1
|
Loenneke JP, Hammert WB, Kataoka R, Yamada Y, Abe T. Twenty-five years of blood flow restriction training: What we know, what we don't, and where to next? J Sports Sci 2025:1-18. [PMID: 40079571 DOI: 10.1080/02640414.2025.2474329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Blood flow restriction is a technique that involves inflating a cuff at the proximal portion of the limb with the goal of reducing arterial inflow into the muscle and venous outflow from the muscle. Low-load or low-intensity exercise in combination with blood flow restriction has been consistently shown to augment adaptations over the same/similar exercise without restriction, with changes in muscle size and strength being two of the most commonly measured adaptations. The purpose of this manuscript is to provide an updated narrative review on blood flow restriction. Blood flow restriction's history, methodology, safety, and efficacy are highlighted. We discuss the effects of blood flow restriction on changes in muscle size and strength, and also review work completed on other variables (e.g. bone, resting blood flow, tendon, pain sensitivity, cognition, orthostatic intolerance). We finish by highlighting six possible areas for future research: 1) identifying mechanisms for growth and strength; 2) sex differences in the effects of blood flow restriction; 3) individual responses to blood flow restriction; 4) influence of pressure versus amount of blood flow restricted; 5) application of blood flow restriction with higher-loads; and 6) what considerations should be made to test the effects of blood flow restriction.
Collapse
Affiliation(s)
- Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, USA
| | - William B Hammert
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, USA
| | - Ryo Kataoka
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, USA
| | - Yujiro Yamada
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, USA
| | - Takashi Abe
- Graduate School of Health and Sports Science, Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
| |
Collapse
|
2
|
LeMense A, Fleming A, Gomez S, Lewis J, Labanowski H, Fedewa M, Winchester L. Blood flow restriction during high load bench press does not increase bar velocity or cause physiological changes in non-occluded agonist muscles. Clin Physiol Funct Imaging 2025; 45:e70006. [PMID: 40102677 DOI: 10.1111/cpf.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/15/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE Blood blow restriction (BFR) can increase peak velocity and power during high load resistance training. However, previous research primarily utilized high occlusion pressures (i.e., greater than 80% arterial occlusion pressure (AOP)), and rarely measured the physiological response during or after the bench press stimuli. The aim of this study was to investigate the application of 50%AOP during acute high load bench press exercise on barbell power, velocity, and the physiological responses to this stimulus. METHODS Resistance trained males (n = 12, 26.2 ± 6.6 yrs., 84.0 ± 10.8 kg, 176.3 ± 10.4 cm) completed a maximum strength test followed by two experimental sessions which consisted of four sets of 4 reps of the barbell bench press at 75%1RM, with or without BFR applied to both arms at 50% AOP. Significance was set to p ≤ 0.05. A series of two-way repeated measures ANOVAs with Bonferroni post hoc corrections tested for potential changes in bar velocity, power, blood lactate, and muscle thickness and activation of the anterior deltoid and pectoralis major. RESULTS There were no main effects for the interaction terms "Condition×Set" or "Condition×Time," nor for "Condition" for any variables (all p > 0.05). There was a "Time" effect for blood lactate (p < 0.001) with lactate increasing from pre- to postexercise, and a main effects for "Set" for mean (p = 0.016) and peak velocity (p = 0.005). CONCLUSION There was no difference in the change in velocity, or physiological responses during high load bench press with or without BFR at 50%AOP. While promising, use of BFR for upper body power may require pressures >50%AOP.
Collapse
Affiliation(s)
- Andrew LeMense
- Department of Kinesiology, University of Alabama, Tuscaloosa, Alabama, USA
| | - Abby Fleming
- Exercise Science Program, University of South Florida, Tampa, Florida, USA
| | - Samuel Gomez
- Department of Kinesiology, University of Alabama, Tuscaloosa, Alabama, USA
| | - John Lewis
- Department of Kinesiology, University of Alabama, Tuscaloosa, Alabama, USA
| | | | - Michael Fedewa
- Department of Kinesiology, University of Alabama, Tuscaloosa, Alabama, USA
| | - Lee Winchester
- Department of Kinesiology, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
3
|
Korkmaz Dayican D, Ulker Eksi B, Yigit S, Utku Umut G, Ozyurek B, Yilmaz HE, Akinci B. Immediate Effects of High-Intensity Blood Flow Restriction Training on Muscle Performance and Muscle Soreness. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2025; 96:213-222. [PMID: 39186458 DOI: 10.1080/02701367.2024.2389902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/03/2024] [Indexed: 08/28/2024]
Abstract
Purpose: The aim was to investigate the immediate effects of high-intensity resistance training with blood flow restriction (HIRT-BFR) on rectus femoris (RF) muscle activity, reaction time, muscular performance, and delayed onset muscle soreness (DOMS) in healthy young adults. Methods: Twenty-four healthy young adults were randomized into the HIRT-BFR group or HIRT group. Both groups performed a single session of training with 80% of 1RM, 8 repetitions, 2 sets, and 3 minutes rest to RF muscle. The activity and reaction time of the dominant extremity RF muscle were evaluated by superficial electromyography (sEMG), muscular performance by single-leg squat test, and DOMS by the Visual Analog Scale. Results: Single-leg squat performance was significantly increased in HIRT-BFR (p = .001) and HIRT group (p = .04). Additionally, in HIRT group resting average (p = .03), resting maximal voluntary contraction % (p = .04), and relaxation minimum (p = .02) values of RF were significantly increased. DOMS level decreased significantly in HIRT-BFR (p < .001) and HIRT group (p = .019). The differences were similar in the groups for sEMG parameters, muscle performance, and DOMS level. Conclusion: We observed that HIRT-BFR and HIRT were similar in terms of muscle activation, reaction time, muscular performance of the RF, and DOMS level.Trial registration number: This study is registered at www.clinicaltrails.gov (NCT05274542).
Collapse
|
4
|
Davis BH, Spielmann G, Johannsen NM, Fairchild V, Allerton TD, Irving BA. Effect of training status on muscle excitation and neuromuscular fatigue with resistance exercise with and without blood flow restriction in young men. Physiol Rep 2025; 13:e70274. [PMID: 40110914 PMCID: PMC11923869 DOI: 10.14814/phy2.70274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
This study compared muscle (vastus lateralis) excitation, muscle activation, and neuromuscular fatigue in response to low-load resistance exercise with blood flow restriction (LLBFR), medium-load resistance exercise with blood flow restriction (MLBFR), and high-load resistance exercise (HLRE) in resistance-trained (RT; n = 15) and untrained (UT; n = 14) college-aged males. Muscle excitation and activation were measured using surface electromyography (sEMG) and defined as the maximal root mean square amplitudes (RMS AMP) and the integrated area under the sEMG curve (iEMG) per repetition. Neuromuscular fatigue was defined as the reduction in peak torque measured during the postexercise knee extensor maximal isometric contractions (MVIC) relative to the pre-exercise MVIC. The LLBFR sessions showed 23.7% (p < 0.01) lower relative muscle excitation than the MLBFR and 26.7% (p < 0.001) lower than the HLRE. In contrast, LLBFR sessions showed 38.1% (p < 0.001) higher total muscle activation than the MLBFR and 19.3% (p < 0.05) higher than the HLRE. There were no differences between the RT and UT groups for percent change in peak torque or the RMS AMP measured during the knee extensor MVICs following the three exercise treatments (p > 0.05). However, the peak torque and maximal RMS amplitudes were higher in the RT group than in the UT group measured during the pre-exercise MVICs. Our data suggest that the LLBFR led to greater total muscle activation than MLBFR and HLRE despite lower relative muscle excitation independent of training status in our college-aged males.
Collapse
Affiliation(s)
- Brett H Davis
- Louisiana State University, Baton Rouge, Louisiana, USA
| | - Guillaume Spielmann
- Louisiana State University, Baton Rouge, Louisiana, USA
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Neil M Johannsen
- Louisiana State University, Baton Rouge, Louisiana, USA
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | | | | - Brian A Irving
- Louisiana State University, Baton Rouge, Louisiana, USA
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
5
|
Simpson CWC, Moore KS, Smith HK, Coskun B, Hamlin MJ. Tissue oxygenation in response to low-load and high-load back squats with continuous blood flow restriction in athletes. J Sports Sci 2025:1-10. [PMID: 39884956 DOI: 10.1080/02640414.2025.2457859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
To determine muscle oxygenation with continuous blood flow restriction (BFR) training in high load (HL), 80% one-repetition maximum (1RM) and low load (LL), 30% 1RM squat exercises. In week-2 of a 4-week resistance training programme as part of their 3-set training routine, two groups of athletes (n = 4 each), one performing HL training with low cuff pressure (20% arterial occlusion pressure (AOP)), the other LL training with high cuff pressure (60% AOP) had muscle oxygenation assessed with near-infrared spectrophotometry (NIRS), arterial oxygen saturation (SPO2), heart rate (HR), barbell velocity and ratings of perceived exertion (RPE) during barbell back squats (BBS). Changes in the vastus lateralis oximetry were compared to pre- and post-training squat (1RM). Across athletes, there were significant associations between two pre-set-3 exercise variables and post-training 1RM, Tissue Saturation Index (TSI) (R2 = 0.92, p < 0.0002) and HHb concentration (R2 = 0.79, p < 0.003). Generalised regression models indicated that TSI % and HHb concentrations before and after set 3 timepoints were significant predictors of post-training 1RM in the LL group (R2 = 0.99, BIC = -24.9). Well-tolerated continuous LL-BFR training provided greater increases in strength than HL-BFR in athletes.
Collapse
Affiliation(s)
- Charles W C Simpson
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
- Department of Biochemistry, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Katelyn S Moore
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
| | - Hoani K Smith
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
| | - Betul Coskun
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
- Faculty of Sport Sciences, Erciyes University, Kayseri, Turkey
| | - Michael J Hamlin
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
6
|
Bergamasco JGA, Bittencourt D, Silva DG, Biazon TMPDC, Soligon SD, Oliveira RM, Libardi CA. Individual muscle hypertrophy in high-load resistance training with and without blood flow restriction: A near-infrared spectroscopy approach. J Sports Sci 2024:1-7. [PMID: 39675016 DOI: 10.1080/02640414.2024.2437588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
We aimed to compare individual hypertrophic responses to high-load resistance training (HL-RT) or high-load with blood flow restriction (HL-BFR). Furthermore, we investigated whether greater responsiveness to one of the protocols could be explained by acute changes in blood deoxyhemoglobin concentration (HHb) and total hemoglobin concentration (tHb) (proxy markers of metabolic stress). Ten untrained participants had their legs randomized into both HL-RT and HL-BFR and underwent 10 weeks of training. Muscle cross-sectional area (mCSA) was measured at baseline and post training, while HHb and tHb during the final session. Using a threshold of 2 × typical errors (3.24%) to compare protocols, five participants showed greater mCSA increases after HL-RT (16.44 ± 7.90%) compared to HL-BFR (10.74 ± 7.12%, p = 0.0054) and five did not respond better to HL-RT (8.95 ± 10.83%) compared to HL-BFR (13.33 ± 8.59%) (p = 0.3105). Additionally, HL-RT induced lower HHb (5855.78 ± 12905.99; p = 0.0101) and tHb (-43169.70 ± 37793.17; p = 0.0030) AUC values compared to HL-BFR (HHb: 39254.80 ± 27020.15; tHb: 46309.40 ± 31613.97). In conclusion, despite the higher levels of metabolic stress markers, most participants did not present greater muscle hypertrophy by combining blood flow restriction with HL-RT.
Collapse
Affiliation(s)
- João Guilherme Almeida Bergamasco
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Diego Bittencourt
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Deivid Gomes Silva
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Thaís Marina Pires de Campos Biazon
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Samuel Domingos Soligon
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Ramon Martins Oliveira
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Cleiton Augusto Libardi
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| |
Collapse
|
7
|
Eserhaut DA, DeLeo JM, Fry AC. Blood Flow Restricted Resistance Exercise in Well-Trained Men: Salivary Biomarker Responses and Oxygen Saturation Kinetics. J Strength Cond Res 2024; 38:e716-e726. [PMID: 39808815 DOI: 10.1519/jsc.0000000000004913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
ABSTRACT Eserhaut, DA, DeLeo, JM, and Fry, AC. Blood flow restricted resistance exercise in well-trained men: Salivary biomarker responses and oxygen saturation kinetics. J Strength Cond Res 38(12): e716-e726, 2024-Resistance exercise with continuous lower-limb blood flow restriction (BFR) may provide supplementary benefit to highly resistance-trained men. Thus, the purpose of this study was to compare cardiovascular and salivary biomarker responses, along with skeletal muscle oxygen saturation (SmO2) during passive lower-limb BFR (pBFR), BFR resistance exercise performed to task failure (BFR+RE), and volume-matched resistance exercise (RE). A within-subjects, repeated measures design was used. Nineteen men (x̄±SD: relative squat 1RM: 1.9 ± 0.3 kg·bw-1) reported for 3 visits. First, body composition, blood pressure, back squat, and leg extension 1 repetition maximums (1RM) were assessed. Resting systolic blood pressure and proximal thigh circumferences were used to estimate arterial occlusion pressures (eAOP). Visit 1 involved pBFR, where BFR cuffs were inflated to 80% eAOP around the proximal thighs for 10 minutes while subjects were seated in a leg extension machine. Then, 24-120 hours later, 4 sets of bilateral seated leg extensions at 30% 1RM were performed to momentary task failure with 1-minute rest at the same 80% eAOP. After 72-120 hours rest, subjects matched the repetition performances from BFR+RE at 30% 1RM for the RE condition. BFR+RE elicited greater (p ≤ 0.05) heart rates, systolic, and diastolic blood pressures relative to pBFR and RE. Significantly elevated (p ≤ 0.05) blood lactate, salivary cortisol concentrations, and α-amylase activity occurred following BFR+RE relative to pBFR and RE. BFR+RE also induced blunted (p < 0.001) SmO2 interset resaturation rates compared with RE. In trained men, continuous BFR+RE seems to significantly alter acute physiological responses to a greater degree than either pBFR alone or volume-matched RE.
Collapse
Affiliation(s)
- Drake A Eserhaut
- Jayhawk Athletic Performance Laboratory, Wu Tsai Human Performance Alliance, University of Kansas, Lawrence, Kansas
| | | | | |
Collapse
|
8
|
Zhang M, Song Y, Zhu J, Ding P, Chen N. Effectiveness of low-load resistance training with blood flow restriction vs. conventional high-intensity resistance training in older people diagnosed with sarcopenia: a randomized controlled trial. Sci Rep 2024; 14:28427. [PMID: 39558011 PMCID: PMC11574083 DOI: 10.1038/s41598-024-79506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
Low-load resistance training with blood flow restriction (LRT-BFR) has shown potential to improve muscle strength and mass in different populations; however, there remains limited evidence in sarcopenic people diagnosed with sarcopenia criteria. This study systematically compared the effectiveness of LRT-BFR and conventional high-intensity resistance training (CRT) on clinical muscle outcomes (muscle mass, strength and performance), cardiovascular disease (CVD) risk factors and sarcopenia-related biomarkers of older people with sarcopenia. Twenty-one older individuals (aged 65 years and older) diagnosed with sarcopenia were randomly assigned to the LRT-BFR (20%-30% one-repetition maximum (1RM), n = 10) or CRT (60%-70% 1RM, n = 11) group. Both groups underwent a supervised exercise program three times a week for 12 weeks. The primary outcome was knee extensor strength (KES), and the secondary outcomes included body composition (body mass, body mass index and body fat percentage), muscle mass [appendicular skeletal muscle mass index (ASMI)], handgrip strength, physical performance [short physical performance battery (SPPB) and 6-m walk], CVD risk factors [hemodynamic parameters (systolic and diastolic blood pressure and heart rate (SBP, DBP and HR)) and lipid parameters (total cholesterol, triglyceride (TG), high-density lipoprotein (HDL) and low-density lipoprotein)], sarcopenia-related blood biomarkers [inflammatory biomarkers, hormones (growth hormone (GH) and insulin-like growth factor 1) and growth factors (myostatin and follistatin)] and quality of life [Short Form 36 Health Survey (SF-36)]. Both interventions remarkably improved the body composition, KES, 6-m walk, SBP, HDL, TG, GH, FST and SF-36 scores. CRT significantly improved the ASMI (p < 0.05) and SPPB (p < 0.05). A significant improvement in HR was observed only after LRT-BFR. No significant between-group differences were found before and after the interventions. This study suggested that LRT-BFR and CRT are beneficial to the clinical muscle outcomes, CVD risk factors and certain sarcopenia-related biomarkers of older people with sarcopenia. By comparison, CRT seems more effective in improving muscle mass, while LRT-BFR may be more beneficial for improving cardiovascular health in this population. Therefore, LRT-BFR is a potential alternative to CRT for aging sarcopenia.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Rehabilitation, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Rehabilitation, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuanyuan Song
- Department of Rehabilitation, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jiaye Zhu
- Department of Rehabilitation, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peiyuan Ding
- Department of Neurosurgery, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Nan Chen
- Department of Rehabilitation, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China.
- Department of Rehabilitation, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
9
|
Bielitzki R, Behrendt T, Motzko M, Behrens M, Schega L. Stiffness of elastic cuffs affects physiological and perceptual responses but not motor performance fatigue during low external load resistance exercise with practical blood flow restriction. J Sports Sci 2024; 42:2115-2123. [PMID: 39533538 DOI: 10.1080/02640414.2024.2423136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Practical blood flow restriction (pBFR), using non-pneumatic elastic cuffs, is a feasible and cost-effective alternative to pneumatic systems. There is evidence that cuff stiffness influences haemodynamic and perceptual responses in the upper body during rest. However, the impact of cuff stiffness during exercise is still unknown. Therefore, this study investigated the influence of cuff stiffness on physiological, perceptual, and performance changes during exercise. In a randomized and counterbalanced order, ten recreationally active males performed four sets of unilateral elbow flexions at 20% of individuals' one-repetition-maximum with two elastic cuffs of different stiffness (low stiffness cuff [LS] and high stiffness cuff [HS]) each applied with two different overlaps (10% and 20% overlap in relation to the limb circumference) as well as a control condition without pBFR. Before and after exercise, maximal voluntary isometric contraction torque was measured to assess motor performance fatigue. During exercise, muscle oxygen saturation of the biceps brachii as well as effort and exercise-induced muscle pain perception were recorded. Statistical analysis revealed that motor performance fatigue was not different between conditions (BF10 = 0.289). The decline in muscle oxygen saturation (BF10 = 8.508 and BF10 = 1039.543) as well as effort (BF10 = 2646.104 and BF10 = 2.773∙106) and exercise-induced muscle pain perception (BF10 = 14087.983 and BF10 = 7.306∙109) were higher when using the stiffer cuff at 10% and 20% overlap, respectively. Conclusively, physiological and perceptual responses but not motor performance fatigue were affected by cuff stiffness when equal relative overlaps were applied.
Collapse
Affiliation(s)
- Robert Bielitzki
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Tom Behrendt
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Marcel Motzko
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- University of Applied Sciences for Sport and Management Potsdam, Potsdam, Germany
| | - Lutz Schega
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
10
|
de Queiros VS, Aniceto RR, Rolnick N, Formiga MF, Vieira JG, Cabral BGDAT, Dantas PMS. Commentary: Blood flow restriction combined with resistance training on muscle strength and thickness improvement in young adults: a systematic review, meta-analysis, and meta-regression. Front Physiol 2024; 15:1486727. [PMID: 39483750 PMCID: PMC11524815 DOI: 10.3389/fphys.2024.1486727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Affiliation(s)
- Victor S. de Queiros
- Graduate Program in Healthy Science, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| | - Rodrigo R. Aniceto
- Study and Research Group in Biomechanics and Psychophysiology of Exercise, Federal Institute of Education, Science and Technology of Rio Grande do Norte, Nova Cruz-RN, Brazil
- Graduate Program in Cognitive Neuroscience and Behavior, Federal University of Paraiba, João Pessoa, Brazil
| | - Nicholas Rolnick
- Department of Exercise Science and Recreation, CUNY Lehman College, Bronx, NY, United States
- The Human Performance Mechanic, Bronx, NY, United States
| | - Magno F. Formiga
- Graduate Program in Physiotherapy and Functioning, Department of Physiotherapy, Federal University of Ceará, Fortaleza, Brazil
| | - João G. Vieira
- Graduate Program in Physical Education, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Breno Guilherme de Araújo Tinôco Cabral
- Graduate Program in Healthy Science, Federal University of Rio Grande do Norte, Natal-RN, Brazil
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| | - Paulo Moreira Silva Dantas
- Graduate Program in Healthy Science, Federal University of Rio Grande do Norte, Natal-RN, Brazil
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| |
Collapse
|
11
|
Perlet MR, Hosick PA, Licameli N, Matthews EL. Microvascular Reactivity Is Greater Following Blood Flow Restriction Resistance Exercise Compared with Traditional Resistance Exercise. J Strength Cond Res 2024; 38:e553-e562. [PMID: 39074191 DOI: 10.1519/jsc.0000000000004873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
ABSTRACT Perlet, MR, Hosick, PA, Licameli, N, and Matthews, EL. Microvascular reactivity is greater following blood flow restriction resistance exercise compared with traditional resistance exercise. J Strength Cond Res 38(10): e553-e562, 2024-Chronic blood flow restriction (BFR) resistance exercise can improve muscular strength, hypertrophy, and microvasculature function, but the acute microvascular effects are unknown. We aimed to test the effects of acute BFR resistance exercise on postexercise microvascular reactivity in an exercising muscle and nonexercising muscle compared with traditional resistance exercise (TRE). Twenty-five adults (men = 14, women = 11, age: 22 ± 3 years, body mass: 71.69 ± 14.49 kg, height: 170 ± 10 cm) completed barbell back squat 1-repetition maximum (1RM) testing followed by 2 randomized and counterbalanced resistance exercise visits separated by ≥48 hours. The 2 visits involved either BFR (4 sets of 30-15-15-15 repetitions at 30% 1RM, with 60-second rest intervals) or TRE (4 sets of 10 repetitions at 70% 1RM, 60-second rest intervals). During each exercise visit, a pre- and postbarbell back squat vascular occlusion test was performed using near-infrared spectroscopy to measure skeletal muscle oxygen (SmO 2 ) in the vastus lateralis (VL) and flexor carpi radialis (FCR). Two-way repeated-measures ANOVA found an interaction effect ( p = 0.020) for SmO 2 reactivity in the VL. Post hoc analysis found greater reactive hyperemia postexercise in the VL for the BFR condition ( p < 0.001) but not the TRE condition ( p ≥ 0.05). There were no time, condition, or interaction effects (all p > 0.05) for the same analysis in the FCR. This analysis suggests that BFR, but not TRE, lead to acutely improved microvasculature function. Moreover, it suggests that the effects of BFR resistance exercise are local to the exercised or occluded limb and not systemic.
Collapse
Affiliation(s)
- Michael R Perlet
- Department of Exercise Science and Physical Education, Montclair State University, Montclair, New Jersey; and
| | - Peter A Hosick
- Department of Exercise Science and Physical Education, Montclair State University, Montclair, New Jersey; and
| | | | - Evan L Matthews
- Department of Exercise Science and Physical Education, Montclair State University, Montclair, New Jersey; and
| |
Collapse
|
12
|
de Castro FMP, Oliveira LDP, Aquino R, Tourinho Filho H, Puggina EF. Impact of Complete Intermittent Blood Flow Restriction in Upper Limbs Strength and Neural Function. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:635-645. [PMID: 38306672 DOI: 10.1080/02701367.2023.2294092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/27/2023] [Indexed: 02/04/2024]
Abstract
Purpose: We aimed to investigate the chronic effects of low-load strength training (LT) with complete intermittent blood flow restriction (IBFR) on neural adaptations and strength in biceps brachii. Methods: Nineteen volunteers were randomly assigned into two different 9-week training protocols consisting of three assessment weeks and six training weeks: (a) LT with complete IBFR (LT-IBFR; n = 10) and (b) LT without complete IBFR (LT; n = 9). Strength was evaluated by predicted 1 repetition maximum (1RM) at weeks 1, 5, and 9 and neural function by root mean square (RMS) and median frequency (MDF) at sessions 1, 7, and 12 during the first three and last three repetitions. Both groups performed three sets of Scott curl with 20% of predicted 1RM interspersed with 90s rest twice a week. Results: No changes were found in predicted 1RM throughout the training protocols nor between groups. LT-IBFR group showed lower RMS in the first set than LT for the first three repetitions and higher RMS in all sets for the last three repetitions with decreases in this value across the sets with no longitudinal changes for both groups. MDF in the first three repetitions did not differentiate between groups, however, in the last three repetitions, MDF were lower for LTIBFR group in all sets and it increased across the sets for this condition with no chronical changes for both groups in both repetitions zones. These results suggest that LT-IBFR may be ineffective for increasing Q5 strength and it did not promote chronic neural adaptations.
Collapse
|
13
|
Ma F, He J, Wang Y. Blood flow restriction combined with resistance training on muscle strength and thickness improvement in young adults: a systematic review, meta-analysis, and meta-regression. Front Physiol 2024; 15:1379605. [PMID: 39189029 PMCID: PMC11345148 DOI: 10.3389/fphys.2024.1379605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Background High-intensity resistance training is known to be the most effective method for enhancing muscle strength and thickness, but it carries potential injury risks. Blood flow restriction (BFR) combined with resistance training has been proposed as a safer alternative method for improving muscle strength and thickness. Methods A meta-analysis was conducted, including 20 studies from five databases that met the inclusion criteria, to assess the efficacy of BFR combined with resistance training compared to traditional resistance training (NOBFR). The analysis focused on changes in muscle strength and thickness. Subgroup analysis and meta-regression were performed to explore the effects of tourniquet width and pressure. Results The findings showed that BFR combined with resistance training is comparable to traditional resistance training in enhancing muscle strength [0.11, 95%CI: (-0.08 to 0.29), I 2 = 0%] and muscle thickness [-0.07, 95% CI: (-0.25 to 0.12), I 2 = 0%]. Subgroup analysis indicated no significant differences in muscle strength (P = 0.66) and thickness (P = 0.87) between low-intensity BFR training and other intensity levels. Meta-regression suggested that tourniquet width and pressure might affect intervention outcomes, although the effects were not statistically significant (P > 0.05). Conclusion BFR combined with resistance training offers a viable alternative to high-intensity resistance training with reduced injury risks. We recommend interventions of 2-3 sessions per week at 20%-40% of 1 RM, using a wider cuff and applying an arterial occlusion pressure of 50%-80% to potentially enhance muscle strength and thickness. It is also recommended to release tourniquet pressure during rest intervals to alleviate discomfort. This protocol effectively improves muscle strength with minimal cardiac workload and reduced risk of adverse events. Systematic Review Registration [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023495465], identifier [CRD42023495465].
Collapse
Affiliation(s)
| | | | - Yan Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
14
|
Lin YT, Wong CM, Chen YC, Chen Y, Hwang IS. Differential training benefits and motor unit remodeling in wrist force precision tasks following high and low load blood flow restriction exercises under volume-matched conditions. J Neuroeng Rehabil 2024; 21:123. [PMID: 39030574 PMCID: PMC11264616 DOI: 10.1186/s12984-024-01419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Blood flow restriction (BFR) resistance training has demonstrated efficacy in promoting strength gains beneficial for rehabilitation. Yet, the distinct functional advantages of BFR strength training using high-load and low-load protocols remain unclear. This study explored the behavioral and neurophysiological mechanisms that explain the differing effects after volume-matched high-load and low-load BFR training. METHODS Twenty-eight healthy participants were randomly assigned to the high-load blood flow restriction (BFR-HL, n = 14) and low-load blood flow restriction (BFR-LL, n = 14) groups. They underwent 3 weeks of BFR training for isometric wrist extension at intensities of 25% or 75% of maximal voluntary contraction (MVC) with matched training volume. Pre- and post-tests included MVC and trapezoidal force-tracking tests (0-75%-0% MVC) with multi-channel surface electromyography (EMG) from the extensor digitorum. RESULTS The BFR-HL group exhibited a greater strength gain than that of the BFR-LL group after training (BFR_HL: 26.96 ± 16.33% vs. BFR_LL: 11.16 ± 15.34%)(p = 0.020). However, only the BFR-LL group showed improvement in force steadiness for tracking performance in the post-test (p = 0.004), indicated by a smaller normalized change in force fluctuations compared to the BFR-HL group (p = 0.048). After training, the BFR-HL group activated motor units (MUs) with higher recruitment thresholds (p < 0.001) and longer inter-spike intervals (p = 0.002), contrary to the BFR-LL group, who activated MUs with lower recruitment thresholds (p < 0.001) and shorter inter-spike intervals (p < 0.001) during force-tracking. The discharge variability (p < 0.003) and common drive index (p < 0.002) of MUs were consistently reduced with training for the two groups. CONCLUSIONS BFR-HL training led to greater strength gains, while BFR-LL training better improved force precision control due to activation of MUs with lower recruitment thresholds and higher discharge rates.
Collapse
Affiliation(s)
- Yen-Ting Lin
- Department of Ball Sport, National Taiwan University of Sport, Taichung City, Taiwan
| | - Chun-Man Wong
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Yi-Ching Chen
- Department of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung City, Taiwan
| | - Yueh Chen
- Orthopedic Department, Kaohsiung Veterans General Hospital Tainan Branch, Tainan City, Taiwan
| | - Ing-Shiou Hwang
- Department of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung City, Taiwan.
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan.
| |
Collapse
|
15
|
Girts RM, Harmon KK, Rodriguez G, Beausejour JP, Pagan JI, Carr JC, Garcia J, Stout JR, Fukuda DH, Stock MS. Sex differences in muscle-quality recovery following one week of knee joint immobilization and subsequent retraining. Appl Physiol Nutr Metab 2024; 49:805-817. [PMID: 38382056 DOI: 10.1139/apnm-2023-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
This manuscript represents the second phase of a clinical trial designed to examine the effects of knee joint immobilization and retraining on muscle strength and mass. In Phase 2, we examined sex differences in the recovery of multiple indices of muscle quality after a resistance training-based rehabilitation program. Following 1 week of immobilization, 27 participants (16 males, 11 females) exhibiting weakness underwent twice weekly resistance training sessions designed to re-strengthen their left knee. Unilateral retraining sessions utilizing leg press, extension, and curl exercises were conducted until participants could reproduce their pre-immobilization knee extension isometric maximal voluntary contraction (MVC) peak torque. Post-immobilization, both sexes demonstrated impaired MVC peak torque (males = -10.8%, females = -15.2%), specific torque (-9.8% vs. -13.1%), echo intensity of the vastus lateralis (+6.9% vs. +5.9%) and rectus femoris (+5.9% vs. +2.1), and extracellular water/intracellular water ratio (+7.8% vs. +9.0%). The number of retraining sessions for peak torque to return to baseline for males (median = 1, mean = 2.13) versus females (median = 2, mean = 2.91) was not significantly different, though the disparity in recovery times may be clinically relevant. Following retraining, specific torque was the only muscle-quality indicator that improved along with MVC peak torque (males = 20.1%, females = 22.4%). Our findings indicate that measures of muscle quality demonstrate divergent recovery rates following immobilization, with muscle mass lagging behind improvements in strength. Greater immobilization-induced strength loss among females suggests that sex-specific rehabilitation efforts may be justified.
Collapse
Affiliation(s)
- Ryan M Girts
- Department of Natural and Health Sciences, Pfeiffer University, Misenheimer, NC, USA
| | - Kylie K Harmon
- Department of Exercise ScienceSyracuse University, Syracuse, NY, USA
| | - Gabriela Rodriguez
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Jonathan P Beausejour
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Jason I Pagan
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Joshua C Carr
- Department of Kinesiology, Texas Christian University, Fort Worth, TX, USA
- Department of Medical Education, Anne Burnett Marion School of Medicine at Texas Christian University, Fort Worth, TX, USA
| | - Jeanette Garcia
- School of Sport Sciences West Virginia University, Morgantown, WV, USA
| | - Jeffrey R Stout
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - David H Fukuda
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Matt S Stock
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
16
|
Cockfield BA, Wedig IJ, Vinckier AL, McDaniel J, Elmer SJ. Physiological and perceptual responses to acute arm cranking with blood flow restriction. Eur J Appl Physiol 2024; 124:1509-1521. [PMID: 38142449 DOI: 10.1007/s00421-023-05384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023]
Abstract
INTRODUCTION Lower-body aerobic exercise with blood flow restriction (BFR) offers a unique approach for stimulating improvements in muscular function and aerobic capacity. While there are more than 40 reports documenting acute and chronic responses to lower-body aerobic exercise with BFR, responses to upper-body aerobic exercise with BFR are not clearly established. PURPOSE We evaluated acute physiological and perceptual responses to arm cranking with and without BFR. METHODS Participants (N = 10) completed 4 arm cranking (6 × 2 min exercise, 1 min recovery) conditions: low-intensity at 40%VO2peak (LI), low-intensity at 40%VO2peak with BFR at 50% of arterial occlusion pressure (BFR50), low-intensity at 40%VO2peak with BFR at 70% of arterial occlusion pressure (BFR70), and high-intensity at 80%VO2peak (HI) while tissue oxygenation, cardiorespiratory, and perceptual responses were assessed. RESULTS During exercise, tissue saturation for BFR50 (54 ± 6%), BFR70 (55 ± 6%), and HI (54 ± 8%) decreased compared to LI (61 ± 5%, all P < 0.01) and changes in deoxyhemoglobin for BFR50 (11 ± 4), BFR70 (15 ± 6), and HI (16 ± 10) increased compared to LI (4 ± 2, all P < 0.01). During recovery intervals, tissue saturation for BFR50 and BFR70 decreased further and deoxyhemoglobin for BFR50 and BFR70 increased further (all P < 0.04). Heart rate for BFR70 and HI increased by 9 ± 9 and 50 ± 15b/min, respectively, compared to LI (both P < 0.02). BFR50 (8 ± 2, 1.0 ± 1.0) and BFR70 (10 ± 2, 2.1 ± 1.4) elicited greater arm-specific perceived exertion (6-20 scale) and pain (0-10 scale) compared to LI (7 ± 1, 0.2 ± 0.5, all P < 0.05) and pain for BFR70 did not differ from HI (1.7 ± 1.9). CONCLUSION Arm cranking with BFR decreased tissue saturation and increased deoxyhemoglobin without causing excessive cardiorespiratory strain and pain.
Collapse
Affiliation(s)
- Benjamin A Cockfield
- Department of Kinesiology and Integrative Physiology, College of Science and Arts, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, 49931, USA
- Department of Physical Therapy, Central Michigan University, Mount Pleasant, MI, USA
| | - Isaac J Wedig
- Department of Kinesiology and Integrative Physiology, College of Science and Arts, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, 49931, USA
- Health Research Institute, Michigan Technological University, Houghton, MI, USA
- School of Health and Human Performance, Marquette, MI, USA
| | - Alyssa L Vinckier
- Department of Kinesiology and Integrative Physiology, College of Science and Arts, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, 49931, USA
- Department of Physical Therapy, Central Michigan University, Mount Pleasant, MI, USA
| | - John McDaniel
- Exercise Physiology Program, Kent State University, Kent, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Steven J Elmer
- Department of Kinesiology and Integrative Physiology, College of Science and Arts, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
17
|
Coleman M, Burke R, Augustin F, Piñero A, Maldonado J, Fisher JP, Israetel M, Androulakis Korakakis P, Swinton P, Oberlin D, Schoenfeld BJ. Gaining more from doing less? The effects of a one-week deload period during supervised resistance training on muscular adaptations. PeerJ 2024; 12:e16777. [PMID: 38274324 PMCID: PMC10809978 DOI: 10.7717/peerj.16777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Background Based on emerging evidence that brief periods of cessation from resistance training (RT) may re-sensitize muscle to anabolic stimuli, we aimed to investigate the effects of a 1-week deload interval at the midpoint of a 9-week RT program on muscular adaptations in resistance-trained individuals. Methods Thirty-nine young men (n = 29) and women (n = 10) were randomly assigned to 1 of 2 experimental, parallel groups: An experimental group that abstained from RT for 1 week at the midpoint of a 9-week, high-volume RT program (DELOAD) or a traditional training group that performed the same RT program continuously over the study period (TRAD). The lower body routines were directly supervised by the research staff while upper body training was carried out in an unsupervised fashion. Muscle growth outcomes included assessments of muscle thickness along proximal, mid and distal regions of the middle and lateral quadriceps femoris as well as the mid-region of the triceps surae. Adaptions in lower body isometric and dynamic strength, local muscular endurance of the quadriceps, and lower body muscle power were also assessed. Results Results indicated no appreciable differences in increases of lower body muscle size, local endurance, and power between groups. Alternatively, TRAD showed greater improvements in both isometric and dynamic lower body strength compared to DELOAD. Additionally, TRAD showed some slight psychological benefits as assessed by the readiness to train questionnaire over DELOAD. Conclusion In conclusion, our findings suggest that a 1-week deload period at the midpoint of a 9-week RT program appears to negatively influence measures of lower body muscle strength but has no effect on lower body hypertrophy, power or local muscular endurance.
Collapse
Affiliation(s)
- Max Coleman
- Applied Muscle Development Laboratory, City University of New York, Herbert H. Lehman College, Bronx, United States of America
| | - Ryan Burke
- Applied Muscle Development Laboratory, City University of New York, Herbert H. Lehman College, Bronx, United States of America
| | - Francesca Augustin
- Applied Muscle Development Laboratory, City University of New York, Herbert H. Lehman College, Bronx, United States of America
| | - Alec Piñero
- Applied Muscle Development Laboratory, City University of New York, Herbert H. Lehman College, Bronx, United States of America
| | - Jaime Maldonado
- Applied Muscle Development Laboratory, City University of New York, Herbert H. Lehman College, Bronx, United States of America
| | | | - Michael Israetel
- Applied Muscle Development Laboratory, City University of New York, Herbert H. Lehman College, Bronx, United States of America
| | - Patroklos Androulakis Korakakis
- Applied Muscle Development Laboratory, City University of New York, Herbert H. Lehman College, Bronx, United States of America
| | - Paul Swinton
- Robert Gordon Univesity, Aberdeen, United Kingdom
| | - Douglas Oberlin
- Applied Muscle Development Laboratory, City University of New York, Herbert H. Lehman College, Bronx, United States of America
| | - Brad J. Schoenfeld
- Applied Muscle Development Laboratory, City University of New York, Herbert H. Lehman College, Bronx, United States of America
| |
Collapse
|
18
|
Bielitzki R, Behrendt T, Weinreich A, Mittlmeier T, Schega L, Behrens M. Acute effects of static balance exercise combined with different levels of blood flow restriction on motor performance fatigue as well as physiological and perceptual responses in young healthy males and females. Eur J Appl Physiol 2024; 124:227-243. [PMID: 37429967 PMCID: PMC10787004 DOI: 10.1007/s00421-023-05258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/13/2023] [Indexed: 07/12/2023]
Abstract
PURPOSE This study investigated the acute effects of a static balance exercise combined with different blood flow restriction (BFR) pressures on motor performance fatigue development and recovery as well as physiological and perceptual responses during exercise in males and females. METHODS Twenty-four recreational active males (n = 13) and females (n = 11) performed static balance exercise on a BOSU ball (3 sets of 60 s with 30 s rest in-between) on three separate (> 3 days) laboratory visits with three different BFR pressures (80% arterial occlusion pressure [AOP], 40%AOP, 30 mmHg [SHAM]) in random order. During exercise, activity of various leg muscles, vastus lateralis muscle oxygenation, and ratings of effort and pain perception were recorded. Maximal squat jump height was measured before, immediately after, 1, 2, 4, and 8 min after exercise to quantify motor performance fatigue development and recovery. RESULTS Quadriceps muscle activity as well as ratings of effort and pain were highest, while muscle oxygenation was lowest in the 80%AOP compared to the 40%AOP and SHAM condition, with no differences in postural sway between conditions. Squat jump height declined after exercise with the highest reduction in the 80%AOP (- 16.4 ± 5.2%) followed by the 40%AOP (- 9.1 ± 3.2%), and SHAM condition (- 5.4 ± 3.3%). Motor performance fatigue was not different after 1 min and 2 min of recovery in 40% AOP and 80% AOP compared to SHAM, respectively. CONCLUSION Static balance exercise combined with a high BFR pressure induced the largest changes in physiological and perceptual responses, without affecting balance performance. Although motor performance fatigue was increased by BFR, it may not lead to long-term impairments in maximal performance.
Collapse
Affiliation(s)
- Robert Bielitzki
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, 39104, Magdeburg, Germany.
| | - Tom Behrendt
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, 39104, Magdeburg, Germany
| | - Andy Weinreich
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, 39104, Magdeburg, Germany
| | - Thomas Mittlmeier
- Department of Traumatology, Hand-and Reconstructive Surgery, Rostock University Medical Center, Schillingallee 35, 18057, Rostock, Germany
| | - Lutz Schega
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, 39104, Magdeburg, Germany
| | - Martin Behrens
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, 39104, Magdeburg, Germany
| |
Collapse
|
19
|
Zhuang M, Shi J, Liu J, He X, Chen N. Comparing the efficacy of low-load resistance exercise combined with blood flow restriction versus conventional-load resistance exercise in Chinese community-dwelling older people with sarcopenic obesity: a study protocol for a randomised controlled trial. BMC Geriatr 2023; 23:874. [PMID: 38114934 PMCID: PMC10731711 DOI: 10.1186/s12877-023-04592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
INTRODUCTION Sarcopenic obesity (SO) is characterised by decreased muscle mass, diminished muscle strength and/or reduced physical performance and a high percentage of body fat (PBF). Conventional-load resistance exercise (CRE) may be difficult for older people with SO owing to their declining physical functions. Low-load resistance exercise (LRE) combined with blood flow restriction (BFR; LRE-BFR) is a viable alternative to CRE for improving muscle mass and strength and potential exercise mode for managing SO. This study has two objectives: (1) to comprehensively evaluate the efficacy of CRE and LRE-BFR in improving body composition, muscle strength, physical performance, haematological parameters, cardiovascular disease (CVD) risk factors and quality of life and (2) to compare the efficacy of CRE and LRE-BFR and explore their potential mechanisms. METHODS AND ANALYSIS This work is a 12-week assessor-blinded randomised clinical trial that will be conducted thrice a week. Sarcopenia will be defined using the Asian Working Group for Sarcopenia 2019, and obesity will be determined using the criteria developed by the World Health Organization. Community-dwelling older people aged ≥ 65 years will be screened as the participants using inclusion and exclusion criteria. A total of 33 participants will be randomised into a CRE group (n = 11), an LRE-BFR group (n = 11) and a control group that will be given only health education (n = 11). The primary outcomes will be knee extensor strength and PBF, and the secondary outcomes will be body composition, anthropometric measurements, muscle strength of upper limbs, physical performance, haematological parameters, CVD risk factors and quality of life. The outcomes will be measured at the baseline (week 0), end of the intervention (week 12) and follow up (week 24). All the collected data will be analysed following the intention-to-treat principle. ETHICS AND DISSEMINATION The Ethics Research Committee has approved this study (approval No. CMEC-2022-KT-51). Changes or developments in this study will be reported at www.chictr.org.cn . TRIAL REGISTRATION ChiCTR2300067296 (3 January 2023).
Collapse
Grants
- 82102651 Mechanism of the Regulation of Skeletal Muscle Cell AMPK Pathway by Intestinal P.merdae in the Progression of Sarcopenia
- 82102651 Mechanism of the Regulation of Skeletal Muscle Cell AMPK Pathway by Intestinal P.merdae in the Progression of Sarcopenia
- 82102651 Mechanism of the Regulation of Skeletal Muscle Cell AMPK Pathway by Intestinal P.merdae in the Progression of Sarcopenia
- 82102651 Mechanism of the Regulation of Skeletal Muscle Cell AMPK Pathway by Intestinal P.merdae in the Progression of Sarcopenia
- 82102651 Mechanism of the Regulation of Skeletal Muscle Cell AMPK Pathway by Intestinal P.merdae in the Progression of Sarcopenia
- 2020YJZX0137 a special health research project of Shanghai Municipal Health Commission on the Health of Ageing, Woman and Children, "Exploration on the Screening and Rehabilitation Intervention Model for Sarcopenia among Community-dwelling Older people in Chongming District under the Medical Union Model"
- 2020YJZX0137 a special health research project of Shanghai Municipal Health Commission on the Health of Ageing, Woman and Children, "Exploration on the Screening and Rehabilitation Intervention Model for Sarcopenia among Community-dwelling Older people in Chongming District under the Medical Union Model"
- 2020YJZX0137 a special health research project of Shanghai Municipal Health Commission on the Health of Ageing, Woman and Children, "Exploration on the Screening and Rehabilitation Intervention Model for Sarcopenia among Community-dwelling Older people in Chongming District under the Medical Union Model"
- 2020YJZX0137 a special health research project of Shanghai Municipal Health Commission on the Health of Ageing, Woman and Children, "Exploration on the Screening and Rehabilitation Intervention Model for Sarcopenia among Community-dwelling Older people in Chongming District under the Medical Union Model"
- 2020YJZX0137 a special health research project of Shanghai Municipal Health Commission on the Health of Ageing, Woman and Children, "Exploration on the Screening and Rehabilitation Intervention Model for Sarcopenia among Community-dwelling Older people in Chongming District under the Medical Union Model"
- a special health research project of Shanghai Municipal Health Commission on the Health of Ageing, Woman and Children, “Exploration on the Screening and Rehabilitation Intervention Model for Sarcopenia among Community-dwelling Older people in Chongming District under the Medical Union Model”
Collapse
Affiliation(s)
- Min Zhuang
- Department of Rehabilitation, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jinli Shi
- Community Health Service Center of Chengqiao Town, Chongming District, Shanghai, China
| | - Jian Liu
- Community Health Service Center of Gangxi Town, Chongming District, Shanghai, China
| | - Xiangfeng He
- Department of Rehabilitation, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Nan Chen
- Department of Rehabilitation, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China.
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
- Department of Rehabilitation, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Hammert WB, Moreno EN, Martin CC, Jessee MB, Buckner SL. Skeletal Muscle Adaptations to High-Load Resistance Training With Pre-Exercise Blood Flow Restriction. J Strength Cond Res 2023; 37:2381-2388. [PMID: 37535935 DOI: 10.1519/jsc.0000000000004553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
ABSTRACT Hammert, WB, Moreno, EN, Martin, CC, Jessee, MB, and Buckner, SL. Skeletal muscle adaptations to high-load resistance training with pre-exercise blood flow restriction. J Strength Cond Res 37(12): 2381-2388, 2023-This study aimed to determine if blood flow restriction (BFR) could augment adaptations to a high-load training protocol that was inadequate for muscle growth. Forty nontrained individuals had each arm assigned to 1 of 3 elbow flexion protocols: (a) high-load resistance training [TRAD; 4 sets to muscular failure at 70% 1 repetition maximum (1RM)], (b) low repetition high-load resistance training with pre-exercise BFR (PreBFR; 4 sets of 3 repetitions at 70% 1RM + 3 min of pre-exercise BFR), and (c) low repetition high-load resistance training (LRTRAD); 4 sets of 3 repetitions at 70% 1RM). Muscle thickness (MT), 1RM strength, and local muscular endurance (LME) of the elbow flexors were measured before and after 8 weeks. An alpha level of 0.05 was used for all comparisons. For the 50% site, MT increased for TRAD (0.211 cm, 95% confidence interval [95% CI]: 0.143-0.280), PreBFR (0.105 cm, 95% CI: 0.034-0.175), and LRTRAD (0.073 cm, 95% CI: 0.000-0.146). The change for TRAD was greater than PreBFR and LRTRAD. For the 60% site, MT increased for TRAD (0.235 cm, 95% CI: 0.153-0.317), PreBFR (0.097 cm, 95% CI: 0.014-0.180), and LRTRAD (0.082 cm, 95% CI: 0.000-0.164). The change for TRAD was greater than PreBFR and LRTRAD. For the 70% site MT increased for TRAD (0.308 cm, 95% CI: 0.247-0.369), PreBFR (0.103 cm, 95% CI: 0.041-0.166), and LRTRAD (0.070 cm, 95% CI: 0.004-0.137). The change for TRAD was greater than PreBFR and LRTRAD. One repetition maximum and LME significantly increased for each condition, with no differences between conditions. Collapsed across conditions 1RM strength increased 2.094 kg (95% CI: 1.771-2.416) and LME increased 7.0 repetitions (95% CI: 5.7-8.3). In conclusion, the application of BFR to low-repetition, high-load training did not enhance the adaptative response.
Collapse
Affiliation(s)
- William B Hammert
- Department of Educational and Psychological Studies, USF Muscle Lab, Exercise Science Program, University of South Florida, Tampa, Florida; and
| | - Enrique N Moreno
- Department of Educational and Psychological Studies, USF Muscle Lab, Exercise Science Program, University of South Florida, Tampa, Florida; and
| | - Cole C Martin
- Department of Educational and Psychological Studies, USF Muscle Lab, Exercise Science Program, University of South Florida, Tampa, Florida; and
| | - Matthew B Jessee
- Department of Health, Exercise Science and Recreation Management, Applied Human Health and Physical Function Laboratory, University of Mississippi, Oxford, Mississippi
| | - Samuel L Buckner
- Department of Educational and Psychological Studies, USF Muscle Lab, Exercise Science Program, University of South Florida, Tampa, Florida; and
| |
Collapse
|
21
|
Vehrs PR, Johnson AW. Commentary: Is there a minimum effective dose for vascular occlusion during blood flow restriction training? Front Physiol 2023; 14:1279435. [PMID: 37849976 PMCID: PMC10577197 DOI: 10.3389/fphys.2023.1279435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Affiliation(s)
- Pat R. Vehrs
- Department of Exercise Sciences, Brigham Young University, Provo, UT, United States
| | | |
Collapse
|
22
|
Wizenberg AM, Gonzalez-Rojas D, Rivera PM, Proppe CE, Laurel KP, Stout JR, Fukuda DH, Billaut F, Keller JL, Hill EC. Acute Effects of Continuous and Intermittent Blood Flow Restriction on Sprint Interval Performance and Muscle Oxygen Responses. J Strength Cond Res 2023; 37:e546-e554. [PMID: 37639655 DOI: 10.1519/jsc.0000000000004518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
ABSTRACT Wizenberg, AM, Gonzalez-Rojas, D, Rivera, PM, Proppe, CE, Laurel, KP, Stout, JR, Fukuda, DH, Billaut, F, Keller, JL, and Hill, EC. Acute effects of continuous and intermittent blood flow restriction on sprint interval performance and muscle oxygen responses. J Strength Cond Res 37(10): e546-e554, 2023-This investigation aimed to examine the acute effects of continuous and intermittent blood flow restriction (CBFR and IBFR, respectively) during sprint interval training (SIT) on muscle oxygenation, sprint performance, and ratings of perceived exertion (RPE). Fifteen men (22.6 ± 2.4 years; 176 ± 6.3 cm; 80.0 ± 12.6 kg) completed in random order a SIT session with CBFR, IBFR (applied during rest), and no blood flow restriction (NoBFR). Each SIT session consisted of two 30-second all-out sprint tests separated by 2 minutes. Peak power (PP), total work (TW), sprint decrement score (S dec ), RPE, and muscle oxygenation were measured during each sprint. A p value ≤0.05 was considered statistically significant. PP decreased to a greater extent from sprint 1 to sprint 2 during CBFR (25.5 ± 11.9%) and IBFR (23.4 ± 9.3%) compared with NoBFR (13.4 ± 8.6%). TW was reduced similarly (17,835.6 ± 966.2 to 12,687.2 ± 675.2 J) from sprint 1 to sprint 2 for all 3 conditions, but TW was lower (collapsed across time) for CBFR (14,320.7 ± 769.1 J) than IBFR (15,548.0 ± 840.5 J) and NoBFR (15,915.4 ± 771.5 J). There were no differences in S dec (84.3 ± 1.7%, 86.1 ± 1.5%, and 87.2 ± 1.1% for CBFR, IBFR, and NoBFR, respectively) or RPE, which increased from sprint 1 (8.5 ± 0.3) to sprint 2 (9.7 ± 0.1). Collective muscle oxygenation responses increased across time and were similar among conditions, whereas increases in deoxy[heme] and total[heme] were greatest for CBFR. Applying BFR during SIT induced greater decrements in PP, and CBFR resulted in greater decrements in work across repeated sprints. The larger increases in deoxy[heme] and total[heme] for CBFR suggested it may induce greater metabolite accumulation than IBFR and NoBFR when combined with SIT.
Collapse
Affiliation(s)
- Aaron M Wizenberg
- Exercise Physiology Intervention and Collaboration Laboratory, School of Kinesiology and Physical Therapy, Division of Kinesiology, University of Central Florida, Orlando, Florida
| | - David Gonzalez-Rojas
- Exercise Physiology Intervention and Collaboration Laboratory, School of Kinesiology and Physical Therapy, Division of Kinesiology, University of Central Florida, Orlando, Florida
| | - Paola M Rivera
- Exercise Physiology Intervention and Collaboration Laboratory, School of Kinesiology and Physical Therapy, Division of Kinesiology, University of Central Florida, Orlando, Florida
| | - Christopher E Proppe
- Exercise Physiology Intervention and Collaboration Laboratory, School of Kinesiology and Physical Therapy, Division of Kinesiology, University of Central Florida, Orlando, Florida
| | - Kaliegh P Laurel
- Exercise Physiology Intervention and Collaboration Laboratory, School of Kinesiology and Physical Therapy, Division of Kinesiology, University of Central Florida, Orlando, Florida
| | - Jeffery R Stout
- Exercise Physiology Intervention and Collaboration Laboratory, School of Kinesiology and Physical Therapy, Division of Kinesiology, University of Central Florida, Orlando, Florida
| | - David H Fukuda
- Exercise Physiology Intervention and Collaboration Laboratory, School of Kinesiology and Physical Therapy, Division of Kinesiology, University of Central Florida, Orlando, Florida
| | | | - Joshua L Keller
- Integrative Laboratory of Exercise and Applied Physiology, Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama; and
| | - Ethan C Hill
- Exercise Physiology Intervention and Collaboration Laboratory, School of Kinesiology and Physical Therapy, Division of Kinesiology, University of Central Florida, Orlando, Florida
- Florida Space Institute, Partnership I, Research Parkway, University of Central Florida, Orlando, Florida
| |
Collapse
|
23
|
Coleman M, Burke R, Benavente C, Piñero A, Augustin F, Maldonado J, Fisher JP, Oberlin D, Vigotsky AD, Schoenfeld BJ. Supervision during resistance training positively influences muscular adaptations in resistance-trained individuals. J Sports Sci 2023; 41:1207-1217. [PMID: 37789670 DOI: 10.1080/02640414.2023.2261090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023]
Abstract
This study compared the effects of supervised versus unsupervised resistance training (RT) on measures of muscle strength and hypertrophy in resistance-trained individuals. Thirty-six young men and women were randomly assigned to one of two experimental, parallel groups to complete an 8-week RT programme: One group received direct supervision for their RT sessions (SUP); the other group performed the same RT programme in an unsupervised manner (UNSUP). Programme variables were kept constant between groups. We obtained pre- and post-study assessments of body composition via multi-frequency bioelectrical impedance analysis (MF-BIA), muscle thickness of the upper and lower limbs via ultrasound, 1 repetition maximum (RM) in the back squat and bench press, isometric knee extension strength, and countermovement jump (CMJ) height. Results showed the SUP group generally achieved larger increases in muscle thickness for the triceps brachii, all sites of the rectus femoris, and the proximal region of the vastus lateralis. MF-BIA indicated increases in lean mass favoured SUP. Squat 1RM was greater for SUP; bench press 1RM and isometric knee extension were similar between conditions. CMJ increases modestly favoured UNSUP. In conclusion, our findings suggest that supervised RT promotes greater muscular adaptations and enhances exercise adherence in young, resistance-trained individuals.
Collapse
Affiliation(s)
- Max Coleman
- Applied Muscle Development Laboratory, Department of Exercise Science and Recreation, CUNY Lehman College, Bronx, NY, USA
| | - Ryan Burke
- Applied Muscle Development Laboratory, Department of Exercise Science and Recreation, CUNY Lehman College, Bronx, NY, USA
| | - Cristina Benavente
- Applied Muscle Development Laboratory, Department of Exercise Science and Recreation, CUNY Lehman College, Bronx, NY, USA
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Alec Piñero
- Applied Muscle Development Laboratory, Department of Exercise Science and Recreation, CUNY Lehman College, Bronx, NY, USA
| | - Francesca Augustin
- Applied Muscle Development Laboratory, Department of Exercise Science and Recreation, CUNY Lehman College, Bronx, NY, USA
| | - Jaime Maldonado
- Applied Muscle Development Laboratory, Department of Exercise Science and Recreation, CUNY Lehman College, Bronx, NY, USA
| | - James P Fisher
- Department of Sport and Health, Solent University, Southampton, UK
| | - Douglas Oberlin
- Applied Muscle Development Laboratory, Department of Exercise Science and Recreation, CUNY Lehman College, Bronx, NY, USA
| | - Andrew D Vigotsky
- Departments of Biomedical Engineering and Statistics, Northwestern University, Evanston, IL, USA
| | - Brad J Schoenfeld
- Applied Muscle Development Laboratory, Department of Exercise Science and Recreation, CUNY Lehman College, Bronx, NY, USA
| |
Collapse
|
24
|
Gray SM, Cuomo AM, Proppe CE, Traylor MK, Hill EC, Keller JL. Effects of Sex and Cuff Pressure on Physiological Responses during Blood Flow Restriction Resistance Exercise in Young Adults. Med Sci Sports Exerc 2023; 55:920-931. [PMID: 36729632 DOI: 10.1249/mss.0000000000003103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The purpose of this study was to examine the physiological responses resulting from an acute blood flow restriction resistance exercise bout with two different cuff pressures in young, healthy men and women. METHODS Thirty adults (18-30 yr) completed a bilateral leg extension blood flow restriction bout consisting of four sets (30-15-15-15 repetitions), with cuffs applied at pressures corresponding to 40% and 60% of the minimum arterial occlusion pressure (AOP) needed to completely collapse the femoral arteries. During each of these conditions (40% and 60% AOP), physiological measures of near-infrared spectroscopy (NIRS) and EMG amplitude (EMG AMP) were collected from the dominant or nondominant vastus lateralis. After each set, ratings of perceived exertion (RPE) were collected, whereas only at baseline and at the end of the bout, mean arterial pressure (MAP) was assessed. Separate mixed-factorial ANOVA models were used to examine mean differences in the change in EMG AMP and NIRS parameters during each set. The absolute RPE and MAP values were also examined with separate ANOVAs. A P value ≤0.05 was considered statistically significant. RESULTS Regardless of sex or cuff pressure, the change in EMG AMP was lower in set 1 (14.8%) compared with the remaining sets (22.6%-27.0%). The 40% AOP condition elicited the greatest changes in oxy[heme] and deoxy[heme], while also providing lower RPEs. For MAP, there was an effect for time such that MAP increased from preexercise (87.5 ± 4.3 mm Hg) to postexercise (104.5 ± 4.1 mm Hg). CONCLUSIONS The major findings suggested that the 40% AOP condition permitted the greatest amount of recovery during the interset rest. In addition, there did not seem to be any meaningful sex-related difference in this sample of young healthy adults.
Collapse
Affiliation(s)
- Sylvie M Gray
- Integrated Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL
| | | | - Christopher E Proppe
- Division of Kinesiology, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL
| | - Miranda K Traylor
- Integrated Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL
| | | | - Joshua L Keller
- Integrated Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL
| |
Collapse
|
25
|
Spiering BA, Clark BC, Schoenfeld BJ, Foulis SA, Pasiakos SM. Maximizing Strength: The Stimuli and Mediators of Strength Gains and Their Application to Training and Rehabilitation. J Strength Cond Res 2023; 37:919-929. [PMID: 36580280 DOI: 10.1519/jsc.0000000000004390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT Spiering, BA, Clark, BC, Schoenfeld, BJ, Foulis, SA, and Pasiakos, SM. Maximizing strength: the stimuli and mediators of strength gains and their application to training and rehabilitation. J Strength Cond Res 37(4): 919-929, 2023-Traditional heavy resistance exercise (RE) training increases maximal strength, a valuable adaptation in many situations. That stated, some populations seek new opportunities for pushing the upper limits of strength gains (e.g., athletes and military personnel). Alternatively, other populations strive to increase or maintain strength but cannot perform heavy RE (e.g., during at-home exercise, during deployment, or after injury or illness). Therefore, the purpose of this narrative review is to (a) identify the known stimuli that trigger gains in strength; (b) identify the known factors that mediate the long-term effectiveness of these stimuli; (c) discuss (and in some cases, speculate on) potential opportunities for maximizing strength gains beyond current limits; and (d) discuss practical applications for increasing or maintaining strength when traditional heavy RE cannot be performed. First, by conceptually deconstructing traditional heavy RE, we identify that strength gains are stimulated through a sequence of events, namely: giving maximal mental effort, leading to maximal neural activation of muscle to produce forceful contractions, involving lifting and lowering movements, training through a full range of motion, and (potentially) inducing muscular metabolic stress. Second, we identify factors that mediate the long-term effectiveness of these RE stimuli, namely: optimizing the dose of RE within a session, beginning each set of RE in a minimally fatigued state, optimizing recovery between training sessions, and (potentially) periodizing the training stimulus over time. Equipped with these insights, we identify potential opportunities for further maximizing strength gains. Finally, we identify opportunities for increasing or maintaining strength when traditional heavy RE cannot be performed.
Collapse
Affiliation(s)
- Barry A Spiering
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio
- Department of Biomedical Sciences, Ohio University, Athens, Ohio; and
| | | | - Stephen A Foulis
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Stefan M Pasiakos
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
26
|
Shriver CT, Figueroa YL, Gifford J, Davis PR. Effects of Different Percentages of Blood Flow Restriction on Muscle Oxygen Saturation While Walking. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2023; 16:411-428. [PMID: 37124448 PMCID: PMC10128124 DOI: 10.70252/kcif2483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The purpose of this investigation was to determine the effect of different relative pressures of blood flow restriction (BFR) on muscle oxygen saturation (SmO2) while walking at 3.0 mph (4.83 kph). Fifteen physically active healthy adults performed seven 5-minute stages of walking at 3.0 mph with a blood flow restriction cuff applied to the proximal portion of the left or right leg while bilateral SmO2 changes were measured using near infra-red spectroscopy (NIRS) on the medial head of the gastrocnemius (GM) and vastus lateralis (VL) muscles. Other measurements including heart rate (HR), blood pressure (BP), rating of perceived exertion (RPE), and ground contact time balance (GCTB) were also collected. SmO2 measurements were analyzed using two-way repeated measures (RM) ANOVA while other measurements were analyzed using one-way RM ANOVA. We observed a significant main effect of LOP% (limb occlusion pressure) on the difference in total area of desaturation that occurred during each occlusion stage (ADS), p < 0.0001 η2 = .336, early ΔSmO2, p < 0.0001 in both the GAS η2 = .132 and VL η2 = .335. The results suggest that there are significant differences in SmO2 desaturation between 40%, 80%, and 100% LOP. Our findings suggest that incremental increases in LOP will bring about greater SmO2 desaturation during walking and may therefore induce a larger adaptive response on the muscles. However, increased LOP% may intensify perception of effort.
Collapse
Affiliation(s)
- Clayton T Shriver
- Department of Kinesiology, Sam Houston State University, Huntsville, TX, USA
| | - Yvette L Figueroa
- Department of Kinesiology, Sam Houston State University, Huntsville, TX, USA
| | - Jayson Gifford
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - Patrick R Davis
- Department of Kinesiology, Sam Houston State University, Huntsville, TX, USA
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, USA
| |
Collapse
|
27
|
Ferlito JV, Rolnick N, Ferlito MV, De Marchi T, Deminice R, Salvador M. Acute effect of low-load resistance exercise with blood flow restriction on oxidative stress biomarkers: A systematic review and meta-analysis. PLoS One 2023; 18:e0283237. [PMID: 37083560 PMCID: PMC10121002 DOI: 10.1371/journal.pone.0283237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/03/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The purpose of this review was to analyze the acute effects of low-load resistance exercise with blood flow restriction (LLE-BFR) on oxidative stress markers in healthy individuals in comparison with LLE or high-load resistance exercise (HLRE) without BFR. MATERIALS AND METHODS A systematic review was performed in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. These searches were performed in CENTRAL, SPORTDiscus, EMBASE, PubMed, CINAHL and Virtual Health Library- VHL, which includes Lilacs, Medline and SciELO. The risk of bias and quality of evidence were assessed through the PEDro scale and GRADE system, respectively. RESULTS Thirteen randomized clinical trials were included in this review (total n = 158 subjects). Results showed lower post-exercise damage to lipids (SMD = -0.95 CI 95%: -1.49 to -0. 40, I2 = 0%, p = 0.0007), proteins (SMD = -1.39 CI 95%: -2.11 to -0.68, I2 = 51%, p = 0.0001) and redox imbalance (SMD = -0.96 CI 95%: -1.65 to -0.28, I2 = 0%, p = 0.006) in favor of LLRE-BFR compared to HLRE. HLRE presents higher post-exercise superoxide dismutase activity but in the other biomarkers and time points, no significant differences between conditions were observed. For LLRE-BFR and LLRE, we found no difference between the comparisons performed at any time point. CONCLUSIONS Based on the available evidence from randomized trials, providing very low or low certainty of evidence, this review demonstrates that LLRE-BFR promotes less oxidative stress when compared to HLRE but no difference in levels of oxidative damage biomarkers and endogenous antioxidants between LLRE. TRIAL REGISTRATION Register number: PROSPERO number: CRD42020183204.
Collapse
Affiliation(s)
- João Vitor Ferlito
- Oxidative Stress and Antioxidant Laboratory, Postgraduate Program in Biotechnology, University of Caxias Do Sul, Caxias do Sul, Brazil
| | - Nicholas Rolnick
- The Human Performance Mechanic, Lehman College, New York, NY, United States of America
| | - Marcos Vinicius Ferlito
- Oxidative Stress and Antioxidant Laboratory, Postgraduate Program in Biotechnology, University of Caxias Do Sul, Caxias do Sul, Brazil
| | - Thiago De Marchi
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Postgraduate Program in Rehabilitation Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Rafael Deminice
- Department of Physical Education, State University of Londrina, Londrina, Brazil
| | - Mirian Salvador
- Oxidative Stress and Antioxidant Laboratory, Postgraduate Program in Biotechnology, University of Caxias Do Sul, Caxias do Sul, Brazil
| |
Collapse
|
28
|
Lauver JD, Moran A, Guilkey JP, Johnson KE, Zanchi NE, Rotarius TR. Acute Responses to Cycling Exercise With Blood Flow Restriction During Various Intensities. J Strength Cond Res 2022; 36:3366-3373. [PMID: 34341317 DOI: 10.1519/jsc.0000000000004099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Lauver, JD, Moran, A, Guilkey, JP, Johnson, KE, Zanchi, NE, and Rotarius, TR. Acute responses to cycling exercise with blood flow restriction during various intensities. J Strength Cond Res 36(12): 3366-3373, 2022-The purpose of this study was to investigate the acute physiological responses during cycling at various intensities with blood flow restriction (BFR). Subjects ( N = 9; V̇ o2 peak = 36.09 ± 5.80 ml·kg -1 ·min -1 ) performed 5 protocols: high-intensity (HIGH), control (CON-90), 90% of ventilatory threshold (VT) work rate with BFR (90-BFR), 70% of VT with BFR (70-BFR), and 30% V̇ o2 peak with BFR (30-BFR). Protocols consisted of five 2-minute work intervals interspersed with 1-minute recovery intervals. Blood flow restriction pressure was 80% of limb occlusion pressure. V̇ o2 , muscle excitation, tissue oxygen saturation (StO 2 ), discomfort, and level of perceived exertion (RPE) were assessed. Muscle excitation was higher during HIGH (302.9 ± 159.9 %BSL [baseline]) compared with 70-BFR (99.7 ± 76.4 %BSL) and 30-BFR (98.2 ± 70.5 %BSL). StO 2 was greater during 90-BFR (40.7 ± 12.5 ∆BSL), 70-BFR (34.4 ± 15.2 ∆BSL), and 30-BFR (31.9 ± 18.7 ∆BSL) compared with CON-90 (4.4 ± 11.5 ∆BSL). 90-BFR (39.6 ± 12.0 ∆BSL) resulted in a greater StO 2 -Avg compared with HIGH (20.5 ± 13.8 ∆BSL). Also, HIGH (23.68 ± 5.31 ml·kg -1 ·min -1 ) resulted in a greater V̇ o2 compared with 30-BFR (15.43 ± 3.19 ml·kg -1 ·min -1 ), 70-BFR (16.65 ± 3.26 ml·kg -1 ·min -1 ), and 90-BFR (18.28 ± 3.89 ml·kg -1 ·min -1 ); 90-BFR (intervals: 4 = 15.9 ± 2.3; intervals: 5 = 16.4 ± 2.5) resulted in a greater RPE compared with 30-BFR (intervals: 4 = 13.3 ± 1.4; intervals: 5 = 13.7 ± 1.7) during intervals 4 and 5. These results suggest that when adding BFR to various intensities of aerobic exercise, consideration should be given to peak work and VT to provide a balance between high local physiological stress and perceptual responses.
Collapse
Affiliation(s)
- Jakob D Lauver
- Department of Kinesiology, Coastal Carolina University, Conway, South Carolina
| | - Austin Moran
- Department of Kinesiology, Coastal Carolina University, Conway, South Carolina
| | - Justin P Guilkey
- Department of Kinesiology, Coastal Carolina University, Conway, South Carolina
| | - Kelly E Johnson
- Department of Kinesiology, Coastal Carolina University, Conway, South Carolina
| | - Nelo E Zanchi
- Department of Physical Education, Federal University of Maranhao (UFMA), Sao Luis, Brazil; and
| | - Timothy R Rotarius
- Department of Exercise Science and Athletic Training, Adrian College, Adrian, Michigan
| |
Collapse
|
29
|
Plotkin D, Coleman M, Van Every D, Maldonado J, Oberlin D, Israetel M, Feather J, Alto A, Vigotsky AD, Schoenfeld BJ. Progressive overload without progressing load? The effects of load or repetition progression on muscular adaptations. PeerJ 2022; 10:e14142. [PMID: 36199287 PMCID: PMC9528903 DOI: 10.7717/peerj.14142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/07/2022] [Indexed: 01/21/2023] Open
Abstract
Background Progressive overload is a principle of resistance training exercise program design that typically relies on increasing load to increase neuromuscular demand to facilitate further adaptations. However, little attention has been given to another way of increasing demand-increasing the number of repetitions. Objective This study aimed to compare the effects of two resistance training programs: (1) increasing load while keeping repetition range constant vs (2) increasing repetitions while keeping load constant. We aimed to compare the effects of these programs on lower body muscle hypertrophy, muscle strength, and muscle endurance in resistance-trained individuals over an 8-week study period. Methods Forty-three participants with at least 1 year of consistent lower body resistance training experience were randomly assigned to one of two experimental, parallel groups: A group that aimed to increase load while keeping repetitions constant (LOAD: n = 22; 13 men, nine women) or a group that aimed to increase repetitions while keeping load constant (REPS: n = 21; 14 men, seven women). Subjects performed four sets of four lower body exercises (back squat, leg extension, straight-leg calf raise, and seated calf raise) twice per week. We assessed one repetition maximum (1RM) in the Smith machine squat, muscular endurance in the leg extension, countermovement jump height, and muscle thickness along the quadriceps and calf muscles. Between-group effects were estimated using analyses of covariance, adjusted for pre-intervention scores and sex. Results Rectus femoris growth modestly favored REPS (adjusted effect estimate (CI90%), sum of sites: 2.8 mm [-0.5, 5.8]). Alternatively, dynamic strength increases slightly favored LOAD (2.0 kg [-2.4, 7.8]), with differences of questionable practical significance. No other notable between-group differences were found across outcomes (muscle thicknesses, <1 mm; endurance, <1%; countermovement jump, 0.1 cm; body fat, <1%; leg segmental lean mass, 0.1 kg), with narrow CIs for most outcomes. Conclusion Both progressions of repetitions and load appear to be viable strategies for enhancing muscular adaptations over an 8-week training cycle, which provides trainers and trainees with another promising approach to programming resistance training.
Collapse
Affiliation(s)
- Daniel Plotkin
- City University of New York, Herbert H. Lehman College, Bronx, United States
| | - Max Coleman
- City University of New York, Herbert H. Lehman College, Bronx, United States
| | - Derrick Van Every
- City University of New York, Herbert H. Lehman College, Bronx, United States
| | - Jaime Maldonado
- City University of New York, Herbert H. Lehman College, Bronx, United States
| | - Douglas Oberlin
- City University of New York, Herbert H. Lehman College, Bronx, United States
| | | | - Jared Feather
- Renaissance Periodization, Charlotte, NC, United States
| | - Andrew Alto
- City University of New York, Herbert H. Lehman College, Bronx, United States
| | | | - Brad J. Schoenfeld
- City University of New York, Herbert H. Lehman College, Bronx, United States
| |
Collapse
|
30
|
Das A, Paton B. Is There a Minimum Effective Dose for Vascular Occlusion During Blood Flow Restriction Training? Front Physiol 2022; 13:838115. [PMID: 35464074 PMCID: PMC9024204 DOI: 10.3389/fphys.2022.838115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/22/2022] [Indexed: 11/20/2022] Open
Abstract
Background Blood flow restriction (BFR) training at lower exercise intensities has a range of applications, allowing subjects to achieve strength and hypertrophy gains matching those training at high intensity. However, there is no clear consensus on the percentage of limb occlusion pressure [%LOP, expressed as a % of the pressure required to occlude systolic blood pressure (SBP)] and percentage of one repetition max weight (%1RM) required to achieve these results. This review aims to explore what the optimal and minimal combination of LOP and 1RM is for significant results using BFR. Method A literature search using PubMed, Scopus, Wiley Online, Springer Link, and relevant citations from review papers was performed, and articles assessed for suitability. Original studies using BFR with a resistance training exercise intervention, who chose a set %LOP and %1RM and compared to a non-BFR control were included in this review. Result Twenty-one studies met the inclusion criteria. %LOP ranged from 40 to 150%. %1RM used ranged from 15 to 80%. Training at 1RM ≤20%, or ≥ 80% did not produce significant strength results compared to controls. Applying %LOP of ≤50% and ≥ 80% did not produce significant strength improvement compared to controls. This may be due to a mechanism mediated by lactate accumulation, which is facilitated by increased training volume and a moderate exercise intensity. Conclusion Training at a minimum of 30 %1RM with BFR is required for strength gains matching non-BFR high intensity training. Moderate intensity training (40-60%1RM) with BFR may produce results exceeding non-BFR high intensity however the literature is sparse. A %LOP of 50-80% is optimal for BFR training.
Collapse
Affiliation(s)
- Arpan Das
- Institute of Sports, Exercise and Health, Department of Medical Sciences, University College of London, London, United Kingdom
| | - Bruce Paton
- Institute of Sports, Exercise and Health, Department of Medical Sciences, University College of London, London, United Kingdom
| |
Collapse
|
31
|
Keller JL, Kennedy KG, Hill EC, Fleming SR, Colquhoun RJ, Schwarz NA. Handgrip exercise induces sex-specific mean arterial pressure and oxygenation responses but similar performance fatigability. Clin Physiol Funct Imaging 2022; 42:127-138. [PMID: 34979052 DOI: 10.1111/cpf.12739] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/30/2021] [Accepted: 12/20/2021] [Indexed: 01/19/2023]
Abstract
Women exhibit an attenuated exercise pressor reflex (EPR) when compared to men. The influence of sex-specific mechanisms related to the EPR and performance fatigability remain to be fully elucidated. The purpose was to determine the impact of oxygenation and metabolic efficiency on sex-specific performance fatigability and increases in mean arterial pressure (MAP) resulting from a fatiguing isometric handgrip (IHG). Twenty-four adults volunteered to perform an IHG at 25% at maximal voluntary isometric contractions (MVICs). Pre- and posttest MVICs were conducted to quantify performance fatigability. MAP was collected at 3 timepoints. A near-infrared spectroscopy device was attached to the forearm to derive the following signals: oxy[haem], deoxy[haem], total[haem], and diff[haem]. These values were normalized and examined across time in 5% segments of time-to-task-failure. Metabolic efficiency was defined as the ratio force:deoxy[haem]. During the IHG, there was a decline in oxy[haem] for the men (b = -0.075), whereas the women demonstrated an increase (b = 0.117). For the men, the diff[haem] tracked the mean oxy[haem] response, but there was no change for the women. The men exhibited greater declines in metabolic efficiency, yet there were no sex differences in PF (46.6 ± 9.7% vs. 45.5 ± 14.2%). For relative MAP, the men (24.5 ± 15.1%) exhibited a greater (p = .03) increase than the women (11.0 ± 17.6%). These results indicated the EPR was more prominent for the men, perhaps due to differences in mechanical stimuli and a lack of ability to maintain metabolic efficiency. However, these physiological differences did not induce a sex difference in performance fatigability.
Collapse
Affiliation(s)
- Joshua L Keller
- Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, USA
| | - Katie G Kennedy
- Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, USA
| | - Ethan C Hill
- Division of Kinesiology, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, Florida, USA.,Florida Space Institute, University of Central Florida, Orlando, Florida, USA
| | - Sydnie R Fleming
- Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, USA
| | - Ryan J Colquhoun
- Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, USA
| | - Neil A Schwarz
- Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
32
|
de Campos Biazon TMP, Libardi CA, Junior JCB, Caruso FR, da Silva Destro TR, Molina NG, Borghi-Silva A, Mendes RG. The effect of passive mobilization associated with blood flow restriction and combined with electrical stimulation on cardiorespiratory safety, neuromuscular adaptations, physical function, and quality of life in comatose patients in an ICU: a randomized controlled clinical trial. Trials 2021; 22:969. [PMID: 34969405 PMCID: PMC8719392 DOI: 10.1186/s13063-021-05916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 12/06/2021] [Indexed: 11/14/2022] Open
Abstract
Background Intensive care unit-acquired atrophy and weakness are associated with high mortality, a reduction in physical function, and quality of life. Passive mobilization (PM) and neuromuscular electrical stimulation were applied in comatose patients; however, evidence is inconclusive regarding atrophy and weakness prevention. Blood flow restriction (BFR) associated with PM (BFRp) or with electrical stimulation (BFRpE) was able to reduce atrophy and increase muscle mass in spinal cord-injured patients, respectively. Bulky venous return occurs after releasing BFR, which can cause unknown repercussions on the cardiovascular system. Hence, the aim of this study was to investigate the effect of BFRp and BFRpE on cardiovascular safety and applicability, neuromuscular adaptations, physical function, and quality of life in comatose patients in intensive care units (ICUs). Methods Thirty-nine patients will be assessed at baseline (T0–18 h of coma) and randomly assigned to the PM (control group), BFRp, or BFRpE groups. The training protocol will be applied in both legs alternately, twice a day with a 4-h interval until coma awake, death, or ICU discharge. Cardiovascular safety and applicability will be evaluated at the first training session (T1). At T0 and 12 h after the last session (T2), muscle thickness and quality will be assessed. Global muscle strength and physical function will be assessed 12 h after T2 and ICU and hospital discharge for those who wake up from coma. Six and 12 months after hospital discharge, physical function and quality of life will be re-assessed. Discussion In view of applicability, the data will be used to inform the design and sample size of a prospective trial to clarify the effect of BFRpE on preventing muscle atrophy and weakness and to exert the greatest beneficial effects on physical function and quality of life compared to BFRp in comatose patients in the ICU. Trial registration Universal Trial Number (UTN) Registry UTN U1111-1241-4344. Retrospectively registered on 2 October 2019. Brazilian Clinical Trials Registry (ReBec) RBR-2qpyxf. Retrospectively registered on 21 January 2020, http://ensaiosclinicos.gov.br/rg/RBR-2qpyxf/ Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05916-z.
Collapse
Affiliation(s)
- Thaís Marina Pires de Campos Biazon
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Rod. Washington Luiz, km 235 - SP 310, CEP 13565-905, São Carlos, Brazil
| | - Cleiton Augusto Libardi
- Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Jose Carlos Bonjorno Junior
- Department of Medicine, Federal University of São Carlos, São Carlos, Brazil.,Department of Anesthesiology and Intensive Care Unit at the Irmandade da Santa Casa de Misericórdia de São Carlos, São Carlos, Brazil
| | - Flávia Rossi Caruso
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Rod. Washington Luiz, km 235 - SP 310, CEP 13565-905, São Carlos, Brazil
| | - Tamara Rodrigues da Silva Destro
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Rod. Washington Luiz, km 235 - SP 310, CEP 13565-905, São Carlos, Brazil
| | - Naiara Garcia Molina
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Rod. Washington Luiz, km 235 - SP 310, CEP 13565-905, São Carlos, Brazil
| | - Audrey Borghi-Silva
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Rod. Washington Luiz, km 235 - SP 310, CEP 13565-905, São Carlos, Brazil
| | - Renata Gonçalves Mendes
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Rod. Washington Luiz, km 235 - SP 310, CEP 13565-905, São Carlos, Brazil.
| |
Collapse
|
33
|
Effects of Blood Flow Restriction Combined With Resistance Training or Neuromuscular Electrostimulation on Muscle Cross-Sectional Area. J Sport Rehabil 2021; 31:319-324. [PMID: 34929663 DOI: 10.1123/jsr.2021-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/16/2021] [Accepted: 10/10/2021] [Indexed: 11/18/2022]
Abstract
CONTEXT Low-load resistance training (LL) and neuromuscular electrostimulation (NES), both combined with blood flow restriction (BFR), emerge as effective strategies to maintain or increase muscle mass. It is well established that LL-BFR promotes similar increases in muscle cross-sectional area (CSA) and lower rating of perceived exertion (RPE) and pain compared with traditional resistance training protocols. On the other hand, only 2 studies with conflicting results have investigated the effects of NES-BFR on CSA, RPE, and pain. In addition, no study directly compared LL-BFR and NES-BFR. OBJECTIVE The aim of the study was to compare the effects of LL-BFR and NES-BFR on vastus lateralis CSA, RPE, and pain. Individual response for muscle hypertrophy was also compared between protocols. DESIGN Intrasubject longitudinal study. SETTING University research laboratory. INTERVENTION Fifteen healthy young males (age = 23 [5] y; weight = 77.6 [11.3] kg; height = 1.76 [0.08] m). MAIN OUTCOME MEASURES Vastus lateralis CSA was measured through ultrasound at baseline (pre) and after 20 training sessions (post). The RPE and pain responses were obtained through modified 10-point scales, handled during all training sessions. RESULTS Both protocols demonstrated significant increases in muscle CSA (P < .0001). However, the LL-BFR demonstrated significantly greater CSA changes compared with NES-BFR (LL-BFR = 11.2%, NES-BFR = 4.6%; P < .0001). Comparing individual increases in CSA, 12 subjects (85.7% of the sample) presented greater muscle hypertrophy for LL-BFR than for the NES-BFR protocol. In addition, LL-BFR produced significantly lower RPE and pain responses (P < .0001). CONCLUSIONS The LL-BFR produced significantly greater increases in CSA with significant less RPE and pain than NES-BFR. In addition, LL-BFR resulted in greater individual muscle hypertrophy responses for most subjects compared with NES-BFR.
Collapse
|
34
|
Stanford DM, Park J, Jessee MB. Unilateral, bilateral, and alternating muscle actions elicit similar muscular responses during low load blood flow restriction exercise. Eur J Appl Physiol 2021; 121:2879-2891. [PMID: 34191094 DOI: 10.1007/s00421-021-04757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 06/20/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Compare acute muscular responses to unilateral, bilateral, and alternating blood flow restriction (BFR) exercise. METHODS Maximal strength was tested on visit one. On visits 2-4, 2-10 days apart, 19 participants completed 4 sets of knee extensions (30% one-repetition maximum) with BFR (40% arterial occlusion pressure) to momentary failure (inability to lift load) using each muscle action (counterbalanced order). Ultrasound muscle thickness was measured at 60% and 70% of the anterior thigh before (Pre), immediately (Post-0), and 5 min (Post-5) after exercise. Surface electromyography and tissue deoxygenation were measured throughout. Results, presented as means, were analyzed with a three-way (sex by time by condition) Bayesian RMANOVA. RESULTS There was a time by sex interaction (BFinclusion: 5.489) for left leg 60% muscle thickness (cm). However, changes from Pre to Post-0 (males: 0.39 vs females: 0.26; BF10: 0.839), Post-0 to Post-5 (males: - 0.05 vs females: - 0.06; BF10: 0.456), and Pre to Post-5 (males: 0.34 vs females: 0.20; BF10: 0.935) did not differ across sex. For electromyography (%MVC), there was a sex by condition interaction (BFinclusion: 550.472) with alternating having higher muscle excitation for females (16) than males (9; BF10: 5.097). Tissue deoxygenation (e.g. channel 1, µM) increased more for males (sets 1: 11.17; 2: 2.91; 3: 3.69; 4: 3.38) than females (sets 1: 4.49; 2: 0.24; 3: - 0.10; 4: - 0.06) from beginning to end of sets (all BFinclusion ≥ 4.295e + 7). For repetitions, there was an interaction (BFinclusion: 17.533), with alternating completing more than bilateral and unilateral for set one (100; 56; 50, respectively) and two (34; 16; 18, respectively). CONCLUSION Alternating, bilateral, and unilateral BFR exercise elicit similar acute muscular responses.
Collapse
Affiliation(s)
- Daphney M Stanford
- Applied Human Health and Physical Function Laboratory, Department of Health, Exercise Science, Recreation and Sports Management, The University of Mississippi, 642 All-American Dr, 211-Turner Center, University, MS, 38677, USA
| | - Joonsun Park
- School of Kinesiology and Nutrition, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Matthew B Jessee
- Applied Human Health and Physical Function Laboratory, Department of Health, Exercise Science, Recreation and Sports Management, The University of Mississippi, 642 All-American Dr, 211-Turner Center, University, MS, 38677, USA.
| |
Collapse
|
35
|
Cerqueira MS, Costa EC, Santos Oliveira R, Pereira R, Brito Vieira WH. Blood Flow Restriction Training: To Adjust or Not Adjust the Cuff Pressure Over an Intervention Period? Front Physiol 2021; 12:678407. [PMID: 34262476 PMCID: PMC8273389 DOI: 10.3389/fphys.2021.678407] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Blood flow restriction (BFR) training combines exercise and partial reduction of muscular blood flow using a pressured cuff. BFR training has been used to increase strength and muscle mass in healthy and clinical populations. A major methodological concern of BFR training is blood flow restriction pressure (BFRP) delivered during an exercise bout. Although some studies increase BFRP throughout a training intervention, it is unclear whether BFRP adjustments are pivotal to maintain an adequate BFR during a training period. While neuromuscular adaptations induced by BFR are widely studied, cardiovascular changes throughout training intervention with BFR and their possible relationship with BFRP are less understood. This study aimed to discuss the need for BFRP adjustment based on cardiovascular outcomes and provide directions for future researches. We conducted a literature review and analyzed 29 studies investigating cardiovascular adaptations following BFR training. Participants in the studies were healthy, middle-aged adults, older adults and clinical patients. Cuff pressure, when adjusted, was increased during the training period. However, cardiovascular outcomes did not provide a plausible rationale for cuff pressure increase. In contrast, avoiding increments in cuff pressure may minimize discomfort, pain and risks associated with BFR interventions, particularly in clinical populations. Given that cardiovascular adaptations induced by BFR training are conflicting, it is challenging to indicate whether increases or decreases in BFRP are needed. Based on the available evidence, we suggest that future studies investigate if maintaining or decreasing cuff pressure makes BFR training safer and/or more comfortable with similar physiological adaptation.
Collapse
Affiliation(s)
- Mikhail Santos Cerqueira
- Neuromuscular Performance Analysis Laboratory, Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eduardo Caldas Costa
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Rafael Pereira
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Brazil
| | - Wouber Hérickson Brito Vieira
- Neuromuscular Performance Analysis Laboratory, Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
36
|
Cerqueira MS, Maciel DG, Barboza JAM, Centner C, Lira M, Pereira R, De Brito Vieira WH. Effects of low-load blood flow restriction exercise to failure and non-failure on myoelectric activity: a meta-analysis. J Athl Train 2021; 57:402-417. [PMID: 34038945 DOI: 10.4085/1062-6050-0603.20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES To compare the short- and long-term effects of low load blood flow restriction (LL-BFR) versus low- (LL-RT) or high-load (HL-RT) resistance training with free blood flow on myoelectric activity, and investigate the differences between failure and non-failure protocols. DATA SOURCE We identified sources by searching the MEDLINE/PUBMED, CINAHL, WEB OF SCIENCE, CENTRAL, SCOPUS, SPORTDiscus, and PEDro electronic databases. STUDY SELECTION We screened titles and abstracts of 1048 articles using our inclusion criteria. A total of 39 articles were selected for further analysis. DATA EXTRACTION Two reviewers independently assessed the methodological quality of each study and extracted data from studies. A meta-analytic approach was used to compute standardized mean differences (SMD ± 95% confidence intervals (CI)). Subgroup analyses were conducted for both failure or non-failure protocols. DATA SYNTHESIS The search identified n = 39 articles that met the inclusion criteria. Regarding the short-term effects, LL-BFR increased muscle excitability compared with LL-RT during non-failure exercises (SMD 0.61, 95% CI 0.34 to 0.88), whereas HL-RT increased muscle excitability compared with LL-BFR regardless of voluntary failure (SMD -0.61, 95% CI -1.01 to 0.21) or not (SMD -1.13, CI -1.94 to -0.33). Concerning the long-term effects, LL-BFR increased muscle excitability compared with LL-RT during exercises performed to failure (SMD 1.09, CI 0.39 to 1.79). CONCLUSIONS Greater short-term muscle excitability levels are observed in LL-BFR than LL-RT during non-failure protocols. Conversely, greater muscle excitability is present during HL-RT compared with LL-BFR, regardless of volitional failure. Furthermore, LL-BFR performed to failure increases muscle excitability in the long-term compared with LL-RT.
Collapse
Affiliation(s)
- Mikhail Santos Cerqueira
- Neuromuscular Performance Analysis Laboratory - Department of Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil,
| | - Daniel Germano Maciel
- Neuromuscular Performance Analysis Laboratory - Department of Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil,
| | - Jean Artur Mendonça Barboza
- Neuromuscular Performance Analysis Laboratory - Department of Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil,
| | - Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany; Praxisklinik Rennbahn, Muttenz, Switzerland,
| | - Maria Lira
- Neuromuscular Performance Analysis Laboratory - Department of Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil,
| | - Rafael Pereira
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia, Brazil,
| | - Wouber Hérickson De Brito Vieira
- Neuromuscular Performance Analysis Laboratory - Department of Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil,
| |
Collapse
|
37
|
Haddock B, Hansen SK, Lindberg U, Nielsen JL, Frandsen U, Aagaard P, Larsson HBW, Suetta C. Exercise-induced fluid shifts are distinct to exercise mode and intensity: a comparison of blood flow-restricted and free-flow resistance exercise. J Appl Physiol (1985) 2021; 130:1822-1835. [PMID: 33914664 DOI: 10.1152/japplphysiol.01012.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MRI can provide fundamental tools in decoding physiological stressors stimulated by training paradigms. Acute physiological changes induced by three diverse exercise protocols known to elicit similar levels of muscle hypertrophy were evaluated using muscle functional magnetic resonance imaging (mfMRI). The study was a cross-over study with participants (n = 10) performing three acute unilateral knee extensor exercise protocols to failure and a work matched control exercise protocol. Participants were scanned after each exercise protocol; 70% 1 repetition maximum (RM) (FF70); 20% 1RM (FF20); 20% 1RM with blood flow restriction (BFR20); free-flow (FF) control work matched to BFR20 (FF20WM). Post exercise mfMRI scans were used to obtain interleaved measures of muscle R2 (indicator of edema), R2' (indicator of deoxyhemoglobin), muscle cross sectional area (CSA) blood flow, and diffusion. Both BFR20 and FF20 exercise resulted in a larger acute decrease in R2, decrease in R2', and expansion of the extracellular compartment with slower rates of recovery. BFR20 caused greater acute increases in muscle CSA than FF20WM and FF70. Only BFR20 caused acute increases in intracellular volume. Postexercise muscle blood flow was higher after FF70 and FF20 exercise than BFR20. Acute changes in mean diffusivity were similar across all exercise protocols. This study was able to differentiate the acute physiological responses between anabolic exercise protocols. Low-load exercise protocols, known to have relatively higher energy contributions from glycolysis at task failure, elicited a higher mfMRI response. Noninvasive mfMRI represents a promising tool for decoding mechanisms of anabolic adaptation in muscle.NEW & NOTEWORTHY Using muscle functional MRI (mfMRI), this study was able to differentiate the acute physiological responses following three established hypertrophic resistance exercise strategies. Low-load exercise protocols performed to failure, with or without blood flow restriction, resulted in larger changes in R2 (i.e. greater T2-shifts) with a slow rate of return to baseline indicative of myocellular fluid shifts. These data were cross evaluated with interleaved measures of macrovascular blood flow, water diffusion, muscle cross sectional area (i.e. acute macroscopic muscle swelling), and intracellular water fraction measured using MRI.
Collapse
Affiliation(s)
- Bryan Haddock
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sofie K Hansen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Geriatric Research Unit, Department of Geriatric and Palliative Medicine, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulrich Lindberg
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jakob Lindberg Nielsen
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Ulrik Frandsen
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Per Aagaard
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Henrik B W Larsson
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Suetta
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Geriatric Research Unit, Department of Geriatric and Palliative Medicine, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Geriatric Research Unit, Department of Medicine Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
38
|
Teixeira EL, Ugrinowitsch C, de Salles Painelli V, Silva-Batista C, Aihara AY, Cardoso FN, Roschel H, Tricoli V. Blood Flow Restriction Does Not Promote Additional Effects on Muscle Adaptations When Combined With High-Load Resistance Training Regardless of Blood Flow Restriction Protocol. J Strength Cond Res 2021; 35:1194-1200. [PMID: 33900254 DOI: 10.1519/jsc.0000000000003965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Teixeira, EL, Ugrinowitsch, C, de Salles Painelli, V, Silva-Batista, C, Aihara, AY, Cardoso, FN, Roschel, H, and Tricoli, V. Blood flow restriction does not promote additional effects on muscle adaptations when combined with high-load resistance training regardless of blood flow restriction protocol. J Strength Cond Res 35(5): 1194-1200, 2021-The aim of this study was to investigate, during high-load resistance training (HL-RT), the effect of blood flow restriction (BFR) applied during rest intervals (BFR-I) and muscle contractions (BFR-C) compared with HL-RT alone (no BFR), on maximum voluntary isometric contraction (MVIC), maximum dynamic strength (one repetition maximum [1RM]), quadriceps cross-sectional area (QCSA), blood lactate concentration ([La]), and root mean square of the surface electromyography (RMS-EMG) responses. Forty-nine healthy and untrained men (25 ± 6.2 years, 178.1 ± 5.3 cm and 78.8 ± 11.6 kg) trained twice per week, for 8 weeks. One leg of each subject performed HL-RT without BFR (HL-RT), whereas the contralateral leg was randomly allocated to 1 of 2 unilateral knee extension protocols: BFR-I or BFR-C (for all protocols, 3 × 8 repetitions, 70% 1RM). Maximum voluntary isometric contraction, 1RM, QCSA, and acute changes in [La] and RMS-EMG were assessed before and after training. The measurement of [La] and RMS-EMG was performed during the control sessions with the same relative load obtained after the 1RM test, before and after training. Similar increases in MVIC, 1RM, and QCSA were demonstrated among all conditions, with no significant difference between them. [La] increased for all protocols in pre-training and post-training, but it was higher for BFR-I compared with the remaining protocols. Increases in RMS-EMG occurred for all protocols in pre-training and post-training, with no significant difference between them. In conclusion, despite of a greater metabolic stress, BFR inclusion to HL-RT during rest intervals or muscle contraction did not promote any additive effect on muscle strength and hypertrophy.
Collapse
Affiliation(s)
- Emerson Luiz Teixeira
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil.,Strength Training Study and Research Group, Paulista University, UNIP, São Paulo, SP, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | - Vitor de Salles Painelli
- Strength Training Study and Research Group, Paulista University, UNIP, São Paulo, SP, Brazil.,Exercise Neuroscience Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil; and
| | - Carla Silva-Batista
- Strength Training Study and Research Group, Paulista University, UNIP, São Paulo, SP, Brazil.,Exercise Neuroscience Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil; and
| | | | | | - Hamilton Roschel
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | - Valmor Tricoli
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
39
|
Lorenz D, Bailey L, Wilk K, Mangine B, Head P, Grindstaff TL, Morrison S. Current Clinical Concepts: Blood Flow Restriction Training. J Athl Train 2021; 56:937-944. [PMID: 33481010 DOI: 10.4085/418-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Muscle weakness and atrophy are common impairments following musculoskeletal injury. The use of blood flow restriction (BFR) training offers the ability to mitigate weakness and atrophy without overloading healing tissues. This approach requires consideration of a wide range of parameters and the purpose of this manuscript is to provide insights into proposed mechanisms of effectiveness, safety considerations, application guidelines, and clinical guidelines for BFR training following musculoskeletal injury. BFR training appears to be a safe and effective approach to therapeutic exercise in sports medicine environments. While training with higher loads produces the most substantial increases in strength and hypertrophy, BFR training appears to be a reasonable option to bridge between earlier phases of rehabilitation when higher loads may not be tolerated by the patient and later stages that are consistent with return to sport performance.
Collapse
Affiliation(s)
- Daniel Lorenz
- Lawrence Memorial Hospital/OrthoKansas, Lawrence, KS, USA, , @kcrehabexpert
| | - Lane Bailey
- Memorial Hermann Health System, Houston TX, USA, , @baileylb2001
| | - Kevin Wilk
- Champion Sports Medicine, Birmingham, AL, USA,
| | - Bob Mangine
- University of Cincinnati, Cincinnati, OH, USA,
| | - Paul Head
- School of Sport Health and Applied Science, St. Mary's University, London, UK,
| | - Terry L Grindstaff
- Department of Physical Therapy, Creighton University, Omaha, NE, USA, , @GrindstaffTL
| | | |
Collapse
|
40
|
Angleri V, DE Oliveira R, Biazon TMPC, Damas F, Borghi-Silva A, Barroso R, Libardi CA. Effects of Drop-Set and Pyramidal Resistance Training Systems on Microvascular Oxygenation: A Near-Infrared Spectroscopy Approach. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2020; 13:1549-1562. [PMID: 33414864 PMCID: PMC7745902 DOI: 10.70252/zkuv3876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Metabolic stress is a primary mechanism of muscle hypertrophy and is associated with microvascular oxygenation and muscle activation. Considering that drop-set (DS) and crescent pyramid (CP) resistance training systems are recommended to modulate these mechanisms related to muscle hypertrophy, we aimed to investigate if these resistance training systems produce a different microvascular oxygenation status and muscle activation from those observed in traditional resistance training (TRAD). Twelve volunteers had their legs randomized in an intra-subject cross-over design in TRAD (3 sets of 10 repetitions at 75% 1-RM), DS (3 sets of ∼50-75% 1-RM) and CP (3 sets of 6-10 repetitions at 75-85% 1-RM). Vastus medialis microvascular oxygenation and muscle activation were respectively assessed by non-invasive near-infrared spectroscopy and surface electromyography techniques during the resistance training sessions in the leg-extension exercise. Total hemoglobin area under the curve (AUC) (TRAD: -1653.5 ± 2866.5; DS: -3069.2 ± 3429.4; CP: -1196.6 ± 2675.3) and tissue oxygen saturation (TRAD: 19283.1 ± 6698.0; DS: 23995.5 ± 15604.9; CP: 16109.1 ± 8553.1) increased without differences between protocols (p>0.05). Greater decreases in oxygenated hemoglobin AUC and hemoglobin differentiated AUC were respectively found for DS (-4036.8 ± 2698.1; -5004.4 ± 2722.9) compared with TRAD (-1951.8 ± 1720.0; -2250.3 ± 1305.7) and CP (-1814.4 ± 2634.3; 2432.2 ± 2891.4) (p<0.03). Higher increases of hemoglobin deoxygenated AUC were found for DS (1426.7 ± 1320.7) compared with TRAD (316.0 ± 1164.9) only (p=0.04). No differences were demonstrated in electromyographic amplitudes between TRAD (69.0 ± 34.4), DS (61.3 ± 26.7) and CP (60.9 ± 38.8) (p>0.05). Despite DS produced lower microvascular oxygenation levels compared with TRAD and CP, all protocols produced similar muscle activation levels.
Collapse
Affiliation(s)
- Vitor Angleri
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Ramon DE Oliveira
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Thais M P C Biazon
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Felipe Damas
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Audrey Borghi-Silva
- Cardiopulmonary Physiotherapy Laboratory, Physical Therapy Department, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Renato Barroso
- School of Physical Education, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Cleiton A Libardi
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| |
Collapse
|
41
|
Haddock B, Hansen SK, Lindberg U, Nielsen JL, Frandsen U, Aagaard P, Larsson HBW, Suetta C. Physiological responses of human skeletal muscle to acute blood flow restricted exercise assessed by multimodal MRI. J Appl Physiol (1985) 2020; 129:748-759. [PMID: 32853108 DOI: 10.1152/japplphysiol.00171.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Important physiological quantities for investigating muscle hypertrophy include blood oxygenation, cell swelling, and changes in blood flow. The purpose of this study was to compare the acute changes of these parameters in human skeletal muscle induced by low-load (20% 1-RM) blood flow-restricted (BFR-20) knee extensor exercise compared with free-flow work-matched (FF-20WM) and free-flow 50% 1-RM (FF-50) knee extensor exercise using multimodal magnetic resonance imaging (MRI). Subjects (n = 11) completed acute exercise sessions for each exercise mode in an MRI scanner, where interleaved measures of muscle R2 (indicator of edema), [Formula: see text] (indicator of deoxyhemoglobin), macrovascular blood flow, and diffusion were performed before, between sets, and after the final set for each exercise protocol. BFR-20 exercise resulted in larger acute decreases in R2 and greater increases in cross-sectional area than FF-20WM and FF-50 (P < 0.01). Blood oxygenation decreased between sets during BFR-20, as indicated by a 13.6% increase in [Formula: see text] values (P < 0.01)), whereas they remained unchanged for FF-20WM and decreased during FF-50 exercise. Quadriceps blood flow between sets was highest for the heavier load (FF-50), averaging 305 mL/min, and lowest for BFR-20 at 123 ± 73 mL/min until post-exercise cuff release, where blood flow rates in BFR-20 exceeded both FF protocols (P < 0.01). Acute changes in diffusion rates were similar for all exercise protocols. This study was able to differentiate the acute exercise response of selected physiological factors associated with skeletal muscle hypertrophy. Marked differences in these parameters were found to exist between BFR and FF exercise conditions, which contribute to explain the anabolic potential of low-load blood flow restricted muscle exercise.NEW & NOTEWORTHY Acute changes in blood flow, diffusion, blood oxygenation, cross-sectional area, and the "T2 shift" are evaluated in human skeletal muscle in response to blood flow-restricted (BFR) and conventional free-flow knee extensor exercise performed in an MRI scanner. The acute physiological response to exercise was dependent on the magnitude of load and the application of BFR. Physiological variables changed markedly and established a steady state rapidly after the first of four exercise sets.
Collapse
Affiliation(s)
- Bryan Haddock
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sofie K Hansen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Geriatric Research Unit, Bispebjerg-Frederiksberg and Herlev-Gentofte Hospitals, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulrich Lindberg
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jakob Lindberg Nielsen
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Ulrik Frandsen
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Per Aagaard
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Henrik B W Larsson
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Suetta
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Geriatric Research Unit, Bispebjerg-Frederiksberg and Herlev-Gentofte Hospitals, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
42
|
Centner C, Lauber B. A Systematic Review and Meta-Analysis on Neural Adaptations Following Blood Flow Restriction Training: What We Know and What We Don't Know. Front Physiol 2020; 11:887. [PMID: 32848843 PMCID: PMC7417362 DOI: 10.3389/fphys.2020.00887] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022] Open
Abstract
Objective: To summarize the existing evidence on the long-term effects of low-load (LL) blood flow restricted (BFR) exercise on neural markers including both central and peripheral adaptations. Methods: A systematic review and meta-analysis was conducted according to the PRISMA guidelines. The literature search was performed independently by two reviewers in the following electronic databases: PubMed, Web of Science, Scopus and CENTRAL. The systematic review included long-term trials investigating the effects of LL-BFR training in healthy subjects and compared theses effects to either LL or high-load (HL) training without blood flow restriction. Results: From a total of N = 4499 studies, N = 10 studies were included in the qualitative synthesis and N = 4 studies in a meta-analysis. The findings indicated that LL-BFR resulted in enhanced levels of muscle excitation compared to LL training with pooled effect sizes of 0.87 (95% CI: 0.38-1.36). Compared to HL training, muscle excitation following LL-BFR was reported as either similar or slightly lower. Differences between central activation between LL-BFR and LL or HL are less clear. Conclusion: The summarized effects in this systematic review and meta-analysis highlight that BFR training facilitates neural adaptations following LL training, although differences to conventional HL training are less evident. Future research is urgently needed to identify neural alterations following long-term blood flow restricted exercise.
Collapse
Affiliation(s)
- Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Benedikt Lauber
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany.,Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
43
|
Park J, Stanford DM, Buckner SL, Jessee MB. The acute muscular response to passive movement and blood flow restriction. Clin Physiol Funct Imaging 2020; 40:351-359. [PMID: 32511829 DOI: 10.1111/cpf.12649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/01/2020] [Accepted: 05/28/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE To compare the acute effects of passive movement combined with blood flow restriction (PM + BFR) to passive movement (PM) or blood flow restriction alone (BFR). METHODS A total of 20 healthy participants completed: time control (TC), PM, BFR and PM + BFR (one per leg, over 2 days; randomized). For PM, a dynamometer moved the leg through 3 sets of 15 knee extensions/flexions (90° at 45°/second). For BFR, a cuff was inflated to 80% arterial occlusion pressure on the upper leg. Measurements consisted of anterior muscle thickness at 60% and 70% of the upper leg before and after (-0, -5 and -10 min) conditions, ratings of perceived effort and discomfort before conditions and after each set, and of the vastus lateralis during conditions. Data, presented as mean (SD), were compared using Bayesian RMANOVA, except for perceived effort and discomfort, which were compared using a Friedman's test (non-parametric). RESULTS 60% (Δcm before-after-0: TC = 0.04 [0.09], PM = -0.01 [0.15], BFR = 0.00 [0.11], PM + BFR = 0.01 [0.22]) and 70% (Δcm before-after-0: TC = 0.01 [0.09], PM = -0.01 [0.15], BFR = 0.02 [0.11], PM + BFR = -0.03 [0.22]) muscle thickness did not change. Perceived effort was greater than TC following PM (p = .05) and PM + BFR (p = .001). Perceived discomfort was greater following BFR and PM + BFR compared to TC (all p ≤ .002) and PM (all p ≤ .010). Changes in deoxygenation (e.g. channel 1; ΔμM start set 1-end set 3: TC = 0.9 [1.2], PM = -1.2 [1.9], BFR = 10.3 [2.7], PM + BFR = 10.3 [3.0]) were generally greater with BFR and PM + BFR (BFinclusion = 1.210e + 13). CONCLUSION Acute muscular responses to PM + BFR are not augmented over the effect of BFR alone.
Collapse
Affiliation(s)
- Joonsun Park
- Applied Physiology Laboratory, School of Kinesiology and Nutrition, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Daphney M Stanford
- Applied Human Health and Physical Function Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| | - Samuel L Buckner
- USF Muscle Laboratory, Division of Exercise Science, University of South Florida, Tampa, FL, USA
| | - Matthew B Jessee
- Applied Human Health and Physical Function Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| |
Collapse
|
44
|
Curran MT, Bedi A, Mendias CL, Wojtys EM, Kujawa MV, Palmieri-Smith RM. Blood Flow Restriction Training Applied With High-Intensity Exercise Does Not Improve Quadriceps Muscle Function After Anterior Cruciate Ligament Reconstruction: A Randomized Controlled Trial. Am J Sports Med 2020; 48:825-837. [PMID: 32167837 DOI: 10.1177/0363546520904008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND A major goal of rehabilitation after anterior cruciate ligament reconstruction (ACLR) is restoring quadriceps muscle strength. Unfortunately, current rehabilitation paradigms fall short of this goal, such that substantial quadriceps muscle strength deficits can limit return to play and increase the risk of recurrent injuries. Blood flow restriction training (BFRT) involves the obstruction of venous return to working muscles during exercise and may lead to better recovery of quadriceps muscle strength after ACLR. PURPOSE To examine the efficacy of BFRT with high-intensity exercise on the recovery of quadriceps muscle function in patients undergoing ACLR. STUDY DESIGN Randomized controlled trial; Level of evidence, 2. METHODS A total of 34 patients (19 female, 15 male; mean age, 16.5 ± 2.7 years; mean height, 169.0 ± 19.7 cm; mean weight, 73.2 ± 17.7 kg) scheduled to undergo ACLR were randomly assigned to 1 of 4 groups: concentric (n = 8), eccentric (n = 8), concentric with BFRT (n = 9), and eccentric with BFRT (n = 9). The exercise component of the intervention consisted of patients performing a single-leg isokinetic leg press, at an intensity of 70% of the patients' 1-repetition maximum during either the concentric or eccentric action, for 4 sets of 10 repetitions 2 times per week for 8 weeks beginning at 10 weeks postoperatively. Patients randomized to the BFRT groups performed the leg-press exercise with a cuff applied to the thigh, set to a limb occlusion pressure of 80%. Isometric and isokinetic (60 deg/s) quadriceps peak torque, quadriceps muscle activation, and rectus femoris muscle volume were assessed before ACLR, after BFRT, and at the time that patients returned to activity and were converted to the change in values from baseline for analysis. Also, 1-way analyses of covariance were used to compare the change in values for each dependent variable between groups after BFRT and at return to activity (P ≤ .05). RESULTS No significant differences were found between groups for any outcome measures at either time point (P > .05). CONCLUSION An 8-week BFRT plus high-intensity exercise intervention did not significantly improve quadriceps muscle strength, activation, or volume. On the basis of our findings, the use of BFRT in conjunction with high-intensity resistance exercise in patients undergoing ACLR to improve quadriceps muscle function may not be warranted. REGISTRATION NCT03141801 ( ClinicalTrials.gov identifier).
Collapse
Affiliation(s)
- Michael T Curran
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Asheesh Bedi
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA.,Hospital for Special Surgery, New York, New York, USA.,Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Edward M Wojtys
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Megan V Kujawa
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Riann M Palmieri-Smith
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
45
|
Schoenfeld BJ, Grgic J, Contreras B, Delcastillo K, Alto A, Haun C, De Souza EO, Vigotsky AD. To Flex or Rest: Does Adding No-Load Isometric Actions to the Inter-Set Rest Period in Resistance Training Enhance Muscular Adaptations? A Randomized-Controlled Trial. Front Physiol 2020; 10:1571. [PMID: 32009980 PMCID: PMC6974452 DOI: 10.3389/fphys.2019.01571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023] Open
Abstract
We aimed to investigate the effects of resistance training (RT) combined with no-load isometric actions (iso-holds) during the inter-set recovery period versus RT that involves passive inter-set rest on muscular strength, muscular hypertrophy, and muscular endurance in resistance-trained men. Twenty-seven resistance-trained male volunteers were randomly assigned to either a traditional group (TRAD) that performed a hypertrophy-oriented RT routine with the rest intervals spent passively (n = 13) or to a group that supplemented traditional RT with iso-holds (ISO) for the working muscle group between each set (n = 14). Training for both routines consisted of three weekly sessions performed for 8 weeks. Three sets of 8–12 repetitions were performed per exercise. A 2-min rest interval was afforded between sets; the ISO group performed iso-holds for the first 30 s of each rest interval and then recovered for the final 90 s. Maximal strength was assessed using the one repetition maximum (1RM) tests in the leg press and bench press. Upper-body muscle endurance was assessed by performing the bench press to failure at 50% of 1RM. Muscle thickness (MT) of the elbow flexors, elbow extensors, mid-thigh, and lateral thigh was assessed using B-mode ultrasound. Results indicated a favorable effect of ISO on MT in the mid-thigh. Alternatively, there was a possible detrimental effect for ISO on leg press strength. No other notable differences were seen between conditions. In conclusion, the use of inter-set iso-holds may be a time-efficient strategy to enhance development of the quadriceps femoris; conversely, it may be detrimental to maximizing lower body strength.
Collapse
Affiliation(s)
- Brad J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, New York City, NY, United States
| | - Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Bret Contreras
- Sport Performance Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Kenneth Delcastillo
- Department of Health Sciences, CUNY Lehman College, New York City, NY, United States
| | - Andrew Alto
- Department of Health Sciences, CUNY Lehman College, New York City, NY, United States
| | - Cody Haun
- Department of Exercise Science, LaGrange College, LaGrange, GA, United States
| | - Eduardo O De Souza
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, United States
| | - Andrew D Vigotsky
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Department of Statistics, Northwestern University, Evanston, IL, United States
| |
Collapse
|
46
|
Exercise induced changes in echo intensity within the muscle: a brief review. J Ultrasound 2020; 23:457-472. [PMID: 31925731 DOI: 10.1007/s40477-019-00424-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
Echo intensity is the mean pixel intensity of a specific region of interest from an ultrasound image. This variable has been increasingly used in the literature as a physiological marker. Although there has been an increased interest in reporting changes in echo intensity in response to exercise, little consensus exists as to what a change in echo intensity represents physiologically. The purpose of this paper is to review some of the earliest, as well as the most up to date literature regarding the changes in echo intensity in response to exercise. Echo intensity has been used to measure muscle quality, muscle damage, acute swelling, and intramuscular glycogen. The changes in echo intensity, however, are not consistent throughout the literature and often times lead to conclusions that seem contrary to the physiologic effects of exercise. For example, echo intensity increases in conjunction with increases in strength, contrary to what would be expected if echo intensity was a marker of muscle quality/muscle damage. It is conceivable that a change in echo intensity represents a range of physiologic effects at different time points. We recommend that these effects should be determined experimentally in order to rule out what echo intensity might and might not represent. Until this is done, caution should be employed when interpreting changes in echo intensity with acute and chronic exercise.
Collapse
|
47
|
Shiromaru FF, de Salles Painelli V, Silva-Batista C, Longo AR, Lasevicius T, Schoenfeld BJ, Aihara AY, Tricoli V, de Almeida Peres B, Teixeira EL. Differential muscle hypertrophy and edema responses between high-load and low-load exercise with blood flow restriction. Scand J Med Sci Sports 2019; 29:1713-1726. [PMID: 31281989 DOI: 10.1111/sms.13516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 01/25/2023]
Abstract
We sought to determine whether early increases in cross-sectional area (CSA) of different muscles composing the quadriceps with low-load resistance training with blood flow restriction (LL-BFR) were mainly driven by muscle hypertrophy or by edema-induced swelling. We also compared these changes to those promoted by high-load resistance training (HL-RT). In a randomized within-subject design, fifteen healthy, untrained men were submitted to magnetic resonance imaging (MRI) for CSA and edema-induced muscle swelling assessment (fast spin echo inversion recovery, FSE-STIR). MRI was performed in LL-BFR and HL-RT at baseline (W0) and after 3 weeks (W3), with a further measure after 6 weeks (W6) for HL-RT. Participants were also assessed at these time points for indirect muscle damage markers (range of motion, ROM; muscle soreness, SOR). CSA significantly increased for all the quadriceps muscles, for both LL-BFR and HL-RT at W3 (all P < .05) compared to W0. However, FSE-STIR was elevated at W3 for all the quadriceps muscles only for HL-RT (all P < .0001), not LL-BFR (all P > .05). Significant increases and decreases were shown in SOR and ROM, respectively, for HL-RT in W3 compared to W0 (both P < .05), while these changes were mitigated at W6 compared to W0 (both P > .05). No significant changes in SOR or ROM were demonstrated for LL-BFR across the study. Early increases in CSA with LL-BFR seem to occur without the presence of muscle edema, whereas initial gains obtained by HL-RT were influenced by muscle edema, in addition to muscle hypertrophy.
Collapse
Affiliation(s)
- Fabiano Freitas Shiromaru
- Strength Training Study and Research Group, Institute of Health Sciences, Paulista University, São Paulo, Brazil
| | - Vitor de Salles Painelli
- Strength Training Study and Research Group, Institute of Health Sciences, Paulista University, São Paulo, Brazil.,School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Carla Silva-Batista
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.,School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Ariel Roberth Longo
- Strength Training Study and Research Group, Institute of Health Sciences, Paulista University, São Paulo, Brazil
| | - Thiago Lasevicius
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | | | - Valmor Tricoli
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Bergson de Almeida Peres
- Strength Training Study and Research Group, Institute of Health Sciences, Paulista University, São Paulo, Brazil
| | - Emerson Luiz Teixeira
- Strength Training Study and Research Group, Institute of Health Sciences, Paulista University, São Paulo, Brazil.,School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|