1
|
Rižner TL, Gjorgoska M. Steroid sulfatase and sulfotransferases in the estrogen and androgen action of gynecological cancers: current status and perspectives. Essays Biochem 2024:EBC20230096. [PMID: 38994718 DOI: 10.1042/ebc20230096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
Sulfatase (STS) and sulfotransferases (SULT) have important role in the biosynthesis and action of steroid hormones. STS catalyzes the hydrolysis of estrone-sulfate (E1-S) and dehydroepiandrosterone-sulfate (DHEA-S), while sulfotransferases catalyze the reverse reaction and require 3-phosphoadenosine-5-phosphosulfate as a sulfate donor. These enzymes control the concentration of active estrogens and androgens in peripheral tissues. Aberant expression of STS and SULT genes has been found in both, benign hormone-dependent diseases and hormone-dependent cancers. The aim of this review is to present the current knowledge on the role of STS and SULT in gynecological cancers, endometrial (EC) and ovarian cancer (OC). EC is the most common and OC the most lethal gynecological cancer. These cancers primarily affect postmenopausal women and therefore rely on the local production of steroid hormones from inactive precursors, either DHEA-S or E1-S. Following cellular uptake by organic anion transporting polypeptides (OATP) or organic anion transporters (OAT), STS and SULT regulate the formation of active estrogens and androgens, thus disturbed balance between STS and SULT can contribute to the onset and progression of cancer. The importance of these enzymes in peripheral estrogen biosynthesis has long been recognized, and this review provides new data on the important role of STS and SULT in the formation and action of androgens, their regulation and inhibition, and their potential as prognostic biomarkers.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marija Gjorgoska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Brinca AT, Peiró AM, Evangelio PM, Eleno I, Oliani AH, Silva V, Vicente LF, Ramalhinho AC, Gallardo E. Follicular Fluid and Blood Monitorization of Infertility Biomarkers in Women with Endometriosis. Int J Mol Sci 2024; 25:7177. [PMID: 39000283 PMCID: PMC11241429 DOI: 10.3390/ijms25137177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Infertility is recognized globally as a social disease and a growing medical condition, posing a significant challenge to modern reproductive health. Endometriosis, the third-most frequent gynecologic disorder, is one of the most common and intricate conditions that can lead to female infertility. Despite extensive research, the etiology, malignant transformation, and biological therapy of endometriosis remain unknown. Blood and follicular fluid are two matrices that have been carefully studied and can provide insights into women's health. These matrices are clinically significant because they contain metabolites closely associated with women's illness stage and reproductive outcomes. Nowadays, the application of metabolomic analysis in biological matrices may be able to predict the outcome of assisted reproductive technologies with greater precision. From a molecular viewpoint on reproductive health, we evaluate and compare the utilization of human follicular fluid and blood as matrices in analysis for diagnostic and assisted reproductive technology (ART) predictors of success for endometriosis patients. In the follicular fluid (FF), plasma, and serum of endometriosis-affected women, researchers identified dysregulations of oxidative stress, upregulation of several immune factors, and aberrations in energy metabolic pathways. The altered signatures negatively correlate with the overall oocyte and embryo quality and fertilization rate.
Collapse
Affiliation(s)
- Ana Teresa Brinca
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal;
| | - Ana Maria Peiró
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, 03010 Alicante, Spain;
- Institute of Bioengineering, Miguel Hernández University, 03202 Elche, Spain
| | | | - Irene Eleno
- Unidad de Reproduccion, Servicio de Ginecologia y Obstetricia, Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain;
| | - Antonio Helio Oliani
- Assisted Reproduction Laboratory, Cova da Beira Local Health Unit, 6200-251 Covilhã, Portugal;
- São José do Rio Preto School of Medicine, Gynaecology and Obstetrics, São José do Rio Preto 15090-000, Brazil
| | - Vladimiro Silva
- Ferticentro—Centro de Estudos de Fertilidade S.A., 3000-316 Coimbra, Portugal;
- Procriar—Centro de Procriação Medicamente Assistida, 4100-130 Porto, Portugal
| | | | - Ana Cristina Ramalhinho
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal;
- Assisted Reproduction Laboratory, Cova da Beira Local Health Unit, 6200-251 Covilhã, Portugal;
| | - Eugenia Gallardo
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal;
- Laboratório de Fármaco-Toxicologia, UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal
| |
Collapse
|
3
|
Kim D, Yadav D, Song M. An updated review on animal models to study attention-deficit hyperactivity disorder. Transl Psychiatry 2024; 14:187. [PMID: 38605002 PMCID: PMC11009407 DOI: 10.1038/s41398-024-02893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neuropsychiatric disorder affecting both children and adolescents. Individuals with ADHD experience heterogeneous problems, such as difficulty in attention, behavioral hyperactivity, and impulsivity. Recent studies have shown that complex genetic factors play a role in attention-deficit hyperactivity disorders. Animal models with clear hereditary traits are crucial for studying the molecular, biological, and brain circuit mechanisms underlying ADHD. Owing to their well-managed genetic origins and the relative simplicity with which the function of neuronal circuits is clearly established, models of mice can help learn the mechanisms involved in ADHD. Therefore, in this review, we highlighting the important genetic animal models that can be used to study ADHD.
Collapse
Affiliation(s)
- Daegeon Kim
- Department of Life Science, Yeungnam University, Gyeongsan-si, South Korea
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan-si, South Korea
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan-si, South Korea.
| |
Collapse
|
4
|
Yan J, Zhou L, Liu M, Zhu H, Zhang X, Cai E, Xu X, Chen T, Cheng H, Liu J, Wang S, Dai L, Chang X, Tang F. Single-cell analysis reveals insights into epithelial abnormalities in ovarian endometriosis. Cell Rep 2024; 43:113716. [PMID: 38412094 DOI: 10.1016/j.celrep.2024.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/19/2023] [Accepted: 01/11/2024] [Indexed: 02/29/2024] Open
Abstract
Ovarian endometriosis is characterized by the growth of endometrial tissue within the ovary, causing infertility and chronic pain. However, its pathophysiology remains unclear. Utilizing high-precision single-cell RNA sequencing, we profile the normal, eutopic, and ectopic endometrium from 34 individuals across proliferative and secretory phases. We observe an increased proportion of ciliated cells in both eutopic and ectopic endometrium, characterized by a diminished expression of estrogen sulfotransferase, which likely confers apoptosis resistance. After translocating to ectopic lesions, endometrial epithelium upregulates nicotinamide N-methyltransferase expression that inhibits apoptosis by promoting deacetylation and subsequent nuclear exclusion of transcription factor forkhead box protein O1, thereby leading to the downregulation of the apoptotic gene BIM. Moreover, epithelial cells in ectopic lesions elevate HLA class II complex expression, which stimulates CD4+ T cells and consequently contributes to chronic inflammation. Altogether, our study provides a comprehensive atlas of ovarian endometriosis and highlights potential therapeutic targets for modulating apoptosis and inflammation.
Collapse
Affiliation(s)
- Jia Yan
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100000, China; Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100000, China
| | - Ling Zhou
- Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing 100044, China
| | - Mengya Liu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China; Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100000, China
| | - Honglan Zhu
- Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing 100044, China
| | - Xin Zhang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China
| | - E Cai
- Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing 100044, China
| | - Xueqiang Xu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100000, China; Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100000, China
| | - Tinghan Chen
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China
| | - Hongyan Cheng
- Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing 100044, China
| | - Jun'e Liu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China; Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100000, China
| | - Shang Wang
- Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing 100044, China
| | - Lin Dai
- Department of Pathology, People's Hospital, Peking University, Beijing 100044, China
| | - Xiaohong Chang
- Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing 100044, China.
| | - Fuchou Tang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100000, China; Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100000, China.
| |
Collapse
|
5
|
Duffel MW, Lehmler HJ. Complex roles for sulfation in the toxicities of polychlorinated biphenyls. Crit Rev Toxicol 2024; 54:92-122. [PMID: 38363552 PMCID: PMC11067068 DOI: 10.1080/10408444.2024.2311270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic toxicants derived from legacy pollution sources and their formation as inadvertent byproducts of some current manufacturing processes. Metabolism of PCBs is often a critical component in their toxicity, and relevant metabolic pathways usually include their initial oxidation to form hydroxylated polychlorinated biphenyls (OH-PCBs). Subsequent sulfation of OH-PCBs was originally thought to be primarily a means of detoxication; however, there is strong evidence that it may also contribute to toxicities associated with PCBs and OH-PCBs. These contributions include either the direct interaction of PCB sulfates with receptors or their serving as a localized precursor for OH-PCBs. The formation of PCB sulfates is catalyzed by cytosolic sulfotransferases, and, when transported into the serum, these metabolites may be retained, taken up by other tissues, and subjected to hydrolysis catalyzed by intracellular sulfatase(s) to regenerate OH-PCBs. Dynamic cycling between PCB sulfates and OH-PCBs may lead to further metabolic activation of the resulting OH-PCBs. Ultimate toxic endpoints of such processes may include endocrine disruption, neurotoxicities, and many others that are associated with exposures to PCBs and OH-PCBs. This review highlights the current understanding of the complex roles that PCB sulfates can have in the toxicities of PCBs and OH-PCBs and research on the varied mechanisms that control these roles.
Collapse
Affiliation(s)
- Michael W. Duffel
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa, 52242, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, 52242, United States
| |
Collapse
|
6
|
Akbar N, Siddiqui R, El-Gamal MI, Zaraei SO, Saeed BQ, Alawfi BS, Khan NA. Potential anti-amoebic activity of sulfonate- and sulfamate-containing carboxamide derivatives against pathogenic Acanthamoeba castellanii belonging to the genotype T4. Parasitol Int 2024; 98:102814. [PMID: 37806551 DOI: 10.1016/j.parint.2023.102814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Acanthamoeba are ubiquitously distributed in the environment and can cause infection of the central nervous system as well a sight-threatening eye infection. Herein, the potential anti-amoebic activity of a series of sulfonate/sulfamate derivatives against pathogenic A. castellanii was evaluated. These compounds were tested using several assays namely amoebicidal, adhesion, excystation, cytotoxic, and cytopathogenicity. Amoebicidal assays revealed that the selected compounds reduced amoebae viability significantly (P < 0.05), and exhibited IC50 values at two-digit micromolar concentrations. Sulfamate derivatives 1j & 1k inhibited 50% of amoebae at 30.65 μM and 27.21 μM, respectively. The tested compounds blocked amoebae binding to host cells as well as inhibited amoebae excystation. Notably, the selected derivatives exhibited minimal human cell cytotoxicity but reduced parasite-mediated host cell damage. Overall, our study showed that sulfamate derivatives 1j & 1k have anti-amoebic potential and offer a promising avenue in the development of potential anti-amoebic drug candidates.
Collapse
Affiliation(s)
- Noor Akbar
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, Istanbul 34010, Turkey; College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Mohammed I El-Gamal
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Seyed-Omar Zaraei
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Balsam Qubais Saeed
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Bader Saleem Alawfi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul 34010, Turkey; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
7
|
Reynolds CJ, Dyer RB, Vizenor BA, Koszewski NJ, Singh RJ, Thacher TD. Analysis of vitamin D 3-sulfate and 25-hydroxyvitamin D 3-sulfate in breastmilk by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123954. [PMID: 38101284 PMCID: PMC10872384 DOI: 10.1016/j.jchromb.2023.123954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Sulfated metabolites of vitamin D have been suggested to be in breastmilk, although current methods to measure sulfated vitamin D compounds in breastmilk by liquid chromatography-tandem mass spectrometry (LC-MS/MS) have not adequately accounted for increased aqueous solubility of these sulfated metabolites. The purpose of this study was to generate a method of LC-MS/MS for measuring vitamin D3-3-sulfate (VitD3-S) and 25-hydroxyvitamin D3-3-sulfate (25OHD3-S) specifically in human breastmilk. The resulting method uses methanol to precipitate protein and solid phase extraction to prepare the samples for LC-MS/MS. The limits of quantification for analytes in solvent were 0.23 ng/mL VitD3-S and 0.2 ng/mL 25OHD3-S. Various experiments observed concentrations ranging 0.53 to 1.7 ng/mL VitD3-S and ≤ 0.29 ng/mL 25OHD3-S. Both analytes were present in aqueous skim milk, demonstrating the enhanced aqueous solubility of these vitamin D sulfates. In conclusion, we describe an effective method for measuring VitD3-S and 25OHD3-S in breastmilk by LC-MS/MS.
Collapse
Affiliation(s)
- Carmen J Reynolds
- Mayo Clinic Department of Physiology & Biomedical Engineering, 200 First St. SW, Rochester, MN 55905 USA.
| | - Roy B Dyer
- Mayo Clinic Department of Laboratory Medicine & Pathology, 200 First St. SW, Rochester, MN 55905 USA
| | - Brady A Vizenor
- Mayo Clinic Department of Laboratory Medicine & Pathology, 200 First St. SW, Rochester, MN 55905 USA
| | | | - Ravinder J Singh
- Mayo Clinic Department of Laboratory Medicine & Pathology, 200 First St. SW, Rochester, MN 55905 USA
| | - Tom D Thacher
- Mayo Clinic Department of Family Medicine, 200 First St. SW, Rochester, MN 55905 USA
| |
Collapse
|
8
|
Jin Z, Wang J, Chen Y. Estrogen Regulates Scribble Localization in Endometrial Epithelial Cells Through Acyl Protein Thioesterase (APT)-Mediated S-Palmitoylation in Adenomyosis. Reprod Sci 2024; 31:128-138. [PMID: 37603234 DOI: 10.1007/s43032-023-01319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
Despite its prevalence and the severity of symptoms, little is known about the pathogenesis and etiology of adenomyosis. In our previous study, Scribble localization has been found to be partially translocated to cytoplasm; however, its regulatory mechanism is known. In consideration of the important role of supraphysiologic estrogen production in the endometrium in the development of adenomyosis, we analyzed the effect and mechanism of estrogen on Scribble localization in vivo and in vitro. Firstly, we found Scribble translocation from the basolateral membrane to the cytoplasm was easily to be seen in women and mice with adenomyosis (68% vs 27%, 60% vs 10% separately). After treatment with the S-palmitoylation inhibitor 2-bromopalmitate for 48H, cytoplasmic enrichment of Scribble and the reduced level of palm-Scribble was observed by immunofluorescence, Western blot, and acyl-biotin exchange palmitoylation assay. High estrogen exposure could not only induce partially cytoplasmic translocation of Scribble but also decrease the expression level of palm-Scribble, which can be recovered by estrogen receptor inhibitor ICI182,780. Based on following experiments, we found that estrogen regulated Scribble localization by APT through S-palmitoylation of Scribble protein. At last, IHC was performed to verify the expression of APT1 and APT2 in human clinical tissue specimens and found that they were all increased dramatically. Furthermore, positive correlations were found between APT1 or APT2 and aromatase P450. Therefore, our research may provide a new understanding of the pathogenesis of adenomyosis.
Collapse
Affiliation(s)
- Zhixing Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China.
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China.
| |
Collapse
|
9
|
Shi J, Tan X, Feng G, Zhuo Y, Jiang Z, Banda S, Wang L, Zheng W, Chen L, Yu D, Guo C. Research advances in drug therapy of endometriosis. Front Pharmacol 2023; 14:1199010. [PMID: 37416064 PMCID: PMC10320007 DOI: 10.3389/fphar.2023.1199010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Endometriosis is one of the most common benign gynecological disorders in reproductive-aged women. The major symptoms are chronic pelvic pain and infertility. Despite its profound impact on women's health and quality of life, its pathogenesis has not been fully elucidated, it cannot be cured and the long-term use of drugs yields severe side effects and hinders fertility. This review aims to present the advances in pathogenesis and the newly reported lead compounds and drugs managing endometriosis. This paper investigated Genetic changes, estrogen-dependent inflammation induction, progesterone resistance, imbalance in proliferation and apoptosis, angiogenesis, lymphangiogenesis and neurogenesis, and tissue remodeling in its pathogenesis; and explored the pharmacological mechanisms, constitutive relationships, and application prospects of each compound in the text. To date, Resveratrol, Bay1316957, and bardoxifene were effective against lesions and pain in controlled animal studies. In clinical trials, Quinagolide showed no statistical difference with the placebo group; the results of phase II clinical trial of the IL-33 antibody have not been announced yet; clinical trial stage III of vilaprisan was suspended due to drug toxicity. Elagolix was approved for the treatment of endometriosis-related pain, but clinical studies of Elagolix for the pretreatment of patients with endometriosis to before In vitro fertilization treatment have not been fulfilled. The results of a clinical study of Linzagolix in patients with moderate to severe endometriosis-related pain have not been disclosed yet. Letrozole improved the fertility of patients with mild endometriosis. For endometriosis patients with infertility, oral GnRH antagonists and aromatase inhibitors are promising drugs, especially Elagolix and Letrozole.
Collapse
Affiliation(s)
- Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Tan
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guimei Feng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yuan Zhuo
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Srikanth Banda
- Department of Chemistry and Biochemisty, Florida International University, Miami, FL, United States
| | - Lin Wang
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Wei Zheng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chun Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
10
|
Rižner TL, Romano A. Targeting the formation of estrogens for treatment of hormone dependent diseases-current status. Front Pharmacol 2023; 14:1155558. [PMID: 37188267 PMCID: PMC10175629 DOI: 10.3389/fphar.2023.1155558] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Local formation and action of estrogens have crucial roles in hormone dependent cancers and benign diseases like endometriosis. Drugs that are currently used for the treatment of these diseases act at the receptor and at the pre-receptor levels, targeting the local formation of estrogens. Since 1980s the local formation of estrogens has been targeted by inhibitors of aromatase that catalyses their formation from androgens. Steroidal and non-steroidal inhibitors have successfully been used to treat postmenopausal breast cancer and have also been evaluated in clinical studies in patients with endometrial, ovarian cancers and endometriosis. Over the past decade also inhibitors of sulfatase that catalyses the hydrolysis of inactive estrogen-sulfates entered clinical trials for treatment of breast, endometrial cancers and endometriosis, with clinical effects observed primarily in breast cancer. More recently, inhibitors of 17beta-hydroxysteroid dehydrogenase 1, an enzyme responsible for formation of the most potent estrogen, estradiol, have shown promising results in preclinical studies and have already entered clinical evaluation for endometriosis. This review aims to provide an overview of the current status of the use of hormonal drugs for the major hormone-dependent diseases. Further, it aims to explain the mechanisms behind the -sometimes- observed weak effects and low therapeutic efficacy of these drugs and the possibilities and the advantages of combined treatments targeting several enzymes in the local estrogen formation, or drugs acting with different therapeutic mechanisms.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Laboratory for Molecular Basis of Hormone-Dependent Diseases and Biomarkers, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrea Romano
- GROW Department of Gynaecology, Faculty of Health, Medicine and Life Sciences (FHML)/GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
11
|
Hall MS, Holt VL, Holzman C, Vazquez AI, Harris HR, As-Sanie S, Upson K. Breastfeeding history and adenomyosis risk using a novel case-control study design. Fertil Steril 2023; 119:644-652. [PMID: 36563837 PMCID: PMC10079609 DOI: 10.1016/j.fertnstert.2022.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/04/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To evaluate the association between breastfeeding history, including lifetime exclusive breastfeeding, and risk of adenomyosis. DESIGN We used data from a case-control study designed with 2 control groups to address the challenge of selecting noncases for a valid epidemiologic study when cases are identified by hysterectomy. The case-control study was conducted among premenopausal and postmenopausal enrollees aged 18-59 years in a large, integrated health care system in western Washington state. PATIENT(S) Cases were enrollees with incident, pathology-confirmed adenomyosis diagnosed during 2001-2006 (n = 386). The 2 control groups were as follows: (1) randomly selected age-matched enrollees with intact uteri ("population controls," n = 323) and (2) hysterectomy controls (n = 233). INTERVENTION(S) Data on breastfeeding history were collected by in-person interviews. For each reported live birth, participants were asked whether they breastfed, along with infant age at supplemental feeding introduction and breastfeeding discontinuation. MAIN OUTCOME MEASURE(S) Among participants with at least 1 live birth (330 cases, 246 population controls, and 198 hysterectomy controls), we used unconditional logistic regression to estimate adjusted odds ratios and 95% confidence intervals (CIs) for the associations between the following: (1) ever breastfeeding, (2) ever breastfeeding for ≥8 weeks, (3) lifetime breastfeeding, and (4) lifetime exclusive breastfeeding and risk of adenomyosis. Analyses were adjusted for age, reference year, smoking, education, and parity. RESULT(S) In analyses comparing cases with population controls, we observed a 40% decreased odds of adenomyosis with a history of ever breastfeeding (adjusted odds ratio, 0.6; 95% CI, 0.3-1.0) and breastfeeding for ≥8 weeks (adjusted odds ratio, 0.6; 95% CI, 0.4-0.8). The strongest associations, 60%-70% decreased odds of adenomyosis, were observed with ≥12 months of lifetime breastfeeding (vs. <3 months) (adjusted odds ratio, 0.4; 95% CI, 0.2-0.6) and 9 to <12 months of lifetime exclusive breastfeeding (vs. <3 months) (adjusted odds ratio, 0.3; 95% CI, 0.2-0.6), comparing cases to population controls. In analyses using hysterectomy controls, we observed similar patterns of associations slightly attenuated in magnitude. CONCLUSION(S) Breastfeeding history was associated with a 40% decreased odds of adenomyosis, a condition that can confer substantial morbidity and requires hysterectomy for definitive treatment. The consistency of our findings with that of a previous study lends support that breastfeeding may modify risk of adenomyosis.
Collapse
Affiliation(s)
- Mandy S Hall
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan.
| | - Victoria L Holt
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | - Claudia Holzman
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Ana I Vazquez
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan; Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan
| | - Holly R Harris
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington; Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Sawsan As-Sanie
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Kristen Upson
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan
| |
Collapse
|
12
|
Person E, Bruel S, Manzano TI, Jamin EL, Zalko D, Combelles CM. The fate of bisphenol A, bisphenol S, and their respective glucuronide metabolites in ovarian cells. Reprod Toxicol 2023; 118:108380. [PMID: 37003567 DOI: 10.1016/j.reprotox.2023.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/08/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Ovarian cells are critical for reproduction and steroidogenesis, which are functions that can be impacted by exposure to xenobiotics. As in other extra-hepatic tissues, biotransformation events may occur at the ovarian level. Such metabolic events deserve interest, notably as they may modulate the overall exposure and toxicity of xenobiotics. In this study, the comparative metabolic fate of two bisphenols was investigated in ovarian cells. Bisphenol A (BPA), a model endocrine disruptor, and its major substitute bisphenol S (BPS) were selected. Bovine granulosa cells (primary cultures) and theca explants (ex vivo tissue) were exposed for 24hr to tritium-labeled BPA, BPS and their respective glucuronides (i.e. their major circulating forms), at concentrations consistent with low-dose exposure scenarios. Mass balance studies were performed, followed by radio-HPLC profiling. The capability of both cell compartments to biotransform BPA and BPS into their respective sulfo-conjugates was demonstrated, with sulfation being the predominant metabolic route. In theca, there was a significantly higher persistence of BPA (compared to BPS) residues over 24hr. Moreover, only theca explants were able to deconjugate inactive BPA-glucuronide and BPS-glucuronide back into their biologically active aglycone forms. Deconjugation rates were demonstrated to be higher for BPS-G than for BPA-G. These findings raise concerns about the in situ direct release of bisphenols at the level of the ovary and demonstrate the relevance of exploring the biotransformation of bisphenols and their circulating metabolites in different ovarian cells with specific metabolic capabilities. This work also provides essential knowledge for the improved risk assessment of bisphenols.
Collapse
Affiliation(s)
- Elodie Person
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | - Sandrine Bruel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | | | - Emilien L Jamin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027, Toulouse, France; MetaboHUB-Metatoul, National Infrastructure of Metabolomics and Fluxomics, Metatoul-AXIOM, Toulouse, 31077, France
| | - Daniel Zalko
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | | |
Collapse
|
13
|
Hamidovic A, Soumare F, Naveed A, Davis J, Sun J, Dang N. Reduced Dehydroepiandrosterone-Sulfate Levels in the Mid-Luteal Subphase of the Menstrual Cycle: Implications to Women's Health Research. Metabolites 2022; 12:941. [PMID: 36295844 PMCID: PMC9611561 DOI: 10.3390/metabo12100941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
The regulation of DHEA-sulfate by steroid sulfotransferase (SULT) and steryl-sulfatase (STS) enzymes is a vital process for the downstream formation of many steroid hormones. DHEA-sulfate is the most abundant steroid hormone in the human body; thus, DHEA-sulfate and its hydrolyzed form, DHEA, continue to be evaluated in numerous studies, given their importance to human health. Yet, a basic question of relevance to the reproductive-age female population-whether the two steroid hormones vary across the menstrual cycle-has not been addressed. We applied a validated, multi-step protocol, involving realignment and imputation of study data to early follicular, mid-late follicular, periovulatory, and early, mid-, and late luteal subphases of the menstrual cycle, and analyzed DHEA-sulfate and DHEA serum concentrations using ultraperformance liquid chromatography tandem mass spectrometry. DHEA-sulfate levels started to decrease in the early luteal, significantly dropped in the mid-luteal, and returned to basal levels by the late luteal subphase. DHEA, however, did not vary across the menstrual cycle. The present study deep-mapped trajectories of DHEA and DHEA-sulfate across the entire menstrual cycle, demonstrating a significant decrease in DHEA-sulfate in the mid-luteal subphase. These findings are relevant to the active area of research examining associations between DHEA-sulfate levels and various disease states.
Collapse
Affiliation(s)
- Ajna Hamidovic
- Department of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Fatimata Soumare
- Department of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Aamina Naveed
- Department of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - John Davis
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jiehuan Sun
- Department of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nhan Dang
- Department of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
14
|
Overexpression of Human Estrogen Biosynthetic Enzyme Hydroxysteroid (17beta) Dehydrogenase Type 1 Induces Adenomyosis-like Phenotype in Transgenic Mice. Int J Mol Sci 2022; 23:ijms23094815. [PMID: 35563206 PMCID: PMC9104619 DOI: 10.3390/ijms23094815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
Hydroxysteroid (17beta) dehydrogenase type 1 (HSD17B1) is an enzyme that converts estrone to estradiol, while adenomyosis is an estrogen-dependent disease with poorly understood pathophysiology. In the present study, we show that mice universally over-expressing human estrogen biosynthetic enzyme HSD17B1 (HSD17B1TG mice) present with adenomyosis phenotype, characterized by histological and molecular evaluation. The first adenomyotic changes with endometrial glands partially or fully infiltrated into the myometrium appeared at the age of 5.5 months in HSD17B1TG females and became more prominent with increasing age. Preceding the phenotype, increased myometrial smooth muscle actin positivity and increased amount of glandular myofibroblast cells were observed in HSD17B1TG uteri. This was accompanied by transcriptomic upregulation of inflammatory and estrogen signaling pathways. Further, the genes upregulated in the HSD17B1TG uterus were enriched with genes previously observed to be induced in the human adenomyotic uterus, including several genes of the NFKB pathway. A 6-week-long HSD17B1 inhibitor treatment reduced the occurrence of the adenomyotic changes by 5-fold, whereas no effect was observed in the vehicle-treated HSD17B1TG mice, suggesting that estrogen is the main upstream regulator of adenomyosis-induced uterine signaling pathways. HSD17B1 is considered as a promising drug target to inhibit estrogen-dependent growth of endometrial disorders. The present data indicate that HSD17B1 over-expression in TG mice results in adenomyotic changes reversed by HSD17B1 inhibitor treatment and HSD17B1 is, thus, a potential novel drug target for adenomyosis.
Collapse
|
15
|
Emond JP, Caron P, Pušić M, Turcotte V, Simonyan D, Vogler A, Osredkar J, Rižner TL, Guillemette C. Circulating estradiol and its biologically active metabolites in endometriosis and in relation to pain symptoms. Front Endocrinol (Lausanne) 2022; 13:1034614. [PMID: 36743927 PMCID: PMC9891204 DOI: 10.3389/fendo.2022.1034614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES Endometriosis (EM) is an estrogen-dominant inflammatory disease linked to infertility that affects women of reproductive age. EM lesions respond to hormonal signals that regulate uterine tissue growth and trigger inflammation and pain. The objective of this study was to evaluate whether estradiol (E2) and its biologically active metabolites are differentially associated with EM given their estrogenic and non-estrogenic actions including proliferative and inflammatory properties. DESIGN We performed a retrospective study of 209 EM cases and 115 women without EM. METHODS Pain-related outcomes were assessed using surveys with validated scales. Preoperative serum levels of estradiol (E2) and estrone (E1), their 2-, 4- and 16- hydroxylated (OH) and methylated (MeO) derivatives (n=16) were measured by mass spectrometry. We evaluated the associations between estrogen levels and EM anatomic sites, surgical stage, risk of EM, and symptoms reported by women. Spearman correlations established the relationships between circulating steroids. RESULTS Of the sixteen estrogens profiled, eleven were detected above quantification limits in most individuals. Steroids were positively correlated, except 2-hydroxy 3MeO-E1 (2OH-3MeO-E1). Higher 2OH-3MeO-E1 was linked to an increased risk of EM (Odd ratio (OR)=1.91 (95%CI 1.09-3.34); P=0.025). Ovarian EM cases displayed enhanced 2-hydroxylation with higher 2MeO-E1 and 2OH-E1 levels (P< 0.009). Abdominal, pelvic and back pain symptoms were also linked to higher 2OH-3MeO-E1 levels (OR=1.86; 95%CI 1.06-3.27; P=0.032). CONCLUSIONS The 2-hydroxylation pathway emerges as an unfavorable feature of EM, and is associated with ovarian EM and pain related outcomes.
Collapse
Affiliation(s)
- Jean-Philippe Emond
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec – Université Laval Research Center and Faculty of Pharmacy, Université Laval, Québec City, QC, Canada
| | - Patrick Caron
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec – Université Laval Research Center and Faculty of Pharmacy, Université Laval, Québec City, QC, Canada
| | - Maja Pušić
- Laboratory for Molecular Basis and Biomarkers of Hormone Dependent Diseases, Institute of Biochemistry, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Véronique Turcotte
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec – Université Laval Research Center and Faculty of Pharmacy, Université Laval, Québec City, QC, Canada
| | - David Simonyan
- Statistical and Clinical Research Platform, CHU de Québec – Université Laval Research Center, Québec City, QC, Canada
| | - Andrej Vogler
- Department of Obstetrics & Gynaecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Joško Osredkar
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tea Lanišnik Rižner
- Laboratory for Molecular Basis and Biomarkers of Hormone Dependent Diseases, Institute of Biochemistry, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Chantal Guillemette, ; Tea Lanišnik Rižner,
| | - Chantal Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec – Université Laval Research Center and Faculty of Pharmacy, Université Laval, Québec City, QC, Canada
- Canada Research Chair in Pharmacogenomics, Université Laval, Québec City, QC, Canada
- *Correspondence: Chantal Guillemette, ; Tea Lanišnik Rižner,
| |
Collapse
|
16
|
Kulmány ÁE, Herman BE, Zupkó I, Sinreih M, Rižner TL, Savić M, Oklješa A, Nikolić A, Nagy V, Ocsovszki I, Szécsi M, Jovanović-Šanta S. Heterocyclic androstane and estrane d-ring modified steroids: Microwave-assisted synthesis, steroid-converting enzyme inhibition, apoptosis induction, and effects on genes encoding estrogen inactivating enzymes. J Steroid Biochem Mol Biol 2021; 214:105997. [PMID: 34509617 DOI: 10.1016/j.jsbmb.2021.105997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022]
Abstract
d-ring-fused and d-homo lactone compounds in estratriene and androstane series were synthesized using microwave-assisted reaction conditions. Microwave-irradiated synthesis methods were convenient and effective, and provided high yields with short reaction times. Their inhibition of C17,20-lyase and 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) activities were studied in in vitro enzyme assays. d-ring-fused triazolyl estrone analog 24 showed potent inhibition of NADH-complexed 17β-HSD1, with a binding affinity similar to that of the substrate estrone; its inhibition against NADPH-complexed 17β-HSD1 was markedly weaker. Compound 24 also significantly and selectively reduced proliferation of cancer cell lines of gynecological origin. This estrane triazole changed the cell cycle and induced apoptosis of HeLa, SiHa, and MDA-MB-231 cancer cells, measured by both increased subG1 fraction of cells and activation of caspase-independent signaling pathways. A third mode of anti-estrogenic action of 24 saw increased mRNA expression of the SULT1E1 gene in HeLa cells; in contrast, its 3-benzyloxy analog 23 increased mRNA expression of the HSD17B2 gene, thus showing pronounced pro-drug anti-estrogenic activity. Estradiol-derived d-ring triazole compound 24 thus acts at the enzyme, gene expression and cellular levels to decrease the production of active estrogen hormones, demonstrating its pharmacological potential.
Collapse
Affiliation(s)
- Ágnes Erika Kulmány
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | | | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Masa Sinreih
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marina Savić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Aleksandar Oklješa
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Andrea Nikolić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Viktória Nagy
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Imre Ocsovszki
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Mihály Szécsi
- Department of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Suzana Jovanović-Šanta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia.
| |
Collapse
|
17
|
Tavares Pereira M, Papa P, Reichler IM, Aslan S, Kowalewski MP. Luteal expression of factors involved in the metabolism and sensitivity to oestrogens in the dog during pregnancy and in non-pregnant cycle. Reprod Domest Anim 2021; 57:86-97. [PMID: 34704613 PMCID: PMC9298758 DOI: 10.1111/rda.14032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/24/2021] [Indexed: 01/11/2023]
Abstract
The canine corpus luteum (CL) is the main source of reproductive steroids during dioestrus in the dog and remains active even in the absence of pregnancy (non‐pregnant dioestrus, physiological pseudopregnancy). Whereas the biological effects of 17β‐oestradiol (E2) in the canine CL remain unclear, the transcriptional availability of oestrogen receptors, ESR1 and ESR2, as well as other modulators of local availability of E2, for example, HSD17B7 (converts oestrone into oestradiol), SULT1E1 (inactivates E2 binding capacity to its own receptors through sulphonation) and STS (reverts E2 sulphonation), were previously detected in the CL of non‐pregnant bitches. The aim of the present work was to evaluate the mRNA amounts of these factors involved in luteal sensitivity and metabolism of E2 in the canine CL during the course of non‐pregnant dioestrus (days 10, 20, 30, 40, 50 and 60 post‐ovulation, n = 5/group) and at different stages of pregnancy (n = 4‐6/group): pre‐implantation (days 8–12), post‐implantation (days 18–25), mid‐gestation (days 35–40) and prepartum luteolysis. During pregnancy, the availability of ESR1, HSD17B7, SULT1E1 and STS decreased from mid‐pregnancy to prepartum luteolysis. The main findings during non‐pregnant dioestrus were as follows: increased ESR2:ESR1 ratio on days 40 and 50 after ovulation, decreasing during luteal regression (day 60); increased STS at day 30 when SULT1E1 levels decreased; increased availability of SULT1E1 transcripts during luteal regression; and decreased amounts of HSD17B7 mRNA in early dioestrus, increasing towards later stages. These results suggest that E2 signalling and biologically active local concentrations could diverge in response to time and pregnancy status of the bitch.
Collapse
Affiliation(s)
- Miguel Tavares Pereira
- Vetsuisse Faculty, Institute of Veterinary Anatomy, University of Zurich (UZH), Zurich, Switzerland
| | - Paula Papa
- Vetsuisse Faculty, Institute of Veterinary Anatomy, University of Zurich (UZH), Zurich, Switzerland
| | - Iris Margaret Reichler
- Vetsuisse Faculty, Clinic for Reproductive Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - Selim Aslan
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Near East University, Nicosia, Turkey
| | - Mariusz Pawel Kowalewski
- Vetsuisse Faculty, Institute of Veterinary Anatomy, University of Zurich (UZH), Zurich, Switzerland.,Vetsuisse Faculty, Center for Clinical Studies (ZKS), University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
18
|
Baek HS, Kwon TU, Shin S, Kwon YJ, Chun YJ. Steroid sulfatase deficiency causes cellular senescence and abnormal differentiation by inducing Yippee-like 3 expression in human keratinocytes. Sci Rep 2021; 11:20867. [PMID: 34675221 PMCID: PMC8531280 DOI: 10.1038/s41598-021-00051-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Human steroid sulfatase (STS) is an enzyme that catalyzes the hydrolysis of dehydroepiandrosterone sulfate (DHEAS), estrone sulfate (E1S), and cholesterol sulfate. Abnormal expression of STS causes several diseases including colorectal, breast, and prostate cancer and refractory skin disease. In particular, accumulation of intracellular cholesterol sulfate by STS deficiency leads to a skin disorder with abnormal keratinization called X-linked ichthyosis (XLI). To determine the detailed mechanisms of XLI, we performed RNA sequencing (RNA-seq) analysis using human keratinocyte HaCaT cells treated with cholesterol and cholesterol sulfate. Of the genes with expression changes greater than 1.5-fold, Yippee-like 3 (YPEL3), a factor expected to affect cell differentiation, was found. Induction of YPEL3 causes permanent growth arrest, cellular senescence, and inhibition of metastasis in normal and tumor cells. In this study, we demonstrate that YPEL3 expression was induced by STS deficiency and, using the CRISPR/Cas9 system, a partial knock-out (STS+/−) cell line was constructed to establish a disease model for XLI studies. Furthermore, we show that increased expression of YPEL3 in STS-deficient cell lines promoted cellular senescence and expression of keratinization-related proteins such as involucrin and loricrin. Our results suggest that upregulation of YPEL3 expression by STS deficiency may play a crucial role in inducing cellular senescence and abnormal differentiation in human keratinocytes.
Collapse
Affiliation(s)
- Hyoung-Seok Baek
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, Republic of Korea, 06974
| | - Tae-Uk Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, Republic of Korea, 06974
| | - Sangyun Shin
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, Republic of Korea, 06974
| | - Yeo-Jung Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, Republic of Korea, 06974
| | - Young-Jin Chun
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, Republic of Korea, 06974.
| |
Collapse
|
19
|
Herman BE, Gardi J, Julesz J, Tömböly C, Szánti-Pintér E, Fehér K, Skoda-Földes R, Szécsi M. Steroidal ferrocenes as potential enzyme inhibitors of the estrogen biosynthesis. Biol Futur 2021; 71:249-264. [PMID: 34554507 DOI: 10.1007/s42977-020-00023-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/04/2020] [Indexed: 01/13/2023]
Abstract
The potential inhibitory effect of diverse triazolyl-ferrocene steroids on key enzymes of the estrogen biosynthesis was investigated. Test compounds were synthesized via copper-catalyzed cycloaddition of steroidal azides and ferrocenyl-alkynes using our efficient methodology published previously. Inhibition of human aromatase, steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) activities was investigated with in vitro radiosubstrate incubations. Some of the test compounds were found to be potent inhibitors of the STS. A compound bearing ferrocenyl side chain on the C-2 displayed a reversible inhibition, whereas C-16 and C-17 derivatives displayed competitive irreversible binding mechanism toward the enzyme. 17α-Triazolyl-ferrocene derivatives of 17β-estradiol exerted outstanding inhibitory effect and experiments demonstrated a key role of the ferrocenyl moiety in the enhanced binding affinity. Submicromolar IC50 and Ki parameters enroll these compounds to the group of the most effective STS inhibitors published so far. STS inhibitory potential of the steroidal ferrocenes may lead to the development of novel compounds able to suppress in situ biosynthesis of 17β-estradiol in target tissues.
Collapse
Affiliation(s)
- Bianka Edina Herman
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary
| | - János Gardi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary
| | - János Julesz
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, P. O. Box 521, Szeged, 6726, Hungary
| | - Eszter Szánti-Pintér
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Egyetem utca 10, P. O. Box 158, Veszprém, 8200, Hungary
| | - Klaudia Fehér
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Egyetem utca 10, P. O. Box 158, Veszprém, 8200, Hungary
| | - Rita Skoda-Földes
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Egyetem utca 10, P. O. Box 158, Veszprém, 8200, Hungary.
| | - Mihály Szécsi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary.
| |
Collapse
|
20
|
Wang S, Ji C, Li F, Zhan J, Sun T, Tang J, Wu H. Tetrabromobisphenol A induced reproductive endocrine-disrupting effects in mussel Mytilus galloprovincialis. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126228. [PMID: 34492982 DOI: 10.1016/j.jhazmat.2021.126228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
Abstract
Tetrabromobisphenol A (TBBPA) pollution in marine environmental media poses great risks to marine organisms due to its potential endocrine-disrupting effects. However, limited attention of TBBPA's endocrine-disrupting effects has been paid on marine invertebrates. In this work, the reproductive endocrine-disrupting effects of TBBPA were evaluated by observing the gametes development, quantifying the gender-specific gene expression, and determining vertebrate sex hormones in mussels Mytilus galloprovincialis treated with TBBPA for 30 days. Additionally, transcriptomic profiling and enzymes activities were conducted to investigate the potential mechanisms of reproductive endocrine-disrupting effects. We found that promotion of gametogenesis and alterations of vertebrate sex hormones occurred in TBBPA-treated mussels of both sexes. Meanwhile, estrogen sulfotransferase (SULT1E1) and steroid sulfatase (STS) were up-regulated at transcript level as a result of TBBPA treatments, suggesting that TBBPA disrupted the steroidogenesis in mussels through promoting steroids sulfonation and hydrolysis of sulfate steroids. The induction of SULTs for TBBPA biotransformation might be responsible for the dysregulation of steroidogenesis and steroids metabolism. Overall, these findings provide a new insight into assessing impact of TBBPA as well as TBBPA biomonitoring in marine environment.
Collapse
Affiliation(s)
- Shuang Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 26071, PR China.
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 26071, PR China
| | - Junfei Zhan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 26071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 26071, PR China.
| |
Collapse
|
21
|
Lespérance M, Roy J, Djiemeny Ngueta A, Maltais R, Poirier D. Synthesis of 16β-derivatives of 3-(2-bromoethyl)-estra-1,3,5(10)-trien-17β-ol as inhibitors of 17β-HSD1 and/or steroid sulfatase for the treatment of estrogen-dependent diseases. Steroids 2021; 172:108856. [PMID: 33945801 DOI: 10.1016/j.steroids.2021.108856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/26/2022]
Abstract
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) and steroid sulfatase (STS) are involved in the synthesis of the most potent estrogen in the human body, estradiol (E2). These enzymes are known to play a pivotal role in the progression of estrogen-dependent diseases, such as breast cancer and endometriosis. Therefore, the inhibition of 17β-HSD1 and/or STS represents a promising avenue to modulate the growth of estrogen-dependent tumors or lesions. We recently established the key role of a bromoethyl side chain added at the C3-position of a 16β-carbamoyl-benzyl-E2 nucleus to covalently inhibit 17β-HSD1. To extend the structure-activity relationship study to the C16β-position of this new selective irreversible inhibitor (PBRM), we synthesized a series of analog compounds by changing the nature of the C16β-side chain but keeping the 2-bromoethyl group at position C3. We determined their 17β-HSD1 inhibitions in T-47D cells (transformation of E1 into E2), but we did not obtain a stronger 17β-HSD1 inhibitor than PBRM. Compounds 16 and 17 were found to be more likely to bind to the catalytic site and showed a promising but moderate inhibitory activity with estimated IC50 values of 0.5 and 0.7 µM, respectively (about 10 times higher than PBRM). Interestingly, adding one or two sulfamate groups in the D-ring's surroundings did not significantly decrease compounds' potential to inhibit 17β-HSD1, but clearly improved their potential to inhibit STS. These results open the door to the development of a new family of steroid derivatives with dual (17β-HSD1 and STS) inhibiting actions.
Collapse
Affiliation(s)
- Maxime Lespérance
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC G1V4G2, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC G1V4G2, Canada
| | - Adrien Djiemeny Ngueta
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC G1V4G2, Canada
| | - René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC G1V4G2, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC G1V4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V0A6, Canada.
| |
Collapse
|
22
|
Calvillo-Robledo A, Pedernera E, Morales-Vásquez F, Pérez-Montiel D, Gómora MJ, Almaraz MÁ, de Alba Graue PG, Rendón E, López-Basave HN, Quintanar-Stephano A, Méndez C. Simultaneous expression of steroid sulfatase and androgen receptor reduced overall survival of patients with epithelial ovarian tumors. J Ovarian Res 2021; 14:98. [PMID: 34321053 PMCID: PMC8320173 DOI: 10.1186/s13048-021-00840-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ovarian cancer is usually diagnosed at an advanced stage due to its early asymptomatic course and late-stage non-specific symptoms. This highlights the importance of researching the molecular mechanisms involved in ovarian carcinogenesis as well as the discovery of novel prognostic markers that could help improve the survival outcome of patients. The aim of this study was to evaluate the expression of the steroid sulfatase (STS) in 154 samples of primary ovarian tumors. This protein is crucial in the intracellular conversion of sulfated steroid hormones to active steroid hormones. The presence of STS, 3β-HSD, and 17β-HSD1 result in the production of testosterone which act through the androgen receptor (AR) in the tumor cell. The presence of STS and AR in epithelial ovarian tumors and their association to the overall survival of patients was evaluated using Kaplan-Meier and Cox regression analyses. RESULTS Immunoreactivity for STS was detected in 65% of the tumors and no association was observed with histological subtypes and clinical stages of the tumor. The STS expression in the tumors exhibiting immunoreactive AR resulted in a reduced survival (log-rank test, p = 0.032) and a risk factor in univariate and multivariate analysis, HR = 3.46, CI95% 1.00-11.92, p = 0.049 and HR = 5.92, CI95% 1.34-26.09, p = 0.019, respectively. CONCLUSIONS These findings suggest that the intracellular synthesis of testosterone acting through its receptor can promote tumor growth and progression. Moreover, the simultaneous expression of STS and AR constitutes an independent predictor of poor prognosis in epithelial ovarian tumors.
Collapse
Affiliation(s)
- Argelia Calvillo-Robledo
- Departamento de Fisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad. No. 940, CD. Universitaria, Aguascalientes, AG, C.P. 20131, México
| | - Enrique Pedernera
- Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad. 3000, Ciudad de México, C.P. 04510, México
| | - Flavia Morales-Vásquez
- Instituto Nacional de Cancerología, Secretaría de Salud de México, Ciudad de México, México
| | - Delia Pérez-Montiel
- Instituto Nacional de Cancerología, Secretaría de Salud de México, Ciudad de México, México
| | - María J Gómora
- Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad. 3000, Ciudad de México, C.P. 04510, México
| | - Miguel Ángel Almaraz
- Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad. 3000, Ciudad de México, C.P. 04510, México
| | - Paulina García de Alba Graue
- Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad. 3000, Ciudad de México, C.P. 04510, México
| | - Elizabeth Rendón
- Hospital Militar de Especialidades de la Mujer y Neonatología, Secretaría de la Defensa Nacional, Ciudad de México, México
| | | | - Andrés Quintanar-Stephano
- Departamento de Fisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad. No. 940, CD. Universitaria, Aguascalientes, AG, C.P. 20131, México.
| | - Carmen Méndez
- Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad. 3000, Ciudad de México, C.P. 04510, México.
| |
Collapse
|
23
|
Javadi MHS, Iraji A, Safavi M, Montazeri H, Tarighi P, Eftekhari S, Navidpour L, Mirfazli SS. Design, synthesis and apoptosis inducing activity of nonsteroidal flavone-methanesulfonate derivatives on MCF-7 cell line as potential sulfatase inhibitor. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02767-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Schuler G. Steroid sulfates in domestic mammals and laboratory rodents. Domest Anim Endocrinol 2021; 76:106622. [PMID: 33765496 DOI: 10.1016/j.domaniend.2021.106622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 12/15/2022]
Abstract
Historically steroid sulfates have been considered predominantly as inactive metabolites. It was later discovered that by cleavage of the sulfate residue by steroid sulfatase (STS), they can be (re-)converted into active forms or into precursors for the local production of active steroids. This sulfatase pathway is now a very active field of research, which has gained considerable interest particularly in connection with the steroid metabolism of human steroid hormone-dependent cancer tissue. In comparison, there is much less information available on the occurrence of the sulfatase pathway in physiological settings, where the targeted uptake of steroid sulfates by specific transporters and their hydrolysis could serve to limit steroid effects to a subgroup of potentially steroid responsive cells. In humans, steroid sulfates of adrenal origin circulate in intriguingly high concentrations throughout most of life. Thus, ample substrate is available for the sulfatase pathway regardless of sex. However, the abundant adrenal output of steroid sulfates is a specific feature of select primates. Compared to humans, in our domestic mammals (dogs, cats, domestic ungulates) and laboratory rodents (mouse, rat) research into the biology of steroid sulfates is still in its infancy and information on the subject has so far been largely limited to punctual observations, which indicate considerable species-specific peculiarities. The aim of this overview is to provide a summary of the relevant information available in the above-mentioned species, predominantly taking into account data on concentrations of steroid sulfates in blood as well as the expression patterns and activities of relevant sulfotransferases and STS.
Collapse
Affiliation(s)
- G Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Faculty of Veterinary Medicine, Justus-Liebig-University, 35392 Giessen, Germany.
| |
Collapse
|
25
|
Foster PA. Steroid Sulphatase and Its Inhibitors: Past, Present, and Future. Molecules 2021; 26:2852. [PMID: 34064842 PMCID: PMC8151039 DOI: 10.3390/molecules26102852] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/22/2022] Open
Abstract
Steroid sulphatase (STS), involved in the hydrolysis of steroid sulphates, plays an important role in the formation of both active oestrogens and androgens. Since these steroids significantly impact the proliferation of both oestrogen- and androgen-dependent cancers, many research groups over the past 30 years have designed and developed STS inhibitors. One of the main contributors to this field has been Prof. Barry Potter, previously at the University of Bath and now at the University of Oxford. Upon Prof. Potter's imminent retirement, this review takes a look back at the work on STS inhibitors and their contribution to our understanding of sulphate biology and as potential therapeutic agents in hormone-dependent disease. A number of potent STS inhibitors have now been developed, one of which, Irosustat (STX64, 667Coumate, BN83495), remains the only one to have completed phase I/II clinical trials against numerous indications (breast, prostate, endometrial). These studies have provided new insights into the origins of androgens and oestrogens in women and men. In addition to the therapeutic role of STS inhibition in breast and prostate cancer, there is now good evidence to suggest they may also provide benefits in patients with colorectal and ovarian cancer, and in treating endometriosis. To explore the potential of STS inhibitors further, a number of second- and third-generation inhibitors have been developed, together with single molecules that possess aromatase-STS inhibitory properties. The further development of potent STS inhibitors will allow their potential therapeutic value to be explored in a variety of hormone-dependent cancers and possibly other non-oncological conditions.
Collapse
Affiliation(s)
- Paul A. Foster
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK; ; Tel.: +44-121-414-3776
- Centre for Endocrinology, Metabolism and Diabetes, University of Birmingham, Birmingham Health Partners, Birmingham B15 2TT, UK
| |
Collapse
|
26
|
Anbar HS, Isa Z, Elounais JJ, Jameel MA, Zib JH, Samer AM, Jawad AF, El-Gamal MI. Steroid sulfatase inhibitors: the current landscape. Expert Opin Ther Pat 2021; 31:453-472. [PMID: 33783295 DOI: 10.1080/13543776.2021.1910237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Steroid sulfatase (STS) enzyme is responsible for transforming the inactive sulfate metabolites of steroid sex hormones into the active free steroids. Both the deficiency and the over-expression of STS are associated with the pathophysiology of certain diseases. This article provides the readership with a comprehensive review about STS enzyme and its recently reported inhibitors.Areas covered: In the present article, we reviewed the structure, location, and substrates of STS enzyme, physiological functions of STS, and disease states related to over-expression or deficiency of STS enzyme. STS inhibitors reported during the last five years (2016-present) have been reviewed as well.Expert opinion: Irosustat is the most successful STS inhibitor drug candidate so far. It is currently under investigation in clinical trials for treatment of estrogen-dependent breast cancer. Non-steroidal sulfamate is the most favorable scaffold for STS inhibitor design. They can be beneficial for the treatment of hormone-dependent cancers and neurodegenerative disorders without significant estrogenic side effects. Moreover, dual-acting molecules (inhibitors of STS + another synergistic mechanism) can be therapeutically efficient.
Collapse
Affiliation(s)
- Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Zahraa Isa
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Jana J Elounais
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Mariam A Jameel
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Joudi H Zib
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Aya M Samer
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Aya F Jawad
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
27
|
Pavlič R, Vidic S, Anko M, Knific T, Büdefeld T, Marton K, Sinreih M, Poschner S, Jäger W, Frković-Grazio S, Rižner TL. Altered Profile of E1-S Transporters in Endometrial Cancer: Lower Protein Levels of ABCG2 and OSTβ and Up-Regulation of SLCO1B3 Expression. Int J Mol Sci 2021; 22:3819. [PMID: 33917029 PMCID: PMC8067723 DOI: 10.3390/ijms22083819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
Endometrial cancer (EC) is associated with increased estrogen actions. Locally, estrogens can be formed from estrone-sulphate (E1-S) after cellular uptake by organic anion-transporting polypeptides (OATP) or organic anion transporters (OAT). Efflux of E1-S is enabled by ATP Binding Cassette transporters (ABC) and organic solute transporter (OST)αβ. Currently, 19 E1-S transporters are known but their roles in EC are not yet understood. Here, we analysed levels of E1-S transporters in Ishikawa (premenopausal EC), HEC-1-A (postmenopausal EC), HIEEC (control) cell lines, in EC tissue, examined metabolism of steroid precursor E1-S, studied effects of OATPs' inhibition and gene-silencing on E1-S uptake, and assessed associations between transporters and histopathological data. Results revealed enhanced E1-S metabolism in HEC-1-A versus Ishikawa which could be explained by higher levels of OATPs in HEC-1-A versus Ishikawa, especially 6.3-fold up-regulation of OATP1B3 (SLCO1B3), as also confirmed by immunocytochemical staining and gene silencing studies, lower ABCG2 expression and higher levels of sulfatase (STS). In EC versus adjacent control tissue the highest differences were seen for ABCG2 and SLC51B (OSTβ) which were 3.0-fold and 2.1-fold down-regulated, respectively. Immunohistochemistry confirmed lower levels of these two transporters in EC versus adjacent control tissue. Further analysis of histopathological data indicated that SLCO1B3 might be important for uptake of E1-S in tumours without lymphovascular invasion where it was 15.6-fold up-regulated as compared to adjacent control tissue. Our results clearly indicate the importance of E1-S transporters in EC pathophysiology and provide a base for further studies towards development of targeted treatment.
Collapse
Affiliation(s)
- Renata Pavlič
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.P.); (S.V.); (M.A.); (T.K.); (T.B.); (K.M.); (M.S.)
| | - Suzana Vidic
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.P.); (S.V.); (M.A.); (T.K.); (T.B.); (K.M.); (M.S.)
| | - Maja Anko
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.P.); (S.V.); (M.A.); (T.K.); (T.B.); (K.M.); (M.S.)
| | - Tamara Knific
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.P.); (S.V.); (M.A.); (T.K.); (T.B.); (K.M.); (M.S.)
| | - Tomaž Büdefeld
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.P.); (S.V.); (M.A.); (T.K.); (T.B.); (K.M.); (M.S.)
| | - Kristina Marton
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.P.); (S.V.); (M.A.); (T.K.); (T.B.); (K.M.); (M.S.)
| | - Maša Sinreih
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.P.); (S.V.); (M.A.); (T.K.); (T.B.); (K.M.); (M.S.)
| | - Stefan Poschner
- Department of Pharmaceutical Chemistry, University of Vienna, 1090 Vienna, Austria; (S.P.); (W.J.)
| | - Walter Jäger
- Department of Pharmaceutical Chemistry, University of Vienna, 1090 Vienna, Austria; (S.P.); (W.J.)
| | - Snježana Frković-Grazio
- Department of Gynecological Pathology, Division of Gynaecology and Obstetrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.P.); (S.V.); (M.A.); (T.K.); (T.B.); (K.M.); (M.S.)
| |
Collapse
|
28
|
Nakai Y, Maeda E, Kanda T, Ikemura M, Ushiku T, Sasajima Y, Isshiki S, Abe O. Uterine adenomyosis with extensive glandular proliferation: case series of a rare imaging variant. ACTA ACUST UNITED AC 2021; 26:153-159. [PMID: 32209513 DOI: 10.5152/dir.2019.19252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PURPOSE We aimed to investigate the clinical and magnetic resonance imaging (MRI) characteristics of uterine adenomyosis, in which there is an extensive area of high signal intensity in the myometrium on T2-weighted MRI. METHODS This retrospective radiographic study reviewed a case series of six patients (mean age, 36 years) with adenomyosis. These patients were selected because, unlike in classical adenomyosis, T2-weighted images showed a larger area of high signal intensity than that of low signal intensity in the myometrium. The morphology of the myometrial lesions, patterns of contrast enhancement (n=4), intramyometrial hemorrhaging, diffusion restriction (n=5), endometrial lesions, and imaging findings after treatment (n=3) were evaluated on MRI. RESULTS The patients' clinical symptoms included vaginal bleeding and severe anemia. Four were administered hormonal therapy, one underwent hysterectomy, and one underwent enucleation. On T2-weighted images, all showed endometrial thickening and a high signal intensity area in the myometrium that was divided up by a mesh of low signal intensity bands, with an appearance reminiscent of a fish caught in a net. Other findings included gradual centripetal enhancement with contrast defects in multicystic areas (4/4), an intramyometrial hemorrhage (1/6), and increased diffusion (5/5). Following hormonal therapy, the uteruses decreased in size and were similar to those of classical adenomyosis on MRI (3/3). The lesions were diagnosed as adenomyosis with a proliferation of adenomyotic glandular tissue and a proliferative endometrial polyp. CONCLUSION This case series suggests that there is a subgroup of uterine adenomyosis that shows a characteristic "fish-in-a-net" appearance on T2-weighted images.
Collapse
Affiliation(s)
- Yudai Nakai
- Department of Radiology, The University of Tokyo School of Medicine, Tokyo, Japan;Department of Radiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Eriko Maeda
- Department of Radiology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Tomonori Kanda
- Department of Radiology, Kobe University School of Medicine, Hyogo, Japan
| | - Masako Ikemura
- Department of Pathology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Yuko Sasajima
- Department of Pathology, Teikyo University School of Medicine, Tokyo, Japan
| | - Saiko Isshiki
- Department of Radiology, Nippon Medical School Musashikosugi Hospital, Kanagawa, Japan
| | - Osamu Abe
- Department of Radiology, The University of Tokyo School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Fedota OM, Roshcheniuk LV, Sadovnychenko IO, Gontar JV, Merenkova IM, Vorontsov VM, Ryzhko PP. Genetic Study of X-Linked Recessive Ichthyosis in Eastern Ukraine. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Kim YC, Lee SR, Jeon HJ, Kim K, Kim MJ, Choi SD, Lee SE. Acute toxicities of fluorene, fluorene-1-carboxylic acid, and fluorene-9-carboxylic acid on zebrafish embryos (Danio rerio): Molecular mechanisms of developmental toxicities of fluorene-1-carboxylic acid. CHEMOSPHERE 2020; 260:127622. [PMID: 32673875 DOI: 10.1016/j.chemosphere.2020.127622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
In this study, fluorene (FL), FL-1-carboxylic acid (FC-1), and FL-9-carboxylic acid (FC-9) were investigated to understand their acute toxicity by measuring inhibitory effects on hatching rates and developmental processes of zebrafish embryos (Danio rerio). For exposure concentrations up to 3000 μg/L, FC-1 alone showed acute toxicity at 1458 μg/L for LC50 value. FC-1 caused yolk sac and spinal deformities, and pericardial edema. Molecular studies were undertaken to understand FC-1 toxicity examining 61 genes after exposure to 5 μM (equivalent to LC20 value of FC-1) in embryos. In the FC-1-treated embryos, the expression of the cyp7a1 gene, involved in bile acid biosynthesis, was dramatically decreased, while the expression of the Il-1β gene involved in inflammation was remarkably increased. In addition to these findings, in FC-1-treated embryos, the expression of nppa gene related to the differentiation of the myocardium was 3-fold increased. On the other hand, cyp1a, cyp3a, ugt1a1, abcc4, mdr1, and sult1st1 responsible for detoxification of xenobiotics were upregulated in FC-9-treated embryos. Taken together, carboxylation on carbon 1 of FL increased acute toxicity in zebrafish embryos, and its toxicity might be related to morphological changes with modification of normal biological functions and lowered defense ability.
Collapse
Affiliation(s)
- Yong-Chan Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Ryong Lee
- Department of Biological and Environmental Science, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Hwang-Ju Jeon
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyeongnam Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Myoung-Jin Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung-Deuk Choi
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sung-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
31
|
Daśko M, Demkowicz S, Biernacki K, Ciupak O, Kozak W, Masłyk M, Rachon J. Recent progress in the development of steroid sulphatase inhibitors - examples of the novel and most promising compounds from the last decade. J Enzyme Inhib Med Chem 2020; 35:1163-1184. [PMID: 32363947 PMCID: PMC7241464 DOI: 10.1080/14756366.2020.1758692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023] Open
Abstract
The purpose of this review article is to provide an overview of recent achievements in the synthesis of novel steroid sulphatase (STS) inhibitors. STS is a crucial enzyme in the biosynthesis of active hormones (including oestrogens and androgens) and, therefore, represents an extremely attractive molecular target for the development of hormone-dependent cancer therapies. The inhibition of STS may effectively reduce the availability of active hormones for cancer cells, causing a positive therapeutic effect. Herein, we report examples of novel STS inhibitors based on steroidal and nonsteroidal cores that contain various functional groups (e.g. sulphamate and phosphorus moieties) and halogen atoms, which may potentially be used in therapies for hormone-dependent cancers. The presented work also includes examples of multitargeting agents with STS inhibitory activities. Furthermore, the fundamental discoveries in the development of the most promising drug candidates exhibiting STS inhibitory activities are highlighted.
Collapse
Affiliation(s)
- Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Witold Kozak
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environment Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Janusz Rachon
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
32
|
Kolchina NV, Rychkov GN, Kulminskaya AA, Ibatullin FM, Petukhov MG, Bobrov KS. Structural Organization of the Active Center of Unmodified Recombinant Sulfatase from the Mycelial Fungi Fusarium proliferatum LE1. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Sanchez LD, Pontini L, Marinozzi M, Sanchez-Aranguren LC, Reis A, Dias IHK. Cholesterol and oxysterol sulfates: Pathophysiological roles and analytical challenges. Br J Pharmacol 2020; 178:3327-3341. [PMID: 32762060 DOI: 10.1111/bph.15227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023] Open
Abstract
Cholesterol and oxysterol sulfates are important regulators of lipid metabolism, inflammation, cell apoptosis, and cell survival. Among the sulfate-based lipids, cholesterol sulfate (CS) is the most studied lipid both quantitatively and functionally. Despite the importance, very few studies have analysed and linked the actions of oxysterol sulfates to their physiological and pathophysiological roles. Overexpression of sulfotransferases confirmed the formation of a range of oxysterol sulfates and their antagonistic effects on liver X receptors (LXRs) prompting further investigations how are the changes to oxysterol/oxysterol sulfate homeostasis can contribute to LXR activity in the physiological milieu. Here, we aim to bring together for novel roles of oxysterol sulfates, the available techniques and the challenges associated with their analysis. Understanding the oxysterol/oxysterol sulfate levels and their pathophysiological mechanisms could lead to new therapeutic targets for metabolic diseases. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
| | - Lorenzo Pontini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maura Marinozzi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Ana Reis
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
34
|
Yilmaz BD, Bulun SE. Endometriosis and nuclear receptors. Hum Reprod Update 2020; 25:473-485. [PMID: 30809650 DOI: 10.1093/humupd/dmz005] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/03/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endometriosis is recognized as a steroid-dependent disorder; however, the precise roles of nuclear receptors (NRs) in steroid responsiveness and other signaling pathways are not well understood. OBJECTIVE AND RATIONALE Over the past several years, a number of paradigm-shifting breakthroughs have occurred in the area of NRs in endometriosis. We review and clarify new information regarding the mechanisms responsible for: (i) excessive estrogen biosynthesis, (ii) estrogen-dependent inflammation, (iii) defective differentiation due to progesterone resistance and (iv) enhanced survival due to deficient retinoid production and action in endometriosis. We emphasize the roles of the relevant NRs critical for these pathological processes in endometriosis. SEARCH METHODS We conducted a comprehensive search using PubMed for human, animal and cellular studies published until 2018 in the following areas: endometriosis; the steroid and orphan NRs, estrogen receptors alpha (ESR1) and beta (ESR2), progesterone receptor (PGR), steroidogenic factor-1 (NR5A1) and chicken ovalbumin upstream promoter-transcription factor II (NR2F2); and retinoids. OUTCOMES Four distinct abnormalities in the intracavitary endometrium and extra-uterine endometriotic tissue underlie endometriosis progression: dysregulated differentiation of endometrial mesenchymal cells, abnormal epigenetic marks, inflammation activated by excess estrogen and the development of progesterone resistance. Endometriotic stromal cells compose the bulk of the lesions and demonstrate widespread epigenetic abnormalities. Endometriotic stromal cells also display a wide range of abnormal NR expression. The orphan NRs NR5A1 and NR2F2 compete to regulate steroid-synthesizing genes in endometriotic stromal cells; NR5A1 dominance gives rise to excessive estrogen formation. Endometriotic stromal cells show an abnormally low ESR1:ESR2 ratio due to excessive levels of ESR2, which mediates an estrogen-driven inflammatory process and prostaglandin formation. These cells are also deficient in PGR, leading to progesterone resistance and defective retinoid synthesis. The pattern of NR expression, involving low ESR1 and PGR and high ESR2, is reminiscent of uterine leiomyoma stem cells. This led us to speculate that endometriotic stromal cells may display stem cell characteristics found in other uterine tissues. The biologic consequences of these abnormalities in endometriotic tissue include intense inflammation, defective differentiation and enhanced survival. WIDER IMPLICATIONS Steroid- and other NR-related abnormalities exert genome-wide biologic effects via interaction with defective epigenetic programming and enhance inflammation in endometriotic stromal cells. New synthetic ligands, targeting PGR, retinoic acid receptors and ESR2, may offer novel treatment options.
Collapse
Affiliation(s)
- Bahar D Yilmaz
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 250 E. Superior Street, Chicago, IL, USA
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 250 E. Superior Street, Chicago, IL, USA
| |
Collapse
|
35
|
Celecoxib, a selective COX-2 inhibitor, markedly reduced the severity of tamoxifen-induced adenomyosis in a murine model. Exp Ther Med 2020; 19:3289-3299. [PMID: 32266025 PMCID: PMC7132242 DOI: 10.3892/etm.2020.8580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to evaluate the effects of the selective cyclooxygenase (COX)-2 inhibitor celecoxib on the development of uterine adenomyosis in mice. ICR neonatal mice were first exposed to tamoxifen to establish a mouse model of adenomyosis. Following 60 days of celecoxib treatment, pathological formation of adenomyosis lesions and the depth of myometrial infiltration were evaluated using hematoxylin and eosin staining. To examine thermal pain modulation in mice, a hotplate test was conducted every 15 days from postnatal day 30 onwards. Immunohistochemistry was performed to assess the expression of aromatase P450, N-cadherin, E-cadherin, COX-2 and cluster of differentiation 31, whereas the levels of estrogen were analyzed in uterine tissue homogenates using ELISA. Masson trichrome staining was performed to assess the extent of fibrosis in the uterus. Celecoxib treatment significantly inhibited the depth of infiltration into the myometrium, resulting in significantly reduced disease severity. Treatment with high doses of celecoxib significantly prolonged thermal response latency. Following celecoxib treatment, the expression of E-cadherin was significantly increased whereas the expression of N-cadherin was significantly decreased. Concomitantly, the extent of fibrosis was also reduced following celecoxib treatment. Uterine tissue homogenates isolated from mice treated with both high and low doses of celecoxib exhibited lower concentrations of estrogen and decreased expression of aromatase P450. These observations suggest that celecoxib reduces adenomyosis severity by suppressing estrogen production in the uterus, reversing epithelial-mesenchymal transition and relieving fibrosis. Taken together, the results of the present study support the potential use of celecoxib, a selective COX-2 inhibitor, for the treatment of adenomyosis.
Collapse
|
36
|
Du L, Du DH, Chen B, Ding Y, Zhang T, Xiao W. Anti-Inflammatory Activity of Sanjie Zhentong Capsule Assessed By Network Pharmacology Analysis of Adenomyosis Treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:697-713. [PMID: 32109994 PMCID: PMC7039068 DOI: 10.2147/dddt.s228721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/08/2020] [Indexed: 12/23/2022]
Abstract
Background Sanjie Zhentong capsule (SZC) offers excellent effect in treating adenomyosis (AM), which is a common and difficult gynecological disease in the clinic. However, the systematic analysis of its mechanism has not been carried out yet and further studies are needed to reveal the role of SZC. Methods A systematic network pharmacology analysis was conducted by integrating construction of SZC compound database and AM target database, prediction of potential active compounds and targets by molecular docking combined with compound-target prediction graph (CTPG), protein-protein interaction (PPI) analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Then, the anti-inflammation experiments in vitro were performed by investigating SZC and the representative compounds regulating nitric oxide (NO), interleukin-6 (IL-6), and interleukin-10 (IL-10). Results Our findings show that SZC mainly treated AM by stimulating 28 core targets through 30 key potential active compounds, and affecting 4 crucial pathways. The treatment was associated with inflammation reaction, hormone regulation, cell adhesion, proliferation, and angiogenesis. Additionally, SZC achieved the anti-inflammatory activity by the cooperation of the compounds through inhibiting NO and IL-6, both promoting and inhibiting IL-10. Conclusion This study investigated the anti-inflammatory activity of SZC based on a systematic analysis of SZC remedying AM, which was revealed to be one of the essential mechanisms. These findings will provide valuable guidance for further research of the SZC treatment of AM, and help improve the comprehension of SZC pharmacological basis as well as AM pathogenesis.
Collapse
Affiliation(s)
- Li Du
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - De-Hui Du
- Shanghai Key Laboratory of Trustworthy Computing and Software Engineering Institute, East China Normal University, Shanghai, People's Republic of China
| | - Biao Chen
- Shanghai Key Laboratory of Trustworthy Computing and Software Engineering Institute, East China Normal University, Shanghai, People's Republic of China
| | - Yue Ding
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wei Xiao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Jiangsu Kanion Pharmaceutical Co., Ltd, Jiangsu, People's Republic of China
| |
Collapse
|
37
|
Maltais R, Ngueta Djiemeny A, Roy J, Barbeau X, Lambert JP, Poirier D. Design and synthesis of dansyl-labeled inhibitors of steroid sulfatase for optical imaging. Bioorg Med Chem 2020; 28:115368. [PMID: 32122754 DOI: 10.1016/j.bmc.2020.115368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
Steroid sulfatase (STS) is an important enzyme regulating the conversion of sulfated steroids into their active hydroxylated forms. Notably, the inhibition of STS has been shown to decrease the levels of active estrogens and was translated into clinical trials for the treatment of breast cancer. Based on quantitative structure-activity relationship (QSAR) and molecular modeling studies, we herein report the design of fluorescent inhibitors of STS by adding a dansyl group on an estrane scaffold. Synthesis of 17α-dansylaminomethyl-estradiol (7) and its sulfamoylated analog 8 were achieved from estrone in 5 and 6 steps, respectively. Inhibition assays on HEK-293 cells expressing exogenous STS revealed a high level of inhibition for compound 7 (IC50 = 69 nM), a value close to the QSAR model prediction (IC50 = 46 nM). As an irreversible inhibitor, sulfamate 8 led to an even more potent inhibition in the low nanomolar value (IC50 = 2.1 nM). In addition, we show that the potent STS inhibitor 8 can be employed as an optical imaging tool to investigate intracellular enzyme sub-localization as well as inhibitory behavior. As a result, confocal microscopy analysis confirmed good penetration of the STS fluorescent inhibitor 8 in cells and its localization in the endoplasmic reticulum where STS is localized.
Collapse
Affiliation(s)
- René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center, Québec, QC, Canada
| | - Adrien Ngueta Djiemeny
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center, Québec, QC, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center, Québec, QC, Canada
| | - Xavier Barbeau
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center, Québec, QC, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center, Québec, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
38
|
Hng Y, Lin MH, Lin TS, Liu IC, Lin IC, Lu YL, Chang CN, Chiu PF, Tsai KC, Chen MJ, Liang PH. Design and synthesis of 3-benzylaminocoumarin-7-O-sulfamate derivatives as steroid sulfatase inhibitors. Bioorg Chem 2020; 96:103618. [PMID: 32059152 DOI: 10.1016/j.bioorg.2020.103618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 01/06/2023]
Abstract
Steroid sulfatase (STS) is a sulfatase enzyme that catalyzes the conversion of sulfated steroid precursors to free steroid. The inhibition of STS could abate estrogenic steroids that stimulate the proliferation and development of breast cancer, and therefore STS is a potential target for adjuvant endocrine therapy. In this study, a series of 3-benzylaminocoumarin-7-O-sulfamate derivatives targeting STS were designed and synthesized. Structure-relationship activities (SAR) analysis revealed that attachment of a benzylamino group at the 3-position of coumarin improved inhibitory activity. Compound 3j was found to have the highest inhibition activity against human placenta isolated STS (IC50 0.13 μM) and MCF-7 cell lines (IC50 1.35 µM). Kinetic studies found compound 3j to be an irreversible inhibitor of STS, with KI and kinact value of 86.9 nM and 158.7 min-1, respectively.
Collapse
Affiliation(s)
- Yue Hng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Mei-Hsiang Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Tzung-Sheng Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - I-Chen Liu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - I-Chun Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yeh-Lin Lu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chiao-Nien Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Pei-Fang Chiu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan
| | - Mei-Jou Chen
- Department of Obstetrics and Gynecology and Livia Shangyu Wan Scholar, National Taiwan University Hospital, National Taiwan University, College of Medicine, Taipei 100, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Genomics Research Center, Academia Sinica, Taipei 128, Taiwan.
| |
Collapse
|
39
|
Duncan KA. Estrogen Formation and Inactivation Following TBI: What we Know and Where we Could go. Front Endocrinol (Lausanne) 2020; 11:345. [PMID: 32547495 PMCID: PMC7272601 DOI: 10.3389/fendo.2020.00345] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/04/2020] [Indexed: 01/27/2023] Open
Abstract
Traumatic brain injury (TBI) is responsible for various neuronal and cognitive deficits as well as psychosocial dysfunction. Characterized by damage inducing neuroinflammation, this response can cause an acute secondary injury that leads to widespread neurodegeneration and loss of neurological function. Estrogens decrease injury induced neuroinflammation and increase cell survival and neuroprotection and thus are a potential target for use following TBI. While much is known about the role of estrogens as a neuroprotective agent following TBI, less is known regarding their formation and inactivation following damage to the brain. Specifically, very little is known surrounding the majority of enzymes responsible for the production of estrogens. These estrogen metabolizing enzymes (EME) include aromatase, steroid sulfatase (STS), estrogen sulfotransferase (EST/SULT1E1), and some forms of 17β-hydroxysteroid dehydrogenase (HSD17B) and are involved in both the initial conversion and interconversion of estrogens from precursors. This article will review and offer new prospective and ideas on the expression of EMEs following TBI.
Collapse
|
40
|
Jacenik D, Krajewska WM. Significance of G Protein-Coupled Estrogen Receptor in the Pathophysiology of Irritable Bowel Syndrome, Inflammatory Bowel Diseases and Colorectal Cancer. Front Endocrinol (Lausanne) 2020; 11:390. [PMID: 32595606 PMCID: PMC7303275 DOI: 10.3389/fendo.2020.00390] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
The regulatory role of estrogens and nuclear estrogen receptors, i. e., estrogen receptor α and β has been reported in gastrointestinal diseases. However, the contribution of G protein-coupled estrogen receptor, the membrane-bound estrogen receptor, is still poorly understood. Unlike nuclear estrogen receptors, which are responsible for the genomic activity of estrogens, the G protein-coupled estrogen receptor affects the "rapid" non-genomic activity of estrogens, leading to modulation of many signaling pathways and ultimately changing gene expression. Recently, the crucial role of G protein-coupled estrogen receptor in intestinal pathogenesis has been documented. It has been shown that the G protein-coupled estrogen receptor can modulate the progression of irritable bowel syndrome, inflammatory bowel diseases such as Crohn's disease and ulcerative colitis as well as colorectal cancer. The G protein-coupled estrogen receptor appears to be a potent factor regulating abdominal sensitivity and pain, intestinal peristalsis, colitis development, proliferation and migration potential of colorectal cancer cells and seems to be a useful target in gastrointestinal diseases. In this review, we present the current state of knowledge about the contribution of the G protein-coupled estrogen receptor to irritable bowel syndrome, inflammatory bowel diseases and colorectal cancer.
Collapse
|
41
|
Mi-Ichi F, Yoshida H. Unique Features of Entamoeba Sulfur Metabolism; Compartmentalization, Physiological Roles of Terminal Products, Evolution and Pharmaceutical Exploitation. Int J Mol Sci 2019; 20:ijms20194679. [PMID: 31546588 PMCID: PMC6801973 DOI: 10.3390/ijms20194679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022] Open
Abstract
Sulfur metabolism is essential for all living organisms. Recently, unique features of the Entamoeba metabolic pathway for sulfated biomolecules have been described. Entamoeba is a genus in the phylum Amoebozoa and includes the causative agent for amoebiasis, a global public health problem. This review gives an overview of the general features of the synthesis and degradation of sulfated biomolecules, and then highlights the characteristics that are unique to Entamoeba. Future biological and pharmaceutical perspectives are also discussed.
Collapse
Affiliation(s)
- Fumika Mi-Ichi
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| |
Collapse
|
42
|
Munro MG. Uterine polyps, adenomyosis, leiomyomas, and endometrial receptivity. Fertil Steril 2019; 111:629-640. [PMID: 30929720 DOI: 10.1016/j.fertnstert.2019.02.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 01/02/2023]
Abstract
Endometrial polyps, adenomyosis, and leiomyomas are commonly encountered abnormalities frequently found in both fertile women and those with infertility. The clinician is frequently challenged to determine which of these entities, when found, is likely to impair fertility, and which are "innocent bystanders" unrelated to the problem at hand. Although removing an endometrial polyp may be seen as a relatively benign and safe intervention, myomectomy, and in particular adenomyomectomy, can be substantive surgical procedures, associated with their own potential for disrupting fertility. One of the mechanisms thought to be involved when these entities are contributing to infertility is an adverse impact on endometrial receptivity. Indeed polyps, adenomyosis, and leiomyomas have all been associated with an increased likelihood of abnormal endometrial molecular expressions thought to impair implantation and early embryo development. This review is designed to examine the relationship of these common entities to endometrial receptivity and to identify evidence gaps that should be considered when strategizing research initiatives. It is apparent that we have the tools necessary to fill these gaps, but it will be necessary to approach the issue in a strategic and coordinated fashion. It is likely that we will have to recognize the limitations of imaging alone and look to the evidence-based addition of molecular analysis to provide the individualized phenotyping of disease necessary for patient-specific treatment decisions.
Collapse
Affiliation(s)
- Malcolm G Munro
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Obstetrics and Gynecology, Kaiser-Permanente, Los Angeles Medical Center, Los Angeles, California.
| |
Collapse
|
43
|
Abstract
Sulfur is present in the amino acids cysteine and methionine and in a large range of essential coenzymes and cofactors and is therefore essential for all organisms. It is also a constituent of sulfate esters in proteins, carbohydrates, and numerous cellular metabolites. The sulfation and desulfation reactions modifying a variety of different substrates are commonly known as sulfation pathways. Although relatively little is known about the function of most sulfated metabolites, the synthesis of activated sulfate used in sulfation pathways is essential in both animal and plant kingdoms. In humans, mutations in the genes encoding the sulfation pathway enzymes underlie a number of developmental aberrations, and in flies and worms, their loss-of-function is fatal. In plants, a lower capacity for synthesizing activated sulfate for sulfation reactions results in dwarfism, and a complete loss of activated sulfate synthesis is also lethal. Here, we review the similarities and differences in sulfation pathways and associated processes in animals and plants, and we point out how they diverge from bacteria and yeast. We highlight the open questions concerning localization, regulation, and importance of sulfation pathways in both kingdoms and the ways in which findings from these "red" and "green" experimental systems may help reciprocally address questions specific to each of the systems.
Collapse
Affiliation(s)
- Süleyman Günal
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany
| | - Rebecca Hardman
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany.
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom.
| |
Collapse
|
44
|
Cornel KMC, Bongers MY, Kruitwagen RPFM, Romano A. Local estrogen metabolism (intracrinology) in endometrial cancer: A systematic review. Mol Cell Endocrinol 2019; 489:45-65. [PMID: 30326245 DOI: 10.1016/j.mce.2018.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
Abstract
Endometrial cancer (EC) is the most common malignancy of the female gynaecological tract and increased exposure to estrogens is a risk factor. EC cells are able to produce estrogens locally using precursors like, among others, adrenal steroids present in the serum. This is referred to as local estrogen metabolism (or intracrinology) and consists of a complex network of multiple enzymes. Particular relevant to the final generation of active estrogens in endometrial cells are: steroid sulfatase (STS), estrogen sulfotransferase (SULT1E1), aromatase (CYP19A1), 17β-hydroxysteroid dehydrogenase (HSD17B) type 1 and type 2. During the last decades, a plethora of studies explored the level of these enzymes in EC but contrasting data were reported, which generated vigorous debate and controversies. Several reviews attempted at clarifying some of the debated issues, but published reviews are based on investigator-defined bibliography selection and not on systematic analysis. Therefore, we performed a systematic review of the literature reporting about the level of STS, SULT1E1, CYP19A1, HSD17B1 and HSD17B2 in EC. Additional intracrine enzymes and networks (e.g., HSD17Bs other than types 1 and 2, aldo-keto reductases, progesterone and androgen metabolism) were non-systematically reviewed as well.
Collapse
Affiliation(s)
- K M C Cornel
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands
| | - M Y Bongers
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands; Department of Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, the Netherlands
| | - R P F M Kruitwagen
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands
| | - A Romano
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands.
| |
Collapse
|
45
|
Poschner S, Maier-Salamon A, Thalhammer T, Jäger W. Resveratrol and other dietary polyphenols are inhibitors of estrogen metabolism in human breast cancer cells. J Steroid Biochem Mol Biol 2019; 190:11-18. [PMID: 30851384 DOI: 10.1016/j.jsbmb.2019.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 01/09/2023]
Abstract
Polyphenols in foods and dietary supplements are commonly used for the prevention and treatment of a variety of malignancies, including breast cancer. However, daily intake by patients with breast cancer is controversial, as these compounds may stimulate cancer growth. Estrogens serve key roles in breast cancer cell proliferation; therefore, understanding the interaction between endogenous steroid hormones and natural dietary polyphenols is essential. Currently, comprehensive knowledge regarding these effects remains limited. The current review summarizes the dose-dependent in vitro and in vivo interactions of resveratrol and other dietary polyphenols with estrogen precursors, active estrogens, catechol estrogens and their respective glucuronidated, sulfated, glutathionated or O-methylated metabolites in estrogen receptor alpha negative (ERα-) and positive (ERα+) breast cancer. Which estrogen-metabolizing enzymes are affected by polyphenols is also reviewed in detail. Furthermore, the impacts of dose and therapy duration on disease development and progression in patients with breast cancer are discussed. The present article is part of a Special Issue titled 'CSR 2018'.
Collapse
Affiliation(s)
- Stefan Poschner
- Department of Pharmaceutical Chemistry, Division of Clinical Pharmacy and Diagnostics, University of Vienna, 1090 Vienna, Austria
| | - Alexandra Maier-Salamon
- Department of Pharmaceutical Chemistry, Division of Clinical Pharmacy and Diagnostics, University of Vienna, 1090 Vienna, Austria
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Walter Jäger
- Department of Pharmaceutical Chemistry, Division of Clinical Pharmacy and Diagnostics, University of Vienna, 1090 Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Austria.
| |
Collapse
|
46
|
Barra F, Romano A, Grandi G, Facchinetti F, Ferrero S. Future directions in endometriosis treatment: discovery and development of novel inhibitors of estrogen biosynthesis. Expert Opin Investig Drugs 2019; 28:501-504. [DOI: 10.1080/13543784.2019.1618269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Fabio Barra
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa Italy
| | - Andrea Romano
- Department of Gynaecology and Obstetrics, GROW - School for Oncology & Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Giovanni Grandi
- Department of Obstetrics, Gynecology and Pediatrics, Obstetrics and Gynecology Unit, Azienda Ospedaliero-Universitaria Policlinico, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Facchinetti
- Department of Obstetrics, Gynecology and Pediatrics, Obstetrics and Gynecology Unit, Azienda Ospedaliero-Universitaria Policlinico, University of Modena and Reggio Emilia, Modena, Italy
| | - Simone Ferrero
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa Italy
| |
Collapse
|
47
|
Poirier D, Roy J, Maltais R, Ayan D. Antisulfatase, Osteogenic, and Anticancer Activities of Steroid Sulfatase Inhibitor EO-33 in Mice. J Med Chem 2019; 62:5512-5521. [DOI: 10.1021/acs.jmedchem.9b00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec G1V 4G2, Canada
| | - René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec G1V 4G2, Canada
| | - Diana Ayan
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec G1V 4G2, Canada
| |
Collapse
|
48
|
Artymuk N, Zotova O, Gulyaeva L. Adenomyosis: genetics of estrogen metabolism. Horm Mol Biol Clin Investig 2019; 37:hmbci-2018-0069. [PMID: 30878995 DOI: 10.1515/hmbci-2018-0069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/08/2019] [Indexed: 01/22/2023]
Abstract
Background To analyze the allelic variants of genes of enzymes involved in estrogen metabolism: CYP1A1, CYP1A2, CYP19 and SULT1A1 using polymerase chain reaction-restriction fragment length polymorphism-restriction fragment length polymorphism (PCR-RFLP) analysis of women with histologically confirmed adenomyosis and women without proliferative diseases of pelvic organs was performed. We studied the following polymorphisms: CYP1A1 M1, T264 → C transition in the 3'-noncoding region; CYP1A2*1F, C734 → A transversion in CYP1A2 gene; C → T transition (Arg264Cys) in exon 7 of CYP19; SULT1A1*2, G638 → A transition (Arg213His) in the SULT1A1 gene. Materials and methods The study included 804 patients. Group I (experimental group) consisted of 268 women with adenomyosis. Inclusion criteria were: histological verification of adenomyosis, consent of patients to participate in the study. Group II (control group) - 536 women without proliferative diseases of the uterus. Inclusion criteria were: lack of proliferative processes of the uterus histologically confirmed by ultrasound examination, patient's consent to participate in the study. Results We found the significant association of C allele, T/C and C/C genotypes of the CYP1A1 gene (CYP1A1 M1 polymorphism), A allele, C/A and A/A genotypes of the CYP1A2 gene (CYP1A2*1F polymorphism) and the T allele, C/T and C/C genotypes of the CYP19 (Arg264Cys polymorphism) gene with the risk for adenomyosis. Conclusions Patients with adenomyosis had increased frequency of C allele, T/C and C/C genotypes of the CYP1A1 gene, A allele, C/A and A/A genotypes of the CYP1A2 gene and T allele and C/T and C/C genotypes of the CYP19 gene and, on the contrary, decreased frequency of the mutant allele and heterozygous and mutant homozygous genotype of the CYP1A2 gene compared to women without proliferative diseases of the uterus.
Collapse
Affiliation(s)
- Natalia Artymuk
- Department of Obstetrics and Gynecology, Kemerovo State Medical University, Kemerovo, Russia
| | - Olga Zotova
- L. Reshetova Kemerovo Regional Perinatal Center, Oktyabrsky Prospect, 22B, Kemerovo 650065, Russia, Phone: +8-923-486-92-24, Office Phone/Fax: +7(3842)392279
| | - Lyudmila Gulyaeva
- Medical Department, Novosibirsk State University, Federal Research Center "Basic and Translational Medicine", Novosibirsk, Russia
| |
Collapse
|
49
|
Ek M, Roth B, Engström G, Ohlsson B. AXIN1 in Plasma or Serum Is a Potential New Biomarker for Endometriosis. Int J Mol Sci 2019; 20:ijms20010189. [PMID: 30621017 PMCID: PMC6337238 DOI: 10.3390/ijms20010189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/26/2018] [Accepted: 12/30/2018] [Indexed: 12/12/2022] Open
Abstract
Although endometriosis is considered an inflammatory disease, no reliable diagnostic biomarkers exist for use in clinical practice. The aim was to investigate the inflammatory profile in endometriosis using an exploratory approach of inflammation-related proteins. Patients with laparoscopy-verified endometriosis (N = 172), women with microscopic colitis (N = 50), healthy controls (N = 31), and age-matched controls from the general population (N = 100) were enrolled and questionnaires regarding socioeconomic factors, lifestyle habits, and medical history were completed. Sera from patients and healthy controls were analyzed for 92 inflammatory biomarkers using Proximity Extension Assay technology (PEA). Plasma AXIN1 levels were analyzed in patients with endometriosis and controls from the general population by ELISA. General linear model adjusted for age, Mann–Whitney U-test, and principal component analysis (PCA) were used for statistical calculations. Serum levels of AXIN1 and ST1A1 were increased in endometriosis compared with MC (p < 0.001) and healthy controls (p = 0.001), whereas CXCL9 levels were decreased. Plasma levels of AXIN1 were elevated in endometriosis compared with age-matched controls from the general population (30.0 (17.0–38.0) pg/mL vs. 19.5 (15.0–28.0) pg/mL, p < 0.001). PCA analysis identified four clusters of proteins, where one cluster differed between endometriosis and controls, with strong correlations for AXIN1 and ST1A1. Plasma/serum AXIN1 is an interesting biomarker to be further evaluated in endometriosis.
Collapse
Affiliation(s)
- Malin Ek
- Department of Internal Medicine, Skåne University Hospital, Lund University, 221 00 Lund, Sweden.
| | - Bodil Roth
- Department of Internal Medicine, Skåne University Hospital, Lund University, 221 00 Lund, Sweden.
| | - Gunnar Engström
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, Box 50332, 202 13 Malmö, Sweden.
| | - Bodil Ohlsson
- Department of Internal Medicine, Skåne University Hospital, Lund University, 221 00 Lund, Sweden.
| |
Collapse
|
50
|
Kurogi K, Yoshihama M, Williams FE, Kenmochi N, Sakakibara Y, Suiko M, Liu MC. Identification of zebrafish steroid sulfatase and comparative analysis of the enzymatic properties with human steroid sulfatase. J Steroid Biochem Mol Biol 2019; 185:110-117. [PMID: 30118815 PMCID: PMC6289849 DOI: 10.1016/j.jsbmb.2018.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/11/2018] [Accepted: 08/08/2018] [Indexed: 11/19/2022]
Abstract
Steroid sulfatase (STS) plays an important role in the regulation of steroid hormones. Metabolism of steroid hormones in zebrafish has been investigated, but the action of steroid sulfatase remains unknown. In this study, a zebrafish sts was cloned, expressed, purified, and characterized in comparison with the orthologous human enzyme. Enzymatic assays demonstrated that similar to human STS, zebrafish Sts was most active in catalyzing the hydrolysis of estrone-sulfate and estradiol-sulfate, among five steroid sulfates tested as substrates. Kinetic analyses revealed that the Km values of zebrafish Sts and human STS differed with respective substrates, but the catalytic efficiency as reflected by the Vmax/Km appeared comparable, except for DHEA-sulfate with which zebrafish Sts appeared less efficient. While zebrafish Sts was catalytically active at 28 °C, the enzyme appeared more active at 37 °C and with similar Km values to those determined at 28 °C. Assays performed in the presence of different divalent cations showed that the activities of both zebrafish and human STSs were stimulated by Ca2+, Mg2+, and Mn2+, and inhibited by Zn+2 and Fe2+. EMATE and STX64, two known mammalian steroid sulafatase inhibitors, were shown to be capable of inhibiting the activity of zebrafish Sts. Collectively, the results obtained indicated that zebrafish Sts exhibited enzymatic characteristics comparable to the human STS, suggesting that the physiological function of STS may be conserved between zebrafish and humans.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Pharmacology, College of Pharmacy, University of Toledo Health Science Campus, Toledo, OH 43614, USA; Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Maki Yoshihama
- Department of Pharmacology, College of Pharmacy, University of Toledo Health Science Campus, Toledo, OH 43614, USA; Frontier Research Center, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Frederick E Williams
- Department of Pharmacology, College of Pharmacy, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Naoya Kenmochi
- Frontier Research Center, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoichi Sakakibara
- Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Masahito Suiko
- Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy, University of Toledo Health Science Campus, Toledo, OH 43614, USA.
| |
Collapse
|