1
|
Chang WP. Relationship between changes in nutritional status during treatment and overall survival of newly diagnosed nasopharyngeal carcinoma patients. Eur J Oncol Nurs 2024; 73:102721. [PMID: 39520762 DOI: 10.1016/j.ejon.2024.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE This study investigates the relationship between changes in nutritional status during treatment and overall survival in NPC patients. METHOD Using a prospective cohort design, the electronic health records of newly diagnosed NPC patients from a medical center in Taiwan (from January 1, 2018, to March 31, 2024) were analyzed. A total of 73 newly diagnosed NPC patients were tracked; nutritional indicators such as body mass index (BMI), prealbumin levels, and Patient-Generated Subjective Global Assessment (PG-SGA) scores were recorded at four time points: one week before treatment, the first week of treatment, and four and eight weeks after treatment began. RESULTS The study found that most patients experienced a decrease in BMI (B = -0.62, p < .001) and prealbumin levels (B = -0.79, p = .015) during treatment, although BMI remained in the overweight range and prealbumin stayed within normal levels. PG-SGA scores increased (B = 1.01, p < .001), indicating a shift from low to moderate nutritional risk. Univariate Cox regression analysis showed that the Charlson Comorbidity Index (HR = 1.86, 95% CI: 1.38-2.51), NPC stage (HR = 15.67, 95% CI: 2.07-118.61), treatment method (HR = 2.96, 95% CI: 1.45-6.04), prealbumin (HR = 2.95, 95% CI: 1.46-5.99), and PG-SGA score trajectories (HR = 2.85, 95% CI: 1.27-6.40) were associated with overall survival. However, multivariate analysis revealed that the survival of NPC patients was only associated with CCI and NPC stage. CONCLUSIONS The study underscores the importance of monitoring nutritional status changes during treatment, particularly prealbumin and PG-SGA trajectories.
Collapse
Affiliation(s)
- Wen-Pei Chang
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan; Department of Nursing, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
2
|
Hameed H, Sarwar HS, Younas K, Zaman M, Jamshaid M, Irfan A, Khalid M, Sohail MF. Exploring the potential of nanomedicine for gene therapy across the physicochemical and cellular barriers. Funct Integr Genomics 2024; 24:177. [PMID: 39340586 DOI: 10.1007/s10142-024-01459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
After COVID-19, a turning point in the way of pharmaceutical technology is gene therapy with beneficial potential to start a new medical era. However, commercialization of such pharmaceuticals would never be possible without the help of nanotechnology. Nanomedicine can fulfill the growing needs linked to safety, efficiency, and site-specific targeted delivery of Gene therapy-based pharmaceuticals. This review's goal is to investigate how nanomedicine may be used to transfer nucleic acids by getting beyond cellular and physicochemical barriers. Firstly, we provide a full description of types of gene therapy, their mechanism, translation, transcription, expression, type, and details of diseases with possible mechanisms that can only be treated with genes-based pharmaceuticals. Additionally, we also reviewed different types of physicochemical barriers, physiological and cellular barriers in nucleic acids (DNA/RNA) based drug delivery. Finally, we highlight the need and importance of cationic lipid-based nanomedicine/nanocarriers in gene-linked drug delivery and how nanotechnology can help to overcome the above-discussed barrier in gene therapy and their biomedical applications.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Komel Younas
- Faculty of Pharmacy, University Paris Saclay, 17 Avenue des sciences, 91190, Orsay, France
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Maha Khalid
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Muhammad Farhan Sohail
- Department of Chemistry, SBASSE, Lahore University of Management Sciences (LUMS), Lahore, 54000, Pakistan
- Alliant College of Pharmacy and Allied Health Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
3
|
Jin S, Kang PM. A Systematic Review on Advances in Management of Oxidative Stress-Associated Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:923. [PMID: 39199169 PMCID: PMC11351257 DOI: 10.3390/antiox13080923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress plays a significant role in the pathogenesis of cardiovascular diseases, such as myocardial ischemia/reperfusion injury, atherosclerosis, heart failure, and hypertension. This systematic review aims to integrate most relevant studies on oxidative stress management in cardiovascular diseases. We searched relevant literatures in the PubMed database using specific keywords. We put emphasis on those manuscripts that were published more recently and in higher impact journals. We reviewed a total of 200 articles. We examined current oxidative stress managements in cardiovascular diseases, including supplements like resveratrol, vitamins C and E, omega-3 fatty acids, flavonoids, and coenzyme-10, which have shown antioxidative properties and potential cardiovascular benefits. In addition, we reviewed the pharmacological treatments including newly discovered antioxidants and nanoparticles that show potential effects in targeting the specific oxidative stress pathways. Lastly, we examined biomarkers, such as soluble transferrin receptor, transthyretin, and cystatin C in evaluating antioxidant status and identifying cardiovascular risk. By addressing oxidative stress management and mechanisms, this paper emphasizes the importance of maintaining the balance between oxidants and antioxidants in the progression of cardiovascular diseases. This review paper is registered with the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY), registration # INPLASY202470064.
Collapse
Affiliation(s)
- Soyeon Jin
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS 910, Boston, MA 02215, USA
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA
| | - Peter M. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS 910, Boston, MA 02215, USA
| |
Collapse
|
4
|
Jellinger AL, Suthard RL, Yuan B, Surets M, Ruesch EA, Caban AJ, Liu S, Shpokayte M, Ramirez S. Chronic activation of a negative engram induces behavioral and cellular abnormalities. eLife 2024; 13:RP96281. [PMID: 38990919 PMCID: PMC11239178 DOI: 10.7554/elife.96281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.
Collapse
Affiliation(s)
- Alexandra L Jellinger
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston UniversityBostonUnited States
| | - Rebecca L Suthard
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston UniversityBostonUnited States
- Graduate Program for Neuroscience, Boston UniversityBostonUnited States
| | - Bingbing Yuan
- Whitehead Institute for Biomedical Research, MITCambridgeUnited States
| | - Michelle Surets
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston UniversityBostonUnited States
| | - Evan A Ruesch
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston UniversityBostonUnited States
| | - Albit J Caban
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston UniversityBostonUnited States
- Graduate Program for Neuroscience, Boston UniversityBostonUnited States
| | - Shawn Liu
- Department of Physiology and Cellular Biophysics, Columbia University Medical CenterNew YorkUnited States
| | - Monika Shpokayte
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston UniversityBostonUnited States
- Graduate Program for Neuroscience, Boston UniversityBostonUnited States
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston UniversityBostonUnited States
- Neurophotonics Center, and Photonics Center, Boston UniversityBostonUnited States
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
| |
Collapse
|
5
|
Mares-Quiñones MD, Galán-Vásquez E, Pérez-Rueda E, Pérez-Ishiwara DG, Medel-Flores MO, Gómez-García MDC. Identification of modules and key genes associated with breast cancer subtypes through network analysis. Sci Rep 2024; 14:12350. [PMID: 38811600 PMCID: PMC11137066 DOI: 10.1038/s41598-024-61908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
Breast cancer is the most common malignancy in women around the world. Intratumor and intertumoral heterogeneity persist in mammary tumors. Therefore, the identification of biomarkers is essential for the treatment of this malignancy. This study analyzed 28,143 genes expressed in 49 breast cancer cell lines using a Weighted Gene Co-expression Network Analysis to determine specific target proteins for Basal A, Basal B, Luminal A, Luminal B, and HER2 ampl breast cancer subtypes. Sixty-five modules were identified, of which five were characterized as having a high correlation with breast cancer subtypes. Genes overexpressed in the tumor were found to participate in the following mechanisms: regulation of the apoptotic process, transcriptional regulation, angiogenesis, signaling, and cellular survival. In particular, we identified the following genes, considered as hubs: IFIT3, an inhibitor of viral and cellular processes; ETS1, a transcription factor involved in cell death and tumorigenesis; ENSG00000259723 lncRNA, expressed in cancers; AL033519.3, a hypothetical gene; and TMEM86A, important for regulating keratinocyte membrane properties, considered as a key in Basal A, Basal B, Luminal A, Luminal B, and HER2 ampl breast cancer subtypes, respectively. The modules and genes identified in this work can be used to identify possible biomarkers or therapeutic targets in different breast cancer subtypes.
Collapse
Affiliation(s)
- María Daniela Mares-Quiñones
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Mexico
| | - D Guillermo Pérez-Ishiwara
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María Olivia Medel-Flores
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María Del Consuelo Gómez-García
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| |
Collapse
|
6
|
Radović B, Baralić K, Ćurčić M, Marić Đ, Živanović J, Antonijević Miljaković E, Buha Djordjevic A, Ćosić DĐ, Bulat Z, Antonijević B. Endocrine disruptors in e-waste dismantling dust: In silico prediction of mixture-induced reproductive toxicity mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170437. [PMID: 38290670 DOI: 10.1016/j.scitotenv.2024.170437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
The constant exposure of humans to a mixture of low doses of toxic substances, emerging from the daily emission of toxic dust containing various metals and organic compounds in electrical and electronic waste (e-waste) recycling areas, poses potential harmful effects on health and the environment. While individually recognized as endocrine disruptors affecting hormonal balance, the combined impact of these toxic substances in a mixture remains insufficiently explored, particularly in relation to reproductive health. Thus, the aim of this in silico analysis was to: (i) assess the relationship between the exposure to a mixture of DBDE, DBDPE, TBBPA, Pb, Cd and Ni and development of male and female reproductive system disorders; and (ii) demonstrate the ability of in silico toxicogenomic tools in revealing the potential molecular mechanisms involved in the mixture toxicity. As the main data-mining tool, Comparative Toxicogenomics Database (CTD) was used, along with the ToppGene Suite portal and GeneMANIA online server. Our analysis identified 5 genes common to all the investigated substances and linked to reproductive system disorders. Notably, the most prominent interactions among these genes were physical interactions (77.64 %). Pathway enrichment analysis identified oxidative stress response as the central disrupted molecular pathway linked to reproductive pathology in the investigated mixture, while our chemical-phenotype CTD analysis uncovered additional affected pathways - apoptosis, hormonal regulation, and developmental functions. These findings highlight an increased risk of reproductive system disorders associated with the exposure to the investigated mixture of toxic substances in electronic waste recycling areas, emphasizing the urgent need for attention to address this environmental health concern. Hence, future laboratory studies should prioritize investigating the specific genes and common mechanisms identified in this study.
Collapse
Affiliation(s)
- Biljana Radović
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Jovana Živanović
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Danijela Đukić Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
7
|
Chandrasekhar G, Pengyong H, Pravallika G, Hailei L, Caixia X, Rajasekaran R. Defensin-based therapeutic peptide design in attenuating V30M TTR-induced Familial Amyloid Polyneuropathy. 3 Biotech 2023; 13:227. [PMID: 37304406 PMCID: PMC10250285 DOI: 10.1007/s13205-023-03646-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
In the present study, we aimed to formulate an effective therapeutic candidate against V30M mutant transthyretin (TTR) protein to hinder its pathogenic misfolding. Nicotiana alata Defensin 1 (NaD1) Antimicrobial Peptide (AMP) was availed due to its tendency to aggregate, which may compete for aggregation-prone regions of pathogenic TTR protein. Based on NaD1's potential to bind to V30M TTR, we proposed NaD1-derived tetra peptides: CKTE and SKIL to be initial therapeutic candidates. Based on their association with mutant TTR protein, CKTE tetra peptide showed considerable interaction and curative potential as compared to SKIL tetra peptide. Further analyses from discrete molecular dynamics simulation corroborate CKTE tetra peptide's effectiveness as a 'beta-sheet breaker' against V30M TTR. Various post-simulation trajectory analyses suggested that CKTE tetra peptide alters the structural dynamics of pathogenic V30M TTR protein, thereby potentially attenuating its beta-sheets and impeding its aggregation. Normal mode analysis simulation corroborated that V30M TTR conformation is altered upon its interaction with CKTE peptide. Moreover, simulated thermal denaturation findings suggested that CKTE-V30M TTR complex is more susceptible to simulated denaturation, relative to pathogenic V30M TTR; further substantiating CKTE peptide's potential to alter V30M TTR's pathogenic conformation. Moreover, the residual frustration analysis augmented CKTE tetra peptide's proclivity in reorienting the conformation of V30M TTR. Therefore, we predicted that the tetra peptide, CKTE could be a promising therapeutic candidate in mitigating the amyloidogenic detrimental effects of V30M TTR-mediated familial amyloid polyneuropathy (FAP). Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03646-4.
Collapse
Affiliation(s)
- G. Chandrasekhar
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to Be University), Vellore, Tamil Nadu 632014 India
| | - H. Pengyong
- Changzhi Medical College, Changzhi, 046000 China
| | - G. Pravallika
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to Be University), Vellore, Tamil Nadu 632014 India
| | - L. Hailei
- Changzhi Medical College, Changzhi, 046000 China
| | - X. Caixia
- Changzhi Medical College, Changzhi, 046000 China
| | - R. Rajasekaran
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to Be University), Vellore, Tamil Nadu 632014 India
| |
Collapse
|
8
|
Vezzoli A, Mrakic-Sposta S, Dellanoce C, Montorsi M, Vietti D, Ferrero ME. Chelation Therapy Associated with Antioxidant Supplementation Can Decrease Oxidative Stress and Inflammation in Multiple Sclerosis: Preliminary Results. Antioxidants (Basel) 2023; 12:1338. [PMID: 37507878 PMCID: PMC10376540 DOI: 10.3390/antiox12071338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
An imbalance of oxy-inflammation status has been involved in axonal damage and demyelination in multiple sclerosis (MS). The aim of this study was to investigate the efficacy of an antioxidant treatment (calcium disodium ethylenediaminetetracetic acid-EDTA) chelation therapy associated with a micronutrient complex in MS patients. A total of 20 MS patients and 20 healthy subjects, enrolled as a control group (CTR), were recruited. We measured the plasma ROS production and total antioxidant capacity (TAC) by a direct assessment using Electron Paramagnetic Resonance; activities of the antioxidant system (thiols' redox status and enzymes); and the urinary presence of biomarkers of oxidative stress by immunoenzymatic assays. We also evaluated the levels of inflammation by plasmatic cytokines (TNFα, IL-1β, and IL-6) and assessed the sICAM levels, as well as the nitric oxide (NO) catabolism and transthyretin (TTR) concentration. Comparing CTR and MS, in the latter ROS production, oxidative damage, inflammatory biomarkers, and NO metabolite concentrations results were significantly higher, while TAC was significantly lower. Treatment in MS induced significant (p < 0.05) down-regulating of pro-inflammatory sICAM1, TNF-α, IL6, as well as biomarkers of lipid peroxidation and DNA damage production. The protective effect exhibited may occur by decreasing ROS production and increasing antioxidant capacity, turning into a more reduced thiols' status.
Collapse
Affiliation(s)
- Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza Ospedale Maggiore 3, 20159 Milano, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza Ospedale Maggiore 3, 20159 Milano, Italy
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza Ospedale Maggiore 3, 20159 Milano, Italy
| | - Michela Montorsi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di val Cannuta 247, 00166 Roma, Italy
| | - Daniele Vietti
- Driatec Srl, Via Leonardo da Vinci 21/E, 20060 Cassina de' Pecchi, Italy
| | - Maria Elena Ferrero
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy
| |
Collapse
|
9
|
Fame RM, Kalugin PN, Petrova B, Xu H, Soden PA, Shipley FB, Dani N, Grant B, Pragana A, Head JP, Gupta S, Shannon ML, Chifamba FF, Hawks-Mayer H, Vernon A, Gao F, Zhang Y, Holtzman MJ, Heiman M, Andermann ML, Kanarek N, Lipton JO, Lehtinen MK. Defining diurnal fluctuations in mouse choroid plexus and CSF at high molecular, spatial, and temporal resolution. Nat Commun 2023; 14:3720. [PMID: 37349305 PMCID: PMC10287727 DOI: 10.1038/s41467-023-39326-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Transmission and secretion of signals via the choroid plexus (ChP) brain barrier can modulate brain states via regulation of cerebrospinal fluid (CSF) composition. Here, we developed a platform to analyze diurnal variations in male mouse ChP and CSF. Ribosome profiling of ChP epithelial cells revealed diurnal translatome differences in metabolic machinery, secreted proteins, and barrier components. Using ChP and CSF metabolomics and blood-CSF barrier analyses, we observed diurnal changes in metabolites and cellular junctions. We then focused on transthyretin (TTR), a diurnally regulated thyroid hormone chaperone secreted by the ChP. Diurnal variation in ChP TTR depended on Bmal1 clock gene expression. We achieved real-time tracking of CSF-TTR in awake TtrmNeonGreen mice via multi-day intracerebroventricular fiber photometry. Diurnal changes in ChP and CSF TTR levels correlated with CSF thyroid hormone levels. These datasets highlight an integrated platform for investigating diurnal control of brain states by the ChP and CSF.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Peter N Kalugin
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, 02115, USA
| | - Boryana Petrova
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Huixin Xu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Paul A Soden
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Frederick B Shipley
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA
| | - Neil Dani
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Bradford Grant
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Aja Pragana
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Joshua P Head
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Suhasini Gupta
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Morgan L Shannon
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Fortunate F Chifamba
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Hannah Hawks-Mayer
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Amanda Vernon
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fan Gao
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Lyterian Therapeutics, South San Francisco, 94080, CA, USA
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Myriam Heiman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark L Andermann
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan O Lipton
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
Pinho SA, Anjo SI, Cunha-Oliveira T. Metabolic Priming as a Tool in Redox and Mitochondrial Theragnostics. Antioxidants (Basel) 2023; 12:1072. [PMID: 37237939 PMCID: PMC10215850 DOI: 10.3390/antiox12051072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Theragnostics is a promising approach that integrates diagnostics and therapeutics into a single personalized strategy. To conduct effective theragnostic studies, it is essential to create an in vitro environment that accurately reflects the in vivo conditions. In this review, we discuss the importance of redox homeostasis and mitochondrial function in the context of personalized theragnostic approaches. Cells have several ways to respond to metabolic stress, including changes in protein localization, density, and degradation, which can promote cell survival. However, disruption of redox homeostasis can lead to oxidative stress and cellular damage, which are implicated in various diseases. Models of oxidative stress and mitochondrial dysfunction should be developed in metabolically conditioned cells to explore the underlying mechanisms of diseases and develop new therapies. By choosing an appropriate cellular model, adjusting cell culture conditions and validating the cellular model, it is possible to identify the most promising therapeutic options and tailor treatments to individual patients. Overall, we highlight the importance of precise and individualized approaches in theragnostics and the need to develop accurate in vitro models that reflect the in vivo conditions.
Collapse
Affiliation(s)
- Sónia A. Pinho
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; (S.A.P.); (S.I.A.)
- PDBEB—PhD Programme in Experimental Biology and Biomedicine, Institute of Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sandra I. Anjo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; (S.A.P.); (S.I.A.)
- IIIUC, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; (S.A.P.); (S.I.A.)
- IIIUC, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
11
|
Meneri M, Abati E, Gagliardi D, Faravelli I, Parente V, Ratti A, Verde F, Ticozzi N, Comi GP, Ottoboni L, Corti S. Identification of Novel Biomarkers of Spinal Muscular Atrophy and Therapeutic Response by Proteomic and Metabolomic Profiling of Human Biological Fluid Samples. Biomedicines 2023; 11:1254. [PMID: 37238925 PMCID: PMC10215459 DOI: 10.3390/biomedicines11051254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease resulting from mutations or deletions in SMN1 that lead to progressive death of alpha motor neurons, ultimately leading to severe muscle weakness and atrophy, as well as premature death in the absence of treatment. Recent approval of SMN-increasing medications as SMA therapy has altered the natural course of the disease. Thus, accurate biomarkers are needed to predict SMA severity, prognosis, drug response, and overall treatment efficacy. This article reviews novel non-targeted omics strategies that could become useful clinical tools for patients with SMA. Proteomics and metabolomics can provide insights into molecular events underlying disease progression and treatment response. High-throughput omics data have shown that untreated SMA patients have different profiles than controls. In addition, patients who clinically improved after treatment have a different profile than those who did not. These results provide a glimpse on potential markers that could assist in identifying therapy responders, in tracing the course of the disease, and in predicting its outcome. These studies have been restricted by the limited number of patients, but the approaches are feasible and can unravel severity-specific neuro-proteomic and metabolic SMA signatures.
Collapse
Affiliation(s)
- Megi Meneri
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Stroke Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Elena Abati
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Delia Gagliardi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Irene Faravelli
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valeria Parente
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Antonia Ratti
- Laboratory of Neuroscience, Department of Neurology, IRCCS Istituto Auxologico Italiano, 20095 Milan, Italy
- Department Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy
| | - Federico Verde
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Laboratory of Neuroscience, Department of Neurology, IRCCS Istituto Auxologico Italiano, 20095 Milan, Italy
| | - Nicola Ticozzi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Laboratory of Neuroscience, Department of Neurology, IRCCS Istituto Auxologico Italiano, 20095 Milan, Italy
| | - Giacomo P. Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Linda Ottoboni
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
12
|
Ülgen DH, Ruigrok SR, Sandi C. Powering the social brain: Mitochondria in social behaviour. Curr Opin Neurobiol 2023; 79:102675. [PMID: 36696841 DOI: 10.1016/j.conb.2022.102675] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 01/25/2023]
Abstract
A central role of brain mitochondria in regulating and influencing social behaviour is emerging. In addition to its important roles as the "powerhouses" of the cell, mitochondria possess a plethora of cellular functions, such as regulating ion homeostasis, neurotransmitter levels, and lipid metabolism. Findings in the last decade are revealing an integral role for mitochondria in the regulation of behaviours, including those from the social domain. Here, we discuss recent evidence linking mitochondrial functions and dynamics to social behaviour and deficits, including examples in which social behaviours are modulated by stress in the context of mitochondrial changes, as well as potential therapeutic strategies and outstanding questions in the field.
Collapse
Affiliation(s)
- Doğukan Hazar Ülgen
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Silvie Rosalie Ruigrok
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
13
|
Nabavi Zadeh F, Nazari M, Amini A, Adeli S, Barzegar Behrooz A, Fahanik Babaei J. Pre- and post-treatment of α-Tocopherol on cognitive, synaptic plasticity, and mitochondrial disorders of the hippocampus in icv-streptozotocin-induced sporadic Alzheimer's-like disease in male Wistar rat. Front Neurosci 2023; 17:1073369. [PMID: 37152606 PMCID: PMC10157075 DOI: 10.3389/fnins.2023.1073369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Objective Most dementia cases in the elderly are caused by Alzheimer's disease (AD), a complex, progressive neurological disease. Intracerebroventricular (ICV) administration of streptozotocin (STZ) in rat's results in aberrant brain insulin signaling, oxidative stress, and mitochondrial dysfunction that impair cognition change neural plasticity, and eventually lead to neuronal death. The current study aims to define the neuroprotective action of alpha-tocopherol in enhancing mitochondrial function and the function of synapses in memory-impaired rats brought on by icv-STZ. Methods Male Wistar rats were pre-treated with (α-Tocopherol 150 mg/kg) orally once daily for 7 days before and 14 days after being bilaterally injected with icv-STZ (3 mg/kg), while sham group rats received the same volume of STZ solvent. After 2 weeks of icv-STZ infusion, rats were tested for cognitive performance using a behaviors test and then were prepared electrophysiology recordings or sacrificed for biochemical and histopathological assays. Results The cognitive impairment was significantly minimized in the behavioral paradigms for those who had taken α-Tocopherol. In the hippocampus of icv-STZ rat brains, α-Tocopherol ocopherol effectively prevented the loss of glutathione levels and superoxide dismutase enzyme activity, lowered mitochondrial ROS and mitochondrial membrane potential, and also brought about a decrease in Aβ aggregation and neuronal death. Conclusion Our findings demonstrated that by lowering neurobehavioral impairments caused by icv-STZ, oxidative stress, and mitochondrial dysfunction, α-Tocopherol enhanced intracellular calcium homeostasis and corrected neurodegenerative defects in the brain. These findings examine the available approach for delaying AD connected to mitochondrial malfunction and plasticity issues.
Collapse
Affiliation(s)
- Fatemeh Nabavi Zadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Nazari
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Adeli
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Barzegar Behrooz
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Javad Fahanik Babaei, ,
| |
Collapse
|
14
|
Cerebrospinal Fluid Biomarkers in iNPH: A Narrative Review. Diagnostics (Basel) 2022; 12:diagnostics12122976. [PMID: 36552981 PMCID: PMC9777226 DOI: 10.3390/diagnostics12122976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a neurological syndrome characterized by the clinical triad of gait disorder, cognitive impairment and urinary incontinence. It has attracted interest because of the possible reversibility of symptoms, especially with timely treatment. The main pathophysiological theory is based on a vicious circle of disruption in circulation of cerebrospinal fluid (CSF) that leads to the deceleration of its absorption. Data regarding CSF biomarkers in iNPH are contradictory and no definite CSF biomarker profile has been recognized as in Alzheimer's disease (AD), which often co-exists with iNPH. In this narrative review, we investigated the literature regarding CSF biomarkers in iNPH, both the established biomarkers total tau protein (t-tau), phosphorylated tau protein (p-tau) and amyloid peptide with 42 amino acids (Aβ42), and other molecules, which are being investigated as emerging biomarkers. The majority of studies demonstrate differences in CSF concentrations of Aβ42 and tau-proteins (t-tau and p-tau) among iNPH patients, healthy individuals and patients with AD and vascular dementia. iNPH patients present with lower CSF Aβ42 and p-tau concentrations than healthy individuals and lower t-tau and p-tau concentrations than AD patients. This could prove helpful for improving diagnosis, differential diagnosis and possibly prognosis of iNPH patients.
Collapse
|
15
|
Mangiaterra S, Vincenzetti S, Rossi G, Marchegiani A, Gavazza A, Petit T, Sagratini G, Ricciutelli M, Cerquetella M. Evaluation of the Fecal Proteome in Healthy and Diseased Cheetahs ( Acinonyx jubatus) Suffering from Gastrointestinal Disorders. Animals (Basel) 2022; 12:2392. [PMID: 36139251 PMCID: PMC9494964 DOI: 10.3390/ani12182392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Fecal proteomics allows for the identification of proteins and peptides present in stools and is useful in finding possible new biomarkers for diagnosing and/or monitoring gastrointestinal (GI) disorders. In the present study, we investigated the fecal proteome in healthy and diseased cheetahs (Acinonyx jubatus). Captive individuals of this species frequently show gastrointestinal disorders characterized by recurrent episodes of diarrhea, rare episodes of vomiting and weight loss, associated with Helicobacter spp. infection. Fecal proteomic evaluation has been performed by two-dimensional electrophoresis followed by liquid chromatography-tandem mass spectrometry. In healthy cheetahs, the results showed the presence of the following proteins: collagen alpha-1 (II) chain, transthyretin, IgG Fc-binding protein, titin, dystonin, isopentenyl-diphosphate Delta-isomerase 1, sodium/potassium-transporting ATPase subunit alpha-1 and protein disulfide-isomerase A6. The presence of albumin isoforms was found only in diseased cheetahs. The present paper reports the study of the fecal proteome in the cheetah, evidences some differences between healthy and diseased patients and confirms, once again, the potential of fecal proteomics for the study of the GI environment, with promising developments regarding the identification of new diagnostic/monitoring markers.
Collapse
Affiliation(s)
- Sara Mangiaterra
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, MC, Italy
| | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, MC, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, MC, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, MC, Italy
| | - Alessandra Gavazza
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, MC, Italy
| | | | - Gianni Sagratini
- School of Pharmacy, University of Camerino, Via Sant’Agostino, 1, 32032 Camerino, MC, Italy
| | - Massimo Ricciutelli
- School of Pharmacy, University of Camerino, Via Sant’Agostino, 1, 32032 Camerino, MC, Italy
| | - Matteo Cerquetella
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, MC, Italy
| |
Collapse
|
16
|
Deep blue autofluorescence reflects the oxidation state of human transthyretin. Redox Biol 2022; 56:102434. [PMID: 35987087 PMCID: PMC9411673 DOI: 10.1016/j.redox.2022.102434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Human transthyretin (TTR) is a tetrameric protein transporting thyroid hormones and retinol. TTR is a neuroprotective factor and sensor of oxidative stress which stability is diminished due to mutations and aging, leading to amyloid deposition. Adverse environmental conditions, such as redox and metal ion imbalances, induce destabilization of the TTR structure. We have previously shown that the stability of TTR was disturbed by Ca2+ and other factors, including DTT, and led to the formation of an intrinsic fluorophore(s) emitting blue light, termed deep blue autofluorescence (dbAF). Here, we show that the redox state of TTR affects the formation dynamics and properties of dbAF. Free thiols lead to highly unstable subpopulations of TTR and the frequent ocurrence of dbAF. Oxidative conditions counteracted the destabilizing effects of free thiols to some extent. However, strong oxidative conditions led to modifications of TTR, which altered the stability of TTR and resulted in unique dbAF spectra. Riboflavin and/or riboflavin photoproducts bound to TTR and crosslinked TTR subunits. Riboflavin-sensitized photooxidation increased TTR unfolding, while photooxidation, either in the absence or presence of riboflavin, increased proteolysis and resulted in multiple oxidative modifications and dityrosine formation in TTR molecules. Therefore, oxidation can switch the role of TTR from a protective to pathogenic factor.
Collapse
|
17
|
Martínez-Martínez E, Fernández-Irigoyen J, Santamaría E, Nieto ML, Bravo-San Pedro JM, Cachofeiro V. Mitochondrial Oxidative Stress Induces Cardiac Fibrosis in Obese Rats through Modulation of Transthyretin. Int J Mol Sci 2022; 23:ijms23158080. [PMID: 35897655 PMCID: PMC9330867 DOI: 10.3390/ijms23158080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
A proteomic approach was used to characterize potential mediators involved in the improvement in cardiac fibrosis observed with the administration of the mitochondrial antioxidant MitoQ in obese rats. Male Wistar rats were fed a standard diet (3.5% fat; CT) or a high-fat diet (35% fat; HFD) and treated with vehicle or MitoQ (200 μM) in drinking water for 7 weeks. Obesity modulated the expression of 33 proteins as compared with controls of the more than 1000 proteins identified. These include proteins related to endoplasmic reticulum (ER) stress and oxidative stress. Proteomic analyses revealed that HFD animals presented with an increase in cardiac transthyretin (TTR) protein levels, an effect that was prevented by MitoQ treatment in obese animals. This was confirmed by plasma levels, which were associated with those of cardiac levels of both binding immunoglobulin protein (BiP), a marker of ER stress, and fibrosis. TTR stimulated collagen I production and BiP in cardiac fibroblasts. This upregulation was prevented by the presence of MitoQ. In summary, the results suggest a role of TTR in cardiac fibrosis development associated with obesity and the beneficial effects of treatment with mitochondrial antioxidants.
Collapse
Affiliation(s)
- Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28222 Madrid, Spain;
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Correspondence: (E.M.-M.); (V.C.); Tel.: +34-913-941-483 (E.M.-M.); +34-913-941-489 (V.C.)
| | - Joaquín Fernández-Irigoyen
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (J.F.-I.); (E.S.)
| | - Enrique Santamaría
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (J.F.-I.); (E.S.)
| | - María Luisa Nieto
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28222 Madrid, Spain;
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, 47002 Valladolid, Spain
| | | | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28222 Madrid, Spain;
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Correspondence: (E.M.-M.); (V.C.); Tel.: +34-913-941-483 (E.M.-M.); +34-913-941-489 (V.C.)
| |
Collapse
|
18
|
Kalló G, Kumar A, Tőzsér J, Csősz É. Chemical Barrier Proteins in Human Body Fluids. Biomedicines 2022; 10:biomedicines10071472. [PMID: 35884778 PMCID: PMC9312486 DOI: 10.3390/biomedicines10071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Chemical barriers are composed of those sites of the human body where potential pathogens can contact the host cells. A chemical barrier is made up by different proteins that are part of the antimicrobial and immunomodulatory protein/peptide (AMP) family. Proteins of the AMP family exert antibacterial, antiviral, and/or antifungal activity and can modulate the immune system. Besides these proteins, a wide range of proteases and protease inhibitors can also be found in the chemical barriers maintaining a proteolytic balance in the host and/or the pathogens. In this review, we aimed to identify the chemical barrier components in nine human body fluids. The interaction networks of the chemical barrier proteins in each examined body fluid were generated as well.
Collapse
Affiliation(s)
- Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52-416432
| | - Ajneesh Kumar
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| |
Collapse
|
19
|
Antioxidant Quercetin 3-O-Glycosylated Plant Flavonols Contribute to Transthyretin Stabilization. CRYSTALS 2022. [DOI: 10.3390/cryst12050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plants are rich in secondary metabolites, which are often useful as a relevant source of nutraceuticals. Quercetin (QUE) is a flavonol aglycone able to bind Transthyretin (TTR), a plasma protein that under pathological conditions can lose its native structure leading to fibrils formation and amyloid diseases onset. Here, the dual nature of five quercetin 3-O-glycosylated flavonol derivatives, isolated from different plant species, such as possible binders of TTR and antioxidants, was investigated. The crystal structure of 3-O-β-D-galactopyranoside in complex with TTR was solved, suggesting that not only quercetin but also its metabolites can contribute to stabilizing the TTR tetramer.
Collapse
|
20
|
Rimbas RC, Balinisteanu A, Magda SL, Visoiu SI, Ciobanu AO, Beganu E, Nicula AI, Vinereanu D. New Advanced Imaging Parameters and Biomarkers-A Step Forward in the Diagnosis and Prognosis of TTR Cardiomyopathy. J Clin Med 2022; 11:2360. [PMID: 35566485 PMCID: PMC9101617 DOI: 10.3390/jcm11092360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Transthyretin amyloid cardiomyopathy (ATTR-CM) is an infiltrative disorder characterized by extracellular myocardial deposits of amyloid fibrils, with poor outcome, leading to heart failure and death, with significant treatment expenditure. In the era of a novel therapeutic arsenal of disease-modifying agents that target a myriad of pathophysiological mechanisms, timely and accurate diagnosis of ATTR-CM is crucial. Recent advances in therapeutic strategies shown to be most beneficial in the early stages of the disease have determined a paradigm shift in the screening, diagnostic algorithm, and risk classification of patients with ATTR-CM. The aim of this review is to explore the utility of novel specific non-invasive imaging parameters and biomarkers from screening to diagnosis, prognosis, risk stratification, and monitoring of the response to therapy. We will summarize the knowledge of the most recent advances in diagnostic, prognostic, and treatment tailoring parameters for early recognition, prediction of outcome, and better selection of therapeutic candidates in ATTR-CM. Moreover, we will provide input from different potential pathways involved in the pathophysiology of ATTR-CM, on top of the amyloid deposition, such as inflammation, endothelial dysfunction, reduced nitric oxide bioavailability, oxidative stress, and myocardial fibrosis, and their diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- Roxana Cristina Rimbas
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| | - Anca Balinisteanu
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| | - Stefania Lucia Magda
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| | - Simona Ionela Visoiu
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| | - Andrea Olivia Ciobanu
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| | - Elena Beganu
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
| | - Alina Ioana Nicula
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
- Radiology Department, University and Emergency Hospital, 050098 Bucharest, Romania
| | - Dragos Vinereanu
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| |
Collapse
|
21
|
Pathak E, Atri N, Mishra R. Single-Cell Transcriptome Analysis Reveals the Role of Pancreatic Secretome in COVID-19 Associated Multi-organ Dysfunctions. Interdiscip Sci 2022; 14:863-878. [PMID: 35394619 PMCID: PMC8990272 DOI: 10.1007/s12539-022-00513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/09/2023]
Abstract
The SARS-CoV-2 infection affects the lungs, heart, kidney, intestine, olfactory epithelia, liver, and pancreas and brings forward multi-organ dysfunctions (MODs). However, mechanistic details of SARS-CoV-2-induced MODs are unclear. Here, we have investigated the role of pancreatic secretory proteins to mechanistically link COVID-19 with MODs using single-cell transcriptome analysis. Secretory proteins were identified using the Human Protein Atlas. Gene ontology, pathway, and disease enrichment analyses were used to highlight the role of upregulated pancreatic secretory proteins (secretome). We show that SARS-CoV-2 infection shifts the expression profile of pancreatic endocrine cells to acinar and ductal cell-specific profiles, resulting in increased expression of acinar and ductal cell-specific genes. Among all the secretory proteins, the upregulated expression of IL1B, AGT, ALB, SPP1, CRP, SERPINA1, C3, TFRC, TNFSF10, and MIF was mainly associated with disease of diverse organs. Extensive literature and experimental evidence are used to validate the association of the upregulated pancreatic secretome with the coagulation cascade, complement activation, renin-angiotensinogen system dysregulation, endothelial cell injury and thrombosis, immune system dysregulation, and fibrosis. Our finding suggests the influence of an upregulated secretome on multi-organ systems such as nervous, cardiovascular, immune, digestive, and urogenital systems. Our study provides evidence that an upregulated pancreatic secretome is a possible cause of SARS-CoV-2-induced MODs. This finding may have a significant impact on the clinical setting regarding the prevention of SARS-CoV-2-induced MODs.
Collapse
Affiliation(s)
- Ekta Pathak
- Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Neelam Atri
- Bioinformatics Department, MMV, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Department of Botany, MMV, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajeev Mishra
- Bioinformatics Department, MMV, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
22
|
Zhang C, Ma Y, Zhang J, Kuo JCT, Zhang Z, Xie H, Zhu J, Liu T. Modification of Lipid-Based Nanoparticles: An Efficient Delivery System for Nucleic Acid-Based Immunotherapy. Molecules 2022; 27:molecules27061943. [PMID: 35335310 PMCID: PMC8949521 DOI: 10.3390/molecules27061943] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Lipid-based nanoparticles (LBNPs) are biocompatible and biodegradable vesicles that are considered to be one of the most efficient drug delivery platforms. Due to the prominent advantages, such as long circulation time, slow drug release, reduced toxicity, high transfection efficiency, and endosomal escape capacity, such synthetic nanoparticles have been widely used for carrying genetic therapeutics, particularly nucleic acids that can be applied in the treatment for various diseases, including congenital diseases, cancers, virus infections, and chronic inflammations. Despite great merits and multiple successful applications, many extracellular and intracellular barriers remain and greatly impair delivery efficacy and therapeutic outcomes. As such, the current state of knowledge and pitfalls regarding the gene delivery and construction of LBNPs will be initially summarized. In order to develop a new generation of LBNPs for improved delivery profiles and therapeutic effects, the modification strategies of LBNPs will be reviewed. On the basis of these developed modifications, the performance of LBNPs as therapeutic nanoplatforms have been greatly improved and extensively applied in immunotherapies, including infectious diseases and cancers. However, the therapeutic applications of LBNPs systems are still limited due to the undesirable endosomal escape, potential aggregation, and the inefficient encapsulation of therapeutics. Herein, we will review and discuss recent advances and remaining challenges in the development of LBNPs for nucleic acid-based immunotherapy.
Collapse
Affiliation(s)
- Chi Zhang
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Z.Z.)
| | - Yifan Ma
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; (Y.M.); (J.Z.)
| | - Jingjing Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; (Y.M.); (J.Z.)
| | - Jimmy Chun-Tien Kuo
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Z.Z.)
| | - Zhongkun Zhang
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Z.Z.)
| | - Haotian Xie
- Department of Statistics, The Ohio State University, Columbus, OH 43210, USA;
| | - Jing Zhu
- College of Nursing and Health Innovation, The University of Texas Arlington, Arlington, TX 76010, USA
- Correspondence: (J.Z.); (T.L.); Tel.: +1-614-570-1164 (J.Z.); +86-186-6501-3854 (T.L.)
| | - Tongzheng Liu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
- Correspondence: (J.Z.); (T.L.); Tel.: +1-614-570-1164 (J.Z.); +86-186-6501-3854 (T.L.)
| |
Collapse
|
23
|
Merino-Galan L, Jimenez-Urbieta H, Zamarbide M, Rodríguez-Chinchilla T, Belloso-Iguerategui A, Santamaria E, Fernández-Irigoyen J, Aiastui A, Doudnikoff E, Bézard E, Ouro A, Knafo S, Gago B, Quiroga-Varela A, Rodríguez-Oroz MC. Striatal synaptic bioenergetic and autophagic decline in premotor experimental parkinsonism. Brain 2022; 145:2092-2107. [PMID: 35245368 PMCID: PMC9460676 DOI: 10.1093/brain/awac087] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/31/2022] [Accepted: 02/20/2022] [Indexed: 12/02/2022] Open
Abstract
Synaptic impairment might precede neuronal degeneration in Parkinson’s disease. However, the intimate mechanisms altering synaptic function by the accumulation of presynaptic α-synuclein in striatal dopaminergic terminals before dopaminergic death occurs, have not been elucidated. Our aim is to unravel the sequence of synaptic functional and structural changes preceding symptomatic dopaminergic cell death. As such, we evaluated the temporal sequence of functional and structural changes at striatal synapses before parkinsonian motor features appear in a rat model of progressive dopaminergic death induced by overexpression of the human mutated A53T α-synuclein in the substantia nigra pars compacta, a protein transported to these synapses. Sequential window acquisition of all theoretical mass spectra proteomics identified deregulated proteins involved first in energy metabolism and later, in vesicle cycling and autophagy. After protein deregulation and when α-synuclein accumulated at striatal synapses, alterations to mitochondrial bioenergetics were observed using a Seahorse XF96 analyser. Sustained dysfunctional mitochondrial bioenergetics was followed by a decrease in the number of dopaminergic terminals, morphological and ultrastructural alterations, and an abnormal accumulation of autophagic/endocytic vesicles inside the remaining dopaminergic fibres was evident by electron microscopy. The total mitochondrial population remained unchanged whereas the number of ultrastructurally damaged mitochondria increases as the pathological process evolved. We also observed ultrastructural signs of plasticity within glutamatergic synapses before the expression of motor abnormalities, such as a reduction in axospinous synapses and an increase in perforated postsynaptic densities. Overall, we found that a synaptic energetic failure and accumulation of dysfunctional organelles occur sequentially at the dopaminergic terminals as the earliest events preceding structural changes and cell death. We also identify key proteins involved in these earliest functional abnormalities that may be modulated and serve as therapeutic targets to counterbalance the degeneration of dopaminergic cells to delay or prevent the development of Parkinson’s disease.
Collapse
Affiliation(s)
- Leyre Merino-Galan
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain.,Neuroscience Department, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Haritz Jimenez-Urbieta
- Cell culture Platform, Biodonostia Health Research Institute, San Sebastian, 20014 Donostia, Spain
| | - Marta Zamarbide
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | | | | | - Enrique Santamaria
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ana Aiastui
- Cell culture Platform, Biodonostia Health Research Institute, San Sebastian, 20014 Donostia, Spain
| | - Evelyne Doudnikoff
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Erwan Bézard
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Alberto Ouro
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Shira Knafo
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Basque Foundation for Science, IKERBASQUE, 48940 Leioa, Spain
| | - Belén Gago
- Faculty of Medicine, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29016 Málaga, Spain
| | - Ana Quiroga-Varela
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - María Cruz Rodríguez-Oroz
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Neurology Department, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain
| |
Collapse
|
24
|
Abdel-Hamid M, Yang P, Mostafa I, Osman A, Romeih E, Yang Y, Huang Z, Awad AA, Li L. Changes in Whey Proteome between Mediterranean and Murrah Buffalo Colostrum and Mature Milk Reflect Their Pharmaceutical and Medicinal Value. Molecules 2022; 27:1575. [PMID: 35268677 PMCID: PMC8912021 DOI: 10.3390/molecules27051575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
Milk represents an integrated meal for newborns; its whey protein is rich in many health beneficial components and proteins. The current study aimed to investigate the differences between colostrum and mature milk from Mediterranean and Murrah buffaloes using labeled proteomics and bioinformatics tools. In the current work, LC-MS/MS analysis led to identification of 780 proteins from which 638 were shared among three independent TMT experiments. The significantly changed proteins between the studied types were analyzed using gene ontology enrichment and KEGG pathways, and their interactions were generated using STRING database. Results indicated that immunological, muscular development and function, blood coagulation, heme related, neuronal, translation, metabolic process, and binding proteins were the main terms. Overall, colostrum showed higher levels of immunoglobulins, myosins, actin, neurofascin, syntaxins, thyroglobulins, and RNA-binding proteins, reflecting its importance in the development and activity of immunological, muscular, cardiac, neuronal, and thyroid systems, while lactoferrin and ferritin were increased in mature milk, highlighting its role in iron storage and hemoglobin formation.
Collapse
Affiliation(s)
- Mahmoud Abdel-Hamid
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (M.A.-H.); (P.Y.); (Z.H.)
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (E.R.); (A.A.A.)
| | - Pan Yang
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (M.A.-H.); (P.Y.); (Z.H.)
| | - Islam Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Ehab Romeih
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (E.R.); (A.A.A.)
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
| | - Zizhen Huang
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (M.A.-H.); (P.Y.); (Z.H.)
| | - Awad A. Awad
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (E.R.); (A.A.A.)
| | - Ling Li
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (M.A.-H.); (P.Y.); (Z.H.)
| |
Collapse
|
25
|
Reiner BC, Crist RC, Borner T, Doyle RP, Hayes MR, De Jonghe BC. Single nuclei RNA sequencing of the rat AP and NTS following GDF15 treatment. Mol Metab 2021; 56:101422. [PMID: 34942400 PMCID: PMC8749158 DOI: 10.1016/j.molmet.2021.101422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 12/04/2022] Open
Abstract
Objective Growth differentiation factor 15 (GDF15) is known to play a role in feeding, nausea, and body weight, with action through the GFRAL-RET receptor complex in the area postrema (AP) and nucleus tractus solitarius (NTS). To further elucidate the underlying cell type-specific molecular mechanisms downstream of GDF15 signaling, we used a single nuclei RNA sequencing (snRNAseq) approach to profile AP and NTS cellular subtype-specific transcriptomes after systemic GDF15 treatment. Methods AP and NTS micropunches were used for snRNAseq from Sprague Dawley rats 6 h following GDF15 or saline injection, and Seurat was used to identify cellular subtypes and cell type-specific alterations in gene expression that were due to the direct and secondary effects of systemic GDF15 treatment. Results Using the transcriptome profile of ∼35,000 individual AP/NTS nuclei, we identified 19 transcriptomically distinct cellular subtypes, including a single population Gfral and Ret positive excitatory neurons, representing the primary site of action for GDF15. A total of ∼600 cell type-specific differential expression events were identified in neurons and glia, including the identification of transcriptome alterations specific to the direct effects of GDF15 in the Gfral-Ret positive excitatory neurons and shared transcriptome alterations across neuronal and glial cell types. Downstream analyses identified shared and cell type-specific alterations in signaling pathways and upstream regulatory mechanisms of the observed transcriptome alterations. Conclusions These data provide a considerable advance in our understanding of AP and NTS cell type-specific molecular mechanisms associated with GDF15 signaling. The identified cellular subtype-specific regulatory mechanism and signaling pathways likely represent important targets for future pharmacotherapies. GDF15 directly alters transcription in Gfral- and Ret-positive excitatory neurons. GDF15 indirectly alters transcription in other neuronal and glial populations. Cell type-specific expression changes identify regulatory and signaling mechanisms.
Collapse
Affiliation(s)
- Benjamin C Reiner
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| | - Richard C Crist
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Tito Borner
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Robert P Doyle
- Syracuse University, Department of Chemistry, 111 College Place, Syracuse, New York 13244
| | - Matthew R Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Bart C De Jonghe
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
26
|
Wieczorek E, Bezara P, Ożyhar A. Deep blue autofluorescence reveals the instability of human transthyretin. Int J Biol Macromol 2021; 191:492-499. [PMID: 34562536 DOI: 10.1016/j.ijbiomac.2021.09.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Wild-type human transthyretin (TTR) is a tetrameric protein that transports thyroxine and retinol in the blood and brain. However, a number of mutations or aging leads to destabilization of the quaternary structure of TTR, which results in dissociation of TTR tetramers to monomers, followed by oligomerization and subsequent amyloid formation. TTR amyloid is a pathogenic factor underlying several diseases. It has recently been documented that destabilization of the structure of TTR is driven by Ca2+. The present work shows that the in vitro redox conditions contribute to the destabilization and formation of the highly unstable substoichiometric population(s) of TTR molecules. Importantly, destabilized TTR forms acquire the ability to emit fluorescence in the blue range of the light spectrum. Dithiothreitol (DTT), in the presence of Ca2+, enhances the formation of complex autofluorophore which displays maxima at 417 nm and 438 nm in the emission spectrum of TTR.
Collapse
Affiliation(s)
- Elżbieta Wieczorek
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Patrycja Bezara
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
27
|
Chuvakova LN, Funikov SY, Rezvykh AP, Davletshin AI, Evgen'ev MB, Litvinova SA, Fedotova IB, Poletaeva II, Garbuz DG. Transcriptome of the Krushinsky-Molodkina Audiogenic Rat Strain and Identification of Possible Audiogenic Epilepsy-Associated Genes. Front Mol Neurosci 2021; 14:738930. [PMID: 34803604 PMCID: PMC8600260 DOI: 10.3389/fnmol.2021.738930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Audiogenic epilepsy (AE), inherent to several rodent strains is widely studied as a model of generalized convulsive epilepsy. The molecular mechanisms that determine the manifestation of AE are not well understood. In the present work, we compared transcriptomes from the corpora quadrigemina in the midbrain zone, which are crucial for AE development, to identify genes associated with the AE phenotype. Three rat strains without sound exposure were compared: Krushinsky-Molodkina (KM) strain (100% AE-prone); Wistar outbred rat strain (non-AE prone) and “0” strain (partially AE-prone), selected from F2 KM × Wistar hybrids for their lack of AE. The findings showed that the KM strain gene expression profile exhibited a number of characteristics that differed from those of the Wistar and “0” strain profiles. In particular, the KM rats showed increased expression of a number of genes involved in the positive regulation of the MAPK signaling cascade and genes involved in the positive regulation of apoptotic processes. Another characteristic of the KM strain which differed from that of the Wistar and “0” rats was a multi-fold increase in the expression level of the Ttr gene and a significant decrease in the expression of the Msh3 gene. Decreased expression of a number of oxidative phosphorylation-related genes and a few other genes was also identified in the KM strain. Our data confirm the complex multigenic nature of AE inheritance in rodents. A comparison with data obtained from other independently selected AE-prone rodent strains suggests some common causes for the formation of the audiogenic phenotype.
Collapse
Affiliation(s)
- Lyubov N Chuvakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei Yu Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander P Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Artem I Davletshin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Michael B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | - David G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
28
|
Ahlawat S, Shankar A, Vandna, Mohan H, Sharma KK. Yersinia enterocolitica and Lactobacillus fermentum induces differential cellular and behavioral responses during diclofenac biotransformation in rat gut. Toxicol Appl Pharmacol 2021; 431:115741. [PMID: 34619158 DOI: 10.1016/j.taap.2021.115741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) can induce small-intestinal injuries through inhibition of prostaglandin synthesis. Gut has an important role in building and maintaining the barriers to avoid the luminal gut microbiota from invading the host, and cytoskeleton plays a crucial role in the maintenance of cellular barrier. The recent advances suggest a bi-directional interaction between the drugs and gut microbiota, where gut microbes can metabolize the drugs, and in response drugs can alter the composition of gut microbiota. In the present study, we evaluated the effect of diclofenac on rat gut, when co-administrated with either Yersinia enterocolitica strain 8081 (an enteropathogen) or Lactobacillus fermentum strain 9338 (a probiotic). The LC-MS/MS based label-free quantitation of rat gut proteins revealed 51.38% up-regulated, 48.62% down-regulated in diclofenac-Y. enterocolitica strain 8081 (D*Y), and 74.31% up-regulated, 25.69% down-regulated in diclofenac-L. fermentum strain 9338 (D*L) experiments. The identified proteins belonged to cytoskeleton, metabolism, heme biosynthesis and binding, stress response, apoptosis and redox homeostasis, immune and inflammatory response, and detoxification and antioxidant defence. Further, the histopathological and biochemical analysis indicated more pronounced histological alterations and oxidative stress (enhanced malonaldehyde and altered antioxidant levels) in D*Y rats than D*L rats, compared to control rats. Elevated plus maze (EPM) test performed to determine the behavioral changes, suggested increased anxiety in D*Y rats than D*L rats, compared to control rats. These results together suggest the differential role of either bacterium in biotransformation of diclofenac, and inflammatory and cellular redox response.
Collapse
Affiliation(s)
- Shruti Ahlawat
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; Presently at SGT University, Gurgaon-Badli Road Chandu, Budhera, Gurugram 122505, Haryana, India
| | - Akshay Shankar
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Vandna
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Hari Mohan
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
29
|
Kopylov AT, Papysheva O, Gribova I, Kaysheva AL, Kotaysch G, Kharitonova L, Mayatskaya T, Nurbekov MK, Schipkova E, Terekhina O, Morozov SG. Severe types of fetopathy are associated with changes in the serological proteome of diabetic mothers. Medicine (Baltimore) 2021; 100:e27829. [PMID: 34766598 PMCID: PMC8589259 DOI: 10.1097/md.0000000000027829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/27/2022] Open
Abstract
ABSTRACT Pregestational or gestational diabetes are the main risk factors for diabetic fetopathy. There are no generalized signs of fetopathy before the late gestational age due to insufficient sensitivity of currently employed instrumental methods. In this cross-sectional observational study, we investigated several types of severe diabetic fetopathy (cardiomyopathy, central nervous system defects, and hepatomegaly) established in type 2 diabetic mothers during 30 to 35 gestational weeks and confirmed upon delivery. We examined peripheral blood plasma and determined a small proportion of proteins strongly associated with a specific type of fetopathy or anatomical malfunction. Most of the examined markers participate in critical processes at different stages of embryogenesis and regulate various phases of morphogenesis. Alterations in CDCL5 had a significant impact on mRNA splicing and DNA repair. Patients with central nervous system defects were characterized by the greatest depletion (ca. 7% of the basal level) of DFP3, a neurotrophic factor needed for the proper specialization of oligodendrocytes. Dysregulation of noncanonical wingless-related integration site signaling pathway (Wnt) signaling guided by pigment epithelium-derived factor (PEDF) and disheveled-associated activator of morphogenesis 2 (DAAM2) was also profound. In addition, deficiency in retinoic acid and thyroxine transport was exhibited by the dramatic increase of transthyretin (TTHY). The molecular interplay between the identified serological markers leads to pathologies in fetal development on the background of a diabetic condition. These warning serological markers can be quantitatively examined, and their profile may reflect different severe types of diabetic fetopathy, producing a beneficial effect on the current standard care for pregnant women and infants.
Collapse
Affiliation(s)
- Arthur T. Kopylov
- Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, Russia
| | - Olga Papysheva
- S.S. Yudin 7th State Clinical Hospital, 4 Kolomenskaya str., Moscow, Russia
| | - Iveta Gribova
- N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., Moscow, Russia
| | - Anna L. Kaysheva
- Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, Russia
| | - Galina Kotaysch
- N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., Moscow, Russia
| | - Lubov Kharitonova
- N.I. Pirogov Medical University, 1 Ostrovityanova st., Moscow, Russia
| | | | - Malik K. Nurbekov
- Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., Moscow, Russia
| | - Ekaterina Schipkova
- Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., Moscow, Russia
| | - Olga Terekhina
- Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., Moscow, Russia
| | - Sergey G. Morozov
- N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., Moscow, Russia
- Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., Moscow, Russia
| |
Collapse
|
30
|
Wang J, Zhang Q, Shi F, Yadav DK, Hong Z, Wang J, Liang T, Bai X. A Seven-Gene Signature to Predict Prognosis of Patients With Hepatocellular Carcinoma. Front Genet 2021; 12:728476. [PMID: 34603388 PMCID: PMC8481951 DOI: 10.3389/fgene.2021.728476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 01/27/2023] Open
Abstract
Purpose: Hepatocellular carcinoma (HCC) is one of the most prevalent malignant diseases worldwide and has a poor prognosis. Gene-based prognostic models have been reported to predict the overall survival of patients with HCC. Unfortunately, most of the genes used in earlier prognostic models lack prospective validation and, thus, cannot be used in clinical practice. Methods: Candidate genes were selected from GEPIA (Gene Expression Profiling Interactive Analysis), and their associations with patients’ survival were confirmed by RT-PCR using cDNA tissue microarrays established from patients with HCC after radical resection. A multivariate Cox proportion model was used to calculate the coefficient of corresponding gene. The expression of seven genes of interest (MKI67, AR, PLG, DNASE1L3, PTTG1, PPP1R1A, and TTR) with two reference genes was defined to calculate a risk score which determined groups of different risks. Results: Our risk scoring efficiently classified patients (n = 129) with HCC into a low-, intermediate-, and high-risk group. The three groups showed meaningful distinction of 3-year overall survival rate, i.e., 88.9, 74.5, and 20.6% for the low-, intermediate-, and high-risk group, respectively. The prognostic prediction model of risk scores was subsequently verified using an independent prospective cohort (n = 77) and showed high accuracy. Conclusion: Our seven-gene signature model performed excellent long-term prediction power and provided crucially guiding therapy for patients who are not a candidate for surgery.
Collapse
Affiliation(s)
- Junli Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Fukang Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dipesh Kumar Yadav
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengtao Hong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianing Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| |
Collapse
|
31
|
Neumann JT, Weimann J, Sörensen NA, Hartikainen TS, Haller PM, Lehmacher J, Brocks C, Tenhaeff S, Karakas M, Renné T, Blankenberg S, Zeller T, Westermann D. A Biomarker Model to Distinguish Types of Myocardial Infarction and Injury. J Am Coll Cardiol 2021; 78:781-790. [PMID: 34412811 DOI: 10.1016/j.jacc.2021.06.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Discrimination among patients with type 1 myocardial infarction (T1MI), type 2 myocardial infarction (T2MI), and myocardial injury is difficult. OBJECTIVES The aim of this study was to investigate the discriminative value of a 29-biomarker panel in an emergency department setting. METHODS Patients presenting with suspected myocardial infarction (MI) were recruited. The final diagnosis in all patients was adjudicated on the basis of the fourth universal definition of MI. A panel of 29 biomarkers was measured, and multivariable logistic regression analysis was used to evaluate the associations of these biomarkers with the diagnosis of MI or myocardial injury. Biomarkers were chosen using backward selection. The model was internally validated using bootstrapping. RESULTS Overall, 748 patients were recruited (median age 64 years), of whom 138 had MI (107 T1MI and 31 T2MI) and 221 had myocardial injury. In the multivariable model, 4 biomarkers (apolipoprotein A-II, N-terminal prohormone of brain natriuretic peptide, copeptin, and high-sensitivity cardiac troponin I) remained significant discriminators between T1MI and T2MI. Internal validation of the model showed an area under the curve of 0.82. For discrimination between MI and myocardial injury, 6 biomarkers (adiponectin, N-terminal prohormone of brain natriuretic peptide, pulmonary and activation-regulated chemokine, transthyretin, copeptin, and high-sensitivity troponin I) were selected. Internal validation showed an area under the curve of 0.84. CONCLUSIONS Among 29 biomarkers, 7 were identified to be the most relevant discriminators between subtypes of MI or myocardial injury. Regression models based on these biomarkers allowed good discrimination. (Biomarkers in Acute Cardiac Care [BACC]; NCT02355457).
Collapse
Affiliation(s)
- Johannes T Neumann
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany; German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Jessica Weimann
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany
| | - Nils A Sörensen
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany; German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Tau S Hartikainen
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany
| | - Paul M Haller
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany; German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Jonas Lehmacher
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany
| | - Celine Brocks
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany
| | - Sophia Tenhaeff
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany
| | - Mahir Karakas
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany; German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Blankenberg
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany; German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Tanja Zeller
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany; German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Dirk Westermann
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany; German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
32
|
Planques A, Oliveira Moreira V, Benacom D, Bernard C, Jourdren L, Blugeon C, Dingli F, Masson V, Loew D, Prochiantz A, Di Nardo AA. OTX2 Homeoprotein Functions in Adult Choroid Plexus. Int J Mol Sci 2021; 22:8951. [PMID: 34445655 PMCID: PMC8396604 DOI: 10.3390/ijms22168951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
The choroid plexus is an important blood barrier that secretes cerebrospinal fluid, which essential for embryonic brain development and adult brain homeostasis. The OTX2 homeoprotein is a transcription factor that is critical for choroid plexus development and remains highly expressed in adult choroid plexus. Through RNA sequencing analyses of constitutive and conditional knockdown adult mouse models, we reveal putative functional roles for OTX2 in adult choroid plexus function, including cell signaling and adhesion, and show that OTX2 regulates the expression of factors that are secreted into the cerebrospinal fluid, notably transthyretin. We also show that Otx2 expression impacts choroid plexus immune and stress responses, and affects splicing, leading to changes in the mRNA isoforms of proteins that are implicated in the oxidative stress response and DNA repair. Through mass spectrometry analysis of OTX2 protein partners in the choroid plexus, and in known non-cell-autonomous target regions, such as the visual cortex and subventricular zone, we identify putative targets that are involved in cell adhesion, chromatin structure, and RNA processing. Thus, OTX2 retains important roles for regulating choroid plexus function and brain homeostasis throughout life.
Collapse
Affiliation(s)
- Anabelle Planques
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
| | - Vanessa Oliveira Moreira
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
| | - David Benacom
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
| | - Clémence Bernard
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
| | - Laurent Jourdren
- Genomics Core Facility, Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, PSL University, 75005 Paris, France; (L.J.); (C.B.)
| | - Corinne Blugeon
- Genomics Core Facility, Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, PSL University, 75005 Paris, France; (L.J.); (C.B.)
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, CEDEX 05, 75248 Paris, France; (F.D.); (V.M.); (D.L.)
| | - Vanessa Masson
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, CEDEX 05, 75248 Paris, France; (F.D.); (V.M.); (D.L.)
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, CEDEX 05, 75248 Paris, France; (F.D.); (V.M.); (D.L.)
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
- Institute of Neurosciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Ariel A. Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
| |
Collapse
|
33
|
Schmeißer W, Lüling R, Steinritz D, Thiermann H, Rein T, John H. Transthyretin as a target of alkylation and a potential biomarker for sulfur mustard poisoning: Electrophoretic and mass spectrometric identification and characterization. Drug Test Anal 2021; 14:80-91. [PMID: 34397154 DOI: 10.1002/dta.3146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/12/2022]
Abstract
For the verification of exposure to the banned blister agent sulfur mustard (SM) and the better understanding of its pathophysiology, protein adducts formed with endogenous proteins represent an important field of toxicological research. SM and its analogue 2-chloroethyl ethyl sulfide (CEES) are well known to alkylate nucleophilic amino acid side chains, for example, free-thiol groups of cysteine residues. The specific two-dimensional thiol difference gel electrophoresis (2D-thiol-DIGE) technique making use of maleimide dyes allows the staining of free cysteine residues in proteins. As a consequence of alkylation by, for example, SM or CEES, this staining intensity is reduced. 2D-thiol-DIGE analysis of human plasma incubated with CEES and subsequent matrix-assisted laser desorption/ionization time-of-flight (tandem) mass-spectrometry, MALDI-TOF MS(/MS), revealed transthyretin (TTR) as a target of alkylating agents. TTR was extracted from SM-treated plasma by immunomagnetic separation (IMS) and analyzed after tryptic cleavage by microbore liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (μLC-ESI MS/HR MS). It was found that the Cys10 -residue of TTR present in the hexapeptide C(-HETE)PLMVK was alkylated by the hydroxyethylthioethyl (HETE)-moiety, which is characteristic for SM exposure. It was shown that alkylated TTR is stable in plasma in vitro at 37°C for at least 14 days. In addition, C(-HETE)PLMVK can be selectively detected, is stable in the autosampler over 24 h, and shows linearity in a broad concentration range from 15.63 μM to 2 mM SM in plasma in vitro. Accordingly, TTR might represent a complementary protein marker molecule for the verification of SM exposure.
Collapse
Affiliation(s)
| | - Robin Lüling
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.,Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.,Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Bundeswehr Medical Service Academy, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
34
|
Mazzei G, Ikegami R, Abolhassani N, Haruyama N, Sakumi K, Saito T, Saido TC, Nakabeppu Y. A high-fat diet exacerbates the Alzheimer's disease pathology in the hippocampus of the App NL-F/NL-F knock-in mouse model. Aging Cell 2021; 20:e13429. [PMID: 34245097 PMCID: PMC8373331 DOI: 10.1111/acel.13429] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance and diabetes mellitus are major risk factors for Alzheimer's disease (AD), and studies with transgenic mouse models of AD have provided supportive evidence with some controversies. To overcome potential artifacts derived from transgenes, we used a knock‐in mouse model, AppNL−F/NL−F, which accumulates Aβ plaques from 6 months of age and shows mild cognitive impairment at 18 months of age, without the overproduction of APP. In the present study, 6‐month‐old male AppNL−F/NL−F and wild‐type mice were fed a regular or high‐fat diet (HFD) for 12 months. HFD treatment caused obesity and impaired glucose tolerance (i.e., T2DM conditions) in both wild‐type and AppNL−F/NL−F mice, but only the latter animals exhibited an impaired cognitive function accompanied by marked increases in both Aβ deposition and microgliosis as well as insulin resistance in the hippocampus. Furthermore, HFD‐fed AppNL−F/NL−F mice exhibited a significant decrease in volume of the granule cell layer in the dentate gyrus and an increased accumulation of 8‐oxoguanine, an oxidized guanine base, in the nuclei of granule cells. Gene expression profiling by microarrays revealed that the populations of the cell types in hippocampus were not significantly different between the two mouse lines, regardless of the diet. In addition, HFD treatment decreased the expression of the Aβ binding protein transthyretin (TTR) in AppNL−F/NL−F mice, suggesting that the depletion of TTR underlies the increased Aβ deposition in the hippocampus of HFD‐fed AppNL−F/NL−F mice.
Collapse
Affiliation(s)
- Guianfranco Mazzei
- Division of Neurofunctional Genomics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| | - Ryohei Ikegami
- Division of Neurofunctional Genomics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| | - Naoki Haruyama
- Division of Neurofunctional Genomics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience RIKEN Center for Brain Science Saitama Japan
- Department of Neurocognitive Science Institute of Brain Science Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience RIKEN Center for Brain Science Saitama Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| |
Collapse
|
35
|
Landi C, Vantaggiato L, Shaba E, Cameli P, Carleo A, d'Alessandro M, Bergantini L, Bargagli E, Bini L. Differential redox proteomic profiles of serum from severe asthma patients after one month of benralizumab and mepolizumab treatment. Pulm Pharmacol Ther 2021; 70:102060. [PMID: 34303823 DOI: 10.1016/j.pupt.2021.102060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Mepolizumab and Benralizumab are biological drugs for severe asthma patients able to reduce moderate-to-severe exacerbation rate (peripheral eosinophilial % mepolizumab 1.6 ± 1.2; benralizumab 0; p < 0.0001), improving the quality of life and lung function parameters (FEV1%: mepolizumab 87.1 ± 21.5; benralizumab 89.7 ± 15, p < 0.04). Here we report a preliminary redox proteomic study highlighting the level of oxidative burst present in serum from patients before and after one month of both treatments. Our results highlighted apolipoprotein A1 oxidation after Mepolizumab treatment, that could be related to HDL functionality and could represent a potential biomarker for the treatment. On the other hand, after one month of Benralizumab we detected higher oxidation levels of ceruloplasmin and transthyretin, considered an important oxidative stress biomarker which action help to maintain redox homeostasis.
Collapse
Affiliation(s)
- C Landi
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, Siena, Italy.
| | - L Vantaggiato
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, Siena, Italy
| | - E Shaba
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, Siena, Italy
| | - P Cameli
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, Siena, Italy
| | - A Carleo
- Department of Pulmonology, Hannover Medical School, Hannover, Germany
| | - M d'Alessandro
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, Siena, Italy
| | - L Bergantini
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, Siena, Italy
| | - E Bargagli
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, Siena, Italy
| | - L Bini
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
36
|
Jahns H, Taneja N, Willoughby JLS, Akabane-Nakata M, Brown CR, Nguyen T, Bisbe A, Matsuda S, Hettinger M, Manoharan RM, Rajeev KG, Maier MA, Zlatev I, Charisse K, Egli M, Manoharan M. Chirality matters: stereo-defined phosphorothioate linkages at the termini of small interfering RNAs improve pharmacology in vivo. Nucleic Acids Res 2021; 50:1221-1240. [PMID: 34268578 PMCID: PMC8860597 DOI: 10.1093/nar/gkab544] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/29/2021] [Accepted: 06/30/2021] [Indexed: 12/04/2022] Open
Abstract
A critical challenge for the successful development of RNA interference-based therapeutics therapeutics has been the enhancement of their in vivo metabolic stability. In therapeutically relevant, fully chemically modified small interfering RNAs (siRNAs), modification of the two terminal phosphodiester linkages in each strand of the siRNA duplex with phosphorothioate (PS) is generally sufficient to protect against exonuclease degradation in vivo. Since PS linkages are chiral, we systematically studied the properties of siRNAs containing single chiral PS linkages at each strand terminus. We report an efficient and simple method to introduce chiral PS linkages and demonstrate that Rp diastereomers at the 5′ end and Sp diastereomers at the 3′ end of the antisense siRNA strand improved pharmacokinetic and pharmacodynamic properties in a mouse model. In silico modeling studies provide mechanistic insights into how the Rp isomer at the 5′ end and Sp isomer at the 3′ end of the antisense siRNA enhance Argonaute 2 (Ago2) loading and metabolic stability of siRNAs in a concerted manner.
Collapse
Affiliation(s)
- Hartmut Jahns
- Alnylam Pharmaceuticals, 675 W. Kendall St, Cambridge, MA 02142, USA
| | - Nate Taneja
- Alnylam Pharmaceuticals, 675 W. Kendall St, Cambridge, MA 02142, USA
| | | | | | | | - Tuyen Nguyen
- Alnylam Pharmaceuticals, 675 W. Kendall St, Cambridge, MA 02142, USA
| | - Anna Bisbe
- Alnylam Pharmaceuticals, 675 W. Kendall St, Cambridge, MA 02142, USA
| | - Shigeo Matsuda
- Alnylam Pharmaceuticals, 675 W. Kendall St, Cambridge, MA 02142, USA
| | - Matt Hettinger
- Alnylam Pharmaceuticals, 675 W. Kendall St, Cambridge, MA 02142, USA
| | - Rajar M Manoharan
- Alnylam Pharmaceuticals, 675 W. Kendall St, Cambridge, MA 02142, USA
| | | | - Martin A Maier
- Alnylam Pharmaceuticals, 675 W. Kendall St, Cambridge, MA 02142, USA
| | - Ivan Zlatev
- Alnylam Pharmaceuticals, 675 W. Kendall St, Cambridge, MA 02142, USA
| | - Klaus Charisse
- Alnylam Pharmaceuticals, 675 W. Kendall St, Cambridge, MA 02142, USA
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 675 W. Kendall St, Cambridge, MA 02142, USA
| |
Collapse
|
37
|
Wieczorek E, Ożyhar A. Transthyretin: From Structural Stability to Osteoarticular and Cardiovascular Diseases. Cells 2021; 10:1768. [PMID: 34359938 PMCID: PMC8307983 DOI: 10.3390/cells10071768] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 01/10/2023] Open
Abstract
Transthyretin (TTR) is a tetrameric protein transporting hormones in the plasma and brain, which has many other activities that have not been fully acknowledged. TTR is a positive indicator of nutrition status and is negatively correlated with inflammation. TTR is a neuroprotective and oxidative-stress-suppressing factor. The TTR structure is destabilized by mutations, oxidative modifications, aging, proteolysis, and metal cations, including Ca2+. Destabilized TTR molecules form amyloid deposits, resulting in senile and familial amyloidopathies. This review links structural stability of TTR with the environmental factors, particularly oxidative stress and Ca2+, and the processes involved in the pathogenesis of TTR-related diseases. The roles of TTR in biomineralization, calcification, and osteoarticular and cardiovascular diseases are broadly discussed. The association of TTR-related diseases and vascular and ligament tissue calcification with TTR levels and TTR structure is presented. It is indicated that unaggregated TTR and TTR amyloid are bound by vicious cycles, and that TTR may have an as yet undetermined role(s) at the crossroads of calcification, blood coagulation, and immune response.
Collapse
Affiliation(s)
- Elżbieta Wieczorek
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland;
| | | |
Collapse
|
38
|
Shishkina GT, Kalinina TS, Gulyaeva NV, Lanshakov DA, Dygalo NN. Changes in Gene Expression and Neuroinflammation in the Hippocampus after Focal Brain Ischemia: Involvement in the Long-Term Cognitive and Mental Disorders. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:657-666. [PMID: 34225589 DOI: 10.1134/s0006297921060043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ischemic brain injuries are accompanied by the long-term changes in gene expression in the hippocampus, the limbic system structure, involved in the regulation of key aspects of the higher nervous activity, such as cognitive functions and emotions. The altered expression of genes and proteins encoded by them may be related to the development of post-ischemic psycho-emotional and cognitive disturbances. Activation of neuroinflammation following stroke in the hippocampus has been suggested to play an essential role in induction of long-lasting consequences. Identification of changes in the gene expression patterns after ischemia and investigation of the dynamics of these changes in the hippocampus are the necessary first steps toward understanding molecular pathways responsible for the development of post-stroke cognitive impairments and mental pathologies.
Collapse
Affiliation(s)
- Galina T Shishkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Tatiana S Kalinina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Dmitry A Lanshakov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nikolay N Dygalo
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
39
|
Couto E Silva A, Wu CYC, Clemons GA, Acosta CH, Chen CT, Possoit HE, Citadin CT, Lee RHC, Brown JI, Frankel A, Lin HW. Protein arginine methyltransferase 8 modulates mitochondrial bioenergetics and neuroinflammation after hypoxic stress. J Neurochem 2021; 159:742-761. [PMID: 34216036 DOI: 10.1111/jnc.15462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 11/28/2022]
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes involved in gene regulation and protein/histone modifications. PRMT8 is primarily expressed in the central nervous system, specifically within the cellular membrane and synaptic vesicles. Recently, PRMT8 has been described to play key roles in neuronal signaling such as a regulator of dendritic arborization, synaptic function and maturation, and neuronal differentiation and plasticity. Here, we examined the role of PRMT8 in response to hypoxia-induced stress in brain metabolism. Our results from liquid chromatography mass spectrometry, mitochondrial oxygen consumption rate (OCR), and protein analyses indicate that PRMT8(-/-) knockout mice presented with altered membrane phospholipid composition, decreased mitochondrial stress capacity, and increased neuroinflammatory markers, such as TNF-α and ionized calcium binding adaptor molecule 1 (Iba1, a specific marker for microglia/macrophage activation) after hypoxic stress. Furthermore, adenovirus-based overexpression of PRMT8 reversed the changes in membrane phospholipid composition, mitochondrial stress capacity, and neuroinflammatory markers. Together, our findings establish PRMT8 as an important regulatory component of membrane phospholipid composition, short-term memory function, mitochondrial function, and neuroinflammation in response to hypoxic stress.
Collapse
Affiliation(s)
| | | | | | | | - Chuck T Chen
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - HarLee E Possoit
- Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | | | - Jennifer I Brown
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hung Wen Lin
- Department of Cellular Biology & Anatomy.,Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
40
|
Diana Neely M, Xie S, Prince LM, Kim H, Tukker AM, Aschner M, Thimmapuram J, Bowman AB. Single cell RNA sequencing detects persistent cell type- and methylmercury exposure paradigm-specific effects in a human cortical neurodevelopmental model. Food Chem Toxicol 2021; 154:112288. [PMID: 34089799 DOI: 10.1016/j.fct.2021.112288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/13/2022]
Abstract
The developing human brain is uniquely vulnerable to methylmercury (MeHg) resulting in lasting effects especially in developing cortical structures. Here we assess by single-cell RNA sequencing (scRNAseq) persistent effects of developmental MeHg exposure in a differentiating cortical human-induced pluripotent stem cell (hiPSC) model which we exposed to in vivo relevant and non-cytotoxic MeHg (0.1 and 1.0 μM) concentrations. The cultures were exposed continuously for 6 days either once only during days 4-10, a stage representative of neural epithelial- and radial glia cells, or twice on days 4-10 and days 14-20, a somewhat later stage which includes intermediate precursors and early postmitotic neurons. After the completion of MeHg exposure the cultures were differentiated further until day 38 and then assessed for persistent MeHg-induced effects by scRNAseq. We report subtle, but significant changes in the population size of different cortical cell types/stages and cell cycle. We also observe MeHg-dependent differential gene expression and altered biological processes as determined by Gene Ontology analysis. Our data demonstrate that MeHg results in changes in gene expression in human developing cortical neurons that manifest well after cessation of exposure and that these changes are cell type-, developmental stage-, and exposure paradigm-specific.
Collapse
Affiliation(s)
- M Diana Neely
- Dept of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN, USA
| | - Lisa M Prince
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Hyunjin Kim
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Anke M Tukker
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Dept of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Aaron B Bowman
- Dept of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; School of Health Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
41
|
Proteomic Exploration of Plasma Exosomes and Other Small Extracellular Vesicles in Pediatric Hodgkin Lymphoma: A Potential Source of Biomarkers for Relapse Occurrence. Diagnostics (Basel) 2021; 11:diagnostics11060917. [PMID: 34063765 PMCID: PMC8223799 DOI: 10.3390/diagnostics11060917] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
Exosomes and other small extracellular vesicles (EVs) are potential sources of cancer biomarkers. Plasma-derived EVs have not yet been studied in pediatric Hodgkin lymphoma (HL), for which predictive biomarkers of relapse are greatly needed. In this two-part proteomic study, we used two-dimensional difference gel electrophoresis (2D-DIGE) followed by liquid chromatography–tandem mass spectrometry (LC–MS/MS) to analyze EV proteins of plasma collected at diagnosis from children with nodular sclerosis HL, relapsed or not. EVs isolated using membrane affinity had radii ranging from 20 to 130 nm and contained the programmed cell death 6-interacting (ALIX) and the tumor susceptibility gene 101 (TSG101) proteins, whereas calnexin (CANX) was not detected. 2D-DIGE identified 16 spots as differentially abundant between non-relapsed and relapsed HL (|fold change| ≥ 1.5, p < 0.05). LC–MS/MS identified these spots as 11 unique proteins, including five more abundant in non-relapsed HL (e.g., complement C4b, C4B; fibrinogen γ chain, FGG) and six more abundant in relapsed HL (e.g., transthyretin, TTR). Shotgun LC–MS/MS on pooled EV proteins from non-relapsed HL identified 161 proteins, including 127 already identified in human exosomes (ExoCarta data). This EV cargo included 89 proteins not yet identified in exosomes from healthy plasma. Functional interrogation by the Database for Annotation, Visualization and Integrated Discovery (DAVID) revealed that the EV proteins participate in platelet degranulation and serine-type endopeptidase activity as the most significant Gene Ontology (GO) biological process and molecular function (p < 0.01).
Collapse
|
42
|
Syed S, Nissilä E, Ruhanen H, Fudo S, Gaytán MO, Sihvo SP, Lorey MB, Metso J, Öörni K, King SJ, Oommen OP, Jauhiainen M, Meri S, Käkelä R, Haapasalo K. Streptococcus pneumoniae pneumolysin and neuraminidase A convert high-density lipoproteins into pro-atherogenic particles. iScience 2021; 24:102535. [PMID: 34124613 PMCID: PMC8175417 DOI: 10.1016/j.isci.2021.102535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022] Open
Abstract
High-density lipoproteins (HDLs) are a group of different subpopulations of sialylated particles that have an essential role in the reverse cholesterol transport (RCT) pathway. Importantly, changes in the protein and lipid composition of HDLs may lead to the formation of particles with reduced atheroprotective properties. Here, we show that Streptococcus pneumoniae pneumolysin (PLY) and neuraminidase A (NanA) impair HDL function by causing chemical and structural modifications of HDLs. The proteomic, lipidomic, cellular, and biochemical analysis revealed that PLY and NanA induce significant changes in sialic acid, protein, and lipid compositions of HDL. The modified HDL particles have reduced cholesterol acceptor potential from activated macrophages, elevated levels of malondialdehyde adducts, and show significantly increased complement activating capacity. These results suggest that accumulation of these modified HDL particles in the arterial intima may present a trigger for complement activation, inflammatory response, and thereby promote atherogenic disease progression. S. pneumoniae molecules PLY and NanA target human high-density lipoprotein (HDL). These interactions result in major modifications in the HDL proteome and lipidome. Microbially modified HDL activates humoral and cell-mediated innate immune responses. The activated immune response mediates formation of pro-atherogenic epitopes on HDL.
Collapse
Affiliation(s)
- Shahan Syed
- Department of Bacteriology and Immunology, University of Helsinki, 00014 Helsinki, Finland
| | - Eija Nissilä
- Department of Bacteriology and Immunology, University of Helsinki, 00014 Helsinki, Finland
| | - Hanna Ruhanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE) and Biocenter Finland, Helsinki 00014, Finland
| | - Satoshi Fudo
- Department of Bacteriology and Immunology, University of Helsinki, 00014 Helsinki, Finland
| | - Meztlli O. Gaytán
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sanna P. Sihvo
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE) and Biocenter Finland, Helsinki 00014, Finland
| | | | - Jari Metso
- Minerva Foundation Institute for Medical Research, Biomedicum, 00290 Helsinki, Finland
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland
| | | | - Samantha J. King
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Oommen P. Oommen
- Bioengineering and Nanomedicine Lab, Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33720 Tampere, Finland
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Biomedicum, 00290 Helsinki, Finland
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki, 00014 Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE) and Biocenter Finland, Helsinki 00014, Finland
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, University of Helsinki, 00014 Helsinki, Finland
- Corresponding author
| |
Collapse
|
43
|
Fröhlich E, Wahl R. Physiological Role and Use of Thyroid Hormone Metabolites - Potential Utility in COVID-19 Patients. Front Endocrinol (Lausanne) 2021; 12:587518. [PMID: 33981284 PMCID: PMC8109250 DOI: 10.3389/fendo.2021.587518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 03/31/2021] [Indexed: 01/09/2023] Open
Abstract
Thyroxine and triiodothyronine (T3) are classical thyroid hormones and with relatively well-understood actions. In contrast, the physiological role of thyroid hormone metabolites, also circulating in the blood, is less well characterized. These molecules, namely, reverse triiodothyronine, 3,5-diiodothyronine, 3-iodothyronamine, tetraiodoacetic acid and triiodoacetic acid, mediate both agonistic (thyromimetic) and antagonistic actions additional to the effects of the classical thyroid hormones. Here, we provide an overview of the main factors influencing thyroid hormone action, and then go on to describe the main effects of the metabolites and their potential use in medicine. One section addresses thyroid hormone levels in corona virus disease 19 (COVID-19). It appears that i) the more potently-acting molecules T3 and triiodoacetic acid have shorter half-lives than the less potent antagonists 3-iodothyronamine and tetraiodoacetic acid; ii) reverse T3 and 3,5-diiodothyronine may serve as indicators for metabolic dysregulation and disease, and iii) Nanotetrac may be a promising candidate for treating cancer, and resmetirom and VK2809 for steatohepatitis. Further, the use of L-T3 in the treatment of severely ill COVID-19 patients is critically discussed.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tuebingen, Tuebingen, Germany
- Center for Medical Research, Medical University Graz, Graz, Austria
| | - Richard Wahl
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
44
|
Sherafat Y, Bautista M, Fowler CD. Multidimensional Intersection of Nicotine, Gene Expression, and Behavior. Front Behav Neurosci 2021; 15:649129. [PMID: 33828466 PMCID: PMC8019722 DOI: 10.3389/fnbeh.2021.649129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
The cholinergic system plays a crucial role in nervous system function with important effects on developmental processes, cognition, attention, motivation, reward, learning, and memory. Nicotine, the reinforcing component of tobacco and e-cigarettes, directly acts on the cholinergic system by targeting nicotinic acetylcholine receptors (nAChRs) in the brain. Activation of nAChRs leads to a multitude of immediate and long-lasting effects in specific cellular populations, thereby affecting the addictive properties of the drug. In addition to the direct actions of nicotine in binding to and opening nAChRs, the subsequent activation of circuits and downstream signaling cascades leads to a wide range of changes in gene expression, which can subsequently alter further behavioral expression. In this review, we provide an overview of the actions of nicotine that lead to changes in gene expression and further highlight evidence supporting how these changes can often be bidirectional, thereby inducing subsequent changes in behaviors associated with further drug intake.
Collapse
Affiliation(s)
- Yasmine Sherafat
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| | - Malia Bautista
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| |
Collapse
|
45
|
Menzel A, Samouda H, Dohet F, Loap S, Ellulu MS, Bohn T. Common and Novel Markers for Measuring Inflammation and Oxidative Stress Ex Vivo in Research and Clinical Practice-Which to Use Regarding Disease Outcomes? Antioxidants (Basel) 2021; 10:antiox10030414. [PMID: 33803155 PMCID: PMC8001241 DOI: 10.3390/antiox10030414] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Many chronic conditions such as cancer, chronic obstructive pulmonary disease, type-2 diabetes, obesity, peripheral/coronary artery disease and auto-immune diseases are associated with low-grade inflammation. Closely related to inflammation is oxidative stress (OS), which can be either causal or secondary to inflammation. While a low level of OS is physiological, chronically increased OS is deleterious. Therefore, valid biomarkers of these signalling pathways may enable detection and following progression of OS/inflammation as well as to evaluate treatment efficacy. Such biomarkers should be stable and obtainable through non-invasive methods and their determination should be affordable and easy. The most frequently used inflammatory markers include acute-phase proteins, essentially CRP, serum amyloid A, fibrinogen and procalcitonin, and cytokines, predominantly TNFα, interleukins 1β, 6, 8, 10 and 12 and their receptors and IFNγ. Some cytokines appear to be disease-specific. Conversely, OS-being ubiquitous-and its biomarkers appear less disease or tissue-specific. These include lipid peroxidation products, e.g., F2-isoprostanes and malondialdehyde, DNA breakdown products (e.g., 8-OH-dG), protein adducts (e.g., carbonylated proteins), or antioxidant status. More novel markers include also -omics related ones, as well as non-invasive, questionnaire-based measures, such as the dietary inflammatory-index (DII), but their link to biological responses may be variable. Nevertheless, many of these markers have been clearly related to a number of diseases. However, their use in clinical practice is often limited, due to lacking analytical or clinical validation, or technical challenges. In this review, we strive to highlight frequently employed and useful markers of inflammation-related OS, including novel promising markers.
Collapse
Affiliation(s)
- Alain Menzel
- Laboratoires Réunis, 38, Rue Hiehl, L-6131 Junglinster, Luxembourg; (A.M.); (F.D.)
| | - Hanen Samouda
- Nutrition and Health Research Group, Department of Population Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, L-1445 Strassen, Luxembourg;
| | - Francois Dohet
- Laboratoires Réunis, 38, Rue Hiehl, L-6131 Junglinster, Luxembourg; (A.M.); (F.D.)
| | - Suva Loap
- Clinic Cryo Esthetic, 11 Rue Éblé, 75007 Paris, France;
| | - Mohammed S. Ellulu
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Al-Azhar University of Gaza (AUG), Gaza City 00970, Palestine;
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Population Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, L-1445 Strassen, Luxembourg;
- Correspondence:
| |
Collapse
|
46
|
Liśkiewicz AD, Marczak Ł, Bogus K, Liśkiewicz D, Przybyła M, Lewin-Kowalik J. Proteomic and Structural Manifestations of Cardiomyopathy in Rat Models of Obesity and Weight Loss. Front Endocrinol (Lausanne) 2021; 12:568197. [PMID: 33716957 PMCID: PMC7945951 DOI: 10.3389/fendo.2021.568197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity cardiomyopathy increases the risk of heart failure and death. Obesity is curable, leading to the restoration of the heart phenotype, but it is not clear if there are any after-effects of obesity present after weight loss. We characterize the proteomic landscape of obesity cardiomyopathy with an evaluation of whether the cardiac phenotype is still shaped after weight loss. Cardiomyopathy was validated by cardiac hypertrophy, fibrosis, oversized myocytes, and mTOR upregulation in a rat model of cafeteria diet-induced developmental obesity. By global proteomic techniques (LC-MS/MS) a plethora of molecular changes was observed in the heart and circulation of obese animals, suggesting abnormal utilization of metabolic substrates. This was confirmed by increased levels of cardiac ACSL-1, a key enzyme for fatty acid degradation and decreased GLUT-1, a glucose transporter in obese rats. Calorie restriction and weight loss led to the normalization of the heart's size, but fibrosis was still excessive. The proteomic compositions of cardiac tissue and plasma were different after weight loss as compared to control. In addition to morphological consequences, obesity cardiomyopathy involves many proteomic changes. Weight loss provides for a partial repair of the heart's architecture, but the trace of fibrotic deposition and proteomic alterations may occur.
Collapse
Affiliation(s)
- Arkadiusz D. Liśkiewicz
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Bogus
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Daniela Liśkiewicz
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Przybyła
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
47
|
Bellei E, Rustichelli C, Bergamini S, Monari E, Baraldi C, Lo Castro F, Tomasi A, Ferrari A. Proteomic serum profile in menstrual-related and post menopause migraine. J Pharm Biomed Anal 2020; 184:113165. [PMID: 32113117 DOI: 10.1016/j.jpba.2020.113165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/22/2022]
Abstract
The aim of this pilot study was to analyze the serum proteomic profile of women suffering from menstrual-related migraine (MM group, n = 15) and migraine in post-menopause (PM group, n = 15) in comparison with non-headache control females (C group, n = 15). Serum samples were subjected to two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (MS) analysis for protein identification. Based on 2D-gel maps and PDQuest 2-D software, 13 differentially expressed spots, corresponding to 12 unique proteins identified by Liquid Chromatography-Electrospray Ionization-Quadrupole-Time of Flight/tandem mass spectrometry (LC-ESI-QToF-MS/MS), were detected in the MM and PM groups vs C group. Five inflammatory and regulatory of vascular integrity proteins (prothrombin, serum amyloid P-component, Ig kappa chain C region, apolipoprotein A-I, serum amyloid A-4 protein) were found deregulated in both MM and PM groups compared to C group; MM group showed the upregulation of other inflammatory protein fragments (inter-alpha-trypsin inhibitor heavy chain H4 and complement C4-A) compared to C group; PM group, in comparison with C group, displayed a noteworthy upregulation of transthyretin and other deregulated proteins (tetranectin, alpha-1-antitrypsin, haptoglobin, apolipoprotein A-IV) playing a role in anti-inflammatory and reparative processes. In conclusion, proteomic analysis was able to reveal differences in protein expression between migraine sufferers and non-headache women; as in other neurological diseases characterized by neuroinflammation, the serum proteome of migraine women presents an abundance of proteins indicative of cellular damage, oxidative stress and inflammation. This relevant inflammatory status, if confirmed in larger series, could represent a target for menstrual-related migraine treatment.
Collapse
Affiliation(s)
- Elisa Bellei
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy
| | - Cecilia Rustichelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi, 103, 41125 Modena, Italy.
| | - Stefania Bergamini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy
| | - Emanuela Monari
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy
| | - Carlo Baraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo, 71, 41124 Modena, Italy
| | - Flavia Lo Castro
- School of Pharmacology and Clinical Toxicology, University of Modena and Reggio Emilia, Via del Pozzo, 71, 41124 Modena, Italy
| | - Aldo Tomasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy
| | - Anna Ferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo, 71, 41124 Modena, Italy
| |
Collapse
|
48
|
Damasceno S, Gómez-Nieto R, Garcia-Cairasco N, Herrero-Turrión MJ, Marín F, Lopéz DE. Top Common Differentially Expressed Genes in the Epileptogenic Nucleus of Two Strains of Rodents Susceptible to Audiogenic Seizures: WAR and GASH/Sal. Front Neurol 2020; 11:33. [PMID: 32117006 PMCID: PMC7031349 DOI: 10.3389/fneur.2020.00033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022] Open
Abstract
The Wistar Audiogenic Rat (WAR) and the Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal) strains are audiogenic epilepsy models, in which seizures are triggered by acoustic stimulation. These strains were developed by selective reproduction and have a genetic background with minimal or no variation. In the current study, we evaluated the transcriptome of the inferior colliculus, the epileptogenic nucleus, of both audiogenic models, in order to get insights into common molecular aspects associated to their epileptic phenotype. Based on GASH/Sal RNA-Seq and WAR microarray data, we performed a comparative analysis that includes selection and functional annotation of differentially regulated genes in each model, transcriptional evaluation by quantitative reverse transcription PCR of common genes identified in both transcriptomes and immunohistochemistry. The microarray data revealed 71 genes with differential expression in WAR, and the RNA-Seq data revealed 64 genes in GASH/Sal, showing common genes in both models. Analysis of transcripts showed that Egr3 was overexpressed in WAR and GASH/Sal after audiogenic seizures. The Npy, Rgs2, Ttr, and Abcb1a genes presented the same transcriptional profile in the WAR, being overexpressed in the naïve and stimulated WAR in relation to their controls. Npy appeared overexpressed only in the naïve GASH/Sal compared to its control, while Rgs2 and Ttr genes appeared overexpressed in naïve GASH/Sal and overexpressed after audiogenic seizure. No statistical difference was observed in the expression of Abcb1a in the GASH/Sal model. Compared to control animals, the immunohistochemical analysis of the inferior colliculus showed an increased immunoreactivity for NPY, RGS2, and TTR in both audiogenic models. Our data suggest that WAR and GASH/Sal strains have a difference in the timing of gene expression after seizure, in which GASH/Sal seems to respond more quickly. The transcriptional profile of the Npy, Rgs2, and Ttr genes under free-seizure conditions in both audiogenic models indicates an intrinsic expression already established in the strains. Our findings suggest that these genes may be causing small changes in different biological processes involved in seizure occurrence and response, and indirectly contributing to the susceptibility of the WAR and GASH/Sal models to audiogenic seizures.
Collapse
Affiliation(s)
- Samara Damasceno
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Salamanca Institute for Biomedical Research, Salamanca, Spain
| | | | - Manuel Javier Herrero-Turrión
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,INCYL Neurological Tissue Bank (BTN-INCYL), Salamanca, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
| | - Dolores E Lopéz
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Salamanca Institute for Biomedical Research, Salamanca, Spain
| |
Collapse
|
49
|
Rael LT, Bar-Or R, Banton KL, Mains CW, Madayag RM, Marshall GT, Allen Tanner II, Waxman M, Acuna DL, Bar-Or D. The presence of S-sulfonated transthyretin in commercial human serum albumin solutions: Potential contribution to neuropathy. Clin Chim Acta 2019; 499:70-74. [PMID: 31479652 DOI: 10.1016/j.cca.2019.08.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Commercial solutions of human serum albumin (HSA) are administered to critically ill patients for the treatment of shock, restoration of blood volume, and the acute management of burns. Previously, conflicting results on the effects of HSA administration have been reported varying from a favorable increase in total plasma antioxidant capacity to a higher mortality rate in traumatic brain injury (TBI) patients. These results could be partially explained due to the known heterogeneity of HSA solutions. We report the discovery of S-sulfonated human transthyretin (hTTR) in HSA solutions. METHODS Proteomics was performed on commercially available solutions of 5% HSA by LC-MS analysis. The MS charge envelope for hTTR was deconvolved to the uncharged native hTTR parent mass (13,762 Da). The parent mass was then integrated, and relative proportions of the 2 major species of hTTR, native and S-sulfonated hTTR (13,842 Da), were calculated. RESULTS The majority of hTTR found in 5% commercial HSA solutions is in the S-sulfonated form regardless of the age of the HSA solution. S-sulfonation of hTTR at the free cysteine residue in position 10 appears to be the result of a mixed disulfide exchange possibly with S-cysteinylated hTTR or S-cysteinylated HSA. hTTR is a tetramer composed of four identical monomers each containing a reduced cysteine residue in position 10. S-sulfonation of hTTR at this cysteine residue can destabilize the hTTR tetramer, an important step in the formation of TTR-related amyloid fibrils. CONCLUSIONS Administration of a commercial HSA solution that already contains S-sulfonated hTTR could potentially contribute to the development of amyloid-related/polyneuropathy in the critically ill.
Collapse
Affiliation(s)
- Leonard T Rael
- Swedish Medical Center, Englewood, CO, United States of America; Rocky Vista University, Parker, CO, United States of America; St. Anthony Hospital, Lakewood, CO, United States of America; Medical City Plano, Plano, TX, United States of America; Penrose Hospital, Colorado Springs, CO, United States of America; Research Medical Center, Kansas City, MO, United States of America
| | - Raphael Bar-Or
- Swedish Medical Center, Englewood, CO, United States of America; Rocky Vista University, Parker, CO, United States of America; St. Anthony Hospital, Lakewood, CO, United States of America; Medical City Plano, Plano, TX, United States of America; Penrose Hospital, Colorado Springs, CO, United States of America; Research Medical Center, Kansas City, MO, United States of America
| | - Kaysie L Banton
- Swedish Medical Center, Englewood, CO, United States of America; Rocky Vista University, Parker, CO, United States of America
| | - Charles W Mains
- Rocky Vista University, Parker, CO, United States of America; St. Anthony Hospital, Lakewood, CO, United States of America
| | | | | | - I I Allen Tanner
- Penrose Hospital, Colorado Springs, CO, United States of America
| | - Michael Waxman
- Research Medical Center, Kansas City, MO, United States of America
| | - David L Acuna
- Wesley Medical Center, Wichita, KS, United States of America
| | - David Bar-Or
- Swedish Medical Center, Englewood, CO, United States of America; Rocky Vista University, Parker, CO, United States of America; St. Anthony Hospital, Lakewood, CO, United States of America; Medical City Plano, Plano, TX, United States of America; Penrose Hospital, Colorado Springs, CO, United States of America; Research Medical Center, Kansas City, MO, United States of America; Wesley Medical Center, Wichita, KS, United States of America.
| |
Collapse
|
50
|
Park GY, Jamerlan A, Shim KH, An SSA. Diagnostic and Treatment Approaches Involving Transthyretin in Amyloidogenic Diseases. Int J Mol Sci 2019; 20:E2982. [PMID: 31216785 PMCID: PMC6628571 DOI: 10.3390/ijms20122982] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023] Open
Abstract
Transthyretin (TTR) is a thyroid hormone-binding protein which transports thyroxine from the bloodstream to the brain. The structural stability of TTR in tetrameric form is crucial for maintaining its original functions in blood or cerebrospinal fluid (CSF). The altered structure of TTR due to genetic mutations or its deposits due to aggregation could cause several deadly diseases such as cardiomyopathy and neuropathy in autonomic, motor, and sensory systems. The early diagnoses for hereditary amyloid TTR with cardiomyopathy (ATTR-CM) and wild-type amyloid TTR (ATTRwt) amyloidosis, which result from amyloid TTR (ATTR) deposition, are difficult to distinguish due to the close similarities of symptoms. Thus, many researchers investigated the role of ATTR as a biomarker, especially its potential for differential diagnosis due to its varying pathogenic involvement in hereditary ATTR-CM and ATTRwt amyloidosis. As a result, the detection of ATTR became valuable in the diagnosis and determination of the best course of treatment for ATTR amyloidoses. Assessing the extent of ATTR deposition and genetic analysis could help in determining disease progression, and thus survival rate could be improved following the determination of the appropriate course of treatment for the patient. Here, the perspectives of ATTR in various diseases were presented.
Collapse
Affiliation(s)
- Gil Yong Park
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si 13120, Korea.
| | - Angelo Jamerlan
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si 13120, Korea.
| | - Kyu Hwan Shim
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si 13120, Korea.
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si 13120, Korea.
| |
Collapse
|