1
|
Petrovic S, Mouskeftara T, Paunovic M, Deda O, Vucic V, Milosevic M, Gika H. Unveiling Lipidomic Alterations in Metabolic Syndrome: A Study of Plasma, Liver, and Adipose Tissues in a Dietary-Induced Rat Model. Nutrients 2024; 16:3466. [PMID: 39458462 PMCID: PMC11509917 DOI: 10.3390/nu16203466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic syndrome (MetS) is a complex condition characterized by fat accumulation, dyslipidemia, impaired glucose control and hypertension. In this study, rats were fed a high-fat high-fructose (HFF) diet in order to develop MetS. After ten weeks, the dietary-induced MetS was confirmed by higher body fat percentage, lower HDL-cholesterol and increased blood pressure in the HFF-fed rats compared to the normal-fed control animals. However, the effect of MetS development on the lipidomic signature of the dietary-challenged rats remains to be investigated. To reveal the contribution of specific lipids to the development of MetS, the lipid profiling of rat tissues particularly susceptible to MetS was performed using untargeted UHPLC-QTOF-MS/MS lipidomic analysis. A total of 37 lipid species (mainly phospholipids, triglycerides, sphingolipids, cholesterol esters, and diglycerides) in plasma, 43 lipid species in liver, and 11 lipid species in adipose tissue were identified as dysregulated between the control and MetS groups. Changes in the lipid signature of selected tissues additionally revealed systemic changes in the dietary-induced rat model of MetS.
Collapse
Affiliation(s)
- Snjezana Petrovic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.P.); (V.V.)
| | - Thomai Mouskeftara
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Marija Paunovic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.P.); (V.V.)
| | - Olga Deda
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| | - Vesna Vucic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.P.); (V.V.)
| | - Maja Milosevic
- Group for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Helen Gika
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| |
Collapse
|
2
|
Yiğit Ş, Akıncı B, Ekşi BÜ, Dayıcan DK, Çalıkoğlu F, Çelik Y, Yeldan İ, Satman İ. Using Cluster Analysis to Identify Metabolic Syndrome Components and Physical Fitness in Patients with Metabolic Syndrome. Metab Syndr Relat Disord 2024; 22:558-565. [PMID: 38721973 DOI: 10.1089/met.2024.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024] Open
Abstract
Background: Metabolic syndrome (MetS) comprises a cluster of cardiovascular risk factors. Physical inactivity and reduced physical fitness are associated with one or more components of MetS. However, MetS has many components, and the unclear relationship between the components and physical fitness parameters can provide a plain and straightforward understanding of the clustering method. Aim: To identify the relationship between physical fitness parameters, physical activity levels, and components of MetS using hierarchical cluster analysis. Methods: One hundred twenty-one patients (mean age = 51.4 ± 7.1/years, F:90, M:31) who were diagnosed as having MetS according to the National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATP III) criteria were included in the study. Fasting plasma glucose (FPG), high-density lipoprotein cholesterol (HDL-C), and triglyceride (TG) were analyzed. Systolic and diastolic blood pressures, (SBP and DBP), were evaluated. Body composition (waist and hip circumference, (WC and HC), waist-to-hip ratio (WHR), body mass index (BMI), percent body fat, and visceral fat), upper and lower extremity muscle strength (dynamometer), and functional exercise capacity [6-minute walk test (6MWT)] were assessed as physical fitness parameters. Physical activity levels were assessed using a pedometer and number of steps (NS) was determined. Results: Of the patients, 45.5% were diagnosed as having MetS based on four components. The dendrogram consisted of two main clusters and four subclusters. The main cluster I composed of BMI, HC, WC, visceral fat, HDL-C, percent fat, SBP, DBP, and percent quadriceps. The main cluster II comprised FPG, TG, WHR, handgrip strength, 6MWT, and NS. Conclusion: MetS components clustered with different physical fitness parameters. The clusters in the dendrogram can provide substantial implications for heterogeneous MetS components and physical fitness parameters. Future studies are needed to elucidate the effectiveness of dendrogram-derived exercise programs in MetS.
Collapse
Affiliation(s)
- Şafak Yiğit
- Department of Physiotherapy and Rehabilitation, Graduate Education Institute, Biruni University, Istanbul, Turkey
- Department Physiotherapy Program, Vocational School Therapy and Rehabilitation, Istanbul Galata University, Istanbul, Turkey
| | - Buket Akıncı
- Department of Physiotherapy and Rehabilitation (English), Faculty of Health Sciences, Biruni University, Istanbul, Turkey
| | - Büşra Ülker Ekşi
- Department of Physiotherapy and Rehabilitation, Graduate Education Institute, Biruni University, Istanbul, Turkey
- Department Physiotherapy Program, Vocational School Therapy and Rehabilitation, Istanbul Galata University, Istanbul, Turkey
| | - Damla Korkmaz Dayıcan
- Department of Physiotherapy and Rehabilitation, Graduate Education Institute, Biruni University, Istanbul, Turkey
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Izmir Tınaztepe University, Izmır, Turkey
| | - Fulya Çalıkoğlu
- Department of Endocrinology and Metabolism, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yusuf Çelik
- Biostatistics Department, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - İpek Yeldan
- Department of Physiotherapy and Rehabilitation, Faculty of Health Science, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - İlhan Satman
- Department of Endocrinology and Metabolism, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
3
|
Bah TM, Davis CM, Allen EM, Borkar RN, Perez R, Grafe MR, Raber J, Pike MM, Alkayed NJ. Soluble epoxide hydrolase inhibition reverses cognitive dysfunction in a mouse model of metabolic syndrome by modulating inflammation. Prostaglandins Other Lipid Mediat 2024; 173:106850. [PMID: 38735559 PMCID: PMC11218661 DOI: 10.1016/j.prostaglandins.2024.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Midlife metabolic syndrome (MetS) is associated with cognitive impairment in late life. The mechanism of delayed MetS-related cognitive dysfunction (MetSCD) is not clear, but it has been linked to systemic inflammation and chronic cerebral microangiopathy. Currently there is no treatment for late life MetSCD other than early risk factor modification. We investigated the effect of soluble epoxide hydrolase (sEH) inhibitor 4-[[trans-4-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]cyclohexyl]oxy]-benzoic acid (t-AUCB) on cognitive performance, cerebral blood flow (CBF), and central and peripheral inflammation in the high-fat diet (HFD) model of MetS in mice. At 6 weeks of age, male mice were randomly assigned to receive either HFD or standard chow (STD) for 6 months. Mice received either t-AUCB or vehicle for 4 weeks. Cognitive performance was evaluated, followed by CBF measurement using magnetic resonance imaging (MRI). At the end of the study, blood was collected for measurement of eicosanoids and inflammatory cytokines. The brains were then analyzed by immunohistochemistry for glial activation markers. The HFD caused a significant impairment in novel object recognition. Treatment with t-AUCB increased plasma levels of 14,15-EET, prevented this cognitive impairment and modified hippocampal glial activation and plasma cytokine levels, without affecting CBF in mice on HFD. In conclusion, sEH inhibition for four weeks prevents cognitive deficits in mice on chronic HFD by modulating inflammatory processes without affecting CBF.
Collapse
Affiliation(s)
- Thierno M Bah
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Catherine M Davis
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Elyse M Allen
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Rohan N Borkar
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ruby Perez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Marjorie R Grafe
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA
| | - Martin M Pike
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Nabil J Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
4
|
Siliman Misha M, Destrumelle S, Le Jan D, Mansour NM, Fizanne L, Ouguerram K, Desfontis JC, Mallem MY. Preventive effects of a nutraceutical mixture of berberine, citrus and apple extracts on metabolic disturbances in Zucker fatty rats. PLoS One 2024; 19:e0306783. [PMID: 39058681 PMCID: PMC11280259 DOI: 10.1371/journal.pone.0306783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The prevention of obesity represents a major health and socio-economic challenge. Nutraceuticals are regularly highlighted for their beneficial effects in preventing the metabolic disturbances associated with obesity. However, few studies have described the combined action of nutraceutical mixtures combining polyphenols with alkaloids. OBJECTIVE The aim of this study was to evaluate the effects of long-term dietary supplementation with a mixture of Berberine, Citrus and Apple extracts (BCA) in the primary prevention of obesity and its metabolic and vascular complications in the obese Zucker rat, a spontaneous model of genetic obesity and insulin resistance. METHODS Sixteen 8-week-old obese Zucker male rats were randomly divided into two groups: all rats received oral gavage daily either with water, untreated obese (U-ObZ) or BCA (BCA-ObZ) mixture for thirteen weeks. Morphological and metabolic parameters were measured along the study. Cumulative concentration-response curves to insulin, acetylcholine and phenylephrine were determined on isolated thoracic aorta. Colon permeability measurements were performed using the Ussing chamber technique. Fecal samples collected at the beginning and the end of the protocol were used as a template for amplification of the V3-V4 region of the 16S rDNA genes. RESULTS BCA supplementation reduced weight gain (p<0.05) and food intake (p<0.05) in the BCA-ObZ group rats compared to the U-ObZ group rats. It also improved glucose tolerance (p<0.001) and decreased fasting insulin and Homeostasis model assessment index (p<0.05). Through ex vivo experiments, the BCA mixture enhanced significantly aortic insulin relaxation (p<0.01), reduced α1-adrenoceptor-mediated vasoconstriction (p<0.01), and decreased distal colon permeability. Moreover, short-chain fatty acid producers such as Bacteroides, Blautia, and Akkermansia were found to be increased by the BCA mixture supplementation. CONCLUSION The results showed that a 13-week-supplementation with BCA mixture prevented weight gain and improved glucose metabolism in obese Zucker rats. We also demonstrated that BCA supplementation improved vascular function, colonic barrier permeability and gut microbiota profile.
Collapse
Affiliation(s)
- Mohamed Siliman Misha
- Nutrition, Pathophysiology and Pharmacology (NP3) Unit, Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Sandrine Destrumelle
- Nutrition, Pathophysiology and Pharmacology (NP3) Unit, Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Dylan Le Jan
- Nutrition, Pathophysiology and Pharmacology (NP3) Unit, Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Nahla M. Mansour
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical Industries, National Research Centre, Giza, Egypt
| | - Lionel Fizanne
- Laboratoire HIFIH UPRES EA 3859, SFR ICAT 4208, Université d’Angers, Angers, France
| | - Khadija Ouguerram
- INRAE, UMR 1280, Physiopathology of Nutritional Adaptations, Nantes, France
| | - Jean-Claude Desfontis
- Nutrition, Pathophysiology and Pharmacology (NP3) Unit, Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Mohamed-Yassine Mallem
- Nutrition, Pathophysiology and Pharmacology (NP3) Unit, Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| |
Collapse
|
5
|
Brandt SB, Ibsen L, Lam GW, Bøttcher M, Kingo PS, Jensen JB. Ureteroenteric strictures after cystectomy: Side-specific risk factors and radiological assessment. BJUI COMPASS 2024; 5:699-708. [PMID: 39022665 PMCID: PMC11250374 DOI: 10.1002/bco2.364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/31/2024] [Indexed: 07/20/2024] Open
Abstract
Objective To evaluate risk factors contributing to side-specific benign ureteroenteric strictures following radical cystectomy with an ileal conduit. Materials and Methods Data obtained from patients with bladder cancer who underwent radical cystectomy with ileal conduit surgery between 2015 and 2018 were retrospectively analysed. Imaging prior to surgery was analysed, regarding calcifications in the aorta, sarcopenia and postoperatively for length of remaining left ureter. Descriptive analyses were performed on preoperative and perioperative data, comparing patients who developed unilateral left- or right-sided strictures, bilateral strictures, to those who remained free of strictures. COX regression analysis was employed to calculate crude and adjusted hazard ratio for side-specific strictures. Results The study included 395 patients. Strictures developed in 19% (75/395) of the patients, within a median period of 9 months: 57% (43/75) unilateral left sided, 20% (15/75) unilateral right sided and 23% (17/75) bilateral. Unilateral left-sided stricture was associated with higher body mass index (p = 0.077) and hypercholesterolemia (p = 0.007). Right-sided stricture was associated with a history of prior abdominal surgery (p = 0.029) and postoperative leakage (p = 0.004). Bilateral stricture was associated with smoking (p = 0.006) and high BMI (p = 0.015). The adjusted HR comparing patients with and without previous abdominal surgery was only significantly higher for right-sided ureteroenteric strictures (HR 3.18 [95% CI: 1.11; 9.05]) compared with patients without strictures. No association was identified between strictures and preoperative aortic calcification of the abdominal aorta or sarcopenia as estimated from imaging. Conclusion The aetiology of ureteroenteric strictures appears multifactorial. Our findings suggest that development of left-sided stricture is influenced by factors associated with metabolic syndrome, indicating a potential role of distal ureteric ischemia. On the other hand, right-sided stricture was more frequent in patients with previous abdominal surgery and postoperative leakage.
Collapse
Affiliation(s)
- Simone Buchardt Brandt
- Department of UrologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Lotte Ibsen
- Department of RadiologyAarhus University HospitalAarhusDenmark
| | - Gitte Wrist Lam
- Department of UrologyHerlev and Gentofte University HospitalCopenhagenDenmark
| | - Morten Bøttcher
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of CardiologyRegional Hospital GødstrupHerningDenmark
| | - Pernille Skjold Kingo
- Department of UrologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Jørgen Bjerggaard Jensen
- Department of UrologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
6
|
da Cunha Agostini L, Cota E Souza LA, Silva NNT, Lopes ACF, de Medeiros Teixeira LF, de Almeida Belo V, Coura-Vital W, da Silva GN, Lima AA. Assessing levels of uric acid and other cardiovascular markers in prehypertensive and hypertensive adults. HIPERTENSION Y RIESGO VASCULAR 2024; 41:154-161. [PMID: 38697879 DOI: 10.1016/j.hipert.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/11/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION Although some studies have reported the association between uric acid (UA) and hypertension, evidence on prehypertension is still lacking. Therefore, the objective of this study was to determine the levels of UA and other cardiovascular markers among prehypertensive and hypertensive patients and assess their risk for developing arterial hypertension. METHODS 157 individuals were recruited: 67 normotensive, 23 pre-hypertensive and 67 hypertensive. Blood samples were collected to measure biochemical parameters and anthropometric measurements and blood pressure were evaluated. We calculated the product of lipid accumulation and the visceral adiposity index to assess cardiovascular risk. RESULTS Our data showed an increase in UA levels in normotensives (4.9±1.3mg/dL), prehypertensives (5.2±1.3mg/dL) and hypertensives (5.9±1.6mg/dL) (p=0.004). We found a higher frequency of hyperuricemia in the hypertensive group (34.3%) than in the normotensive group (13.4%, p<0.05). Hypertensive volunteers had lower levels of HDL-C (p=0.004 and p=0.003) and higher body mass indexes (p<0.001 and p=0.007), glucose (p<0.001 and p=0.033), triglycerides (p=0.001 and p=0.005), visceral adiposity index (p<0.001 and p=0.002) and lipid accumulation product (p<0.001 and p=0.007) than normotensive and prehypertensive participants. We also observed that individuals with UA≥6.2mg/dL had an increased risk of hypertension of 4.77 (p=0.003) compared to individuals with levels≤4.3mg/dL. CONCLUSION Our results showed that UA is associated with increased blood pressure and unfavorable changes in anthropometric and biochemical parameters, which represent risk factors for hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- L da Cunha Agostini
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - L A Cota E Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - N N T Silva
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - A C F Lopes
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - L F de Medeiros Teixeira
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - V de Almeida Belo
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil; Departamento de Farmácia (DEFAR), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - W Coura-Vital
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil; Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - G N da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil; Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil.
| | - A A Lima
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil; Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
7
|
Shu M, Xi Y, Wu J, Zhuo LB, Yan Y, Yang YD, Feng YY, Tan HQ, Yang HF, Chen YM. Relationship between Circulating 25-Hydroxyvitamin D and Metabolic Syndrome in Chinese Adults: A Large Nationwide Longitudinal Study. Nutrients 2024; 16:1480. [PMID: 38794718 PMCID: PMC11124364 DOI: 10.3390/nu16101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
OBJECTIVE This study investigated the association of circulating levels of 25-hydroxyvitamin D (25[OH]D) with the risk of metabolic syndrome (MetS) and its components in adults. METHODS This nationwide cohort involved 23,810 Chinese adults attending annual health evaluations. Serum 25(OH)D levels, MetS status, and covariates were determined at each examination. Among them, 8146, 3310, and 1971 completed two, three, and more than three evaluations, respectively. A hybrid mixed-effects and Cox regression model was employed to determine the cross-sectional and longitudinal relationships. RESULTS The odds ratios (ORs) and 95% confidence intervals (CIs) of MetS were significantly lower in individuals within quartile 4 (vs. 1) of serum 25(OH)D for both between-individual (0.43 [0.35, 0.52]) and within-individual comparisons (0.60 [0.50, 0.73]), respectively (all p-trends < 0.001). Among the MetS components, the corresponding ORs (95% CI) in between- and within-individual comparisons were 0.40 (0.29, 0.54) and 0.26 (0.19, 0.36) for abdominal obesity, 0.49 (0.41, 0.58) and 0.78 (0.66, 0.93) for high triglycerides, 0.70 (0.59, 0.82) and 0.75 (0.64, 0.87) for hypertriglyceridemia, 0.48 (0.39, 0.59) and 0.87 (0.71, 1.07) for low HDL cholesterol, and 0.92 (0.76, 1.12) and 0.49 (0.41, 0.59) for hypertension, respectively. Decreased hazard ratios (95% CIs) in quartile 4 (vs. 1) of 25(OH)D were found for MetS (0.80 [0.65, 1.00]), high triglycerides (0.76 [0.62, 0.92]), abdominal obesity (0.77 [0.63, 0.96]), and low HDL cholesterol (0.64 [0.50, 0.81]). CONCLUSIONS Decreased concentrations of serum 25(OH)D correlate significantly to a heightened MetS risk and specific components. Our findings underscore the potential preventive function of circulating vitamin D concerning metabolic disorders.
Collapse
Affiliation(s)
- Mi Shu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (M.S.); (Y.X.); (L.-B.Z.); (Y.Y.); (H.-Q.T.)
- Yibicom Health Management Center, Guangzhou 510530, China; (J.W.); (Y.-D.Y.); (Y.-Y.F.)
| | - Yue Xi
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (M.S.); (Y.X.); (L.-B.Z.); (Y.Y.); (H.-Q.T.)
| | - Jie Wu
- Yibicom Health Management Center, Guangzhou 510530, China; (J.W.); (Y.-D.Y.); (Y.-Y.F.)
| | - Lai-Bao Zhuo
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (M.S.); (Y.X.); (L.-B.Z.); (Y.Y.); (H.-Q.T.)
| | - Yan Yan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (M.S.); (Y.X.); (L.-B.Z.); (Y.Y.); (H.-Q.T.)
| | - Yi-Duo Yang
- Yibicom Health Management Center, Guangzhou 510530, China; (J.W.); (Y.-D.Y.); (Y.-Y.F.)
| | - Yue-Yue Feng
- Yibicom Health Management Center, Guangzhou 510530, China; (J.W.); (Y.-D.Y.); (Y.-Y.F.)
| | - Hua-Qiao Tan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (M.S.); (Y.X.); (L.-B.Z.); (Y.Y.); (H.-Q.T.)
| | - Hui-Fang Yang
- Yibicom Health Management Center, Guangzhou 510530, China; (J.W.); (Y.-D.Y.); (Y.-Y.F.)
| | - Yu-Ming Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (M.S.); (Y.X.); (L.-B.Z.); (Y.Y.); (H.-Q.T.)
| |
Collapse
|
8
|
Marder M, Remmert C, Perschel JA, Otgonbayar M, von Toerne C, Hauck S, Bushe J, Feuchtinger A, Sheikh B, Moussus M, Meier M. Stem cell-derived vessels-on-chip for cardiovascular disease modeling. Cell Rep 2024; 43:114008. [PMID: 38536819 DOI: 10.1016/j.celrep.2024.114008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 04/28/2024] Open
Abstract
The metabolic syndrome is accompanied by vascular complications. Human in vitro disease models are hence required to better understand vascular dysfunctions and guide clinical therapies. Here, we engineered an open microfluidic vessel-on-chip platform that integrates human pluripotent stem cell-derived endothelial cells (SC-ECs). The open microfluidic design enables seamless integration with state-of-the-art analytical technologies, including single-cell RNA sequencing, proteomics by mass spectrometry, and high-resolution imaging. Beyond previous systems, we report SC-EC maturation by means of barrier formation, arterial toning, and high nitric oxide synthesis levels under gravity-driven flow. Functionally, we corroborate the hallmarks of early-onset atherosclerosis with low sample volumes and cell numbers under flow conditions by determining proteome and secretome changes in SC-ECs stimulated with oxidized low-density lipoprotein and free fatty acids. More broadly, our organ-on-chip platform enables the modeling of patient-specific human endothelial tissue and has the potential to become a general tool for animal-free vascular research.
Collapse
Affiliation(s)
- Maren Marder
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Caroline Remmert
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Julius A Perschel
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | | | | | - Stefanie Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Judith Bushe
- Core Facility Pathology & Tissue Analytics, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Annette Feuchtinger
- Core Facility Pathology & Tissue Analytics, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Bilal Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany; Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Michel Moussus
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Matthias Meier
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany; Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
9
|
Jacobsen MHB, Knudsen AD, Benfield T, Ostrowski SR, Afzal S, Sørensen EW, Nielsen SD, Gelpi M. Metabolic syndrome, soluble CD40L, and biomarkers of endothelial dysfunction in people living with HIV. APMIS 2023; 131:705-709. [PMID: 37849049 DOI: 10.1111/apm.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023]
Abstract
In the present study, we aimed to investigate the association between soluble CD40 ligand (sCD40L, a marker of platelet activation), soluble thrombomodulin, and syndecan-1 (both well-described markers of endothelial dysfunction) and metabolic syndrome in a large cohort of well-treated people with HIV (PWH) and to elucidate their association with HIV-specific variables. We included 862 PWH with undetectable viral replication. Our hypotheses were tested using uni- and multivariable logistic regression models a priori adjusted for well-known confounders. While no association of soluble thrombomodulin and syndecan-1 with MetS was found, high levels of sCD40L (aOR 1.54 [1.07-2.22]) were associated with excess risk of MetS. Given the previously described association between sCD40L, vascular inflammation and endothelial damage, the results presented in our study may suggest a potential role for sCD40L in the well-known association between cardiometabolic comorbidity and HIV infection.
Collapse
Affiliation(s)
- Mads-Holger B Jacobsen
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas D Knudsen
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, The Heart Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Shoaib Afzal
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Edith W Sørensen
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Susanne D Nielsen
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Marco Gelpi
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Scott TE, Lewis CV, Zhu M, Wang C, Samuel CS, Drummond GR, Kemp-Harper BK. IL-4 and IL-13 induce equivalent expression of traditional M2 markers and modulation of reactive oxygen species in human macrophages. Sci Rep 2023; 13:19589. [PMID: 37949903 PMCID: PMC10638413 DOI: 10.1038/s41598-023-46237-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
In cardiovascular disease, pathological and protective roles are reported for the Th2 cytokines IL-4 and IL-13, respectively. We hypothesised that differential effects on macrophage function are responsible. Type I and II receptor subunit (IL-2Rγ, IL-4Rα and IL-13Rα1) and M2 marker (MRC-1, CCL18, CCL22) expression was assessed via RT-qPCR in IL-4- and IL-13-treated human primary macrophages. Downstream signalling was evaluated via STAT1, STAT3 and STAT6 inhibitors, and IL-4- and IL-13-induced reactive oxygen species (ROS) generation assessed. IL-4 and IL-13 exhibited equivalent potency and efficacy for M2 marker induction, which was attenuated by STAT3 inhibition. Both cytokines enhanced PDBu-stimulated superoxide generation however this effect was 17% greater with IL-4 treatment. Type I IL-4 receptor expression was increased on M1-like macrophages but did not lead to a differing ability of these cytokines to modulate M1-like macrophage superoxide production. Overall, this study did not identify major differences in the ability of IL-4 and IL-13 to modulate macrophage function, suggesting that the opposing roles of these cytokines in cardiovascular disease are likely to be via actions on other cell types. Future studies should directly compare IL-4 and IL-13 in vivo to more thoroughly investigate the therapeutic validity of selective targeting of these cytokines.
Collapse
Affiliation(s)
- Tara E Scott
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Caitlin V Lewis
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mingyu Zhu
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chao Wang
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Barbara K Kemp-Harper
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
11
|
Allbritton-King JD, García-Cardeña G. Endothelial cell dysfunction in cardiac disease: driver or consequence? Front Cell Dev Biol 2023; 11:1278166. [PMID: 37965580 PMCID: PMC10642230 DOI: 10.3389/fcell.2023.1278166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
The vascular endothelium is a multifunctional cellular system which directly influences blood components and cells within the vessel wall in a given tissue. Importantly, this cellular interface undergoes critical phenotypic changes in response to various biochemical and hemodynamic stimuli, driving several developmental and pathophysiological processes. Multiple studies have indicated a central role of the endothelium in the initiation, progression, and clinical outcomes of cardiac disease. In this review we synthesize the current understanding of endothelial function and dysfunction as mediators of the cardiomyocyte phenotype in the setting of distinct cardiac pathologies; outline existing in vivo and in vitro models where key features of endothelial cell dysfunction can be recapitulated; and discuss future directions for development of endothelium-targeted therapeutics for cardiac diseases with limited existing treatment options.
Collapse
Affiliation(s)
- Jules D. Allbritton-King
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Guillermo García-Cardeña
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
12
|
Norris AC, Yazlovitskaya EM, Zhu L, Rose BS, May JC, Gibson-Corley KN, McLean JA, Stafford JM, Graham TR. Deficiency of the lipid flippase ATP10A causes diet-induced dyslipidemia in female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545392. [PMID: 37398141 PMCID: PMC10312798 DOI: 10.1101/2023.06.16.545392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Genetic association studies have linked ATP10A and closely related type IV P-type ATPases (P4-ATPases) to insulin resistance and vascular complications, such as atherosclerosis. ATP10A translocates phosphatidylcholine and glucosylceramide across cell membranes, and these lipids or their metabolites play important roles in signal transduction pathways regulating metabolism. However, the influence of ATP10A on lipid metabolism in mice has not been explored. Here, we generated gene-specific Atp10A knockout mice and show that Atp10A-/- mice fed a high-fat diet did not gain excess weight relative to wild-type littermates. However, Atp10A-/- mice displayed female-specific dyslipidemia characterized by elevated plasma triglycerides, free fatty acids and cholesterol, as well as altered VLDL and HDL properties. We also observed increased circulating levels of several sphingolipid species along with reduced levels of eicosanoids and bile acids. The Atp10A-/- mice also displayed hepatic insulin resistance without perturbations to whole-body glucose homeostasis. Thus, ATP10A has a sex-specific role in regulating plasma lipid composition and maintaining hepatic liver insulin sensitivity in mice.
Collapse
Affiliation(s)
- Adriana C. Norris
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Lin Zhu
- Division of Endocrinology, Diabetes and Metabolism, Vanderbilt University Medical Center, USA
| | - Bailey S. Rose
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA
| | - Jody C. May
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA
| | - Katherine N. Gibson-Corley
- Division of Comparative Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John A. McLean
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA
| | - John M. Stafford
- Division of Endocrinology, Diabetes and Metabolism, Vanderbilt University Medical Center, USA
- Tennessee Valley Healthcare System, Veterans Affairs, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Tennessee, USA
| | - Todd R. Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Baek J, Jung Y, Ohn K, Jung SY, Oh SE, Moon JI. Association between localized retinal nerve fiber layer defects in nonglaucomatous eyes and metabolic syndrome: a propensity score-matched analysis. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:316. [PMID: 37405003 PMCID: PMC10316109 DOI: 10.21037/atm-22-3381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/12/2023] [Indexed: 07/06/2023]
Abstract
Background We investigated the association between metabolic syndrome and localized retinal nerve fiber layer (RNFL) defects in nonglaucomatous subjects. Methods We examined 20,385 adults who visited the Health Promotion Center of Seoul St. Mary's Hospital between May 2015 and April 2016. After excluding those with known glaucoma or glaucomatous optic discs, subjects with and without localized RNFL defects were 1:5 propensity score matched. Metabolic syndrome components, including central obesity, elevated triglyceride, reduced high-density lipoprotein (HDL) cholesterol, elevated blood pressure (BP), and elevated fasting glucose, were compared between two groups. We performed logistic regression to investigate the association between RNFL defects and each component of metabolic syndrome and the number of metabolic syndrome components. Results Subjects with RNFL defects showed higher waist-to-hip ratios, systolic BP (SBP) and diastolic BP (DBP), fasting blood glucose, and hemoglobin A1c (HbA1c) levels than did those without RNFL defects both before and after propensity score matching. The number of metabolic syndrome components was significantly greater in those with RNFL defects (1.66±1.35) than in those without (1.27±1.32, P<0.01). In multivariate logistic regression, the odds ratio (OR) of RNFL defects was significantly increased in subjects with central obesity [OR =1.53, 95% confidence interval (CI): 1.11-2.13], elevated BP (OR =1.50, 95% CI: 1.09-2.05), and an elevated fasting glucose level (OR =1.42, 95% CI: 1.03-1.97). An increased number of metabolic syndrome components was associated with a higher risk of RNFL defects. Conclusions Localized RNFL defects in nonglaucomatous subjects are associated with metabolic syndrome components, including central obesity, elevated BP, and an elevated fasting glucose level, suggesting that comorbid metabolic syndrome should be considered when evaluating subjects with RNFL defects.
Collapse
Affiliation(s)
- Jiwon Baek
- Department of Ophthalmology, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Younhea Jung
- Department of Ophthalmology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyoung Ohn
- Department of Ophthalmology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sam Young Jung
- Department of Ophthalmology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Eun Oh
- Department of Ophthalmology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Il Moon
- Department of Ophthalmology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
14
|
Wu Z, Zhu L, Nie X, Liu Y, Zhang X, Qi Y. Inhibition of fatty acid synthase protects obese mice from acute lung injury via ameliorating lung endothelial dysfunction. Respir Res 2023; 24:81. [PMID: 36922854 PMCID: PMC10018982 DOI: 10.1186/s12931-023-02382-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Obesity has been identified as a risk factor for acute lung injury/acute respiratory distress syndrome (ALI/ARDS). However, the underlying mechanisms remain elusive. This study aimed to investigate the role of fatty acid synthase (FASN) in lipopolysaccharide (LPS)-induced ALI under obesity. METHODS A high-fat diet-induced obese (DIO) mouse model was established and lean mice fed with regular chow diet were served as controls. LPS was intratracheally instilled to reproduce ALI in mice. In vitro, primary mouse lung endothelial cells (MLECs), treated by palmitic acid (PA) or co-cultured with 3T3-L1 adipocytes, were exposed to LPS. Chemical inhibitor C75 or shRNA targeting FASN was used for in vivo and in vitro loss-of-function studies for FASN. RESULTS After LPS instillation, the protein levels of FASN in freshly isolated lung endothelial cells from DIO mice were significantly higher than those from lean mice. MLECs undergoing metabolic stress exhibited increased levels of FASN, decreased levels of VE-cadherin with increased p38 MAPK phosphorylation and NLRP3 expression, mitochondrial dysfunction, and impaired endothelial barrier compared with the control MLECs when exposed to LPS. However, these effects were attenuated by FASN inhibition with C75 or corresponding shRNA. In vivo, LPS-induced ALI, C75 pretreatment remarkably alleviated LPS-induced overproduction of lung inflammatory cytokines TNF-α, IL-6, and IL-1β, and lung vascular hyperpermeability in DIO mice as evidenced by increased VE-cadherin expression in lung endothelial cells and decreased lung vascular leakage. CONCLUSIONS Taken together, FASN inhibition alleviated the exacerbation of LPS-induced lung injury under obesity via rescuing lung endothelial dysfunction. Therefore, targeting FASN may be a potential therapeutic target for ameliorating LPS-induced ALI in obese individuals.
Collapse
Affiliation(s)
- Zhuhua Wu
- grid.414011.10000 0004 1808 090XDepartment of Pulmonary and Critical Care Medicine, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan China
| | - Li Zhu
- grid.414011.10000 0004 1808 090XDepartment of Pulmonary and Critical Care Medicine, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan China
| | - Xinran Nie
- grid.414011.10000 0004 1808 090XDepartment of Pulmonary and Critical Care Medicine, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan China
| | - Yingli Liu
- grid.414011.10000 0004 1808 090XDepartment of Pulmonary and Critical Care Medicine, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan China
| | - Xiaoju Zhang
- grid.414011.10000 0004 1808 090XDepartment of Pulmonary and Critical Care Medicine, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, No. 7, Weiwu Road, Zhengzhou, Henan China
| | - Yong Qi
- grid.414011.10000 0004 1808 090XDepartment of Pulmonary and Critical Care Medicine, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, No. 7, Weiwu Road, Zhengzhou, Henan China
| |
Collapse
|
15
|
Roy I, Jover E, Matilla L, Alvarez V, Fernández-Celis A, Beunza M, Escribano E, Gainza A, Sádaba R, López-Andrés N. Soluble ST2 as a New Oxidative Stress and Inflammation Marker in Metabolic Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032579. [PMID: 36767947 PMCID: PMC9915842 DOI: 10.3390/ijerph20032579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Metabolic syndrome (MS) is a complex and prevalent disorder. Oxidative stress and inflammation might contribute to the progression of MS. Soluble ST2 (sST2) is an attractive and druggable molecule that sits at the interface between inflammation, oxidative stress and fibrosis. This study aims to analyze the relationship among sST2, oxidative stress, inflammation and echocardiographic parameters in MS patients. METHODS Fifty-eight patients with MS were recruited and underwent physical, laboratory and transthoracic echocardiography examinations. Commercial ELISA and appropriate colorimetric assays were used to quantify serum levels of oxidative stress and inflammation markers and sST2. RESULTS Circulating sST2 was increased in MS patients and was significantly correlated with the oxidative stress markers nitrotyrosine and 8-hydroxy-2'-deoxyguanosine as well as with peroxide levels. The inflammatory parameters interleukin-6, intercellular adhesion molecule-1 and myeloperoxidase were positively correlated with sST2. Noteworthy, sST2 was positively correlated with left ventricular mass, filling pressures and pulmonary arterial pressures. CONCLUSION Circulating levels of sST2 are associated with oxidative stress and inflammation burden and may underlie the pathological remodeling and dysfunction of the heart in MS patients. Our results suggest that sST2 elevation precedes diastolic dysfunction, emerging as an attractive biotarget in MS.
Collapse
|
16
|
Chavushyan VA, Simonyan KV, Danielyan MH, Avetisyan LG, Darbinyan LV, Isoyan AS, Lorikyan AG, Hovhannisyan LE, Babakhanyan MA, Sukiasyan LM. Pathology and prevention of brain microvascular and neuronal dysfunction induced by a high-fructose diet in rats. Metab Brain Dis 2023; 38:269-286. [PMID: 36271967 DOI: 10.1007/s11011-022-01098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/08/2022] [Indexed: 02/03/2023]
Abstract
A high-fructose diet causes metabolic abnormalities in rats, and the cluster of complications points to microvascular and neuronal disorders of the brain. The aim of this study was to evaluate i) the involvement of microvascular disorders and neuronal plasticity in the deleterious effects of a high-fructose diet on the rat brain and ii) a comparative assessment of the effectiveness of Phytocollection therapy (with antidiabetic, antioxidant, and acetylcholinesterase inhibitory activities) compared to Galantamine as first-line therapy for dementia and Diabeton as first-line therapy for hyperglycemia. The calcium adenosine triphosphate non-injection histoangiological method was used to assess capillary network diameter and density. A high-fructose diet resulted in a significant decrease in the diameter and density of the capillary bed, and pharmacological manipulations had a modulatory effect on microcirculatory adaptive mechanisms. In vivo single-unit extracellular recording was used to investigate short-term plasticity in the medial prefrontal cortex. Differences in the parameters of spike background activity and expression of excitatory and inhibitory responses of cortical neurons have been discovered, allowing for flexibility and neuronal function stabilization in pathology and pharmacological prevention. Integration of the coupling mechanism between microvascular function and neuronal spike activity could delay the progressive decline in cognitive function in rats fed a high fructose diet.
Collapse
Affiliation(s)
- V A Chavushyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - K V Simonyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia.
| | - M H Danielyan
- Histochemistry and Electron Microscopy Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - L G Avetisyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - L V Darbinyan
- Sensorimotor Integration Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - A S Isoyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - A G Lorikyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - L E Hovhannisyan
- G.S. Davtyan Institute of Hydroponics Problems NAS RA, 0082, Yerevan, Armenia
| | - M A Babakhanyan
- G.S. Davtyan Institute of Hydroponics Problems NAS RA, 0082, Yerevan, Armenia
| | - L M Sukiasyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
- Yerevan State Medical University After M. Heratsi, 0025, Yerevan, Armenia
| |
Collapse
|
17
|
Miller JC, Satheesh Babu AK, Petersen C, Wankhade UD, Robeson MS, Putich MN, Mueller JE, O'Farrell AS, Cho JM, Chintapalli SV, Jalili T, Symons JD, Anandh Babu PV. Gut Microbes Are Associated with the Vascular Beneficial Effects of Dietary Strawberry on Metabolic Syndrome-Induced Vascular Inflammation. Mol Nutr Food Res 2022; 66:e2200112. [PMID: 36112603 PMCID: PMC9691581 DOI: 10.1002/mnfr.202200112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/24/2022] [Indexed: 11/06/2022]
Abstract
SCOPE Metabolic syndrome (MetS) alters the gut microbial ecology and increases the risk of cardiovascular disease. This study investigates whether strawberry consumption reduces vascular complications in an animal model of MetS and identifies whether this effect is associated with changes in the composition of gut microbes. METHODS AND RESULTS Seven-week-old male mice consume diets with 10% (C) or 60% kcal from fat (high-fat diet fed mice; HF) for 12 weeks and subgroups are fed a 2.35% freeze-dried strawberry supplemented diet (C+SB or HF+SB). This nutritional dose is equivalent to ≈160 g of strawberry. After 12 weeks treatment, vascular inflammation is enhanced in HF versus C mice as shown by an increased monocyte binding to vasculature, elevated serum chemokines, and increased mRNA expression of inflammatory molecules. However, strawberry supplementation suppresses vascular inflammation in HF+SB versus HF mice. Metabolic variables, blood pressure, and indices of vascular function were similar among the groups. Further, the abundance of opportunistic microbe is decreased in HF+SB. Importantly, circulating chemokines are positively associated with opportunistic microbes and negatively associated with the commensal microbes (Bifidobacterium and Facalibaculum). CONCLUSION Dietary strawberry decreases the abundance of opportunistic microbe and this is associated with a decrease in vascular inflammation resulting from MetS.
Collapse
Affiliation(s)
- James Coleman Miller
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Chrissa Petersen
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Umesh D Wankhade
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Michael S Robeson
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Madison Nicole Putich
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jennifer Ellen Mueller
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Aubrey Sarah O'Farrell
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jae Min Cho
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
- Division of Endocrinology, Metabolism, and Diabetes; and Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sree V Chintapalli
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Thunder Jalili
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - John David Symons
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
- Division of Endocrinology, Metabolism, and Diabetes; and Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
18
|
Birulina JG, Ivanov VV, Buyko EE, Bykov VV, Dzyuman AN, Nosarev АV, Grigoreva AV, Gusakova SV. Morphological changes in the heart and aorta of rats with diet-induced metabolic syndrome. BULLETIN OF SIBERIAN MEDICINE 2022. [DOI: 10.20538/1682-0363-2022-3-13-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aim. To identify early morphological changes in the heart and aorta of rats with experimental metabolic syndrome induced by a high-fat and high-carbohydrate diet (HFHCD).Materials and methods. The study was carried out on male Wistar rats. The animals were divided into two groups: a control group (n = 10) and an experimental group (n = 10). The rats from the control group were fed with a standard laboratory diet. The rats from the experimental group received HFHCD for 12 weeks. Body weight, blood pressure (BP), and individual parameters of carbohydrate and lipid metabolism were assessed in the rats. A histologic examination of the heart and aorta in the animals was performed.Results. Feeding rats with HFHCD led to an increase in body weight, elevation of BP, obesity, hyperglycemia, and triglyceridemia. The histologic examination of the heart in the rats of the experimental group showed signs of vascular disease, lipomatosis, and focal myocardial degeneration. Lipid accumulation in the cells of the media, hyperplasia of adipocytes in the adventitia, and depletion and fragmentation of the elastic lamina were revealed in the aortic wall of the rats receiving HFHCD.Conclusion. The study indicated that HFHCD is an effective way to model metabolic syndrome. Structural disorders in the heart and aorta may be the mainstay for the development of cardiomyopathy and arterial hypertension in diet-induced metabolic syndrome.
Collapse
|
19
|
Qi KJ, Zhao ZT, Zhang W, Yang F. The impacts of vitamin D supplementation in adults with metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2022; 13:1033026. [PMID: 36278155 PMCID: PMC9581173 DOI: 10.3389/fphar.2022.1033026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Studies have shown the association of vitamin D status with the development of metabolic syndrome (MetS), which has attracted an extensive research interest with inconsistent results. Therefore, we hypothesized that vitamin D supplementation (VDS) will benefit adults with MetS. Aims: To test our hypothesis, we performed a meta-analysis to evaluate the effect of VDS on MetS in adults using relevant biomarkers such as anthropometric parameters, blood pressure, blood lipid profile, glycemia, oxidative stress and vitamin D toxicity (VDT). Methods: Randomized controlled trials published in PubMed, Web of Science, embase and the Cochrane Library between 2012 and 2022 on the effect of VDS on MetS in adults were searched. The language was limited to English. A meta-analysis performed using RevMan 5.4 and Stata 14.0 software, sensitivity analysis, and evaluation of the risk of bias and general quality of the resulting evidence were conducted. Results: Eventually, 13 articles were included in this meta-analysis. Overall, VDS significantly increased the endline serum 25-hydroxyvitamin D levels as compared to the control [MD:17.41, 95% CI (14.09, 20.73), p < 0.00001]. VDS did not affect waist circumference, body mass index, body fat percentage and VDT biomarkers, but decreased waist-to-hip ratio and blood pressure (p < 0.01). VDS significantly decreased fasting plasma glucose (FPG) [MD: 3.78; 95% CI (−6.52, −1.03), p = 0.007], but did not affect the levels of blood high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglyceride (TG). Pooled estimate of nine papers indicated a significant reduction of fasting insulin (FI) (p = 0.006), and homeostasis model assessment of insulin resistance (p = 0.0001). The quantitative insulin check index levels were moderately increased (p = 0.007) without any impact on the glycosylated hemoglobin type A1C (HbA1c). For the oxidative stress parameters, VDS significantly lowered the levels of malondialdehyde and hypersensitive C-reactive protein (p < 0.05). Conclusion: Results of this meta-analysis demonstrate that VDS only reduces insulin resistance and hypertension but not the blood lipid profile and HbA1c. It appears that the evidence for the benefit of VDS in adults with MetS is inconclusive. Further clinical studies are still needed.
Collapse
|
20
|
Marzoog BA. Recent advances in molecular biology of metabolic syndrome pathophysiology: endothelial dysfunction as a potential therapeutic target. J Diabetes Metab Disord 2022; 21:1903-1911. [PMID: 36065330 PMCID: PMC9430013 DOI: 10.1007/s40200-022-01088-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/05/2021] [Accepted: 07/01/2022] [Indexed: 11/24/2022]
Abstract
Current advances in molecular pathobiology of endotheliocytes dysfunctions are promising in finding the pathogenetic links to the emergence of insulin resistance syndrome. Physiologically, human organism homeostasis is strictly controlled to maintain metabolic processes at the acquainted level. Many factors are involved in maintaining these physiological processes in the organism and any deviation is undoubtedly accompanied by specific pathologies related to the affected process. Fortunately, the body’s defense system can solve and compensate for the impaired function through its multi-level defense mechanisms. The endothelium is essential in maintaining this homeostasis through its ability to modulate the metabolic processes of the organism. Pathological activity or impairment of physiological endothelium function seems directly correlated to the emergence of metabolic syndrome. The most accepted hypothesis is that endothelium distribution is due to endoplasmic reticulum stress and unfolded protein response development, which includes inhibition of long non-coding RNAs expression, cytokines disbalance, Apelin dysregulation, glycocalyx degradation, and specific microparticles. Clinically, the enhancement or restoration of normal endothelial cells can be a target for novel therapeutic strategies since the distribution of its physiological activity impairs homeostasis and results in the progression of metabolic syndrome, and induction of its physiological activity can ameliorate insulin resistance syndrome. Novel insights on the molecular mechanisms of endothelial cell dysfunction are concisely represented in this paper to enhance the present therapeutic tactics and advance the research forward to find new therapeutic targets.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- Medical school student at National Research, Mordovia State University, Bolshevitskaya Street, 68, Saransk, Rep. Mordovia, Mordovia republic, Bolshevitskaya Street, 31, 430005 Saransk, Russia
| |
Collapse
|
21
|
Effects of Probiotic Supplementation during Pregnancy on the Future Maternal Risk of Metabolic Syndrome. Int J Mol Sci 2022; 23:ijms23158253. [PMID: 35897822 PMCID: PMC9330652 DOI: 10.3390/ijms23158253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics are live microorganisms that induce health benefits in the host. Taking probiotics is generally safe and well tolerated by pregnant women and their children. Consumption of probiotics can result in both prophylactic and therapeutic effects. In healthy adult humans, the gut microbiome is stable at the level of the dominant taxa: Bacteroidetes, Firmicutes and Actinobacteria, and has a higher presence of Verrucomicrobia. During pregnancy, an increase in the number of Proteobacteria and Actinobacteria phyla and a decrease in the beneficial species Roseburia intestinalis and Faecalibacterium prausnitzii are observed. Pregnancy is a "window" to the mother's future health. The aim of this paper is to review studies assessing the potentially beneficial effects of probiotics in preventing the development of diseases that appear during pregnancy, which are currently considered as risk factors for the development of metabolic syndrome, and consequently, reducing the risk of developing maternal metabolic syndrome in the future. The use of probiotics in gestational diabetes mellitus, preeclampsia and excessive gestational weight gain is reviewed. Probiotics are a relatively new intervention that can prevent the development of these disorders during pregnancy, and thus, would reduce the risk of metabolic syndrome resulting from these disorders in the mother's future.
Collapse
|
22
|
Villa-Martínez E, López-Vaquera SR, Alvarado-Coutiño LK, Gámez-Méndez AM, Ríos A, Escalante B. Thromboxane-dependent coronary vasoconstriction in obese mice: Role of peroxynitrite. Prostaglandins Other Lipid Mediat 2022; 160:106631. [PMID: 35272056 DOI: 10.1016/j.prostaglandins.2022.106631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/19/2021] [Accepted: 03/04/2022] [Indexed: 12/11/2022]
Abstract
Obesity leads to chronic oxidative stress promoting the development of cardiovascular diseases including coronary artery disease and endothelial dysfunction. Increased reactive oxygen species production associated with obesity might lead to endothelial dysfunction through cyclooxygenase (COX) pathway. We evaluated arachidonic acid (AA)-dependent coronary vascular responses and explored COX metabolism in obese C57BL/6 mice. In response to arachidonic acid (AA), isolated hearts from obese mice showed increased vasoconstriction compared with control mice. Released thromboxane (TX) A2 during AA-induced vasoconstriction phase was increased in heart perfusates from obese mice. Indomethacin and 1-benzylimidazole, both reduced vasoconstriction response in control and obese mice. Vasoconstriction response to TXA2 mimetic analog U46619 was 2.7 higher in obese mice. Obesity increased COX-2, TXS and TX receptor protein expression as well as oxidative stress evaluated by nitrotyrosine and peroxynitrite levels, compared with control mice. Obese mice treated with FeTMPyP, a peroxynitrite scavenger, reversed all these parameters to control levels. These data suggest that alterations in COX pathway may be associated with increased generation of free radicals, including peroxynitrite, that result from the oxidative stress observed in obesity.
Collapse
Affiliation(s)
- Elisa Villa-Martínez
- Cinvestav Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Apodaca, N.L. 66600, Mexico
| | - Selma Romina López-Vaquera
- Cinvestav Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Apodaca, N.L. 66600, Mexico
| | | | - Ana María Gámez-Méndez
- Universidad de Monterrey, Av. Ignacio Morones Prieto 4500, San Pedro Garza García, NL, Mexico
| | - Amelia Ríos
- Cinvestav Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Apodaca, N.L. 66600, Mexico.
| | - Bruno Escalante
- Cinvestav Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Apodaca, N.L. 66600, Mexico
| |
Collapse
|
23
|
Pérez-Muñoz EP, Antunes-Ricardo M, Martínez-Ávila M, Guajardo-Flores D. Eryngium Species as a Potential Ally for Treating Metabolic Syndrome and Diabetes. Front Nutr 2022; 9:878306. [PMID: 35669072 PMCID: PMC9165641 DOI: 10.3389/fnut.2022.878306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Medicinal plants possess natural compounds that can be used as an alternative for synthetic medicines that may cause long-term side effects on patients such as neurocognitive effects, muscular and hepatic toxicity. Metabolic Syndrome is associated with increased risk of several diseases such as diabetes, cardiovascular disease, dyslipidemia, and hypertension thus, becoming the greatest challenge as a growing public health concern worldwide. Latin-American countries possess a wide diversity of medicinal plants that have been used to treat different health conditions since pre-Hispanic times. Eryngium spp. has been studied due to their beneficial properties mainly to treat diabetes, dyslipidemia, blood pressure, and digestive problems. This review gives an update mainly on the pharmacological activities of the Eryngium spp., summarizing the biological activities and plausible mechanism of action of their bioactive components toward metabolic syndrome. For instance, flavonoids and tannins proved to increase the levels of HDL and reduced the levels of VLDL, LDL. On the other hand, phenolic acids improved glucose metabolism through the inhibition of phosphoenolpyruvate carboxykinase and glucose 6-phosphatase (G6Pase) and reestablished the impaired activity of enzymes related to glucose oxidation and glycogen synthesis. The terpenes and sesquiterpenes like β-farnese, β-pinene, and calamenene exhibited a protective effect by reducing the oxidizing damage by the regulation of the Reactive Oxygen Species (ROS). Saponins controlled the dyslipidemia by reducing the serum concentrations of lipids, triglycerides and total cholesterol. Finally, the aerial parts of Eryngium had the capacity of inhibiting dietary carbohydrate digestive enzymes, thus controlling glucose levels. The Eryngium plant is normally consumed as an infusion to obtain the benefits of the plants, however novel technologies such as cavitation, ultrasound assisted, microwave assisted, and supercritical fluid have been applied to improve the extraction yields and selectivity of bioactive compounds. The common treatment to control diabetic dyslipidemia are synthetic medicines such as metformin and ezetimibe, which allows the regulation of glucose, cholesterol and insulin resistance. However, patients that take these medications may present side effects such as muscular toxicity, hepatic toxicity, neurocognitive effects, just to name a few. More studies regarding the efficacy and safety of the use of traditional medicinal herbs are required. However, these materials may be used in the treatment of diabetes related conditions to ensure life quality and reduce side effects among the diabetic population.
Collapse
Affiliation(s)
| | - Marilena Antunes-Ricardo
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
- Tecnológico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
| | | | | |
Collapse
|
24
|
Ozorowski M, Wiciński M, Wróbel Ł, Fajkiel-Madajczyk A. Cholecalciferol supplementation lowers leptin and TMAO but increases NO and VEGF-A levels in obese vitamin D deficient patients: Is it one of the potential cardioprotective mechanisms of vitamin D? Nutr Metab (Lond) 2022; 19:31. [PMID: 35488267 PMCID: PMC9052493 DOI: 10.1186/s12986-022-00666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Background Vitamin D deficiency is one of the most common health issues in developed countries. Obese patients are most at risk of having serum 25-hydroxyvitamin D3 (25(OH)D3) levels that are too low due to the accumulation of vitamin D in adipose tissue. While the effects of a deficiency on the skeletal or immune system are known, the effects on the cardiovascular system are not yet clear. Our study investigates the effect of cholecalciferol supplementation in obese patients on selected biomarkers associated with cardiovascular diseases (CVDs). Methods The study enrolled 33 obese patients with insufficient 25(OH)D3 levels. For three months, the subjects supplemented with cholecalciferol at a dose of 2000 IU/day. Concentrations of nitric oxide (NO), vascular endothelial growth factor A (VEGF-A), leptin, trimethylamine N-oxide (TMAO) and soluble suppression of tumorigenicity 2 (sST2) were measured in baseline samples using ELISA (BioTek EPOCH). 25(OH)D3 levels measured on Beckman Coulter DXI 800 by chemiluminescence method. Results After supplementation, 25(OH)D3 levels increased significantly. Normal levels were achieved in most patients. A statistically significant reduction leptin and TMAO levels was observed. At the same time, NO and VEGF-A levels increased statistically significantly. Conclusion This study indicates that restoring normal 25(OH)D3 levels in obese people reduces the concentration of pro-inflammatory factors associated with cardiovascular diseases. Reducing inflammation and the potential impact on vascular reactivity leads to the conclusion that cholecalciferol supplementation in obese patients may benefit the cardiovascular system.
Collapse
Affiliation(s)
- Mateusz Ozorowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090, Bydgoszcz, Poland.
| | - Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090, Bydgoszcz, Poland
| | - Łukasz Wróbel
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090, Bydgoszcz, Poland
| | - Anna Fajkiel-Madajczyk
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090, Bydgoszcz, Poland
| |
Collapse
|
25
|
Moughaizel M, Dagher E, Jablaoui A, Thorin C, Rhimi M, Desfontis JC, Mallem Y. Long-term high-fructose high-fat diet feeding elicits insulin resistance, exacerbates dyslipidemia and induces gut microbiota dysbiosis in WHHL rabbits. PLoS One 2022; 17:e0264215. [PMID: 35196347 PMCID: PMC8865649 DOI: 10.1371/journal.pone.0264215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/04/2022] [Indexed: 01/12/2023] Open
Abstract
The metabolic syndrome (MetS) has become a global public health burden due to its link to cardiovascular disease and diabetes mellitus. The present study was designed to characterize the metabolic and cardiovascular disturbances, as well as changes in gut microbiota associated with high-fructose high-fat diet (HFFD)-induced MetS in Watanabe heritable hyperlipidemic (WHHL) rabbits. Twenty-one Watanabe rabbits were assigned to a control (n = 9) and HFFD (n = 12) groups, receiving a chow diet and a HFFD, respectively. During a 12-weeks protocol, morphological parameters were monitored; plasma fasting levels of lipids, glucose and insulin were measured and a glucose tolerance test (GTT) was performed. HOMA-IR was calculated. Cardiac function and vascular reactivity were evaluated using the Langendorff isolated heart and isolated carotid arteries methods, respectively. 16S rRNA sequencing of stool samples was used to determine gut microbial composition and abundance. HFFD-fed Watanabe rabbits exhibited increased fasting insulin (p < 0.03, 12th week vs. Baseline), HOMA-IR (p < 0.03 vs. Control), area under the curve of the GTT (p < 0.02 vs. Control), triglycerides (p < 0.05, 12th week vs. Baseline), TC (p < 0.01 vs. Control), LDL-C (p < 0.001 vs. Control). The HFFD group also displayed a significant decrease in intestinal microbial richness, evenness and diversity (FDR < 0.001, FDR < 0.0001, FDR < 0.01, respectively vs. Control group) and an increase in its Firmicutes/Bacteroidetes ratio (R = 3.39 in control vs. R = 28.24 in the HFFD group) indicating a shift in intestinal microbial composition and diversity. Our results suggest that HFFD induces insulin resistance and gut microbiota dysbiosis and accentuates dyslipidemia; and that, when subjected to HFFD, Watanabe rabbits might become a potential diet-induced MetS animal models with two main features, dyslipidemia and insulin resistance.
Collapse
Affiliation(s)
- Michelle Moughaizel
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
- * E-mail: (MM); (YM)
| | - Elie Dagher
- Laboniris, Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Amin Jablaoui
- Institut Micalis, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Chantal Thorin
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Moez Rhimi
- Institut Micalis, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jean-Claude Desfontis
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Yassine Mallem
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
- * E-mail: (MM); (YM)
| |
Collapse
|
26
|
Guneyli S, Dogan H, Esengur OT, Hassoy H. Computed tomography evaluation of pancreatic steatosis: correlation with COVID-19 prognosis. Future Virol 2022. [PMID: 35173796 PMCID: PMC8833002 DOI: 10.2217/fvl-2021-0257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022]
Abstract
Aim: To investigate the relationship between pancreatic steatosis (PS) assessed on computed tomography (CT) and COVID-19 prognosis. Materials & methods: This retrospective study covers 396 patients with COVID-19 (mean age: 52.50 ± 16.86 years), who underwent unenhanced chest CT. PS was compared with clinical findings, comorbidities, requirements for hospitalization, intubation and intensive care unit (ICU), length of hospitalization and death. Results: PS was found to be strongly correlated with the severity of clinical findings and hospitalization rates (p < 0.001). In hospitalized patients, length of hospitalization (p = 0.002) and rates of ICU requirement (p = 0.003) were higher in patients with PS. Conclusion: PS, correlated with clinical severity and hospitalization requirement, is an independent risk factor for COVID-19. Fat accumulation in the pancreas that is associated with obesity and metabolic syndrome can be used for estimating the clinical course of patients with COVID-19. Fat accumulation was determined by comparing the pancreas and spleen using computed tomography tools. In our study with 396 COVID-19 patients, the patients with fatty pancreas clearly seemed to have more severe clinical findings. Similarly, the rates of the requirement for hospitalization/intensive care unit and length of hospitalization were higher than in patients without fatty pancreas. The median length of hospitalization was 9 days in patients with fatty pancreas and 6 days in patients without fatty pancreas. However, death rates were only slightly higher in patients with fatty pancreas. In COVID-19 patients, the patients with fatty pancreas assessed using computed tomography have a more severe clinical course, higher rates of hospitalization/ICU requirement and increased length of hospitalization compared with the patients without fatty pancreas. #COVID-19 #computed tomography #fatty pancreas.
Collapse
Affiliation(s)
- Serkan Guneyli
- Department of Radiology, Bakircay University School of Medicine, Izmir, 35665, Turkey
| | - Hakan Dogan
- Department of Radiology, Koc University School of Medicine, Istanbul, 34010, Turkey
| | | | - Hur Hassoy
- Department of Public Health, Ege University School of Medicine, Izmir, 35040, Turkey
| |
Collapse
|
27
|
GPR75: An exciting new target in metabolic syndrome and related disorders. Biochimie 2022; 195:19-26. [DOI: 10.1016/j.biochi.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 12/31/2022]
|
28
|
Lansdell TA, Dorrance AM. Chronic cerebral hypoperfusion in male rats results in sustained HPA activation and hyperinsulinemia. Am J Physiol Endocrinol Metab 2022; 322:E24-E33. [PMID: 34747203 PMCID: PMC8721904 DOI: 10.1152/ajpendo.00233.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) is a spectrum of cognitive deficits caused by cerebrovascular disease, for which insulin resistance is a major risk factor. A major cause of VCID is chronic cerebral hypoperfusion (CCH). Under stress, sustained hypothalamic-pituitary-adrenal axis (HPA) activation can result in insulin resistance. Little is known about the effects of CCH on the HPA axis. We hypothesized that CCH causes sustained HPA activation and insulin resistance. Male rats were subjected to bilateral carotid artery stenosis (BCAS) for 12 wk to induce CCH and VCID. BCAS reduced cerebral blood flow and caused memory impairment. Plasma adrenocorticotropic hormone was increased in the BCAS rats (117.2 ± 9.6 vs. 88.29 ± 9.1 pg/mL, BCAS vs. sham, P = 0.0236), as was corticosterone (220 ± 21 vs. 146 ± 18 ng/g feces, BCAS vs. sham, P = 0.0083). BCAS rats were hypoglycemic (68.1 ± 6.1 vs. 76.5 ± 5.9 mg/dL, BCAS vs. sham, P = 0.0072), with increased fasting insulin (481.6 ± 242.6 vs. 97.94 ± 40.02 pmol/L, BCAS vs. sham, P = 0.0003) indicating that BCAS rats were insulin resistant [homeostasis model assessment of β-cell function-insulin resistance (HOMA-IR): 11.71 ± 6.47 vs. 2.62 ± 0.93; BCAS vs. control, P = 0.0008]. Glucose tolerance tests revealed that BCAS rats had lower blood glucose areas under the curve (AUCs) than controls (250 ± 12 vs. 326 ± 20 mg/dL/h, BCAS vs. sham, P = 0.0075). These studies indicate that CCH causes sustained activation of the HPA and results in insulin resistance, a condition that is expected to worsen VCID.NEW & NOTEWORTHY Cerebrovascular disease and insulin resistance are two major risk factors for the development of dementia. Here, we demonstrate that chronic cerebral hypoperfusion results in glucocorticoid excess and hyperinsulinemia. This study indicates that chronic cerebral hypoperfusion, glucocorticoid excess, and insulin resistance participate in a detrimental cycle that could exacerbate cerebral vascular disease and dementia.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| |
Collapse
|
29
|
Pánico P, Velasco M, Salazar AM, Picones A, Ortiz-Huidobro RI, Guerrero-Palomo G, Salgado-Bernabé ME, Ostrosky-Wegman P, Hiriart M. Is Arsenic Exposure a Risk Factor for Metabolic Syndrome? A Review of the Potential Mechanisms. Front Endocrinol (Lausanne) 2022; 13:878280. [PMID: 35651975 PMCID: PMC9150370 DOI: 10.3389/fendo.2022.878280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
Exposure to arsenic in drinking water is a worldwide health problem. This pollutant is associated with increased risk of developing chronic diseases, including metabolic diseases. Metabolic syndrome (MS) is a complex pathology that results from the interaction between environmental and genetic factors. This condition increases the risk of developing type 2 diabetes, cardiovascular diseases, and cancer. The MS includes at least three of the following signs, central obesity, impaired fasting glucose, insulin resistance, dyslipidemias, and hypertension. Here, we summarize the existing evidence of the multiple mechanisms triggered by arsenic to developing the cardinal signs of MS, showing that this pollutant could contribute to the multifactorial origin of this pathology.
Collapse
Affiliation(s)
- Pablo Pánico
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Myrian Velasco
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana María Salazar
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Picones
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosa Isela Ortiz-Huidobro
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Guerrero-Palomo
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Manuel Eduardo Salgado-Bernabé
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia Ostrosky-Wegman
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcia Hiriart
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Marcia Hiriart,
| |
Collapse
|
30
|
Nakladal D, Sijbesma JWA, Visser LM, Tietge UJF, Slart RHJA, Deelman LE, Henning RH, Hillebrands JL, Buikema H. Perivascular adipose tissue-derived nitric oxide compensates endothelial dysfunction in aged pre-atherosclerotic apolipoprotein E-deficient rats. Vascul Pharmacol 2021; 142:106945. [PMID: 34801679 DOI: 10.1016/j.vph.2021.106945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a major contributor to global mortality and is accompanied by vascular inflammation and endothelial dysfunction. Perivascular adipose tissue (PVAT) is an established regulator of vascular function with emerging implications in atherosclerosis. We investigated the modulation of aortic relaxation by PVAT in aged rats with apolipoprotein E deficiency (ApoE-/-) fed a high-fat diet as a model of early atherosclerosis. METHODS AND RESULTS ApoE-/- rats (N = 7) and wild-type Sprague-Dawley controls (ApoE+/+, N = 8) received high-fat diet for 51 weeks. Hyperlipidemia was confirmed in ApoE-/- rats by elevated plasma cholesterol (p < 0.001) and triglyceride (p = 0.025) levels. Early atherosclerosis was supported by increased intima/media thickness ratio (p < 0.01) and ED1-positive macrophage influx in ApoE-/- aortic intima (p < 0.001). Inflammation in ApoE-/- PVAT was characteristic by an increased [18F]FDG uptake (p < 0.01), ED1-positive macrophage influx (p = 0.0003), mRNA expression levels of CD68 (p < 0.001) and IL-1β (p < 0.01), and upregulated iNOS protein (p = 0.011). The mRNAs of MCP-1, IL-6 and adiponectin remained unchanged in PVAT. Aortic PVAT volume measured with micro-PET/CT was increased in ApoE-/- rats (p < 0.01). Maximal endothelium-dependent relaxation (EDR) to acetylcholine in ApoE-/- aortic rings without PVAT was severely impaired (p = 0.012) compared with controls, while ApoE-/- aortic rings with PVAT showed higher EDR than controls. All EDR responses were blocked by L-NMMA and the expression of eNOS mRNA was increased in ApoE-/- PVAT (p = 0.035). CONCLUSION Using a rat ApoE-/- model of early atherosclerosis, we capture a novel mechanism by which inflammatory PVAT compensates severe endothelial dysfunction by contributing NO upon cholinergic stimulation.
Collapse
Affiliation(s)
- D Nakladal
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands.
| | - J W A Sijbesma
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - L M Visser
- Department of Pathology & Medical Biology, Pathology division, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - U J F Tietge
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - R H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands; Faculty of Science and Technology Biomedical, Photonic Imaging, University of Twente, Enschede, the Netherlands
| | - L E Deelman
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - R H Henning
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - J L Hillebrands
- Department of Pathology & Medical Biology, Pathology division, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - H Buikema
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| |
Collapse
|
31
|
van den Brink W, Bloem R, Ananth A, Kanagasabapathi T, Amelink A, Bouwman J, Gelinck G, van Veen S, Boorsma A, Wopereis S. Digital Resilience Biomarkers for Personalized Health Maintenance and Disease Prevention. Front Digit Health 2021; 2:614670. [PMID: 34713076 PMCID: PMC8521930 DOI: 10.3389/fdgth.2020.614670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
Health maintenance and disease prevention strategies become increasingly prioritized with increasing health and economic burden of chronic, lifestyle-related diseases. A key element in these strategies is the empowerment of individuals to control their health. Self-measurement plays an essential role in achieving such empowerment. Digital measurements have the advantage of being measured non-invasively, passively, continuously, and in a real-world context. An important question is whether such measurement can sensitively measure subtle disbalances in the progression toward disease, as well as the subtle effects of, for example, nutritional improvement. The concept of resilience biomarkers, defined as the dynamic evaluation of the biological response to an external challenge, has been identified as a viable strategy to measure these subtle effects. In this review, we explore the potential of integrating this concept with digital physiological measurements to come to digital resilience biomarkers. Additionally, we discuss the potential of wearable, non-invasive, and continuous measurement of molecular biomarkers. These types of innovative measurements may, in the future, also serve as a digital resilience biomarker to provide even more insight into the personal biological dynamics of an individual. Altogether, digital resilience biomarkers are envisioned to allow for the measurement of subtle effects of health maintenance and disease prevention strategies in a real-world context and thereby give personalized feedback to improve health.
Collapse
Affiliation(s)
- Willem van den Brink
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Robbert Bloem
- Department of Environmental Modeling Sensing and Analysis, Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Adithya Ananth
- Department of Optics, Netherlands Organization for Applied Scientific Research (TNO), Delft, Netherlands
| | - Thiru Kanagasabapathi
- Holst Center, Netherlands Organization for Applied Scientific Research (TNO), Eindhoven, Netherlands
| | - Arjen Amelink
- Department of Optics, Netherlands Organization for Applied Scientific Research (TNO), Delft, Netherlands
| | - Jildau Bouwman
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Gerwin Gelinck
- Holst Center, Netherlands Organization for Applied Scientific Research (TNO), Eindhoven, Netherlands
| | - Sjaak van Veen
- Department of Environmental Modeling Sensing and Analysis, Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Andre Boorsma
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Suzan Wopereis
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| |
Collapse
|
32
|
Wiciński M, Ozorowski M, Wódkiewicz E, Otto SW, Kubiak K, Malinowski B. Impact of Vitamin D Supplementation on Inflammatory Markers' Levels in Obese Patients. Curr Issues Mol Biol 2021; 43:1606-1622. [PMID: 34698104 PMCID: PMC8929128 DOI: 10.3390/cimb43030114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
In view of research suggesting a possible beneficial impact of vitamin D on systemic inflammatory response, the authors decided to investigate an influence of vitamin D supplementation on serum levels of certain inflammatory markers in obese patients. The current study included such biomarkers as interleukin-6 (IL-6), pituitary adenylate cyclase-activating peptide (PACAP), advanced oxidation protein products (AOPP), C-X3-C Motif Chemokine Ligand 1 (CX3CL1), monocyte chemoattractant protein-1 (MCP-1), and nitric oxide (NO). The measurements were performed with the ELISA method before and after 3-month-long supplementation of 2000 IU of vitamin D orally. The results showed that the therapy did not induce any statistically significant changes in serum levels of MCP-1, IL-6, CX3CL1, and PACAP. The supplementation was related to a significant increase in measurements of NO and AOPP levels, although the correlation analysis between vitamin D concentration after its supplementation and the concentration of the molecular parameters did not show significant relation. In conclusion, our study seems to contradict certain aspects of findings available in the literature regarding the vitamin D's impact.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.W.); (M.O.); (B.M.)
| | - Mateusz Ozorowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.W.); (M.O.); (B.M.)
| | - Eryk Wódkiewicz
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.W.); (M.O.); (B.M.)
| | | | - Karol Kubiak
- Department of Obstetrics and Gynecology, St. Franziskus-Hospital, 48145 Münster, Germany;
| | - Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.W.); (M.O.); (B.M.)
| |
Collapse
|
33
|
Oliveira-Junior SA, Carvalho MR, Mendonça MLM, Martinez PF. Anti-Inflammatory Effects of Atorvastatin Therapy in Metabolic Syndrome. Arq Bras Cardiol 2021; 117:748-749. [PMID: 34709301 PMCID: PMC8528359 DOI: 10.36660/abc.20210720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Marianna R Carvalho
- Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS - Brasil
| | | | - Paula F Martinez
- Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS - Brasil
| |
Collapse
|
34
|
Flores-Ramírez AG, Tovar-Villegas VI, Maharaj A, Garay-Sevilla ME, Figueroa A. Effects of L-Citrulline Supplementation and Aerobic Training on Vascular Function in Individuals with Obesity across the Lifespan. Nutrients 2021; 13:nu13092991. [PMID: 34578869 PMCID: PMC8466140 DOI: 10.3390/nu13092991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Children with obesity are at higher risk for developing cardiometabolic diseases that once were considered health conditions of adults. Obesity is commonly associated with cardiometabolic risk factors such as dyslipidemia, hyperglycemia, hyperinsulinemia and hypertension that contribute to the development of endothelial dysfunction. Endothelial dysfunction, characterized by reduced nitric oxide (NO) production, precedes vascular abnormalities including atherosclerosis and arterial stiffness. Thus, early detection and treatment of cardiometabolic risk factors are necessary to prevent deleterious vascular consequences of obesity at an early age. Non-pharmacological interventions including L-Citrulline (L-Cit) supplementation and aerobic training stimulate endothelial NO mediated vasodilation, leading to improvements in organ perfusion, blood pressure, arterial stiffness, atherosclerosis and metabolic health (glucose control and lipid profile). Few studies suggest that the combination of L-Cit supplementation and exercise training can be an effective strategy to counteract the adverse effects of obesity on vascular function in older adults. Therefore, this review examined the efficacy of L-Cit supplementation and aerobic training interventions on vascular and metabolic parameters in obese individuals.
Collapse
Affiliation(s)
- Anaisa Genoveva Flores-Ramírez
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, León 37320, Mexico; (A.G.F.-R.); (V.I.T.-V.)
| | - Verónica Ivette Tovar-Villegas
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, León 37320, Mexico; (A.G.F.-R.); (V.I.T.-V.)
| | - Arun Maharaj
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA;
| | - Ma Eugenia Garay-Sevilla
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, León 37320, Mexico; (A.G.F.-R.); (V.I.T.-V.)
- Correspondence: (M.E.G.-S.); (A.F.)
| | - Arturo Figueroa
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA;
- Correspondence: (M.E.G.-S.); (A.F.)
| |
Collapse
|
35
|
Silva CGDSE. Endothelial Progenitor Cells and Exercise: Working Together to Target Endothelial Dysfunction in Metabolic Syndrome. Arq Bras Cardiol 2021; 117:118-119. [PMID: 34320080 PMCID: PMC8294726 DOI: 10.36660/abc.20210399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
36
|
Mendes TC, Silva GRDA, Silva AO, Schaedler MI, Guarnier LP, Palozi RAC, Signor CT, Bosco JDD, Auth PA, Amaral EC, Froelich DL, Soares AA, Lovato ECW, Ribeiro-Paes JT, Gasparotto Junior A, Lívero FADR. Hepato- and cardioprotective effects of Baccharis trimera (Less.) DC. against multiple risk factors for chronic noncommunicable diseases. AN ACAD BRAS CIENC 2021; 93:e20200899. [PMID: 34161513 DOI: 10.1590/0001-3765202120200899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/13/2021] [Indexed: 01/22/2023] Open
Abstract
Cardiovascular diseases are associated with high morbidity and mortality worldwide and have several risk factors, including dyslipidemia, smoking, and hypertension. Studies have evaluated isolated risk factors in experimental models of cardiovascular disease, but few preclinical studies have assessed associations between multiple risk factors. In the present study, hypertensive Wistar rats (Goldblatt 2K1C model) received a 0.5% cholesterol diet and were exposed to tobacco smoke for 8 weeks. During the last 4 weeks, the animals were treated with vehicle, an ethanol-soluble fraction of B. trimera (30, 100, and 300 mg/kg), or simvastatin + enalapril. A group of normotensive, non-dyslipidemic, and non-smoking rats was treated with vehicle. The levels of aspartate aminotransferase, alanine aminotransferase, urea, creatinine, and hepatic and fecal lipids, blood pressure, and mesenteric arterial bed reactivity were evaluated. Cardiac, hepatic, and renal histopathology and tecidual redox state were also investigated. Untreated animals exhibited significant changes in blood pressure, lipid profile, and biomarkers of heart, liver, and kidney damage. Treatment with B. trimera reversed these changes, with effects that were similar to simvastatin + enalapril. These findings suggest that B. trimera may be promising for the treatment of cardiovascular and hepatic disorders, especially disorders that are associated with multiple risk factors.
Collapse
Affiliation(s)
- Tatiane C Mendes
- Programa de Pós-Graduação em Ciência Animal com Ênfase em Bioativos, Universidade Paranaense, Laboratório de Pesquisa Pré-Clínica de Produtos Naturais, Praça Mascarenhas de Moraes, 4282, Caixa Postal 224, 87502-210 Umuarama, PR, Brazil
| | - Gustavo R DA Silva
- Programa de Pós-Graduação em Ciência Animal com Ênfase em Bioativos, Universidade Paranaense, Laboratório de Pesquisa Pré-Clínica de Produtos Naturais, Praça Mascarenhas de Moraes, 4282, Caixa Postal 224, 87502-210 Umuarama, PR, Brazil
| | - Aniely O Silva
- Universidade Federal da Grande Dourados, Faculdade de Ciências da Saúde, Laboratório de Farmacologia Cardiovascular, Rodovia Dourados-Itahum, Km 12, Caixa Postal 533, 79804-970 Dourados, MS, Brazil
| | - Maysa I Schaedler
- Universidade Federal da Grande Dourados, Faculdade de Ciências da Saúde, Laboratório de Farmacologia Cardiovascular, Rodovia Dourados-Itahum, Km 12, Caixa Postal 533, 79804-970 Dourados, MS, Brazil
| | - Lucas P Guarnier
- Universidade Federal da Grande Dourados, Faculdade de Ciências da Saúde, Laboratório de Farmacologia Cardiovascular, Rodovia Dourados-Itahum, Km 12, Caixa Postal 533, 79804-970 Dourados, MS, Brazil
| | - Rhanany A C Palozi
- Universidade Federal da Grande Dourados, Faculdade de Ciências da Saúde, Laboratório de Farmacologia Cardiovascular, Rodovia Dourados-Itahum, Km 12, Caixa Postal 533, 79804-970 Dourados, MS, Brazil
| | - Cleide T Signor
- Universidade Federal da Grande Dourados, Faculdade de Ciências da Saúde, Laboratório de Farmacologia Cardiovascular, Rodovia Dourados-Itahum, Km 12, Caixa Postal 533, 79804-970 Dourados, MS, Brazil
| | - Janaína D Dal Bosco
- Programa de Pós-Graduação em Ciência Animal com Ênfase em Bioativos, Universidade Paranaense, Laboratório de Pesquisa Pré-Clínica de Produtos Naturais, Praça Mascarenhas de Moraes, 4282, Caixa Postal 224, 87502-210 Umuarama, PR, Brazil
| | - Pablo A Auth
- Programa de Pós-Graduação em Ciência Animal com Ênfase em Bioativos, Universidade Paranaense, Laboratório de Pesquisa Pré-Clínica de Produtos Naturais, Praça Mascarenhas de Moraes, 4282, Caixa Postal 224, 87502-210 Umuarama, PR, Brazil
| | - Eduarda C Amaral
- Programa de Pós-Graduação em Plantas Medicinais e Fitoterápicos na Atenção Básica, Universidade Paranaense, Laboratório de Pesquisa Pré-Clínica de Produtos Naturais, Praça Mascarenhas de Moraes, 4282, Caixa Postal 224, 87502-210 Umuarama, PR, Brazil
| | - Diego L Froelich
- Faculdade Assis Gurgacz, Laboratório de Prevenção e Diagnóstico, Avenida das Torres, 500, 85806-095 Cascavel, PR, Brazil
| | - Andréia A Soares
- Programa de Pós-Graduação em Plantas Medicinais e Fitoterápicos na Atenção Básica, Universidade Paranaense, Laboratório de Pesquisa Pré-Clínica de Produtos Naturais, Praça Mascarenhas de Moraes, 4282, Caixa Postal 224, 87502-210 Umuarama, PR, Brazil
| | - Evellyn C W Lovato
- Programa de Pós-Graduação em Plantas Medicinais e Fitoterápicos na Atenção Básica, Universidade Paranaense, Laboratório de Neurociências, Praça Mascarenhas de Moraes, 4282, Caixa Postal 224, 87502-210 Umuarama, PR, Brazil
| | - João T Ribeiro-Paes
- Universidade Estadual de São Paulo, Departamento de Biotecnologia, Laboratório de Genética e Terapia Celular, Avenida Dom Antonio, 2100, 19806-900 Assis, SP, Brazil
| | - Arquimedes Gasparotto Junior
- Universidade Federal da Grande Dourados, Faculdade de Ciências da Saúde, Laboratório de Farmacologia Cardiovascular, Rodovia Dourados-Itahum, Km 12, Caixa Postal 533, 79804-970 Dourados, MS, Brazil
| | - Francislaine A Dos Reis Lívero
- Programa de Pós-Graduação em Ciência Animal com Ênfase em Bioativos, Universidade Paranaense, Laboratório de Pesquisa Pré-Clínica de Produtos Naturais, Praça Mascarenhas de Moraes, 4282, Caixa Postal 224, 87502-210 Umuarama, PR, Brazil.,Programa de Pós-Graduação em Plantas Medicinais e Fitoterápicos na Atenção Básica, Universidade Paranaense, Laboratório de Pesquisa Pré-Clínica de Produtos Naturais, Praça Mascarenhas de Moraes, 4282, Caixa Postal 224, 87502-210 Umuarama, PR, Brazil
| |
Collapse
|
37
|
Carvalho KFDS, Ferreira AAM, Barbosa NC, Alves JV, Costa RMD. Atorvastatin Attenuates Vascular Remodeling in Mice with Metabolic Syndrome. Arq Bras Cardiol 2021; 117:737-747. [PMID: 34161419 PMCID: PMC8528348 DOI: 10.36660/abc.20200322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/04/2020] [Indexed: 11/18/2022] Open
Abstract
Fundamento A síndrome metabólica é caracterizada por um conjunto de comorbidades. Durante a síndrome, observam-se alterações estruturais no sistema cardiovascular, especialmente o remodelamento vascular. Uma das causas predisponentes para essas alterações é a inflamação crônica oriunda de mudanças na estrutura e composição do tecido adiposo perivascular. Atorvastatina é eficaz no tratamento das dislipidemias. No entanto, seus efeitos pleiotrópicos não são totalmente compreendidos. Supõe-se que, durante a síndrome metabólica, ocorre remodelamento vascular e que o tratamento com atorvastatina pode ser capaz de atenuar tal condição. Objetivos Avaliar os efeitos do tratamento com atorvastatina sobre o remodelamento vascular em modelo experimental de síndrome metabólica. Métodos Camundongos Swiss receberam dieta controle ou dieta hiperglicídica por 18 semanas. Após 14 semanas de dieta, os camundongos foram tratados com veículo ou atorvastatina (20mg/kg) durante 4 semanas. Foram avaliados o perfil nutricional e metabólico por testes bioquímicos; análise estrutural da artéria aorta por histologia e dosagem de citocinas por ensaio imunoenzimático. O nível de significância aceitável para os resultados foi p <0,05. Resultados A dieta hiperglicídica promoveu o desenvolvimento de síndrome metabólica. Tal fato culminou no remodelamento hipertrófico do músculo liso vascular e tecido adiposo perivascular. Além disso, houve aumentos das citocinas TNF-α e IL-6 circulantes e no tecido adiposo perivascular. O tratamento com atorvastatina reduziu significativamente os danos metabólicos, o remodelamento vascular e os níveis de citocinas. Conclusão Atorvastatina ameniza danos metabólicos associados à síndrome metabólica induzida por dieta hiperglicídica, além de atenuar o remodelamento vascular, sendo esses efeitos associados à redução de citocinas pró-inflamatórias.
Collapse
Affiliation(s)
| | | | | | - Juliano Vilela Alves
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo - Departamento de Farmacologia, Ribeirão Preto, SP - Brasil
| | | |
Collapse
|
38
|
Ravanidis S, Grundler F, de Toledo FW, Dimitriou E, Tekos F, Skaperda Z, Kouretas D, Doxakis E. Fasting-mediated metabolic and toxicity reprogramming impacts circulating microRNA levels in humans. Food Chem Toxicol 2021; 152:112187. [PMID: 33839215 DOI: 10.1016/j.fct.2021.112187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
It is well-established that long-term fasting improves metabolic health, enhances the total antioxidant capacity and increases well-being. MicroRNAs oversee energy homeostasis and metabolic processes and are widely used as circulating biomarkers to identify the metabolic state. This study investigated whether the expression levels of twenty-four metabolism-associated microRNAs are significantly altered following long-term fasting and if these changes correlate with biochemical and redox parameters in the plasma. Thirty-two participants with an average BMI of 28 kg/m2 underwent a 10-day fasting period with a daily intake of 250 kcal under medical supervision. RT-qPCR on plasma small-RNA extracts revealed that the levels of seven microRNAs (miR-19b-3p, miR-22-3p, miR-122-5p, miR-126-3p, miR-142-3p, miR-143-3p, and miR-145-5p) were significantly altered following fasting. Importantly, the expression levels of these microRNAs have been consistently shown to change in the exact opposite direction in pathological states including obesity, diabetes, nonalcoholic steatohepatitis, and cardiovascular disease. Linear regression analyses revealed that among the microRNAs analyzed, anti-inflammatory miR-146-5p expression displayed most correlations with the levels of different biochemical and redox parameters. In silico analysis of fasting-associated microRNAs demonstrated that they target pathways that are highly enriched for intracellular signaling such mTOR, FoxO and autophagy, as well as extracellular matrix (ECM) interactions and cell-senescence. Overall, these data are consistent with a model in which long-term fasting engages homeostatic mechanisms associated with specific microRNAs to improve metabolic signaling regardless of health status.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece
| | - Franziska Grundler
- Buchinger Wilhelmi Clinic, 88662, Überlingen, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany
| | | | - Evangelos Dimitriou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larisa, 41500, Greece
| | - Zoi Skaperda
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larisa, 41500, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larisa, 41500, Greece
| | - Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece.
| |
Collapse
|
39
|
Dalan R, Boehm BO. The implications of COVID-19 infection on the endothelium: A metabolic vascular perspective. Diabetes Metab Res Rev 2021; 37:e3402. [PMID: 32871617 DOI: 10.1002/dmrr.3402] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/10/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Bernhard O Boehm
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| |
Collapse
|
40
|
Adams JA, Uryash A, Lopez JR, Sackner MA. The Endothelium as a Therapeutic Target in Diabetes: A Narrative Review and Perspective. Front Physiol 2021; 12:638491. [PMID: 33708143 PMCID: PMC7940370 DOI: 10.3389/fphys.2021.638491] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/29/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes has reached worldwide epidemic proportions, and threatens to be a significant economic burden to both patients and healthcare systems, and an important driver of cardiovascular mortality and morbidity. Improvement in lifestyle interventions (which includes increase in physical activity via exercise) can reduce diabetes and cardiovascular disease mortality and morbidity. Encouraging a population to increase physical activity and exercise is not a simple feat particularly in individuals with co-morbidities (obesity, heart disease, stroke, peripheral vascular disease, and those with cognitive and physical limitations). Translation of the physiological benefits of exercise within that vulnerable population would be an important step for improving physical activity goals and a stopgap measure to exercise. In large part many of the beneficial effects of exercise are due to the introduction of pulsatile shear stress (PSS) to the vascular endothelium. PSS is a well-known stimulus for endothelial homeostasis, and induction of a myriad of pathways which include vasoreactivity, paracrine/endocrine function, fibrinolysis, inflammation, barrier function, and vessel growth and formation. The endothelial cell mediates the balance between vasoconstriction and relaxation via the major vasodilator endothelial derived nitric oxide (eNO). eNO is critical for vasorelaxation, increasing blood flow, and an important signaling molecule that downregulates the inflammatory cascade. A salient feature of diabetes, is endothelial dysfunction which is characterized by a reduction of the bioavailability of vasodilators, particularly nitric oxide (NO). Cellular derangements in diabetes are also related to dysregulation in Ca2+ handling with increased intracellular Ca2+overload, and oxidative stress. PSS increases eNO bioavailability, reduces inflammatory phenotype, decreases intracellular Ca2+ overload, and increases antioxidant capacity. This narrative review and perspective will outline four methods to non-invasively increase PSS; Exercise (the prototype for increasing PSS), Enhanced External Counterpulsation (EECP), Whole Body Vibration (WBV), Passive Simulated Jogging and its predicate device Whole Body Periodic Acceleration, and will discuss current knowledge on their use in diabetes.
Collapse
Affiliation(s)
- Jose A Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Jose R Lopez
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Marvin A Sackner
- Department of Medicine, Mount Sinai Medical Center, Miami Beach, FL, United States
| |
Collapse
|
41
|
Abstract
Endothelial dysfunction (ED) plays a substantial role in the pathogenesis of atherosclerosis and some other vascular diseases. ED has been demonstrated in patients with hypercholesterolemia, diabetes, smoking, hypertension, and in patients with atherosclerotic disease. Besides classical risk factors, ED is affected by chronic inflammatory diseases and acute infections, particularly viral diseases. Causes of ED include oxidative stress, inflammation, and shear stress, which decrease the bioavailability of nitric oxide. Markers of ED have been sought, particularly circulating markers. Using these tests, it is possible to evaluate the response to harmful effects of risk factors and the effects of treatment on vessel wall function. Endothelial dysfunction is significantly and directly correlated with the occurrence of cardiac events and the risk of cardiac events increase as ED worsens. Because endothelial function plays a central role in atherogenesis it became a therapeutic target. Endothelial dysfunction is reversible and its improvement may be achieved by elimination of risk factors, inhibitors of endothelium-derived contracting factors (angiotensin-converting enzyme), smoking cessation, lipid-lowering drugs, diet, and physical exercise. By reversing ED, it is possible to restore vascular function.
Collapse
Affiliation(s)
- Pavel Poredos
- Department of Vascular Disease, 37663University Medical Centre Ljubljana, Slovenia.,Department of Advanced Cardiopulmonary Therapies and Transplantation, 7067The University of Texas Health Science Centre at Houston, TX, USA
| | | | - Igor Gregoric
- Department of Advanced Cardiopulmonary Therapies and Transplantation, 7067The University of Texas Health Science Centre at Houston, TX, USA
| |
Collapse
|
42
|
Pędzińska-Betiuk A, Weresa J, Schlicker E, Harasim-Symbor E, Toczek M, Kasacka I, Gajo B, Malinowska B. Chronic cannabidiol treatment reduces the carbachol-induced coronary constriction and left ventricular cardiomyocyte width of the isolated hypertensive rat heart. Toxicol Appl Pharmacol 2021; 411:115368. [PMID: 33338514 DOI: 10.1016/j.taap.2020.115368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/29/2020] [Accepted: 12/13/2020] [Indexed: 11/29/2022]
Abstract
Cannabidiol (CBD) is suggested to possess cardioprotective properties. We examined the influence of chronic (10 mg/kg once daily for 2 weeks) CBD administration on heart structure (e.g. cardiomyocyte width) and function (e.g. stimulatory and inhibitory responses induced by β-adrenoceptor (isoprenaline) and muscarinic receptor (carbachol) activation, respectively). Experiments were performed on hearts and/or left atria isolated from spontaneously (SHR) and deoxycorticosterone (DOCA-salt) hypertensive rats; Wistar-Kyoto (WKY) and sham-operated rats (SHAM) served as the respective normotensive controls. CBD diminished the width of cardiomyocytes in left ventricle and reduced the carbachol-induced vasoconstriction of coronary arteries both in DOCA-salt and SHR. However, it failed to affect left ventricular hypertrophy and even aggravated the impaired positive and negative lusitropic effects elicited by isoprenaline and carbachol, respectively. In normotensive hearts CBD led to untoward structural and functional effects, which occurred only in WKY or SHAM or, like the decrease in β1-adrenoceptor density, in either control strain. In conclusion, due to its modest beneficial effect in hypertension and its adverse effects in normotensive hearts, caution should be taken when using CBD as a drug in therapy.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Animals
- Antihypertensive Agents/toxicity
- Cannabidiol/toxicity
- Carbachol/pharmacology
- Cell Size/drug effects
- Coronary Vessels/drug effects
- Coronary Vessels/physiopathology
- Disease Models, Animal
- Hypertension/complications
- Hypertension/drug therapy
- Hypertension/physiopathology
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Isolated Heart Preparation
- Isoproterenol/pharmacology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/metabolism
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left/drug effects
- Rats
Collapse
Affiliation(s)
- Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland.
| | - Jolanta Weresa
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - Marek Toczek
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Bernadetta Gajo
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
43
|
Goto K, Kitazono T. Endothelium-dependent hyperpolarization (EDH) in diet-induced obesity. ENDOCRINE AND METABOLIC SCIENCE 2020. [DOI: 10.1016/j.endmts.2020.100062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
44
|
Hermans MP, Lempereur P, Salembier JP, Maes N, Albert A, Jansen O, Pincemail J. Supplementation Effect of a Combination of Olive ( Olea europea L.) Leaf and Fruit Extracts in the Clinical Management of Hypertension and Metabolic Syndrome. Antioxidants (Basel) 2020; 9:antiox9090872. [PMID: 32942738 PMCID: PMC7554871 DOI: 10.3390/antiox9090872] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of herbal products in the prevention of cardiovascular disease requires supporting evidence. This open pilot study assessed the effect of 2-month supplementation of a combination of olive leaf and fruit extracts (Tensiofytol®, Tilman SA, Baillonville, Belgium) in the clinical management of hypertension and metabolic syndrome (MetS). METHODS A total of 663 (pre)-hypertensive patients were enrolled by general practitioners and supplemented for two months with Tensiofytol®, two capsules per day (100 mg/d of oleuropein and 20 mg/d of hydroxytyrosol). Systolic and diastolic blood pressures (SBP/DBP) were measured before and after treatment. Markers of MetS, high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), fasting blood glucose (FG) and waist circumference (WC), were also examined. RESULTS Significant reductions (p < 0.0001) in SBP/DBP (13 ± 10/7.1 ± 6.6 mmHg) were observed and similarly in pre-diabetic and diabetic patients. Improvements in SBP/DPB were independent of age and gender but greater for elevated baseline SBP/DBP. Tensiofytol® supplementation also significantly improved markers of MetS, with a decrease of TG (11%), WC (1.4%) and FG (4.8%) and an increase of HDL-C (5.3%). Minor side effects were reported in 3.2% patients. CONCLUSIONS This real-life, observational, non-controlled, non-randomized pilot study shows that supplementation of a combination of olive leaf and fruit extracts may be used efficiently and safely in reducing hypertension and MetS markers.
Collapse
Affiliation(s)
- Michel P. Hermans
- Service d’Endocrinologie et de Nutrition and Pôle Endocrinologie, Diabète et Nutrition (EDIN), Institut de Recherche expérimentale et clinique, UCLouvain, 1200 Brussels, Belgium;
| | - Philippe Lempereur
- Service de Cardiologie, Centre Hospitalier Bois de l’Abbaye, 4100 Seraing, Belgium;
| | - Jean-Paul Salembier
- Service de Cardiologie, CHU UCL Namur - site Sainte-Elisabeth, 5000 Namur, Belgium;
| | - Nathalie Maes
- Biostatistics and Medico-economic Information Department, University Hospital of Liège, 4000 Liège, Belgium; (N.M.); (A.A.)
| | - Adelin Albert
- Biostatistics and Medico-economic Information Department, University Hospital of Liège, 4000 Liège, Belgium; (N.M.); (A.A.)
| | - Olivia Jansen
- Laboratoire de Pharmacognosie, Centre Interdisciplinaire de Recherche sur le Médicament (CIRM), Université de Liège, 4000 Liège, Belgium;
| | - Joël Pincemail
- Department of Cardiovascular Surgery, CREDEC and Platform Nutrition Antioxydante et Santé, CHU and University of Liège, Sart Tilman, 4000 Liège, Belgium
- Correspondence:
| |
Collapse
|
45
|
Molocea CE, Tsokanos FF, Herzig S. Exploiting common aspects of obesity and cancer cachexia for future therapeutic strategies. Curr Opin Pharmacol 2020; 53:101-116. [PMID: 32871469 DOI: 10.1016/j.coph.2020.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022]
Abstract
Obesity and cancer cachexia are diseases at opposite ends of the BMI. However, despite the apparent dichotomy, these pathologies share some common underlying mechanisms that lead to profound metabolic perturbations. Insulin resistance, adipose tissue lipolysis, skeletal muscle atrophy and systemic inflammation are key players in both diseases. Several strategies for pharmacological treatments have been employed in obesity and cancer cachexia but demonstrated only limited effects. Therefore, there is still a need to develop novel, more effective strategies. In this review we summarize existing therapies and discuss potential novel strategies that could arise by bridging common aspects between obesity and cachexia. We discuss the potential role of macrophage manipulation and the modulation of inflammation by targeting Nuclear Receptors (NRs) as potential novel therapeutic strategies.
Collapse
Affiliation(s)
- Claudia-Eveline Molocea
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Foivos-Filippos Tsokanos
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany; Chair Molecular Metabolic Control, Technical University, Munich, Germany.
| |
Collapse
|