1
|
Liu L, Zhao Y, Huang Z, Long Z, Qin H, Lin H, Zhou S, Kong L, Ma J, Lin Y, Li Z. Evaluation of quercetin in alleviating the negative effects of high soybean meal diet on spotted sea bass Lateolabrax maculatus. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109607. [PMID: 38719096 DOI: 10.1016/j.fsi.2024.109607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024]
Abstract
The aim of this study was to investigate the effects of quercetin (QUE) on alleviating the negative effects of high soybean meal diet for spotted sea bass Lateolabrax maculatus. A healthy control group fed a 44% fishmeal diet was used, while the induction control group replaced 50% fishmeal with soybean meal. Subsequently, QUE was added at concentrations of 0.25, 0.50, 0.75, and 1.00 g/kg in the experimental groups. A total of 540 tailed spotted sea bass were randomly divided into 6 groups and fed the corresponding diet for 56 days. The results showed that 40% soybean meal significantly decreased the growth performance and immunity, increased the intestinal mucosal permeability, and caused damage to the intestinal tissue morphology; moreover, there were alterations observed in the composition of the intestinal microbiota, accompanied by detectable levels of saponins in the metabolites. However, the addition of QUE did not yield significant changes in growth performance; instead, it notably reduced the permeability of the intestinal mucosa, improved the body's immunity and the structural integrity of the intestinal tissue, increased the proportion of Proteobacteria, and enhanced the richness and diversity of intestinal microorganisms to a certain extent. In addition, QUE up-regulate the metabolism of amino acids and their derivatives and energy-related metabolites such as uridine and guanosine; furthermore, it appears to regulate transporters through the ABC transporters pathway to promote the absorption and utilization of QUE by enterocytes.
Collapse
Affiliation(s)
- Longhui Liu
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Yanbo Zhao
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhangfan Huang
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhongying Long
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Huihui Qin
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Hao Lin
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Sishun Zhou
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Lumin Kong
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Jianrong Ma
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Yi Lin
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhongbao Li
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China.
| |
Collapse
|
2
|
La Rosa G, Sozio C, Pipicelli L, Raia M, Palmiero A, Santillo M, Damiano S. Antioxidant, Anti-Inflammatory and Pro-Differentiative Effects of Chlorogenic Acid on M03-13 Human Oligodendrocyte-like Cells. Int J Mol Sci 2023; 24:16731. [PMID: 38069054 PMCID: PMC10706857 DOI: 10.3390/ijms242316731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Chlorogenic acid (CGA), a polyphenol found mainly in coffee and tea, exerts antioxidant, anti-inflammatory and anti-apoptotic effects at the gastrointestinal level. However, although CGA is known to cross the blood-brain barrier (BBB), its effects on the CNS are still unknown. Oligodendrocytes (OLs), the myelin-forming cells in the CNS, are the main target in demyelinating neuroinflammatory diseases such as multiple sclerosis (MS). We evaluated the antioxidant, anti-inflammatory and anti-apoptotic roles of CGA in M03-13, an immortalized human OL cell line. We found that CGA reduces intracellular superoxide ions, mitochondrial reactive oxygen species (ROS) and NADPH oxidases (NOXs) /dual oxidase 2 (DUOX2) protein levels. The stimulation of M03-13 cells with TNFα activates the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-kB) pathway, leading to an increase in superoxide ion, NOXs/DUOX2 and phosphorylated extracellular regulated protein kinase (pERK) levels. In addition, tumor necrosis factor alpha (TNF-α) stimulation induces caspase 8 activation and the cleavage of poly-ADP-ribose polymerase (PARP). All these TNFα-induced effects are reversed by CGA. Furthermore, CGA induces a blockade of proliferation, driving cells to differentiation, resulting in increased mRNA levels of myelin basic protein (MBP) and proteolipid protein (PLP), which are major markers of mature OLs. Overall, these data suggest that dietary supplementation with this polyphenol could play an important beneficial role in autoimmune neuroinflammatory diseases such as MS.
Collapse
Affiliation(s)
- Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Napoli, Italy; (G.L.R.); (C.S.); (L.P.); (A.P.); (S.D.)
| | - Concetta Sozio
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Napoli, Italy; (G.L.R.); (C.S.); (L.P.); (A.P.); (S.D.)
| | - Luca Pipicelli
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Napoli, Italy; (G.L.R.); (C.S.); (L.P.); (A.P.); (S.D.)
| | - Maddalena Raia
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli “Federico II”, 80131 Napoli, Italy;
| | - Anna Palmiero
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Napoli, Italy; (G.L.R.); (C.S.); (L.P.); (A.P.); (S.D.)
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Napoli, Italy; (G.L.R.); (C.S.); (L.P.); (A.P.); (S.D.)
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, 80131 Napoli, Italy; (G.L.R.); (C.S.); (L.P.); (A.P.); (S.D.)
| |
Collapse
|
3
|
Sadeghi A, Khazaeel K, Tabandeh MR, Nejaddehbashi F, Givi ME. Prenatal exposure to crude oil vapor reduces differentiation potential of rat fetal mesenchymal stem cells by regulating ERK1/2 and PI3K signaling pathways: Protective effect of quercetin. Reprod Toxicol 2023; 120:108440. [PMID: 37467934 DOI: 10.1016/j.reprotox.2023.108440] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
It has been indicated that crude oil vapor (COV) induces tissue damage by several molecular mechanisms. Quercetin (QT) as an important component of food with antioxidant properties has a protective role against cell toxicity caused by many pollutants. However, data related to the adverse effects of crude oil vapor (COV) on stem cell fate and differentiation and the role of quercetin (QT) in protecting stem cells against the toxicity caused by these pollutants is very limited. This study aimed to explore the protective effect of QT against the adverse effects of COV on fetal mesenchymal stem cells (fMSCs) differentiation. Twenty-four pregnant Wistar rats were categorized into 4 groups including the control, COV, COV+QT, and QT. Rats were exposed to COV from gestational day (GD) 0-15 and received QT by gavage. The fMSCs were isolated from fetuses, and cell proliferation, differentiation potential, expression of osteogenesis and adipogenesis-related genes, and phosphorylation of PI3K and ERK1/2 signaling proteins were evaluated. The results showed that COV reduced the proliferation and differentiation of fMSCs through the activation of PI3K and ERK1/2 signaling pathways. Also, COV significantly decreased the expression of osteonectin, ALP, BMP-6, Runx-2, PPARγ, and CREBBP genes in differentiated cells. QT treatment increased the proliferation and differentiation of fMSCs in COV-exposed rats. In conclusion, our findings suggest that prenatal exposure to COV impaired fMSCs differentiation and QT reduced the adverse effects of COV by regulating ERK1/2 and PI3K signaling pathways.
Collapse
Affiliation(s)
- Abbas Sadeghi
- Department of Basic Science, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kaveh Khazaeel
- Department of Basic Science, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mohammad Reza Tabandeh
- Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran; Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Fereshteh Nejaddehbashi
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoumeh Ezzati Givi
- Department of Basic Sciences, Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
4
|
Tian CM, Yang MF, Xu HM, Zhu MZ, Yue NN, Zhang Y, Shi RY, Yao J, Wang LS, Liang YJ, Li DF. Stem cell-derived intestinal organoids: a novel modality for IBD. Cell Death Discov 2023; 9:255. [PMID: 37479716 PMCID: PMC10362068 DOI: 10.1038/s41420-023-01556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
The organoids represent one of the greatest revolutions in the biomedical field in the past decade. This three-dimensional (3D) micro-organ cultured in vitro has a structure highly similar to that of the tissue and organ. Using the regeneration ability of stem cells, a 3D organ-like structure called intestinal organoids is established, which can mimic the characteristics of real intestinal organs, including morphology, function, and personalized response to specific stimuli. Here, we discuss current stem cell-based organ-like 3D intestinal models, including understanding the molecular pathophysiology, high-throughput screening drugs, drug efficacy testing, toxicological evaluation, and organ-based regeneration of inflammatory bowel disease (IBD). We summarize the advances and limitations of the state-of-the-art reconstruction platforms for intestinal organoids. The challenges, advantages, and prospects of intestinal organs as an in vitro model system for precision medicine are also discussed. Key applications of stem cell-derived intestinal organoids. Intestinal organoids can be used to model infectious diseases, develop new treatments, drug screens, precision medicine, and regenerative medicine.
Collapse
Affiliation(s)
- Cheng-Mei Tian
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Department of Emergency, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 51000, China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 51000, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People's Hospital The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, 516000, Guangdong, China
| | - Rui-Yue Shi
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, 518020, Guangdong, China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
5
|
Li L, Peng P, Ding N, Jia W, Huang C, Tang Y. Oxidative Stress, Inflammation, Gut Dysbiosis: What Can Polyphenols Do in Inflammatory Bowel Disease? Antioxidants (Basel) 2023; 12:antiox12040967. [PMID: 37107341 PMCID: PMC10135842 DOI: 10.3390/antiox12040967] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a long-term, progressive, and recurrent intestinal inflammatory disorder. The pathogenic mechanisms of IBD are multifaceted and associated with oxidative stress, unbalanced gut microbiota, and aberrant immune response. Indeed, oxidative stress can affect the progression and development of IBD by regulating the homeostasis of the gut microbiota and immune response. Therefore, redox-targeted therapy is a promising treatment option for IBD. Recent evidence has verified that Chinese herbal medicine (CHM)-derived polyphenols, natural antioxidants, are able to maintain redox equilibrium in the intestinal tract to prevent abnormal gut microbiota and radical inflammatory responses. Here, we provide a comprehensive perspective for implementing natural antioxidants as potential IBD candidate medications. In addition, we demonstrate novel technologies and stratagems for promoting the antioxidative properties of CHM-derived polyphenols, including novel delivery systems, chemical modifications, and combination strategies.
Collapse
Affiliation(s)
- Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peilan Peng
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ning Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenhui Jia
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yong Tang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
6
|
Blatama D, Salsabila N, Saragih HT. Goloba kusi (Hornstedtia scottiana [F. Muell.] K. Schum.) fruit as a feed additive to improve the histological structures and growth performance of broiler. Vet World 2023; 16:329-340. [PMID: 37042000 PMCID: PMC10082708 DOI: 10.14202/vetworld.2023.329-340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/24/2023] [Indexed: 02/19/2023] Open
Abstract
Background and Aim: The broiler farming industry in Indonesia has enormous potential, with chicken meat that can be optimized by providing adequate and high-quality feed. However, the main raw material for the feed still relies on imported products, which makes it necessary to produce alternative materials from native plants. Therefore, this study aimed to investigate the effect of giving Goloba kusi fruit (GF) (Hornstedtia scottiana [F. Muell.] K. Schum.) on the growth of the small intestine, pectoralis major, and gastrocnemius muscle, as well as the development of broiler chickens.
Materials and Methods: This study used a completely randomized design, in which 300 day-old Chicks were divided into five groups, consisting of 12 chickens in each group with five replications. The GF treatments, namely, 0% (control [CON]), 0.625% (GF1), 1.25% (GF2), 2.5% (GF3), and 5% (GF4) were administered through per kg basal feed. Subsequently, three chickens from each replication were taken, decapitated on the neck, subjected to surgery for histological preparations, and stained with Hematoxylin-Eosin and Periodic acid-Schiff-alcian blue. The variables observed included small intestine morphology, muscle morphology, and chicken growth performance.
Results: The results showed that the small intestine morphology, muscle morphology, and chicken growth performance of the GF4 (5%) group increased significantly compared to the CON group.
Conclusion: The administration of GF with an optimum concentration of 5% through basal feed improves small intestine morphology, muscle morphology, and chicken growth performance.
Collapse
Affiliation(s)
- D. Blatama
- Post Graduate Program of Biology, Department of Tropical Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - N. Salsabila
- Graduate Program of Biology, Department of Tropical Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - H. T. Saragih
- Laboratory of Animal Development Structure, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
7
|
Complexification of In Vitro Models of Intestinal Barriers, A True Challenge for a More Accurate Alternative Approach. Int J Mol Sci 2023; 24:ijms24043595. [PMID: 36835003 PMCID: PMC9958734 DOI: 10.3390/ijms24043595] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
The use of cell models is common to mimic cellular and molecular events in interaction with their environment. In the case of the gut, the existing models are of particular interest to evaluate food, toxicants, or drug effects on the mucosa. To have the most accurate model, cell diversity and the complexity of the interactions must be considered. Existing models range from single-cell cultures of absorptive cells to more complex combinations of two or more cell types. This work describes the existing solutions and the challenges that remain to be solved.
Collapse
|
8
|
Feng J, Li Z, Ma H, Yue Y, Hao K, Li J, Xiang Y, Min Y. Quercetin alleviates intestinal inflammation and improves intestinal functions via modulating gut microbiota composition in LPS-challenged laying hens. Poult Sci 2022; 102:102433. [PMID: 36587451 PMCID: PMC9816806 DOI: 10.1016/j.psj.2022.102433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Quercetin, a well-known flavonoid, has been demonstrated to exert beneficial effects on intestinal functions and gut microbiota in birds. In this study, we investigated the effects of quercetin supplementation on inflammatory responses, intestinal barrier functions and gut microbial community in LPS-challenged laying hens. A total of two hundred eighty-eight 32-wk-old Jingfen No.6 laying hens were randomly assigned to 3 groups, the CON group, the LC group and the LQ group. LQ group was fed with 0.4 mg/kg quercetin and at the end of 12 wk, LC and LQ groups were challenged intraperitoneally with lipopolysaccharide (LPS). After LPS challenge, 8 birds of each group were randomly selected and sampled. LPS challenge induced an obvious intestinal mucosal injury, necrosis and shedding, while quercetin intervention maintained its structure. Quercetin significantly decreased the elevated malondialdehyde contents (P < 0.05), and increased the activity of total antioxidant capacity and glutathione peroxidase (P < 0.05) in intestinal mucosa of LPS-challenged laying hens. Quercetin rescued the LPS-induced decreases in goblet cell density and mucin2 expression levels (P < 0.05). There was a significant decline (P < 0.05) in the mRNA expression of Claudin1 and Occludin in intestinal mucosa of LPS-challenged layers, which could be alleviated (P < 0.05) by dietary quercetin. LPS challenge induced the increased expression levels (P < 0.05) of IL-1β and TLR-4 in intestinal mucosa, while these rises could be reversed (P < 0.05) following dietary quercetin supplementation. LPS challenge induced a shift in gut microenvironment, and quercetin addition could elevate the relative abundance of some short chain fatty acids (SCFA)-producing or health-promoting bacteria such as Phascolarctobacterium, Negativicutes, Selenomonadales, Megamonas, Prevotellaceae, and Bacteroides_salanitronis. In conclusion, dietary quercetin addition ameliorated the LPS challenge-induced intestinal inflammation and improved intestinal functions, possibly associated with its modulation on gut microbiota, particularly the increased population of SCFA-producing bacteria.
Collapse
Affiliation(s)
- Jia Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhuorui Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanrui Yue
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Keyang Hao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinghe Li
- Tongchuan City Health Supervision Institute, Tongchuan, 629000, Shaanxi, China
| | - Yujun Xiang
- Tongchuan City Health Supervision Institute, Tongchuan, 629000, Shaanxi, China
| | - Yuna Min
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
9
|
Han S, Cao Y, Guo T, Lin Q, Luo F. Targeting lncRNA/Wnt axis by flavonoids: A promising therapeutic approach for colorectal cancer. Phytother Res 2022; 36:4024-4040. [PMID: 36227024 DOI: 10.1002/ptr.7550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Despite the dramatic advances in our understanding of the etiology of colorectal cancer (CRC) in recent decades, effective therapeutic strategies are still urgently needed. Oncogenic mutations in the Wnt/β-Catenin pathway are hallmarks of CRC. Moreover, long non-coding RNAs (lncRNAs) as molecular managers are involved in the initiation, progression, and metastasis of CRC. Therefore, it is important to further explore the interaction between lncRNAs and Wnt/β-Catenin signaling pathway for targeted therapy of CRC. Natural phytochemicals have not toxicity and can target carcinogenesis-related pathways. Growing evidences suggest that flavonoids are inversely associated with CRC risk. These bioactive compounds could target carcinogenesis pathways of CRC and reduced the side effects of anti-cancer drugs. The review systematically summarized the progress of flavonoids targeting lncRNA/Wnt axis in the investigations of CRC, which will provide a promising therapeutic approach for CRC and develop nutrition-oriented preventive strategies for CRC based on epigenetic mechanisms. In the field, more epidemiological and clinical trials are required in the future to verify feasibility of targeting lncRNA/Wnt axis by flavonoids in the therapy and prevention of CRC.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Yunyun Cao
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| |
Collapse
|
10
|
Biological Activities Underlying the Therapeutic Effect of Quercetin on Inflammatory Bowel Disease. Mediators Inflamm 2022; 2022:5665778. [PMID: 35915741 PMCID: PMC9338876 DOI: 10.1155/2022/5665778] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic autoimmune disorder stemming from unrestrained immune activation and subsequent destruction of colon tissue. Genetic susceptibility, microbiota remodeling, and environmental cues are involved in IBD pathogenesis. Up to now, there are limited treatment options for IBD, so better therapies for IBD are eagerly needed. The therapeutic effects of naturally occurring compounds have been extensively investigated, among which quercetin becomes an attractive candidate owing to its unique biochemical properties. To facilitate the clinical translation of quercetin, we aimed to get a comprehensive understanding of the cellular and molecular mechanisms underlying the anti-IBD role of quercetin. We summarized that quercetin exerts the anti-IBD effect through consolidating the intestinal mucosal barrier, enhancing the diversity of colonic microbiota, restoring local immune homeostasis, and restraining the oxidative stress response. We also delineated the effect of quercetin on gut microbiome and discussed the potential side effects of quercetin administration. Besides, quercetin could serve as a prodrug, and the bioavailability of quercetin is improved through chemical modifications or the utilization of effective drug delivery systems. Altogether, these lines of evidence hint the feasibility of quercetin as a candidate compound for IBD treatment.
Collapse
|
11
|
Ishibashi R, Furusawa Y, Honda H, Watanabe Y, Fujisaka S, Nishikawa M, Ikushiro S, Kurihara S, Tabuchi Y, Tobe K, Takatsu K, Nagai Y. Isoliquiritigenin Attenuates Adipose Tissue Inflammation and Metabolic Syndrome by Modifying Gut Bacteria Composition in Mice. Mol Nutr Food Res 2022; 66:e2101119. [PMID: 35297188 DOI: 10.1002/mnfr.202101119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/24/2022] [Indexed: 12/13/2022]
Abstract
SCOPE Isoliquiritigenin (ILG) has been reported to attenuate adipose tissue inflammation and metabolic disorder; however, the underlying mechanisms remain to be elucidated. The aim of this study is to elucidate whether ILG shows the anti-inflammatory and antimetabolic syndrome effects through gut microbiota modification. METHODS AND RESULTS Mice are fed a high-fat diet (HFD) with or without ILG for up to 12 weeks. The effect of ILG on body weight, blood glucose level, adipose tissue inflammation, gut barrier function, and gut microbiota composition are investigated. ILG supplementation alleviates HFD-induced obesity, glucose tolerance, and insulin resistance and suppresses inflammatory gene expression in epididymal white adipose tissue (eWAT). Moreover, ILG supplementation modifies gut bacterial composition by increasing the abundance of antimetabolic disease-associated species (e.g., Parabacteroides goldsteinii and Akkemansia muciniphila) and up-regulated genes associated with gut barrier function. Fecal microbiome transplantation (FMT) from ILG-fed donors counteract HFD-induced body and eWAT weight changes, inflammation-related gene expression, glucose tolerance, and insulin resistance, thereby suggesting that ILG-responsive gut bacteria exerts anti-inflammatory and antimetabolic syndrome effects. CONCLUSION Alterations in gut bacteria underly the beneficial effects of ILG against adipose tissue inflammation and metabolic disorders. ILG may be a promising prebiotic for the prevention and treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Riko Ishibashi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Hiroe Honda
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Imizu, Toyama, 939-0363, Japan
| | - Yasuharu Watanabe
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Imizu, Toyama, 939-0363, Japan
| | - Shiho Fujisaka
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Shin Kurihara
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani Kinokawa, Wakayama, 649-6493, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kiyoshi Takatsu
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Imizu, Toyama, 939-0363, Japan
| | - Yoshinori Nagai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
12
|
Amevor FK, Cui Z, Du X, Ning Z, Deng X, Xu D, Shu G, Wu Y, Cao X, Shuo W, Tian Y, Li D, Wang Y, Zhang Y, Du X, Zhu Q, Han X, Zhao X. Supplementation of Dietary Quercetin and Vitamin E Promotes the Intestinal Structure and Immune Barrier Integrity in Aged Breeder Hens. Front Immunol 2022; 13:860889. [PMID: 35386687 PMCID: PMC8977514 DOI: 10.3389/fimmu.2022.860889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
In aged animals, the physiological functions of the gastrointestinal tract (GIT) are reduced. Dietary intervention is necessary to re-activate GIT functions. The objective of this study was to investigate the impacts of dietary combination of quercetin (Q) and vitamin E (VE) on the intestinal structure and barrier integrity in aged breeder chickens. A sum of 400 (65-wks-old) Tianfu breeder hens were randomly allotted into four (4) groups with four (4) replicates, and fed with basal diet; basal diet supplemented with 0.4g/kg of Q; basal diet supplemented with 0.2g/kg of VE; and basal diet supplemented with the combination of Q (0.4 g/kg) and VE (0.2 g/kg) for 14 weeks. At the end of the 14th week, serum and gut segments were collected from eight hens per group for analyses. The results showed that Q+VE exerted synergistic effects on intestinal morphology by promoting villi height and crypt depth (P < 0.05), as well as mitigated the intestinal inflammatory damage of the aged hens, but decreased the concentration of serum D-lactate and diamine oxidase; and increased the levels of secretory immunoglobulin A (sIgA) and Mucin-2 mRNA (P < 0.05). Furthermore, the mRNA expression of intestinal tight junction proteins including occludin, ZO1, and claudin-1 was increased by Q+VE (P < 0.05). Moreover, Q+VE decreased the mRNA expression of the pro-inflammatory genes (TNF-α, IL-6, and IL-1β), and increased the expression of anti-inflammatory genes (IL-10 and IL-4) (P < 0.05). These results were consistent with the mRNA expression of Bax and Bcl-2. In addition, Q+VE protected the small intestinal tract from oxidative damage by increasing the levels of superoxide dismutase, total antioxidant capacity, glutathione peroxidase, catalase (P < 0.05), and the mRNA expression of SOD1 and GPx-2. However, Q+VE decreased malondialdehyde levels in the intestine compared to the control (P < 0.05). These results indicated that dietary Q+VE improved intestinal function in aged breeder hens, by protecting the intestinal structure and integrity. Therefore, Q+VE could act as an anti-aging agent to elevate the physiological functions of the small intestine in chickens.
Collapse
Affiliation(s)
- Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dan Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Youhao Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xueqing Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wei Shuo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xue Han
- Guizhou Institute of Animal Husbandry and Veterinary Medicine, Guiyang, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
Nickel L, Sünderhauf A, Rawish E, Stölting I, Derer S, Thorns C, Matschl U, Othman A, Sina C, Raasch W. The AT1 Receptor Blocker Telmisartan Reduces Intestinal Mucus Thickness in Obese Mice. Front Pharmacol 2022; 13:815353. [PMID: 35431918 PMCID: PMC9009210 DOI: 10.3389/fphar.2022.815353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
The angiotensin II (type 1) (AT1) receptor blocker telmisartan (TEL) is beneficial for the treatment of individuals suffering from metabolic syndrome. As we have shown that TEL has an impact on gut microbiota, we investigated here whether TEL influences gut barrier function. C57BL/6N mice were fed with chow or high-fat diet (HFD) and treated with vehicle or TEL (8 mg/kg/day). Mucus thickness was determined by immunohistochemistry. Periodic Acid-Schiff staining allowed the number of goblet cells to be counted. Using western blots, qPCR, and immunohistochemistry, factors related to mucus biosynthesis (Muc2, St6galnac), proliferation (Ki-67), or necroptosis (Rip3) were measured. The influence on cell viability was determined in vitro by using losartan, as the water solubility of TEL was too low for in vitro experiments. Upon HFD, mice developed obesity as well as leptin and insulin resistance, which were prevented by TEL. Mucus thickness upon HFD-feeding was diminished. Independent of feeding, TEL additionally reduced mucus thickness. Numbers of goblet cells were not affected by HFD-feeding and TEL. St6galnac expression was increased by TEL. Rip3 was increased in TEL-treated and HFD-fed mice, while Ki-67 decreased. Cell viability was diminished by using >1 mM losartan. The anti-obese effect of TEL was associated with a decrease in mucus thickness, which was likely not related to a lower expression of Muc2 and goblet cells. A decrease in Ki-67 and increase in Rip3 indicates lower cell proliferation and increased necroptosis upon TEL. However, direct cell toxic effects are ruled out, as in vivo concentrations are lower than 1 mM.
Collapse
Affiliation(s)
- Laura Nickel
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Annika Sünderhauf
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Elias Rawish
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Ines Stölting
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Stefanie Derer
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | | | - Urte Matschl
- Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Alaa Othman
- CBBM (Centre of Brain, Behaviour and Metabolism), University of Lübeck, Lübeck, Germany
- Institute for Clinical Chemistry, University Hospital Zürich, Zürich, Germany
| | - Christian Sina
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
- CBBM (Centre of Brain, Behaviour and Metabolism), University of Lübeck, Lübeck, Germany
- *Correspondence: Walter Raasch,
| |
Collapse
|
14
|
Hwang SJ, Yeo D, Song YS, Choi Y, Youn HJ, Lee HJ. An aqueous extract from Artemisia capillaris inhibits acute gastric injury through mucosal stabilization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1255-1262. [PMID: 34358346 DOI: 10.1002/jsfa.11463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Artemisia capillaris is among the most abundantly used traditional medicines, utilized in East Asia to treat diverse illnesses, including gastrointestinal tract diseases. We previously reported that an aqueous extract of A. capillaris (AEAC) inhibited gastric inflammation induced by HCl/ethanol via reactive oxygen species scavenging and NF-κB downregulation. To date, the pharmacological potential of AEAC for promoting mucosal integrity has not been studied. RESULTS Here, we report that a single treatment with AEAC increased mucus production, and repeated administration of AEAC abolished HCl/ethanol-induced mucosal injury in vivo. Single- and multiple-dose AEAC treatments measurably increased the expression of mucosal stabilizing factors in vivo, including mucin (MUC) 5 AC, MUC6, and trefoil factor (TFF) 1 and TFF2 (but not TFF3). AEAC also induced mucosal stabilizing factors in both SNU-601 cells and RGM cells through phosphorylation of extracellular signal-regulated kinases. CONCLUSION Taken together, our results suggest that AEAC protects against HCl/ethanol-induced gastritis by upregulating MUCs and TFFs and stabilizing the mucosal epithelium. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Su Jung Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Dahee Yeo
- College of Pharmacy, Inje University, Gimhae, South Korea
| | - Ye-Seul Song
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Youngbin Choi
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Hyun-Joo Youn
- College of Pharmacy, Inje University, Gimhae, South Korea
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
15
|
Agarwal N, Kolba N, Jung Y, Cheng J, Tako E. Saffron ( Crocus sativus L.) Flower Water Extract Disrupts the Cecal Microbiome, Brush Border Membrane Functionality, and Morphology In Vivo ( Gallus gallus). Nutrients 2022; 14:nu14010220. [PMID: 35011095 PMCID: PMC8747550 DOI: 10.3390/nu14010220] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/28/2021] [Accepted: 01/01/2022] [Indexed: 12/11/2022] Open
Abstract
Saffron (Crocus sativus L.) is known as the most expensive spice. C. sativus dried red stigmas, called threads, are used for culinary, cosmetic, and medicinal purposes. The rest of the flower is often discarded, but is now being used in teas, as coloring agents, and fodder. Previous studies have attributed antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, anti-depressant, and anticancer properties to C. sativus floral bio-residues. The aim of this study is to assess C. sativus flower water extract (CFWE) for its effects on hemoglobin, brush boarder membrane (BBM) functionality, morphology, intestinal gene expression, and cecal microbiome in vivo (Gallus gallus), a clinically validated model. For this, Gallus gallus eggs were divided into six treatment groups (non-injected, 18 Ω H2O, 1% CFWE, 2% CFWE, 5% CFWE, and 10% CFWE) with n~10 for each group. On day 17 of incubation, 1 mL of the extracts/control were administered in the amnion of the eggs. The amniotic fluid along with the administered extracts are orally consumed by the developing embryo over the course of the next few days. On day 21, the hatchlings were euthanized, the blood, duodenum, and cecum were harvested for assessment. The results showed a significant dose-dependent decrease in hemoglobin concentration, villus surface area, goblet cell number, and diameter. Furthermore, we observed a significant increase in Paneth cell number and Mucin 2 (MUC2) gene expression proportional to the increase in CFWE concentration. Additionally, the cecum microbiome analysis revealed C. sativus flower water extract altered the bacterial populations. There was a significant dose-dependent reduction in Lactobacillus and Clostridium sp., suggesting an antibacterial effect of the extract on the gut in the given model. These results suggest that the dietary consumption of C. sativus flower may have negative effects on BBM functionality, morphology, mineral absorption, microbial populations, and iron status.
Collapse
Affiliation(s)
| | | | | | | | - Elad Tako
- Correspondence: ; Tel.: +1-607-255-0884
| |
Collapse
|
16
|
Fekete E, Allain T, Amat CB, Mihara K, Saifeddine M, Hollenberg MD, Chadee K, Buret AG. Giardia duodenalis cysteine proteases cleave proteinase-activated receptor-2 to regulate intestinal goblet cell mucin gene expression. Int J Parasitol 2022; 52:285-292. [DOI: 10.1016/j.ijpara.2021.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022]
|
17
|
Intestinal Models for Personalized Medicine: from Conventional Models to Microfluidic Primary Intestine-on-a-chip. Stem Cell Rev Rep 2022; 18:2137-2151. [PMID: 34181185 PMCID: PMC8237043 DOI: 10.1007/s12015-021-10205-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
Intestinal dysfunction is frequently driven by abnormalities of specific genes, microbiota, or microenvironmental factors, which usually differ across individuals, as do intestinal physiology and pathology. Therefore, it's necessary to develop personalized therapeutic strategies, which are currently limited by the lack of a simulated intestine model. The mature human intestinal mucosa is covered by a single layer of columnar epithelial cells that are derived from intestinal stem cells (ISCs). The complexity of the organ dramatically increases the difficulty of faithfully mimicking in vivo microenvironments. However, a simulated intestine model will serve as an indispensable foundation for personalized drug screening. In this article, we review the advantages and disadvantages of conventional 2-dimensional models, intestinal organoid models, and current microfluidic intestine-on-a-chip (IOAC) models. The main technological strategies are summarized, and an advanced microfluidic primary IOAC model is proposed for personalized intestinal medicine. In this model, primary ISCs and the microbiome are isolated from individuals and co-cultured in a multi-channel microfluidic chip to establish a microengineered intestine device. The device can faithfully simulate in vivo fluidic flow, peristalsis-like motions, host-microbe crosstalk, and multi-cell type interactions. Moreover, the ISCs can be genetically edited before seeding, and monitoring sensors and post-analysis abilities can also be incorporated into the device to achieve high-throughput and rapid pharmaceutical studies. We also discuss the potential future applications and challenges of the microfluidic platform. The development of cell biology, biomaterials, and tissue engineering will drive the advancement of the simulated intestine, making a significant contribution to personalized medicine in the future. Graphical abstract The intestine is a primary organ for digestion, absorption, and metabolism, as well as a major site for the host-commensal microbiota interaction and mucosal immunity. The complexity of the organ dramatically increases the difficulty of faithfully mimicking in vivo microenvironments, though physiological 3-dimensional of the native small intestinal epithelial tissue has been well documented. An intestinal stem cells-based microfluidic intestine-on-a-chip model that faithfully simulate in vivo fluidic flow, peristalsis-like motions, host-microbe crosstalk, and multi-cell type interactions will make a significant contribution.
Collapse
|
18
|
Dey P, Chaudhuri SR, Efferth T, Pal S. The intestinal 3M (microbiota, metabolism, metabolome) zeitgeist - from fundamentals to future challenges. Free Radic Biol Med 2021; 176:265-285. [PMID: 34610364 DOI: 10.1016/j.freeradbiomed.2021.09.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
The role of the intestine in human health and disease has historically been neglected and was mostly attributed to digestive and absorptive functions. In the past two decades, however, discoveries related to human nutrition and intestinal host-microbe reciprocal interaction have established the essential role of intestinal health in the pathogenesis of chronic diseases and the overall wellbeing. That transfer of gut microbiota could be a means of disease phenotype transfer has revolutionized our understanding of chronic disease pathogenesis. This narrative review highlights the major concepts related to intestinal microbiota, metabolism, and metabolome (3M) that have facilitated our fundamental understanding of the association between the intestine, and human health and disease. In line with increased interest of microbiota-dependent modulation of human health by dietary phytochemicals, we have also discussed the emerging concepts beyond the phytochemical bioactivities which emphasizes the integral role of microbial metabolites of parent phytochemicals at extraintestinal tissues. Finally, this review concludes with challenges and future prospects in defining the 3M interactions and has emphasized the fact that, it takes 'guts' to stay healthy.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Sirshendu Pal
- Mukherjee Hospital, Mitra's Clinic and Nursing Home, Siliguri, West Bengal, India
| |
Collapse
|
19
|
Shi G, Jiang H, Feng J, Zheng X, Zhang D, Jiang C, Zhang J. Aloe vera mitigates dextran sulfate sodium-induced rat ulcerative colitis by potentiating colon mucus barrier. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114108. [PMID: 33839199 DOI: 10.1016/j.jep.2021.114108] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aloe vera (L.) Burm. f. (Aloe vera) is a medicinal herb that used in Traditional Chinese Medicine (TCM) practice for the treatment of gastrointestinal diseases such as constipation and colitis. Recent studies also reported its beneficial effect in mitigating ulcerative colitis (UC). Nevertheless, the underlying mechanisms of Aloe vera against UC remain largely unknown. AIM OF THE STUDY This study aimed to explore a relation between the therapeutical effects of Aloe vera in UC and colonic mucus secretion, and further investigate the underlying pathways through which Aloe vera regulates colon mucus as well as preliminarily studied the main active constitute of Aloe vera to alleviate UC. MATERIALS AND METHODS UPLC-MS/MS were employed to analyze the Aloe vera extract. The rat models of UC were induced by free subjected to fresh 3% dextran sulfate sodium (DSS) solution for 8 days and then accessed to tap water for 2 days. Aloe vera extract (18 mg/kg and 72 mg/kg) or 5-ASA (400 mg/kg) was administered orally from day 1-10. At the end of experiment, rats were sacrificed and the colon tissues were harvested for analysis. UC symptoms was evaluated by disease activity index (DAI), colon length and H&E staining. The Alcian blue stain were determined colon mucus layer. Myeloperoxidase (MPO) activity, mucin and inflammatory cytokines in colon tissues were determined by ELISA. The expression of related proteins on PI3K/AKT and PKC/ERK signaling pathway was analyzed by Western blot. We then evaluated the effects of three main components of Aloe vera (Aloe-emodin, aloin A and B) on mucin secretion and cytokine expression in vitro by ELISA. RESULTS Oral supplement with Aloe vera extract resulted in a significantly decreased DSS-induced UC symptoms, including decreased DAI, prevention of the colon length shortening, and alleviation of the pathological changes occurring in colon. The expression of colonic pro-inflammatory mediators, including IL-6, IL-1β and TNF-α were suppressed, yet the expression of IL-10 was up-regulated by Aloe vera treatment. Moreover, Aloe vera significantly up-regulated the expressions of mucin proteins (e.g., MUC2 and MUC5AC) and increased the thickness of mucus layer in the colon. Further, we revealed that Aloe vera significantly upregulated p-PKC and p-ERK expression and downregulated p-PI3K and p-AKT expression. Finally, we discovered that treat with aloin A markedly decreased IL-6 levels and increased MUC2 expression in LPS-stimulated LS174T cell. CONCLUSION These results support that Aloe vera improved UC by enhancing colon mucus barrier functions in addition to reducing inflammation. Moreover, aloin A might be a main active components of Aloe vera to ameliorate UC.
Collapse
Affiliation(s)
- Gaofeng Shi
- School of Third Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China
| | - Hui Jiang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jianrong Feng
- Department of colorectal surgery, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China
| | - Xian Zheng
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Dongjian Zhang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China
| | - Cuihua Jiang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China
| | - Jian Zhang
- School of Third Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China.
| |
Collapse
|
20
|
Ed Nignpense B, Francis N, Blanchard C, Santhakumar AB. Bioaccessibility and Bioactivity of Cereal Polyphenols: A Review. Foods 2021; 10:foods10071595. [PMID: 34359469 PMCID: PMC8307242 DOI: 10.3390/foods10071595] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cereal bioactive compounds, especially polyphenols, are known to possess a wide range of disease preventive properties that are attributed to their antioxidant and anti-inflammatory activity. However, due to their low plasma concentrations after oral intake, there is controversy regarding their therapeutic benefits in vivo. Within the gastrointestinal tract, some cereal polyphenols are absorbed in the small intestine, with the majority accumulating and metabolised by the colonic microbiota. Chemical and enzymatic processes occurring during gastrointestinal digestion modulate the bioactivity and bioaccessibility of phenolic compounds. The interactions between the cereal polyphenols and the intestinal epithelium allow the modulation of intestinal barrier function through antioxidant, anti-inflammatory activity and mucin production thereby improving intestinal health. The intestinal microbiota is believed to have a reciprocal interaction with polyphenols, wherein the microbiome produces bioactive and bioaccessible phenolic metabolites and the phenolic compound, in turn, modifies the microbiome composition favourably. Thus, the microbiome presents a key link between polyphenol consumption and the health benefits observed in metabolic conditions in numerous studies. This review will explore the therapeutic value of cereal polyphenols in conjunction with their bioaccessibility, impact on intestinal barrier function and interaction with the microbiome coupled with plasma anti-inflammatory effects.
Collapse
Affiliation(s)
- Borkwei Ed Nignpense
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
| | - Nidhish Francis
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Christopher Blanchard
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- Australian Research Council (ARC), Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Abishek Bommannan Santhakumar
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- Australian Research Council (ARC), Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Correspondence: ; Tel.: +61-2-6933-2678
| |
Collapse
|
21
|
Ganesan K, Quiles JL, Daglia M, Xiao J, Xu B. Dietary phytochemicals modulate intestinal epithelial barrier dysfunction and autoimmune diseases. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
- The School of Chinese Medicine The University of Hong Kong Hong Kong China
| | - José L. Quiles
- Institute of Nutrition and Food Technology “José Mataix Verdú,” Department of Physiology Biomedical Research Center University of Granada Granada Spain
| | - Maria Daglia
- Department of Pharmacy University of Naples Federico II Naples Italy
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo Vigo Pontevedra E‐36310 Spain
| | - Baojun Xu
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
| |
Collapse
|
22
|
Dobrowolny G, Barbiera A, Sica G, Scicchitano BM. Age-Related Alterations at Neuromuscular Junction: Role of Oxidative Stress and Epigenetic Modifications. Cells 2021; 10:1307. [PMID: 34074012 PMCID: PMC8225025 DOI: 10.3390/cells10061307] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
With advancing aging, a decline in physical abilities occurs, leading to reduced mobility and loss of independence. Although many factors contribute to the physio-pathological effects of aging, an important event seems to be related to the compromised integrity of the neuromuscular system, which connects the brain and skeletal muscles via motoneurons and the neuromuscular junctions (NMJs). NMJs undergo severe functional, morphological, and molecular alterations during aging and ultimately degenerate. The effect of this decline is an inexorable decrease in skeletal muscle mass and strength, a condition generally known as sarcopenia. Moreover, several studies have highlighted how the age-related alteration of reactive oxygen species (ROS) homeostasis can contribute to changes in the neuromuscular junction morphology and stability, leading to the reduction in fiber number and innervation. Increasing evidence supports the involvement of epigenetic modifications in age-dependent alterations of the NMJ. In particular, DNA methylation, histone modifications, and miRNA-dependent gene expression represent the major epigenetic mechanisms that play a crucial role in NMJ remodeling. It is established that environmental and lifestyle factors, such as physical exercise and nutrition that are susceptible to change during aging, can modulate epigenetic phenomena and attenuate the age-related NMJs changes. This review aims to highlight the recent epigenetic findings related to the NMJ dysregulation during aging and the role of physical activity and nutrition as possible interventions to attenuate or delay the age-related decline in the neuromuscular system.
Collapse
Affiliation(s)
- Gabriella Dobrowolny
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics (DAHFMO)-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy;
| | - Alessandra Barbiera
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| | - Gigliola Sica
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| | - Bianca Maria Scicchitano
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| |
Collapse
|
23
|
Gu Y, Zhang L, Yang H, Zhuang J, Sun Z, Guo J, Guan M. Nanosecond pulsed electric fields impair viability and mucin expression in mucinous colorectal carcinoma cell. Bioelectrochemistry 2021; 141:107844. [PMID: 34052542 DOI: 10.1016/j.bioelechem.2021.107844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
Nanosecond pulsed electric fields (nsPEFs) are a non-thermal technology that can induce a myriad of biological responses and changes in cellular physiology. nsPEFs have gained significant attention as a novel cancer therapy. However, studies investigating the application of nsPEF in mucinous carcinomas are scarce. In this study, we explored several biological responses in two mucinous colorectal adenocarcinoma cell lines, LS 174T and HT-29, to nsPEF treatment. We determined the overall cell survival and viability rates following nsPEF treatment using CCK-8 and colony formation assays. We measured the intracellular effects of nsPEF treatment by analyzing cell cycle distribution, cell apoptosis and mitochondrial potential. We also analyzed mucin production at both mRNA and protein levels. Our results showed that nsPEF treatment significantly reduced mucinous cell viability in a dose-dependent manner. nsPEF treatment increased cell cycles arrest at G0/G1 while the proportion of G2/M cells gradually decreased. Cell apoptosis increased following nsPEF treatment with a clear loss in mitochondrial membrane potential. Furthermore, the protein expression of functional mucin family members decreased after nsPEF treatment. In conclusion, nsPEF treatment reduced MCRC cell viability, cell proliferation, and mucin protein production while promoted apoptosis. Our work is a pilot study that projects some insights into the potential clinical applications of nsPEFs in treating mucinous colorectal carcinoma.
Collapse
Affiliation(s)
- Yiran Gu
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China; School of Life Science, Shanghai University, Shanghai 200444, China
| | - Long Zhang
- State Key Laboratory of Solid-State Lighting Research Center of Light for Health, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China
| | - Hua Yang
- Department of General Surgery, Zhongshan Hospital (South Branch), Fudan University, Shanghai 200083, China
| | - Jie Zhuang
- State Key Laboratory of Solid-State Lighting Research Center of Light for Health, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China
| | - Zhenglong Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinsong Guo
- State Key Laboratory of Solid-State Lighting Research Center of Light for Health, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China
| | - Miao Guan
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
24
|
Wei TF, Zhao L, Huang P, Hu FL, Jiao JY, Xiang KL, Wang ZZ, Qu JL, Shang D. Qing-Yi Decoction in the Treatment of Acute Pancreatitis: An Integrated Approach Based on Chemical Profile, Network Pharmacology, Molecular Docking and Experimental Evaluation. Front Pharmacol 2021; 12:590994. [PMID: 33995005 PMCID: PMC8117095 DOI: 10.3389/fphar.2021.590994] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Qing-Yi Decoction (QYD) is a classic precompounded prescription with satisfactory clinical efficacy on acute pancreatitis (AP). However, the chemical profile and overall molecular mechanism of QYD in treating AP have not been clarified. Methods: In the present study, a rapid, simple, sensitive and reliable ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS)-based chemical profile was first established. An integration strategy of network pharmacology analysis and molecular docking based identified ingredients was further performed to screen out the potential targets and pathways involved in the treatment of QYD on AP. Finally, SD rats with acute pancreatitis were constructed to verify the predicted results through a western blot experiment. Results: A total of 110 compounds, including flavonoids, phenolic acids, alkaloids, monoterpenes, iridoids, triterpenes, phenylethanoid glycosides, anthraquinones and other miscellaneous compounds were identified, respectively. Eleven important components, 47 key targets and 15 related pathways based on network pharmacology analysis were obtained. Molecular docking simulation indicated that ERK1/2, c-Fos and p65 might play an essential role in QYD against AP. Finally, the western blot experiments showed that QYD could up-regulate the expression level of ERK1/2 and c-Fos, while down-regulate the expression level of p65. Conclusion: This study predicted and validated that QYD may treat AP by inhibiting inflammation and promoting apoptosis, which provides directions for further experimental studies.
Collapse
Affiliation(s)
- Tian-Fu Wei
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Liang Zhao
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Peng Huang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Feng-Lin Hu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Ju-Ying Jiao
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Kai-Lai Xiang
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhi-Zhou Wang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jia-Lin Qu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
25
|
Wisniewski PJ, Nagarkatti M, Nagarkatti PS. Regulation of Intestinal Stem Cell Stemness by the Aryl Hydrocarbon Receptor and Its Ligands. Front Immunol 2021; 12:638725. [PMID: 33777031 PMCID: PMC7988095 DOI: 10.3389/fimmu.2021.638725] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Maintenance of intestinal homeostasis requires the integration of immunological and molecular processes together with environmental, diet, metabolic and microbial cues. Key to this homeostasis is the proper functioning of epithelial cells originating from intestinal stem cells (ISCs). While local factors and numerous molecular pathways govern the ISC niche, the conduit through which these processes work in concordance is the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, whose role in immunoregulation is critical at barrier surfaces. In this review, we discuss how AhR signaling is emerging as one of the critical regulators of molecular pathways involved in epithelial cell renewal. In addition, we examine the putative contribution of specific AhR ligands to ISC stemness and epithelial cell fate.
Collapse
Affiliation(s)
- Paul J Wisniewski
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Prakash S Nagarkatti
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
26
|
5-Hydroxytryptamine Modulates Maturation and Mitochondria Function of Human Oligodendrocyte Progenitor M03-13 Cells. Int J Mol Sci 2021; 22:ijms22052621. [PMID: 33807720 PMCID: PMC7962057 DOI: 10.3390/ijms22052621] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/07/2023] Open
Abstract
Inside the adult CNS, oligodendrocyte progenitor cells (OPCS) are able to proliferate, migrate and differentiate into mature oligodendrocytes (OLs) which are responsible for the production of myelin sheet and energy supply for neurons. Moreover, in demyelinating diseases, OPCs are recruited to the lesion areas where they undergo differentiation and myelin synthesis. Serotonin (5-hydroxytryptamine, 5-HT) is involved in OLs’ development and myelination, but so far the molecular mechanisms involved or the effects of 5-HT on mitochondria function have not yet been well documented. Our data show that 5-HT inhibits migration and proliferation committing cells toward differentiation in an immortalized human oligodendrocyte precursor cell line, M03-13. Migration blockage is mediated by reactive oxygen species (ROS) generation since antioxidants, such as Vit C and Cu-Zn superoxide dismutase, prevent the inhibitory effects of 5-HT on cell migration. 5-HT inhibits OPC migration and proliferation and increases OL phenotypic markers myelin basic protein (MBP) and Olig-2 via protein kinase C (PKC) activation since the inhibitor of PKC, bis-indolyl-maleimide (BIM), counteracts 5-HT effects. NOX inhibitors as well, reverse the effects of 5-HT, indicating that 5-HT influences the maturation process of OPCs by NOX-dependent ROS production. Finally, 5-HT increases mitochondria function and antioxidant activity. The identification of the molecular mechanisms underlying the effects of 5-HT on maturation and energy metabolism of OPCs could pave the way for the development of new treatments for autoimmune demyelinating diseases such as Multiple Sclerosis where oligodendrocytes are the primary target of immune attack.
Collapse
|
27
|
Wang X, Khoshaba R, Shen Y, Cao Y, Lin M, Zhu Y, Cao Z, Liao DF, Cao D. Impaired Barrier Function and Immunity in the Colon of Aldo-Keto Reductase 1B8 Deficient Mice. Front Cell Dev Biol 2021; 9:632805. [PMID: 33644071 PMCID: PMC7907435 DOI: 10.3389/fcell.2021.632805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022] Open
Abstract
Aldo-keto reductase 1B10 (AKR1B10) is downregulated in human ulcerative colitis (UC) and colorectal cancer, being a potential pathogenic factor of these diseases. Aldo-keto reductase 1B8 (AKR1B8) is the ortholog in mice of human AKR1B10. Targeted AKR1B8 deficiency disrupts homeostasis of epithelial self-renewal and leads to susceptibility to colitis and carcinogenesis. In this study, we found that in AKR1B8 deficient mice, Muc2 expression in colon was diminished, and permeability of colonic epithelium increased. Within 24 h, orally administered FITC-dextran penetrated into mesenteric lymph nodes (MLN) and liver in AKR1B8 deficient mice, but not in wild type controls. In the colon of AKR1B8 deficient mice, neutrophils and mast cells were markedly infiltrated, γδT cells were numerically and functionally impaired, and dendritic cell development was altered. Furthermore, Th1, Th2, and Th17 cells decreased, but Treg and CD8T cells increased in the colon and MLN of AKR1B8 deficient mice. In colonic epithelial cells of AKR1B8 deficient mice, p-AKT (T308 and S473), p-ERK1/2, p-IKBα, p-p65 (S536), and IKKα expression decreased, accompanied with downregulation of IL18 and CCL20 and upregulation of IL1β and CCL8. These data suggest AKR1B8 deficiency leads to abnormalities of intestinal epithelial barrier and immunity in colon.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Ramina Khoshaba
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States.,Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Yi Shen
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Yu Cao
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Minglin Lin
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Yun Zhu
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Zhe Cao
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Duan-Fang Liao
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Deliang Cao
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| |
Collapse
|
28
|
Neufurth M, Wang X, Wang S, Schröder HC, Müller WEG. Caged Dexamethasone/Quercetin Nanoparticles, Formed of the Morphogenetic Active Inorganic Polyphosphate, are Strong Inducers of MUC5AC. Mar Drugs 2021; 19:64. [PMID: 33513822 PMCID: PMC7910845 DOI: 10.3390/md19020064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/17/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
Inorganic polyphosphate (polyP) is a widely distributed polymer found from bacteria to animals, including marine species. This polymer exhibits morphogenetic as well as antiviral activity and releases metabolic energy after enzymatic hydrolysis also in human cells. In the pathogenesis of the coronavirus disease 2019 (COVID-19), the platelets are at the frontline of this syndrome. Platelets release a set of molecules, among them polyP. In addition, the production of airway mucus, the first line of body defense, is impaired in those patients. Therefore, in this study, amorphous nanoparticles of the magnesium salt of polyP (Mg-polyP-NP), matching the size of the coronavirus SARS-CoV-2, were prepared and loaded with the secondary plant metabolite quercetin or with dexamethasone to study their effects on the respiratory epithelium using human alveolar basal epithelial A549 cells as a model. The results revealed that both compounds embedded into the polyP nanoparticles significantly increased the steady-state-expression of the MUC5AC gene. This mucin species is the major mucus glycoprotein present in the secreted gel-forming mucus. The level of gene expression caused by quercetin or with dexamethasone, if caged into polyP NP, is significantly higher compared to the individual drugs alone. Both quercetin and dexamethasone did not impair the growth-supporting effect of polyP on A549 cells even at concentrations of quercetin which are cytotoxic for the cells. A possible mechanism of the effects of the two drugs together with polyP on mucin expression is proposed based on the scavenging of free oxygen species and the generation of ADP/ATP from the polyP, which is needed for the organization of the protective mucin-based mucus layer.
Collapse
Affiliation(s)
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group, Institute for Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany; (M.N.); (S.W.); (H.C.S.)
| | | | | | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group, Institute for Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany; (M.N.); (S.W.); (H.C.S.)
| |
Collapse
|
29
|
Lin WC, Lee TT. The Laetiporus sulphureus Fermented Product Enhances the Antioxidant Status, Intestinal Tight Junction, and Morphology of Broiler Chickens. Animals (Basel) 2021; 11:ani11010149. [PMID: 33440766 PMCID: PMC7827109 DOI: 10.3390/ani11010149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This study investigated the effects of the Laetiporus sulphureus fermented product (FL) as a feed supplement on antioxidant activities, intestinal Tight Junction (TJ) mRNA expression, and the intestinal morphology of broiler chickens. FL supplementation could potentially enhance the feed conversion ratio in broilers by improving their antioxidative status, TJ mRNA expression, and intestinal morphology. Broilers supplemented with 5% FL exhibited the best overall results on improving antioxidant status, TJ mRNA expression, and intestinal morphology. Abstract The Laetiporus sp. is a fungal species that is traditionally used for medicinal purposes. This study investigated the effects of the Laetiporus sulphureus fermented product (FL) as a feed supplementation on the antioxidant activities, the intestinal Tight Junction (TJ) mRNA expression, and the intestinal morphology of broiler chickens. Four-hundred one-day-old male broilers (Ross 308) were randomly allocated to five experimental diets: (1) a corn-soybean meal basal diet (control), (2) a basal diet replaced with 5% Wheat Bran (5% WB), (3) a basal diet replaced with 10% WB (10% WB), (4) a basal diet replaced with 5% FL (5% FL), and (5) a basal diet replaced with 10% FL (10% FL). The FL-supplemented groups exhibited a better feed conversion ratio in the overall experimental period compared to the WB and control groups. The serum antioxidant profiles of 35-day-old broilers showed that, compared to the control and 10% WB groups, the 5% FL supplementation group had a significantly increased superoxide dismutase activity, while it down-regulated the concentration of malondialdehyde in the serum (p < 0.05). The assessment of selected antioxidant gene expression showed that the 5% FL group significantly elevated heme oxygenase-1 and nuclear factor erythroid 2–related factor 2 expression, compared to the control and WB groups (p < 0.05). Furthermore, both of the FL supplemented groups had a significantly higher expression of glutathione peroxidase and catalase, compared to that of the WB and control groups in the jejunum (p < 0.05). The TJ mRNA expression in the jejunum showed that 5% FL significantly elevated the zonula occludens-1, claudin-1, and mucin-2 expression (p < 0.05), while 5% and 10% FL supplementation significantly improved OCLN expression in both the jejunum and ileum, compared to control group (p < 0.05). The intestinal morphology of 35-day-old broilers showed that a 5% FL supplementation significantly increased the villus height in the ileum and jejunum, compared to the WB and control groups (p < 0.05). Moreover, the 5% and 10% FL supplementation groups had a significantly higher villi:crypt ratio in the ileum, compared to the WB and control groups (p < 0.05). To conclude, FL supplementation improved the antioxidative status, the TJ mRNA expression, and the intestinal morphology, and it was accompanied by a lowered feed conversion ratio in broilers. Finally, 5% supplementation had the overall best results in improving the antioxidant status, TJ mRNA expression, and intestinal morphology of broilers.
Collapse
Affiliation(s)
- Wei Chih Lin
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan;
| | - Tzu Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan;
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-22840366; Fax: +886-4-22860265
| |
Collapse
|
30
|
Trifostigmanoside I, an Active Compound from Sweet Potato, Restores the Activity of MUC2 and Protects the Tight Junctions through PKCα/β to Maintain Intestinal Barrier Function. Int J Mol Sci 2020; 22:ijms22010291. [PMID: 33396633 PMCID: PMC7794767 DOI: 10.3390/ijms22010291] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/18/2022] Open
Abstract
Sweet potato (Ipomoea batata) is considered a superfood among vegetables and has been consumed for centuries. Traditionally, sweet potato is used to treat several illnesses, including diarrhea and stomach disorders. This study aimed to explore the protective effect of sweet potato on intestinal barrier function, and to identify the active compounds of sweet potato and their underlying mechanism of action. To this purpose, bioactivity-guided isolation, Western blotting, and immunostaining assays were applied. Interestingly, our bioactivity-guided approach enabled the first isolation and identification of trifostigmanoside I (TS I) from sweet potato. TS I induced mucin production and promoted the phosphorylation of PKCα/β in LS174T human colon cancer cells. In addition, it protected the function of tight junctions in the Caco-2 cell line. These findings suggest that TS I rescued the impaired abilities of MUC2, and protected the tight junctions through PKCα/β, to maintain intestinal barrier function.
Collapse
|
31
|
Damiano S, Sozio C, La Rosa G, Santillo M. NOX-Dependent Signaling Dysregulation in Severe COVID-19: Clues to Effective Treatments. Front Cell Infect Microbiol 2020; 10:608435. [PMID: 33384971 PMCID: PMC7769936 DOI: 10.3389/fcimb.2020.608435] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
| | | | | | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Napoli, Italy
| |
Collapse
|
32
|
Wang M, Zhao H, Wen X, Ho CT, Li S. Citrus flavonoids and the intestinal barrier: Interactions and effects. Compr Rev Food Sci Food Saf 2020; 20:225-251. [PMID: 33443802 DOI: 10.1111/1541-4337.12652] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/19/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022]
Abstract
The intestinal barrier plays a central role in sustaining gut homeostasis and, when dysfunctional, may contribute to diseases. Dietary flavonoids derived from Citrus genus represent one of the main naturally occurring phytochemicals with multiple potential benefits for the intestinal barrier function. In the intestine, citrus flavonoids (CFs) undergo ingestion from the lumen, biotransformation in the epithelial cells and/or crosstalk with luminal microbiota to afford various metabolites that may in turn exert protective actions on gut barrier along with their parental compounds. Specifically, the health-promoting properties of CFs and their metabolic bioactives for the intestinal barrier include their capacity to (a) modulate barrier permeability; (b) protect mucus layer; (c) regulate intestinal immune system; (d) fight against oxidative stress; and (e) positively shape microbiome and metabolome. Notably, local effects of CFs can also generate systemic benefits, for instance, improvement of gut microbial dysbiosis helpful to orchestrate gut homeostasis and leading to alleviation of systemic dysmetabolism. Given the important role of the intestinal barrier in overall health, further understanding of underlying action mechanisms and ultimate health effects of CFs as well as their metabolites on the intestine is of great significance to future application of citrus plants and their bioactives as dietary supplements and/or functional ingredients in medical foods.
Collapse
Affiliation(s)
- Meiyan Wang
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Xiang Wen
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.,Hubei Key Laboratory for EFGIR, Huanggang Normal University, Hubei, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey
| | - Shiming Li
- Hubei Key Laboratory for EFGIR, Huanggang Normal University, Hubei, China.,Department of Food Science, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
33
|
Zhang YL, Duan XD, Feng L, Jiang WD, Wu P, Liu Y, Kuang SY, Tang L, Zhou XQ. Soybean glycinin impaired immune function and caused inflammation associated with PKC-ζ/NF-κb and mTORC1 signaling in the intestine of juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2020; 106:393-403. [PMID: 32800984 DOI: 10.1016/j.fsi.2020.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Glycinin is a major protein and antinutritional factor of soybean. However, how dietary glycinin affect intestinal immune function of fish were largely unknown. In this study, we used juvenile grass carp as a model to investigate the impacts of glycinin on intestinal immune function of fish and involved mechanisms. We set three treatments including control, glycinin and glycinin + glutamine in this trial. For immune components, results revealed that compared with control group, glycinin group had lower acid phosphatase activities in the foregut, midgut and hindgut, lower C3 and C4 content, and lower mRNA abundances of IgM, IgZ, hepcidin, LEAP-2A, LEAP-2B and β-defensin-1 in the midgut and hindgut rather than foregut of grass carp. For pro-inflammatory cytokines and relevant signaling, glycinin elevated mRNA abundances of IL-1β, IL-8, IL-12p35, IL-12p40 and IL-17D in the midgut and IL-1β, IFN-γ2, IL-6, IL-8, IL-12p35, IL-12p40 and IL-17D in the hindgut, and increased protein abundances of PKC-ζ and nuclear NF-κB p65 in the midgut and hindgut in comparison to control. For anti-inflammatory cytokines and relevant signaling, glycinin reduced mRNA abundances of TGF-β1, TGF-β2, IL-4/13B (rather than IL-4/13A), IL-10 and IL-11 in the midgut and hindgut, and reduced p-mTOR (Ser 2448), p-S6K1 (Thr 389) and p-4EBP1 (Thr 37/46) protein abundances in the midgut and hindgut rather than foregut. Co-administration of glutamine with glycinin could partially enhance intestinal function and reduce intestinal inflammation compared with glycinin treatment. Concluded, glycinin decreased intestinal immune components and caused intestinal inflammation associated with PKC-ζ/NF-κB and mTORC1 signaling.
Collapse
Affiliation(s)
- Ya-Lin Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Xu-Dong Duan
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
34
|
Dietary Soy Protein Isolate Attenuates Intestinal Immunoglobulin and Mucin Expression in Young Mice Compared with Casein. Nutrients 2020; 12:nu12092739. [PMID: 32911830 PMCID: PMC7551778 DOI: 10.3390/nu12092739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
Dietary protein sources have profound effects on children and young animals, and are important for the gut barrier function and immune resilience. Milk and soy are the main sources of protein for children and young animals after weaning. The objective of this study was to compare the effects of dairy and soy proteins on the intestinal barrier in early development. Weanling C57BL/6 mice were fed AIN-93G diets prepared with casein or soy protein isolate (SPI) for 21 days. Compared with those fed with the casein diet, mice fed with the SPI diet did not change their body weight and organ coefficients, but increased their feed intake and ratio of feed to gain. SPI lowered the level of luminal secretory immunoglobulin A (SIgA) and downregulated the levels of IL-4, IL-13, polymeric immunoglobulin receptor (Pigr), Janus kinase 1 (Jak1), signal transducer and activator of transcription 6 (Stat6), and transforming growth factor-β (Tgfb) in the mouse ileum. Western blotting of ileal proteins confirmed that SPI suppressed the activation of the JAK1/STAT6 signaling pathway. Furthermore, SPI attenuated intestinal mucin production, as demonstrated by the decreased numbers of intestinal goblet cells and the reduced relative expression levels of mucin 1 (Muc1), mucin 2 (Muc2), trefoil factor 3 (Tff3), glucose-regulated protein 94 (Grp94), and anterior gradient homolog 2 (Agr2). The results indicated that the SPI diet could attenuate mouse intestinal immunity, as demonstrated by decreased SIgA and mucin production in the intestine. Therefore, we suggest that our findings should be of consideration when SPI or casein are used as dietary protein sources.
Collapse
|
35
|
Dey P. Targeting gut barrier dysfunction with phytotherapies: Effective strategy against chronic diseases. Pharmacol Res 2020; 161:105135. [PMID: 32814166 DOI: 10.1016/j.phrs.2020.105135] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
The intestinal epithelial layer serves as a physical and functional barrier between the microbe-rich lumen and immunologically active submucosa; it prevents systemic translocation of microbial pyrogenic products (e.g. endotoxin) that elicits immune activation upon translocation to the systemic circulation. Loss of barrier function has been associated with chronic 'low-grade' systemic inflammation which underlies pathogenesis of numerous no-communicable chronic inflammatory disease. Thus, targeting gut barrier dysfunction is an effective strategy for the prevention and/or treatment of chronic disease. This review intends to emphasize on the beneficial effects of herbal formulations, phytochemicals and traditional phytomedicines in attenuating intestinal barrier dysfunction. It also aims to provide a comprehensive understanding of intestinal-level events leading to a 'leaky-gut' and systemic complications mediated by endotoxemia. Additionally, a variety of detectable markers and diagnostic criteria utilized to evaluate barrier improving capacities of experimental therapeutics has been discussed. Collectively, this review provides rationale for targeting gut barrier dysfunction by phytotherapies for treating chronic diseases that are associated with endotoxemia-induced systemic inflammation.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|
36
|
Dong Y, Lei J, Zhang B. Effects of dietary quercetin on the antioxidative status and cecal microbiota in broiler chickens fed with oxidized oil. Poult Sci 2020; 99:4892-4903. [PMID: 32988526 PMCID: PMC7598137 DOI: 10.1016/j.psj.2020.06.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/04/2020] [Accepted: 06/16/2020] [Indexed: 01/18/2023] Open
Abstract
This study was conducted to evaluate the effects of quercetin on the antioxidant ability, intestinal barrier functions, and cecal microbiota in broiler chickens fed with oxidized soya oil. Four hundred eighty male Arbor Acres broilers were randomly assigned to 5 treatments, each involving 8 cages (12 birds per cage). The treatment groups were as follows: the control group, birds fed with basal diets containing oxidized oil, and birds fed with basal diets containing oxidized oil and supplemented with 200 ppm of quercetin, 400 ppm of quercetin, and 800 ppm of quercetin. The results showed that dietary supplementation with quercetin at a dose of 400 ppm or 800 ppm alleviated the increased serum malondialdehyde (MDA) level induced by oxidized oil on day 11 (P = 0.005) and reversed the increased MDA level in the mucosa on day 11 (P = 0.021). Quercetin significantly upregulated the transcription of nuclear factor erythroid 2–related factor 2 (Nrf2) and its downstream genes such as catalase (P < 0.001), superoxide dismutase 1 (P < 0.001), glutathione peroxidase 2 (P = 0.018), heme oxygenase-1 (HO-1) (P = 0.0), and thioredoxin (P = 0.002) and reversed the mRNA expression of HO-1 (P = 0.007) in the ileal mucosa. Tight junction protein 1 was only downregulated by oxidized oil (P = 0.013). In addition, quercetin (800 ppm) alleviated the decreased mRNA expression of mucin 2 (MUC2), which contributed to the intestinal chemical barrier (P = 0.039). The supplemental dose of 400 ppm of quercetin was able to promote Lactobacillus in the cecum, which enhanced the gastrointestinal tract health. In summary, these results indicated that quercetin ameliorated the oxidized oil–induced oxidative stress by upregulating the transcription of Nrf2 and its downstream genes to restore redox balance and reinforced the intestinal barrier via higher expression and secretion of MUC2 and facilitating the growth of Lactobacillus in the cecum. Therefore, quercetin could be a potential feed additive that can be applied in poultry production for amelioration of oxidative stress caused by oxidized oil and preventing the potential invasion of exogenous pathogens.
Collapse
Affiliation(s)
- Yuanyang Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
37
|
Ma S, Yeom J, Lim YH. Exogenous NAD + Stimulates MUC2 Expression in LS 174T Goblet Cells via the PLC-Delta/PTGES/PKC-Delta/ERK/CREB Signaling Pathway. Biomolecules 2020; 10:E580. [PMID: 32283838 PMCID: PMC7226023 DOI: 10.3390/biom10040580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND MUC2, a major component of the mucus layer in the intestine, is associated with antimicrobial activity and gut immune system function. Currently, mucin is mainly known for its critical function in defense against toxic molecules and pathogens. In this study, we investigated the stimulatory effects of exogenous nicotinamide adenine dinucleotide (NAD+) on the expression of MUC2 in LS 174T goblet cells. METHODS Genes related to MUC2 synthesis were measured by quantitative real-time PCR (qPCR). To analyze the gene expression profiles of NAD+-treated LS 174T goblet cells, RNA sequencing was performed. MUC2 expression in the cells and secreted MUC2 were measured by immunocytochemistry (ICC) and ELISA, respectively. RESULTS NAD+ significantly stimulated MUC2 expression at mRNA and protein levels and increased the secretion of MUC2. Through RNA sequencing, we found that the expression of genes involved in arachidonic acid metabolism increased in NAD+-treated cells compared with the negative control cells. NAD+ treatment increased phospholipase C (PLC)-δ and prostaglandin E synthase (PTGES) expression, which was inhibited by the appropriate inhibitors. Among the protein kinase C (PKC) isozymes, PKC-δ was involved in the increase in MUC2 expression. In addition, extracellular signal-regulated kinase (ERK)1/2 and cyclic AMP (cAMP) response element-binding protein (CREB) transcript levels were higher in NAD+-treated cells than in the negative control cells, and the enhanced levels of phosphorylated CREB augmented MUC2 expression. CONCLUSIONS Exogenous NAD+ increases MUC2 expression by stimulating the PLC-δ/PTGES/PKC-δ/ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Seongho Ma
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Korea; (S.M.); (J.Y.)
| | - Jiah Yeom
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Korea; (S.M.); (J.Y.)
| | - Young-Hee Lim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Korea; (S.M.); (J.Y.)
- Department of Public Health Science (Brain Korea 21 PLUS program), Graduate School, Korea University, Seoul 02841, Korea
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| |
Collapse
|
38
|
De Felice B, Damiano S, Montanino C, Del Buono A, La Rosa G, Guida B, Santillo M. Effect of beta- and alpha-glucans on immune modulating factors expression in enterocyte-like Caco-2 and goblet-like LS 174T cells. Int J Biol Macromol 2020; 153:600-607. [PMID: 32165203 DOI: 10.1016/j.ijbiomac.2020.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022]
Abstract
Glucans are complex polysaccharides consisting of repeated units of d-glucose linked by glycosidic bonds. The nutritional contribution in α-glucans is mainly given by starch and glycogen while in β-glucans by mushrooms, yeasts and whole grains, such as barley and spelt well represented in the Mediterranean Diet. Numerous and extensive studies performed on glucans highlighted their marked anti-tumor, antioxidant and immunomodulatory activity. It has recently been shown that rather than merely being a passive barrier, the intestinal epithelium is an essential modulator of immunity. Indeed, epithelial absorptive enterocytes and mucin secreting goblet cells can produce specific immune modulating factors, driving innate immunity to pathogens as well as preventing autoimmunity. Despite the clear evidence of the effects of glucans on immune system cells, there are only limited data about their effects on immune activity of mucosal intestinal cells strictly related to intestinal barrier integrity. The aim of the study was to evaluate the effects of α and β glucans, alone or in combination with other substances with antioxidant properties, on reactive oxygen species (ROS) levels, on the expression of ROS-generating enzyme DUOX-2 and of the immune modulating factors Tumor Necrosis Factor (TNF-α), Interleukin 1 β (IL-1β) and cyclooxygenase-2 (COX-2) in two intestinal epithelial cells, the enterocyte-like Caco-2 cells and goblet cell-like LS174T. In our research, the experiments were carried out incubating the cells with glucans for 18 h in culture medium containing 0.2% FBS and measuring ROS levels fluorimetrically as dihydrodichlorofluoresce diacetate (DCF-DA) fluorescence, protein levels of DUOX-2 by Western blotting and mRNA levels of, TNF-α, IL-1β and COX-2 by qRT-PCR. α and β glucans decreased ROS levels in Caco-2 and LS 174T cells. The expression levels of COX-2, TNF-α, and IL-1β were also reduced by α- and β-glucans. Additive effects on the expression of these immune modulating factors were exerted by vitamin C. In Caco-2 cells, the dual oxidase DUOX-2 expression is positively modulated by ROS. Accordingly, in Caco-2 or LS174T cells treated with α and β-glucans alone or in combination with Vitamin C, the decrease of ROS levels was associated with a reduced expression of DUOX-2. The treatment of cells with the NADPH oxidase (NOX) inhibitor apocynin decrease ROS, DUOX-2, COX-2, TNF-α and IL-1β levels indicating that NOX dependent ROS regulate the expression of immune modulating factors of intestinal cells. However, the combination of vitamin C, α and β-glucans with apocynin did not exert an additive effect on COX-2, TNF-α and IL-1β levels when compared with α-, β-glucans and Vitamin C alone. The present study showing a modulatory effect of α and β-glucans on ROS and on the expression of immune modulating factors in intestinal epithelial cells suggests that the assumption of food containing high levels of these substances or dietary supplementation can contribute to normal immunomodulatory function of intestinal barrier.
Collapse
Affiliation(s)
- Bruna De Felice
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABIF), University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy.
| | - Simona Damiano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II, Italy
| | - Concetta Montanino
- Department of Clinical Medicine and Surgery, University of Naples "Federico II, Italy
| | | | - Giuliana La Rosa
- Department of Clinical Medicine and Surgery, University of Naples "Federico II, Italy
| | - Bruna Guida
- Department of Clinical Medicine and Surgery, University of Naples "Federico II, Italy
| | - Mariarosaria Santillo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II, Italy
| |
Collapse
|
39
|
Kebouchi M, Hafeez Z, Le Roux Y, Dary-Mourot A, Genay M. Importance of digestive mucus and mucins for designing new functional food ingredients. Food Res Int 2020; 131:108906. [PMID: 32247482 DOI: 10.1016/j.foodres.2019.108906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/03/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022]
Abstract
The mucus, mainly composed of the glycoproteins mucins, is a rheological substance that covers the intestinal epithelium and acts as a protective barrier against a variety of harmful molecules, microbial infection and varying lumen environment conditions. Alterations in the composition or structure of the mucus could lead to various diseases such as inflammatory bowel disease or colorectal cancer. Recent studies revealed that an exogenous intake of probiotic bacteria or other dietary components (such as bioactive peptides and probiotics) derived from food influence mucus layer properties as well as modulate gene expression and secretion of mucins. Therefore, the use of such components for designing new functional ingredients and then foods, could constitute a novel approach to preserve the properties of mucus. After presenting some aspects of the mucus and mucins in the gastrointestinal tract as well as mucus role in the gut health, this review will address role of dietary ingredients in improving mucus/mucin production and provides new suggestions for further investigations of how dietary ingredients/probiotics based functional foods can be developed to maintain or improve the gut health.
Collapse
Affiliation(s)
- Mounira Kebouchi
- Université de Lorraine, CALBINOTOX, F-54000 Nancy, France; Université de Lorraine, INRA, URAFPA, F-54000 Nancy, France
| | - Zeeshan Hafeez
- Université de Lorraine, CALBINOTOX, F-54000 Nancy, France
| | - Yves Le Roux
- Université de Lorraine, INRA, URAFPA, F-54000 Nancy, France
| | | | - Magali Genay
- Université de Lorraine, CALBINOTOX, F-54000 Nancy, France.
| |
Collapse
|
40
|
Prevention and treatment of chronic heart failure through traditional Chinese medicine: Role of the gut microbiota. Pharmacol Res 2019; 151:104552. [PMID: 31747557 DOI: 10.1016/j.phrs.2019.104552] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/31/2019] [Accepted: 11/16/2019] [Indexed: 12/17/2022]
Abstract
In recent years, although the concept and means of modern treatment of chronic heart failure(CHF) are continually improving, the readmission rate and mortality rate are still high. At present, there is evidence that there is a link between gut microbiota and heart failure, so the intervention of gut microbiota and its metabolites is expected to become a potential new therapeutic target in heart failure. Traditional Chinese medicine(TCM) has apparent advantages in stabilizing the disease, improving heart function, and improving the quality of life. It can exert its effect by operating in the gut microbiota and is an ideal intestinal micro-ecological regulator. Therefore, this article will mainly discuss the advantages of traditional Chinese medicine in treating CHF, the relationship between traditional Chinese medicine and gut microbiota, the relationship between CHF and gut microbiota, and the ways of regulating gut microbiota by traditional Chinese medicine to prevent and treat CHF. It will specify the target and mechanism of traditional Chinese medicine treating heart failure by acting gut microbiota and provide ideas for the treatment of heart failure.
Collapse
|
41
|
Damiano S, Muscariello E, La Rosa G, Di Maro M, Mondola P, Santillo M. Dual Role of Reactive Oxygen Species in Muscle Function: Can Antioxidant Dietary Supplements Counteract Age-Related Sarcopenia? Int J Mol Sci 2019; 20:ijms20153815. [PMID: 31387214 PMCID: PMC6696113 DOI: 10.3390/ijms20153815] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Sarcopenia is characterized by the progressive loss of skeletal muscle mass and strength. In older people, malnutrition and physical inactivity are often associated with sarcopenia, and, therefore, dietary interventions and exercise must be considered to prevent, delay, or treat it. Among the pathophysiological mechanisms leading to sarcopenia, a key role is played by an increase in reactive oxygen and nitrogen species (ROS/RNS) levels and a decrease in enzymatic antioxidant protection leading to oxidative stress. Many studies have evaluated, in addition to the effects of exercise, the effects of antioxidant dietary supplements in limiting age-related muscle mass and performance, but the data which have been reported are conflicting. In skeletal muscle, ROS/RNS have a dual function: at low levels they increase muscle force and adaptation to exercise, while at high levels they lead to a decline of muscle performance. Controversial results obtained with antioxidant supplementation in older persons could in part reflect the lack of univocal effects of ROS on muscle mass and function. The purpose of this review is to examine the molecular mechanisms underlying the dual effects of ROS in skeletal muscle function and the analysis of literature data on dietary antioxidant supplementation associated with exercise in normal and sarcopenic subjects.
Collapse
Affiliation(s)
- Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", Via S. Pansini, 5, 80131 Naples, Italy
| | - Espedita Muscariello
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", Via S. Pansini, 5, 80131 Naples, Italy
| | - Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", Via S. Pansini, 5, 80131 Naples, Italy
| | - Martina Di Maro
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", Via S. Pansini, 5, 80131 Naples, Italy
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", Via S. Pansini, 5, 80131 Naples, Italy
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", Via S. Pansini, 5, 80131 Naples, Italy.
| |
Collapse
|
42
|
Catelan TBS, Santos Radai JA, Leitão MM, Branquinho LS, Vasconcelos PCDP, Heredia-Vieira SC, Kassuya CAL, Cardoso CAL. Evaluation of the toxicity and anti-inflammatory activities of the infusion of leaves of Campomanesia guazumifolia (Cambess.) O. Berg. JOURNAL OF ETHNOPHARMACOLOGY 2018; 226:132-142. [PMID: 30114515 DOI: 10.1016/j.jep.2018.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/26/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Some species of Campomanesia are used in the folk medicine due to anti-inflammatory, anti-diarrheal, anti-diabetes and hypercholesterolemic. However studies with Campomanesia guazumifolia (Cambess.) O. Berg. are scarce. AIM OF THE STUDY This study investigated the anti-inflammatory activity and toxicological profile of infusion obtained from leaves of Campomanesia guazumifolia in mice. MATERIALS AND METHODS Leaves infusion of C. guazumifolia was obtained in the proportion of 20 g/L (leaves/water) at 95-100 °C for 10 min in an enclosed container. The acute toxicity of the leaves infusion of C. guazumifolia lyophilized (ICG) was assessed by oral administration to female mice at doses of 500, 1000, 2000, and 5000 mg/kg, and the general behavior and toxic symptoms were observed for 14 days. In the subacute toxicity model, female mice were treated orally with the ICG (250, 500, and 1000 mg/kg) during 28 days, and biochemical, toxic signs and the estrous cycle were evaluated. The anti-inflammatory activity of the ICG (70, 300 and 700 mg/kg) was analyzed using carrageenan-induced pleurisy and inflammatory paw (mechanical and thermal hyperalgesia). RESULTS Three flavonoids glycosylated and a cyclohexanecarboxylic acid were identified in the ICG: quercetin pentose, quercetin deoxyhexoside, myricetin deoxyhexoside and quinic acid. No clinical signs of acute toxicity were observed, suggesting that the LD50 (Lethal Dose) is above 5000 mg/kg. Subacute exposure of mice to the ICG did not change significantly the hematological and biochemical parameters as well as histology of organs. The ICG increased the duration of estrous cycle in all phases, showing anti-inflammatory potential by decreasing leukocyte migration, extravasation protein in the pleural cavity and antiedematogenic activity. The ICG treatment at a dose of 700 mg/kg decreased the mechanical hyperalgesia, while at doses of 300 mg/kg and 700 mg/kg, decreased the sensitivity to the cold. CONCLUSION The results evidenced the anti-inflammatory potential with low toxicity of infusion of the leaves of C. guazumifolia, supporting the popular use of this species.
Collapse
Affiliation(s)
- Taline Baganha Stefanello Catelan
- Programa de Pós-Graduação em Recursos Naturais - Centro de Estudos de Recursos Naturais (CERNA), UEMS, 79804-970 Dourados, MS, Brazil; Curso de Farmácia - Centro Universitário de Grande Dourados - UNIGRAN, Jd. Universidade, 79.824-900 Dourados, MS, Brazil.
| | | | - Maicon Matos Leitão
- Pós-graduação em Ciências da Saúde, UFGD, Cidade Universitária,79804-970 Dourados, MS, Brazil
| | | | | | - Silvia Cristina Heredia-Vieira
- Programa de Pós-Graduação em Recursos Naturais - Centro de Estudos de Recursos Naturais (CERNA), UEMS, 79804-970 Dourados, MS, Brazil
| | | | - Claudia Andrea Lima Cardoso
- Programa de Pós-Graduação em Recursos Naturais - Centro de Estudos de Recursos Naturais (CERNA), UEMS, 79804-970 Dourados, MS, Brazil.
| |
Collapse
|
43
|
Lamacchia C, Musaico D, Henderson ME, Bergillos-Meca T, Roul M, Landriscina L, Decina I, Corona G, Costabile A. Temperature-treated gluten proteins in Gluten-Friendly™ bread increase mucus production and gut-barrier function in human intestinal goblet cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
44
|
Kim JK, Park SU. Quercetin and its role in biological functions: an updated review. EXCLI JOURNAL 2018; 17:856-863. [PMID: 30233284 PMCID: PMC6141818 DOI: 10.17179/excli2018-1538] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/18/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| |
Collapse
|