moreover, GSH-C4 was highly efficient in buffering cell autonomous inflammatory status of aged C2C12 myotubes and 3T3-L1 adipocytes by suppressing the production of pro-inflammatory cytokines. We found that inflammation was paralleled by a strong induction of the phosphorylated form of NFκB, which translocates into the nucleus; a process that was also efficiently inhibited by the treatment with GSH-C4. Overall, the evidence suggests that GSH decrement is required for efficient activation of an inflammatory condition and, at the same time, GSH-C4 can be envisaged as a good candidate to abrogate such process, expanding the anti-inflammatory role of this molecule in chronic inflammatory states.
Collapse
Affiliation(s)
- Dolores Limongi
- Department of Human Sciences and Promotion of the Quality of Life, IRCCS San Raffaele Pisana, San Raffaele Roma Open University, Rome, Italy
| | - Sara Baldelli
- Department of Human Sciences and Promotion of the Quality of Life, IRCCS San Raffaele Pisana, San Raffaele Roma Open University, Rome, Italy
| | - Paola Checconi
- Department of Human Sciences and Promotion of the Quality of Life, IRCCS San Raffaele Pisana, San Raffaele Roma Open University, Rome, Italy
| | - Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Giovanna De Chiara
- Institute of Translational Pharmacology, National Research Council Rome, Rome, Italy
| | | | - Mauro Magnani
- University of Urbino Carlo Bo, Department of Biomolecular Sciences, Urbino, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.,IRCCS San Raffaele Pisana, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,IRCCS San Raffaele Pisana, Rome, Italy.,Institute Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
20
|
Characterizing the Effects of Glutathione as an Immunoadjuvant in the Treatment of Tuberculosis. Antimicrob Agents Chemother 2018; 62:AAC.01132-18. [PMID: 30126957 PMCID: PMC6201097 DOI: 10.1128/aac.01132-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/10/2018] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium tuberculosis is the etiological agent that is responsible for causing tuberculosis (TB), which continues to affect millions of people worldwide, and the rate of resistance of M. tuberculosis to antibiotics is ever increasing. We tested the synergistic effects of N-acetyl cysteine (NAC; the precursor molecule for the synthesis of glutathione [GSH]) and individual first-line antibiotics typically given for the treatment of TB, such as isoniazid (INH), rifampin (RIF), ethambutol (EMB), and pyrazinamide (PZA), to improve the ability of macrophages to control intracellular M. tuberculosis infection. Mycobacterium tuberculosis is the etiological agent that is responsible for causing tuberculosis (TB), which continues to affect millions of people worldwide, and the rate of resistance of M. tuberculosis to antibiotics is ever increasing. We tested the synergistic effects of N-acetyl cysteine (NAC; the precursor molecule for the synthesis of glutathione [GSH]) and individual first-line antibiotics typically given for the treatment of TB, such as isoniazid (INH), rifampin (RIF), ethambutol (EMB), and pyrazinamide (PZA), to improve the ability of macrophages to control intracellular M. tuberculosis infection. GSH, a pleiotropic antioxidant molecule, has previously been shown to display both antimycobacterial and immune-enhancing effects. Our results indicate that there was not only an increase in beneficial immunomodulatory effects but also a greater reduction in the intracellular viability of M. tuberculosis when macrophages were treated with the combination of antibiotics (INH, RIF, EMB, or PZA) and NAC.
Collapse
|
21
|
Teskey G, Abrahem R, Cao R, Gyurjian K, Islamoglu H, Lucero M, Martinez A, Paredes E, Salaiz O, Robinson B, Venketaraman V. Glutathione as a Marker for Human Disease. Adv Clin Chem 2018; 87:141-159. [PMID: 30342710 DOI: 10.1016/bs.acc.2018.07.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutathione (GSH), often referred to as "the master antioxidant," participates not only in antioxidant defense systems, but many metabolic processes, and therefore its role cannot be overstated. GSH deficiency causes cellular risk for oxidative damage and thus as expected, GSH imbalance is observed in a wide range of pathological conditions including tuberculosis (TB), HIV, diabetes, cancer, and aging. Consequently, it is not surprising that GSH has attracted the attention of biological researchers and pharmacologists alike as a possible target for medical intervention. Here, we discuss the role GSH plays amongst these pathological conditions to illuminate how it can be used as a marker for human disease.
Collapse
Affiliation(s)
- Garrett Teskey
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Rachel Abrahem
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Ruoqiong Cao
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States; College of life Sciences, Hebei University, Baoding, China
| | - Karo Gyurjian
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Hicret Islamoglu
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States
| | - Mariana Lucero
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Andrew Martinez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Erik Paredes
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Oscar Salaiz
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Brittanie Robinson
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Vishwanath Venketaraman
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States; Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
22
|
Jain SK, Tobin DM, Tucker EW, Venketaraman V, Ordonez AA, Jayashankar L, Siddiqi OK, Hammoud DA, Prasadarao NV, Sandor M, Hafner R, Fabry Z. Tuberculous meningitis: a roadmap for advancing basic and translational research. Nat Immunol 2018; 19:521-525. [PMID: 29777209 PMCID: PMC6089350 DOI: 10.1038/s41590-018-0119-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tuberculous meningitis is a serious, life-threatening disease affecting vulnerable populations, including HIV-infected individuals and young children. The US National Institutes of Health convened a workshop to identify knowledge gaps in the molecular and immunopathogenic mechanisms of tuberculous meningitis and to develop a roadmap for basic and translational research that could guide clinical studies.
Collapse
Affiliation(s)
- Sanjay K Jain
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - David M Tobin
- Departments of Molecular Genetics and Microbiology and of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Elizabeth W Tucker
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Alvaro A Ordonez
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lakshmi Jayashankar
- Columbus Technologies, Inc., Contractor to the National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Omar K Siddiqi
- Global Neurology Program, Division of Neuro-Immunology, Center for Virology and Vaccine Research, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Internal Medicine, University of Zambia School of Medicine, Lusaka, Zambia
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Nemani V Prasadarao
- Sabin Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Richard Hafner
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
23
|
Valdivia A, Ly J, Gonzalez L, Hussain P, Saing T, Islamoglu H, Pearce D, Ochoa C, Venketaraman V. Restoring Cytokine Balance in HIV-Positive Individuals with Low CD4 T Cell Counts. AIDS Res Hum Retroviruses 2017; 33:905-918. [PMID: 28398068 PMCID: PMC5576219 DOI: 10.1089/aid.2016.0303] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
HIV infects and destroys CD4+ T cells leading to a compromised immune system. In a double-blinded study, a group of HIV-infected individuals with CD4+ T cell counts below 350 cells/mm3 were given either an empty liposomal supplement or a liposomal glutathione (L-GSH) supplement to take over a 3-month period. Baseline measurements in HIV-positive subjects show a significant decrease in levels of interleukin (IL)-12, IL-2, and interferon (IFN)-γ, along with a substantial increase in the levels of IL-6, IL-10, transforming growth factor (TGF)-β, and free radicals, compared to healthy individuals. Supplementation of HIV-positive subjects with L-GSH for 3 months resulted in a notable increase in the levels of IL-12, IL-2, and IFN-γ, with a concomitant decrease in the levels of IL-6, IL-10, and free radicals, and stabilization in the levels of TGF-β, IL-1, and IL-17, compared to their placebo counterparts. Levels of free radicals in CD4+ T cells stabilized, while GSH levels increased in the treatment group. Those in the placebo group showed no significant difference throughout the study. In summary, supplementation with L-GSH in HIV-infected individuals with CD4+ T cell counts below 350 cells/mm3 can help restore redox homeostasis and cytokine balance, therefore aiding the immune system to control opportunistic infections.
Collapse
Affiliation(s)
- Anddre Valdivia
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California
| | - Judy Ly
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California
| | - Leslie Gonzalez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California
| | - Parveen Hussain
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California
| | - Tommy Saing
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California
| | - Hicret Islamoglu
- Department of Biological Sciences, California State Polytechnic University, Pomona, California
| | - Daniel Pearce
- Riverside University Health System, Public Health, Early Intervention/HIV, Riverside, California
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California
| | - Cesar Ochoa
- Western Diabetes Institute, Western University of Health Sciences, Pomona, California
| | - Vishwanath Venketaraman
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California
| |
Collapse
|
24
|
Wong YY, Johnson B, Friedrich TC, Trepanier LA. Hepatic expression profiles in retroviral infection: relevance to drug hypersensitivity risk. Pharmacol Res Perspect 2017; 5:e00312. [PMID: 28603631 PMCID: PMC5464341 DOI: 10.1002/prp2.312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/11/2022] Open
Abstract
HIV‐infected patients show a markedly increased risk of delayed hypersensitivity (HS) reactions to potentiated sulfonamide antibiotics (trimethoprim/sulfamethoxazole or TMP/SMX). Some studies have suggested altered SMX biotransformation in HIV infection, but hepatic biotransformation pathways have not been evaluated directly. Systemic lupus erythematosus (SLE) is another chronic inflammatory disease with a higher incidence of sulfonamide HS, but it is unclear whether retroviral infection and SLE share risk factors for drug HS. We hypothesized that retroviral infection would lead to dysregulation of hepatic pathways of SMX biotransformation, as well as pathway alterations in common with SLE that could contribute to drug HS risk. We characterized hepatic expression profiles and enzymatic activities in an SIV‐infected macaque model of retroviral infection, and found no evidence for dysregulation of sulfonamide drug biotransformation pathways. Specifically, NAT1,NAT2,CYP2C8,CYP2C9,CYB5R3,MARC1/2, and glutathione‐related genes (GCLC,GCLM,GSS,GSTM1, and GSTP1) were not differentially expressed in drug naïve SIVmac239‐infected male macaques compared to age‐matched controls, and activities for SMX N‐acetylation and SMX hydroxylamine reduction were not different. However, multiple genes that are reportedly over‐expressed in SLE patients were also up‐regulated in retroviral infection, to include enhanced immunoproteasomal processing and presentation of antigens as well as up‐regulation of gene clusters that may be permissive to autoimmunity. These findings support the hypothesis that pathways downstream from drug biotransformation may be primarily important in drug HS risk in HIV infection.
Collapse
Affiliation(s)
- Yat Yee Wong
- Department of Medical Sciences School of Veterinary Medicine Madison Wisconsin
| | - Brian Johnson
- Molecular and Environmental Toxicology Center School of Medicine and Public Health University of Wisconsin-Madison Madison Wisconsin
| | - Thomas C Friedrich
- Department of Pathobiological Sciences School of Veterinary Medicine Madison Wisconsin.,AIDS Vaccine Research Laboratory Wisconsin National Primate Research Center Madison Wisconsin
| | - Lauren A Trepanier
- Department of Medical Sciences School of Veterinary Medicine Madison Wisconsin
| |
Collapse
|
25
|
Glutathione Depletion Is Linked with Th2 Polarization in Mice with a Retrovirus-Induced Immunodeficiency Syndrome, Murine AIDS: Role of Proglutathione Molecules as Immunotherapeutics. J Virol 2016; 90:7118-7130. [PMID: 27226373 DOI: 10.1128/jvi.00603-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/19/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Injection of the LP-BM5 murine leukemia virus into mice causes murine AIDS, a disease characterized by many dysfunctions of immunocompetent cells. To establish whether the disease is characterized by glutathione imbalance, reduced glutathione (GSH) and cysteine were quantified in different organs. A marked redox imbalance, consisting of GSH and/or cysteine depletion, was found in the lymphoid organs, such as the spleen and lymph nodes. Moreover, a significant decrease in cysteine and GSH levels in the pancreas and brain, respectively, was measured at 5 weeks postinfection. The Th2 immune response was predominant at all times investigated, as revealed by the expression of Th1/Th2 cytokines. Furthermore, investigation of the activation status of peritoneal macrophages showed that the expression of genetic markers of alternative activation, namely, Fizz1, Ym1, and Arginase1, was induced. Conversely, expression of inducible nitric oxide synthase, a marker of classical activation of macrophages, was detected only when Th1 cytokines were expressed at high levels. In vitro studies revealed that during the very early phases of infection, GSH depletion and the downregulation of interleukin-12 (IL-12) p40 mRNA were correlated with the dose of LP-BM5 used to infect the macrophages. Treatment of LP-BM5-infected mice with N-(N-acetyl-l-cysteinyl)-S-acetylcysteamine (I-152), an N-acetyl-cysteine supplier, restored GSH/cysteine levels in the organs, reduced the expression of alternatively activated macrophage markers, and increased the level of gamma interferon production, while it decreased the levels of Th2 cytokines, such as IL-4 and IL-5. Our findings thus establish a link between GSH deficiency and Th1/Th2 disequilibrium in LP-BM5 infection and indicate that I-152 can be used to restore the GSH level and a balanced Th1/Th2 response in infected mice. IMPORTANCE The first report of an association between Th2 polarization and alteration of the redox state in LP-BM5 infection is presented. Moreover, it provides evidence that LP-BM5 infection causes a decrease in the thiol content of peritoneal macrophages, which can influence IL-12 production. The restoration of GSH levels by GSH-replenishing molecules can represent a new therapeutic avenue to fight this retroviral infection, as it reestablishes the Th1/Th2 balance. Immunotherapy based on the use of pro-GSH molecules would permit LP-BM5 infection and probably all those viral infections characterized by GSH deficiency and a Th1/Th2 imbalance to be more effectively combated.
Collapse
|
26
|
Analysis of glutathione levels in the brain tissue samples from HIV-1-positive individuals and subject with Alzheimer's disease and its implication in the pathophysiology of the disease process. BBA CLINICAL 2016; 6:38-44. [PMID: 27335804 PMCID: PMC4908271 DOI: 10.1016/j.bbacli.2016.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 02/07/2023]
Abstract
HIV-1 positive individuals are at high risk for susceptibility to both pulmonary tuberculosis (TB) and extra-pulmonary TB, including TB meningitis (TBM) which is an extreme form of TB. The goals of this study are to determine the mechanisms responsible for compromised levels of glutathione (GSH) in the brain tissue samples derived from HIV-1-infected individuals and individuals with Alzheimer's disease (AD), investigate the possible underlying mechanisms responsible for GSH deficiency in these pathological conditions, and establish a link between GSH levels and pathophysiology of the disease processes. We demonstrated in the autopsied human brain tissues that the levels of total and reduced forms of GSH were significantly compromised in HIV-1 infected individuals compared to in healthy subjects and individuals with AD. Brain tissue samples derived from HIV-1-positive individuals had substantially higher levels of free radicals than that derived from healthy and AD individuals. Enzymes that are responsible for the de novo synthesis of GSH such as γ-glutamate cysteine-ligase catalytic subunit (GCLC-rate limiting step enzyme) and glutathione synthetase (GSS-enzyme involved in the second step reaction) were significantly decreased in the brain tissue samples derived from HIV-1-positive individuals with low CD4 + T-cells (< 200 cells/mm3) compared to healthy and AD individuals. Levels of glutathione reductase (GSR) were also decreased in the brain tissue samples derived from HIV-1 infected individuals. Overall, our findings demonstrate causes for GSH deficiency in the brain tissue from HIV-1 infected individuals explaining the possible reasons for increased susceptibility to the most severe form of extra-pulmonary TB, TBM. Total and reduced forms of GSH were significantly compromised in the brain tissues derived from HIV-1 infected individuals. Brain tissue samples derived from HIV-1-positive individuals had substantially higher levels of free radicals. GSH de novo synthesis enzymes were significantly decreased in HIV-1-positive individuals with low CD4 + T-cells. Levels of GSR were also decreased in the brain tissue samples derived from HIV-1 infected individuals. Overall, our findings demonstrate causes for GSH deficiency in the brain tissue from HIV-1 infected individuals.
Collapse
|
27
|
Allen M, Bailey C, Cahatol I, Dodge L, Yim J, Kassissa C, Luong J, Kasko S, Pandya S, Venketaraman V. Mechanisms of Control of Mycobacterium tuberculosis by NK Cells: Role of Glutathione. Front Immunol 2015; 6:508. [PMID: 26500648 PMCID: PMC4593255 DOI: 10.3389/fimmu.2015.00508] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/18/2015] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tb), continues to be one of the most prevalent infectious diseases in the world. There is an upward trend in occurrence due to emerging multidrug resistant strains and an increasingly larger proportion of immunocompromised patient populations as a result of the acquired immunodeficiency syndrome pandemic. The complex and often deadly combination of multidrug resistant M. tb (MDR-M. tb) along with human immunodeficiency virus (HIV) puts a significant number of people at high risk for pulmonary and extra-pulmonary TB without sufficient therapeutic options available. Natural killer (NK) cells and macrophages are major components of the body's innate immune system, contributing significantly to the body's ability to synergistically inhibit the growth of M. tb in immune compromised individuals lacking a sufficient T cell response. Direct mechanisms of control are largely through the secretory products perforin, granulysin, and granzymes, as well as multiple membrane-bound death receptors that facilitate target directed lysis. NK cells also have a role in indirectly stimulating an immune response through activation of macrophages and monocytes with multiple signaling pathways, including both reactive oxygen species and reactive nitrogen species. Glutathione (GSH) has been shown to play a part in inhibiting the growth of intracellular M. tb through bacteriostatic mechanisms. Enhancing cellular GSH through several cytokines and N-acetyl cysteine has been shown to increase these effects, at least in part, through their action on NK cells. Taken together, there is substantial evidence for a mechanistic correlation between NK cell activity and functionality in combating M. tb in HIV infection mediated through adequate GSH production and use.
Collapse
Affiliation(s)
- Michael Allen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Cedric Bailey
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Ian Cahatol
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Levi Dodge
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Jay Yim
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Christine Kassissa
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Jennifer Luong
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Sarah Kasko
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Shalin Pandya
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA ; Department of Basic Medical Sciences, Western University of Health Sciences , Pomona, CA , USA
| |
Collapse
|
28
|
Ly J, Lagman M, Saing T, Singh MK, Tudela EV, Morris D, Anderson J, Daliva J, Ochoa C, Patel N, Pearce D, Venketaraman V. Liposomal Glutathione Supplementation Restores TH1 Cytokine Response to Mycobacterium tuberculosis Infection in HIV-Infected Individuals. J Interferon Cytokine Res 2015; 35:875-87. [PMID: 26133750 PMCID: PMC4642835 DOI: 10.1089/jir.2014.0210] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cytokines are signaling biomolecules that serve as key regulators of our immune system. CD4+ T-cells can be grouped into 2 major categories based on their cytokine profile: T-helper 1 (TH1) subset and T-helper 2 (TH2) subset. Protective immunity against HIV infection requires TH1-directed CD4 T-cell responses, mediated by cytokines, such as interleukin-1β (IL-1β), IL-12, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α). Cytokines released by the TH1 subset of CD4 T-cells are considered important for mediating effective immune responses against intracellular pathogens such as Mycobacterium tuberculosis (M. tb). Oxidative stress and redox imbalance that occur during HIV infection often lead to inappropriate immune responses. Glutathione (GSH) is an antioxidant present in nearly all cells and is recognized for its function in maintaining redox homeostasis. Our laboratory previously reported that individuals with HIV infection have lower levels of GSH. In this study, we report a link between lower levels of GSH and dysregulation of TH1- and TH2-associated cytokines in the plasma samples of HIV-positive subjects. Furthermore, we demonstrate that supplementing individuals with HIV infection for 13 weeks with liposomal GSH (lGSH) resulted in a significant increase in the levels of TH1 cytokines, IL-1β, IL-12, IFN-γ, and TNF-α. lGSH supplementation in individuals with HIV infection also resulted in a substantial decrease in the levels of free radicals and immunosuppressive cytokines, IL-10 and TGF-β, relative to those in a placebo-controlled cohort. Finally, we determined the effects of lGSH supplementation in improving the functions of immune cells to control M. tb infection by conducting in vitro assays using peripheral blood mononuclear cells collected from HIV-positive individuals at post-GSH supplementation. Our studies establish a correlation between low levels of GSH and increased susceptibility to M. tb infection through TH2-directed response, which may be relieved with lGSH supplementation enhancing the TH1 response.
Collapse
Affiliation(s)
- Judy Ly
- 1 Graduate College of Biomedical Sciences, Western University of Health Sciences , Pomona, California.,2 Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California
| | - Minette Lagman
- 1 Graduate College of Biomedical Sciences, Western University of Health Sciences , Pomona, California.,2 Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California
| | - Tommy Saing
- 1 Graduate College of Biomedical Sciences, Western University of Health Sciences , Pomona, California
| | - Manpreet Kaur Singh
- 1 Graduate College of Biomedical Sciences, Western University of Health Sciences , Pomona, California.,2 Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California
| | - Enrique Vera Tudela
- 1 Graduate College of Biomedical Sciences, Western University of Health Sciences , Pomona, California.,2 Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California
| | - Devin Morris
- 2 Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California
| | - Jessica Anderson
- 2 Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California
| | - John Daliva
- 2 Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California
| | - Cesar Ochoa
- 3 Western Diabetes Institute , Pomona, California
| | | | - Daniel Pearce
- 4 Center for Comparative Effectiveness and Outcomes Research, Loma Linda University , Loma Linda, California
| | - Vishwanath Venketaraman
- 1 Graduate College of Biomedical Sciences, Western University of Health Sciences , Pomona, California.,2 Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California
| |
Collapse
|
29
|
Pompella A, Corti A. Editorial: the changing faces of glutathione, a cellular protagonist. Front Pharmacol 2015; 6:98. [PMID: 26029106 PMCID: PMC4432574 DOI: 10.3389/fphar.2015.00098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 01/19/2023] Open
Affiliation(s)
- Alfonso Pompella
- Department of Translational Research NTMC, University of Pisa Pisa, Italy
| | - Alessandro Corti
- Department of Translational Research NTMC, University of Pisa Pisa, Italy
| |
Collapse
|
30
|
Fahrenholz T, Wolle MM, Kingston HM“S, Faber S, Kern JC, Pamuku M, Miller L, Chatragadda H, Kogelnik A. Molecular Speciated Isotope Dilution Mass Spectrometric Methods for Accurate, Reproducible and Direct Quantification of Reduced, Oxidized and Total Glutathione in Biological Samples. Anal Chem 2015; 87:1232-40. [DOI: 10.1021/ac503933t] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Timothy Fahrenholz
- Department
of Chemistry and Biochemistry, Duquesne University, 600 Forbes
Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Mesay Mulugeta Wolle
- Department
of Chemistry and Biochemistry, Duquesne University, 600 Forbes
Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - H. M. “Skip” Kingston
- Department
of Chemistry and Biochemistry, Duquesne University, 600 Forbes
Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Scott Faber
- Department
of Medicine, The Children’s Institute, 1405 Shady Avenue, Pittsburgh, Pennsylvania 15217, United States
| | - John C. Kern
- Department
of Mathematics and Computer Science, Duquesne University, 600 Forbes
Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Matt Pamuku
- Applied Isotope Technologies, 2403 Sidney Street, Suite 280, Pittsburgh, Pennsylvania 15203, United States
| | - Logan Miller
- Department
of Chemistry and Biochemistry, Duquesne University, 600 Forbes
Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Hemasudha Chatragadda
- Department
of Chemistry and Biochemistry, Duquesne University, 600 Forbes
Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Andreas Kogelnik
- Open Medicine Institute, 2500
Hospital Drive, Building 2, Mountain View, California 94040, United States
| |
Collapse
|
31
|
Pompella A, Corti A. Editorial: the changing faces of glutathione, a cellular protagonist. Front Pharmacol 2015. [PMID: 26029106 DOI: 10.3389/fphar.2015.00098/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Affiliation(s)
- Alfonso Pompella
- Department of Translational Research NTMC, University of Pisa Pisa, Italy
| | - Alessandro Corti
- Department of Translational Research NTMC, University of Pisa Pisa, Italy
| |
Collapse
|
32
|
Pavlovski CJ. Efficacy of screening immune system function in at-risk newborns. Australas Med J 2014; 7:272-84. [PMID: 25157267 PMCID: PMC4127958 DOI: 10.4066/amj.2014.1980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper explores the introduction of a screening test to highlight impaired immune system status for newborn infants and its efficacy as a preventative clinical measure. Moreover, it is suggested that screening of the infantile immune system has the potential to highlight susceptibility to a range of infant and childhood diseases, bestowing an opportunity to introduce early intervention to reduce the incidence of these diseases. Development of the neonatal immune system is an important health issue, implicated in many childhood problems such as allergies, infection, and autoimmunity. The neonate has a limited immune system and ability to combat bacteria. Depleted levels of the tripeptide reduced glutathione (GSH) have been linked to numerous conditions and its intracellular level is acknowledged as an indicator of immune system function. Introduction of an immune system screening programme for infants is formally reviewed and assessed. Several benefits are reported in the treatment of impaired immune systems, a trial screening programme is proposed for at-risk infants to gather further evidence as to its efficacy. Infants at risk of impaired immune system function include cystic fibrosis, premature infants, and low birth weight infants. The interventions include breastfeeding, milk banks, and appropriate formula to support the immune system.
Collapse
|