1
|
Koralewska N, Corradi E, Milewski MC, Masante L, Szczepanska A, Kierzek R, Figlerowicz M, Baudet ML, Kurzynska-Kokorniak A. Short 2'-O-methyl/LNA oligomers as highly-selective inhibitors of miRNA production in vitro and in vivo. Nucleic Acids Res 2024; 52:5804-5824. [PMID: 38676942 PMCID: PMC11162791 DOI: 10.1093/nar/gkae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
MicroRNAs (miRNAs) that share identical or near-identical sequences constitute miRNA families and are predicted to act redundantly. Yet recent evidence suggests that members of the same miRNA family with high sequence similarity might have different roles and that this functional divergence might be rooted in their precursors' sequence. Current knock-down strategies such as antisense oligonucleotides (ASOs) or miRNA sponges cannot distinguish between identical or near identical miRNAs originating from different precursors to allow exploring unique functions of these miRNAs. We here develop a novel strategy based on short 2'-OMe/LNA-modified oligonucleotides to selectively target specific precursor molecules and ablate the production of individual members of miRNA families in vitro and in vivo. Leveraging the highly conserved Xenopus miR-181a family as proof-of-concept, we demonstrate that 2'-OMe/LNA-ASOs targeting the apical region of pre-miRNAs achieve precursor-selective inhibition of mature miRNA-5p production. Furthermore, we extend the applicability of our approach to the human miR-16 family, illustrating its universality in targeting precursors generating identical miRNAs. Overall, our strategy enables efficient manipulation of miRNA expression, offering a powerful tool to dissect the functions of identical or highly similar miRNAs derived from different precursors within miRNA families.
Collapse
Affiliation(s)
- Natalia Koralewska
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Eloina Corradi
- Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento 38123, Italy
| | - Marek C Milewski
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Linda Masante
- Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento 38123, Italy
| | - Agnieszka Szczepanska
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Ryszard Kierzek
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Marek Figlerowicz
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Marie-Laure Baudet
- Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento 38123, Italy
| | - Anna Kurzynska-Kokorniak
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| |
Collapse
|
2
|
El Mir J, Nasrallah A, Thézé N, Cario M, Fayyad-Kazan H, Thiébaud P, Rezvani HR. Xenopus as a model system for studying pigmentation and pigmentary disorders. Pigment Cell Melanoma Res 2024. [PMID: 38849973 DOI: 10.1111/pcmr.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024]
Abstract
Human pigmentary disorders encompass a broad spectrum of phenotypic changes arising from disruptions in various stages of melanocyte formation, the melanogenesis process, or the transfer of pigment from melanocytes to keratinocytes. A large number of pigmentation genes associated with pigmentary disorders have been identified, many of them awaiting in vivo confirmation. A more comprehensive understanding of the molecular basis of pigmentary disorders requires a vertebrate animal model where changes in pigmentation are easily observable in vivo and can be combined to genomic modifications and gain/loss-of-function tools. Here we present the amphibian Xenopus with its unique features that fulfill these requirements. Changes in pigmentation are particularly easy to score in Xenopus embryos, allowing whole-organism based phenotypic screening. The development and behavior of Xenopus melanocytes closely mimic those observed in mammals. Interestingly, both Xenopus and mammalian skins exhibit comparable reactions to ultraviolet radiation. This review highlights how Xenopus constitutes an alternative and complementary model to the more commonly used mouse and zebrafish, contributing to the advancement of knowledge in melanocyte cell biology and related diseases.
Collapse
Affiliation(s)
- Joudi El Mir
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
| | - Ali Nasrallah
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
| | - Nadine Thézé
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
| | - Muriel Cario
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
- Aquiderm, University of Bordeaux, Bordeaux, France
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Lebanese University, Hadath, Lebanon
| | - Pierre Thiébaud
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
| | - Hamid-Reza Rezvani
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
- Aquiderm, University of Bordeaux, Bordeaux, France
| |
Collapse
|
3
|
Willsey HR, Seaby EG, Godwin A, Ennis S, Guille M, Grainger RM. Modelling human genetic disorders in Xenopus tropicalis. Dis Model Mech 2024; 17:dmm050754. [PMID: 38832520 PMCID: PMC11179720 DOI: 10.1242/dmm.050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Recent progress in human disease genetics is leading to rapid advances in understanding pathobiological mechanisms. However, the sheer number of risk-conveying genetic variants being identified demands in vivo model systems that are amenable to functional analyses at scale. Here we provide a practical guide for using the diploid frog species Xenopus tropicalis to study many genes and variants to uncover conserved mechanisms of pathobiology relevant to human disease. We discuss key considerations in modelling human genetic disorders: genetic architecture, conservation, phenotyping strategy and rigour, as well as more complex topics, such as penetrance, expressivity, sex differences and current challenges in the field. As the patient-driven gene discovery field expands significantly, the cost-effective, rapid and higher throughput nature of Xenopus make it an essential member of the model organism armamentarium for understanding gene function in development and in relation to disease.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA 94518, USA
| | - Eleanor G Seaby
- Genomic Informatics Group, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Annie Godwin
- European Xenopus Resource Centre (EXRC), School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Sarah Ennis
- Genomic Informatics Group, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Matthew Guille
- European Xenopus Resource Centre (EXRC), School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Robert M Grainger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
4
|
Król M, Skowron P, Skowron K, Gil K. The Fetal Alcohol Spectrum Disorders-An Overview of Experimental Models, Therapeutic Strategies, and Future Research Directions. CHILDREN (BASEL, SWITZERLAND) 2024; 11:531. [PMID: 38790526 PMCID: PMC11120554 DOI: 10.3390/children11050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Since the establishment of a clear link between maternal alcohol consumption during pregnancy and certain birth defects, the research into the treatment of FASD has become increasingly sophisticated. The field has begun to explore the possibility of intervening at different levels, and animal studies have provided valuable insights into the pathophysiology of the disease, forming the basis for implementing potential therapies with increasingly precise mechanisms. The recent reports suggest that compounds that reduce the severity of neurodevelopmental deficits, including glial cell function and myelination, and/or target oxidative stress and inflammation may be effective in treating FASD. Our goal in writing this article was to analyze and synthesize current experimental therapeutic interventions for FASD, elucidating their potential mechanisms of action, translational relevance, and implications for clinical application. This review exclusively focuses on animal models and the interventions used in these models to outline the current direction of research. We conclude that given the complexity of the underlying mechanisms, a multifactorial approach combining nutritional supplementation, pharmacotherapy, and behavioral techniques tailored to the stage and severity of the disease may be a promising avenue for further research in humans.
Collapse
Affiliation(s)
- Magdalena Król
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| | - Paweł Skowron
- Department of Physiology and Pathophysiology, Wroclaw Medical University, T. Chalubinskiego St. 10, 50-368 Wrocław, Poland;
| | - Kamil Skowron
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| |
Collapse
|
5
|
Fu L, Wang S, Liu L, Shibata Y, Okada M, Luu N, Shi YB. Simplifying Genotyping of Mutants from Genome Editing with a Parallel qPCR-Based iGenotype Index. Cells 2024; 13:247. [PMID: 38334640 PMCID: PMC10854663 DOI: 10.3390/cells13030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Targeted genome editing is a powerful tool in reverse genetic studies of gene function in many aspects of biological and pathological processes. The CRISPR/Cas system or engineered endonucleases such as ZFNs and TALENs are the most widely used genome editing tools that are introduced into cells or fertilized eggs to generate double-strand DNA breaks within the targeted region, triggering cellular DNA repair through either homologous recombination or non-homologous end joining (NHEJ). DNA repair through the NHEJ mechanism is usually error-prone, leading to point mutations or indels (insertions and deletions) within the targeted region. Some of the mutations in embryos are germline transmissible, thus providing an effective way to generate model organisms with targeted gene mutations. However, point mutations and short indels are difficult to be effectively genotyped, often requiring time-consuming and costly DNA sequencing to obtain reliable results. Here, we developed a parallel qPCR assay in combination with an iGenotype index to allow simple and reliable genotyping. The genotype-associated iGenotype indexes converged to three simple genotype-specific constant values (1, 0, -1) regardless of allele-specific primers used in the parallel qPCR assays or gene mutations at wide ranges of PCR template concentrations, thus resulting in clear genotype-specific cutoffs, established through statistical analysis, for genotype identification. While we established such a genotyping assay in the Xenopus tropicalis model, the approach should be applicable to genotyping of any organism or cells and can be potentially used for large-scale, automated genotyping.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (L.F.); (S.W.); (L.L.); (Y.S.); (M.O.); (N.L.)
| | - Shouhong Wang
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (L.F.); (S.W.); (L.L.); (Y.S.); (M.O.); (N.L.)
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lusha Liu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (L.F.); (S.W.); (L.L.); (Y.S.); (M.O.); (N.L.)
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuki Shibata
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (L.F.); (S.W.); (L.L.); (Y.S.); (M.O.); (N.L.)
- Department of Biology, Nippon Medical School, Tokyo 180-0023, Japan
| | - Morihiro Okada
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (L.F.); (S.W.); (L.L.); (Y.S.); (M.O.); (N.L.)
| | - Nga Luu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (L.F.); (S.W.); (L.L.); (Y.S.); (M.O.); (N.L.)
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (L.F.); (S.W.); (L.L.); (Y.S.); (M.O.); (N.L.)
| |
Collapse
|
6
|
Virk SM, Trujillo-Provencio C, Serrano EE. Transcriptomic Analysis Identifies Candidate Genes for Differential Expression during Xenopus laevis Inner Ear Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.29.573599. [PMID: 38260420 PMCID: PMC10802236 DOI: 10.1101/2023.12.29.573599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background The genes involved in inner ear development and maintenance of the adult organ have yet to be fully characterized. Previous genetic analysis has emphasized the early development that gives rise to the otic vesicle. This study aimed to bridge the knowledge gap and identify candidate genes that are expressed as the auditory and vestibular sensory organs continue to grow and develop until the systems reach postmetamorphic maturity. Methods Affymetrix microarrays were used to assess inner ear transcriptome profiles from three Xenopus laevis developmental ages where all eight endorgans comprise mechanosensory hair cells: larval stages 50 and 56, and the post-metamorphic juvenile. Pairwise comparisons were made between the three developmental stages and the resulting differentially expressed X. laevis Probe Set IDs (Xl-PSIDs) were assigned to four groups based on differential expression patterns. DAVID analysis was undertaken to impart functional annotation to the differentially regulated Xl-PSIDs. Results Analysis identified 1510 candidate genes for differential gene expression in one or more pairwise comparison. Annotated genes not previously associated with inner ear development emerged from this analysis, as well as annotated genes with established inner ear function, such as oncomodulin, neurod1, and sp7. Notably, 36% of differentially expressed Xl-PSIDs were unannotated. Conclusions Results draw attention to the complex gene regulatory patterns that characterize Xenopus inner ear development, and underscore the need for improved annotation of the X. laevis genome. Outcomes can be utilized to select candidate inner ear genes for functional analysis, and to promote Xenopus as a model organism for biomedical studies of hearing and balance.
Collapse
Affiliation(s)
- Selene M Virk
- Biology Department, New Mexico State University, Las Cruces NM USA 88003
| | | | - Elba E Serrano
- Biology Department, New Mexico State University, Las Cruces NM USA 88003
| |
Collapse
|
7
|
Prince S, Bonkowski E, McGraw C, SanInocencio C, Mefford HC, Carvill G, Broadbent B. A roadmap to cure CHD2-related disorders. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241283749. [PMID: 39391213 PMCID: PMC11465304 DOI: 10.1177/26330040241283749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024]
Abstract
Coalition to Cure CHD2 (CCC) is a patient advocacy group dedicated to improving the lives of those affected by CHD2-related disorders (CHD2-RD) by increasing education, building community, and accelerating research to uncover a cure. CHD2 is a chromatin remodeler that was identified in 2013 as being a genetic cause for developmental and epileptic encephalopathies. Pathogenic changes in CHD2 can cause treatment-resistant epilepsy, intellectual and developmental delays, and autism, and some individuals experience neurodevelopmental regression. There are currently no targeted therapies available for CHD2-related disorders. Haploinsufficiency of CHD2 is a causative mechanism of disease for individuals with pathogenic variants (primarily truncating) in CHD2. Recently, identification of individuals with deletion of nearby gene CHASERR, a regulator of CHD2 gene expression, has established dosage sensitivity in CHD2 and solidified the CHASERR gene as a potential therapeutic target for CHD2 levels. Through collaboration with our community and our scientific advisory board, CCC has created a Roadmap to Cure CHD2 as our guide toward a targeted cure that can benefit our community, with steps including (1) identifying and defining patients, (2) developing models of CHD2, (3) studying models of CHD2, (4) testing therapies, (5) involving patients, and (6) reaching a cure. Despite some of the challenges inherent in CHD2 research including establishing animal and cellular models that recapitulate the CHD2 clinical phenotype, identifying measurable outcomes and reliable biomarkers, or testing emerging therapeutic approaches, CCC continues to engage with our community to support ongoing research that aligns with our priorities. CCC sees new and exciting opportunities for additional research that can move our community toward our common goal of a cure that will improve the lives of individuals and their families now and in the future.
Collapse
Affiliation(s)
- Stephanie Prince
- Coalition To Cure CHD2, Dallas, TX, USA
- Department of Oncology, University Hospitals, Dorset, UK
| | - Emily Bonkowski
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Christopher McGraw
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Scientific Advisory Board, Coalition To Cure CHD2, Dallas, TX, USA
| | - Christina SanInocencio
- Coalition To Cure CHD2, Dallas, TX, USA
- Department of Communication, Fairfield University, Fairfield, CT, USA
| | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Scientific Advisory Board, Coalition To Cure CHD2, Dallas, TX, USA
| | - Gemma Carvill
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Scientific Advisory Board, Coalition To Cure CHD2, Dallas, TX, USA
| | | |
Collapse
|
8
|
Ismail T, Lee HK, Lee H, Kim Y, Kim E, Lee JY, Kim KB, Ryu HY, Cho DH, Kwon TK, Park TJ, Kwon T, Lee HS. Early life exposure to perfluorooctanesulfonate (PFOS) impacts vital biological processes in Xenopus laevis: Integrated morphometric and transcriptomic analyses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115820. [PMID: 38103469 DOI: 10.1016/j.ecoenv.2023.115820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Perfluorooctanesulfonate (PFOS) is a ubiquitous environmental pollutant associated with increasing health concerns and environmental hazards. Toxicological analyses of PFOS exposure are hampered by large interspecies variations and limited studies on the mechanistic details of PFOS-induced toxicity. We investigated the effects of PFOS exposure on Xenopus laevis embryos based on the reported developmental effects in zebrafish. X. laevis was selected to further our understanding of interspecies variation in response to PFOS, and we built upon previous studies by including transcriptomics and an assessment of ciliogenic effects. Midblastula-stage X. laevis embryos were exposed to PFOS using the frog embryo teratogenesis assay Xenopus (FETAX). Results showed teratogenic effects of PFOS in a time- and dose-dependent manner. The morphological abnormalities of skeleton deformities, a small head, and a miscoiled gut were associated with changes in gene expression evidenced by whole-mount in situ hybridization and transcriptomics. The transcriptomic profile of PFOS-exposed embryos indicated the perturbation in the expression of genes associated with cell death, and downregulation in adenosine triphosphate (ATP) biosynthesis. Moreover, we observed the effects of PFOS exposure on cilia development as a reduction in the number of multiciliated cells and changes in the directionality and velocity of the cilia-driven flow. Collectively, these data broaden the molecular understanding of PFOS-induced developmental effects, whereby ciliary dysfunction and disrupted ATP synthesis are implicated as the probable modes of action of embryotoxicity. Furthermore, our findings present a new challenge to understand the links between PFOS-induced developmental toxicity and vital biological processes.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun-Kyung Lee
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hongchan Lee
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youni Kim
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eunjeong Kim
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun-Yeong Lee
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kee-Beom Kim
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hong-Yeoul Ryu
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Hyung Cho
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Tae Joo Park
- Department of Biological Sciences, College of Information-Bio Convergence, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, College of Information-Bio Convergence, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hyun-Shik Lee
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
9
|
Weiss B, Ott T, Vick P, Lui JC, Roeth R, Vogel S, Waldmüller S, Hoffmann S, Baron J, Wit JM, Rappold GA. Identification of novel genes including NAV2 associated with isolated tall stature. Front Endocrinol (Lausanne) 2023; 14:1258313. [PMID: 38152138 PMCID: PMC10752378 DOI: 10.3389/fendo.2023.1258313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/07/2023] [Indexed: 12/29/2023] Open
Abstract
Very tall people attract much attention and represent a clinically and genetically heterogenous group of individuals. Identifying the genetic etiology can provide important insights into the molecular mechanisms regulating linear growth. We studied a three-generation pedigree with five isolated (non-syndromic) tall members and one individual with normal stature by whole exome sequencing; the tallest man had a height of 211 cm. Six heterozygous gene variants predicted as damaging were shared among the four genetically related tall individuals and not present in a family member with normal height. To gain insight into the putative role of these candidate genes in bone growth, we assessed the transcriptome of murine growth plate by microarray and RNA Seq. Two (Ift140, Nav2) of the six genes were well-expressed in the growth plate. Nav2 (p-value 1.91E-62) as well as Ift140 (p-value of 2.98E-06) showed significant downregulation of gene expression between the proliferative and hypertrophic zone, suggesting that these genes may be involved in the regulation of chondrocyte proliferation and/or hypertrophic differentiation. IFT140, NAV2 and SCAF11 have also significantly associated with height in GWAS studies. Pathway and network analysis indicated functional connections between IFT140, NAV2 and SCAF11 and previously associated (tall) stature genes. Knockout of the all-trans retinoic acid responsive gene, neuron navigator 2 NAV2, in Xenopus supports its functional role as a growth promotor. Collectively, our data expand the spectrum of genes with a putative role in tall stature phenotypes and, among other genes, highlight NAV2 as an interesting gene to this phenotype.
Collapse
Affiliation(s)
- Birgit Weiss
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Tim Ott
- Department of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Philipp Vick
- Department of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Julian C. Lui
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Ralph Roeth
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Sebastian Vogel
- Department of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Stephan Waldmüller
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sandra Hoffmann
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Jeffrey Baron
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jan M. Wit
- Division of Pediatric Endocrinology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Gudrun A. Rappold
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
10
|
Morselli M, Bennett R, Shaidani NI, Horb M, Peshkin L, Pellegrini M. Age-associated DNA methylation changes in Xenopus frogs. Epigenetics 2023; 18:2201517. [PMID: 37092296 PMCID: PMC10128463 DOI: 10.1080/15592294.2023.2201517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
Age-associated changes in DNA methylation have been characterized across various animals, but not yet in amphibians, which are of particular interest because they include widely studied model organisms. In this study, we present clear evidence that the aquatic vertebrate species Xenopus tropicalis displays patterns of age-associated changes in DNA methylation. We have generated whole-genome bisulfite sequencing (WGBS) profiles from skin samples of nine frogs representing young, mature, and old adults and characterized the gene- and chromosome-scale DNA methylation changes with age. Many of the methylation features and changes we observe are consistent with what is known in mammalian species, suggesting that the mechanism of age-related changes is conserved. Moreover, we selected a few thousand age-associated CpG sites to build an assay based on targeted DNA methylation analysis (TBSseq) to expand our findings in future studies involving larger cohorts of individuals. Preliminary results of a pilot TBSeq experiment recapitulate the findings obtained with WGBS setting the basis for the development of an epigenetic clock assay. The results of this study will allow us to leverage the unique resources available for Xenopus to study how DNA methylation relates to other hallmarks of ageing.
Collapse
Affiliation(s)
- Marco Morselli
- Molecular, Cell & Developmental Biology, UCLA, Los Angeles, CA, USA
| | - Ronan Bennett
- Molecular, Cell & Developmental Biology, UCLA, Los Angeles, CA, USA
| | - Nikko-Ideen Shaidani
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Marko Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Leonid Peshkin
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, USA
- Systems Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
11
|
Lange S, Inal JM. Animal Models of Human Disease. Int J Mol Sci 2023; 24:15821. [PMID: 37958801 PMCID: PMC10650829 DOI: 10.3390/ijms242115821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The use of animal models of human disease is critical for furthering our understanding of disease mechanisms, for the discovery of novel targets for treatment, and for translational research. This Special Topic entitled "Animal Models of Human Disease" aimed to collect state-of-the-art primary research studies and review articles from international experts and leading groups using animal models to study human diseases. Submissions were welcomed on a wide range of animal models and pathologies, including infectious disease, acute injury, regeneration, cancer, autoimmunity, degenerative and chronic disease. Seven participating MDPI journals supported the Special Topic, namely: Biomedicines, Cells, Current Issues in Molecular Biology, Diagnostics, Genes, the International Journal of Molecular Sciences, and the International Journal of Translational Medicine. In total, 46 papers were published in this Special Topic, with 37 full length original research papers, 2 research communications and 7 reviews. These contributions cover a wide range of clinically relevant, translatable, and comparative animal models, as well as furthering understanding of fundamental sciences, covering topics on physiological processes, on degenerative, inflammatory, infectious, autoimmune, neurological, metabolic, heamatological, hormonal and mitochondrial disorders, developmental processes and diseases, cardiology, cancer, trauma, stress, and ageing.
Collapse
Affiliation(s)
- Sigrun Lange
- Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London W1W 6UW, UK
- Pathobiology and Extracellular Vesicles Research Group, Department of Biomedical Sciences, University of Westminster, London W1W 6UW, UK
| | - Jameel M. Inal
- Cell Communication in Disease Pathology, School of Human Sciences, London Metropolitan University, London N7 8DB, UK;
- Biosciences Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9EU, UK
| |
Collapse
|
12
|
Averina OA, Kuznetsova SA, Permyakov OA, Sergiev PV. Animal Models of Mitochondrial Diseases Associated with Nuclear Gene Mutations. Acta Naturae 2023; 15:4-22. [PMID: 38234606 PMCID: PMC10790356 DOI: 10.32607/actanaturae.25442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/05/2023] [Indexed: 01/19/2024] Open
Abstract
Mitochondrial diseases (MDs) associated with nuclear gene mutations are part of a large group of inherited diseases caused by the suppression of energy metabolism. These diseases are of particular interest, because nuclear genes encode not only most of the structural proteins of the oxidative phosphorylation system (OXPHOS), but also all the proteins involved in the OXPHOS protein import from the cytoplasm and their assembly in mitochondria. Defects in any of these proteins can lead to functional impairment of the respiratory chain, including dysfunction of complex I that plays a central role in cellular respiration and oxidative phosphorylation, which is the most common cause of mitopathologies. Mitochondrial diseases are characterized by an early age of onset and a progressive course and affect primarily energy-consuming tissues and organs. The treatment of MDs should be initiated as soon as possible, but the diagnosis of mitopathologies is extremely difficult because of their heterogeneity and overlapping clinical features. The molecular pathogenesis of mitochondrial diseases is investigated using animal models: i.e. animals carrying mutations causing MD symptoms in humans. The use of mutant animal models opens new opportunities in the study of genes encoding mitochondrial proteins, as well as the molecular mechanisms of mitopathology development, which is necessary for improving diagnosis and developing approaches to drug therapy. In this review, we present the most recent information on mitochondrial diseases associated with nuclear gene mutations and animal models developed to investigate them.
Collapse
Affiliation(s)
- O. A. Averina
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
| | - S. A. Kuznetsova
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
| | - O. A. Permyakov
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
| | - P. V. Sergiev
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
| |
Collapse
|
13
|
Ishii R, Yoshida M, Suzuki N, Ogino H, Suzuki M. X-ray micro-computed tomography of Xenopus tadpole reveals changes in brain ventricular morphology during telencephalon regeneration. Dev Growth Differ 2023; 65:300-310. [PMID: 37477433 DOI: 10.1111/dgd.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
Xenopus tadpoles serve as an exceptional model organism for studying post-embryonic development in vertebrates. During post-embryonic development, large-scale changes in tissue morphology, including organ regeneration and metamorphosis, occur at the organ level. However, understanding these processes in a three-dimensional manner remains challenging. In this study, the use of X-ray micro-computed tomography (microCT) for the three-dimensional observation of the soft tissues of Xenopus tadpoles was explored. The findings revealed that major organs, such as the brain, heart, and kidneys, could be visualized with high contrast by phosphotungstic acid staining following fixation with Bouin's solution. Then, the changes in brain shape during telencephalon regeneration were analyzed as the first example of utilizing microCT to study organ regeneration in Xenopus tadpoles, and it was found that the size of the amputated telencephalon recovered to >80% of its original length within approximately 1 week. It was also observed that the ventricles tended to shrink after amputation and maintained this state for at least 3 days. This shrinkage was transient, as the ventricles expanded to exceed their original size within the following week. Temporary shrinkage and expansion of the ventricles, which were also observed in transgenic or fluorescent dye-injected tadpoles with telencephalon amputation, may be significant in tissue homeostasis in response to massive brain injury and subsequent repair and regeneration. This established method will improve experimental analyses in developmental biology and medical science using Xenopus tadpoles.
Collapse
Affiliation(s)
- Riona Ishii
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Mana Yoshida
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Nanoka Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hajime Ogino
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Makoto Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
14
|
Dimitrakopoulou D, Khwatenge CN, James-Zorn C, Paiola M, Bellin EW, Tian Y, Sundararaj N, Polak EJ, Grayfer L, Barnard D, Ohta Y, Horb M, Sang Y, Robert J. Advances in the Xenopus immunome: Diversification, expansion, and contraction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104734. [PMID: 37172665 PMCID: PMC10230362 DOI: 10.1016/j.dci.2023.104734] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/18/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Xenopus is a genus of African clawed frogs including two species, X. tropicalis and X. laevis that are extensively used in experimental biology, immunology, and biomedical studies. The availability of fully sequenced and annotated Xenopus genomes is strengthening genome-wide analyses of gene families and transgenesis to model human diseases. However, inaccuracies in genome annotation for genes involved in the immune system (i.e., immunome) hamper immunogenetic studies. Furthermore, advanced genome technologies (e.g., single-cell and RNA-Seq) rely on well-annotated genomes. The annotation problems of Xenopus immunome include a lack of established orthology across taxa, merged gene models, poor representation in gene pages on Xenbase, misannotated genes and missing gene IDs. The Xenopus Research Resource for Immunobiology in collaboration with Xenbase and a group of investigators are working to resolve these issues in the latest versions of genome browsers. In this review, we summarize the current problems of previously misannotated gene families that we have recently resolved. We also highlight the expansion, contraction, and diversification of previously misannotated gene families.
Collapse
Affiliation(s)
- Dionysia Dimitrakopoulou
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Collins N Khwatenge
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA
| | - Christina James-Zorn
- Xenbase, Division of Developmental Biology, Cincinnti Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Eleanor Wise Bellin
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yun Tian
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA
| | - Nivitha Sundararaj
- Xenbase, Division of Developmental Biology, Cincinnti Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Emma J Polak
- Biology Department, Worcester State University, MA, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Daron Barnard
- Biology Department, Worcester State University, MA, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marko Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Yongming Sang
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA.
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
15
|
Carotenuto R, Pallotta MM, Tussellino M, Fogliano C. Xenopus laevis (Daudin, 1802) as a Model Organism for Bioscience: A Historic Review and Perspective. BIOLOGY 2023; 12:890. [PMID: 37372174 DOI: 10.3390/biology12060890] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
In vitro systems have been mainly promoted by authorities to sustain research by following the 3Rs principle, but continuously increasing amounts of evidence point out that in vivo experimentation is also of extreme relevance. Xenopus laevis, an anuran amphibian, is a significant model organism in the study of evolutionary developmental biology, toxicology, ethology, neurobiology, endocrinology, immunology and tumor biology; thanks to the recent development of genome editing, it has also acquired a relevant position in the field of genetics. For these reasons, X. laevis appears to be a powerful and alternative model to the zebrafish for environmental and biomedical studies. Its life cycle, as well as the possibility to obtain gametes from adults during the whole year and embryos by in vitro fertilization, allows experimental studies of several biological endpoints, such as gametogenesis, embryogenesis, larval growth, metamorphosis and, of course, the young and adult stages. Moreover, with respect to alternative invertebrate and even vertebrate animal models, the X. laevis genome displays a higher degree of similarity with that of mammals. Here, we have reviewed the main available literature on the use of X. laevis in the biosciences and, inspired by Feymann's revised view, "Plenty of room for biology at the bottom", suggest that X. laevis is a very useful model for all possible studies.
Collapse
Affiliation(s)
- Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | | | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
16
|
Jonas-Closs RA, Peshkin L. Effective Rapid Blood Perfusion in Xenopus. J Vis Exp 2023:10.3791/65287. [PMID: 37318240 PMCID: PMC11233139 DOI: 10.3791/65287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Xenopus have been powerful model organisms for understanding vertebrate development and disease for over 100 years. Here, a rapid blood perfusion protocol in Xenopus, aimed at a consistent and drastic reduction of blood within all tissues, is defined. Perfusion is carried out by inserting a needle directly into the ventricle of the heart and pumping heparinized phosphate-buffered saline (PBS) through the vascular system. The procedure can be completed in approximately 10 min per animal. The blood is dominated by a few highly abundant proteins and cell types, creating numerous issues as these proteins mask most other molecules and cell types of interest. The reproducible characterization of adult Xenopus tissues with quantitative proteomics and single-cell transcriptomics will benefit from applying this protocol prior to organ sampling. The protocols for tissue sampling are defined in companion papers. These procedures are aimed at the standardization of practices across Xenopus of different sex, age, and health status, specifically X. laevis and X. tropicalis.
Collapse
|
17
|
Zhao J, Li X, Xu Y, Li Y, Zheng L, Luan T. Toxic effects of long-term dual or single exposure to oxytetracycline and arsenic on Xenopus tropicalis living in duck wastewater. J Environ Sci (China) 2023; 127:431-440. [PMID: 36522075 DOI: 10.1016/j.jes.2022.05.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 06/17/2023]
Abstract
Direct discharge of aquaculture wastewater may have toxic effects, due to the presence of heavy metals, antibiotics, and even resistant pathogens, but little attention has been given. Here, tanks simulating a wild ecosystem were built to study the effects of long-term exposure to duck wastewater containing oxytetracycline (OTC) and/or arsenic (As) on the growth, physiological function, and gut microbiota evolution of Xenopus tropicalis. The results showed that duck wastewater had no apparent impact on X. tropicalis, but the impact increased significantly (P < 0.05) with exposure to OTC and/or As, especially the impact on body weight and growth rate. Biochemical indicators revealed varying degrees of oxidative stress damage, hepatotoxicity (inflammation, necrosis, and sinusoids), and collagen fibrosis of X. tropicalis in all treated groups after 72 days of exposure, which indirectly inhibited X. tropicalis growth. Moreover, 16S rDNA amplicon sequencing results showed that the gut microbiota structure and metabolic function were perturbed after chronic exposure, which might be the leading cause of growth inhibition. Interestingly, the abundance of intestinal resistance genes (RGs) increased with exposure time owing to the combined direct and indirect effects of stress factors in duck wastewater. Moreover, once the RGs were expressed, the resistance persisted for at least 24 days, especially that conferred by tetA. These results provide evidence of the toxic effects of DW containing OTC (0.1-4.0 mg/L) and/or As (0.3-3.5 µg/L) on amphibians and indicate that it is vital to limit the usage of heavy metals and antibiotics on farms to control the biotoxicity of wastewater.
Collapse
Affiliation(s)
- Jianbin Zhao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyan Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yuxin Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
18
|
Jonas-Closs RA, Peshkin L. Effective Rapid Blood Perfusion in Xenopus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526649. [PMID: 36778320 PMCID: PMC9915651 DOI: 10.1101/2023.02.01.526649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Xenopus has been a powerful model organism for understanding vertebrate development and disease for over a hundred years. Here we define a rapid blood perfusion protocol in Xenopus aimed at a consistent and drastic reduction of blood across tissues. Perfusion is done by inserting a needle directly into the ventricle and pumping heparin in PBS through the vascular system. The whole procedure should take about 10 minutes per frog. Blood is dominated by a few highly abundant proteins and cell types which create numerous issues by masking most other molecules and cell types of interest. Reproducible characterization of adult Xenopus tissues with quantitative proteomics and single cell transcriptomics will gain from applying this protocol prior to organ dissections defined in companion papers. The procedure is aimed at standardization of practice across the animals of different gender, age and Xenopus species, specifically X.laevis and X.tropicalis . SUMMARY An effective rapid blood perfusion protocol to prepare tissue samples for transcriptomics and proteomics studies.
Collapse
Affiliation(s)
| | - Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Shan Z, Li S, Yu C, Bai S, Zhang J, Tang Y, Wang Y, Irwin DM, Li J, Wang Z. Embryonic and skeletal development of the albino African clawed frog (Xenopus laevis). J Anat 2023; 242:1051-1066. [PMID: 36708289 PMCID: PMC10184547 DOI: 10.1111/joa.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/29/2023] Open
Abstract
The normal stages of embryonic development for wild-type Xenopus laevis were established by Nieuwkoop and Faber in 1956, a milestone in the history of understanding embryonic development. However, this work lacked photographic images and staining for skeleton structures from the corresponding stages. Here, we provide high-quality images of embryonic morphology and skeleton development to facilitate studies on amphibian development. On the basis of the classical work, we selected the albino mutant of X. laevis as the observation material to restudy embryonic development in this species. The lower level of pigmentation makes it easier to interpret histochemical experiments. At 23°C, albino embryos develop at the same rate as wild-type embryos, which can be divided into 66 stages as they develop into adults in about 58 days. We described the complete embryonic development system for X. laevis, supplemented with pictures of limb and skeleton development that are missing from previous studies, and summarized the characteristics and laws of limb and skeleton development. Our study should aid research into the development of X. laevis and the evolution of amphibians.
Collapse
Affiliation(s)
- Zhixin Shan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shanshan Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chenghua Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shibin Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Junpeng Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yining Tang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yutong Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jun Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhe Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
20
|
Brunner N, Stein L, Amasheh S. Cellular Distribution Pattern of tjp1 (ZO-1) in Xenopus laevis Oocytes Heterologously Expressing Claudins. J Membr Biol 2023; 256:51-61. [PMID: 35737002 PMCID: PMC9884258 DOI: 10.1007/s00232-022-00251-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
Epithelial barriers constitute a fundamental requirement in every organism, as they allow the separation of different environments and set boundaries against noxious and other adverse effectors. In many inflammatory and degenerative diseases, epithelial barrier function is impaired because of a disturbance of the paracellular seal. Recently, the Xenopus laevis oocyte has been established as a heterologous expression model for the analysis of transmembrane tight junction protein interactions and is currently considered to be a suitable screening model for barrier effectors. A prerequisite for this application is a physiological anchoring of claudins to the cytoskeleton via the major scaffolding protein tjp1 (tight junction protein 1, ZO-1). We have analyzed the oocyte model with regard to the interaction of heterologously expressed claudins and tjp1. Our experiments have revealed endogenous tjp1 expression in protein and mRNA analyses of unfertilized Xenopus laevis oocytes expressing human claudin 1 (CLDN1) to claudin 5 (CLDN5). The amphibian cell model can therefore be used for the analysis of claudin interactions.
Collapse
Affiliation(s)
- Nora Brunner
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Laura Stein
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Salah Amasheh
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| |
Collapse
|
21
|
Corkins ME, Achieng M, DeLay BD, Krneta-Stankic V, Cain MP, Walker BL, Chen J, Lindström NO, Miller RK. A comparative study of cellular diversity between the Xenopus pronephric and mouse metanephric nephron. Kidney Int 2023; 103:77-86. [PMID: 36055600 PMCID: PMC9822858 DOI: 10.1016/j.kint.2022.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 01/11/2023]
Abstract
The kidney is an essential organ that ensures bodily fluid homeostasis and removes soluble waste products from the organism. Nephrons, the functional units of the kidney, comprise a blood filter, the glomerulus or glomus, and an epithelial tubule that processes the filtrate from the blood or coelom and selectively reabsorbs solutes, such as sugars, proteins, ions, and water, leaving waste products to be eliminated in the urine. Genes coding for transporters are segmentally expressed, enabling the nephron to sequentially process the filtrate. The Xenopus embryonic kidney, the pronephros, which consists of a single large nephron, has served as a valuable model to identify genes involved in nephron formation and patterning. Therefore, the developmental patterning program that generates these segments is of great interest. Prior work has defined the gene expression profiles of Xenopus nephron segments via in situ hybridization strategies, but a comprehensive understanding of the cellular makeup of the pronephric kidney remains incomplete. Here, we carried out single-cell mRNA sequencing of the functional Xenopus pronephric nephron and evaluated its cellular composition through comparative analyses with previous Xenopus studies and single-cell mRNA sequencing of the adult mouse kidney. This study reconstructs the cellular makeup of the pronephric kidney and identifies conserved cells, segments, and associated gene expression profiles. Thus, our data highlight significant conservation in podocytes, proximal and distal tubule cells, and divergence in cellular composition underlying the capacity of each nephron to remove wastes in the form of urine, while emphasizing the Xenopus pronephros as a model for physiology and disease.
Collapse
Affiliation(s)
- Mark E Corkins
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, UTHealth Houston, Houston, Texas, USA.
| | - MaryAnne Achieng
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Bridget D DeLay
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, UTHealth Houston, Houston, Texas, USA
| | - Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, UTHealth Houston, Houston, Texas, USA; Program in Genes and Development, MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Margo P Cain
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brandy L Walker
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, UTHealth Houston, Houston, Texas, USA; Program in Genetics and Epigenetics, MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Program in Genetics and Epigenetics, MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rachel K Miller
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, UTHealth Houston, Houston, Texas, USA; Program in Genetics and Epigenetics, MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA; Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Program in Biochemistry and Cell Biology, MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA.
| |
Collapse
|
22
|
Sperry MM, Novak R, Keshari V, Dinis ALM, Cartwright MJ, Camacho DM, Paré J, Super M, Levin M, Ingber DE. Enhancers of Host Immune Tolerance to Bacterial Infection Discovered Using Linked Computational and Experimental Approaches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200222. [PMID: 35706367 PMCID: PMC9475558 DOI: 10.1002/advs.202200222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Indexed: 05/31/2023]
Abstract
Current therapeutic strategies against bacterial infections focus on reduction of pathogen load using antibiotics; however, stimulation of host tolerance to infection in the presence of pathogens might offer an alternative approach. Computational transcriptomics and Xenopus laevis embryos are used to discover infection response pathways, identify potential tolerance inducer drugs, and validate their ability to induce broad tolerance. Xenopus exhibits natural tolerance to Acinetobacter baumanii, Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus pneumoniae bacteria, whereas Aeromonas hydrophila and Pseudomonas aeruginosa produce lethal infections. Transcriptional profiling leads to definition of a 20-gene signature that discriminates between tolerant and susceptible states, as well as identification of a more active tolerance response to gram negative compared to gram positive bacteria. Gene pathways associated with active tolerance in Xenopus, including some involved in metal ion binding and hypoxia, are found to be conserved across species, including mammals, and administration of a metal chelator (deferoxamine) or a HIF-1α agonist (1,4-DPCA) in embryos infected with lethal A. hydrophila increased survival despite high pathogen load. These data demonstrate the value of combining the Xenopus embryo infection model with computational multiomics analyses for mechanistic discovery and drug repurposing to induce host tolerance to bacterial infections.
Collapse
Affiliation(s)
- Megan M. Sperry
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Department of BiologyTufts UniversityMedfordMA02155USA
| | - Richard Novak
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Present address:
Unravel Biosciences, Inc.BostonMA02125USA
| | - Vishal Keshari
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Alexandre L. M. Dinis
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Present address:
University of Massachusetts Medical SchoolWorcesterMA01655USA
| | - Mark J. Cartwright
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Diogo M. Camacho
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Present address:
Rheos MedicinesCambridgeMA02142USA
| | - Jean‐François Paré
- Department of BiologyTufts UniversityMedfordMA02155USA
- Present address:
Queen's UniversityKingstonON K7L 3N6Canada
| | - Michael Super
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Michael Levin
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Department of BiologyTufts UniversityMedfordMA02155USA
- Allen Discovery Center at Tufts UniversityMedfordMA02155USA
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Vascular Biology Program and Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMA02115USA
- Harvard John A. Paulson School of Engineering and Applied SciencesCambridgeMA02138USA
| |
Collapse
|
23
|
Rankin SA, Zorn AM. The homeodomain transcription factor Ventx2 regulates respiratory progenitor cell number and differentiation timing during
Xenopus
lung development. Dev Growth Differ 2022; 64:347-361. [PMID: 36053777 PMCID: PMC10088502 DOI: 10.1111/dgd.12807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 11/28/2022]
Abstract
Ventx2 is an Antennapedia superfamily/NK-like subclass homeodomain transcription factor best known for its roles in the regulation of early dorsoventral patterning during Xenopus gastrulation and in the maintenance of neural crest multipotency. In this work we characterize the spatiotemporal expression pattern of ventx2 in progenitor cells of the Xenopus respiratory system epithelium. We find that ventx2 is directly induced by BMP signaling in the ventral foregut prior to nkx2-1, the earliest epithelial marker of the respiratory lineage. Functional studies demonstrate that Ventx2 regulates the number of Nkx2-1/Sox9+ respiratory progenitor cells induced during foregut development, the timing and level of surfactant protein gene expression, and proper tracheal-esophageal separation. Our data suggest that Ventx2 regulates the balance of respiratory progenitor cell expansion and differentiation. While the ventx gene family has been lost from the mouse genome during evolution, humans have retained a ventx2-like gene (VENTX). Finally, we discuss how our findings might suggest a possible function of VENTX in human respiratory progenitor cells.
Collapse
Affiliation(s)
- Scott A. Rankin
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center Cincinnati OH
| | - Aaron M. Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center Cincinnati OH
- University of Cincinnati, College of Medicine, Department of Pediatrics Cincinnati OH
| |
Collapse
|
24
|
Zahn N, James-Zorn C, Ponferrada VG, Adams DS, Grzymkowski J, Buchholz DR, Nascone-Yoder NM, Horb M, Moody SA, Vize PD, Zorn AM. Normal Table of Xenopus development: a new graphical resource. Development 2022; 149:dev200356. [PMID: 35833709 PMCID: PMC9445888 DOI: 10.1242/dev.200356] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/17/2022] [Indexed: 12/26/2022]
Abstract
Normal tables of development are essential for studies of embryogenesis, serving as an important resource for model organisms, including the frog Xenopus laevis. Xenopus has long been used to study developmental and cell biology, and is an increasingly important model for human birth defects and disease, genomics, proteomics and toxicology. Scientists utilize Nieuwkoop and Faber's classic 'Normal Table of Xenopus laevis (Daudin)' and accompanying illustrations to enable experimental reproducibility and reuse the illustrations in new publications and teaching. However, it is no longer possible to obtain permission for these copyrighted illustrations. We present 133 new, high-quality illustrations of X. laevis development from fertilization to metamorphosis, with additional views that were not available in the original collection. All the images are available on Xenbase, the Xenopus knowledgebase (http://www.xenbase.org/entry/zahn.do), for download and reuse under an attributable, non-commercial creative commons license. Additionally, we have compiled a 'Landmarks Table' of key morphological features and marker gene expression that can be used to distinguish stages quickly and reliably (https://www.xenbase.org/entry/landmarks-table.do). This new open-access resource will facilitate Xenopus research and teaching in the decades to come.
Collapse
Affiliation(s)
| | - Christina James-Zorn
- Xenbase, Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Virgilio G. Ponferrada
- Xenbase, Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Dany S. Adams
- Lucell Diagnostics Inc, 16 Stearns Street, Cambridge, MA 02138, USA
| | - Julia Grzymkowski
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA
| | - Daniel R. Buchholz
- Department of Biology Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Nanette M. Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA
| | - Marko Horb
- National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, George Washington University Medical Center, Washington, DC 20037, USA
| | - Peter D. Vize
- Xenbase, Department of Biological Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Aaron M. Zorn
- Xenbase, Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Ave, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
25
|
A Focal Impact Model of Traumatic Brain Injury in Xenopus Tadpoles Reveals Behavioral Alterations, Neuroinflammation, and an Astroglial Response. Int J Mol Sci 2022; 23:ijms23147578. [PMID: 35886924 PMCID: PMC9323330 DOI: 10.3390/ijms23147578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Traumatic Brain Injury (TBI) is a global driver of disability, and we currently lack effective therapies to promote neural repair and recovery. TBI is characterized by an initial insult, followed by a secondary injury cascade, including inflammation, excitotoxicity, and glial cellular response. This cascade incorporates molecular mechanisms that represent potential targets of therapeutic intervention. In this study, we investigate the response to focal impact injury to the optic tectum of Xenopus laevis tadpoles. This injury disrupts the blood-brain barrier, causing edema, and produces deficits in visually-driven behaviors which are resolved within one week. Within 3 h, injured brains show a dramatic transcriptional activation of inflammatory cytokines, upregulation of genes associated with inflammation, and recruitment of microglia to the injury site and surrounding tissue. Shortly afterward, astrocytes undergo morphological alterations and accumulate near the injury site, and these changes persist for at least 48 h following injury. Genes associated with astrocyte reactivity and neuroprotective functions also show elevated levels of expression following injury. Since our results demonstrate that the response to focal impact injury in Xenopus resembles the cellular alterations observed in rodents and other mammalian models, the Xenopus tadpole offers a new, scalable vertebrate model for TBI.
Collapse
|
26
|
Fisher ME, Segerdell E, Matentzoglu N, Nenni MJ, Fortriede JD, Chu S, Pells TJ, Osumi-Sutherland D, Chaturvedi P, James-Zorn C, Sundararaj N, Lotay VS, Ponferrada V, Wang DZ, Kim E, Agalakov S, Arshinoff BI, Karimi K, Vize PD, Zorn AM. The Xenopus phenotype ontology: bridging model organism phenotype data to human health and development. BMC Bioinformatics 2022; 23:99. [PMID: 35317743 PMCID: PMC8939077 DOI: 10.1186/s12859-022-04636-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ontologies of precisely defined, controlled vocabularies are essential to curate the results of biological experiments such that the data are machine searchable, can be computationally analyzed, and are interoperable across the biomedical research continuum. There is also an increasing need for methods to interrelate phenotypic data easily and accurately from experiments in animal models with human development and disease. Results Here we present the Xenopus phenotype ontology (XPO) to annotate phenotypic data from experiments in Xenopus, one of the major vertebrate model organisms used to study gene function in development and disease. The XPO implements design patterns from the Unified Phenotype Ontology (uPheno), and the principles outlined by the Open Biological and Biomedical Ontologies (OBO Foundry) to maximize interoperability with other species and facilitate ongoing ontology management. Constructed in Web Ontology Language (OWL) the XPO combines the existing uPheno library of ontology design patterns with additional terms from the Xenopus Anatomy Ontology (XAO), the Phenotype and Trait Ontology (PATO) and the Gene Ontology (GO). The integration of these different ontologies into the XPO enables rich phenotypic curation, whilst the uPheno bridging axioms allows phenotypic data from Xenopus experiments to be related to phenotype data from other model organisms and human disease. Moreover, the simple post-composed uPheno design patterns facilitate ongoing XPO development as the generation of new terms and classes of terms can be substantially automated. Conclusions The XPO serves as an example of current best practices to help overcome many of the inherent challenges in harmonizing phenotype data between different species. The XPO currently consists of approximately 22,000 terms and is being used to curate phenotypes by Xenbase, the Xenopus Model Organism Knowledgebase, forming a standardized corpus of genotype–phenotype data that can be directly related to other uPheno compliant resources. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04636-8.
Collapse
Affiliation(s)
- Malcolm E Fisher
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Erik Segerdell
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nicolas Matentzoglu
- Monarch Initiative, London, UK.,Semanticly Ltd, London, UK.,European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Mardi J Nenni
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joshua D Fortriede
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Stanley Chu
- Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | - Troy J Pells
- Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | | | - Praneet Chaturvedi
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christina James-Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nivitha Sundararaj
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vaneet S Lotay
- Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | - Virgilio Ponferrada
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dong Zhuo Wang
- Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | - Eugene Kim
- Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | - Sergei Agalakov
- Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | - Bradley I Arshinoff
- Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | - Kamran Karimi
- Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | - Peter D Vize
- Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
27
|
Gur M, Bendelac-Kapon L, Shabtai Y, Pillemer G, Fainsod A. Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly. Front Cell Dev Biol 2022; 10:844619. [PMID: 35372345 PMCID: PMC8967241 DOI: 10.3389/fcell.2022.844619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/24/2022] [Indexed: 12/21/2022] Open
Abstract
Retinoic acid (RA) is a central signaling molecule regulating multiple developmental decisions during embryogenesis. Excess RA induces head malformations, primarily by expansion of posterior brain structures at the expense of anterior head regions, i.e., hindbrain expansion. Despite this extensively studied RA teratogenic effect, a number of syndromes exhibiting microcephaly, such as DiGeorge, Vitamin A Deficiency, Fetal Alcohol Syndrome, and others, have been attributed to reduced RA signaling. This causative link suggests a requirement for RA signaling during normal head development in all these syndromes. To characterize this novel RA function, we studied the involvement of RA in the early events leading to head formation in Xenopus embryos. This effect was mapped to the earliest RA biosynthesis in the embryo within the gastrula Spemann-Mangold organizer. Head malformations were observed when reduced RA signaling was induced in the endogenous Spemann-Mangold organizer and in the ectopic organizer of twinned embryos. Two embryonic retinaldehyde dehydrogenases, ALDH1A2 (RALDH2) and ALDH1A3 (RALDH3) are initially expressed in the organizer and subsequently mark the trunk and the migrating leading edge mesendoderm, respectively. Gene-specific knockdowns and CRISPR/Cas9 targeting show that RALDH3 is a key enzyme involved in RA production required for head formation. These observations indicate that in addition to the teratogenic effect of excess RA on head development, RA signaling also has a positive and required regulatory role in the early formation of the head during gastrula stages. These results identify a novel RA activity that concurs with its proposed reduction in syndromes exhibiting microcephaly.
Collapse
|
28
|
Enhanced Loss of Retinoic Acid Network Genes in Xenopus laevis Achieves a Tighter Signal Regulation. Cells 2022; 11:cells11030327. [PMID: 35159137 PMCID: PMC8834563 DOI: 10.3390/cells11030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
Retinoic acid (RA) is a major regulatory signal during embryogenesis produced from vitamin A (retinol) by an extensive, autoregulating metabolic and signaling network to prevent fluctuations that result in developmental malformations. Xenopus laevis is an allotetraploid hybrid frog species whose genome includes L (long) and S (short) chromosomes from the originating species. Evolutionarily, the X. laevis subgenomes have been losing either L or S homoeologs in about 43% of genes to generate singletons. In the RA network, out of the 47 genes, about 47% have lost one of the homoeologs, like the genome average. Interestingly, RA metabolism genes from storage (retinyl esters) to retinaldehyde production exhibit enhanced gene loss with 75% singletons out of 28 genes. The effect of this gene loss on RA signaling autoregulation was studied. Employing transient RA manipulations, homoeolog gene pairs were identified in which one homoeolog exhibits enhanced responses or looser regulation than the other, while in other pairs both homoeologs exhibit similar RA responses. CRISPR/Cas9 targeting of individual homoeologs to reduce their activity supports the hypothesis where the RA metabolic network gene loss results in tighter network regulation and more efficient RA robustness responses to overcome complex regulation conditions.
Collapse
|
29
|
Arshinoff BI, Cary GA, Karimi K, Foley S, Agalakov S, Delgado F, Lotay VS, Ku CJ, Pells TJ, Beatman TR, Kim E, Cameron RA, Vize PD, Telmer C, Croce JC, Ettensohn CA, Hinman VF. Echinobase: leveraging an extant model organism database to build a knowledgebase supporting research on the genomics and biology of echinoderms. Nucleic Acids Res 2022; 50:D970-D979. [PMID: 34791383 PMCID: PMC8728261 DOI: 10.1093/nar/gkab1005] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
Echinobase (www.echinobase.org) is a third generation web resource supporting genomic research on echinoderms. The new version was built by cloning the mature Xenopus model organism knowledgebase, Xenbase, refactoring data ingestion pipelines and modifying the user interface to adapt to multispecies echinoderm content. This approach leveraged over 15 years of previous database and web application development to generate a new fully featured informatics resource in a single year. In addition to the software stack, Echinobase uses the private cloud and physical hosts that support Xenbase. Echinobase currently supports six echinoderm species, focused on those used for genomics, developmental biology and gene regulatory network analyses. Over 38 000 gene pages, 18 000 publications, new improved genome assemblies, JBrowse genome browser and BLAST + services are available and supported by the development of a new echinoderm anatomical ontology, uniformly applied formal gene nomenclature, and consistent orthology predictions. A novel feature of Echinobase is integrating support for multiple, disparate species. New genomes from the diverse echinoderm phylum will be added and supported as data becomes available. The common code development design of the integrated knowledgebases ensures parallel improvements as each resource evolves. This approach is widely applicable for developing new model organism informatics resources.
Collapse
Affiliation(s)
- Bradley I Arshinoff
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Gregory A Cary
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kamran Karimi
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Saoirse Foley
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sergei Agalakov
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Francisco Delgado
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Vaneet S Lotay
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Carolyn J Ku
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Troy J Pells
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Thomas R Beatman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Eugene Kim
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - R Andrew Cameron
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Peter D Vize
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Cheryl A Telmer
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jenifer C Croce
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
30
|
Abstract
Apical constriction refers to the active, actomyosin-driven process that reduces apical cell surface area in epithelial cells. Apical constriction is utilized in epithelial morphogenesis during embryonic development in multiple contexts, such as gastrulation, neural tube closure, and organogenesis. Defects in apical constriction can result in congenital birth defects, yet our understanding of the molecular control of apical constriction is relatively limited. To uncover new genetic regulators of apical constriction and gain mechanistic insight into the cell biology of this process, we need reliable assay systems that allow real-time observation and quantification of apical constriction as it occurs and permit gain- and loss-of-function analyses to explore gene function and interaction during apical constriction. In this chapter, we describe using the early Xenopus embryo as an assay system to investigate molecular mechanisms involved in apical constriction during both gastrulation and neurulation.
Collapse
Affiliation(s)
- Austin T Baldwin
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Ivan K Popov
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
31
|
Brayton CF. Laboratory Codes in Nomenclature and Scientific Communication (Advancing Organism Nomenclature in Scientific Communication to Improve Research Reporting and Reproducibility). ILAR J 2021; 62:295-309. [PMID: 36528817 DOI: 10.1093/ilar/ilac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/23/2022] [Indexed: 12/23/2022] Open
Abstract
Laboratory registration codes, also known as laboratory codes or lab codes, are a key element in standardized laboratory animal and genetic nomenclature. As such they are critical to accurate scientific communication and to research reproducibility and integrity. The original committee on Mouse Genetic Nomenclature published nomenclature conventions for mice genetics in 1940, and then conventions for inbred strains in 1952. Unique designations were needed, and have been in use since the 1950s, for the sources of animals and substrains, for the laboratories that identified new alleles or mutations, and then for developers of transgenes and induced mutations. Current laboratory codes are typically a 2- to 4-letter acronym for an institution or an investigator. Unique codes are assigned from the International Laboratory Code Registry, which was developed and is maintained by ILAR in the National Academies (National Academies of Sciences Engineering and Medicine and previously National Academy of Sciences). As a resource for the global research community, the registry has been online since 1997. Since 2003 mouse and rat genetic and strain nomenclature rules have been reviewed and updated annually as a joint effort of the International Committee on Standardized Genetic Nomenclature for Mice and the Rat Genome and Nomenclature Committee. The current nomenclature conventions (particularly conventions for non-inbred animals) are applicable beyond rodents, although not widely adopted. Ongoing recognition, since at least the 1930s, of the research relevance of genetic backgrounds and origins of animals, and of spontaneous and induced genetic variants speaks to the need for broader application of standardized nomenclature for animals in research, particularly given the increasing numbers and complexities of genetically modified swine, nonhuman primates, fish, and other species.
Collapse
Affiliation(s)
- Cory F Brayton
- Johns Hopkins Medicine, Molecular and Comparative Pathobiology, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Schriml LM, Munro JB, Schor M, Olley D, McCracken C, Felix V, Baron JA, Jackson R, Bello SM, Bearer C, Lichenstein R, Bisordi K, Dialo NC, Giglio M, Greene C. The Human Disease Ontology 2022 update. Nucleic Acids Res 2021; 50:D1255-D1261. [PMID: 34755882 PMCID: PMC8728220 DOI: 10.1093/nar/gkab1063] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 01/31/2023] Open
Abstract
The Human Disease Ontology (DO) (www.disease-ontology.org) database, has significantly expanded the disease content and enhanced our userbase and website since the DO’s 2018 Nucleic Acids Research DATABASE issue paper. Conservatively, based on available resource statistics, terms from the DO have been annotated to over 1.5 million biomedical data elements and citations, a 10× increase in the past 5 years. The DO, funded as a NHGRI Genomic Resource, plays a key role in disease knowledge organization, representation, and standardization, serving as a reference framework for multiscale biomedical data integration and analysis across thousands of clinical, biomedical and computational research projects and genomic resources around the world. This update reports on the addition of 1,793 new disease terms, a 14% increase of textual definitions and the integration of 22 137 new SubClassOf axioms defining disease to disease connections representing the DO’s complex disease classification. The DO’s updated website provides multifaceted etiology searching, enhanced documentation and educational resources.
Collapse
Affiliation(s)
- Lynn M Schriml
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD, USA
| | - James B Munro
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD, USA
| | - Mike Schor
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD, USA
| | - Dustin Olley
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD, USA
| | - Carrie McCracken
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD, USA
| | - Victor Felix
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD, USA
| | - J Allen Baron
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD, USA
| | | | - Susan M Bello
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | | | | | | - Michelle Giglio
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD, USA
| | - Carol Greene
- University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Duek P, Mary C, Zahn-Zabal M, Bairoch A, Lane L. Functionathon: a manual data mining workflow to generate functional hypotheses for uncharacterized human proteins and its application by undergraduate students. Database (Oxford) 2021; 2021:baab046. [PMID: 34318869 PMCID: PMC8317215 DOI: 10.1093/database/baab046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022]
Abstract
About 10% of human proteins have no annotated function in protein knowledge bases. A workflow to generate hypotheses for the function of these uncharacterized proteins has been developed, based on predicted and experimental information on protein properties, interactions, tissular expression, subcellular localization, conservation in other organisms, as well as phenotypic data in mutant model organisms. This workflow has been applied to seven uncharacterized human proteins (C6orf118, C7orf25, CXorf58, RSRP1, SMLR1, TMEM53 and TMEM232) in the frame of a course-based undergraduate research experience named Functionathon organized at the University of Geneva to teach undergraduate students how to use biological databases and bioinformatics tools and interpret the results. C6orf118, CXorf58 and TMEM232 were proposed to be involved in cilia-related functions; TMEM53 and SMLR1 were proposed to be involved in lipid metabolism and C7orf25 and RSRP1 were proposed to be involved in RNA metabolism and gene expression. Experimental strategies to test these hypotheses were also discussed. The results of this manual data mining study may contribute to the project recently launched by the Human Proteome Organization (HUPO) Human Proteome Project aiming to fill gaps in the functional annotation of human proteins. Database URL: http://www.nextprot.org.
Collapse
Affiliation(s)
- Paula Duek
- CALIPHO group, SIB Swiss Institute of Bioinformatics
- Department of microbiology and molecular medicine, Faculty of medicine, University of Geneva, Geneva, Switzerland
| | - Camille Mary
- Department of microbiology and molecular medicine, Faculty of medicine, University of Geneva, Geneva, Switzerland
| | | | - Amos Bairoch
- CALIPHO group, SIB Swiss Institute of Bioinformatics
- Department of microbiology and molecular medicine, Faculty of medicine, University of Geneva, Geneva, Switzerland
| | - Lydie Lane
- CALIPHO group, SIB Swiss Institute of Bioinformatics
- Department of microbiology and molecular medicine, Faculty of medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Richter C, Hinkel R. Research('s) Sweet Hearts: Experimental Biomedical Models of Diabetic Cardiomyopathy. Front Cardiovasc Med 2021; 8:703355. [PMID: 34368257 PMCID: PMC8342758 DOI: 10.3389/fcvm.2021.703355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Diabetes and the often accompanying cardiovascular diseases including cardiomyopathy represent a complex disease, that is reluctant to reveal the molecular mechanisms and underlying cellular responses. Current research projects on diabetic cardiomyopathy are predominantly based on animal models, in which there are not only obvious advantages, such as genetics that can be traced over generations and the directly measurable influence of dietary types, but also not despisable disadvantages. Thus, many studies are built up on transgenic rodent models, which are partly comparable to symptoms in humans due to their genetic alterations, but on the other hand are also under discussion regarding their clinical relevance in the translation of biomedical therapeutic approaches. Furthermore, a focus on transgenic rodent models ignores spontaneously occurring diabetes in larger mammals (such as dogs or pigs), which represent with their anatomical similarity to humans regarding their cardiovascular situation appealing models for testing translational approaches. With this in mind, we aim to shed light on the currently most popular animal models for diabetic cardiomyopathy and, by weighing the advantages and disadvantages, provide decision support for future animal experimental work in the field, hence advancing the biomedical translation of promising approaches into clinical application.
Collapse
Affiliation(s)
- Claudia Richter
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.,Partnersite Goettingen, German Center for Cardiovascular Research (DZHK e.V.), Goettingen, Germany
| | - Rabea Hinkel
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.,Partnersite Goettingen, German Center for Cardiovascular Research (DZHK e.V.), Goettingen, Germany.,Stiftung Tierärztliche Hochschule Hannover, University of Veterinary Medicine, Hanover, Germany
| |
Collapse
|
35
|
Seaby EG, Ennis S. Challenges in the diagnosis and discovery of rare genetic disorders using contemporary sequencing technologies. Brief Funct Genomics 2021; 19:243-258. [PMID: 32393978 DOI: 10.1093/bfgp/elaa009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Next generation sequencing (NGS) has revolutionised rare disease diagnostics. Concomitant with advancing technologies has been a rise in the number of new gene disorders discovered and diagnoses made for patients and their families. However, despite the trend towards whole exome and whole genome sequencing, diagnostic rates remain suboptimal. On average, only ~30% of patients receive a molecular diagnosis. National sequencing projects launched in the last 5 years are integrating clinical diagnostic testing with research avenues to widen the spectrum of known genetic disorders. Consequently, efforts to diagnose genetic disorders in a clinical setting are now often shared with efforts to prioritise candidate variants for the detection of new disease genes. Herein we discuss some of the biggest obstacles precluding molecular diagnosis and discovery of new gene disorders. We consider bioinformatic and analytical challenges faced when interpreting next generation sequencing data and showcase some of the newest tools available to mitigate these issues. We consider how incomplete penetrance, non-coding variation and structural variants are likely to impact diagnostic rates, and we further discuss methods for uplifting novel gene discovery by adopting a gene-to-patient-based approach.
Collapse
|
36
|
Langlois VS. Amphibian Toxicology: A Rich But Underappreciated Model for Ecotoxicology Research. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:661-662. [PMID: 33839894 DOI: 10.1007/s00244-021-00844-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Valérie S Langlois
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Québec, QC, Canada.
| |
Collapse
|
37
|
Exner CRT, Willsey HR. Xenopus leads the way: Frogs as a pioneering model to understand the human brain. Genesis 2021; 59:e23405. [PMID: 33369095 PMCID: PMC8130472 DOI: 10.1002/dvg.23405] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
From its long history in the field of embryology to its recent advances in genetics, Xenopus has been an indispensable model for understanding the human brain. Foundational studies that gave us our first insights into major embryonic patterning events serve as a crucial backdrop for newer avenues of investigation into organogenesis and organ function. The vast array of tools available in Xenopus laevis and Xenopus tropicalis allows interrogation of developmental phenomena at all levels, from the molecular to the behavioral, and the application of CRISPR technology has enabled the investigation of human disorder risk genes in a higher-throughput manner. As the only major tetrapod model in which all developmental stages are easily manipulated and observed, frogs provide the unique opportunity to study organ development from the earliest stages. All of these features make Xenopus a premier model for studying the development of the brain, a notoriously complex process that demands an understanding of all stages from fertilization to organogenesis and beyond. Importantly, core processes of brain development are conserved between Xenopus and human, underlining the advantages of this model. This review begins by summarizing discoveries made in amphibians that form the cornerstones of vertebrate neurodevelopmental biology and goes on to discuss recent advances that have catapulted our understanding of brain development in Xenopus and in relation to human development and disease. As we engage in a new era of patient-driven gene discovery, Xenopus offers exceptional potential to uncover conserved biology underlying human brain disorders and move towards rational drug design.
Collapse
Affiliation(s)
- Cameron R T Exner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
38
|
Corkins ME, Krneta-Stankic V, Kloc M, Miller RK. Aquatic models of human ciliary diseases. Genesis 2021; 59:e23410. [PMID: 33496382 PMCID: PMC8593908 DOI: 10.1002/dvg.23410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 11/06/2022]
Abstract
Cilia are microtubule-based structures that either transmit information into the cell or move fluid outside of the cell. There are many human diseases that arise from malfunctioning cilia. Although mammalian models provide vital insights into the underlying pathology of these diseases, aquatic organisms such as Xenopus and zebrafish provide valuable tools to help screen and dissect out the underlying causes of these diseases. In this review we focus on recent studies that identify or describe different types of human ciliopathies and outline how aquatic organisms have aided our understanding of these diseases.
Collapse
Affiliation(s)
- Mark E. Corkins
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
| | - Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genes & Development, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas 77030
| | - Malgorzata Kloc
- Houston Methodist, Research Institute, Houston Texas 77030
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston Texas 77030
| | - Rachel K. Miller
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas 77030
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Biochemistry & Cell Biology, Houston Texas 77030
| |
Collapse
|
39
|
Kakebeen AD, Huebner RJ, Shindo A, Kwon K, Kwon T, Wills AE, Wallingford JB. A temporally resolved transcriptome for developing "Keller" explants of the Xenopus laevis dorsal marginal zone. Dev Dyn 2021; 250:717-731. [PMID: 33368695 DOI: 10.1002/dvdy.289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Explanted tissues from vertebrate embryos reliably develop in culture and have provided essential paradigms for understanding embryogenesis, from early embryological investigations of induction, to the extensive study of Xenopus animal caps, to the current studies of mammalian gastruloids. Cultured explants of the Xenopus dorsal marginal zone ("Keller" explants) serve as a central paradigm for studies of convergent extension cell movements, yet we know little about the global patterns of gene expression in these explants. RESULTS In an effort to more thoroughly develop this important model system, we provide here a time-resolved bulk transcriptome for developing Keller explants. CONCLUSIONS The dataset reported here provides a useful resource for those using Keller explants for studies of morphogenesis and provide genome-scale insights into the temporal patterns of gene expression in an important tissue when explanted and grown in culture.
Collapse
Affiliation(s)
- Anneke D Kakebeen
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Robert J Huebner
- Department of Molecular Biosciences, University of Texas, Austin, Texas, USA
| | - Asako Shindo
- Division of Biological Science, Nagoya University, Nagoya, Japan
| | - Kujin Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, (UNIST), Ulsan, Republic of Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, (UNIST), Ulsan, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea
| | - Andrea E Wills
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, Texas, USA
| |
Collapse
|
40
|
Köhler S, Gargano M, Matentzoglu N, Carmody LC, Lewis-Smith D, Vasilevsky NA, Danis D, Balagura G, Baynam G, Brower AM, Callahan TJ, Chute CG, Est JL, Galer PD, Ganesan S, Griese M, Haimel M, Pazmandi J, Hanauer M, Harris NL, Hartnett M, Hastreiter M, Hauck F, He Y, Jeske T, Kearney H, Kindle G, Klein C, Knoflach K, Krause R, Lagorce D, McMurry JA, Miller JA, Munoz-Torres M, Peters RL, Rapp CK, Rath AM, Rind SA, Rosenberg A, Segal MM, Seidel MG, Smedley D, Talmy T, Thomas Y, Wiafe SA, Xian J, Yüksel Z, Helbig I, Mungall CJ, Haendel MA, Robinson PN. The Human Phenotype Ontology in 2021. Nucleic Acids Res 2021; 49:D1207-D1217. [PMID: 33264411 PMCID: PMC7778952 DOI: 10.1093/nar/gkaa1043] [Citation(s) in RCA: 577] [Impact Index Per Article: 192.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/11/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
The Human Phenotype Ontology (HPO, https://hpo.jax.org) was launched in 2008 to provide a comprehensive logical standard to describe and computationally analyze phenotypic abnormalities found in human disease. The HPO is now a worldwide standard for phenotype exchange. The HPO has grown steadily since its inception due to considerable contributions from clinical experts and researchers from a diverse range of disciplines. Here, we present recent major extensions of the HPO for neurology, nephrology, immunology, pulmonology, newborn screening, and other areas. For example, the seizure subontology now reflects the International League Against Epilepsy (ILAE) guidelines and these enhancements have already shown clinical validity. We present new efforts to harmonize computational definitions of phenotypic abnormalities across the HPO and multiple phenotype ontologies used for animal models of disease. These efforts will benefit software such as Exomiser by improving the accuracy and scope of cross-species phenotype matching. The computational modeling strategy used by the HPO to define disease entities and phenotypic features and distinguish between them is explained in detail.We also report on recent efforts to translate the HPO into indigenous languages. Finally, we summarize recent advances in the use of HPO in electronic health record systems.
Collapse
Affiliation(s)
| | - Michael Gargano
- Monarch Initiative
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Nicolas Matentzoglu
- Monarch Initiative
- Semanticly Ltd, London, UK
- European Bioinformatics Institute (EMBL-EBI)
| | - Leigh C Carmody
- Monarch Initiative
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - David Lewis-Smith
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Clinical Neurosciences, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Nicole A Vasilevsky
- Monarch Initiative
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University
| | | | - Ganna Balagura
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS ‘G. Gaslini’ Institute, Genoa, Italy
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies, King Edward memorial Hospital, Perth, Australia
- Telethon Kids Institute and the Division of Paediatrics, Faculty of Helath and Medical Sciences, University of Western Australia, Perth, Australia
| | - Amy M Brower
- American College of Medical Genetics and Genomics (ACMG), Bethesda, MD, USA
| | - Tiffany J Callahan
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Colorado, USA
| | | | - Johanna L Est
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peter D Galer
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shiva Ganesan
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthias Griese
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Ludwig-Maximilians University, German Center for Lung Research (DZL), Munich, Germany
| | - Matthias Haimel
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Julia Pazmandi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032, USA
| | - Marc Hanauer
- INSERM, US14––Orphanet, Plateforme Maladies Rares, Paris, France
| | - Nomi L Harris
- Monarch Initiative
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley CA, USA
| | - Michael J Hartnett
- American College of Medical Genetics and Genomics (ACMG), Bethesda, MD, USA
| | - Maximilian Hastreiter
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Yongqun He
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tim Jeske
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hugh Kearney
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Ireland
| | - Gerhard Kindle
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI). Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
- Centre for Biobanking FREEZE, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin Knoflach
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Ludwig-Maximilians University, German Center for Lung Research (DZL), Munich, Germany
| | - Roland Krause
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - David Lagorce
- INSERM, US14––Orphanet, Plateforme Maladies Rares, Paris, France
| | - Julie A McMurry
- Monarch Initiative
- Translational and Integrative Sciences Center, Department of Environmental and Molecular Toxicology, Oregon State University, OR, USA
| | - Jillian A Miller
- American College of Medical Genetics and Genomics (ACMG), Bethesda, MD, USA
| | - Monica C Munoz-Torres
- Monarch Initiative
- Translational and Integrative Sciences Center, Department of Environmental and Molecular Toxicology, Oregon State University, OR, USA
| | - Rebecca L Peters
- American College of Medical Genetics and Genomics (ACMG), Bethesda, MD, USA
| | - Christina K Rapp
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Ludwig-Maximilians University, German Center for Lung Research (DZL), Munich, Germany
| | - Ana M Rath
- INSERM, US14––Orphanet, Plateforme Maladies Rares, Paris, France
| | - Shahmir A Rind
- WA Register of Developmental Anomalies
- Curtin University, Western Australia, Australia
| | - Avi Z Rosenberg
- Division of Kidney-Urologic Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Damian Smedley
- The William Harvey Research Institute, Charterhouse Square Barts and the London School of Medicine and Dentistry Queen Mary University of London, London EC1M 6BQ, UK
| | - Tomer Talmy
- Genomic Research Department, Emedgene Technologies, Tel Aviv, Israel
- Faculty of Medicine, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Yarlalu Thomas
- West Australian Register of Developmental Anomalies, East Perth, WA, Australia
| | | | - Julie Xian
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, PA, USA
| | - Zafer Yüksel
- Human Genetics, Bioscientia GmbH, Ingelheim, Germany
| | - Ingo Helbig
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christopher J Mungall
- Monarch Initiative
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley CA, USA
| | - Melissa A Haendel
- Monarch Initiative
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University
- Translational and Integrative Sciences Center, Department of Environmental and Molecular Toxicology, Oregon State University, OR, USA
| | - Peter N Robinson
- Monarch Initiative
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032, USA
| |
Collapse
|
41
|
Gao J, Shen W. Xenopus in revealing developmental toxicity and modeling human diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115809. [PMID: 33096388 DOI: 10.1016/j.envpol.2020.115809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The Xenopus model offers many advantages for investigation of the molecular, cellular, and behavioral mechanisms underlying embryo development. Moreover, Xenopus oocytes and embryos have been extensively used to study developmental toxicity and human diseases in response to various environmental chemicals. This review first summarizes recent advances in using Xenopus as a vertebrate model to study distinct types of tissue/organ development following exposure to environmental toxicants, chemical reagents, and pharmaceutical drugs. Then, the successful use of Xenopus as a model for diseases, including fetal alcohol spectrum disorders, autism, epilepsy, and cardiovascular disease, is reviewed. The potential application of Xenopus in genetic and chemical screening to protect against embryo deficits induced by chemical toxicants and related diseases is also discussed.
Collapse
Affiliation(s)
- Juanmei Gao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; College of Life and Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
42
|
Xia J, Meng Z, Ruan H, Yin W, Xu Y, Zhang T. Heart Development and Regeneration in Non-mammalian Model Organisms. Front Cell Dev Biol 2020; 8:595488. [PMID: 33251221 PMCID: PMC7673453 DOI: 10.3389/fcell.2020.595488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease is a serious threat to human health and a leading cause of mortality worldwide. Recent years have witnessed exciting progress in the understanding of heart formation and development, enabling cardiac biologists to make significant advance in the field of therapeutic heart regeneration. Most of our understanding of heart development and regeneration, including the genes and signaling pathways, are driven by pioneering works in non-mammalian model organisms, such as fruit fly, fish, frog, and chicken. Compared to mammalian animal models, non-mammalian model organisms have special advantages in high-throughput applications such as disease modeling, drug discovery, and cardiotoxicity screening. Genetically engineered animals of cardiovascular diseases provide valuable tools to investigate the molecular and cellular mechanisms of pathogenesis and to evaluate therapeutic strategies. A large number of congenital heart diseases (CHDs) non-mammalian models have been established and tested for the genes and signaling pathways involved in the diseases. Here, we reviewed the mechanisms of heart development and regeneration revealed by these models, highlighting the advantages of non-mammalian models as tools for cardiac research. The knowledge from these animal models will facilitate therapeutic discoveries and ultimately serve to accelerate translational medicine.
Collapse
Affiliation(s)
- Jianhong Xia
- GMU-GIBH Joint School of Life Sciences, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Zhongxuan Meng
- GMU-GIBH Joint School of Life Sciences, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hongyue Ruan
- GMU-GIBH Joint School of Life Sciences, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yiming Xu
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Tiejun Zhang
- GMU-GIBH Joint School of Life Sciences, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
43
|
Kakebeen AD, Chitsazan AD, Wills AE. Tissue disaggregation and isolation of specific cell types from transgenic Xenopus appendages for transcriptional analysis by FACS. Dev Dyn 2020; 250:1381-1392. [PMID: 33137227 DOI: 10.1002/dvdy.268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/10/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Xenopus embryos and tadpoles are versatile models for embryological, cell biological, and regenerative studies. Genomic and transcriptomic approaches have been increasingly employed in these frogs. Most of these genome-wide analyses have profiled tissues in bulk, but there are many scenarios where isolation of single cells may be advantageous, including isolation of a preferred cell type, or generation of a single-cell suspension for applications such as scRNA-Seq. RESULTS Here we present a protocol for the disaggregation of complex tail and limb bud tissue, and use cell type-specific fluorescence in transgenic X. tropicalis appendages to isolate specific cell populations using fluorescence activated cell sorting (FACS). Our protocol addresses a specific challenge in Xenopus embryos and tadpoles: the storage of maternal yolk platelets in each cell, which can introduce light scatter and thereby false positives into FACS analysis. CONCLUSIONS Here we gate against both nontransgenic and ubiquitously transgenic animals to reduce both false positives and false negatives. We use the Xtr.Tg(pax6:GFP;cryga:RFP;actc1:RFP)Papal transgenic line as a test case to demonstrate that nucleic acid preparations made from sorted cells are high quality and specific. We anticipate this method will be adaptable to study various cell types that have transgenic reporter lines to better profile cell types of interest.
Collapse
Affiliation(s)
- Anneke Dixie Kakebeen
- Department of Biochemistry, University of Washington Seattle, Seattle, Washington, USA
| | - Alexander Daniel Chitsazan
- Oregon Health Sciences Center For Early Detection Advanced Research Center (CEDAR), Portland, Oregon, USA
| | | |
Collapse
|
44
|
Collins C, Ventrella R, Mitchell BJ. Building a ciliated epithelium: Transcriptional regulation and radial intercalation of multiciliated cells. Curr Top Dev Biol 2020; 145:3-39. [PMID: 34074533 DOI: 10.1016/bs.ctdb.2020.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The epidermis of the Xenopus embryo has emerged as a powerful tool for studying the development of a ciliated epithelium. Interspersed throughout the epithelium are multiciliated cells (MCCs) with 100+ motile cilia that beat in a coordinated manner to generate fluid flow over the surface of the cell. MCCs are essential for various developmental processes and, furthermore, ciliary dysfunction is associated with numerous pathologies. Therefore, understanding the cellular mechanisms involved in establishing a ciliated epithelium are of particular interest. MCCs originate in the inner epithelial layer of Xenopus skin, where Notch signaling plays a critical role in determining which progenitors will adopt a ciliated cell fate. Then, activation of various transcriptional regulators, such as GemC1 and MCIDAS, initiate the MCC transcriptional program, resulting in centriole amplification and the formation of motile cilia. Following specification and differentiation, MCCs undergo the process of radial intercalation, where cells apically migrate from the inner layer to the outer epithelial layer. This process involves the cooperation of various cytoskeletal networks, activation of various signaling molecules, and changes in cell-ECM and cell-cell adhesion. Coordination of these cellular processes is required for complete incorporation into the outer epithelial layer and generation of a functional ciliated epithelium. Here, we highlight recent advances made in understanding the transcriptional cascades required for MCC specification and differentiation and the coordination of cellular processes that facilitate radial intercalation. Proper regulation of these signaling pathways and processes are the foundation for developing a ciliated epithelium.
Collapse
Affiliation(s)
- Caitlin Collins
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Rosa Ventrella
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Brian J Mitchell
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
45
|
Drew K, Lee C, Cox RM, Dang V, Devitt CC, McWhite CD, Papoulas O, Huizar RL, Marcotte EM, Wallingford JB. A systematic, label-free method for identifying RNA-associated proteins in vivo provides insights into vertebrate ciliary beating machinery. Dev Biol 2020; 467:108-117. [PMID: 32898505 DOI: 10.1016/j.ydbio.2020.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/18/2020] [Indexed: 01/06/2023]
Abstract
Cell-type specific RNA-associated proteins are essential for development and homeostasis in animals. Despite a massive recent effort to systematically identify RNA-associated proteins, we currently have few comprehensive rosters of cell-type specific RNA-associated proteins in vertebrate tissues. Here, we demonstrate the feasibility of determining the RNA-associated proteome of a defined vertebrate embryonic tissue using DIF-FRAC, a systematic and universal (i.e., label-free) method. Application of DIF-FRAC to cultured tissue explants of Xenopus mucociliary epithelium identified dozens of known RNA-associated proteins as expected, but also several novel RNA-associated proteins, including proteins related to assembly of the mitotic spindle and regulation of ciliary beating. In particular, we show that the inner dynein arm tether Cfap44 is an RNA-associated protein that localizes not only to axonemes, but also to liquid-like organelles in the cytoplasm called DynAPs. This result led us to discover that DynAPs are generally enriched for RNA. Together, these data provide a useful resource for a deeper understanding of mucociliary epithelia and demonstrate that DIF-FRAC will be broadly applicable for systematic identification of RNA-associated proteins from embryonic tissues.
Collapse
Affiliation(s)
- Kevin Drew
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Chanjae Lee
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Rachael M Cox
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Vy Dang
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Caitlin C Devitt
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Claire D McWhite
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Ophelia Papoulas
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Ryan L Huizar
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA
| | - Edward M Marcotte
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA.
| | - John B Wallingford
- Dept. of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
46
|
Naert T, Tulkens D, Edwards NA, Carron M, Shaidani NI, Wlizla M, Boel A, Demuynck S, Horb ME, Coucke P, Willaert A, Zorn AM, Vleminckx K. Maximizing CRISPR/Cas9 phenotype penetrance applying predictive modeling of editing outcomes in Xenopus and zebrafish embryos. Sci Rep 2020; 10:14662. [PMID: 32887910 PMCID: PMC7473854 DOI: 10.1038/s41598-020-71412-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9 genome editing has revolutionized functional genomics in vertebrates. However, CRISPR/Cas9 edited F0 animals too often demonstrate variable phenotypic penetrance due to the mosaic nature of editing outcomes after double strand break (DSB) repair. Even with high efficiency levels of genome editing, phenotypes may be obscured by proportional presence of in-frame mutations that still produce functional protein. Recently, studies in cell culture systems have shown that the nature of CRISPR/Cas9-mediated mutations can be dependent on local sequence context and can be predicted by computational methods. Here, we demonstrate that similar approaches can be used to forecast CRISPR/Cas9 gene editing outcomes in Xenopus tropicalis, Xenopus laevis, and zebrafish. We show that a publicly available neural network previously trained in mouse embryonic stem cell cultures (InDelphi-mESC) is able to accurately predict CRISPR/Cas9 gene editing outcomes in early vertebrate embryos. Our observations can have direct implications for experiment design, allowing the selection of guide RNAs with predicted repair outcome signatures enriched towards frameshift mutations, allowing maximization of CRISPR/Cas9 phenotype penetrance in the F0 generation.
Collapse
Affiliation(s)
- Thomas Naert
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent (Zwijnaarde), Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Dieter Tulkens
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent (Zwijnaarde), Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Nicole A Edwards
- Division of Developmental Biology, Perinatal Institute, and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital, Cincinnati, USA
| | - Marjolein Carron
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent (Zwijnaarde), Belgium
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Nikko-Ideen Shaidani
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Marcin Wlizla
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Annekatrien Boel
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Suzan Demuynck
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent (Zwijnaarde), Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Marko E Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Paul Coucke
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Andy Willaert
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Aaron M Zorn
- Division of Developmental Biology, Perinatal Institute, and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital, Cincinnati, USA
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent (Zwijnaarde), Belgium.
- Cancer Research Institute Ghent, Ghent, Belgium.
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
47
|
Brunner N, Stein L, Cornelius V, Knittel R, Fallier-Becker P, Amasheh S. Blood-Brain Barrier Protein Claudin-5 Expressed in Paired Xenopus laevis Oocytes Mediates Cell-Cell Interaction. Front Physiol 2020; 11:857. [PMID: 32848831 PMCID: PMC7396581 DOI: 10.3389/fphys.2020.00857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/26/2020] [Indexed: 01/08/2023] Open
Abstract
Claudin-5 determines the sealing properties of blood-brain barrier tight junctions and its function is impaired in neurodegenerative and neuroinflammatory disorders. Focusing on the contribution of claudin-5 to the trans-interaction within the tight junction seal, we used Xenopus laevis oocytes as an expression system. Cells were clustered and challenged in a novel approach for the analysis of claudin interaction. We evaluated the strengthening effect of claudin-5 to cell-cell-connection in comparison to claudin-3. Application of a hydrostatic pressure impulse on clustered control oocyte pairs revealed a reduction of contact areas. In contrast, combinations with both oocytes expressing claudins maintained an enhanced connection between the cells (cldn5-cldn5, cldn3-cldn3). Strength of interaction was increased by both claudin-3 and claudin-5. This novel approach allowed an analysis of single claudins contributing to tight junction integrity, characterizing homophilic and hetrophilic trans-interaction of claudins. To test a new screening approach for barrier effectors, exemplarily, this 2-cell model of oocytes was used to analyze the effect of the absorption enhancer sodium caprate on the oocyte pairs.
Collapse
Affiliation(s)
- Nora Brunner
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| | - Laura Stein
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| | - Valeria Cornelius
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| | - Ria Knittel
- Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Salah Amasheh
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
48
|
Fortriede JD, Pells TJ, Chu S, Chaturvedi P, Wang D, Fisher ME, James-Zorn C, Wang Y, Nenni MJ, Burns KA, Lotay VS, Ponferrada VG, Karimi K, Zorn AM, Vize PD. Xenbase: deep integration of GEO & SRA RNA-seq and ChIP-seq data in a model organism database. Nucleic Acids Res 2020; 48:D776-D782. [PMID: 31733057 PMCID: PMC7145613 DOI: 10.1093/nar/gkz933] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/04/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Xenbase (www.xenbase.org) is a knowledge base for researchers and biomedical scientists that employ the amphibian Xenopus as a model organism in biomedical research to gain a deeper understanding of developmental and disease processes. Through expert curation and automated data provisioning from various sources Xenbase strives to integrate the body of knowledge on Xenopus genomics and biology together with the visualization of biologically significant interactions. Most current studies utilize next generation sequencing (NGS) but until now the results of different experiments were difficult to compare and not integrated with other Xenbase content. Xenbase has developed a suite of tools, interfaces and data processing pipelines that transforms NCBI Gene Expression Omnibus (GEO) NGS content into deeply integrated gene expression and chromatin data, mapping all aligned reads to the most recent genome builds. This content can be queried and visualized via multiple tools and also provides the basis for future automated ‘gene expression as a phenotype’ and gene regulatory network analyses.
Collapse
Affiliation(s)
- Joshua D Fortriede
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Troy J Pells
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Stanley Chu
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Praneet Chaturvedi
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - DongZhuo Wang
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Malcom E Fisher
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Christina James-Zorn
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Ying Wang
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Mardi J Nenni
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Kevin A Burns
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Vaneet S Lotay
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Virgilio G Ponferrada
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Kamran Karimi
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Aaron M Zorn
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Peter D Vize
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| |
Collapse
|
49
|
Solini GE, Pownall ME, Hillenbrand MJ, Tocheny CE, Paudel S, Halleran AD, Bianchi CH, Huyck RW, Saha MS. Xenopus embryos show a compensatory response following perturbation of the Notch signaling pathway. Dev Biol 2020; 460:99-107. [PMID: 31899211 PMCID: PMC7263880 DOI: 10.1016/j.ydbio.2019.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/03/2019] [Accepted: 12/24/2019] [Indexed: 11/09/2022]
Abstract
As an essential feature of development, robustness ensures that embryos attain a consistent phenotype despite genetic and environmental variation. The growing number of examples demonstrating that embryos can mount a compensatory response to germline mutations in key developmental genes has heightened interest in the phenomenon of embryonic robustness. While considerable progress has been made in elucidating genetic compensation in response to germline mutations, the diversity, mechanisms, and limitations of embryonic robustness remain unclear. In this work, we have examined whether Xenopus laevis embryos are able to compensate for perturbations of the Notch signaling pathway induced by RNA injection constructs that either upregulate or inhibit this signaling pathway. Consistent with earlier studies, we found that at neurula stages, hyperactivation of the Notch pathway inhibited neural differentiation while inhibition of Notch signaling increases premature differentiation as assayed by neural beta tubulin expression. However, surprisingly, by hatching stages, embryos begin to compensate for these perturbations, and by swimming tadpole stages most embryos exhibited normal neuronal gene expression. Using cell proliferation and TUNEL assays, we show that the compensatory response is, in part, mediated by modulating levels of cell proliferation and apoptosis. This work provides an additional model for addressing the mechanisms of embryonic robustness and of genetic compensation.
Collapse
Affiliation(s)
- Grace E Solini
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Mark E Pownall
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Molly J Hillenbrand
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Claire E Tocheny
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Sudip Paudel
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Andrew D Halleran
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Catherine H Bianchi
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Ryan W Huyck
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Margaret S Saha
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA.
| |
Collapse
|
50
|
Kakebeen A, Wills A. Advancing genetic and genomic technologies deepen the pool for discovery in Xenopus tropicalis. Dev Dyn 2019; 248:620-625. [PMID: 31254427 DOI: 10.1002/dvdy.80] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
Xenopus laevis and Xenopus tropicalis have long been used to drive discovery in developmental, cell, and molecular biology. These dual frog species boast experimental strengths for embryology including large egg sizes that develop externally, well-defined fate maps, and cell-intrinsic sources of nutrients that allow explanted tissues to grow in culture. Development of the Xenopus cell extract system has been used to study cell cycle and DNA replication. Xenopus tadpole tail and limb regeneration have provided fundamental insights into the underlying mechanisms of this processes, and the loss of regenerative competency in adults adds a complexity to the system that can be more directly compared to humans. Moreover, Xenopus genetics and especially disease-causing mutations are highly conserved with humans, making them a tractable system to model human disease. In the last several years, genome editing, expanding genomic resources, and intersectional approaches leveraging the distinct characteristics of each species have generated new frontiers in cell biology. While Xenopus have enduringly represented a leading embryological model, new technologies are generating exciting diversity in the range of discoveries being made in areas from genomics and proteomics to regenerative biology, neurobiology, cell scaling, and human disease modeling.
Collapse
Affiliation(s)
- Anneke Kakebeen
- Department of Biochemistry, University of Washington, Seattle, Washington
| | - Andrea Wills
- Department of Biochemistry, University of Washington, Seattle, Washington
| |
Collapse
|