1
|
Liang C, Liu X, Sun Z, Wen L, Wu J, Shi S, Liu X, Luo N, Li X. Lipid nanosystems for fatty liver therapy and targeted medication delivery: a comprehensive review. Int J Pharm 2025; 669:125048. [PMID: 39653287 DOI: 10.1016/j.ijpharm.2024.125048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Fatty liver is considered to be the most common chronic liver disease with a high global incidence, which can lead to cirrhosis and liver cancer in severe cases, and there is no specific drug for the treatment of fatty liver in the clinic. The use of lipid nanosystems has the potential to be an effective means of fatty liver treatment. The pathogenesis and intervening factors associated with the development of fatty liver are reviewed, and the advantages and the disadvantages of different lipid nanosystems for the treatment of fatty liver are comprehensively discussed, including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, microemulsions, and phospholipid complexes. The composition and characterisation of these lipid nanosystems are highlighted and summarised with a view to improving the efficiency of lipid nanosystems for the treatment of fatty liver. In addition, active targeting and passive targeting strategies used for fatty liver therapy are discussed in detail.
Collapse
Affiliation(s)
- Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nini Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, 400021, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
2
|
Yuan S, Zhao E. Recent advances of lipid droplet-targeted AIE-active materials for imaging, diagnosis and therapy. Biosens Bioelectron 2025; 267:116802. [PMID: 39332250 DOI: 10.1016/j.bios.2024.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/25/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Lipid droplets (LDs) are cellular organelles specialized in the storage and regulating the release of lipids critical for energy metabolism. As investigation on LDs deepens, the complex biological functions of LDs are revealed and their relationships with various diseases such as atherosclerosis, fatty liver, obesity, and cancer are uncovered. Fluorescence-based techniques with simple operations, visible results and high non-invasiveness are ideal tools for investigating LD-related biological processes and diseases. Materials with aggregation-induced emission (AIE) characteristics have emerged as promising candidates for investigating LDs due to their high signal-to-noise ratio (S/N), strong photostability, and large Stokes shift. This review discusses the principles and advantages of LD-targeting AIE probes for imaging LDs, diagnosis of LD-associated diseases including atherosclerotic plaques, liver diseases, acute kidney diseases and cancer, therapies with LD-targeting AIE-active photosensitizers and other relevant fields in the past five years. Through typical examples, we illustrate the status of investigating LD-related imaging, diagnosis of diseases and therapy with AIE materials. This review is expected to attract attentions from scientists with different research backgrounds and contribute to the further development of LD-targeting AIE materials.
Collapse
Affiliation(s)
- Sisi Yuan
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China
| | - Engui Zhao
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
3
|
Homsana A, Southisavath P, Kling K, Hattendorf J, Vorasane S, Paris DH, Sayasone S, Odermatt P, Probst-Hensch N. Steatotic liver disease among lean and non-lean individuals in Southern Lao PDR: a cross-sectional study of risk factors. Ann Med 2024; 56:2329133. [PMID: 38502916 PMCID: PMC10953781 DOI: 10.1080/07853890.2024.2329133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Steatotic liver disease (SLD) prevalence is rising worldwide, linked to insulin resistance and obesity. SLD prevalence can surpass 10% even among those with normal weight. In Lao People's Democratic Republic (Lao PDR), where Opisthorchis viverrini (OV) trematode infection and type 2 diabetes mellitus (T2DM) are common, infection related liver morbidity such as cholangiocarcinoma (CCA) is high, but data on SLD prevalence is lacking. The objective of this study was to estimate the prevalence and explore determinants of SLD in rural southern Lao PDR for lean and non-lean populations. METHOD A cross-sectional community-based study assessed SLD prevalence using abdominal ultrasonography (US). Factors investigated for association with SLD were identified by interview, serological tests (Hepatitis B surface antigen (HBsAg); lipids and HbA1c), anthropometrical measurements, and parasitological assessments (OV infection). Uni- and multivariable logistic regression analyses with SLD as endpoint were conducted separately for lean (body mass index (BMI) <23.0 kg/m2) and non-lean (BMI ≥ 23.0 kg/m2) participants. RESULT 2,826 participants were included. SLD prevalence was 27.1% (95% confidence interval (95% CI) 24.0%-30.4%), higher among non-lean (39.8%) than lean individuals (17.4%). Lean individuals with OV infection had a statistically significant association with lower odds of SLD (adjusted odds ratio (aOR) 0.49, 95% CI 0.33 - 0.73). T2DM showed a significant positive association with SLD in both lean (aOR 3.58, 95% CI 2.28 - 5.63) and non-lean individuals (aOR 3.31, 95% CI 2.31 - 4.74) while dyslipidemia was significantly associated only in the non-lean group (aOR 1.83, 95% CI 1.09 - 3.07). Females participants exhibited elevated odds of SLD in both lean (aOR 1.43, 95% CI 1.02 - 2.01) and non-lean SLD (aOR 1.50, 95% CI 1.12 - 2.01). CONCLUSION SLD prevalence is notably high among Laotian adults in rural areas, particularly in females and in non-lean individuals. Lean individuals with OV infection exhibited lower SLD prevalence. SLD was more prevalent in individuals with T2DM, independent of BMI. SLD adds to the burden of infection-related liver morbidity in Lao PDR.
Collapse
Affiliation(s)
- Anousin Homsana
- Lao Tropical and Public Health Institute, Ministry of Health, Vientiane Capital, Lao PDR
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Phonesavanh Southisavath
- Lao Tropical and Public Health Institute, Ministry of Health, Vientiane Capital, Lao PDR
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Department of Radiology, Mahosot Hospital, Ministry of Health, Vientiane Capital, Lao PDR
| | - Kerstin Kling
- Immunization Unit, Robert Koch Institute, Berlin, Germany
| | - Jan Hattendorf
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Savina Vorasane
- Department of Radiology, Mahosot Hospital, Ministry of Health, Vientiane Capital, Lao PDR
| | - Daniel Henry Paris
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Somphou Sayasone
- Lao Tropical and Public Health Institute, Ministry of Health, Vientiane Capital, Lao PDR
| | - Peter Odermatt
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Noor S, Ali S, Summer M, Riaz A, Nazakat L, Aqsa. Therapeutic Role of Probiotics Against Environmental-Induced Hepatotoxicity: Mechanisms, Clinical Perspectives, Limitations, and Future. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10365-6. [PMID: 39316257 DOI: 10.1007/s12602-024-10365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Hepatotoxicity is one of the biggest health challenges, particularly in the context of liver diseases, often aggravated by gut microbiota dysbiosis. The gut-liver axis has been regarded as a key idea in liver health. It indicates that changes in gut flora caused by various hepatotoxicants, including alcoholism, acetaminophen, carbon tetrachloride, and thioacetamide, can affect the balance of the gut's microflora, which may lead to increased dysbiosis and intestinal permeability. As a result, bacterial endotoxins would eventually enter the bloodstream and liver, causing hepatotoxicity and inducing inflammatory reactions. Many treatments, including liver transplantation and modern drugs, can be used to address these issues. However, because of the many side effects of these approaches, scientists and medical experts are still hoping for a therapeutic approach with fewer side effects and more positive results. Thus, probiotics have become well-known as an adjunctive strategy for managing, preventing, or reducing hepatotoxicity in treating liver injury. By altering the gut microbiota, probiotics offer a secure, non-invasive, and economical way to improve liver health in the treatment of hepatotoxicity. Through various mechanisms such as regulation of gut microbiota, reduction of pathogenic overgrowth, suppression of inflammatory mediators, modification of hepatic lipid metabolism, improvement in the performance of the epithelial barrier of the gut, antioxidative effects, and modulation of mucosal immunity, probiotics play their role in the treatment and prevention of hepatotoxicity. This review highlights the mechanistic effects of probiotics in environmental toxicants-induced hepatotoxicity and current findings on this therapeutic approach's experimental and clinical trials.
Collapse
Affiliation(s)
- Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
5
|
Zhao L, Pang M, Fu Z, Wu H, Song Q. Bibliometric analysis of lipophagy:2013 to 2023. Heliyon 2024; 10:e35299. [PMID: 39165945 PMCID: PMC11334871 DOI: 10.1016/j.heliyon.2024.e35299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Lipophagy is defined as the autophagic degradation of lipid droplets. It is a selective autophagy process that can continuously circulate and redistribute metabolites to maintain the body's energy balance. Over the last ten years, there has been a significant increase in the amount of literature on lipophagy, making it more challenging to track the field's advancement using conventional techniques. The data from the lipophagy literature published in the last ten years was converted into visual representations with the use of bibliometric tools. An increasing number of countries and institutions are delving further into lipophagy research with the support of visualization technologies. The five main illnesses of cancer, atherosclerosis, fatty liver, hyperlipidemia, and neurodegenerative diseases have become study opportunities, as have the mechanisms of macroautophagy, microautophagy, and chaperone-mediated autophagy.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Mengmeng Pang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Zhenyue Fu
- Beijing University of Chinese Medicine, Beijing, China
| | - Huaqin Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Qingqiao Song
- Department of General Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing, 100053, China
| |
Collapse
|
6
|
Macke AJ, Divita TE, Pachikov AN, Mahalingam S, Bellamkonda R, Rasineni K, Casey CA, Petrosyan A. Alcohol-induced Golgiphagy is triggered by the downregulation of Golgi GTPase RAB3D. Autophagy 2024; 20:1537-1558. [PMID: 38591519 PMCID: PMC11210917 DOI: 10.1080/15548627.2024.2329476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
The development of alcohol-associated liver disease (ALD) is associated with disorganized Golgi apparatus and accelerated phagophore formation. While Golgi membranes may contribute to phagophores, association between Golgi alterations and macroautophagy/autophagy remains unclear. GOLGA4/p230 (golgin A4), a dimeric Golgi matrix protein, participates in phagophore formation, but the underlying mechanism is elusive. Our prior research identified ethanol (EtOH)-induced Golgi scattering, disrupting intra-Golgi trafficking and depleting RAB3D GTPase from the trans-Golgi. Employing various techniques, we analyzed diverse cellular and animal models representing chronic and chronic/binge alcohol consumption. In trans-Golgi of non-treated hepatocytes, we found a triple complex formed between RAB3D, GOLGA4, and MYH10/NMIIB (myosin, heavy polypeptide 10, non-muscle). However, EtOH-induced RAB3D downregulation led to MYH10 segregation from the Golgi, accompanied by Golgi fragmentation and tethering of the MYH10 isoform, MYH9/NMIIA, to dispersed Golgi membranes. EtOH-activated autophagic flux is evident through increased WIPI2 recruitment to the Golgi, phagophore formation, enhanced LC3B lipidation, and reduced SQSTM1/p62. Although GOLGA4 dimerization and intra-Golgi localization are unaffected, loss of RAB3D leads to an extension of the cytoplasmic N terminal domain of GOLGA4, forming GOLGA4-positive phagophores. Autophagy inhibition by hydroxychloroquine (HCQ) prevents alcohol-mediated Golgi disorganization, restores distribution of ASGR (asialoglycoprotein receptor), and mitigates COL (collagen) deposition and steatosis. In contrast to short-term exposure to HCQ, extended co-treatment with both EtOH and HCQ results in the depletion of LC3B protein via proteasomal degradation. Thus, (a) RAB3D deficiency and GOLGA4 conformational changes are pivotal in MYH9-driven, EtOH-mediated Golgiphagy, and (b) HCQ treatment holds promise as a therapeutic approach for alcohol-induced liver injury.Abbreviation: ACTB: actin, beta; ALD: alcohol-associated liver disease; ASGR: asialoglycoprotein receptor; AV: autophagic vacuoles; EM: electron microscopy; ER: endoplasmic reticulum; EtOH: ethanol; HCQ: hydroxychloroquine; IP: immunoprecipitation; KD: knockdown; KO: knockout; MYH10/NMIIB: myosin, heavy polypeptide 10, non-muscle; MYH9/NMIIA: myosin, heavy polypeptide 9, non-muscle; PLA: proximity ligation assay; ORO: Oil Red O staining; PM: plasma membrane; TGN: trans-Golgi network; SIM: structured illumination super-resolution microscopy.
Collapse
Affiliation(s)
- Amanda J. Macke
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Taylor E. Divita
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Artem N. Pachikov
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sundararajan Mahalingam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Omaha Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, USA
| | - Ramesh Bellamkonda
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Omaha Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, USA
| | - Karuna Rasineni
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Omaha Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, USA
| | - Carol A. Casey
- Omaha Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
7
|
L'Écuyer S, Charbonney E, Carrier FM, Rose CF. Implication of Hypotension in the Pathogenesis of Cognitive Impairment and Brain Injury in Chronic Liver Disease. Neurochem Res 2024; 49:1437-1449. [PMID: 36635437 DOI: 10.1007/s11064-022-03854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023]
Abstract
The incidence of chronic liver disease is on the rise. One of the primary causes of hospital admissions for patients with cirrhosis is hepatic encephalopathy (HE), a debilitating neurological complication. HE is defined as a reversible syndrome, yet there is growing evidence stating that, under certain conditions, HE is associated with permanent neuronal injury and irreversibility. The pathophysiology of HE primarily implicates a strong role for hyperammonemia, but it is believed other pathogenic factors are involved. The fibrotic scarring of the liver during the progression of chronic liver disease (cirrhosis) consequently leads to increased hepatic resistance and circulatory anomalies characterized by portal hypertension, hyperdynamic circulatory state and systemic hypotension. The possible repercussions of these circulatory anomalies on brain perfusion, including impaired cerebral blood flow (CBF) autoregulation, could be implicated in the development of HE and/or permanent brain injury. Furthermore, hypotensive insults incurring during gastrointestinal bleed, infection, or liver transplantation may also trigger or exacerbate brain dysfunction and cell damage. This review will focus on the role of hypotension in the onset of HE as well as in the occurrence of neuronal cell loss in cirrhosis.
Collapse
Affiliation(s)
- Sydnée L'Écuyer
- Hepato-Neuro Laboratory, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, rue Saint-Denis - Pavillon R, R08.422 Montréal (Québec), Québec, H2X 0A9, Canada
| | - Emmanuel Charbonney
- Department of Medicine, Critical Care Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
| | - François Martin Carrier
- Department of Medicine, Critical Care Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
- Department of Anesthesiology, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
- Carrefour de l'innovation et santé des populations , Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - Christopher F Rose
- Hepato-Neuro Laboratory, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, rue Saint-Denis - Pavillon R, R08.422 Montréal (Québec), Québec, H2X 0A9, Canada.
| |
Collapse
|
8
|
Schott MB, Rozeveld CN, Bhatt S, Crossman B, Krueger EW, Weller SG, Rasineni K, Casey CA, McNiven MA. Ethanol disrupts hepatocellular lipophagy by altering Rab5-centric LD-lysosome trafficking. Hepatol Commun 2024; 8:e0446. [PMID: 38780316 PMCID: PMC11124685 DOI: 10.1097/hc9.0000000000000446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Previous reports suggest that lipid droplets (LDs) in the hepatocyte can be catabolized by a direct engulfment from nearby endolysosomes (microlipophagy). Further, it is likely that this process is compromised by chronic ethanol (EtOH) exposure leading to hepatic steatosis. This study investigates the hepatocellular machinery supporting microlipophagy and EtOH-induced alterations in this process with a focus on the small, endosome-associated, GTPase Rab5. METHODS AND RESULTS Here we report that this small Ras-related GTPase is a resident component of LDs, and its activity is important for hepatocellular LD-lysosome proximity and physical interactions. We find that Rab5 siRNA knockdown causes an accumulation of LDs in hepatocytes by inhibiting lysosome dependent LD catabolism. Importantly, Rab5 appears to support this process by mediating the recruitment of early endosomal and or multivesicular body compartments to the LD surface before lysosome fusion. Interestingly, while wild-type or a constituently active GTPase form (Q79L) of Rab5 supports LD-lysosome transport, this process is markedly reduced in cells expressing a GTPase dead (S34N) Rab5 protein or in hepatocytes exposed to chronic EtOH. CONCLUSIONS These findings support the novel premise of an early endosomal/multivesicular body intermediate compartment on the LD surface that provides a "docking" site for lysosomal trafficking, not unlike the process that occurs during the hepatocellular degradation of endocytosed ligands that is also known to be compromised by EtOH exposure.
Collapse
Affiliation(s)
- Micah B. Schott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Cody N. Rozeveld
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Saumya Bhatt
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Bridget Crossman
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eugene W. Krueger
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shaun G. Weller
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Karuna Rasineni
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Veterans’ Affairs, VA-Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Carol A. Casey
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Veterans’ Affairs, VA-Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Mark A. McNiven
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Taoto C, Tangsrisakda N, Thukhammee W, Phetcharaburanin J, Iamsaard S, Tanphaichitr N. Rats Orally Administered with Ethyl Alcohol for a Prolonged Time Show Histopathology of the Epididymis and Seminal Vesicle Together with Changes in the Luminal Metabolite Composition. Biomedicines 2024; 12:1010. [PMID: 38790972 PMCID: PMC11117629 DOI: 10.3390/biomedicines12051010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Prolonged ethanol (EtOH) consumption is associated with male infertility, with a decreased spermatogenesis rate as one cause. The defective maturation and development of sperm during their storage in the cauda epididymis and transit in the seminal vesicle can be another cause, possibly occurring before the drastic spermatogenesis disruption. Herein, we demonstrated that the cauda epididymis and seminal vesicle of rats, orally administered with EtOH under a regimen in which spermatogenesis was still ongoing, showed histological damage, including lesions, a decreased height of the epithelial cells and increased collagen fibers in the muscle layer, which implicated fibrosis. Lipid peroxidation (shown by malondialdehyde (MDA) levels) was observed, indicating that reactive oxygen species (ROS) were produced along with acetaldehyde during EtOH metabolism by CYP2E1. MDA, acetaldehyde and other lipid peroxidation products could further damage cellular components of the cauda epididymis and seminal vesicle, and this was supported by increased apoptosis (shown by a TUNEL assay and caspase 9/caspase 3 expression) in these two tissues of EtOH-treated rats. Consequently, the functionality of the cauda epididymis and seminal vesicle in EtOH-treated rats was impaired, as demonstrated by a decreases in 1H NMR-analyzed metabolites (e.g., carnitine, fructose), which were important for sperm development, metabolism and survival in their lumen.
Collapse
Affiliation(s)
- Chayakorn Taoto
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.T.); (N.T.)
| | - Nareelak Tangsrisakda
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.T.); (N.T.)
| | - Wipawee Thukhammee
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Jutarop Phetcharaburanin
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.T.); (N.T.)
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Nongnuj Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1Y 8L6, Canada
| |
Collapse
|
10
|
HAN M, YI X, YOU S, WU X, WANG S, HE D. Gehua Jiejiu Dizhi decoction ameliorates alcoholic fatty liver in mice by regulating lipid and bile acid metabolism and with exertion of antioxidant stress based on 4DLabel-free quantitative proteomic study. J TRADIT CHIN MED 2024; 44:277-288. [PMID: 38504534 PMCID: PMC10927405 DOI: 10.19852/j.cnki.jtcm.20231018.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/27/2023] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To analyze the effect and molecular mechanism of Gehua Jiejiu Dizhi decoction (, GJDD) on alcoholic fatty live disease (AFLD) by using proteomic methods. METHODS The male C57BL/6J mouse were randomly divided into four groups: control group, model group, GJDD group and resveratrol group. After the AFLD model was successfully prepared by intragastric administration of alcohol once on the basis of the Lieber-DeCarli classical method, the GJDD group and resveratrol group were intragastrically administered with GJDD (4900 mg/kg) and resveratrol (400 mg/kg) respectively, once a day for 9 d. The fat deposition of liver tissue was observed and evaluated by oil red O (ORO) staining. 4DLabel-free quantitative proteome method was used to determine and quantify the protein expression in liver tissue of each experimental group. The differentially expressed proteins were screened according to protein expression differential multiples, and then analyzed by Gene ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. Finally, expression validation of the differentially co-expressed proteins from control group, model group and GJDD group were verified by targeted proteomics quantification techniques. RESULTS In semiquantitative analyses of ORO, all kinds of steatosis (ToS, MaS, and MiS) were evaluated higher in AFLD mice compared to those in GJDD or resveratrol-treated mice. 4DLabel-free proteomics analysis results showed that a total of 4513 proteins were identified, of which 3763 proteins were quantified and 946 differentially expressed proteins were screened. Compared with the control group, 145 proteins were up-regulated and 148 proteins were down-regulated in the liver tissue of model group. In addition, compared with the model group, 92 proteins were up-regulated and 135 proteins were down-regulated in the liver tissue of the GJDD group. 15 differentially co-expressed proteins were found between every two groups (model group vs control group, GJDD group vs model group and GJDD group vs control group), which were involved in many biological processes. Among them, 11 differentially co-expressed key proteins (Aox3, H1-5, Fabp5, Ces3a, Nudt7, Serpinb1a, Fkbp11, Rpl22l1, Keg1, Acss2 and Slco1a1) were further identified by targeted proteomic quantitative technology and their expression patterns were consistent with the results of 4D label-free proteomic analysis. CONCLUSIONS Our study provided proteomics-based evidence that GJDD alleviated AFLD by modulating liver protein expression, likely through the modulation of lipid metabolism, bile acid metabolism and with exertion of antioxidant stress.
Collapse
Affiliation(s)
- Min HAN
- 1 Guizhou University of Traditional Chinese Medicine, Graduate School, Guiyang 550025, China
| | - Xu YI
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Shaowei YOU
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Xueli WU
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Shuoshi WANG
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Diancheng HE
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| |
Collapse
|
11
|
Kazibwe R, Chevli PA, Evans JK, Allison M, Michos ED, Wood AC, Ding J, Shapiro MD, Mongraw‐Chaffin M. Association Between Alcohol Consumption and Ectopic Fat in the Multi-Ethnic Study of Atherosclerosis. J Am Heart Assoc 2023; 12:e030470. [PMID: 37681576 PMCID: PMC10547290 DOI: 10.1161/jaha.123.030470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023]
Abstract
Background The relationship between alcohol consumption and ectopic fat distribution, both known factors for cardiovascular disease, remains understudied. Therefore, we aimed to examine the association between alcohol consumption and ectopic adiposity in adults at risk for cardiovascular disease. Methods and Results In this cross-sectional analysis, we categorized alcohol intake among participants in MESA (Multi-Ethnic Study of Atherosclerosis) as follows (drinks/day): <1 (light drinking), 1 to 2 (moderate drinking), >2 (heavy drinking), former drinking, and lifetime abstention. Binge drinking was defined as consuming ≥5 drinks on 1 occasion in the past month. Visceral, subcutaneous, and intermuscular fat area, pericardial fat volume, and hepatic fat attenuation were measured using noncontrast computed tomography. Using multivariable linear regression, we examined the associations between categories of alcohol consumption and natural log-transformed fat in ectopic depots. We included 6756 MESA participants (62.1±10.2 years; 47.2% women), of whom 6734 and 1934 had chest computed tomography (pericardial and hepatic fat) and abdominal computed tomography (subcutaneous, intermuscular, and visceral fat), respectively. In adjusted analysis, heavy drinking, relative to lifetime abstention, was associated with a higher (relative percent difference) pericardial 15.1 [95% CI, 7.1-27.7], hepatic 3.4 [95% CI, 0.1-6.8], visceral 2.5 [95% CI, -10.4 to 17.2], and intermuscular 5.2 [95% CI, -6.6 to 18.4] fat but lower subcutaneous fat -3.5 [95% CI, -15.5 to 10.2]). The associations between alcohol consumption and ectopic adiposity exhibited a J-shaped pattern. Binge drinking, relative to light-to-moderate drinking, was also associated with higher ectopic fat. Conclusions Alcohol consumption had a J-shaped association with ectopic adiposity. Both heavy alcohol intake and binge alcohol drinking were associated with higher ectopic fat.
Collapse
Affiliation(s)
- Richard Kazibwe
- Department of Internal Medicine, Section on Hospital MedicineWake Forest University School of MedicineWinston SalemNCUSA
| | - Parag A. Chevli
- Department of Internal Medicine, Section on Hospital MedicineWake Forest University School of MedicineWinston SalemNCUSA
| | - Joni K. Evans
- Department of Biostatistics and Data ScienceWake Forest University School of MedicineWinston‐SalemNCUSA
| | - Matthew Allison
- Department of Family MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Erin D. Michos
- Division of Cardiology, Department of MedicineJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Alexis C. Wood
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
| | - Jingzhong Ding
- Department of Internal Medicine, Section on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNCUSA
| | - Michael D. Shapiro
- Center for the Prevention of Cardiovascular Disease Section on Cardiovascular MedicineWake Forest University School of MedicineWinston‐SalemNCUSA
| | | |
Collapse
|
12
|
Cai Y, Zhang S, Chen L, Fu Y. Integrated multi-omics and machine learning approach reveals lipid metabolic biomarkers and signaling in age-related meibomian gland dysfunction. Comput Struct Biotechnol J 2023; 21:4215-4227. [PMID: 37675286 PMCID: PMC10480060 DOI: 10.1016/j.csbj.2023.08.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023] Open
Abstract
Meibomian gland dysfunction (MGD) is a prevalent inflammatory disorder of the ocular surface that significantly impacts patients' vision and quality of life. The underlying mechanism of aging and MGD remains largely uncharacterized. The aim of this work is to investigate lipid metabolic alterations in age-related MGD (ARMGD) through integrated proteomics, lipidomics and machine learning (ML) approach. For this purpose, we collected samples of female mouse meibomian glands (MGs) dissected from eyelids at age two months (n = 9) and two years (n = 9) for proteomic and lipidomic profilings using the liquid chromatography with tandem mass spectrometry (LC-MS/MS) method. To further identify ARMGD-related lipid biomarkers, ML model was established using the least absolute shrinkage and selection operator (LASSO) algorithm. For proteomic profiling, 375 differentially expressed proteins were detected. Functional analyses indicated the leading role of cholesterol biosynthesis in the aging process of MGs. Several proteins were proposed as potential biomarkers, including lanosterol synthase (Lss), 24-dehydrocholesterol reductase (Dhcr24), and farnesyl diphosphate farnesyl transferase 1 (Fdft1). Concomitantly, lipidomic analysis unveiled 47 lipid species that were differentially expressed and clustered into four classes. The most notable age-related alterations involved a decline in cholesteryl esters (ChE) levels and an increase in triradylglycerols (TG) levels, accompanied by significant differences in their lipid unsaturation patterns. Through ML construction, it was confirmed that ChE(26:0), ChE(26:1), and ChE(30:1) represent the most promising diagnostic molecules. The present study identified essential proteins, lipids, and signaling pathways in age-related MGD (ARMGD), providing a reference landscape to facilitate novel strategies for the disease transformation.
Collapse
Affiliation(s)
- Yuchen Cai
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Siyi Zhang
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Liangbo Chen
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
13
|
Zhao X, Amevor FK, Cui Z, Wan Y, Xue X, Peng C, Li Y. Steatosis in metabolic diseases: A focus on lipolysis and lipophagy. Biomed Pharmacother 2023; 160:114311. [PMID: 36764133 DOI: 10.1016/j.biopha.2023.114311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Fatty acids (FAs), as part of lipids, are involved in cell membrane composition, cellular energy storage, and cell signaling. FAs can also be toxic when their concentrations inside and/or outside the cell exceed physiological levels, which is called "lipotoxicity", and steatosis is a form of lipotoxity. To facilitate the storage of large quantities of FAs in cells, they undergo a process called lipolysis or lipophagy. This review focuses on the effects of lipolytic enzymes including cytoplasmic "neutral" lipolysis, lysosomal "acid" lipolysis, and lipophagy. Moreover, the impact of related lipolytic enzymes on lipid metabolism homeostasis and energy conservation, as well as their role in lipid-related metabolic diseases. In addition, we describe how they affect lipid metabolism homeostasis and energy conservation in lipid-related metabolic diseases with a focus on hepatic steatosis and cancer and the pathogenesis and therapeutic targets of AMPK/SIRTs/FOXOs, PI3K/Akt, PPARs/PGC-1α, MAPK/ERK1/2, TLR4/NF-κB, AMPK/mTOR/TFEB, Wnt/β-catenin through immune inflammation, oxidative stress and autophagy-related pathways. As well as the current application of lipolytic enzyme inhibitors (especially Monoacylglycerol lipase (MGL) inhibitors) to provide new strategies for future exploration of metabolic programming in metabolic diseases.
Collapse
Affiliation(s)
- Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
14
|
Thomes PG, Strupp MS, Donohue TM, Kubik JL, Sweeney S, Mahmud R, Schott MB, Schulze RJ, McNiven MA, Casey CA. Hydroxysteroid 17β-dehydrogenase 11 accumulation on lipid droplets promotes ethanol-induced cellular steatosis. J Biol Chem 2023; 299:103071. [PMID: 36849008 PMCID: PMC10060109 DOI: 10.1016/j.jbc.2023.103071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
Lipid droplets (LDs) are fat-storing organelles enclosed by a phospholipid monolayer, which harbors membrane-associated proteins that regulate distinct LD functions. LD proteins are degraded by the ubiquitin-proteasome system (UPS) and/or by lysosomes. Because chronic ethanol (EtOH) consumption diminishes the hepatic functions of the UPS and lysosomes, we hypothesized that continuous EtOH consumption slows the breakdown of lipogenic LD proteins targeted for degradation, thereby causing LD accumulation. Here, we report that LDs from livers of EtOH-fed rats exhibited higher levels of polyubiquitylated-proteins, linked at either lysine 48 (directed to proteasome) or lysine 63 (directed to lysosomes) than LDs from pair-fed control rats. MS proteomics of LD proteins, immunoprecipitated with UB remnant motif antibody (K-ε-GG), identified 75 potential UB proteins, of which 20 were altered by chronic EtOH administration. Among these, hydroxysteroid 17β-dehydrogenase 11 (HSD17β11) was prominent. Immunoblot analyses of LD fractions revealed that EtOH administration enriched HSD17β11 localization to LDs. When we overexpressed HSD17β11 in EtOH-metabolizing VA-13 cells, the steroid dehydrogenase 11 became principally localized to LDs, resulting in elevated cellular triglycerides (TGs). Ethanol exposure augmented cellular TG, while HSD17β11 siRNA decreased both control and EtOH-induced TG accumulation. Remarkably, HSD17β11 overexpression lowered the LD localization of adipose triglyceride lipase. EtOH exposure further reduced this localization. Reactivation of proteasome activity in VA-13 cells blocked the EtOH-induced rises in both HSD17β11 and TGs. Our findings indicate that EtOH exposure blocks HSD17β11 degradation by inhibiting the UPS, thereby stabilizing HSD17β11 on LD membranes, to prevent lipolysis by adipose triglyceride lipase and promote cellular LD accumulation.
Collapse
Affiliation(s)
- Paul G Thomes
- Department of Veterans' Affairs, VA-Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | - Michael S Strupp
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Terence M Donohue
- Department of Veterans' Affairs, VA-Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jacy L Kubik
- Department of Veterans' Affairs, VA-Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sarah Sweeney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - R Mahmud
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Micah B Schott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ryan J Schulze
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Mark A McNiven
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Carol A Casey
- Department of Veterans' Affairs, VA-Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
15
|
Alim Al-Bari A, Ito Y, Thomes PG, Menon MB, García-Macia M, Fadel R, Stadlin A, Peake N, Faris ME, Eid N, Klionsky DJ. Emerging mechanistic insights of selective autophagy in hepatic diseases. Front Pharmacol 2023; 14:1149809. [PMID: 37007026 PMCID: PMC10060854 DOI: 10.3389/fphar.2023.1149809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Macroautophagy (hereafter referred to as autophagy), a highly conserved metabolic process, regulates cellular homeostasis by degrading dysfunctional cytosolic constituents and invading pathogens via the lysosomal system. In addition, autophagy selectively recycles specific organelles such as damaged mitochondria (via mitophagy), and lipid droplets (LDs; via lipophagy) or eliminates specialized intracellular pathogenic microorganisms such as hepatitis B virus (HBV) and coronaviruses (via virophagy). Selective autophagy, particularly mitophagy, plays a key role in the preservation of healthy liver physiology, and its dysfunction is connected to the pathogenesis of a wide variety of liver diseases. For example, lipophagy has emerged as a defensive mechanism against chronic liver diseases. There is a prominent role for mitophagy and lipophagy in hepatic pathologies including non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and drug-induced liver injury. Moreover, these selective autophagy pathways including virophagy are being investigated in the context of viral hepatitis and, more recently, the coronavirus disease 2019 (COVID-19)-associated hepatic pathologies. The interplay between diverse types of selective autophagy and its impact on liver diseases is briefly addressed. Thus, modulating selective autophagy (e.g., mitophagy) would seem to be effective in improving liver diseases. Considering the prominence of selective autophagy in liver physiology, this review summarizes the current understanding of the molecular mechanisms and functions of selective autophagy (mainly mitophagy and lipophagy) in liver physiology and pathophysiology. This may help in finding therapeutic interventions targeting hepatic diseases via manipulation of selective autophagy.
Collapse
Affiliation(s)
- Abdul Alim Al-Bari
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Paul G. Thomes
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Manoj B. Menon
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Marina García-Macia
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca-CSIC, Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Raouf Fadel
- Department of Anatomy, College of Medicine and Medical Sciences, Arabian Gulf University, Al Manama, Bahrain
| | - Alfreda Stadlin
- Basic Medical Sciences Department, College of Medicine, Ajman university, Ajman, United Arab Emirates
| | - Nicholas Peake
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - MoezAlIslam Ezzat Faris
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Nabil Eid
- Department of Anatomy, Division of Human Biology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- *Correspondence: Nabil Eid,
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of MI, Ann Arbor, MI, United States
| |
Collapse
|
16
|
Xu HY, Jiao YH, Li SY, Zhu X, Wang S, Zhang YY, Wei YJ, Shen YJ, Wang W, Shen YX, Shao JT. Hepatocyte-derived MANF mitigates ethanol-induced liver steatosis in mice via enhancing ASS1 activity and activating AMPK pathway. Acta Pharmacol Sin 2023; 44:157-168. [PMID: 35655095 DOI: 10.1038/s41401-022-00920-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatic steatosis plays a detrimental role in the onset and progression of alcohol-associated liver disease (ALD). Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an evolutionarily conserved protein related to the unfolded protein response. Recent studies have demonstrated that MANF plays an important role in liver diseases. In this study, we investigated the role of MANF in ethanol-induced steatosis and the underlying mechanisms. We showed that the hepatic MANF expression was markedly upregulated in mouse model of ALD by chronic-plus-single-binge ethanol feeding. Moreover, after chronic-plus-binge ethanol feeding, hepatocyte-specific MANF knockout (HKO) mice displayed more severe hepatic steatosis and liver injury than wild-type (WT) control mice. Immunoprecipitation-coupled MS proteomic analysis revealed that arginosuccinate synthase 1 (ASS1), a rate-limiting enzyme in the urea cycle, resided in the same immunoprecipitated complex with MANF. Hepatocyte-specific MANF knockout led to decreased ASS1 activity, whereas overexpression of MANF contributed to enhanced ASS1 activity in vitro. In addition, HKO mice displayed unique urea cycle metabolite patterns in the liver with elevated ammonia accumulation after ethanol feeding. ASS1 is known to activate AMPK by generating an intracellular pool of AMP from the urea cycle. We also found that MANF supplementation significantly ameliorated ethanol-induced steatosis in vivo and in vitro by activating the AMPK signaling pathway, which was partly ASS1 dependent. This study demonstrates a new mechanism in which MANF acts as a key molecule in maintaining hepatic lipid homeostasis by enhancing ASS1 activity and uncovers an interesting link between lipid metabolism and the hepatic urea cycle under excessive alcohol exposure.
Collapse
Affiliation(s)
- Han-Yang Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Yan-Hong Jiao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Shi-Yu Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Xu Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Sheng Wang
- Center for Scientific Research of Anhui Medical University, Hefei, 230032, China
| | - Yu-Yang Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Yi-Jun Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Yu-Jun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Wei Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yu-Xian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
- Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China.
| | - Jun-Tang Shao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
- Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
17
|
Auvinen P, Vehviläinen J, Marjonen H, Modhukur V, Sokka J, Wallén E, Rämö K, Ahola L, Salumets A, Otonkoski T, Skottman H, Ollikainen M, Trokovic R, Kahila H, Kaminen-Ahola N. Chromatin modifier developmental pluripotency associated factor 4 (DPPA4) is a candidate gene for alcohol-induced developmental disorders. BMC Med 2022; 20:495. [PMID: 36581877 PMCID: PMC9801659 DOI: 10.1186/s12916-022-02699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) affects embryonic development, causing a variable fetal alcohol spectrum disorder (FASD) phenotype with neuronal disorders and birth defects. We hypothesize that early alcohol-induced epigenetic changes disrupt the accurate developmental programming of embryo and consequently cause the complex phenotype of developmental disorders. To explore the etiology of FASD, we collected unique biological samples of 80 severely alcohol-exposed and 100 control newborns at birth. METHODS We performed genome-wide DNA methylation (DNAm) and gene expression analyses of placentas by using microarrays (EPIC, Illumina) and mRNA sequencing, respectively. To test the manifestation of observed PAE-associated DNAm changes in embryonic tissues as well as potential biomarkers for PAE, we examined if the changes can be detected also in white blood cells or buccal epithelial cells of the same newborns by EpiTYPER. To explore the early effects of alcohol on extraembryonic placental tissue, we selected 27 newborns whose mothers had consumed alcohol up to gestational week 7 at maximum to the separate analyses. Furthermore, to explore the effects of early alcohol exposure on embryonic cells, human embryonic stem cells (hESCs) as well as hESCs during differentiation into endodermal, mesodermal, and ectodermal cells were exposed to alcohol in vitro. RESULTS DPPA4, FOXP2, and TACR3 with significantly decreased DNAm were discovered-particularly the regulatory region of DPPA4 in the early alcohol-exposed placentas. When hESCs were exposed to alcohol in vitro, significantly altered regulation of DPPA2, a closely linked heterodimer of DPPA4, was observed. While the regulatory region of DPPA4 was unmethylated in both control and alcohol-exposed hESCs, alcohol-induced decreased DNAm similar to placenta was seen in in vitro differentiated mesodermal and ectodermal cells. Furthermore, common genes with alcohol-associated DNAm changes in placenta and hESCs were linked exclusively to the neurodevelopmental pathways in the enrichment analysis, which emphasizes the value of placental tissue when analyzing the effects of prenatal environment on human development. CONCLUSIONS Our study shows the effects of early alcohol exposure on human embryonic and extraembryonic cells, introduces candidate genes for alcohol-induced developmental disorders, and reveals potential biomarkers for prenatal alcohol exposure.
Collapse
Affiliation(s)
- P Auvinen
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00290, Helsinki, Finland
| | - J Vehviläinen
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00290, Helsinki, Finland
| | - H Marjonen
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00290, Helsinki, Finland
| | - V Modhukur
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia
- Competence Centre on Health Technologies, 50411, Tartu, Estonia
| | - J Sokka
- Research Programs Unit, Stem cells and Metabolism and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - E Wallén
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00290, Helsinki, Finland
| | - K Rämö
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00290, Helsinki, Finland
| | - L Ahola
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00290, Helsinki, Finland
| | - A Salumets
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia
- Competence Centre on Health Technologies, 50411, Tartu, Estonia
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, S-171 76, Stockholm, Sweden
| | - T Otonkoski
- Research Programs Unit, Stem cells and Metabolism and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290, Helsinki, Finland
| | - H Skottman
- Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - M Ollikainen
- Institute for Molecular Medicine, Finland, FIMM, HiLIFE, University of Helsinki, 00290, Helsinki, Finland
| | - R Trokovic
- Research Programs Unit, Stem cells and Metabolism and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - H Kahila
- Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, 00290, Helsinki, Finland
| | - N Kaminen-Ahola
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00290, Helsinki, Finland.
| |
Collapse
|
18
|
Samuvel DJ, Li L, Krishnasamy Y, Gooz M, Takemoto K, Woster PM, Lemasters JJ, Zhong Z. Mitochondrial depolarization after acute ethanol treatment drives mitophagy in living mice. Autophagy 2022; 18:2671-2685. [PMID: 35293288 PMCID: PMC9629059 DOI: 10.1080/15548627.2022.2046457] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Ethanol increases hepatic mitophagy driven by unknown mechanisms. Type 1 mitophagy sequesters polarized mitochondria for nutrient recovery and cytoplasmic remodeling. In Type 2, mitochondrial depolarization (mtDepo) initiates mitophagy to remove the damaged organelles. Previously, we showed that acute ethanol administration produces reversible hepatic mtDepo. Here, we tested the hypothesis that ethanol-induced mtDepo initiates Type 2 mitophagy. GFP-LC3 transgenic mice were gavaged with ethanol (2-6 g/kg) with and without pre-treatment with agents that decrease or increase mtDepo-Alda-1, tacrolimus, or disulfiram. Without ethanol, virtually all hepatocytes contained polarized mitochondria with infrequent autophagic GFP-LC3 puncta visualized by intravital microscopy. At ~4 h after ethanol treatment, mtDepo occurred in an all-or-none fashion within individual hepatocytes, which increased dose dependently. GFP-LC3 puncta increased in parallel, predominantly in hepatocytes with mtDepo. Mitochondrial PINK1 and PRKN/parkin also increased. After covalent labeling of mitochondria with MitoTracker Red (MTR), GFP-LC3 puncta encircled MTR-labeled mitochondria after ethanol treatment, directly demonstrating mitophagy. GFP-LC3 puncta did not associate with fat droplets visualized with BODIPY558/568, indicating that increased autophagy was not due to lipophagy. Before ethanol administration, rhodamine-dextran (RhDex)-labeled lysosomes showed little association with GFP-LC3. After ethanol treatment, TFEB (transcription factor EB) translocated to nuclei, and lysosomal mass increased. Many GFP-LC3 puncta merged with RhDex-labeled lysosomes, showing autophagosomal processing into lysosomes. After ethanol treatment, disulfiram increased, whereas Alda-1 and tacrolimus decreased mtDepo, and mitophagy changed proportionately. In conclusion, mtDepo after acute ethanol treatment induces mitophagic sequestration and subsequent lysosomal processing.Abbreviations : AcAld, acetaldehyde; ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase; ALD, alcoholic liver disease; Alda-1, N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFP, green fluorescent protein; LAMP1, lysosomal-associated membrane protein 1; LMNB1, lamin B1; MAA, malondialdehyde-acetaldehyde adducts; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; MPT, mitochondrial permeability transition; mtDAMPS, mitochondrial damage-associated molecular patterns; mtDepo, mitochondrial depolarization; mtDNA, mitochondrial DNA; MTR, MitoTracker Red; PI, propidium iodide; PINK1, PTEN induced putative kinase 1; PRKN, parkin; RhDex, rhodamine dextran; TFEB, transcription factor EB; Tg, transgenic; TMRM, tetramethylrhodamine methylester; TOMM20, translocase of outer mitochondrial membrane 20; VDAC, voltage-dependent anion channel.
Collapse
Affiliation(s)
- Devadoss J. Samuvel
- Departments of Drug Discovery & Biomedical Science, Medical University of South Carolin, Charleston, SC, USA
| | - Li Li
- Departments of Drug Discovery & Biomedical Science, Medical University of South Carolin, Charleston, SC, USA
| | - Yasodha Krishnasamy
- Departments of Drug Discovery & Biomedical Science, Medical University of South Carolin, Charleston, SC, USA
| | - Monika Gooz
- Departments of Drug Discovery & Biomedical Science, Medical University of South Carolin, Charleston, SC, USA
| | - Kenji Takemoto
- Departments of Drug Discovery & Biomedical Science, Medical University of South Carolin, Charleston, SC, USA
| | - Patrick M. Woster
- Departments of Drug Discovery & Biomedical Science, Medical University of South Carolin, Charleston, SC, USA
| | - John J. Lemasters
- Departments of Drug Discovery & Biomedical Science, Medical University of South Carolin, Charleston, SC, USA
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Zhi Zhong
- Departments of Drug Discovery & Biomedical Science, Medical University of South Carolin, Charleston, SC, USA
| |
Collapse
|
19
|
Oh KK, Choi YR, Gupta H, Ganesan R, Sharma SP, Won SM, Jeong JJ, Lee SB, Cha MG, Kwon GH, Kim DJ, Suk KT. Identification of Gut Microbiome Metabolites via Network Pharmacology Analysis in Treating Alcoholic Liver Disease. Curr Issues Mol Biol 2022; 44:3253-3266. [PMID: 35877448 PMCID: PMC9316215 DOI: 10.3390/cimb44070224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/03/2022] Open
Abstract
Alcoholic liver disease (ALD) is linked to a broad spectrum of diseases, including diabetes, hypertension, atherosclerosis, and even liver carcinoma. The ALD spectrum includes alcoholic fatty liver disease (AFLD), alcoholic hepatitis, and cirrhosis. Most recently, some reports demonstrated that the pathogenesis of ALD is strongly associated with metabolites of human microbiota. AFLD was the onset of disease among ALDs, the initial cause of which is alcohol consumption. Thus, we analyzed the significant metabolites of microbiota against AFLD via the network pharmacology concept. The metabolites from microbiota were retrieved by the gutMGene database; sequentially, AFLD targets were identified by public databases (DisGeNET, OMIM). The final targets were utilized for protein–protein interaction (PPI) networks and signaling pathway analyses. Then, we performed a molecular docking test (MDT) to verify the affinity between metabolite(s) and target(s) utilizing the Autodock 1.5.6 tool. From a holistic viewpoint, we integrated the relationships of microbiota-signaling pathways-targets-metabolites (MSTM) using the R Package. We identified the uppermost six key targets (TLR4, RELA, IL6, PPARG, COX-2, and CYP1A2) against AFLD. The PPI network analysis revealed that TLR4, RELA, IL6, PPARG, and COX-2 had equivalent degrees of value (4); however, CYP1A2 had no associations with the other targets. The bubble chart showed that the PI3K-Akt signaling pathway in nine signaling pathways might be the most significant mechanism with antagonistic functions in the treatment of AFLD. The MDT confirmed that Icaritin is a promising agent to bind stably to RELA (known as NF-Κb). In parallel, Bacterium MRG-PMF-1, the PI3K-Akt signaling pathway, RELA, and Icaritin were the most significant components against AFLD in MSTM networks. In conclusion, we showed that the Icaritin–RELA complex on the PI3K-Akt signaling pathway by bacterial MRG-PMF-1 might have promising therapeutic effects against AFLD, providing crucial evidence for further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ki-Tae Suk
- Correspondence: ; Tel.: +82-10-5365-5700; Fax: +82-033-248-3481
| |
Collapse
|
20
|
The potential effects of HECTD4 variants on fasting glucose and triglyceride levels in relation to prevalence of type 2 diabetes based on alcohol intake. Arch Toxicol 2022; 96:2487-2499. [PMID: 35713687 PMCID: PMC9325801 DOI: 10.1007/s00204-022-03325-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/25/2022] [Indexed: 11/11/2022]
Abstract
Excessive alcohol intake is an important cause of major public health problem in East Asian countries. Growing evidence suggests that genetic factors are associated with alcohol consumption and the risk for alcohol-associated disease, and these factors contribute to the risk of developing chronic diseases, including diabetes. This study aims to investigate the association of type 2 diabetes with genetic polymorphisms within HECTD4 based on alcohol exposure. We performed a genome-wide association study involving the cohorts of the KoGES-HEXA study (n = 50,028) and Ansan and Ansung study (n = 7,980), both of which are prospective cohort studies in Korea. The top three single-nucleotide polymorphisms (SNPs) of the HECTD4 gene, specifically rs77768175, rs2074356 and rs11066280, were found to be significantly associated with alcohol consumption. We found that individuals carrying the variant allele in these SNPs had lower fasting blood glucose, triglyceride, and GGT levels than those with the wild-type allele. Multiple logistic regression showed that statistically significant associations of HECTD4 gene polymorphisms with an increased risk of type 2 diabetes were found in drinkers. Namely, these SNPs were associated with decreased odds of diabetes in the presence of alcohol consumption. As a result of examining the effect of alcohol on the expression of the HECTD4 gene, ethanol increased the expression of HECTD4 in cells, but the level was decreased by NAC treatment. Similar results were obtained from liver samples of mice treated with alcohol. Moreover, a loss of HECTD4 resulted in reduced levels of CYP2E1 and lipogenic gene expression in ethanol-treated cells, while the level of ALDH2 expression increased, indicating a reduction in ethanol-induced hepatotoxicity.
Collapse
|
21
|
Neuman MG, Seitz HK, Tuma PL, Osna NA, Casey CA, Kharbanda KK, Cohen LB, Malnick SDH, Adhikari R, Mitra R, Dagur RS, Ganesan M, Srinivas C, Madan Kumar A, New-Aaron M, Poluektova L, Thomes PG, Rasineni K, Opris M, Teschke R. Alcohol: basic and translational research; 15th annual Charles Lieber &1st Samuel French satellite symposium. Exp Mol Pathol 2022; 126:104750. [PMID: 35192844 PMCID: PMC9167794 DOI: 10.1016/j.yexmp.2022.104750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/28/2021] [Accepted: 01/24/2022] [Indexed: 02/05/2023]
Abstract
The present review is based on the research presented at the symposium dedicated to the legacy of the two scientists that made important discoveries in the field of alcohol-induced liver damage: Professors C.S. Lieber and S.W. French. The invited speakers described pharmacological, toxicological and patho-physiological effects of alcohol misuse. Moreover, genetic biomarkers determining adverse drug reactions due to interactions between therapeutics used for chronic or infectious diseases and alcohol exposure were discussed. The researchers presented their work in areas of alcohol-induced impairment in lipid protein trafficking and endocytosis, as well as the role of lipids in the development of fatty liver. The researchers showed that alcohol leads to covalent modifications that promote hepatic dysfunction and injury. We concluded that using new advanced techniques and research ideas leads to important discoveries in science.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.
| | - Helmut K Seitz
- Centre of Liver and Alcohol Diseases, Ethianum Clinic, University of Heidelberg, Germany
| | - Pamela L Tuma
- The Catholic University of America, Department of Biology, Washington, DC 20064, USA
| | - Natalia A Osna
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Carol A Casey
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kusum K Kharbanda
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lawrence B Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Steve D H Malnick
- Department of Internal Medicine C, Kaplan Medical Center, Affiliated Hebrew University, Jerusalem, Israel
| | - Raghabendra Adhikari
- The Catholic University of America, Department of Biology, Washington, DC 20064, USA
| | - Ramyajit Mitra
- The Catholic University of America, Department of Biology, Washington, DC 20064, USA
| | - Raghubendra Singh Dagur
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Murali Ganesan
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Chava Srinivas
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Arumugam Madan Kumar
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moses New-Aaron
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Larisa Poluektova
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul G Thomes
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Karuna Rasineni
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mihai Opris
- In Vitro Drug Safety and Biotechnology, Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada; Family Medicine Clinic CAR, Bucharest, Romania
| | - Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/ Main, Frankfurt/Main, Germany
| |
Collapse
|
22
|
Abstract
Lipophagy is a central cellular process for providing the cell with a readily utilized, high energy source of neutral lipids. Since its discovery over a decade ago, we are just starting to understand the molecular components that drive lipophagy, how it is activated in response to nutrient availability, and its potential as a therapeutic target in disease. In this Cell Science at a Glance article and the accompanying poster, we first provide a brief overview of the different structural and enzymatic proteins that comprise the lipid droplet (LD) proteome and reside within the limiting phospholipid monolayer of this complex organelle. We then highlight key players in the catabolic breakdown of LDs during the functionally linked lipolysis and lipophagy processes. Finally, we discuss what is currently known about macro- and micro-lipophagy based on findings in yeast, mammalian and other model systems, and how impairment of these important functions can lead to disease states.
Collapse
Affiliation(s)
- Micah B. Schott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Cody N. Rozeveld
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shaun G. Weller
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Mark A. McNiven
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| |
Collapse
|
23
|
Lee JY, Kim H, Jeong Y, Kang CH. Lactic Acid Bacteria Exert a Hepatoprotective Effect against Ethanol-Induced Liver Injury in HepG2 Cells. Microorganisms 2021; 9:microorganisms9091844. [PMID: 34576738 PMCID: PMC8465258 DOI: 10.3390/microorganisms9091844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
Alcoholic liver fatty disease (ALFD) is caused by excessive and chronic alcohol consumption. Alcohol consumption causes an imbalance in the intestinal microflora, leading to liver disease induced by the excessive release of endotoxins into the hepatic portal vein. Therefore, research on the intestinal microflora to identify treatments for ALFD is increasing. In this study, the protective effects of lactic acid bacteria (LAB) strains, including Levilactobacillus brevis, Limosilactobacillus reuteri, and Limosilactobacillus fermentum, were evaluated in ethanol-induced HepG2 cells. Among the evaluated LAB, nine strains increased aldehyde dehydrogenase (ALDH) levels and downregulated lipid peroxidation and liver transferase in the ethanol-induced HepG2 cells. Moreover, L. brevis MG5280 and MG5311, L. reuteri MG5458, and L. fermentum MG4237 and MG4294 protected against ethanol-induced HepG2 cell damage by regulating CYP2E1, antioxidant enzymes (SOD, CAT, and GPX), lipid synthesis factors (SREBP1C and FAS), and lipid oxidation factors (PPARα, ACO, and CPT-1). Moreover, five LAB were confirmed to be safe probiotics based on antibiotic susceptibility and hemolysis assays; their stability and adhesion ability in the gastrointestinal tract were also established. In conclusion, L. brevis MG5280 and MG5311, L. reuteri MG5458, and L. fermentum MG4237 and MG4294 may be useful as new probiotic candidates for ALFD prevention.
Collapse
|
24
|
Michalak A, Lach T, Cichoż-Lach H. Oxidative Stress-A Key Player in the Course of Alcohol-Related Liver Disease. J Clin Med 2021; 10:jcm10143011. [PMID: 34300175 PMCID: PMC8303854 DOI: 10.3390/jcm10143011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is known to be an inseparable factor involved in the presentation of liver disorders. Free radicals interfere with DNA, proteins, and lipids, which are crucial in liver metabolism, changing their expression and biological functions. Additionally, oxidative stress modifies the function of micro-RNAs, impairing the metabolism of hepatocytes. Free radicals have also been proven to influence the function of certain transcriptional factors and to alter the cell cycle. The pathological appearance of alcohol-related liver disease (ALD) constitutes an ideal example of harmful effects due to the redox state. Finally, ethanol-induced toxicity and overproduction of free radicals provoke irreversible changes within liver parenchyma. Understanding the underlying mechanisms associated with the redox state in the course of ALD creates new possibilities of treatment for patients. The future of hepatology may become directly dependent on the effective action against reactive oxygen species. This review summarizes current data on the redox state in the natural history of ALD, highlighting the newest reports on this topic.
Collapse
Affiliation(s)
- Agata Michalak
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Tomasz Lach
- Department of Orthopedics and Traumatology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
- Correspondence: ; Tel.: +48-601377656; Fax: +48-814796135
| |
Collapse
|
25
|
Wang Y, Hong J, Shi M, Guo L, Liu L, Tang H, Liu X. Triphenyl phosphate disturbs the lipidome and induces endoplasmic reticulum stress and apoptosis in JEG-3 cells. CHEMOSPHERE 2021; 275:129978. [PMID: 33662732 DOI: 10.1016/j.chemosphere.2021.129978] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/31/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Triphenyl phosphate (TPP) is a frequently used aryl organophosphate flame retardant. Epidemiological studies have shown that TPP and its metabolite diphenyl phosphate (DPP) can accumulate in the placenta, and positively correlated with abnormal birth outcomes. TPP can disturb placental hormone secretion through the peroxisome proliferator-activated receptor γ (PPARγ) pathway. However, the extent and mechanism of placental toxicity mediation by TPP remains unknown. In this study, we used JEG-3 cells to investigate the role of PPARγ-regulated lipid metabolism in TPP-mediated placental toxicity. The results of lipidomic analysis showed that TPP increased the production of triglycerides (TG), fatty acids (FAs), and phosphatidic acid (PA), but decreased the levels of phosphatidylethanol (PE), phosphatidylserine (PS), and sphingomyelin (SM). TG accumulation was accompanied by increased levels of sterol regulatory element binding transcription factor 1 (SREBP1), acetyl-coA carboxylase (ACC), and fatty acid transport protein (CD36). Although PPARγ and its target CCAAT/enhancer binding proteins (C/EBPα) was decreased, the TG content and gene expression of SREBP1, ACC, and CD36 decreased when TPP was co-exposed to the PPARγ antagonist GW9662. TPP also induced inflammatory responses, endoplasmic reticulum stress (ERS), and cell apoptosis. Expression of genes related to ERS and apoptosis were attenuated by GW9662. Together, these results show that TPP can disturb lipid metabolism and cause lipid accumulation through PPARγ, induce ERS, and cell apoptosis. Our findings reveal that the developmental toxicity of TPP through placental toxicity should not be ignored.
Collapse
Affiliation(s)
- Yao Wang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Jiabin Hong
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Ming Shi
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Lianxian Guo
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Linhua Liu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Huanwen Tang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China.
| | - Xiaoshan Liu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China.
| |
Collapse
|
26
|
Wu K, Fan S, Zou L, Zhao F, Ma S, Fan J, Li X, Zhao M, Yan H, Chen J. Molecular Events Occurring in Lipophagy and Its Regulation in Flaviviridae Infection. Front Microbiol 2021; 12:651952. [PMID: 34093468 PMCID: PMC8175637 DOI: 10.3389/fmicb.2021.651952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
Diseases caused by Flaviviridae have a wide global and economic impact due to high morbidity and mortality. Flaviviridae infection usually leads to severe, acute or chronic diseases, such as liver injury and liver cancer resulting from hepatitis C virus (HCV) infection, dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS) caused by dengue virus (DENV). Given the highly complex pathogenesis of Flaviviridae infections, they are still not fully understood at present. Accumulating evidence suggests that host autophagy is disrupted to regulate the life cycle of Flaviviridae. Organelle-specific autophagy is able to selectively target different organelles for quality control, which is essential for regulating cellular homeostasis. As an important sub process of autophagy, lipophagy regulates lipid metabolism by targeting lipid droplets (LDs) and is also closely related to the infection of a variety of pathogenic microorganisms. In this review, we briefly understand the LDs interaction relationship with Flaviviridae infection, outline the molecular events of how lipophagy occurs and the related research progress on the regulatory mechanisms of lipophagy in Flaviviridae infection. Exploring the crosstalk between viral infection and lipophagy induced molecular events may provide new avenues for antiviral therapy.
Collapse
Affiliation(s)
- Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shengming Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Huichao Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
27
|
Mould RR, Botchway SW, Parkinson JRC, Thomas EL, Guy GW, Bell JD, Nunn AVW. Cannabidiol Modulates Mitochondrial Redox and Dynamics in MCF7 Cancer Cells: A Study Using Fluorescence Lifetime Imaging Microscopy of NAD(P)H. Front Mol Biosci 2021; 8:630107. [PMID: 34046425 PMCID: PMC8144465 DOI: 10.3389/fmolb.2021.630107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
The cannabinoid, cannabidiol (CBD), is part of the plant's natural defense system that when given to animals has many useful medicinal properties, including activity against cancer cells, modulation of the immune system, and efficacy in epilepsy. Although there is no consensus on its precise mode of action as it affects many cellular targets, CBD does appear to influence mitochondrial function. This would suggest that there is a cross-kingdom ability to modulate stress resistance systems that enhance homeostasis. As NAD(P)H autofluorescence can be used as both a metabolic sensor and mitochondrial imaging modality, we assessed the potential of this technique to study the in vitro effects of CBD using 2-photon excitation and fluorescence lifetime imaging microscopy (2P-FLIM) of NAD(P)H against more traditional markers of mitochondrial morphology and cellular stress in MCF7 breast cancer cells. 2P-FLIM analysis revealed that the addition of CBD induced a dose-dependent decrease in bound NAD(P)H, with 20 µM treatments significantly decreased the contribution of bound NAD(P)H by 14.6% relative to the control (p < 0.001). CBD also increased mitochondrial concentrations of reactive oxygen species (ROS) (160 ± 53 vs. 97.6 ± 4.8%, 20 µM CBD vs. control, respectively, p < 0.001) and Ca2+ (187 ± 78 vs. 105 ± 10%, 20 µM CBD vs. the control, respectively, p < 0.001); this was associated with a significantly decreased mitochondrial branch length and increased fission. These are all suggestive of mitochondrial stress. Our results support the use of NAD(P)H autofluorescence as an investigative tool and provide further evidence that CBD can modulate mitochondrial function and morphology in a dose-dependent manner, with clear evidence of it inducing oxidative stress at higher concentrations. This continues to support emerging data in the literature and may provide further insight into its overall mode of action, not only in cancer, but potentially its function in the plant and why it can act as a medicine.
Collapse
Affiliation(s)
- Rhys Richard Mould
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Stanley W. Botchway
- Central Laser Facility, Science and Technology Facilities Council, UKRI, Rutherford Appleton Laboratory, Harwell Campus, Oxford, United Kingdom
| | - James R. C. Parkinson
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Elizabeth Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | | | - Jimmy D. Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Alistair V. W. Nunn
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
28
|
Aqueous Mulberry Leaf Extract Ameliorates Alcoholic Liver Injury Associating with Upregulation of Ethanol Metabolism and Suppression of Hepatic Lipogenesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6658422. [PMID: 34035824 PMCID: PMC8124008 DOI: 10.1155/2021/6658422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/28/2021] [Indexed: 12/20/2022]
Abstract
Excessive alcohol intake is a major cause of chronic liver damage and is highly associated with the development of a spectrum of hepatic disorders, including steatohepatitis, liver cirrhosis, and liver cancer. Thus, we aimed to explore the hepatoprotective effects of an aqueous mulberry leaf extract (AME) on alcoholic fatty liver disorder (AFLD) by using a mouse model fed with excessive ethanol. Compared with the normal diet, the ethanol diet significantly increased the body weight of the mice, while the AME supplement reduced the weight gain caused by the ethanol diet. The ethanol diet also attenuated the activity of alcohol dehydrogenase and antioxidant enzymes but increased lipid peroxidation in the liver, which were reversed by AME supplementation. Additionally, AME supplementation diminished the ethanol diet-induced hepatic leukocyte infiltration and expressions of IL-6 and TNFα. Moreover, AME supplementation also reduced the ethanol-diet-induced lipid accumulation and expression of 1-acylglycerol-3-phosphate acyltransferase, acetyl-CoA carboxylase, low-density lipoprotein receptor, and sterol regulatory element-binding protein-1/2 in the liver. Collectively, AME supplementation improved liver lipid accumulation and proinflammatory response in mice induced by the ethanol diet, which was associated with the upregulation of ethanol-metabolizing enzymes and the downregulation of lipogenesis components.
Collapse
|
29
|
Acharya P, Chouhan K, Weiskirchen S, Weiskirchen R. Cellular Mechanisms of Liver Fibrosis. Front Pharmacol 2021; 12:671640. [PMID: 34025430 PMCID: PMC8134740 DOI: 10.3389/fphar.2021.671640] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is a central organ in the human body, coordinating several key metabolic roles. The structure of the liver which consists of the distinctive arrangement of hepatocytes, hepatic sinusoids, the hepatic artery, portal vein and the central vein, is critical for its function. Due to its unique position in the human body, the liver interacts with components of circulation targeted for the rest of the body and in the process, it is exposed to a vast array of external agents such as dietary metabolites and compounds absorbed through the intestine, including alcohol and drugs, as well as pathogens. Some of these agents may result in injury to the cellular components of liver leading to the activation of the natural wound healing response of the body or fibrogenesis. Long-term injury to liver cells and consistent activation of the fibrogenic response can lead to liver fibrosis such as that seen in chronic alcoholics or clinically obese individuals. Unidentified fibrosis can evolve into more severe consequences over a period of time such as cirrhosis and hepatocellular carcinoma. It is well recognized now that in addition to external agents, genetic predisposition also plays a role in the development of liver fibrosis. An improved understanding of the cellular pathways of fibrosis can illuminate our understanding of this process, and uncover potential therapeutic targets. Here we summarized recent aspects in the understanding of relevant pathways, cellular and molecular drivers of hepatic fibrosis and discuss how this knowledge impact the therapy of respective disease.
Collapse
Affiliation(s)
- Pragyan Acharya
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Komal Chouhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
30
|
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13:6-65. [PMID: 33584986 PMCID: PMC7856864 DOI: 10.4254/wjh.v13.i1.6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71110, Greece
| | - Argryro Voumvouraki
- 1 Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54636, Greece
| | - Aikaterini Augoustaki
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece.
| |
Collapse
|
31
|
Álvarez Ramírez AA, Peláez JL, Bermúdez IM, Gordon Botero JY. Prevalence of hyperlipidemia and its associated factors in university students in Colombia. Heliyon 2020; 6:e05417. [PMID: 33195846 PMCID: PMC7644913 DOI: 10.1016/j.heliyon.2020.e05417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/17/2020] [Accepted: 10/29/2020] [Indexed: 12/02/2022] Open
Abstract
The present study aimed to determine the prevalence of hyperlipidemia and its associated factors in the students of the Faculty of Health of Universidad Santiago de Cali in 2017. A descriptive cross-sectional study was performed in a sample of 361 students, with an average age of 21 (16-40) years. A sociodemographic survey was conducted, and blood samples and lipid profiles were obtained. The participants were predominantly female (77%), single (92.5%), and young adults (62.3%) and with an average socioeconomic level (55.1%). The overall prevalence of hyperlipidemia was 33.8%, with the following risk values: triglyceride (TG), 12.8%; hypercholesterolemia, 16.1%; high density lipoprotein cholesterol (cHDL), 15.0%; and low-density lipoprotein cholesterol (cLDL), 42.2%. Using the theory of the logistic regression models and chi-square likelihood ratio tests, the factors that were significantly associated with the risk of hyperlipidemia were male sex and consumption of alcoholic beverages (P-value < 0.05). In the two-way ANOVA, it was observed that the interaction of these two factors for TG was significant (P-value < 0.05), being higher in men who consume intoxicating beverages (Tukey's test, P value <0.05). Regarding cHDL and cLDL, only sex presented a significant effect on their values (P-value < 0.05), while for total cholesterol, none was significant (P-value > 0.05). The results obtained indicate the importance of early detection of blood lipid levels in young people to prevent the early development of noncommunicable diseases.
Collapse
|
32
|
cAMP Signaling in Pathobiology of Alcohol Associated Liver Disease. Biomolecules 2020; 10:biom10101433. [PMID: 33050657 PMCID: PMC7600246 DOI: 10.3390/biom10101433] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The importance of cyclic adenosine monophosphate (cAMP) in cellular responses to extracellular signals is well established. Many years after discovery, our understanding of the intricacy of cAMP signaling has improved dramatically. Multiple layers of regulation exist to ensure the specificity of cellular cAMP signaling. Hence, disturbances in cAMP homeostasis could arise at multiple levels, from changes in G protein coupled receptors and production of cAMP to the rate of degradation by phosphodiesterases. cAMP signaling plays critical roles in metabolism, inflammation and development of fibrosis in several tissues. Alcohol-associated liver disease (ALD) is a multifactorial condition ranging from a simple steatosis to steatohepatitis and fibrosis and ultimately cirrhosis, which might lead to hepatocellular cancer. To date, there is no FDA-approved therapy for ALD. Hence, identifying the targets for the treatment of ALD is an important undertaking. Several human studies have reported the changes in cAMP homeostasis in relation to alcohol use disorders. cAMP signaling has also been extensively studied in in vitro and in vivo models of ALD. This review focuses on the role of cAMP in the pathobiology of ALD with emphasis on the therapeutic potential of targeting cAMP signaling for the treatment of various stages of ALD.
Collapse
|
33
|
Valcin JA, Udoh US, Swain TM, Andringa KK, Patel CR, Al Diffalha S, Baker PRS, Gamble KL, Bailey SM. Alcohol and Liver Clock Disruption Increase Small Droplet Macrosteatosis, Alter Lipid Metabolism and Clock Gene mRNA Rhythms, and Remodel the Triglyceride Lipidome in Mouse Liver. Front Physiol 2020; 11:1048. [PMID: 33013449 PMCID: PMC7504911 DOI: 10.3389/fphys.2020.01048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Heavy alcohol drinking dysregulates lipid metabolism, promoting hepatic steatosis – the first stage of alcohol-related liver disease (ALD). The molecular circadian clock plays a major role in synchronizing daily rhythms in behavior and metabolism and clock disruption can cause pathology, including liver disease. Previous studies indicate that alcohol consumption alters liver clock function, but the impact alcohol or clock disruption, or both have on the temporal control of hepatic lipid metabolism and injury remains unclear. Here, we undertook studies to determine whether genetic disruption of the liver clock exacerbates alterations in lipid metabolism and worsens steatosis in alcohol-fed mice. To address this question, male liver-specific Bmal1 knockout (LKO) and flox/flox (Fl/Fl) control mice were fed a control or alcohol-containing diet for 5 weeks. Alcohol significantly dampened diurnal rhythms of mRNA levels in clock genes Bmal1 and Dbp, phase advanced Nr1d1/REV-ERBα, and induced arrhythmicity in Clock, Noct, and Nfil3/E4BP4, with further disruption in livers of LKO mice. Alcohol-fed LKO mice exhibited higher plasma triglyceride (TG) and different time-of-day patterns of hepatic TG and macrosteatosis, with elevated levels of small droplet macrosteatosis compared to alcohol-fed Fl/Fl mice. Diurnal rhythms in mRNA levels of lipid metabolism transcription factors (Srebf1, Nr1h2, and Ppara) were significantly altered by alcohol and clock disruption. Alcohol and/or clock disruption significantly altered diurnal rhythms in mRNA levels of fatty acid (FA) synthesis and oxidation (Acaca/b, Mlycd, Cpt1a, Fasn, Elovl5/6, and Fads1/2), TG turnover (Gpat1, Agpat1/2, Lpin1/2, Dgat2, and Pnpla2/3), and lipid droplet (Plin2/5, Lipe, Mgll, and Abdh5) genes, along with protein abundances of p-ACC, MCD, and FASN. Lipidomics analyses showed that alcohol, clock disruption, or both significantly altered FA saturation and remodeled the FA composition of the hepatic TG pool, with higher percentages of several long and very long chain FA in livers of alcohol-fed LKO mice. In conclusion, these results show that the liver clock is important for maintaining temporal control of hepatic lipid metabolism and that disrupting the liver clock exacerbates alcohol-related hepatic steatosis.
Collapse
Affiliation(s)
- Jennifer A Valcin
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Uduak S Udoh
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Telisha M Swain
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kelly K Andringa
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Chirag R Patel
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sameer Al Diffalha
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shannon M Bailey
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
34
|
Tariq T, Desai AP. Nonalcoholic Fatty Liver Disease: Making the Diagnosis. Clin Liver Dis (Hoboken) 2020; 16:53-57. [PMID: 32922750 PMCID: PMC7474145 DOI: 10.1002/cld.924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/08/2020] [Indexed: 02/04/2023] Open
Affiliation(s)
- Tooba Tariq
- Division of GeriatricsIndiana University School of MedicineIndianapolisIN
| | - Archita P. Desai
- Division of Gastroenterology and HepatologyIndiana University School of MedicineIndianapolisIN
| |
Collapse
|
35
|
Correnti J, Lin C, Brettschneider J, Kuriakose A, Jeon S, Scorletti E, Oranu A, McIver-Jenkins D, Kaneza I, Buyco D, Saiman Y, Furth EE, Argemi J, Bataller R, Holland WL, Carr RM. Liver-specific ceramide reduction alleviates steatosis and insulin resistance in alcohol-fed mice. J Lipid Res 2020; 61:983-994. [PMID: 32398264 PMCID: PMC7328039 DOI: 10.1194/jlr.ra119000446] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Alcohol's impairment of both hepatic lipid metabolism and insulin resistance (IR) are key drivers of alcoholic steatosis, the initial stage of alcoholic liver disease (ALD). Pharmacologic reduction of lipotoxic ceramide prevents alcoholic steatosis and glucose intolerance in mice, but potential off-target effects limit its strategic utility. Here, we employed a hepatic-specific acid ceramidase (ASAH) overexpression model to reduce hepatic ceramides in a Lieber-DeCarli model of experimental alcoholic steatosis. We examined effects of alcohol on hepatic lipid metabolism, body composition, energy homeostasis, and insulin sensitivity as measured by hyperinsulinemic-euglycemic clamp. Our results demonstrate that hepatic ceramide reduction ameliorates the effects of alcohol on hepatic lipid droplet (LD) accumulation by promoting VLDL secretion and lipophagy, the latter of which involves ceramide cross-talk between the lysosomal and LD compartments. We additionally demonstrate that hepatic ceramide reduction prevents alcohol's inhibition of hepatic insulin signaling. These effects on the liver are associated with a reduction in oxidative stress markers and are relevant to humans, as we observe peri- LD ASAH expression in human ALD. Together, our results suggest a potential role for hepatic ceramide inhibition in preventing ALD.
Collapse
Affiliation(s)
- Jason Correnti
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | - Chelsea Lin
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | | | - Amy Kuriakose
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | - Sookyoung Jeon
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | - Eleonora Scorletti
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | - Amanke Oranu
- Division of Gastroenterology, United Health Services, Binghamton, NY
| | - Dru McIver-Jenkins
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | - Isabelle Kaneza
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | - Delfin Buyco
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | - Yedidya Saiman
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | - Emma E Furth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Josepmaria Argemi
- Center for Liver Diseases, Pittsburgh Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Ramon Bataller
- Center for Liver Diseases, Pittsburgh Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Rotonya M Carr
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA. mailto:
| |
Collapse
|
36
|
Li S, Xu Y, Guo W, Chen F, Zhang C, Tan HY, Wang N, Feng Y. The Impacts of Herbal Medicines and Natural Products on Regulating the Hepatic Lipid Metabolism. Front Pharmacol 2020; 11:351. [PMID: 32265720 PMCID: PMC7105674 DOI: 10.3389/fphar.2020.00351] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
The dysregulation of hepatic lipid metabolism is one of the hallmarks in many liver diseases including alcoholic liver diseases (ALD) and non-alcoholic fatty liver diseases (NAFLD). Hepatic inflammation, lipoperoxidative stress as well as the imbalance between lipid availability and lipid disposal, are direct causes of liver steatosis. The application of herbal medicines with anti-oxidative stress and lipid-balancing properties has been extensively attempted as pharmaceutical intervention for liver disorders in experimental and clinical studies. Although the molecular mechanisms underlying their hepatoprotective effects warrant further exploration, increasing evidence demonstrated that many herbal medicines are involved in regulating lipid accumulation processes including hepatic lipolytic and lipogenic pathways, such as mitochondrial and peroxisomal β-oxidation, the secretion of very low density lipoprotein (VLDL), the non-esterified fatty acid (NEFA) uptake, and some vital hepatic lipogenic enzymes. Therefore, in this review, the pathways or crucial mediators participated in the dysregulation of hepatic lipid metabolism are systematically summarized, followed by the current evidences and advances in the positive impacts of herbal medicines and natural products on the lipid metabolism pathways are detailed. Furthermore, several herbal formulas, herbs or herbal derivatives, such as Erchen Dection, Danshen, resveratrol, and berberine, which have been extensively studied for their promising potential in mediating lipid metabolism, are particularly highlighted in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
37
|
Role of autophagy in alcohol and drug-induced liver injury. Food Chem Toxicol 2019; 136:111075. [PMID: 31877367 DOI: 10.1016/j.fct.2019.111075] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
Alcohol-related liver disease (ALD) and drug-induced liver injury (DILI) are common causes of severe liver disease, and successful treatments are lacking. Autophagy plays a protective role in both ALD and DILI by selectively removing damaged mitochondria (mitophagy), lipid droplets (lipophagy), protein aggregates and adducts in hepatocytes. Autophagy also protects against ALD by degrading interferon regulatory factor 1 (IRF1) and damaged mitochondria in hepatic macrophages. Specifically, we will discuss selective autophagy for removal of damaged mitochondria and lipid droplets in hepatocytes and autophagy-mediated degradation of IRF1 in hepatic macrophages as protective mechanisms against alcohol-induced liver injury and steatosis. In addition, selective autophagy for removal of damaged mitochondria and protein adducts for protection against DILI is discussed in this review. Development of new therapeutics for ALD and DILI is greatly needed, and selective autophagy pathways may provide promising targets. Drug and alcohol effects on autophagy regulation as well as protective mechanisms of autophagy against DILI and ALD are highlighted in this review.
Collapse
|
38
|
Donohue TM, Osna NA, Kharbanda KK, Thomes PG. Lysosome and proteasome dysfunction in alcohol-induced liver injury. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Yan S, Khambu B, Hong H, Liu G, Huda N, Yin XM. Autophagy, Metabolism, and Alcohol-Related Liver Disease: Novel Modulators and Functions. Int J Mol Sci 2019; 20:ijms20205029. [PMID: 31614437 PMCID: PMC6834312 DOI: 10.3390/ijms20205029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023] Open
Abstract
Alcohol-related liver disease (ALD) is caused by over-consumption of alcohol. ALD can develop a spectrum of pathological changes in the liver, including steatosis, inflammation, cirrhosis, and complications. Autophagy is critical to maintain liver homeostasis, but dysfunction of autophagy has been observed in ALD. Generally, autophagy is considered to protect the liver from alcohol-induced injury and steatosis. In this review, we will summarize novel modulators of autophagy in hepatic metabolism and ALD, including autophagy-mediating non-coding RNAs (ncRNAs), and crosstalk of autophagy machinery and nuclear factors. We will also discuss novel functions of autophagy in hepatocytes and non-parenchymal hepatic cells during the pathogenesis of ALD and other liver diseases.
Collapse
Affiliation(s)
- Shengmin Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Bilon Khambu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Honghai Hong
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Gang Liu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Nazmul Huda
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
40
|
Srinivasan MP, Bhopale KK, Amer SM, Wan J, Kaphalia L, Ansari GS, Kaphalia BS. Linking Dysregulated AMPK Signaling and ER Stress in Ethanol-Induced Liver Injury in Hepatic Alcohol Dehydrogenase Deficient Deer Mice. Biomolecules 2019; 9:biom9100560. [PMID: 31581705 PMCID: PMC6843321 DOI: 10.3390/biom9100560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/23/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Ethanol (EtOH) metabolism itself can be a predisposing factor for initiation of alcoholic liver disease (ALD). Therefore, a dose dependent study to evaluate liver injury was conducted in hepatic alcohol dehydrogenase (ADH) deficient (ADH−) and ADH normal (ADH+) deer mice fed 1%, 2% or 3.5% EtOH in the liquid diet daily for 2 months. Blood alcohol concentration (BAC), liver injury marker (alanine amino transferase (ALT)), hepatic lipids and cytochrome P450 2E1 (CYP2E1) activity were measured. Liver histology, endoplasmic reticulum (ER) stress, AMP-activated protein kinase (AMPK) signaling and cell death proteins were evaluated. Significantly increased BAC, plasma ALT, hepatic lipids and steatosis were found only in ADH− deer mice fed 3.5% EtOH. Further, a significant ER stress and increased un-spliced X-box binding protein 1 were evident only in ADH− deer mice fed 3.5% EtOH. Both strains fed 3.5% EtOH showed deactivation of AMPK, but increased acetyl Co-A carboxylase 1 and decreased carnitine palmitoyltransferase 1A favoring lipogenesis were found only in ADH− deer mice fed 3.5% EtOH. Therefore, irrespective of CYP2E1 overexpression; EtOH dose and hepatic ADH deficiency contribute to EtOH-induced steatosis and liver injury, suggesting a linkage between ER stress, dysregulated hepatic lipid metabolism and AMPK signaling.
Collapse
Affiliation(s)
- Mukund P Srinivasan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kamlesh K Bhopale
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Samir M Amer
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Forensic Medicine and Clinical Toxicology, Tanta University, Tanta 31512, Egypt
| | - Jie Wan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Lata Kaphalia
- Division of Pulmonary, Critical Care Medicine, Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ghulam S Ansari
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bhupendra S Kaphalia
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|